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Abstract

[Ag2(NH3)2(salH)2] (salH2 ¼ salicylic acid) was synthesised from salicylic acid and Ag2O in concentrated aqueous NH3 and the

dimeric Ag(I) complex was characterised using X-ray crystallography. The complex is centrosymmetric with each metal coordinated

to a salicylate carboxylate oxygen and to an ammonia nitrogen atom in an almost linear fashion. The two [Ag(NH3)(salH)] units in

the complex are linked by an Ag–Ag bond. Whilst metal-free salH2 did not prevent the growth of the fungal pathogen Candida

albicans [Ag2(NH3)2(salH)2], [Ag2(salH)2] and some simple Ag(I) salts greatly inhibited cell reproduction. SalH2,

[Ag2(NH3)2(salH)2] [Ag2(salH)2] and AgClO4 produced a dose-dependent cytotoxic response against the three human derived

cancer cell lines, Cal-27, Hep-G2 and A-498, with the Ag(I)-containing reagents being the most effective.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In our efforts to develop new metal-based drugs for

inhibiting the growth of the fungal pathogen Candida

albicans, and also for deterring the proliferation of
mammalian cancer cells, the most effective metal com-

plex to emerge to date is the Ag(I) complex [Ag(phen-

dio)2]ClO4 (phendio¼ 1,10-phenanthroline-5,6-dione)

[1]. The complex has a minimum inhibitory concentra-

tion (MIC) against C. albicans of 0.5 lg cm�3 (0.3 lM)

and tests on cultured human cancer cells produced an

IC50 (the concentration that inhibited growth by 50%)

value of 0.025 lg cm�3 (0.40 lM). These findings for the
Ag(I) complexes were a marked improvement on values

obtained using other transition metals complexed by

phendio or 1,10-phenanthroline [1–3] and have promp-

ted investigations into the preparation, characterisation

and testing of other Ag(I) complexes. The present paper

details the synthesis, X-ray crystal structure and bio-

logical activity of the dimeric Ag(I) complex
[Ag2(NH3)2(salH)2] (salH2 ¼ salicylic acid).

2. Results and discussion

The method used for preparing [Ag2(NH3)2(salH)2]

was quite similar to that employed for the preparation

of the known non-amine analogue [Ag2(salH)2] [4–6].
[Ag2(NH3)2(salH)2] was obtained from a suspension of

Ag2O in water to which was added concentrated aque-

ous NH3 followed by salicylic acid (salH2). On the other

hand, [Ag2(salH)2] was prepared in an 80:20 etha-

nol:water solvent mixture to which was added salH2,
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AgNO3 and concentrated aqueous NH3. The X-ray

crystal structure of [Ag2(NH3)2(salH)2] is shown in

Fig. 1 and selected bond lengths and angles are given in

Table 1. The complex is dimeric, centrosymmetric and

close to planar. Each metal is coordinated to a salicylate
carboxylate oxygen (Ag–O¼ 2.170 �A) and to an am-

monia nitrogen atom in an almost linear fashion

{O(3)–Ag–N(1)¼ 175.37(5)�}. A similar monodentate

carboxylate coordination has been reported for the

polymeric Ag(I) salicylate complex [Ag(l3-hmt)(salH)] �
H2O (hmt¼ hexamethylenetetramine) [7]. The Ag–O

distance in [Ag2(NH3)2(salH)2] is shorter than those in

the syn–syn bis(carboxylate-bridged) dimer [Ag2(salH)2]
(2.181, 2.202 �A) [5,6]. In [Ag2(NH3)2(salH)2], an almost

linear N–Ag–O geometry is completed by coordination

of an ammonia molecule (Ag–N¼ 2.137 �A).

In [Ag2(NH3)2(salH)2], the two [Ag(NH3)(salH)]

units are linked by an Ag–Ag bonding interaction,

supported by hydrogen-bonding between the coordi-

nated O atom of one unit and an ammonia hydrogen

atom of the other. The essentially planar conformation
is the result of stabilisation due to intramolecular hy-

drogen-bonding interactions between the ortho-substi-

tuted phenol and the uncoordinated carboxylate

oxygen. In essence, the two monomers aggregate ‘‘head-

to-tail’’ to allow for this hydrogen-bonding. Such hy-

drogen-bonding interactions have been implicated in the

formation of some complexes exhibiting auriophilicity

[8]. In contrast to the structure of [Ag2(NH3)2(salH)2],

the silver(I) benzoates with no ortho-hydroxyl substitu-

ents deviate markedly from planarity [9]. The Ag–Ag
bond (3.069 �A) in [Ag2(NH3)2(salH)2] is slightly longer

than that found in [Ag2(salH)2] (2.855 �A) implying that

the ligand architecture of the syn–syn bridged dimers in

the latter species facilitates a closer approach of the

silver ions [5,6]. However, the Ag–Ag distance in

[Ag2(NH3)2(salH)2] is still indicative of an Ag–Ag ar-

gentophilic interaction when compared to a value of

2.89 �A for the interatomic distance in metallic silver [10].
It has been speculated that such an attractive interaction

between the Ag(I) d10 cations is due to hybridisation of

the metal 4d orbital with the higher energy 5s and 5p

orbitals, which converts the closed-shell repulsion into a

weak attractive interaction [11–13]. The 1H NMR

spectrum of [Ag2(NH3)2(salH)2] in DMSO indicates

that no ligand exchange of the complex with DMSO

takes place.
SalH2, [Ag2(salH)2] and [Ag2(NH3)2(salH)2] were

screened for their ability to inhibit the growth of C. al-

bicans (Table 2). Whilst metal-free salH2 was essentially

ineffective at controlling the growth of the organism,

[Ag2(salH)2] did show quite marked activity. However,

the ammonia complex [Ag2(NH3)2(salH)2] displayed an

approximately tenfold superior activity at controlling

yeast cell proliferation. Previous investigations into the
anti-microbial activity of [Ag2(salH)2] suggested that its

effects were due to the presence of free Agþ ions in a

fashion similar to AgNO3 [14]. Given the poorly water-

soluble nature of [Ag2(salH)2] (ca. 0.1 g per 100 cm�3 at

pH 6.5) compared to AgNO3 (250,000 mg per 100 cm�3

at pH 7), such a reasoning might be expected to account

for the superior activity of AgNO3 as the completely

dissociated salt would give rise to a much higher con-
centration of free Agþ ions in the test media [14].

However, on a cautionary note, it must be emphasised

that comparisons of solubilities of compounds in water

with those in test media are likely to be unreliable given

the multi-component nature of growth media. It must

also be stressed that the present activity data cannot be

rigorously interpreted to mean that the salicylate com-

plexes remain intact throughout the screening protocol

Fig. 1. X-ray crystal structure of [Ag2(NH3)2(salH)2].

Table 1

Selected bond lengths (�A) and angles (�) for [Ag2(NH3)2(salH)2]

Ag(1)–N(1) 2.1367(17)

Ag(1)–O(3) 2.1699(14)

Ag(1)–O(2) 2.7577(14)

Ag(1)–Ag(1)#1 3.0685(4)

N(1)–Ag(1)–O(3) 175.37(5)

N(1)–Ag(1)–O(2) 132.88(5)

O(3)–Ag(1)–O(2) 51.74(4)

N(1)–Ag(1)–Ag(1)#1 90.47(4)

O(3)–Ag(1)–Ag(1)#1 84.90(4)

O(2)–Ag(1)–Ag(1)#1 136.62(3)

Table 2

MIC data for C. albicans

Compound MIC (lM)

AgCH3CO2 [1] 30

AgNO3 [1] 30

AgClO4 [1] 44

salH2 >724

[Ag2(salH)2] 5.0

[Ag2(NH3)2(salH)2] 0.5
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and that the MIC values reflect exactly the effects of

either the free Agþ ion or the Ag(I) complexes. The

small variations on the MIC values could result from

common metabolites for the free metal ion and the

complexes, which might be generated after incorpora-
tion into the cells. Either, metabolism of the complexes

leading to free Agþ ion, or complexation of Agþ and

ligand displacement of the salH� and NH3 by a higher

affinity ligand, extra- or intra-cellularly, could lead to

the common results. It seems likely that the ammonia

ligands in [Ag2(NH3)2(salH)2] are in some way respon-

sible for the superior activity of this complex compared

to that of [Ag2(salH)2], which does not have any coor-
dinated NH3. It is noteworthy that the inhibitory effect

of [Ag2(NH3)2(salH)2] is on a parity with that of the

extremely active complex [Ag(phendio)2]ClO4 [1].

Previous studies on the mode of action of Ag(I)

complexes have revealed that their anti-fungal activity is

mediated though disruption of mitochondrial function

[3]. For example, exposure of C. albicans to

[Ag2(phen)3(mal)] � 2H2O (phen¼ 1,10-phenanthroline;
mal¼malonic acid dianion) leads to a reduction in

respiration with a concomitant depletion in the quantity

of ergosterol in the fungal cell membrane. Ergosterol

synthesis is disrupted because a depletion in respiration

leads to a loss in NADH–NADPH cycling, which is

required for the action of one of the enzymes in ergos-

terol biosynthesis [15]. The adverse effect on respiration

appears to be due to the disruption of the synthesis of
cytochromes (especially cytochrome aa3, components of

which are mitochondrially encoded) [3]. Cytochromes

form an integral part of the electron transfer pathway

essential for aerobic respiration and consequently a re-

duction in their synthesis adversely affects respiration. In

addition, Ag(I) complexes also induce apoptosis (pro-

grammed cell death) in fungal and mammalian cells

which may be a direct result of their action on the cell or
a secondary effect arising from their disruption of res-

piration. Cells treated with [Ag2(phen)3(mal)] � 2H2O

show extensive DNA fragmentation, mitochondrial

disruption and retraction of the cytoplasm [16].

One feature of the [Ag2(phen)3(mal)] � 2H2O-medi-

ated reduction in respiration and ergosterol synthesis is

that this renders cells more tolerant of the polyene anti-

fungal prescription drug amphotericin B [17]. Ampho-
tericin B is one of the principal anti-fungal drugs used

for the treatment of systemic, life-threatening mycoses

and functions by binding to ergosterol in the cell

membrane and creating pores through which intracel-

lular constituents escape [18,19]. The reduced level of

ergosterol in treated cells leads to a higher tolerance to

this anti-fungal drug and may have implications for the

treatment of fungal infections.
Ag(I) complexes demonstrate strong anti-fungal

properties and appear to target the mitochondrion. This

has the effect of reducing the amount of ergosterol in the

cell membrane and may also trigger the process of ap-

optosis. Thus, such complexes may have therapeutic

potential for the treatment of superficial fungal infec-

tions and they manifest a mode of action distinct to that

of the conventional anti-fungal drugs [20] making them
potentially applicable in situations where resistance to

these prescription drugs has emerged to compromise

therapy [21].

The chemotherapeutic potential of salH2, AgClO4

and the two salicylate complexes, [Ag2(salH)2] and

[Ag2(NH3)2(salH)2], was determined against the three

human derived cancer cell lines, Cal-27, Hep-G2 and A-

498. Profiles of cell viability against drug concentration
were established (Figs. 2–4) from which IC50 values were

Conc (μM)

0.01 0.1 1 10 100 1000 10000

V
ia

bi
lit

y
as

%
co

nt
ro

l

0

20

40

60

80

100

120

[Ag2(salH)2]

salH2

[Ag2(NH3)2(salH)2]

AgClO4

Fig. 2. Effects of salH2, [Ag2(salH)2], [Ag2(NH3)2(salH)2] and AgClO4

on the viability of Cal-27 cancer cells following continuous incubation

with increasing drug concentration (0.1–1000 lM) for 96 h. Bars in-

dicate standard error of the mean (SEM) and results were statistically

significant from control at p < 0:05.
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Fig. 3. Effects of salH2, [Ag2(salH)2], [Ag2(NH3)2(salH)2] and AgClO4

on the viability of Hep-G2 cancer cells following continuous incuba-

tion with increasing drug concentration (0.1–1000 lM) for 96 h. Bars

indicate standard error of the mean (SEM) and results were statisti-

cally significant from control at p < 0:05.
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calculated (Table 3). For all cell lines a concentration-

dependent cytotoxic response was observed for all

compounds. Whilst the metal-free carboxylic acid salH2

had a mild cytotoxic effect across the three cell lines, the
Ag(I)-containing species, AgClO4, [Ag2(salH)2] and

[Ag2(NH3)2(salH)2], were all highly toxic. However, this

apparent Ag-related cytoxic effect is significant at drug

concentrations greater than 10 lM, and in all of the cell

lines studied. Close similarities were found in the via-

bility versus concentration profiles for AgClO4,

[Ag2(salH)2] and [Ag2(NH3)2(salH)2] across all three cell

lines (Figs. 2–4). Whilst there is no discrimination in the
activity of [Ag2(salH)2] across the three cell lines, both

AgClO4 and [Ag2(NH3)2(salH)2] offer some bias to-

wards inhibiting the growth of Hep-G2 cells.

3. Experimental

Chemicals, cell culture reagents and media were
purchased from commercial sources and were used

without further purification. [Ag2(salH)2] was prepared

in accordance with the literature procedure [4–6]. In-

frared spectra of solids (in a KBr matrix) were recorded

in the region 4000–400 cm�1 on a Nicolet FT-IR Impact

400D infrared spectrometer and 1H NMR spectra were

run on a Bruker Avance 300 MHz instrument. Micro-

analytical data were provided by the Microanalytical

Laboratory, National University of Ireland, Cork,
Ireland.

C. albicans ATCC 10231 was obtained form the

American Type Culture Collection, (Manasas, VA,

USA). Cultures were grown on Sabouraud dextrose

agar (SDA) plates at 37 �C and maintained at 4 �C for

short-term storage. Cultures were routinely sub-cultured

every 4–6 weeks. Cultures were grown to the stationary

phase (approximately 1� 108 cells cm�3) overnight at 30
�C and 200 rpm in minimal medium (MM) (2% w/v

glucose, 0.5% w/v yeast nitrogen base (without amino

acids or ammonium sulphate), 0.5% w/v ammonium

sulphate). Solutions of water-soluble test salts were

prepared by dissolving the salt (0.02 g) in distilled water

(100 cm3) to yield a stock solution with a concentration

of 200 lg cm�3. Doubling dilutions of this stock solution

were made to yield a series of test solutions. The water-
insoluble Ag(I) complexes, [Ag2(salH)2] and

[Ag2(NH3)2(salH)2], were made up as suspensions (0.02

g) in water (100 cm3) to give stock suspensions. With

vigorous agitation of these suspensions doubling dilu-

tions were made to give a series of test suspensions.

Minimum inhibitory concentrations (MICs) were then

determined using the broth microdilution method [2,3].

Cytotoxicity assays were performed using three hu-
man malignant model cell lines in order to assess the

cancer chemotherapeutic potential of metal free Sal and

its metal complexes. Therefore, squamous carcinoma

tongue (Cal-27), hepatocellular carcinoma (Hep-G2)

and kidney adenocarcinoma (A-496) cell lines were

purchased from the ATCC. All cell lines were grown as

monolayers in Eagle’s minimum essential medium,

supplemented with 2 mM LL-glutamine and Earle’s bal-
anced salt solution, containing 1.5 g dm�3 sodium bi-

carbonate, 0.1 mM non-essential amino acids, 1.0 mM

sodium pyruvate, 100 U cm�3 penicillin and 100 lg cm�3

streptomycin supplemented to contain 10% (v/v) foetal

bovine serum (Flow laboratories, Herts, UK). All cells

were grown at 37 �C in a humidified atmosphere, in the

presence of 5% CO2 and were in the exponential phase

of growth at the time of assay. Cytotoxicity was assessed
using the MTT assay. Each of the three cell lines (100 ll)
were seeded at a density of 5� 104 cells cm�3 into sterile

96-well flat-bottomed plates (Falcon Plastics, Becton

Dickinson) and grown in 5% CO2 at 37 �C. Test com-

pounds were dissolved in DMSO and diluted with cul-

ture media. The maximum percentage of DMSO present

in all wells was 0.2% (v/v). Each drug solution (100 ll)
was added to replicate wells in the concentration range
of 0.1–1000 lM and incubated for 96 h. A miniaturised

viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-di-

phenyl tetrazolium bromide (MTT) was carried out ac-

Table 3

IC50 values (lM) (mean�SEM, n ¼ 5) for compounds against Cal-27,

Hep-G2 and A-498 cancer cells

Compound Toxicities (IC50 lM)

Cal-27 Hep-G2 A-498

salH2 700� 40 1000� 0 900� 141

AgClO4 56� 0 8� 1 45� 2

[Ag2(salH)2] 27� 2 20� 1 18� 2

[Ag2(NH3)2(salH)2] 51� 11 9� 0 32� 7
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Fig. 4. Effects of salH2, [Ag2(salH)2], [Ag2(NH3)2(salH)2] and AgClO4

on the viability of A-498 cancer cells following continuous incubation

with increasing drug concentration (0.1–1000 lM) for 96 h. Bars in-

dicate standard error of the mean (SEM) and results were statistically

significant from control at p < 0:05.
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cording to the method described by [22]. The IC50 value,

defined as the drug concentration causing a 50% re-

duction in cellular viability, was calculated for each

drug. Each assay was carried out using five replicates

and repeated on at least three separate occasions. Via-
bility was calculated as a percentage of solvent-treated

control cells and expressed as a percent (%) of the

control. The significance of any reduction in cellular

viability was determined using one-way ANOVA

(analysis of variance). A probability of 0.05 or less was

deemed statistically significant.

4. [Ag2(NH3)2(salH)2]

The following procedure was conducted with the ex-

clusion of light. To a suspension of Ag2O (0.5 g, 2.0

mmol) in water (10 cm3) was added, dropwise, concen-

trated aqueous NH3 until all solid had dissolved. Sali-

cylic acid (salH2) (0.55 g, 4.0 mmol) was added and the

solution stirred at room temperature for 0.5 h. The so-
lution was evaporated to dryness and the grey solid re-

suspended in ethanol (5 cm3). The solid was filtered off,

washed with small portions of chilled water, ethanol and

ether and then air-dried. Yield: 0.83 g (79%). The sample

was stored with the exclusion of light. The sample was

soluble in hot acetonitrile and in DMSO, and was es-

sentially insoluble in water. Anal. Calc.: C, 32.25; H,

3.08; N, 5.34%. Found: C, 32.23; H, 3.02; N, 5.05. IR
(KBr): 3457, 3235, 2927, 1646, 1596, 1492, 1461, 1393,

1338, 1301, 1252, 1153, 1030, 861, 812, 750, 701, 670,

535 cm�1. 1H NMR (ppm DMSO): 14.47 (s, 1H, OH),

7.78 (d, 1H, phenyl ring), 7.24 (t, 1H, phenyl ring), 6.71

(m, 2H, phenyl ring), 3.01 (s, 3H, NH3). Crystals suit-

able for X-ray analysis were obtained following recrys-

tallisation from hot acetonitrile.

4.1. X-ray crystallography

Crystal data for [Ag2(NH3)2(salH)2] were collected at

150(2) K on a Bruker SMART 1000 diffractometer. The

structure was solved by direct methods and refined by

full-matrix least-squares on F 2 using the SHELXTL

suite of programs [23]. All non-hydrogen atoms were

refined with anisotropic atomic displacement parame-
ters. Hydrogen atoms were inserted at calculated posi-

tions using a riding model except for the phenolic

proton, which was located from difference maps and

allowed to refine with a fixed atomic displacement pa-

rameter. Details of the data collection and structure

refinement are given in Table 4.

Supplementary data for [Ag2(NH3)2(salH)2] are

available from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, England

(Fax: +44-1223-336033), on request quoting the depo-

sition number CCDC 224787.
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