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5-Bromo-2-deoxyuridine activates DNA damage signalling
responses and induces a senescence-like phenotype in
p16-null lung cancer cells
Joanne C. Masterson and Shirley O’Dea

5-Bromo-2-deoxyuridine (BrdU) is a thymidine analogue

that is incorporated into replicating DNA. Although

originally designed as a chemotherapeutic agent, sublethal

concentrations of BrdU have long been known to alter the

growth and phenotype of a wide range of cell types.

Mechanisms underlying these BrdU-mediated effects

remain unknown, however. We have characterized the

effects of BrdU on A549 lung cancer cells by examining

DNA damage responses, cell cycle effects and phenotypic

changes. A549 cells express wild-type p53, but are p16-

null. Sublethal concentrations of BrdU evoke a DNA

damage response in these cells that involves the activation

of Chk1, Chk2 and p53. Increased numbers of enlarged

nuclei and multinucleated cells are evident in the treated

populations. Cell cycle inhibition occurs, resulting in

reduced proliferation and accumulation of cells in the S,

G2/M and G0 phases. BrdU induces an early inhibition of

p21 expression that coincides with nuclear localization of

proliferating cell nuclear antigen. Subsequently, p21 levels

increase, whereas proliferating cell nuclear antigen levels

decrease compared with control cells. Upregulation of p27

and p57 expression also occurs. By day 7 of exposure to

BrdU, treated cells acquire a senescent-like phenotype

with an increase in cell size, granularity and b-

galactosidase activity. We conclude that BrdU induces a

DNA damage response in A549 cells, which results in

reduced proliferation mitotic exit and phenotypic changes

that resemble senescence. Anti-Cancer Drugs
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Introduction
Although currently widely used to measure DNA synth-

esis in proliferating cells, the halogenated pyrimidine, 5-

bromo-2-deoxyuridine (BrdU), was originally rationally

designed in the 1950s as a thymidine analogue to perturb

DNA synthesis in cancer cells. BrdU was subsequently

found to be a potent radiosensitizer and photosensitizer

[1–3], and trials using combined chemotherapies that

include BrdU as a radiosensitizer continue today [4].

BrdU incorporation into DNA results in several types of

DNA lesions, including mutations [5], fragile sites [6],

chromatid breaks [7] and sister chromatid exchanges [8].

In addition, BrdU induces micronucleation [9], hyper-

methylation of DNA [10] and polyploidization [11].

Remarkably, investigations into the DNA damage re-

sponses elicited by BrdU incorporation into cellular DNA

are limited. The mismatch-repair system is activated in

BrdU-containing cells [12,13]. Other than this, little is

known regarding the damage pathways that are activated

by BrdU, and their consequences for cell cycle and cell

fate.

In addition to its DNA-damaging effects, early studies

with BrdU revealed significant effects on cell morphology

and phenotype in various cell types [14]. Subsequently,

BrdU became known as a differentiating agent owing to

its effects on the morphology and phenotype of a wide

range of cell types in vitro and in vivo, including normal

chondrocytes, muscle, molar, brain, pancreatic and blood

cells [15–20], and leukaemic and lung cancer cells

[21–24]. More recently, the Ayusawa group [25,26] has

reported that BrdU induces a senescent-like phenotype

in both normal and transformed cells. Senescence,

particularly in transformed cells, remains relatively poorly

defined; it is now unclear whether the phenotypic

changes observed in BrdU-treated cells in earlier studies

were, in fact, senescence-related events rather than true

differentiation effects. The Ayusawa group in their

reports did not address this question. The ability of a

chemotherapeutic agent, such as BrdU, to induce

differentiation or senescence is potentially a desirable

side effect that can enhance its antitumour activity.

Moreover, BrdU might have clinical potential as a

differentiation therapeutic, distinct from its chemother-

apeutic role. Conversely, it remains to be proved whether

the induction of senescence in tumours is, in fact,

advantageous. Evidence exists that senescent cells can

alter the microenvironment surrounding preneoplastic
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cells and may encourage tumour growth [27]. The

cellular effects and the mechanisms of action of BrdU,

therefore, require clarification in this context.

Suggested mechanisms underlying the effects of BrdU

on gene expression and cell phenotype include DNA

mutations, alterations in DNA methylation, altered

interactions with DNA-binding proteins and reversal of

the remodelling of regulatory DNA into specific chroma-

tin architecture that occurs during cancer. BrdU-sub-

stituted DNA has an increased capacity to bind histones

[28], nonhistone proteins [29] and chromosomal proteins

[30], and might become concentrated in repetitive DNA

nucleotide sequences [31]; such observations have,

however, not yet been linked to downstream effects.

The Ayusawa group speculates that BrdU incorporation

into AT-rich inactive chromatins, such as in scaffold/

nuclear matrix attachment region (S/MAR) sequences,

results in altered interactions with AT-binding ligands

and leads to changes in gene expression consistent with

senescence [32,33]. The mechanisms underlying the

subsequent halting of the cell cycle and the induction of a

senescence-like phenotype, however, remain unexamined

and unexplained.

In this study, we have characterized the DNA damage

response and cell cycle effects of BrdU in A549 lung

cancer cells. The A549 cell line is widely used for lung

studies. These adenocarcinoma-derived cells contain

wild-type p53 and pRb but do not express p16, a protein

usually required for senescence [34]. The cell line is also

aneuploid and contains chromosomal abnormalities [35],

and heterogenous subpopulations [36]. We report that

the DNA damage response to BrdU in these cells involves

the activation of Chk1, Chk2 and p53. Subsequent cell

cycle effects include halts at G0, S and G2/M phases, and

morphological changes consistent with the induction of a

senescent-like phenotype. It has recently been proposed

that the induction and maintenance of senescence

requires the efficient activation of the DNA damage

response pathways [37,38]. Our data are consistent with

this and indicate that DNA damage responses in BrdU-

treated cancer cells lead to the inhibition of cell cycles

and to the establishment of a senescence-like phenotype.

Materials and methods
Cell culture and 5-bromo-2-deoxyuridine treatment

The A549 lung adenocarcinoma cell line was obtained

from the European Collection of Cell Cultures (Salisbury,

UK). Cells were routinely cultured in a 1 : 1 mixture of

Dulbecco’s modified Eagle’s medium and Hams F12

(Gibco, Paisley, UK), supplemented with 5% fetal bovine

serum (Gibco) and 2 mmol/l of L-glutamine (Gibco).

Cells were maintained in a humidified atmosphere

containing 5% CO2 and 95% air at 371C. Stock solutions

of 10 mmol/l of BrdU (Sigma, Poole, UK) were prepared

in sterile water and stored at – 201C. Cells were seeded

at 0.3� 103/cm2 in tissue-culture vessels, appropriate to

each assay. After 24 h BrdU was added at a final

concentration of 10 mmol/l in a volume of 200 ml/cm2

(day 0). The medium was replaced with fresh BrdU-

containing medium on day 3 and cells were harvested for

assays as appropriate.

Cell proliferation

Cells were seeded into 24-well plates and BrdU was

added after 24 h. At each time point, both suspension

cells and adherent cells were harvested. Adherent cells

were harvested by trypsinization. Viability counts were

carried out using ethidium bromide/acridine orange

staining and an ultraviolet microscope. Total cell counts

were obtained by combining the suspension and adherent

cell counts.

Immunofluorescence

Cells were seeded into eight-well chamber slides (Nalge

Nunc, Naperville, Illinois, USA) and BrdU was added

after 24 h. At appropriate time points, cells were fixed in

ice-cold methanol for 5 min and blocked in 20% serum.

Cells were then incubated with antiphosphorylated Chk1

(Ser 345), antiphosphorylated Chk2 (Thr68), anti-p53,

antiphosphorylated-p53 (Ser 15, 37 or 46), antiphos-

phorylated Rb (Ser 807/811) (Cell Signaling, New

England Biolabs, Hitchin, UK), antiproliferating cell

nuclear antigen (PCNA), anti-p27 (Sigma), anticyclin

D1, anti-p57, anti-p21 (Santa Cruz Biotechnology,

Heidelberg, Germany) or anti-actin (Sigma). Alexa 488

secondary antibodies (Molecular Probes, Invitrogen,

Paisley, UK) were used for visualization. Nuclei were

counterstained with DAPi (Sigma). Slides were mounted

in fluorescent aqueous mounting media (Dako Cytoma-

tion, Galway, Ireland) and photomicrographs were

acquired using a fluorescent microscope or confocal

microscope, as indicated.

Fluorescence flow cytometry

Cells were seeded into 75-cm2 tissue-culture flasks and

BrdU was added after 24 h. On day 7 of treatment, cells

were harvested by trypsinization and washed twice in

phosphate-buffered saline (PBS) before being fixed in

70% ice-cold ethanol. Cells were washed twice in PBS/1%

fetal bovine serum to remove ethanol and blocked with

neat rabbit serum. For detection of p21, cells were

incubated with anti-p21 antibody (Santa Cruz Biotech-

nology) followed by a secondary rabbit antimouse anti-

body conjugated to Alexa 488 fluorescent dye (Molecular

Probes). For detection of cyclin B1, Ki-67 (BD Bio-

sciences, Oxford, UK) and pan-keratin (Sigma), cells

were incubated with primary antibodies conjugated to

fluorescein isothiocyanate fluorescent dye. Fluorescence

was detected using a FACScan flow cytometer (Becton

Dickenson, BD Biosciences) and analysed using Cell-

Quest software (Becton Dickenson, BD Biosciences).
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Western blot analysis

Cells were lysed in radioimmunoprecipitation (RIPA)

buffer for total protein extracts. Ten micrograms of

protein was separated by sodium dodecyl sulphate–

polyacrylamide gel electrophoresis and transferred onto

a nitrocellulose membrane. Blots were incubated with

primary antibodies directed against either p53 (Cell

Signaling), PCNA (Sigma), antiphosphorylated cdc-2

(Tyr15) (Cell Signaling) or anti-actin (Sigma), followed

by incubation with horseradish peroxidase-labelled sec-

ondary antibody. Chemiluminescence detection was then

carried out. Equal loading was confirmed by immuno-

staining for actin (Sigma).

Cell cycle analysis

Subsequent cell cycle analysis was determined using

propidium iodide DNA stain. After incubation with

fluorescein isothiocyanate-labelled cyclin B1, Ki-67 and

pan-keratin antibodies, cell cycle analysis was carried out

using propidium iodide (Sigma) and 100 mg/ml RNase

(Sigma) solution diluted in PBS. Fluorescence was

detected using a FACScan flow cytometer and analysed

using CellQuest software.

Assay for metabolic activity

Cell metabolic activity was measured using CellTitre 96

Aqueous One Solution Cell Proliferation Assay (Promega,

Southampton, UK). The kit was used according to the

manufacturer’s instructions and adapted for use in a 24-

well tissue-culture plate. Briefly, cells were seeded into

24-well plates and BrdU was added after 24 h. On day 7 of

treatment, the supernatant was removed and the 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulphophenyl)-2H-tetrazolium (MTS) salt reagent was

added to the cells in fresh culture media and incubated

for 1 h at 371C, in 5% CO2. Absorbance was measured at

450 nm using a Labsystems Multiscan microplate reader

(Labsystems, Helsinki, Finland).

Senescence assays

For lysosomal content and senescence-associated b-

galactosidase (SA-b-gal) activity, cells were seeded into

24-well plates and treated with BrdU as before.

Lysosomal content of the cells was determined using

the lysosomotrophic acridine orange stain (Sigma). Cells

were washed with PBS and incubated for 10 min with

5 mg/ml acridine orange in PBS. After four washes with

PBS, cells were harvested by trypsinization and fluores-

cence was quantified by flow cytometry. SA-b-gal activity

was determined using the ImaGene Green C12FDG lacZ

detection kit (Molecular Probes) [39] according to the

manufacturer’s instructions. Briefly, cells were incubated

for 90 min with 300 mmol/l chloroquine in culture

medium to inhibit endogenous b-galactosidase activity.

After washing with PBS, cells were incubated for 3 h with

33 mmol/l C12FDG, a fluorogenic substrate of b-galacto-

sidase. After two washes with PBS, cells were resus-

pended by trypsinization and fluorescence was quantified

immediately by flow cytometry as above. SA-b-gal was

also detected using an immunohistochemical X-gal stain

(Sigma). Briefly, cells were seeded in an eight-well

chamber slide and treated with BrdU as before. After 7

days, cells were fixed and stained using the kit according

to the manufacturer’s instructions.

Statistical analysis

All experiments were performed three times, unless

otherwise stated, and the results are presented as the

mean of these experiments with 95% confidence interval

of the mean. Wherever indicated, significance was

obtained using a two-sided Student’s t-test.

Results
5-Bromo-2-deoxyuridine activates DNA damage

response pathways in A549 cells

Both Chk1 and Chk2 proteins are transducers of DNA

damage responses and lie downstream of the ATM and

the ATR DNA damage sensors [40]. The ATR/Chk1

pathway has been implicated in responses to single-

strand breaks, whereas the ATM/Chk2 pathway is

involved in responses to double-strand breaks, although

there can be an overlap between the two pathways. Both

pathways are involved in mismatch-repair responses. p53

is activated in response to various cellular stresses by

phosphorylation at specific sites, depending on the

upstream signal [41]. We began by examining the DNA

damage response induced in BrdU-treated A549 cells.

Phospho-Chk1 and phospho-p53 (Ser 15) were detected

in control cells at culture day 7 (Figs 1 and 2a), indicating

background DNA damage response activity, which is

predictable in an aneuploid tumour cell line such as A549.

Cells cultured for 7 days in BrdU-containing medium

displayed increased DNA damage response activity, with

increased levels of phospho-Chk1 and the induction of

phospho-Chk2 (Fig. 1). Increased levels and nuclear

localization of total p53, increased levels of phospho-p53

(Ser 15) and induction of phospho-p53 (Ser 37, 46) were

also evident in response to BrdU treatment (Fig. 2a). An

increase in the levels of total p53 was confirmed by

Western blotting (Fig. 2b). Thus, several DNA damage

response pathways are activated in A549 cells in response

to BrdU exposure.

Altered morphology of 5-bromo-2-deoxyuridine-treated

cells

BrdU induced substantial changes in the morphology of

A549 cells. The incidence of binucleation, multinuclea-

tion, micronucleation and enlarged nuclei was increased

in A549 cells cultured with BrdU, compared with control

cells (Fig. 3a).

After 7 days of culturing, the BrdU-treated cells were

enlarged and flattened and resembled senescent-like

cells (Fig. 3a). Similar cells were present sporadically in
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control populations, but their incidence, estimated

microscopically to be approximately 1%, was significantly

lower than in treated populations. We were interested in

comparing enlarged BrdU-treated cells (BrdUL) with

large cells in control populations (CntlL) and with control

and treated cells that appeared to have more normal

morphologies (CntlN or BrdUN, respectively). We there-

fore defined the CntlL population as the largest 1% of the

total control population, according to their forward-

scatter properties by flow cytometry. We then used the

same gate to analyse the treated population (Fig. 3b).

Using this method, it was confirmed that the larger

morphology was approximately 10 times more prevalent

in treated populations (P < 0.01). In addition, the

average size of the BrdUN cells was significantly greater

(P < 0.001) than that of the CntlN cells, as indicated by a

shift in the forward scatter of the BrdU-treated popula-

tion (Fig. 3b and c).

Inhibition of cell proliferation by

5-bromo-2-deoxyuridine

BrdU significantly inhibited proliferation of A549 cells

(Fig. 3d). By day 7 of treatment, there was a 75%

reduction in cell number in BrdU-treated populations

compared with controls (P < 0.05). This reduction in cell

number was not due to toxicity as the number of

nonviable cells remained low during culture in both

control and treated populations.

Modulation of cell cycle regulatory proteins in response

to 5-bromo-2-deoxyuridine

We proceeded to determine the effects of BrdU on cell

cycle regulatory proteins and to investigate the extent to

which cell cycle arrest, senescence and differentiation

were occurring in response to BrdU. PCNA plays an

essential role both in cell proliferation and in DNA repair

processes [42]. At day 1, BrdU-treated cells had increased

levels of nuclear PCNA, compared with control cells

(Fig. 4a). At day 7, however, BrdU-treated cells had

reduced levels of PCNA, compared with control popula-

tions, with some cells also exhibiting nuclear exclusion.

This might reflect initial attempts at PCNA-mediated

DNA repair, followed by downregulation of PCNA during

cell cycle inhibition. The reduction in PCNA expression

at day 7 was confirmed by Western blotting (Fig. 4b).

Cyclin D1, the G1 initiating protein, was virtually absent

in treated cells at day 7 (Fig. 5a). This, along with a

reduction in phosphorylated Rb protein (Fig. 5b),

indicates inhibition at the G1 and G1/S phase transition

point of the cell cycle [40].

The cyclin-dependent kinase inhibitors (CDKIs), p21,

p27 and p57, function primarily as negative regulators of

the cell cycle [43]. p21 plays a central role in cell cycle

regulation, apoptosis and differentiation [44], and has

inhibitory effects on cyclins at all phases. In control cells,

the number of p21-positive cells and the levels of p21

Fig. 1

Control +BrdU +BrdU DAPi

pChk1

pChk2

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

DNA damage-signalling responses in BrdU-treated cells. Phospho-Chk1 was detected in control cells (control) at day 7 of culture. Increased levels
of phospho-Chk1 and induction of phospho-Chk2 occurred in response to 7 days of BrdU treatment ( + BrdU). Nuclei were visualized using a DAPi
counterstain ( + BrdU DAPi). Abnormal nuclear morphology is indicated with an arrow. Results represent three experimental repeats. BrdU, 5-bromo-
2-deoxyuridine.
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protein per cell decreased during the culture period

(Fig. 6a). This very likely reflects an initial increase in

p21 activity to prevent the apoptosis following trypsiniza-

tion and a subsequent decrease on reattachment to

permit growth in culture. In contrast, p21 activity was

almost completely inhibited in BrdU-treated cells at day

1; thereafter, the levels increased and exceeded the levels

in the control cells by day 7 (Fig. 6a and b). Even at day 7,

Fig. 2

Control(a)

p53

p53ser15

p53ser37

p53ser46

Ctrl

53 kDa p53

Actin42 kDa

+BrdU

+BrdU

+BrdU DAPi

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

(b)

p53-signalling responses in BrdU-treated cells. (a) p53 and phospho-p53 (Ser 15) were detected in control cells (control) at day 7 of culture.
Increased levels of and nuclear localization of p53 and increased levels of phospho-p53 (Ser15, 37 and 46) occurred in response to 7 days of BrdU
treatment ( + BrdU). (b) Increased total p53 protein levels, as detected by Western blot. Nuclei were visualized using a DAPi counterstain ( + BrdU
DAPi). Binucleation is indicated with an arrow. Results represent three experimental repeats. BrdU, 5-bromo-2-deoxyuridine; Ctrl, control.
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Fig. 3
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Effects of BrdU on cell proliferation and morphology. (a) Actin immunofluorescence with DAPi counterstaining, which was visualized using confocal
microscopy, indicated increased cell size (dashed line arrow), binucleation (arrowhead) and micronucleation (arrow) in populations after 7 days of
BrdU treatment. (b) An overall increase in cell size was apparent in the BrdU-treated population by day 7, as indicated by a shift in forward scatter
(FSC) by flow cytometry. BrdUL cells were approximately 10 times more prevalent than CntlL cells. (c) The increase in cell size was significant in the
total populations and also when ‘normal’ sized (CntlN and BrdUN) and ‘large’ cells (CntlL and BrdUL) were compared, P < 0.01 and P < 0.001,
respectively. (d) BrdU induced a significant reduction of proliferation in A549 cells by day 7 of treatment (P < 0.05). Results represent at least three
experimental repeats. BrdU, 5-bromo-2-deoxyuridine; Ctrl, control.
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p21 was present in only approximately 10% of the treated

cells (Fig. 6a). In contrast to p21, cells treated for 7 days

with BrdU also had increased levels of nuclear p27

(Fig. 6c) and p57 (Fig. 6d), compared with control cells.

5-Bromo-2-deoxyuridine activates cell cycle checkpoints

The effects of BrdU on cell cycle progression were

analysed. Ki-67 was used as a marker of actively cycling

cells to allow separation of 2C populations into G0 and G1

phases. When total populations were examined at day 7,

control cells displayed a normal cell cycle distribution.

They also displayed a larger 4C population, accounting for

approximately 8% of the total population, which pre-

sumably reflected the aneuploid nature of A549 cells

(Fig. 7a). In contrast, BrdU induced a significant increase

in the number of cells accumulated in G0 and S phase

with approximately 17 and 16% of the total BrdU

population in each respective phase, compared with 2

and 7% of total control populations. A corresponding

significant reduction in 2C/G1 phase BrdU-treated cells

was evident. This indicates that BrdU induced a

prolonged or halted S phase, which was probably due to

futile cycles of repair; it also caused cells to undergo

mitotic exit and to withdraw from the cell cycle into G0.

When BrdUN and BrdUL, as previously defined in Fig. 3,

were analysed separately, it was found that BrdUN cells

predominantly accounted for the halt at G0 (P < 0.01)

(Fig. 7b). In contrast, approximately 40% of the BrdUL

cells were evenly divided between the S and the G2/M

phases; the latter distribution had not been apparent in

the analysis of the total population (Fig. 7c). Significantly

more BrdUL than CntlL cells were present in the

S (P < 0.0001) and the G2/M phases (P < 0.01). In

contrast, over 90% of CntlL cells were halted with a

greater 4C DNA content, significantly more than in

corresponding BrdUL cells (P < 0.00001).

The cdc-2/cyclin B complex is pivotal in regulating the

G2/M checkpoint [40]. Phosphorylation of cdc-2 renders

it inactive. Downregulation of active cdc-2/cyclin B

Fig. 4

Control(a)

PCNA 
Day 1

PCNA 
Day 7

Ctrl

+BrdU

+BrdU

+BrdU DAPi

36 kDa PCNA

Actin42 kDa

(b)

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

Effects of BrdU on PCNA expression. (a) Nuclear PCNA was induced at day 1 of BrdU treatment. In contrast, PCNA was absent or at low levels in
control cells at this time point. Subsequently, PCNA levels increased in the control cells and decreased in the BrdU-treated cells after 7 days’
treatment with BrdU. Nuclear exclusion is indicated by an arrow. (b) Reduction in PCNA protein levels following 7 days of BrdU treatment, as
detected by Western blot. Results represent at least three experimental repeats. BrdU, 5-bromo-2-deoxyuridine; Ctrl, control; PCNA, proliferating
cell nuclear antigen.
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complexes is required for cytokinesis. Delayed degrada-

tion of cyclin B can lead to cytokinesis failure and mitotic

catastrophe with multinucleation and multimicronuclea-

tion, and can halt it at the G2/M checkpoint [45,46].

Although the percentage of control and treated cells

expressing cyclin B was similar during all the phases of

the cell cycle (data not shown), the amount of cyclin B

per cell was higher in treated cells, compared with

control, by day 7 (Fig. 8a). Increased cyclin B expression

was also associated with abnormal mitosis, both as

multinucleation and enlarged nuclei, in treated cells

(Fig. 8b). A slight increase in the activity of cdc-2 was also

suggested by a moderate decrease in its phosphorylation

levels (Fig. 8b and c). This suggests that cyclin B activity

is elevated in response to BrdU-mediated DNA damage,

leading to cell cycle arrest at the G2/M checkpoint.

Although this would lead to cell death in normal cells, the

dysregulated cell cycle machinery in A549 cells can result

in the G2/M halt and the mitotic catastrophe observed in

a subpopulation of these cells.

Induction of senescence-related markers in

5-bromo-2-deoxyuridine-treated cells

A range of senescence-related markers was used to

evaluate the induction of a senescence-like phenotype

in A549 cells in response to BrdU.

As shown above, increased numbers of large cells with a

senescent-like morphology were present in BrdU-treated

A549 populations (Fig. 3b and c). Moreover, there was

also an increase in average cell size in the BrdUN

population, compared with CntlN cells (Fig. 3c). When

cell size was compared with cell cycle phase in total

populations, it was found that BrdU-treated cells were

larger than control cells at all stages of the cell cycle.

Therefore, despite their increased size, BrdU-treated

cells remained capable of progressing through the cell

cycle and did not accumulate in any particular phase

(Fig. 9a).

Analysis of side scatter revealed a significant increase in

cell granularity in response to BrdU (P < 0.01), which

again was evident at all cell cycle phases (Fig. 9b).

Granularity is considered to reflect an increased organel-

lar content in senescent cells [39]. Increased lysosomal

content is also associated with cellular senescence [39].

Lysosomal content was slightly increased in BrdU-treated

cells, compared with control cells, at day 7 as determined

by uptake of the lysosomotrophic fluorescent dye,

acridine orange (Fig. 9c). Separation of CntlN and BrdUN

populations from the CntlL and BrdUL populations

predictably showed that increased lysosomal content

correlated with increased cell size in both control and

treated cells.

BrdU-treated cells had a higher rate of metabolic activity

per cell than control cells (P < 0.01) (Fig. 9d). This is

consistent with a senescence-like phenotype.

SA-b-gal activity was measured using two different assays.

Cleavage of the b-galactosidase substrate C12FDG,

measured by flow cytometry, revealed a significant

increase in SA-b-gal activity in BrdU-treated cells

Fig. 5

Control

Cyclin D1

pRb

(a)

(b)

+BrdU +BrdU DAPi

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm
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(P < 0.01) (Fig. 10a). Staining of cells for SA-b-gal using

an X-gal substrate confirmed the increase in SA-b-gal

activity in response to BrdU (Fig. 10b).

Thus, per cell, BrdU-treated cells were larger, more

granular, had increased lysosomal content, were more

metabolically active and displayed more SA-b-gal activity

than their control counterparts; all these features indicate

the induction of a senescence-like phenotype.

Effects of 5-bromo-2-deoxyuridine on cell

differentiation

It has previously been reported that BrdU modulates the

expression of differentiation-related proteins such as

cytokeratins, which can be induced or upregulated in

lung cancer cell lines, depending on the endogenous

expression levels [23]. We investigated whether BrdU-

mediated upregulation of cytokeratin expression in A549

cells was cell cycle dependent. If so, this might reflect a

Fig. 6
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differentiation-related halt in the cell cycle. One hundred

percent of the control and the BrdU-treated cells

expressed cytokeratins (results not shown). Cytokeratin

expression, however, was significantly upregulated in all

treated cells during all the phases of the cell cycle

(P < 0.01), with no accumulation occurring in any one

phase (Fig. 11).

Discussion
The ability of BrdU to both induce DNA damage and

modulate the cell phenotype has long been recognized.

The molecular mechanisms associated with these effects,

however, are unknown and potential links between the

two processes have not been explored. Furthermore, the

question of whether BrdU induces differentiation or

senescence requires clarification. We have examined the

effects of BrdU on DNA damage response and cell cycle

checkpoint pathways, and the related impacts on cell

cycle progression and cell phenotype in a lung cancer cell

line. BrdU-induced DNA damage occurs during several

cell cycle phases. The ‘multihit’ nature of BrdU-induced

DNA damage led us to examine unsynchronized cell

populations, thus enabling us to examine the ensemble of

BrdU effects. Our studies show that A549 cells respond to

BrdU-induced DNA damage by upregulating background

Chk1 responses, activating Chk2 and phosphorylating

p53. Activation of the DNA-repair function of PCNA is

also suggested by the early upregulation of this protein

after exposure to BrdU. A decoupling of normal DNA

damage signalling and cell cycle checkpoint activation in

these transformed cells leads to a deregulated mitosis

with an increase in the incidence of abnormal nuclei and

accumulation of cells in G0, S and G2/M phases of the cell

cycle. An increase in average cell size occurs and

phenotypic changes consistent with senescence are

apparent (summarized in Fig. 12).

Our findings thus support the contention that BrdU

induces a senescence-like phenotype in cancer cells.

Senescence is a mechanism to suppress inappropriate

proliferation, e.g. that follows DNA damage; it is defined

as an irreversible halt in cell cycle when cells become

unresponsive to mitogenic or apoptotic signals [27].

Senescent cells are enlarged and have increased granu-

larity; nevertheless, they remain viable and metabolically

active [47]. In this study, the A549 populations that

appeared morphologically normal were termed CntlN and

BrdUN. The majority of both of these populations had a

2C DNA content. Unlike the CntlN population, however,

approximately one-third of the BrdUN population had

withdrawn from the cell cycle and was halted at G0

(Fig. 7b). The BrdUN cells were also slightly larger than

their CntlN counterparts (Fig. 3d) and senescent-

associated features were increased in the BrdU-treated

2C population (Fig. 9). Despite their more ‘normal’

Fig. 7
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morphological appearance, therefore, the BrdUN popula-

tion had several senescent-like characteristics. It seems

likely that BrdU-induced DNA damage caused these cells

to arrest, in this case mainly at G0. The result of this

arrest was the induction of a senescence-like phenotype

rather than apoptosis.

Unlike the CntlN population, the enlarged CntlL

population, by definition, possessed senescent-like fea-

tures. The CntlL population, which represented only 1%

of the total control population, had increased cell sizes

and almost exclusively a greater 4C DNA content. These

cells probably reflected ongoing, spontaneous senescence

due to aneuploidy and in-vitro culture conditions in the

control population. In contrast, the incidence of enlarged

senescent-like cells was increased 10-fold in the presence

of BrdU. Unlike the CntlL population, approximately 50%

of BrdUL cells were accumulated in the S and G2/M

phases, indicating that they were halted at the DNA

damage checkpoints. Originally defined by their regula-

tory role in cell cycle progression, it is now clear that

DNA damage checkpoints are also involved in the

Fig. 8
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Fig. 9
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induction and maintenance of senescence [37,38,48]. We

therefore believe, first, that the previously reported

changes in gene expression and phenotype in BrdU-

treated tumour cells now seem to reflect the acquisition

of senescent-like phenotypes. Second, the activation of

the checkpoints in the A549 senescent-like cells in this

study provides evidence that these phenotypic changes

are due to BrdU-induced DNA damage responses, rather

than to mutations or to alterations in methylation or to

altered protein interactions in BrdU-containing DNA.

Although BrdU-induced morphological changes in A549

cells are consistent with the induction of a senescence-

like phenotype, the typical gene-expression profile for

senescence is not evident. Senescent normal human

fibroblasts typically overexpress p21, p16 and cyclin D1.

This was not the case in the present study [49].

Treatment-induced senescence of tumour cells can,

however, occur in the absence of p53, p21 and p16

[38,50]. The mechanisms underlying senescence in both

normal and tumour cells thus remain unclear. p21 is a

common mediator of p53-induced cell cycle arrest [43].

Downregulation of p21, however, occurred as an early

response to BrdU treatment, probably to avoid the

inactivation of the DNA repair function of PCNA [51],

indicating that the subsequent G0, S and G2/M check-

points activated by BrdU might be p21-independent.

Downregulation of p21 and the absence of p16 in A549

cells suggest that cell cycle arrest is mediated by p27

and/or p57, both of which are upregulated during BrdU

treatment.

The mechanisms by which cell cycle arrest is linked to

senescence are also unknown; although, p27 might play a

key role in linking the two processes. p27 induces cell

cycle arrest during several cell cycle phases usually in

response to external signals such as transforming growth

factor-b and contact inhibition [44]. Its expression,

therefore, correlates with differentiation status in normal

and cancer cells [52]. p57 is also involved in differentia-

tion and plays a role in alveolar development [53]. Both

p27 and p57 are also involved in senescence [54]. The

overexpression of p27 can lead to an increase in cell size,

protein content and metabolic activity, similar to the

BrdU-mediated effects seen in this study [55,56].

Upregulation of p27 to p57 may explain the appearance

of a senescence-like phenotype in BrdU-treated A549

cells in the absence of p21 and p16, which are usually

associated with senescence induction and maintenance

[47]. p27 and/or p57 could be responsible for most of the

cell cycle and phenotypic changes that occur in the A549

cells following BrdU-induced damage. The mitotic exit

and accumulation of G0 A549 cells following treatment

could be due to a p27/p57-induced differentiation-related

or senescence-related entry directly into G0, or to a p27/

p57-induced prolonged G1 halt, which leads to entry into

G0, or both. Increased cytokeratin protein could result

from an altered differentiation programme, terminal

differentiation, a senescence-related programme or

merely from an increase in cell size and accompanying

protein expression: all these can result from increased

p27/p57 activity.

It seems most likely that the altered phenotypes present

in BrdU-treated populations arise after sublethal DNA

damage responses. These responses, rather than leading

to apoptosis result in BrdU-specific cell cycle perturba-

tions, and the activation of regulators involved in cell

Fig. 10
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cycle arrest, differentiation and senescence. A precise

definition of these phenotypes as being either differ-

entiated or senescent might not be possible. Instead, we

suggest that these cells have a BrdU DNA damage-

induced altered phenotype that is dependent on their

genotype. Rather than a BrdU-specific effect such as

altered transcription factor binding to BrdU-substituted

DNA, p27-mediated/p57-mediated DNA damage re-

sponses (which involve mitotic exit and other cell cycle

halts) might, therefore, cause the phenotypic changes

observed in BrdU-treated A549 cells. It is possible that

the phenotypic changes observed in the other cell types

could also be explained by any, or a combination, of these

p27-mediated/p57-mediated processes.

The mechanisms by which BrdU induces various types of

DNA damage have been studied sporadically since this

thymidine analogue had first been designed as an

anticancer agent. Similarly, the effects of BrdU on cell

morphology and phenotype have been recognized but

unexplained for decades. These two aspects of BrdU

biology have remained relatively separate till date. We

suggest that there is very likely a connection between the

two. We provide evidence here that BrdU-mediated

effects on cell phenotype might be due, at least in part, to

BrdU-induced DNA damage and to the subsequent

perturbation of the cell cycle. As a result, phenotypic

response will vary between cell types, depending on their

respective DNA damage response and cell cycle machin-

ery. DNA damage-induced cell cycle perturbations can

lead to changes in gene expression that might resemble

differentiation or senescence. The latter remains poorly

understood, particularly in tumour cells [50]. Thus,

apparent cell-specific BrdU responses, particularly in

tumour cells that have abnormal and varying genotypes,

might reflect cell-specific DNA damage responses, rather

than BrdU-specific effects per se, such as altered

transcription factor binding to BrdU-containing DNA.

The ability of BrdU to modulate the cell cycle has

implications for its use in cell-proliferation assays in vitro
and in vivo. It also remains to be demonstrated whether

BrdU induces senescence in vivo when used during

chemotherapy. If so, is senescence beneficial or detri-

mental in this situation? Furthermore, other base

analogues that are used more commonly than BrdU for

cancer treatment might also have similar effects.
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