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Aim: Understanding the spatial distribution of high priority habitats and
developing predictive models using climate and environmental variables to
replicate these distributions are desirable conservation goals. The aim of this
study was to model and elucidate the contributions of climate and topography to
the distribution of a priority blanket bog habitat in Ireland, and to examine how
this might inform the development of a climate change predictive capacity for
peat-lands in Ireland.

Methods: Ten climatic and two topographic variables were recorded for grid
cells with a spatial resolution of 10�10 km, covering �87% of the mainland
land surface of Ireland. Presence-absence data were matched to these variables
and generalised linear models (GLMs) fitted to identify the main climatic and
terrain predictor variables for occurrence of the habitat. Candidate predictor
variables were screened for collinearity, and the accuracy of the final fitted GLM
was evaluated using fourfold cross-validation based on the area under the curve
(AUC) derived from a receiver operating characteristic (ROC) plot. The GLM
predicted habitat occurrence probability maps were mapped against the actual
distributions using GIS techniques.

Results: Despite the apparent parsimony of the initial GLM using only climatic
variables, further testing indicated collinearity among temperature and precipita-
tion variables for example. Subsequent elimination of the collinear variables and
inclusion of elevation data produced an excellent performance based on the AUC
scores of the final GLM. Mean annual temperature and total mean annual
precipitation in combination with elevation range were the most powerful
explanatory variable group among those explored for the presence of blanket
bog habitat.

Main conclusions: The results confirm that this habitat distribution in general
can be modelled well using the non-collinear climatic and terrain variables tested
at the grid resolution used. Mapping the GLM-predicted distribution to the
observed distribution produced useful results in replicating the projected
occurrence of the habitat distribution over an extensive area. The methods
developed will usefully inform future climate change predictive modelling for
Ireland.
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Introduction

An adaptation framework

Even the most restrictive global emissions policies proposed to date leave a sizeable

chance that significant climate change will occur in the next few decades. Many of the

projections suggest that this warming will surpass the 28 C warming limit adopted by

the European Union (EU) that is suggested as a dangerous threshold beyond which

we should not pass (Parry et al. 2009). This has led to suggestions that while 28 C

provides a reasonable upper limit for target mitigation, it is dangerously misleading

for informing the adaptation agenda (Anderson and Bows 2008). Other empirical

work indicates that the emissions growth rate since 2000 has exceeded that for the

Intergovernmental Panel on Climate Change (IPCC) A1FI scenario, and that no

region is de-carbonising its energy supply (Raupach et al. 2007). These changes are

coincident with a carbon cycle that is generating stronger than expected and sooner

than expected climate change forcing (Canadell et al. 2007). A strong emissions
policy must therefore be complemented with a plan to adapt to major changes with

much more investment in adaptation than is currently planned (Parry et al. 2009,

Swart et al. 2009).

Against this wider background, there is a growing recognition within the

conservation sector that protected area networks will become increasingly important

refuges for habitats and species in a warming climate, as well as being a key

component in sustainable futures built on the green infrastructure which will provide

vital ecosystem services for the delivery of cost effective climate change adaptation

and mitigation. For Ireland specifically, adaptation initiatives in the natural resource

management sector will further National Climate Change Strategy post-2012

aspirations by informing further cross-sectoral initiatives aimed at a lowering of

the carbon intensity of the economy based on resilient green infrastructures

(DOEHLG 2007).

Climate change and conservation

Anthropogenic impacts on global biodiversity have led to international agreements

such as the Convention on Biological Diversity (CBD 1992)AQ5 and the European

Union (EU) Natura 2000 Network, established to protect endangered species and

habitats in the EU based on the Birds Directive and the Habitats Directive (Donald

et al. 2008). Member states including Ireland are bound by the Directives to monitor
and report on the status of target species and habitats (Ostermann 1998); the

National Parks and Wildlife Service (NPWS) has submitted a recent assessment

report for Ireland to the European Commission (EC) (NPWS 2008).

Globally, there is evidence that species are shifting their ranges in response to

changes in regional climates (Parmesan and Yohe 2003, Root et al. 2005, Walther

et al. 2005AQ1 , Lavergne et al. 2006AQ2 ); that species are altering their phenology (Menzel

and Fabian 1999, Visser and Holleman 2001, White et al. 2003, Zavaleta et al. 2003,

Jones et al. 2006, Donnelly et al. 2008) and that some species are facing extinction, or

have become extinct (Parmesan 2006, Foden et al. 2007, Pauli et al. 2007). Therefore,

developing effective conservation strategies that offset the climate change threats to

species persistence will be critical in maintaining species and genetic diversity

(Thuiller et al. 2008). The effects of climate change on biodiversity in Europe are
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already observable through the changing distribution, migration and reproductive

patterns of species (CBD 2007). Consequently, a major challenge is to enhance the

ecological coherence of the Natura 2000 Network via extended habitat networks and

linkages to increase the overall spatial coverage of natural and semi-natural habitats

(Gaston et al. 2008). Moreover, the changing relationship between biodiversity and

climate will have profound implications for the economic and social well-being of

Irish citizens and on the commitments to halt biodiversity loss.

Measures proposed to increase resilience include plans to expand protected areas,

maintain varied and functional ecosystems and preserve good habitat quality

(Hopkins et al. 2007, Mitchell et al. 2007), as well as planning on the basis of the

functional connectivity of habitats rather than simple structural connectivity.

Ireland’s mountains are largely coastal, and as with other maritime upland regions

the steep climatic and environmental gradients result in a compression of broad

latitudinal ecotones into a relatively small area (Coll et al. 2005), and hence add a

vertical component to adaptive landscape planning. Despite the need for site-specific

impact assessments for priority habitats and species, scale-dependant controls on

local topo-climates are not adequately captured in the present generation of global

climate models (GCMs) and regional climate models (RCMs). Therefore until

advances in climate system modelling improve the representation of local-scale

climate processes, there is a need to develop methods to better represent local

projections of future changes to key climatic variables. Similarly, in order to buffer

protected areas and identify migration corridors, GIS-based models that incorporate

landscape ecology alongside other environmental variables are needed.

Blanket bogs and climate relationships

Globally, blanket bogs are rare, accounting for �3% of the total peat-land area, and

their distribution is restricted to temperate maritime regions typified by cool

summers, mild winters and year-round rainfall (Lindsay et al. 1988, Warburton

et al. 2004, Boylan et al. 2008, Kurbatova et al. 2009). In Europe, Atlantic blanket

bogs are common only in Scotland and Ireland and constitute a significant global

component of this ecosystem (Douglas 1998, Sheehy Skeffington and O’Connell

1998). In Ireland, they cover about 6% of the land area and contain ca.19% of the

nation’s soil carbon stock (Tomlinson 2005). Atlantic blanket bog formation requires

an annual rainfall �1,200mm (Crushell 2000, Boylan et al. 2008), although

the amount of rainfall is probably less important than its distribution throughout

the year (Lindsay et al. 1998AQ2 , Charman 2002). Irish blanket bogs are divided into

three sub-categories delineated by climatic and terrain controls:

(1) Lowland Atlantic Blanket Bog (sensu Moore 1962) or Oceanic Blanket Bog is

confined to altitudes less than 150m (Schouten 1984) and areas with more

than 250 rain days per year (Hammond 1984).
(2) Highland Blanket Bog (sensu Schouten 1984) is associated with an altitude

range of 150�300m (Schouten 1984) and rainfall amounts of 1200�1250 mm/

year (Hammond 1984).

(3) Mountain or Upland Blanket Bog (sensu Moore 1962) occurs in areas above

300m where annual precipitation exceeds 1250 mm/year (Schouten 1984).
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Although of high conservation value, only 21% of blanket bogs in Ireland remain

in a relatively intact condition (Foss et al. 2001) due to peat extraction, drainage and

forest plantation. Ireland has 50% of the remaining blanket bogs of conservation

importance within the Atlantic Biogeographic Region of Europe (Foss et al. 2001),

and while blanket bog is listed in Annex 1 of the EU Habitats Directive, only Active

Blanket Bog, including areas capable of being restored to active status, is listed as a

priority habitat (NPWS 2008). Therefore current conservation strategies need to be

informed by a better understanding of these ecosystems (Douglas 1998), and the

impacts of climate change must be considered. Climate change is expected to result in

a decrease in the summer water table in peatlands through drier summers and

alteration of pH, while modification of the nutrient cycle may lead to bogs becoming

net emitters of carbon (Kurbatova et al. 2009). Most bog burst and peat slide events

are triggered by high magnitude rainfall events (Crisp et al. 1964, Carling 1986,

Dykes and Kirk 2001, Warburton et al. 2004, Dykes et al. 2008). UK and Irish

data indicate that roughly half of all slippage events at present occur in the late

summer months in relation to convective storm activity (Warburton et al. 2004).

Therefore, associated with an increase in the intensity of convective activity more

slippage events could be expected with climate change in the summer months,

particularly if antecedent hotter and drier conditions have resulted in increased

surface cracking (Sweeney et al. 2008). Other concerns relating to prospective

seasonal changes include increases in winter rainfall leading to enhanced erosion.

Overall therefore, bog habitats in Ireland are considered particularly vulnerable

to the effects of a changing climate (Byrne et al. 2003, Jones et al. 2006, Donnelly

et al. 2008).

A recent Principal Components Analysis (PCA) of grid-based climate data

surfaces for Ireland confirmed these climatic controls on the distribution of Irish

peat-lands and identified an east-west gradient primarily related to precipitation, and

a north-south gradient related to temperature (Jones et al. 2006, Donnelly et al.

2008). Here the analysis of Donnelly et al. (2008) is extended by testing some of their

data in an initial set of predictive models. The Donnelly et al. (2008) data were

derived from 10�10 km climate surface interpolations (Sweeney and Fealy

2002Sweeney and Fealy 2003); although the GIS and data matching routines used

in the analysis here indicate that the interpolated climate surfaces do not extend to

islands and coastal boundary cells. There are sound climatologically-based reasons

for this, but only values for the available cells are used here. In the analysis utilising

the Donnelly et al. (2008) dataset, 848 10�10 km cells of the derived bioclimatic

dataset are used in the predictive models.

The climate and habitat relationships based on a 1961�1990 baseline climatology

are explored for each of the 10�10 km grid cells. A 30-year climatic average is useful

in such an application as it smoothes out a lot of noise for use in an impact

application (Carter et al. 1999). The use of this baseline also complies with the IPCC

Task Group on Scenarios for Climate Impact Assessment (TGCIA) guidelines

(Carter et al. 1999), and provides a common reference period in line with the World

Meteorological Organisation (WMO) defined ‘normal’ baseline against which

projected changes in climate can be assessed.
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Aims and objectives

Until methods using more locally representative predictors of future change for key

habitats and species can be developed, projections of climate change effects on such

ecosystems cannot be made. This needs to be addressed in relatively small regions,

such as Ireland, and projections should be based on an understanding of important

current climatic controls on a case-by-case basis for both species and habitats. The

way this might be achieved using climate and environmental variables as predictors

in a regression-based approach for a selected vulnerable priority habitat is explored

further here. While a number of automated model selection approaches are available,

critical steps in model building are not as transparent or controlled as in manually

conducted modelling exercises (Heikkinen et al. 2006). Multicollinearity among

predictors is a known problem which hampers the analysis of species and habitat

relationships in multiple regression settings (Heikkinen et al. 2004, 2006), and is an

issue that has been poorly explored at finer spatial resolutions. The results reported

here will be used to inform subsequent work using a mix of manual and automated

modelling approaches for other candidate habitats and species.

Data and methods

Habitat data

Data on the distribution of the habitat on a 10�10 km grid was provided by the

Irish National Parks and Wildlife Service (NPWS) for use in GIS analysis (ArcView

GIS 9.3) alongside the climatic and environmental data. The NPWS maps are based

on a combination of habitat maps, e.g. the Peatland Map (Hammond 1979), the

Corine 2000 Land Cover Map and the Teagasc Soils Map (2006) and NPWS surveys

(NPWS 2008). These have also been coupled with maps of important controls such

as rainfall and altitude. Though these sources are to some degree incomplete and

none fully depict the national resource of blanket bog, as with elsewhere across the

EU (Evans 2006), the data used here are considered adequate (NPWS 2008). Here

the Active Blanket Bog (Habitats Directive Annex I code 7130) community

distribution is also mapped for comparison against the Natura 2000 (N2000)

network of sites for both Ireland and Northern Ireland (NI) (Figure 1) and is the

focus of the predictive distribution modelling. For the extended spatial analysis

described in Section 2.3.3AQ3 , spatial data for the NI Active Blanket Bog (code 7130)

habitats from the Joint Nature Conservancy Council (JNCC) database are also

incorporated in the models (JNCC 2007).

Climate and elevation data

Irish Grid (IG) co-ordinates for the 10�10 km grid cells coincident with mapped

presences for the Irish Active Blanket Bog (code 7130) habitat were extracted from

the NPWS GIS data alongside the 10�10 km climate data for the available cells.

These 10�10 km resolution data are derived from monthly climate data for 560

precipitation stations and 70 stations for temperature spatially interpolated using a

polynomial regression method with an inbuilt adjustment for elevation (Sweeney and

Fealy 2002Sweeney and Fealy 2003). The Donnelly et al. (2008) derived bioclimatic
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data (Table 1) was also matched to the IG projections in order to test the variables as

candidate predictors.

For the topographic data, the range in elevation variables (highest elevation �
lowest elevation in the focal cell) was calculated in each grid cell using ArcGIS 9.3

software (ESRI, Redlands, CA, USA)AQ4 from a global digital elevation model (DEM)

(GTOPO30) with a horizontal grid spacing of 30 arcs (approximately 1km). Mean

elevation for each cell was also derived from the DEM and the data referenced to the

climatic datasets. Presence (1) and absence (0) matrices were constructed for the

Active Blanket Bog (code 7130) habitat using the extracted NPWS GIS data and

referenced to the corresponding climatic and elevation data. Although there are 987
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Figure 1. The Irish and Northern Ireland Natura 2000 protected area network. a. Special

Protection Areas (SPAs). b. Special Areas of Conservation (SACs). c. 10 x 10 km distribution

of Active Blanket Bog (code 7130) habitat mapped from National Parks and Wildlife Service

(NPWS) and Joint Nature Conservancy Council (JNCC) data respectively. See text for

explanation.
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10�10 km resolution terrestrial grid cells associated with the extraction routines

from the DEM, climate and climate change data is not available for all these grids as

explained above.

Model variable selection and testing

Logistic regression (LR), with a logit link function and a binomial error distribution,

is a generalised linear modelling approach and is a popular method for characterising

species or community�environment relationships (Guisan and Zimmermann 2000).

The LR model with a logit link function can be written as:

ln
P

1 � P

� �
¼ Bo þB1 x1 þ::::Bnþ1 xnþ1

This can be rewritten in terms of odds rather than log odds as:

P

1 � P
¼ eBo þB1 x1 þ::::Bnþ1 xnþ1

P ¼ probability of an event

E ¼ base of the natural logarithms

X ¼ independent variable

B0; B1 ¼ coefficients estimated from the data

235

240

Table 1. Environmental predictors used in the distribution modelling of Active Blanket Bog

(code 7130) habitat (n�848).

Name Definition Unit Mean Minimum Maximum

Climate

T Mean annual temperature 8C 8.9 6.1 10.4

Tmin Mean temperature-coldest month 8C 4.2 0.95 6.3

Tmax Mean temperature-warmest month 8C 12.8 10.4 13.9

P Total mean annual precipitation mm 1205.3 704.5 2025.2

Ps Mean summer precipitation (June-August) mm 227.9 148.2 342.3

Pw Mean winter precipitation (December-

February)

mm 383.6 208.5 693.9

Eto Mean annual potential evapotranspiration1 mm 615.4 548.5 646.8

Pn Mean annual net precipitation mm 589.9 70.8 1426.0

Hu Mean annual humidity index mm 38.7 20.7 86.6

Ic Continentality Index2 17.1 14.1 18.8

Topography

ELmean Mean elevation3 m 115.4 1.00 495.03

ELrng Elevation range3 m 177.69 0.00 895.00

Notes: (1) after Thornthwaite; (2) mean temperature range warmest and coldest months of the year;
(3) based on the 841 10km grid cells used for this part of the analysis

AQ12
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This special type of generalised linear model (GLM) for binary response variables

compares favourably with more complex machine-based approaches, yielding good

results (Elith et al. 2002,AQ5 2006) and is one of a suite of modelling approaches applied

in bioclimatic envelope modelling (Table 2). GLMs have the added advantage of

fitting probability distributions to the variable being modelled, thereby offering an

extension to normal linear regression techniques which only model the mean of the

distribution (Fealy and Sweeney 2007). Thus in GLMs, data may be assumed to be

from several families of probability distributions, including the normal, binomial,

poisson, negative binomial, or gamma distribution, many of which better fit the non-

normal error structures of most ecological data (Austin 1987, Guisan et al. 2002).

While more sophisticated machine-based modelling methods including Artificial

245

250

255

Table 2. Summary of the statistical techniques, and their abbreviations, applied in bioclimatic

envelope modeling (Heikinnen, et al., 2006).

Study Modelling methods

Brereton et al. 1995, Beaumont and Hughes 2002,

Kadmon et al. 2003, Meynecke 2004, Beaumont

et al. 2005

BIOCLIM

Box et al. 1993, 1999; Crumpacker et al. 2001 ‘The Florida Model’

Walker and Cocks 1991 HABITAT

Carpenter et al. 1993 DOMAIN

Baker et al. 2000 CLIMEX

Skov and Svenning 2004; Svenning and Skov 2004 Fuzzy minimal rectilinear envelope

Modeling

Sykes et al. 1996; Walther et al. 2005 STASH

Iverson and Prasad 1998, 2001, 2002 Classification and regression tree

analysis (CTA/CART/RTA)

Guisan and Theurillat, 2000, Price, 2000 Logistic regression/binomial GLM

Bakkenes et al. 2002, Burns et al., 2003

Leathwick et al. 1996, Midgley et al. 2003AQ5 GAM

Araújo et al. 2004, Luoto et al. 2005

Beerling et al. 1995, Huntley et al. 1995, 2004 Locally weighted regression

Hill et al. 1999, 2002 (local regression/loess)

Berry et al. 2002, Pearson et al. 2002, 2004 ANN

Peterson 2001, Anderson et al. 2002a, 2002b,AQ5

Peterson et al. 2002a, 2002b, 2004 GARP

Prasad and Iverson 2000 MARS

Notes: ANN�artificial neural networks; GAM�generalized additive models; GARP�genetic
algorithm for rule-set prediction; GLM�generalized linear models; GM-SMAP�Gaussian mixture
distributions and multiscale segmentation; MARS�multivariate adaptive regression splinesAQ12
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Neural Nets (ANNs) are available, GLMs in certain applications have been found to

perform comparably well (Marmion et al. 2009). In the modelling approach

described here, GLMs were used on the basis that a manual model building process

would provide a greater insight into the spatial structures and dependencies within

the data.

Once the model has been built and predictions produced, it is necessary to
determine how effective that model is at predicting the dependent variable, in this

case the presence or absence of the Active Blanket Bog (code 7130) habitat. Prior to

model building a correlation matrix for all ten of the candidate predictor climatic

variables was derived. Unsurprisingly, there are strong and positive correlations

between the various temperature and precipitation variables (Appendix Table A1).

Given the importance of precipitation and temperature gradients as controls on the

Active Blanket Bog (code 7130) habitat distribution noted above, it would be

expected that these should contribute component variables to a predictive model.

To refine the candidate variable selection, a backward stepwise selection

procedure, based on the Wald Statistic was undertaken in SPSS to successively

select the most relevant predictors among the ten climatic variables incorporated

(McCullagh and Nelder 1989). Binary LR with a backwards, stepwise-variable

selection is a common statistical method used in conservation biology to estimate

occurrence probabilities in relation to predictors (Kleyer et al. 1999, Cowley et al.

2000, Bässler et al. 2010). Backward elimination over forward selection is frequently
preferable on the basis that it is safer to delete terms from an overly complex model

than to add terms to an overly simple one (Agresti 2002). It was also considered that

a stepwise selection procedure would enable the production of a parsimonious and

accurate predictive model based on the successive elimination of non-explanatory

predictor variables. Stepwise selection of variables is a useful and effective data

analysis tool when the outcome being studied is relatively new (as was the case here),

the importance of individual covariates may not be known, and associations with the

outcome are not well understood (Hosmer and Lemeshow 1989). Additionally, when

aiming at prediction with regression analysis, valuable insights can be developed by

undertaking a sequential regression (Graham 2003). There is also a recognition that

classification success using LR is sensitive to the relative proportion of presences and

absences in the sample, independently of the fit of the model (Hosmer and

Lemeshow 1989).

By definition, the logistic function is symmetric and its inflection point

corresponds to a probability (p) value of 0.5. This value is commonly used as a

default threshold above which it is assumed the model predicts presence, and is the
classification cut-off point reported on here. However, when the proportions of

presences and absences are not equal within the sample, the LR output within the

logit function’s domain is not symmetrical, and deviates towards the extreme with a

greater number of cases (Real et al. 2006). LR is noted for producing scores biased

towards the larger group (HosmerAQ6 and Lemeshaw 1989), therefore unequal group

sizes (prevalence) can influence the scores (Fielding and Bell 1997). However, given

the balance of the presence versus absence data for both sets of analysis here it is not

heavily skewed, for this analysis the binomial distribution is considered to be

appropriate and the 0.5 threshold suitable. This lack of zero-inflation in the binary

count data for the habitat also avoided the need to apply more complicated zero-

inflated generalised poisson (ZIGP) models (Czado et al. 2007).
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Statistical software applications

The initial stepwise selection procedures were undertaken in SPSS, with data

exploration also undertaken in the S� and R-based Brodgar (Zuur et al. 2007)

statistical computing environments (Appendix Table A2). Brodgar was used to cross-

check the decrease in residual deviance associated with each step in the backwards

selection procedure to identify the relevant predictors (McCullagh and Nelder 1989).

The observed and fitted graph for the LR model are provided (Appendix Figure A1),

together with the S� derived residuals plots, alongside the normal Q-Q, scale

location and observed and fitted plots (Appendix Figure A2a-d). Spatial Analysis in

Macroecology (SAM) freeware (Rangel et al. 2006) was also used in order to explore

alternative output measures for model performance (Appendix Table A3). The

climate data was further explored in a parallel multivariate (MV) environment

(CANOCO) to complement the analysis in the univariate (UV) environments (S�,

SPSS, SAM, Brodgar). It was considered that this two stage approach would inform

future work by addressing a key challenge in bioclimatic modelling, i.e. to arrive at
an understanding of the limitations of models by calibrating and validating models

with data that are distinctively independent of each other (Heikkinen et al. 2006).

Results

Specifying an initial model

Although the residuals versus fitted plot for the model shows a distinct pattern

(Appendix Figure A2)AQ6 , this is because of the presence-absence nature of the data and

does not indicate a lack of fit (Zuur et al. 2007). However, the graph is useful for

checking that there are no samples with a score of 1 in the string of points for the 0s

and vice versa, whereas the QQ-plot (Appendix Figure A2b) can be ignored for

presence-absence data as the residuals will never be normally distributed (Zuur et al.

2007). Nagelkerke’s R-square (R2N) (Nagelkerke 1991) values from the SPSS outputs

were used to further evaluate model calibration as this measure quantifies the

proportion of variance explained by the model, with values exceeding 0.4 indicating

a good calibration (Harrell 2001, Steyerberg et al. 2001, Reineking and Schroder

2006). Typically R2N varies between 0 where independent variables fail entirely to

predict the dependent variable, and 1 where the independent variables in the model

predict the dependent variable perfectly. Conversion of the GLM R2N ratio of 0.592

to a percentage indicates that 59.20% of variance in the dependent variable is

accounted for by the predictors (pB 0.001) used in the LR equation.
Applying these routines between the various statistical applications reduced the

predictor variables to four from the original 10 with a predictive accuracy of 74.0%

and 86.8% for the presence and absence data respectively. Some authors have

criticised the use of the Wald Statistic; for example Hauck and Donner (1977) found

that it behaved in an aberrant manner, often failing to reject when the coefficient was

significant. This has led some authors to advocate the use of the likelihood ratio test

(Hosmer and Lemeshaw 1989, Fitzmaurice at al. 2004, Zuur et al. 2007), although

others argue that for large samples the two tests usually give similar results (Agresti

2002). However, running the four predictors on a backward stepwise routine had no

effect on the model output scores or the values of the variables obtained in the

equation. Global measures of model performance are preferred by researchers, with
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overall accuracy (OA) being the most commonly used in ecology (Fielding and Bell

1997), i.e. the probability that a site (either presence or absence) is correctly predicted

(Liu et al. 2009). In this context the percentage prediction outputs from SPSS are

interpreted as the OA score of the fitted model.

The model was cross-validated against different indicator scores for the same four

predictor variables in SAM; thus for example, SAM returned a McFadden’s Rho-

Squared value of 0.428 for the same Chi Square value (489.04) obtained in the SPSS

analysis. A transformation of the likelihood ratio statistic, McFadden’s Rho-Squared

valueAQ7 is intended to mimic the R-squared values associated with Ordinary Least

Squares (OLS) regression in LR. Low Rho-squared values do not imply poor model

fit since these are usually much lower than R-squared values and a rho-squared value

of 0.428 is considered very satisfactory (Hensher and Johnson 1981). Similarly,

Kappa a satisfactory indicator of model performance (Manel et al. 1999) is recorded

at 0.534 in the SAM outputs, indicating a good predictive power (Monserud and

Leemans 1992). SAM also returned a True Skill Statistic (TSS) of 0.497 for the

model, with some authors (e.g. Allouche et al. 2006) arguing that TSS also known as

the Hanssen�Kuipers discriminant compensates for the shortcomings of Kappa

while preserving its advantages, and providing results highly correlated with those of

the threshold-independent AUC statistic (Section 3.4).AQ3

Collinearity tests for identified predictors

While the selected variables made sense climatically in terms of the study habitat, it

was decided to test the statistical basis of the initial GLM further before attempting

to refine it by the incorporation of elevation data as an additional predictor. Having

re-examined the correlation matrix scores, further tests for collinear predictor

variables contributing to multicollinearity in the results were undertaken. Multi-

collinearity occurs when one or more variables are exact or near exact linear

functions of other variables in the data set (Munoz and Felicisimo 2004) and is a

common problem associated with organism and community modelling (Brown 1994,

De Veaux and Ungar 1994). Hence multicollinearity among predictors may hamper

the accurate analysis of species and habitat relationships in multiple regression

settings (MacNally 2000, Luoto et al. 2002, Heikkinen et al. 2004, Heikkinen et al.

2006); and despite these known problems, relatively little attention has been paid to

multicollinearity in bioclimatic modelling studies (Guisan and Thuiller 2005, Luoto

et al. 2006AQ6 ). This is a significant issue, since multicollinearity (i.e. intercorrelation)

among Xs means that causal Xs may be lost from final application models because

other, non-causal Xs are correlated with those causal variables and may be retained

in models at their expense (MacNally 2000).

Since the MV scaling applied in the Principal Components Analysis (PCA)

focused on variable correlations, the relative direction of the arrows (Appendix

Figure A3) approximates the linear correlation coefficients among the variables

represented in Appendix Table A1 (Leps and Smilaur 2003). These findings support

the use of data reduction techniques such as PCA to reduce the dimensions of

predictor data sets (Gates and Donald 2000, Suarez-Seoane et al. 2002, Munoz and

Felicisimo 2004); with the MV approach indicating strong collinearity among some

of the variables analysed here. This applies to both the full range of variables, and to
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the temperature and precipitation variables identified in the initial model specifica-

tion.

The UV approach confirms this assessment, particularly the scatter associated

with the Pairplots for the temperature and precipitation variables (Appendix Figure
A4a, b). With the PCA also indicating that mean annual potential evapotranspira-

tion (Eto) and the mean annual humidity index (HU) are collinear with temperature

and precipitation respectively, this was tested further using a standard OLS

regression in both SPSS and SAM. The high r2 values obtained using T as a

predictor for Eto (r2�0.992; pB0.001) and P as a predictor for HU (r2�0.902;

pB0.001) alongside the high Akaike’s Information Criterion (AIC) scores in SAM

provide further indication of this.

For the refined model a reduced set of predictor variables were tested further.
These comprised T, P and Ic from the climate data and ElRng from the elevation

variables, with further PCA analysis indicating collinearity between the elevation

variables (Appendix Figure A5). A mix of further stepwise selection routines in UV

OLS regression confirmed that mean elevation was less significant as a predictor

than elevation range. CANOCO-based selection routines also detected collinearity of

Ic with T and P as indicated by high variance inflation factors (VIFs). However,

elimination of Ic from the model substantially reduced the VIFs for the three

remaining variables.
These procedures support the elimination of variables based on VIFs as

indicators of correlation between variables (Brauner and Schacham 1998, Cawsey

et al. 2002, Elith and Burgman 2002, Guisan et al. 2002) at the model building stage.

Further testing of the four variable (T, P, Ic, ElRng) model versus the three variable

(T, P, ElRng) reduced model in SAM also supported dropping Ic from the final

model based on test score outputs. For the four variable model a McFadden’s Rho-

Squared score of 0.599 was returned with a Kappa and TSS of 0.695 and 0.694

respectively, but with statistically insignificant p-values for T ( p�0.557) and Ic
(p�0.172). Whereas the three variable fitted model (Figure 2) returned Kappa and

TSS scores of 0.755 and 0.755 respectively against a McFadden’s Rho-Square value

of 0.599 with all p-valuesB0.05. On all other performance measures, the three

variable model offered an improved predictive skill, thus for example, there is a

reduced AIC score (477.67). The reduced predictor model also provided an increased

Nagelkerke’s R2N score (0.751), together with an improved predictive accuracy for

both presence (86.1%) and absence (89.6%) data (Appendix Table A5) as a measure

of OA (Fielding and Bell 1997).

Combining climate and topographic variables to specify a refined model

To be able to correctly specify a model in an ideal world, the factors that determine

the exact nature of the relationship between the presence-absence data and each

predictor variable must be known (i.e. the appropriate functional form of the

variable) (Pearce and Ferrier 2000a). However, as this level of information is rarely

available in regional studies of species and habitat distributions, more exploratory
approaches must be adopted in which the data available determine the model (Pearce

and Ferrier 2000a).

However, elevation is a priori a known control on the distribution of blanket bog

via its influence on temperature and precipitation, therefore elevation data was
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included in the revised LR GLM. For this analysis, sample n�841 10�10 km grid

squares in total, due to the spatial mismatches between the available climate and
habitat presence data indicated previously, the number of records was extended by

inclusion of the NI Active Blanket Bog (code 7130) habitat presence-absence data.

Thus the refined model was tested against all the available habitat records for

Ireland, with presence (n�417) and absence (n�424) for a total of 841 grids

comparing to presence (n�342) and absence (n�506) for a total of 848 grids in the

preceding model. The addition of the NI data also usefully balanced the group scores

for the refined model given the prevalence biases associated with LR.

Model performance evaluation

The various approaches to model building explored here indicate the sort of

problems associated with classical regression analysis that arise when many

predictors are used. An increase in the number of predictors implies a greater

increase in the number of possible regression structures, and the almost inevitable

problem with multicollinearity (Munoz et al. 2004). Having dealt with multi-
collinearity, testing the refined model is a vital step in model development (Pearce

and Ferrier 2000b). Despite the increasing use of statistical modelling techniques

such as LR, relatively little attention has been paid to the development and

application of appropriate evaluation techniques for assessing the predictive

performance of habitat models (Pearce and Ferrier 2000b).

However, both Metz (1986), and Fielding and Bell (1997) have identified an index

that represents an unbiased discrimination index derived from the area under a

relative operating characteristic curve (ROC) (Pearce and Ferrier 2000b). The refined
model’s performance was therefore assessed using a threshold independent method:

the area under the ROC curve, commonly termed AUC (Munoz et al. 2004). The

ROC curve is recommended for comparing two class classifiers as it does not merely

summarise performance at a single arbitrarily selected decision threshold, but across
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Figure 2. Observed and fitted probability values for the Active Blanket Bog (code 7130)

habitat. Presence-absence data (0s and 1s denoted as circles). Hypothetical fittedAQ12 probability

(dotted line) and fitted refined logistic regression model (solid line).

Irish Geography 33

{RIGY}articles/RIGY615165/RIGY_A_615165_O.3d[x] Thursday, 15th September

test1
Sticky Note
location is OK



all possible decision thresholds (Fielding and Bell 1997, Harrell 2001, Bässler et al.

2010, Liu et al. 2009). It plots the sensitivity (i.e. true positives) versus (1� specificity)

(i.e. false positives) (Pearce and Ferrier 2000AQ8 , Munoz et al. 2004). Thus an ideal

classifier hugs the left side and top side of the graph and the area under the curve

equals one.

A random classifier should achieve ca. 0.5, and whilst most analyses use 0.5 as the
decision threshold to consider a case as present or absent, this value is arbitrary and

it does not necessarily give a more accurate model (Fielding and Bell 1997, Manel

et al. 1999). In addition, ROC curves are invariant under changing distributions of

the binary classes (presence-absence), as they actually plot the ‘percentage of class-1

observations’ vs ‘percentage of class-0 observations’ and are therefore independent of

the balance between the two classes (Munoz et al. 2004).

AUC, traditionally used for assessing the accuracy of weather forecasts

(Saseendran et al. 2002, Elmore et al. 2003, Accadia et al. 2005), compares the

number of correct forecasts, minus those attributable to random guessing, to that of

a hypothetical set of perfect forecasts, and has a long history in this field (Finley

1884). Hanley and McNeil (1983) have shown that when dealing with a single scoring

model, the AUC is equal to the empirically observed probability of a class-1

observation attaining a higher score than a class-0 observation. It has also been

shown that the AUC is equivalent to the normalised Mann-Whitney two-sample

statistic, making it equivalent to the Wilcoxon statistic (Bambar 1975, Sokal and
Rohlf 1981, Pearce and Ferrier 2000b). AUC is a measure of model accuracy, but it

does not provide a rule for the classification of cases (Fielding and Bell 1997, Liu et

al. 2005) and has recently received some criticism (Lobo et al. 2008). However, rates

higher than 0.9 indicate very good discrimination because the sensitivity rate is high

relative to the false positive rate (Swets 1988). Therefore the refined model developed

here demonstrates a very good discrimination ability, with an ROC area of 0.941;

SE90.006 (Figure 3).

Using the casewise listing outputs from SPSS, model predicted outputs for each

grid were imported back into GIS to visually compare the model performance with

the mapped presence and absence data for the habitat (Figure 4 and 5). This enabled

the mapping of outliers (SE92.0) in the GLM-predicted values for wrongly called

false presences (FPs) and false absences (FAs) against the observed habitat

distribution (Figure 4). It has been suggested that FPs close to real positives may

be less serious errors than FPs distant from a real positive (Fielding and Bell 1997) as

is the case with results here. This also enabled all the GLM-predicted presence/

absence calls to be mapped against the habitat distribution maps to visually represent
GLM predictive performance overall. Figure 5 visually reinforces the good predictive

skill of the refined GLM as would be expected from the statistical performance

measures (Appendix Tables A4 and A5), and when considered alongside the AUC

score from the ROC. While not mapped here, many of the GLM-predicted FP and

FA calls appear to be associated with the influence of topographic variation on

orography at a local scale. Specifically, the FPs and FAs seem to be associated with

lee areas in the rain shadow of uplands, although this is not uniformly the case. These

findings may indicate a need for data splitting in subsequent work in order to analyse

the spatial pattern in and around upland regions separately. Alternatively there is a

likely need to incorporate a predictive component for slope aspect, for example, in

order to refine the predictive capacity of subsequently developed models.
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Discussion

The study in context

The main finding of this study was that following extensive screening for collinearity,

the subsequent inclusion of elevation range in the grid cells improved the predictive

accuracy of the GLM developed for the Active Blanket Bog (code 7130) habitat

distribution. This finding is unsurprising since climatic and topographical gradients

operate at different spatial scales, with the latter nested in the former (Bruun et al.

2006), hence the inclusion of the elevation data provide an additional and more local

component for the refined GLM. Similarly, by extending the spatial extent of the

habitat presence-absence data by the inclusion of NI data, GLM performance was

improved (Appendix Tables A3 and A4). It has been suggested that the limitations of

bioclimatic models must be understood in order to make them useful tools for the

scientific community and policy-makers (Araújo et al. 2005a, Heikinnen et al. 2006,

Lawler et al. 2006, Beale et al. 2008). In this regard and based on the results here, it is

suggested that the lessons learned at the model building stage are crucial. The

various approaches applied to model building and variable selection emphasise the

importance of understanding climate-environment relationships in the present prior

to applying more sophisticated machine-based modelling methods for the prediction

of future climate change effects on distributions.

The approach therefore supports the view that a manual model-building process

gives a better control to the modeller than automated techniques and enables the

development of ecologically plausible models (Nichols 1989, Crawley 1993, Pausas

et al. 2003). In particular, the extensive routines aimed at identifying collinearity
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Figure 3. The ROC curve for the climate and elevation variablesAQ12 model (AUC�0.941;
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Figure 4. 10 x 10 km grid resolution recorded presence and absence for the Active Blanket

Bog (code 7130) habitats (n�841).

Note: Red circles denote GLM misclassified false absence (0 for 1; n�12); red crosses denote

GLM misclassified false presence (1 for 0; n�10). Mapped casewise list for all outliers

(SE92.0)AQ12
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Figure 5. 10 x 10 km grid resolution recorded presence and absence for the Active Blanket

Bog (code 7130) habitats (n�841).

Note: Overlain black circles denote GLM predicted absences; overlain black crosses denote

GLM predicted presences. Presence-absence coded grids with no symbols denote missing

climate data (see text for explanation)AQ12
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among candidate predictors and hence eliminating multicollinearity in results

emphasises the importance of rigorous test routines at the model construction stage.

Similarly, the parallel exploration of the spatial data in MV and UV environments in

tandem with GIS-based routines emphasises the benefits of such an approach and

contributes to an improved understanding when constructing models. This process

also tends to emphasise there is no ‘one size fits all’ method or software when

attempting to extract the complex spatial information contained in climatic and
environmental data, and when trying to identify appropriate predictors for future

climate driven changes.

Both climate and topography appear in this study as important determinants for

the distribution of the Active Blanket Bog (code 7130) habitat communities. Again,

this is not surprising, since the current paradigm is that climate governs species

distribution on a broad scale (Currie 1991, Wright et al. 1993, Huntley et al. 1995,

H-Acevedo and Currie 2003, Thuiller et al. 2004), whereas the topography, geology,

land cover and spatial configuration of suitable habitats affect species occupancy

patterns at finer spatial resolutions (Pearson et al. 2004, Thuiller et al. 2004). Given

the importance of these controls in the present, changes to the key controls of

temperature and precipitation identified here are likely drivers of future changes for

the habitats and their associated communities and species, certainly at least at

landscape and regional scales.

In this context the predictive models developed here only emphasise earlier
findings in relation to the key controls on the Active Blanket Bog (code 7130) habitat

distribution and the likely future drivers of change (Moore 1962, Hammond 1981AQ2 ,

Schouten 1984, Lindsay et al. 1988, Crushell 2000, Byrne et al. 2003, Jones et al.

2006, Donnelly et al. 2008, Sottocornola et al. 2009). However, this study is the first

so far applied to Irish bog habitats using climate and terrain variables as predictors in

a GLM-based approach where such close attention has been paid to the wider issue

of addressing multicollinearity in bioclimatic modelling generally. This study has also

been the first in Ireland to bring together such a spatially coherent mix of geo-

referenced climatic, elevation and habitat distribution data on an island-wide basis

for use in the development of a predictive modelling capacity.

However, the limitations and assumptions involved in modelling at a 10�10 km

grid resolution are recognised. Thus there is awareness that important controlling

variables such as topographic and environmental heterogeneity will be lost at this

resolution, together with important local micro-climatic controls. This is particularly

important for the Active Blanket Bog (code 7130) habitats where high rates of change

to surface patterning will be a site scale response, and hence between and within
habitat diversity should respond quickly even along spatially short gradients in

response to local topography. For similar scale-dependant reasons no account can be

taken of the relative coherence or patchiness of the Active Blanket Bog (code 7130)

habitat within individual 10�10 km grids where the community presence is

recorded. The interested reader is therefore directed to the NPWS (2008) and

JNCC (2007) survey records for further information on the survey methods.

Nevertheless, the scale of analysis here represents a refinement on the use of

50�50 km grids elsewhere which are a blunt tool in regions such as the Alps and the

Pyrenees where average climate on this scale is a poor representation of the

conditions experienced within most of the square (Beale et al., 2008). For similar

scale-dependant reasons, the use of 50�50 km regional climate model (RCM)
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generated climate change data also has limited utility in topographically diverse

maritime regions (Coll et al. 2005, Coll et al. 2010).

Future prospects

The approach developed here and the spatial data used represents a significant

advance in developing a predictive modelling capacity for Irish habitats and species,

and one which will usefully inform future work and extend the available ecological
modelling capacity. Thus by extending the ecological and environmental information

contained in the database and by extending the available environmental and climate

change data, additional candidate predictors and factors for other habitats and

species can readily be incorporated. Similarly, by having the species presence data

corresponding to these and other priority habitats, more ecologically coherent mixed

effects models can be developed. Similarly, more refined Generalised Additive

Models (GAMs) can be developed and used to incorporate habitat presence, for

example, as a factor for predicting presence-absence of candidate species alongside
other climatic and environmental data.

It has been suggested that implementing and applying a suite of modelling

approaches in consort with ANNs to form a multi-model ensemble forecast would

constitute a more rigorous approach (Araújo et al. 2005a). Such a modelling

framework would be taken to include GLMs and GAMs using conventional

statistics in tandem with ANNs. However, while some work has shown that ANNs

project more accurately than GLMs and GAMs (Thuiller 2003, Araújo et al. 2005b),

there is also a suggestion that ANNs are prone to overfitting. Despite this, ANNs are
able to handle explanatory variables from different sources, such as categorical and

boolean data (Heikkinen et al. 2006), and are better able to determine climatic

envelopes that have non-linear responses to predictors (Pearson et al. 2002, 2004).

Overall therefore, the advantages of automated model building for future applica-

tions are recognised, but it is considered that the approach developed here in

manually formulating and checking models in an iterative and interactive way

between applications will better inform the future application of these methods for

Ireland. Thus if applied alongside an ANNs-based approach, the use of GLM and
GAMs in parallel applications are likely to provide more insights into the

contribution of the predictors in the prediction process, alongside the ability to

examine species response curves to environmental gradients masked in ANNs.

Issues of statistical rigour associated with bioclimatic models aside, confidence in

any predictive models derived using climate change data will be intrinsically linked to

the quality of the RCM-generated data used to prime them. Fortunately, RCM data

at 14�14 km grid resolution has recently been made available for Ireland (McGrath

and Lynch 2008). These provide up to date climate change data for key climatic
variables derived from an RCM double nested in two driving global climate models

(GCMs) (McGrath and Lynch 2008), and are the data sources most likely to be used

in subsequent modelling projecting the impacts of future climate change.

Conclusion

Predicting climate-change driven shifts in species and habitat distributions has been

dominated by continental-scale studies, although regional scale applications are of
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most relevance in relation to conservation goals. Similarly, many of the 50�50 km

grid-scale studies have taken no account of topographical heterogeneity or attempted

to model habitat or species distributions at finer scales with an integrated

topographic component. The omission of this sort of information is likely to

introduce large and systemic biases in bioclimatic models, hence the inclusion of

more localised environmental variables in relation to a reference baseline climate is a

desirable goal if improved predictive modelling capacity for future climate-driven

changes is to be achieved.

This paper has presented a finer scaled modelling approach for integrating

climate and elevation variables at a regional scale, and has explored the important

issues of careful variable selection and the elimination of collinearity at the model

building stage. Extensions of the approach to other habitats and species, together

with the incorporation of additional environmental variables should help further our

understanding of climate-biota relationships in Ireland. By clarifying an under-

standing of these in the present, it is suggested that more accurate and locally-

relevant climate change impact modelling assessments for candidate species and

habitats can be undertaken.
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APPENDIX
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Figure A2. S� validation graphs for blanket bog presence-absence data obtained by the

initial logistic regression model: a) residuals versus fitted; b) normal Q-Q plot; c) scale-location

plot; d) observed and fitted probability.

Figure A1. Observed and fitted probability values for the Active Blanket Bog (code 7130)

habitat. Presence-absence data (0s and 1s denoted as circles). Hypothetical fitted probability

(dotted line) and fitted initial logistic regression model (solid line).
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Figure A3. Principal components analysis (PCA) of candidate climate predictor variables

(n�841).

Note: a) Full set of available candidate predictors for 10km grid cells (left). b) candidate

predictor variables identified in the initial GLM. See Table 1 for explanation of abbreviations

Figure A4. Pairplots: a) temperature and; b) precipitation variables.
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Figure A5. PCA of combined climate and elevation variables indicating collinearity of the

elevation variables. See Table 1 for explanation of abbreviations.
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Table A1. Pearson correlation coefficients for the ten candidate predictor variables.

Correlations

T Tmin Tmax P Ps Pw Ic Eto HU Pn

T Pearson Correlation Sig. (2-tailed)

N

1 .978** .914** �.339** �.511** �.249** �.266** .996** �.580** �.385**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Tmin Pearson Correlation Sig. (2-tailed)

N

.978** 1 .816** �.138** �.331** �.043 �.439** .961** �.404** �.186**

.000 .000 .000 .000 .206 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Tmax Pearson Correlation Sig. (2-tailed)

N

.914** .816** 1 �.648** �.738** �.577** .134** .942** �.816** �.683**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

P Pearson Correlation Sig. (2-tailed)

N

�.339** �.138** �.648** 1 .962** .994** �.660** �.395** .950** .999**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Ps Pearson Correlation Sig. (2-tailed)

N

�.511** �.331** �.738** .962** 1 .932** �.454** �.553** .963** .970**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Pw Pearson Correlation Sig. (2-tailed)

N

�.249** �.043 �.577** .994** .932** 1 �.705** �.306** .921** .989**

.000 .206 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Ic Pearson Correlation Sig. (2-tailed)

N

�.266** �.439** .134** �.660** �.454** �.705** 1 �.194** �.470** �.635**

.000 .000 .000 .000 .000 .000 .000 .000 .000

5
2

J.
C

o
ll

et
a

l.

{
R

IG
Y

}
a

rticles/R
IG

Y
6

1
5

1
6

5
/R

IG
Y

_
A

_
6

1
5

1
6

5
_

O
.3

d
[x

]
T

h
u

rsd
ay,

1
5

th
S

ep
tem

b
er



Table A1 (Continued )

Correlations

T Tmin Tmax P Ps Pw Ic Eto HU Pn

848 848 848 848 848 848 848 848 848 848

Eto Pearson Correlation Sig. (2-tailed)

N

.996** .961** .942** �.395** �.553** �.306** �.194** 1 �.629** �.439**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

HU Pearson Correlation Sig. (2-tailed)

N

�.580** �.404** �.816** .950** .963** .921** �.470** �.629** 1 .962**

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Pn Pearson Correlation Sig. (2-tailed)

N

�.385** �.186** �.683** .999** .970** .989** �.635** �.439** .962** 1

.000 .000 .000 .000 .000 .000 .000 .000 .000

848 848 848 848 848 848 848 848 848 848

Note: Abbreviations as in Table 1

Irish
G

eo
g

ra
p

hy
5

3

{
R

IG
Y

}
a

rticles/R
IG

Y
6

1
5

1
6

5
/R

IG
Y

_
A

_
6

1
5

1
6

5
_

O
.3

d
[x

]
T

h
u

rsd
ay,

1
5

th
S

ep
tem

b
er



Table A2. S� and Brodgar (R) model fit values, climate variables.

Variable Regression coefficient Std. Error t-value p-value

(Intercept) �100.73 12.67 �7.95 B0.001

T �15.35 2.07 �7.42 B0.001

Tmax 17.69 2.36 �7.49 B0.001

P 0.05 0.01 �8.38 B0.001

Ps �0.24 0.03 �7.06 B0.001

Note: Null Deviance: 1143.66 on 847 degrees of freedom. Residual Deviance: 654.6251 on 843 degrees of
freedom. AIC: 664.63

Table A3. SPSS and SAM model performance indicators, climate variables.

SPSS SAM

Measure Score Measure Score

Chi-Square 489.04 Chi-Square 489.04

Nagelkerke R2N 0.592 Mc Fadden’s Rho2 0.428

PA % predicted 86.8 (0s) Kappa 0.534

74.0 (1s) TSS 0.497

Table A4. S� and Brodgar (R) model fit values, climate and elevation variables.

Variable Regression coefficient Std. Error t-value p-value

(Intercept) �8.28 2.24 �3.70 B0.001

T �0.44 0.22 �2.00 0.045

P 0.01 0.00 10.82 B0.001

ElRng 0.01 0.00 10.62 B0.001

Note: Null Deviance: 1165.82 on 840 degrees of freedom. Residual Deviance: 469.67 on 837 degrees of
freedom. AIC: 477.67

Table A5. SPSS and SAM model performance indicators, climate and elevation variables.

SPSS SAM

Measure Score Measure Score

Chi-Square 696.15 Chi-Square 696.15

Nagelkerke R2N 0.751 Mc Fadden’s Rho2 0.599

PA % predicted 89.6 (0s) Kappa 0.755

86.1 (1s) TSS 0.755
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