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ABSTRACT 
 
Distributed interactive media such as networked multiplayer 
computer games offer users the opportunity to interact and 
share experiences within a virtual environment. More often 
than not, these interactions are required to be performed in 
real-time, a constraint which poses problems given the 
underlying network capabilities used to transmit information. 
In these real-time distributed systems, the amount of 
information that needs to be shared between participants in 
order to maintain complete game-state fidelity is too large. 
As a result, trade-offs must be made over what information 
requirements are necessary to maintain a level of consistency 
that will provide adequate quality of interaction for the users. 
One possible solution to this problem is the use of statistical 
modeling techniques that attempt to capture the individual 
behaviour of system users. These models can then be used to 
predict the likely future behaviour for the users, thus 
reducing the shared information requirements. In this paper 
we present some preliminary analysis of the behaviour of 
users within a distributed interactive application, with a goal 
towards future work of attempting to develop and incorporate 
statistical models of user behaviour for the purpose described 
above. 
 
INTRODUCTION 
 
Distributed interactive media (DIM) such as networked 
multiplayer games are prone to quality-of-interaction and 
scalability problems as a consequence of non-ideal 
communication infrastructure characteristics such as network 
latency and bandwidth.  This well-known problem is 
generally dealt with through careful entity state update 
procedures that filter the game-state based on criteria such as 
client relevancy or state changes. An example of the former 
is area-of-interest techniques (Singhal 1999) while examples 
of the latter are delta-compression (Van Hook et al. 1994) 
and dead-reckoning (IEEE 1993).  In addition QoS 
techniques are sometimes used to ensure that all participating 
clients are given sufficient network resources to meet quality-
of-interaction criteria (Internet2 2004).  The communication 
of game state changes is the key issue in all of the above and 
the games industry-standard techniques are based chiefly on 
variants of dead-reckoning, which is an example of an entity 
state extrapolation mechanism. Rather than updating entities 

over the network once per simulation loop (which we will 
refer to as the game loop) all clients in the DIM maintain a 
local model, usually a linear extrapolation, of entity 
dynamics.  This model is only updated when the client 
responsible for the entity determines that the difference 
between the true entity state and that of the model as used by 
all other clients has deviated by some pre-defined threshold 
amount.  Only this update then needs to be transmitted to all 
the participating clients hence reducing the number of 
packets required to maintain a tolerable fidelity across the 
DIM. 
 
Such a technique obviously helps reduce bandwidth 
requirements and therefore aids in scalability.  More subtly it 
also aids in the reduction of communication latency, one of 
the key factors in maintaining a high quality of interaction for 
the user. This is apparent if we look at the individual 
components which make up latency in distributed interactive 
media for any particular link between two participating 
clients i and j : 
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where K represents the generation rate of state information 
during the global gameloop in bits per second and B is the 
bandwidth of the link to the particular client in question.  τc 
represents the physical propagation delay.   O represents all 
other processing overheads. Obviously through an increase in 
link bandwidth or a reduction in K the latency can be 
reduced.  It is through such information rate reduction 
techniques such as in dead-reckoning that latency problems 
can be dealt with in DIM. 
 
Recently in an attempt to further improve the power of entity 
state update mechanisms using the concept of state 
extrapolation, a technique known as the hybrid model 
approach has been proposed (Delaney et al. 2003). This 
concept is very powerful and yet quite simple. In this 
paradigm entity state are extrapolated based on a 
combination of low order short term extrapolation and longer 
term statistical inference.  Essentially the technique relies on 
extrapolating state changes based on previous examples of 
state behaviour in similar circumstances.  In the absence of 
good information on typical state changes for an entity, the 
model is switched to simple low order extrapolation as in 
dead-reckoning. By switching between the two models, 
hence the term hybrid model, entity states can be 
extrapolated further than currently possible under dead-
reckoning and other entity state extrapolation schemes.   
Further, in the absence of good statistical information, long-
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term heuristic models can be used in lieu as provided by the 
DIM designer.  Consequently the technique has superior 
performance to dead-reckoning alone as demonstrated in 
(Delaney et al. 2003).  However for the technique to realize 
its potential in the field of DIM it is imperative that 
techniques and methods should be developed to first of all 
recognize, and second of all represent, such statistical 
models. All work in this area so far has concentrated on 
demonstrating the concept for fixed statistical spatial models 
that naturally arise out of static navigation tasks in typical 
DIAs (Marshall 2004). We are currently studying the 
possibility of automatic recognition of statistically similar 
behaviour among entity dynamics in important classes of 
DIM.  
 
In a previous paper we have shown that patterns of behaviour 
emerge for human-human interaction in such DIM (McCoy 
2004). However, in an attempt to bridge the more solid 
statistical categorization that arose out of fixed spatial 
models with such patterns, an intermediate study has been 
conducted in which the reactive coupling between human 
agents has been loosened through the investigation of 
interaction between human users and finite-state machine-
driven agents (BOTS). This paper reports on work done on 
this area so far in exploring such human user behaviour in 
these multiplayer computer games. It is hoped that through 
the analysis of such behaviour that categorization can be 
determined with the goal in mind that statistically similar 
patterns of behaviour can be recognized and ultimately 
exploited to predict future behaviour in order to pre-empt 
gamestate changes ahead of time and so reduce latency 
problems in such DIM through both update packet rate 
reduction and perhaps pre-emptive transmission. 
 
TEST ENVIRONMENT AND TEST SCENARIOS 
 
We use the Torque Game Engine from GarageGames 
(Marshall 2004) to construct simple test environments and 
test scenarios. This allows us to perform experiments in a 
relatively controlled manner, and provides us with the ability 
of recording information. During a user’s interaction within 
the test environment, various data is time-stamped and 
collected in a log file for subsequent analysis. Firstly, 3-
dimensional positional data for each user is recorded at 
regular sampling intervals (at the rate of at least 1 Hertz, but 
usually higher), allowing us to reconstruct a user’s positional 
state over time with respect to that of another user and any 
events that occur. This positional data is represented as time-
series datasets for analysis, examples of which can be seen in 
the results and data analysis section. Secondly, direct 
interface control interactions (i.e. keyboard and mouse button 
presses) performed by the user to control their player 
onscreen are time-stamped and recorded whenever they 
occur (this consists of primarily movement and weapon firing 
instructions). This allows us to reconstruct a user’s control 
sequence of actions with respect to any events that occur. 
Given the limited complexity of our test environment 
described below, the only events which we are concerned 
with here are both weapon firing events and disabled events 
(where one user is disabled by weapons fire from another), 
and these are recorded and time-stamped when they occur. 

The test environment that we used for the experiments 
reported in this paper is a simple enclosed environment 
consisting of several building and tower like structures along 
with sets of trees and rocks. These provide some visual 
stimulation for the users and also helps obscure their view in 
certain areas, forcing them to move about. The experiments 
are performed in the style of a First-Person Shooter (FPS) 
game, whereby users interact with the environment as though 
they were looking through the eyes of their player (see Figure 
1). FPS games are one of the most popular genres of games 
currently in the market, and their networked multiplayer 
capabilities make them on obvious choice for research into 
distributed interactive systems in general. 
 

 

Figure 1: In-game screenshot of the test environment. 

 
Test Scenario 1 
 
This was a simple test scenario set up with the intention of 
analyzing the behaviour of a user towards a pseudo-dynamic 
goal. At the beginning of the game, the user is spawned 
randomly inside one of the buildings. In addition, a computer 
controlled opponent (typically referred to as a ‘bot’) is 
spawned randomly at one of the predefined pathnodes that 
were placed beforehand throughout the environment. These 
pathnodes join together to form a path network, and this path 
network is traversed by the bot pathnode-by-pathnode (a 
representation of this path network can be seen below in 
Figure 2). The bot is set on a looping run so that all it does is 
constantly follow the path over and over again – no artificial 
‘thinking’ or reacting occurs for the bot. The goal for the user 
in this case is to disable the bot a specified number of times 
using their weapon before the specified time-limit runs out. 
The user is encouraged to score as high as possible over a 
number of runs such that more typical focused behaviour is 
exhibited rather than carefree wandering through the 
environment. This is so as to replicate the typical conditions 
under which FPS games operate. Typical behavourial 
patterns we would expect to see should be target seeking, 
pursuit and firing action. Such classes of behaviour are useful 
labels (albeit not always clearly distinguishable) and have 
been applied with some success in our previous work 
(McCoy 2004). 
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Figure 2: Path network used for navigation by the bot. 

 
Test Scenario 2 
 
This test scenario was set up with the intention of analyzing 
the user’s behaviour towards a bot that had limited reactive 
capabilities towards their own actions, namely the ability to 
fire it’s own weapon and damage the user. It was set up in 
exactly the same manner as described for test scenario 1, 
with the exception that the bot is given a sensor field that can 
be used to detect the presence of the user. If the user comes 
within the bot’s sensor field and within direct line-of-sight 
(LOS) of the bot, the bot is instructed to fire it’s weapon in 
the direction of the user. If the user goes out of LOS of the 
bot or out of it’s sensor field radius, then the bot is instructed 
to stop firing it’s weapon. The movement capability of the 
bot is fixed as in test scenario 1, meaning that it never 
deviates it’s position off of the path network on which it 
navigates through the environment, regardless of whether it is 
currently firing it’s weapon at the user or not. Again, the goal 
for the user in this case is to disable the bot a specified 
number of times before the time-limit is reached. Unlike test 
scenario 1 however, it was now possible for the bot to win 
the game by disabling the user the specified number of times. 
The motivation for this test scenario is to determine if any 
resultant defensive or evasive behaviour can be recognized in 
addition to those behaviours stated for the previous scenario. 
 
RESULTS AND DATA ANALYSIS 
 
In this section, we shall present a specific selection of results 
taken from data that was collected for users of varying 
‘expertise’ with regard to not only this particular test 
environment, but also with computer games in general and 
FPS specific games. Each user was asked to play a number of 
successive games in each test scenario, and they were given a 
specific score that they had to reach to complete the game. 
 
Test Scenario 1 
 
Figures 3-5 below present state data over time for several 
different users of varying ability. In each figure, the first 3 
subplots present positional data for the user (Player 1) and 
the bot (Player 2), and are broken into x, y and z coordinates 

and plotted separately. Overlaid on each of these are solid 
vertical lines representing each point in time where the user 
disabled the bot, and these lines allow us to segment the data 
into partitions. The final subplot within each figure uses solid 
vertical lines to represent each point in time where the user 
fired their weapon. In Figures 9-11, we have plotted the 
relative position of the user with respect to the bot (i.e. taking 
the bot’s position as the origin for each time-step). Each of 
the data partitions are plotted individually, with a dark circle 
representing the starting position of the user, and a dark ‘x’ 
marking their end position (i.e. when they disabled the bot).  
 
From visual inspection of Figure 3 (novice user), we can see 
several areas where the positional data of the user and the bot 
seem to correlate highly, with one essentially ‘following’ the 
other one. This corresponds to a pursuit strategy, where the 
user has found the bot and is now pursuing them with the 
intention of disabling them (from time 50 to 100 for 
instance). It is interesting to note that this is less pronounced 
in the data for the advanced and expert user. The primary 
reason for this is that these users tend to wait in a central area 
and let the bot come to them rather than engage in pursuit, 
due to the fact that they often quickly learn the fixed 
movement pattern of the bot along the path network. As a 
result, their movement patterns tend to display significantly 
less variation than that of the novice user. Also, they tend to 
take less time disabling the bot than less experienced users. 
This is evident from the shooting events seen in each figure, 
where we see that the novice user tends to fire their weapon 
in large spreads, while the more advanced users fire shorter, 
accurate bursts that tend to disable the bot quickly, as 
evidenced by the correlation between the shooting events and 
disabled events. Obviously if the bot had learning behaviour 
or was controlled by another expert user such a fixed strategy 
would only provide short-term results, as Player 2 would 
soon adapt to deal with this. Indeed it is this constant 
interplay between various strategies in the human-human 
case that makes such online games both enjoyable for the 
user and difficult to predict for researchers (McCoy 2004). 
Another point of interest is the correlation of the distance 
between user and bot, the firing events of the user, and the 
bot being disabled. In most cases, we can see the positions 
converging close together right before the bot is disabled, 
indicating the user moving closer towards the bot. This is 
particularly evident from inspection of Figures 9-11, where 
we can see the convergence of the user’s trajectories relative 
to the bot (where each trajectory starts as a dark circle and 
works its way towards a dark ‘x’ marker). This agrees with 
our intuitive notion that in order to disable the bot quicker, 
we should get closer to them (particularly in this case where 
the bot does not fire back). We also notice the variance in the 
trajectories that appear under different circumstances. For 
instance, long-winding trajectories typically represent some 
random or wandering type behaviour for a user, whereas 
shorter more convergent trajectories would often represent 
attack-type behaviour. Of interest are the trajectories that 
appear to both diverge and subsequently converge rather 
sharply. These often represent cases where a user has 
engaged the bot but not disabled it, and having learned the 
bots predictable movement strategy, chooses not to pursue it 
but instead chooses to wait in a suitable area for ambush. 



© IJIGS/University of Wolverhampton/EUROSIS 

 

Figure 3: State data over time for a novice user. 

 

Figure 4: State data over time for an advanced user. 

 

Figure 5: State data over time for an expert user. 

 

 

Figure 6: State data over time for a novice user. 

 

Figure 7: State data over time for an advanced user. 

 

Figure 8: State data over time for an expert user. 
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Figure 9: Trajectory for novice user relative to bot. 

 

Figure 10: Trajectory for advanced user relative to bot. 

 

Figure 11: Trajectory for expert user relative to bot. 

 

Figure 12: Trajectory for novice user relative to bot. 

 

 

 

Figure 13: Trajectory for advanced user relative to bot. 

 

Figure 14: Trajectory for expert user relative to bot. 

 
Test Scenario 2 
 
Figures 6-8 below present state data over time for users of 
varying level of ability as in the previous section. However, 
here we have chosen to omit the z positional data subplot in 
favour of a subplot showing the 3-dimensional Euclidean 
distance between the user and the bot at each time step. As 
before, the first two subplots of each figure represent the x 
and y positional data for both the user and the bot, overlaid 
with disabled events for both (unlike the last section, which 
only showed disabled events for the bot). Finally, the last 
subplot shows shooting events for both user and bot (where 
the shooting events for the user are above the center line and 
the shooting events for the bot are below the center line). 
Figures 12-14 present plots of the user’s position relative to 
the bot for each timestep, as detailed in the previous section. 
 
From inspection of the plots, we can see that in general the 
distance between the user and the bot tends to converge 
before a disabled event occurs, implying the user moving 
closer to the bot in an attempt to increase their chances of 
disabling it. This is again evident from the plots of user 
trajectories relative to the bot (Figures 12-14), where we can 
see the convergence of the trajectories (although in the case 
of the expert user, it is less pronounced). These disabled 
events provide natural partitions of the data due to the 
random respawning of a player within the environment after 
they are disabled, leading to jumps in the positional state 
(random respawning is a very common system used in FPS 
game in general). In the case of the novice user (Figure 6), 
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we tend to see less of the pursuit strategy that was so 
prominent for test scenario 1 (Figure 3). This is quite evident 
from the subplot showing shooting events, where we see 
bursts of firing spread apart, indicating more rapid 
engagements between user and bot rather than prolonged 
pursuing. Part of the reason for this is that because the bot 
now has the ability to fire back, users are much more 
cautious about how they approach the bot, and often like to 
hide behind cover and attempt to ‘ambush’ the bot as it 
navigates along it’s path network. It is interesting to note the 
variation in distance between user and bot for the case of the 
expert user, where we can see an extended period of time 
(from 50 seconds onwards) during which distance converged 
but subsequently diverged, coupled with a reasonably high 
degree of shooting events. This would indicate that the user 
engaged the bot and subsequently broke off their attack, but 
did not engage the bot in direct pursuit. Rather, having 
learned the bot’s movement pattern, they most likely waited 
for the bot to return on its course and then re-engage it, at 
which point they finally disabled the bot. This is consistent 
with the results shown in Figure 14, where we can observe 
the divergence of the user’s trajectories coupled with the 
subsequent convergence, indicating a section of time that 
most likely involved multiple periods of interaction between 
user and bot. Also evident is the fact that the end points of 
the expert user’s trajectories (marked by dark ‘x’ points) 
have a higher spread as opposed to both the novice and 
advanced users (Figures 12 and 13 respectively) – this would 
indicate greater accuracy on the part of the expert user at 
disabling the bot with his weapon. 
 
CONCLUSION 
 
From the results already shown for a number of users it is 
clear that certain patterns of behaviour do emerge. In both 
test scenarios it is that correlated dynamical behaviour can 
occur indicating that the respective entity states cannot be 
statistically independent. In intuitive terms this means for 
example that if the target player changes velocity 
dramatically it is often the case that the pursuing player will 
do likewise. This rather obvious observation could be 
exploited in entity state extrapolation through predicting such 
changes where the conventional paradigm of dead-reckoning 
would have had to transmit a packet indicating a velocity 
change. It may even be possible to preempt shooting events 
which conventional techniques have no possibility of 
predicting. In another step towards modeling the human-
human interaction that is so important in DIM another 
intermediate step will be taken in which the bot can exhibit 
more human-like behaviour.  This can be as simple as a 
hunting and pursuit behaviour where the bot having spotted 
Player 1 will attempt to close the distance before attempting 
to disable the opponent.  Such behaviour should elicit more 
interesting defensive or evasive behaviour in the human user 
that will be important to analyze.  Further analysis along 
these lines should yield insight, tools and results that will 
allow better and more comprehensive analysis of human 
users interacting in the same environments.  Consequently it 
will be possible to make better guesses about what such users 
may do next and hence achieve quality of interaction and 
scalability benefits for the distributed case.     
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