
© IJIGS/University of Wolverhampton/EUROSIS

TOWARDS STATISTICAL CLIENT PREDICTION – ANALYSIS OF USER
BEHAVIOUR IN DISTRIBUTED INTERACTIVE MEDIA

Aaron McCoy*, Declan Delaney^, Dr. Seamus McLoone* and Dr. Tomás Ward*

*Department of Electronic Engineering, ^Department of Computer Science
National University of Ireland Maynooth

Maynooth, Co. Kildare
Ireland

E-mail: amccoy@eeng.may.ie

KEYWORDS

Distributed interactive media, Torque game engine, Time-
series data analysis, Behavioural modeling, Statistical client
prediction, Networked multiplayer games, Dead-reckoning.

ABSTRACT

Distributed interactive media such as networked multiplayer
computer games offer users the opportunity to interact and
share experiences within a virtual environment. More often
than not, these interactions are required to be performed in
real-time, a constraint which poses problems given the
underlying network capabilities used to transmit information.
In these real-time distributed systems, the amount of
information that needs to be shared between participants in
order to maintain complete game-state fidelity is too large.
As a result, trade-offs must be made over what information
requirements are necessary to maintain a level of consistency
that will provide adequate quality of interaction for the users.
One possible solution to this problem is the use of statistical
modeling techniques that attempt to capture the individual
behaviour of system users. These models can then be used to
predict the likely future behaviour for the users, thus
reducing the shared information requirements. In this paper
we present some preliminary analysis of the behaviour of
users within a distributed interactive application, with a goal
towards future work of attempting to develop and incorporate
statistical models of user behaviour for the purpose described
above.

INTRODUCTION

Distributed interactive media (DIM) such as networked
multiplayer games are prone to quality-of-interaction and
scalability problems as a consequence of non-ideal
communication infrastructure characteristics such as network
latency and bandwidth. This well-known problem is
generally dealt with through careful entity state update
procedures that filter the game-state based on criteria such as
client relevancy or state changes. An example of the former
is area-of-interest techniques (Singhal 1999) while examples
of the latter are delta-compression (Van Hook et al. 1994)
and dead-reckoning (IEEE 1993). In addition QoS
techniques are sometimes used to ensure that all participating
clients are given sufficient network resources to meet quality-
of-interaction criteria (Internet2 2004). The communication
of game state changes is the key issue in all of the above and
the games industry-standard techniques are based chiefly on
variants of dead-reckoning, which is an example of an entity
state extrapolation mechanism. Rather than updating entities

over the network once per simulation loop (which we will
refer to as the game loop) all clients in the DIM maintain a
local model, usually a linear extrapolation, of entity
dynamics. This model is only updated when the client
responsible for the entity determines that the difference
between the true entity state and that of the model as used by
all other clients has deviated by some pre-defined threshold
amount. Only this update then needs to be transmitted to all
the participating clients hence reducing the number of
packets required to maintain a tolerable fidelity across the
DIM.

Such a technique obviously helps reduce bandwidth
requirements and therefore aids in scalability. More subtly it
also aids in the reduction of communication latency, one of
the key factors in maintaining a high quality of interaction for
the user. This is apparent if we look at the individual
components which make up latency in distributed interactive
media for any particular link between two participating
clients i and j :

 ij
ij

ij
cij O

B

K
++=Τ τ (1)

where K represents the generation rate of state information
during the global gameloop in bits per second and B is the
bandwidth of the link to the particular client in question. τc
represents the physical propagation delay. O represents all
other processing overheads. Obviously through an increase in
link bandwidth or a reduction in K the latency can be
reduced. It is through such information rate reduction
techniques such as in dead-reckoning that latency problems
can be dealt with in DIM.

Recently in an attempt to further improve the power of entity
state update mechanisms using the concept of state
extrapolation, a technique known as the hybrid model
approach has been proposed (Delaney et al. 2003). This
concept is very powerful and yet quite simple. In this
paradigm entity state are extrapolated based on a
combination of low order short term extrapolation and longer
term statistical inference. Essentially the technique relies on
extrapolating state changes based on previous examples of
state behaviour in similar circumstances. In the absence of
good information on typical state changes for an entity, the
model is switched to simple low order extrapolation as in
dead-reckoning. By switching between the two models,
hence the term hybrid model, entity states can be
extrapolated further than currently possible under dead-
reckoning and other entity state extrapolation schemes.
Further, in the absence of good statistical information, long-

© IJIGS/University of Wolverhampton/EUROSIS

term heuristic models can be used in lieu as provided by the
DIM designer. Consequently the technique has superior
performance to dead-reckoning alone as demonstrated in
(Delaney et al. 2003). However for the technique to realize
its potential in the field of DIM it is imperative that
techniques and methods should be developed to first of all
recognize, and second of all represent, such statistical
models. All work in this area so far has concentrated on
demonstrating the concept for fixed statistical spatial models
that naturally arise out of static navigation tasks in typical
DIAs (Marshall 2004). We are currently studying the
possibility of automatic recognition of statistically similar
behaviour among entity dynamics in important classes of
DIM.

In a previous paper we have shown that patterns of behaviour
emerge for human-human interaction in such DIM (McCoy
2004). However, in an attempt to bridge the more solid
statistical categorization that arose out of fixed spatial
models with such patterns, an intermediate study has been
conducted in which the reactive coupling between human
agents has been loosened through the investigation of
interaction between human users and finite-state machine-
driven agents (BOTS). This paper reports on work done on
this area so far in exploring such human user behaviour in
these multiplayer computer games. It is hoped that through
the analysis of such behaviour that categorization can be
determined with the goal in mind that statistically similar
patterns of behaviour can be recognized and ultimately
exploited to predict future behaviour in order to pre-empt
gamestate changes ahead of time and so reduce latency
problems in such DIM through both update packet rate
reduction and perhaps pre-emptive transmission.

TEST ENVIRONMENT AND TEST SCENARIOS

We use the Torque Game Engine from GarageGames
(Marshall 2004) to construct simple test environments and
test scenarios. This allows us to perform experiments in a
relatively controlled manner, and provides us with the ability
of recording information. During a user’s interaction within
the test environment, various data is time-stamped and
collected in a log file for subsequent analysis. Firstly, 3-
dimensional positional data for each user is recorded at
regular sampling intervals (at the rate of at least 1 Hertz, but
usually higher), allowing us to reconstruct a user’s positional
state over time with respect to that of another user and any
events that occur. This positional data is represented as time-
series datasets for analysis, examples of which can be seen in
the results and data analysis section. Secondly, direct
interface control interactions (i.e. keyboard and mouse button
presses) performed by the user to control their player
onscreen are time-stamped and recorded whenever they
occur (this consists of primarily movement and weapon firing
instructions). This allows us to reconstruct a user’s control
sequence of actions with respect to any events that occur.
Given the limited complexity of our test environment
described below, the only events which we are concerned
with here are both weapon firing events and disabled events
(where one user is disabled by weapons fire from another),
and these are recorded and time-stamped when they occur.

The test environment that we used for the experiments
reported in this paper is a simple enclosed environment
consisting of several building and tower like structures along
with sets of trees and rocks. These provide some visual
stimulation for the users and also helps obscure their view in
certain areas, forcing them to move about. The experiments
are performed in the style of a First-Person Shooter (FPS)
game, whereby users interact with the environment as though
they were looking through the eyes of their player (see Figure
1). FPS games are one of the most popular genres of games
currently in the market, and their networked multiplayer
capabilities make them on obvious choice for research into
distributed interactive systems in general.

Figure 1: In-game screenshot of the test environment.

Test Scenario 1

This was a simple test scenario set up with the intention of
analyzing the behaviour of a user towards a pseudo-dynamic
goal. At the beginning of the game, the user is spawned
randomly inside one of the buildings. In addition, a computer
controlled opponent (typically referred to as a ‘bot’) is
spawned randomly at one of the predefined pathnodes that
were placed beforehand throughout the environment. These
pathnodes join together to form a path network, and this path
network is traversed by the bot pathnode-by-pathnode (a
representation of this path network can be seen below in
Figure 2). The bot is set on a looping run so that all it does is
constantly follow the path over and over again – no artificial
‘thinking’ or reacting occurs for the bot. The goal for the user
in this case is to disable the bot a specified number of times
using their weapon before the specified time-limit runs out.
The user is encouraged to score as high as possible over a
number of runs such that more typical focused behaviour is
exhibited rather than carefree wandering through the
environment. This is so as to replicate the typical conditions
under which FPS games operate. Typical behavourial
patterns we would expect to see should be target seeking,
pursuit and firing action. Such classes of behaviour are useful
labels (albeit not always clearly distinguishable) and have
been applied with some success in our previous work
(McCoy 2004).

© IJIGS/University of Wolverhampton/EUROSIS

Figure 2: Path network used for navigation by the bot.

Test Scenario 2

This test scenario was set up with the intention of analyzing
the user’s behaviour towards a bot that had limited reactive
capabilities towards their own actions, namely the ability to
fire it’s own weapon and damage the user. It was set up in
exactly the same manner as described for test scenario 1,
with the exception that the bot is given a sensor field that can
be used to detect the presence of the user. If the user comes
within the bot’s sensor field and within direct line-of-sight
(LOS) of the bot, the bot is instructed to fire it’s weapon in
the direction of the user. If the user goes out of LOS of the
bot or out of it’s sensor field radius, then the bot is instructed
to stop firing it’s weapon. The movement capability of the
bot is fixed as in test scenario 1, meaning that it never
deviates it’s position off of the path network on which it
navigates through the environment, regardless of whether it is
currently firing it’s weapon at the user or not. Again, the goal
for the user in this case is to disable the bot a specified
number of times before the time-limit is reached. Unlike test
scenario 1 however, it was now possible for the bot to win
the game by disabling the user the specified number of times.
The motivation for this test scenario is to determine if any
resultant defensive or evasive behaviour can be recognized in
addition to those behaviours stated for the previous scenario.

RESULTS AND DATA ANALYSIS

In this section, we shall present a specific selection of results
taken from data that was collected for users of varying
‘expertise’ with regard to not only this particular test
environment, but also with computer games in general and
FPS specific games. Each user was asked to play a number of
successive games in each test scenario, and they were given a
specific score that they had to reach to complete the game.

Test Scenario 1

Figures 3-5 below present state data over time for several
different users of varying ability. In each figure, the first 3
subplots present positional data for the user (Player 1) and
the bot (Player 2), and are broken into x, y and z coordinates

and plotted separately. Overlaid on each of these are solid
vertical lines representing each point in time where the user
disabled the bot, and these lines allow us to segment the data
into partitions. The final subplot within each figure uses solid
vertical lines to represent each point in time where the user
fired their weapon. In Figures 9-11, we have plotted the
relative position of the user with respect to the bot (i.e. taking
the bot’s position as the origin for each time-step). Each of
the data partitions are plotted individually, with a dark circle
representing the starting position of the user, and a dark ‘x’
marking their end position (i.e. when they disabled the bot).

From visual inspection of Figure 3 (novice user), we can see
several areas where the positional data of the user and the bot
seem to correlate highly, with one essentially ‘following’ the
other one. This corresponds to a pursuit strategy, where the
user has found the bot and is now pursuing them with the
intention of disabling them (from time 50 to 100 for
instance). It is interesting to note that this is less pronounced
in the data for the advanced and expert user. The primary
reason for this is that these users tend to wait in a central area
and let the bot come to them rather than engage in pursuit,
due to the fact that they often quickly learn the fixed
movement pattern of the bot along the path network. As a
result, their movement patterns tend to display significantly
less variation than that of the novice user. Also, they tend to
take less time disabling the bot than less experienced users.
This is evident from the shooting events seen in each figure,
where we see that the novice user tends to fire their weapon
in large spreads, while the more advanced users fire shorter,
accurate bursts that tend to disable the bot quickly, as
evidenced by the correlation between the shooting events and
disabled events. Obviously if the bot had learning behaviour
or was controlled by another expert user such a fixed strategy
would only provide short-term results, as Player 2 would
soon adapt to deal with this. Indeed it is this constant
interplay between various strategies in the human-human
case that makes such online games both enjoyable for the
user and difficult to predict for researchers (McCoy 2004).
Another point of interest is the correlation of the distance
between user and bot, the firing events of the user, and the
bot being disabled. In most cases, we can see the positions
converging close together right before the bot is disabled,
indicating the user moving closer towards the bot. This is
particularly evident from inspection of Figures 9-11, where
we can see the convergence of the user’s trajectories relative
to the bot (where each trajectory starts as a dark circle and
works its way towards a dark ‘x’ marker). This agrees with
our intuitive notion that in order to disable the bot quicker,
we should get closer to them (particularly in this case where
the bot does not fire back). We also notice the variance in the
trajectories that appear under different circumstances. For
instance, long-winding trajectories typically represent some
random or wandering type behaviour for a user, whereas
shorter more convergent trajectories would often represent
attack-type behaviour. Of interest are the trajectories that
appear to both diverge and subsequently converge rather
sharply. These often represent cases where a user has
engaged the bot but not disabled it, and having learned the
bots predictable movement strategy, chooses not to pursue it
but instead chooses to wait in a suitable area for ambush.

© IJIGS/University of Wolverhampton/EUROSIS

Figure 3: State data over time for a novice user.

Figure 4: State data over time for an advanced user.

Figure 5: State data over time for an expert user.

Figure 6: State data over time for a novice user.

Figure 7: State data over time for an advanced user.

Figure 8: State data over time for an expert user.

© IJIGS/University of Wolverhampton/EUROSIS

Figure 9: Trajectory for novice user relative to bot.

Figure 10: Trajectory for advanced user relative to bot.

Figure 11: Trajectory for expert user relative to bot.

Figure 12: Trajectory for novice user relative to bot.

Figure 13: Trajectory for advanced user relative to bot.

Figure 14: Trajectory for expert user relative to bot.

Test Scenario 2

Figures 6-8 below present state data over time for users of
varying level of ability as in the previous section. However,
here we have chosen to omit the z positional data subplot in
favour of a subplot showing the 3-dimensional Euclidean
distance between the user and the bot at each time step. As
before, the first two subplots of each figure represent the x
and y positional data for both the user and the bot, overlaid
with disabled events for both (unlike the last section, which
only showed disabled events for the bot). Finally, the last
subplot shows shooting events for both user and bot (where
the shooting events for the user are above the center line and
the shooting events for the bot are below the center line).
Figures 12-14 present plots of the user’s position relative to
the bot for each timestep, as detailed in the previous section.

From inspection of the plots, we can see that in general the
distance between the user and the bot tends to converge
before a disabled event occurs, implying the user moving
closer to the bot in an attempt to increase their chances of
disabling it. This is again evident from the plots of user
trajectories relative to the bot (Figures 12-14), where we can
see the convergence of the trajectories (although in the case
of the expert user, it is less pronounced). These disabled
events provide natural partitions of the data due to the
random respawning of a player within the environment after
they are disabled, leading to jumps in the positional state
(random respawning is a very common system used in FPS
game in general). In the case of the novice user (Figure 6),

© IJIGS/University of Wolverhampton/EUROSIS

we tend to see less of the pursuit strategy that was so
prominent for test scenario 1 (Figure 3). This is quite evident
from the subplot showing shooting events, where we see
bursts of firing spread apart, indicating more rapid
engagements between user and bot rather than prolonged
pursuing. Part of the reason for this is that because the bot
now has the ability to fire back, users are much more
cautious about how they approach the bot, and often like to
hide behind cover and attempt to ‘ambush’ the bot as it
navigates along it’s path network. It is interesting to note the
variation in distance between user and bot for the case of the
expert user, where we can see an extended period of time
(from 50 seconds onwards) during which distance converged
but subsequently diverged, coupled with a reasonably high
degree of shooting events. This would indicate that the user
engaged the bot and subsequently broke off their attack, but
did not engage the bot in direct pursuit. Rather, having
learned the bot’s movement pattern, they most likely waited
for the bot to return on its course and then re-engage it, at
which point they finally disabled the bot. This is consistent
with the results shown in Figure 14, where we can observe
the divergence of the user’s trajectories coupled with the
subsequent convergence, indicating a section of time that
most likely involved multiple periods of interaction between
user and bot. Also evident is the fact that the end points of
the expert user’s trajectories (marked by dark ‘x’ points)
have a higher spread as opposed to both the novice and
advanced users (Figures 12 and 13 respectively) – this would
indicate greater accuracy on the part of the expert user at
disabling the bot with his weapon.

CONCLUSION

From the results already shown for a number of users it is
clear that certain patterns of behaviour do emerge. In both
test scenarios it is that correlated dynamical behaviour can
occur indicating that the respective entity states cannot be
statistically independent. In intuitive terms this means for
example that if the target player changes velocity
dramatically it is often the case that the pursuing player will
do likewise. This rather obvious observation could be
exploited in entity state extrapolation through predicting such
changes where the conventional paradigm of dead-reckoning
would have had to transmit a packet indicating a velocity
change. It may even be possible to preempt shooting events
which conventional techniques have no possibility of
predicting. In another step towards modeling the human-
human interaction that is so important in DIM another
intermediate step will be taken in which the bot can exhibit
more human-like behaviour. This can be as simple as a
hunting and pursuit behaviour where the bot having spotted
Player 1 will attempt to close the distance before attempting
to disable the opponent. Such behaviour should elicit more
interesting defensive or evasive behaviour in the human user
that will be important to analyze. Further analysis along
these lines should yield insight, tools and results that will
allow better and more comprehensive analysis of human
users interacting in the same environments. Consequently it
will be possible to make better guesses about what such users
may do next and hence achieve quality of interaction and
scalability benefits for the distributed case.

ACKNOWLEDGEMENT

This material is based upon works supported by Enterprise
Ireland under grant no. SC/2002/129/.

REFERENCES

Delaney, D., Ward, T., and S. McLoone. 2003. “Reducing Update
Packets in Distributed Interactive Applications using a Hybrid
Approach”. 16th International Conference on Parallel and
Distributed Computing Systems (PDCS 2003). August 13-15, Reno,
USA, pp.417-422.

IEEE. 1993. IEEE Standard for information technology – protocols
for distributed simulation applications: Entity information and
interaction. IEEE Standard 1278-1993. New York: IEEE Computer
Society, 1993.

Internet2. 2004. WebSite: http://www.internet2.edu

Marshall, D., McCoy, A., Delaney, D., Ward, T., and S. McLoone.
2004. “A Realistic Distributed Interactive Testbed for Static and
Dynamic Entity State Data Acquisition”. In Proceedings of The
Irish Signals and Systems Conference 2004. June 30 - July 2,
Belfast, Northern Ireland, pp. 83 - 88.

McCoy, A., Delaney, D., McLoone, S., and T. Ward. 2004.
“Investigating Behavioural State Data-Partitioning for User-
Modelling in Distributed Interactive Applications”. To appear in
proceedings of The 8-th IEEE International Symposium on
Distributed Simulation and Real Time Applications. October 21-23,
Budapest, Hungary.

Singhal, S. and M. Zyda. 1999. Networked Virtual Environments:
Design and Implementation. First Ed, Addison-Wesley, pp. 195 -
213.

Van Hook, D.J., J.O. Calvin, and D.C. Miller. 1994. “A protocol
independent compression algorithm (PICA)”. Advanced Distributed
Simulation Memorandum 20PM-ADS-005, MIT Lincoln
Laboratories, Lexington, MA.

BIOGRAPHY

Aaron McCoy received his B.Sc. degree from the National
University of Ireland, Maynooth in 2002, specializing in
computer science and theoretical physics. His main areas of
interest are distributed systems, networked virtual
environments and the use of artificial intelligence in
interactive games. He is currently studying for his PhD at
NUI Maynooth in the area of user modeling in Distributed
Interactive Applications.

