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Prior Bordetella pertussis infection modulates allergen priming and the severity
of airway pathology in a murine model of allergic asthma
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Summary
Background It has been proposed that T helper (Th)2-driven immune deviation in early life can be

countered by Th1 inducing childhood infections and that such counter-regulation can protect against

allergic asthma.

Objective To test whether Th1-inducing infection with Bordetella pertussis protects against allergic

asthma using well-characterized murine models.

Methods Groups of mice were sensitized to ovalbumin (OVA) in the presence or absence of

B. pertussis, a well-characterized Th1 inducing respiratory infection. Immunological, pathological

and physiological parameters were measured to assess the impact of infection on immune deviation

and airway function.

Results We demonstrate that OVA sensitization does not affect the development of B. pertussis-

specific immune responses dominated by IgG2a and IFN-g and does not impair Th1-mediated

clearance of airway infection. In contrast, B. pertussis infection at the time of sensitization modulated

the response to OVA and significantly reduced total serum and OVA-specific IgE. The pattern of

cytokine responses, in particular OVA-specific IL-5 responses in the spleen was also modulated.

However, B. pertussis did not cause global suppression as IL-10 and IL-13 levels were enhanced in

OVA-stimulated spleen cell cultures and in lavage fluid from infected co-sensitized mice.

Histopathological examination revealed that B. pertussis infection prior to OVA sensitization

resulted in increased inflammation of bronchiolar walls with accompanying hyperplasia and mucous

metaplasia of lining epithelia. These pathological changes were accompanied by increased bronchial

hyper-reactivity to methacholine exposure.

Conclusion Contrary to the above premise, a Th1 response induced by a common childhood

infection does not protect against bronchial hyper-reactivity, but rather exacerbates the allergic

asthmatic response, despite modulation of immune mediators.
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Introduction

Asthma is a chronic disease of the respiratory tract that has
increased dramatically in prevalence in western society [1].
The inflammatory response in asthma is tightly associated
with airway hyper-responsiveness (AHR), increased mucus
production and an infiltration of the bronchial mucosa with
CD41 T cells [2]. There is evidence of an altered local T cell
response in favour of T helper (Th)2 cytokine release (IL-4,
IL-5 and IL-13) resulting in B cell isotype switching to IgE,
mast cell, eosinophil and basophil recruitment and produc-
tion of a wide range of inflammatory mediators [3]. The
resulting pulmonary inflammation leads to bronchoconstric-
tion and ultimately to airway remodelling [4].

The current understanding of the pathophysiology of
allergic asthma is that it results from a breakdown in the
normal tolerance to inhaled antigens, associated with Th2
cytokine production [5, 6]. The murine ovalbumin (OVA)
model of AHR exhibits many of the features of human
asthma, including airway hyper-reactivity, airway inflamma-
tion and increased serum IgE levels [7, 8]. This model has
been used extensively to probe mechanisms of asthma [7, 9].
The increased incidence of asthma has been linked to

improved sanitation in industrialized societies, which in turn
has reduced the incidence of childhood infections [10]. One
current attempt to explain these observations, loosely termed
the hygiene hypothesis, states that childhood asthma develops
as a result of decreased exposure to infectious agents during
infancy and early childhood, which results in the persistence
of the neonatal Th1 deficit, thereby predisposing the child to
atopic disease [11]. While Th2 cells promote airway inflam-
mation in asthma, it has been proposed that because Th1 cells
antagonize Th2 cell function, immune deviation towards Th1
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may be protective in asthma [12, 13]. One prediction arising
from the above hypothesis is that a powerful Th1-inducing
infection during or prior to airway sensitization should
diminish or protect against Th2-mediated allergic asthma.
Bordetella pertussis is a Gram-negative bacterium that

causes the severe infant disease whooping cough. B. pertussis
respiratory challenge of mice is a well-characterized model of
airway Th1-induced immunity, which correlates well to
immunity in humans [14]. Recovery from infection is
associated with the development of B. pertussis-specific Th1
cells in both humans and mice [15]. Th1 cells producing IFN-
g play an essential, non-redundant role in the clearance of the
bacteria from the respiratory tract [16]. Murine respiratory
challenge by aerosol administration of the bacteria has been
used extensively for studies of B. pertussis immunity and
pathogenesis and although mice lack the characteristic cough,
in other respects the course of infection and many of the
systemic effects are similar to those observed in infants [17].
In order to test the above hypothesis, we used the Th1 driving
B. pertussis model, in combination with the murine OVA
model of allergic asthma. Based on the prediction above,
prior infection with B. pertussis might be expected to reduce
OVA-induced Th2-mediated AHR and immunopathology.
Our findings demonstrate that although dampening of the

Th2 response was seen at the local and systemic level, OVA
sensitization during B. pertussis infection led to enhanced
production of airway IL-10 and IL-13, coupled with a
subsequent increase in AHR and pathology. This suggests
that although IL-10 may be regarded as a regulatory
cytokine, it has broader functions that may not always
protect against inflammatory disease. These data have
implications with regard to the validity of the hygiene
hypothesis and raise concerns regarding therapies based on
the conversion of Th2-dominated allergic inflammatory
responses into Th1-dominated responses based on protective
effects of Th1 cells in allergy and asthma.

Materials and methods

Animals

Six- to eight-week old female BALB/c (Harlan, UK) mice
were used under the guidelines of the Irish Department of
Health and the research ethics committee of the National
University of Ireland Maynooth.

Aerosol infection

Respiratory infection was initiated by aerosol challenge with
B. pertussis strain W28, following growth under agitation
conditions at 37 1C in Stainer–Scholte liquid medium.
Bacteria from a log-phase culture were resuspended at a
concentration of 2 � 1010CFU/mL in 1% (w/v) casein in
0.9% (w/v) saline. The challenge inoculum was administered
to two groups of mice on 0 day (Bp and BpOVA groups).
Administration was by aerosol over a period of 15min using
a nebulizer. Groups of four or more mice were killed at
various time points after aerosol challenge to assess the
number of viable B. pertussis in the lungs. Remaining mice
received a similar aerosol of sterile saline alone.

Immunization and airway delivery of OVA

Two groups of 6–8-week-old female BALB/c mice (OVA and
BpOVA) were sensitized by i.p. injection of 100mg OVA
(Grade V; Sigma, Dorset, UK) emulsified in 2% Alhydrogels

adjuvant (Superfos Biosector, Sweden) at 10 and 24 days after
bacterial or saline challenge. Control groups (Ctrl and Bp)
received saline alone (i.p.). On 35, 36 and 37 days, OVA and
BpOVA-sensitized mice received 50mg OVA intra–nasally,
whereas Ctrl and Bp groups received saline only.

Enumeration of viable bacteria in the lungs

Lungs were removed aseptically into 1mL of sterile
physiological saline with 1% casein. One hundred micro-
liotres of serially diluted homogenate from individual lungs
were placed onto triplicate Bordet–Gengou agar plates and
the number of CFU determined after incubation at 37 1C for
4 days. Results are reported as the mean number of B.
pertussis CFU for individual lungs from four or more mice.

Bronchoalveolar lavage

Bronchoalveolar lavage (BAL) fluids were obtained by repeat
administration and aspiration of 0.5mL volumes (total 5mL)
of phospate-buffered saline (PBS) via cannulation of the
trachea of mice from three experiments (n5 5). Cells from the
lavage fluid were recovered by centrifugation at 300 g for
6min and resuspended in PBS; total leucocytes were counted
and cytospin preparations were stained with a combined
Alcian blue/Discombe’s stain to determine the differential cell
count. Supernatants were collected for cytokine analysis and
stored at � 80 1C.

Measurement of ovalbumin- and Bordetella pertussis-
specific antibody

OVA- and B. pertussis-specific-IgG1, IgG2a, IgG2b and IgG3
present in collected sera were measured by ELISA as
previously described [16, 18]. Briefly, plates were coated with
OVA protein (5mg/mL) or sonicated B. pertussis antigen (1mg/
mL) overnight at 4 1C. After blocking and the addition of
serum samples, alkaline phosphatase-labelled rat anti-mouse
IgG1, IgG2a, IgG2b and IgG3 (Pharmingen) were used to
detect OVA- and B. pertussis-specific antibody as previously
described [19]. Total and OVA-specific IgE was measured
using a rat anti-mouse IgE monoclonal antibody (Pharmin-
gen). The IgE concentration was expressed as micrograms per
millilitre after comparison with murine IgE standards.

T cell proliferation assays

Spleen cells (2 � 106/mL) from infected, sensitized and
control mice (n5 4 or more per group) were tested for
in vitro proliferation against heat-inactivated B. pertussis
(1 � 104CFU/mL), OVA (20mg/mL), Concanavalin A (Con
A) (5mg/mL, positive control), or medium alone (negative
control). After 72 h, cell proliferation was assessed by liquid
scintillation counting of [3H]-Thymidine incorporation and
results were expressed as mean CPM of triplicate wells � SE.
At the 72-h time-point, culture supernatants were sampled for
cytokine analysis, although the kinetics of cytokine produc-
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tion varies this time-point has previously proved acceptable
for detection of most cytokines [14].

Cytokine measurement

Concentrations of IL-4, IL-5, IL-10, IL-13 and IFN-g from
spleen and broncho-alveolar lavage fluid (BALF) were
assessed by ELISA (Pharmingen). Cytokine concentrations
were calculated by comparison with known cytokine stan-
dards as previously described [16].

Whole-body plethysmography

Airway responsiveness was assessed by methacholine (MCh)-
induced airflow obstruction from conscious mice using whole-
body plethysmography (Buxco Electronics, USA) as pre-
viously described [20]. Pulmonary airflow obstruction was
measured by enhanced pause (PenH), a value determined
from the ratio of expiratory time and relaxation time to peak
expiratory flow and peak inspiratory flow and thought to
correlate with airway responsiveness. Measurements were
obtained after exposure of mice for 3min to PBS (baseline)
followed by incremental doses (3.3–50mg/mL) of MCh
delivered by aerosol [21].

Respiratory tract histology

Animals (n5 5 per group per experiment) were killed at 37
days. Lungs were removed, fixed in a paraformaldehyde/
lysine/periodate fixative, paraffin embedded, sectioned and
stained using the haematoxylin and eosin (H&E), Discombe’s
(identification of eosinophils)/Alcian blue (identification of
mucus), Periodic Acid-Schiff (assessment of basement mem-
brane thickness), azure-A (identification of mast cells) and

Van Gieson (identification of fibrosis) methods. Histopatho-
logical changes evident were graded according to a semi-
quantitative scoring system as mild, moderate or severe by
two researchers without prior knowledge of the treatment
group (Table 2). All experiments were performed at least
twice (n5 5) on each occasion.

Results

Ovalbumin sensitization does not impair T helper 1-
mediated mechanisms of bacterial clearance

In order to examine the effects of immune cross-regulation we
tested the effect of OVA sensitization upon the development
of a protective Th1 response to infection. Groups of mice
were sensitized to OVA in the presence or absence of a prior
B. pertussis infection (Table 1). The kinetics of bacterial
clearance from the lungs of experimental animals were
monitored by performing colony counts on whole-lung
homogenates at different times post-bacterial challenge. Mice
received either saline (Ctrl and OVA) or viable B. pertussis
(Bp and BpOVA) by aerosol. This was followed by OVA
(OVA and BpOVA) or sham sensitization (Table 1). Groups
infected with B. pertussis (Bp and combined BpOVA groups)
showed similar kinetics of bacterial clearance. No bacteria
were recovered from the OVA or Ctrl group (Fig. 1), which
were uninfected but received saline by aerosol. Bacterial
burden in the Bp and BpOVA groups peaked at 10 days and
declined thereafter. By 35 days-post-challenge, both the Bp
and the BpOVA groups showed complete bacterial clearance
(Fig. 1). Therefore, sensitization with OVA does not impair
the effector function associated with the Th1-mediated
clearance of a bacterial disease.

Table 1. Experimental design

Description*

Time (days)

0 10 24 35/36/37

Control Saline aerosol Saline (i.p.) Saline (i.p. and i.n.) Saline (i.n.)

Bp infection Bp aerosol infection Saline (i.p.) Saline (i.p. and i.n.) Saline (i.n.)

OVA sensitization Saline aerosol OVA (i.p.) OVA (i.p and i.n.) OVA (i.n.)

Bp infection and OVA sensitization (BpOVA) Bp aerosol infection OVA (i.p.) OVA (i.p and i.n.) OVA (i.n.)

*Groups of 6–8-week-old female BALB/c mice (n5 4 or more per replicate per time-point) were treated as follows: Control (Ctrl) mice were sham infected on 0 day

and sham sensitized at 10 days and 24 days. A second group (Bp) were infected with Bordetella pertussis at 0 day and sham sensitized at 10 day and 24 days. The

third group (OVA) were sham infected but sensitized with OVA (100mg, i.p.) at 10 and 24.days and then again (50mg i.n.) at 24, 35, 36, and 37 days. The final group

(BpOVA) were infected with B. pertussis on 0 day, and sensitized as above.

Table 2. Histological assessment of airway pathology

Treatment group

Epithelial mucous

metaplasia

Epithelial

hyperplasia

Smooth muscle

hypertrophy

Peri-airway inflammation*

Overall E N L M F

Control � � � � � � � � �
Bp � 1 1 1 � 1 11 � �
OVA 11 11 11 11 1 11 11 � �
BpOVA 111 111 11 111 11 111 111 � �

A semi-quantitative score (� , absent; 1, mild; 11, moderate; 111, severe) was assigned to features of airway pathology observed.
*Peri-airway inflammation assessed in terms of overall degree and of numbers of infiltrating eosinophils (E), neutrophils (N), lymphocytes, plasma cells and

macrophages (L), mast cells (M) and in terms of circumscribing fibrosis (F). Observations are representative of at least two experiments where n5 5 or more in

each case.
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Bordetella pertussis suppresses ovalbumin-specific
humoral immune responses

Although OVA-induced sensitization does not impair Th1
clearance of B. pertussis, we wanted to examine the influence
of B. pertussis infection on responses associated with OVA
Th2 sensitization. OVA-specific IgG was not detected from
mice infected with B. pertussis only; similarly B. pertussis-
specific IgG could not be detected in OVA-sensitized animals,
suggesting no significant cross-reaction between the two
immunogens occurred (Figs 2a and b). An analysis of
antibody subclasses revealed that infection induced greater
serum titres of B. pertussis-specific IgG2a than IgG1 (Figs 2a
and b), consistent with our previous findings [19]. Sensitiza-
tion of infected mice with OVA (BpOVA) did not signifi-
cantly alter this profile. OVA sensitization in the absence of
infection resulted in strong antibody responses almost
exclusively of the IgG1 subclass, consistent with a Th2 model
of priming. In contrast to the minimal influence of OVA on
the response to infection (Fig. 2a), bacterial B. pertussis
infection suppressed or modulated immunity to OVA. For
example, OVA-specific IgG1 titres were significantly lower
(Po0.001) in the combined group (Fig. 2b). Suppression was
not confined to IgG subclasses. Total serum and OVA-
specific IgE was also significantly reduced (Po0.001) between
the OVA and the Bp/OVA groups (Figs 2c and d), supporting
a role for B. pertussis in suppressing or regulating the immune
response to antigen exposure during infection.

Ovalbumin sensitization during Bordetella pertussis
infection enhances airway Interleukin-10 and Interleukin-13

In order to dissect the nature of B. pertussis suppression, cell-
mediated immune responses were examined from spleen

cultures. As previously reported [22], B. pertussis infection
induced strong splenic proliferative and IFN-g responses but
very little IL-5 (Figs 3a–c). This was consistent with the
observed protection (Fig. 1) and the antibody subclass data
(Fig. 2). Again, IFN-g was not significantly reduced by OVA
sensitization (Fig. 3c). As expected, OVA sensitization alone
induced significant IL-5 but no IFN-g (Figs 3a and c).
However B. pertussis did influence cytokine responses to
OVA. Reduced levels of IL-5 were detected in the combina-
tion group suggesting that B. pertussis suppressed Th2
responses to OVA, mirroring the reduction in titre of specific
antibody detected. Interestingly B. pertussis infection did
induce specific IL-10 as well as IL-13 responses (Figs 3b and
d). While OVA sensitization had little other effect on the
immune response induced by infection, it significantly
enhanced the levels of IL-10 and IL-13 (Po0.01 and
o0.01, respectively) produced in response to the bacterium
(Figs 3b and d).
To extend these findings, we examined the levels of

cytokines present in BALF. OVA sensitization, but not
infection, induced IL-4 (Fig. 4a); however, prior infection
with B. pertussis suppressed this. B. pertussis infection
induced local IFN-g, which was not reduced by OVA
sensitization (Fig. 4d). Interestingly, while OVA sensitization
induced IL-10 and IL-13 detectable in BALF, this was
significantly (Po0.01 and o0.01, respectively) enhanced if
sensitization followed infection (Figs 4b and c).

A T-helper 1 infection in the respiratory tract does not
protect, but exacerbates the allergic asthmatic response

It has been proposed that prior Th1 responses to bacterial
infections protect against allergic disease by dampening the
activity of Th2 effector cells. It might also be predicted that
the suppressive or modulatory effects of B. pertussis outlined
above would protect against Th2-driven pathology. We used
whole-body plethysmography in order to measure airway
reactivity in mice infected with B. pertussis prior to OVA
sensitization in comparison with controls (Fig. 5). We found
that contrary to the above premise, a Th1 response induced
by infection in the respiratory tract did not protect against
bronchial hyper-reactivity but rather exacerbated the allergic
asthmatic response. Statistical analysis using two-way ANOVA

showed that mice sensitized to OVA following B. pertussis
infection displayed significantly greater bronchial hyper-
reactivity compared with OVA sensitized alone (Po0.001)
(Fig. 5). This demonstrates that infection with B. pertussis of
the respiratory tract prior to sensitization results in increased
airway reactivity and exacerbates the allergic response.
B. pertussis infection also modulated the quality of the

inflammatory influx to the respiratory tract. There was a
marked reduction in eosinophil numbers observed in BpOVA
compared with OVA-sensitized airways (Table 3). Histologi-
cal examination of lung tissue showed that pathological
changes were largely focussed on bronchioles and adjacent
peribronchiolar blood vessels with varying degrees of airway
wall inflammation and smooth muscle hypertrophy accom-
panied by varying degrees of epithelial hyperplasia and
mucous metaplasia (Fig. 6). A semi-quantitative histopatho-
logical scoring system was used to facilitate comparisons
between groups (Table 2). Minimal changes were observed in
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Fig. 1. Course of Bordetella pertussis infection in experimental and control
(Ctrl) mice. Groups of mice were killed at intervals after challenge and the
number of viable bacteria estimated by performing colony counts on
individual lung homogenates. Results are representative from two experi-
ments and are presented as mean CFU in the lungs determined individually
per group from four mice at each time point. Data for Ctrl and ovalbumin
(OVA) groups have been offset from zero for clarity.
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mice challenged with B. pertussis only, as infection had
resolved by the 37 days time-point. OVA sensitization
resulted in typical inflammation of airway walls with
infiltration of eosinophils, neutrophils and lymphocytes
(Fig. 6c). However, BpOVA mice displayed more severe
airway wall inflammation with a greater degree of both
epithelial hyperplasia and mucous metaplasia than Bp, OVA
or control mice (Fig. 6d). Given that airway resistance (R) is
inversely proportional to the fourth power of the airway
luminal radius (r4) even minimal narrowing caused by
processes such as transmural inflammation, epithelial hyper-

plasia or mucus exudation subsequent to epithelial mucous
metaplasia can profoundly increase pulmonary resistance as
indicated by plethysmography (Fig. 5).

Discussion

The present study demonstrates that prior infection with
viable B. pertussismodulates the immune response induced by
allergen sensitization. Infection suppresses antibody and cell-
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Fig. 2. Serum and ovalbumin
(OVA)-specific IgE and IgG sub-
classes elicited by bacterial infec-
tion and allergic sensitization. (a)
Bordetella pertussis and (b) OVA-
specific serum antibody responses
by IgG subclass elicited in control
(Ctrl), infected (Bp), sensitized
(OVA) mice, or in mice infected with
B. pertussis prior to sensitization
(BpOVA); expressed as geometric
mean titre of antibody (� SE). (c)
Total IgE and (d) OVA-specific IgE
present in sera from each experi-
mental group expressed as mg/mL
or ng/mL, respectively. OVA-speci-
fic IgE (ng/mL) is a relative mea-
sure determined by adaptation of a
standard IgE ELISA. Results are
representative of three experiments
from four animals performed inde-
pendently in triplicate. *Statistical
significance, Po0.001 compared
with BpOVA-treated group.
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Fig. 3. Cell-mediated immune
responses from spleen, elicited by
bacterial infection and allergic sensi-
tization. IL-5 (a), IL-13 (b), IFN-g (c),
and IL-10 (d) responses from spleen
cell cultures stimulated with medium
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shading), heat inactivated Bordetella
pertussis sonicate at 1 � 104 CFU/
mL (hatched bar), ovalbumin (OVA)
(20 mg/mL) (open bar) or Con A
(positive control, black bar). Re-
sponses are representative of tripli-
cate experiments each assay was
performed in triplicate on individual
samples from four mice per group
and results are expressed as mean
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mediated responses against OVA locally and systemically,
while enhancing the levels of the regulatory cytokine IL-10
and IL-13. Despite this modulation, B. pertussis exacerbates
OVA-induced airway pathology, leading to the development
of more pronounced allergen-induced airway inflammation as
well as the induction of enhanced AHR.
Asthma is a chronic inflammatory disease of the airways,

the prevalence of which has increased substantially in recent
decades [24, 25]. The explanation that has attracted most
attention is the hygiene hypothesis, which suggests that the
increase in allergic disease is caused by a cleaner environment

and fewer childhood infections [26]. The goal of this study
was to test the hypothesis that a powerful Th1-mediated
infection such as B. pertussis would diminish or protect in a
murine model of allergic asthma. Zuany-Amorim et al. [27]
used a similar model, but employed heat-killed Mycobacter-
ium vaccae that was effective in blocking allergic inflamma-
tion but by a mechanism independent of IFN-g. The same
authors went on to find that mycobacteria induce IL-10-
producing regulatory T cells. Intriguing recent data from
McGuirk et al. [15] have shown that the filamentous
haemagluttinin component of B. pertussis behaves in a similar
way. Our observation of IL-10 in lavage fluid and following in
vitro stimulation of spleen cells supports the latter finding. In
the case of the protection generated by mycobacterial
exposure, it is proposed that IL-10 has an essential role in
modulating the immune system by inducing a shift from an
allergen-specific Th2 response [28]. In the present study, we
observe a similar modulation but this does not result in
protection against airway hyper-reactivity, implying that
although the restoration of a putative balance between Th1
and Th2 is an attractive theory, it is unlikely to provide a
universal explanation of the pathogenesis of asthma.
Studies with Th1 and Th2 cells in diabetes mellitus and

autoimmune encephalomyelitis indicate that cross-regulation
does not always operate and in some instances can be
unexpectedly harmful [29]. For example, Genain et al. [30]
showed in a model of multiple sclerosis that a shift in cytokine
production from a Th1 to a Th2 pattern increased
concentrations of pathogenic autoantibodies and in some
instances exacerbated autoimmune disease. Pakala et al. [31]
also showed that immune deviation towards a Th2 response
did not reduce, but rather exacerbated pathology and disease.
In the present study, the Th2-associated effect of OVA
sensitization had little influence on the Th1-mediated
clearance of a bacterial infection of the airways. In contrast,
B. pertussis infection suppresses IgG and IgE responses
associated with OVA sensitization. This provides compelling
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Fig. 4. Bordetella pertussis infection modulates the
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performed in triplicate, values are expressed as mean
� SE between experimental and control groups.

*Po0.01
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Fig. 5. Bordetella pertussis exacerbates bronchial hyper-responsiveness
to sensitizing antigen. Groups of mice were treated as described in the
legend to Fig. 1. At 37 days, airway hyper-reactivity in response to
increasing concentrations of inhaled methacholine (MCh) was measured by
whole-body plethysmography. Results are representative of three experi-
ments (n5 4 per group) and values are expressed as mean enhanced
pause (PenH) � SE.
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evidence that B. pertussis powerfully modulates the response
to the third party antigens. These data are again consistent
with studies in which M. vaccae injection to OVA-immunized
mice significantly suppressed serum IgE [32] but are in direct
contrast to Zuany-Amorim et al. [27] in which they failed to
see any effect on IgG2a levels or serum IgE. Although
M. vaccae and B. pertussis provoke similar immune
responses, radically different pathologies are induced. The
resolution of this paradox may lie in the different aetiologies
of both M. vaccae and B. pertussis. Respiratory challenge by
M. vaccae causes minimal epithelial damage and limited
airway pathology. In stark contrast B. pertussis causes
significant damage to the epithelial lining of the airways
[33]. This is mediated through a bacterial virulence factor
called tracheal cytotoxin, which induces IL-1b and reactive
nitrogen intermediates that bring about ciliostasis, followed
by airway remodelling [34, 35]. Thus, while M. vaccae and
B. pertussis induce very similar immune responses, it may be
that during B. pertussis infection there is a combination of
epithelial damage, IFN-g, IL-10 and IL-13 production that
has profound influences on the epithelium and its local
environment, which serves to exacerbate rather than protect
against asthma.
In asthma, the bronchial epithelium is highly abnormal

with structural changes involving separation of columnar cells

from their basal attachments and functional changes resulting
in increased expression and release of pro-inflammatory
cytokines and growth factors [36]. Beneath the damaged and
dysfunctional epithelium lie increased numbers of subepithe-
lial myofibroblasts that deposit interstitial collagens causing
thickening of the basement membrane [4]. These effects are
seen in the present study in the OVA group (Fig. 6c) but are
more prominent in the combination group that received
B. pertussis prior to OVA sensitization (Fig. 6d). Evidence
suggests that the epithelium should not be viewed in isolation,
as airway smooth muscle cells contribute to the perpetuation
of airway inflammation and airway remodelling [37]. Grun-
stein et al. [38] has suggested that IL-10 may play an
important role in allergic asthma by acting directly on the
sensitized airway smooth muscle itself. The present study
suggests that although IL-10 may be a regulatory cytokine, it
has broader functions that may not always protect against
inflammatory disease, particularly if there has been damage
to the superficial epithelium. Lee et al. [39] have also
demonstrated that IL-10 induces IL-13 production in vivo
and that this induction was responsible for the mucus, but not
the inflammatory and fibrotic effects of IL-10. This would
appear to be consistent with our own data (Figs 3b and d, 4b
and c) where we see an increase in both IL-10 and IL-13 at the
systemic and local level. The decrease in eosinophilia (Table

Table 3. Leucocytes present in BAL fluid

Group

Total leucocytes

(� 104)

Eosinophils

(� 104)

Macrophages

(� 104)

Lymphocytes

(� 104)

Neutrophils

(� 104)

Control 5.0 � 0.5 o0.005 3.9 � 2.0 0.2 � 0.1 o0.005

Bp 5.0 � 0.4 o0.005 4.6 � 0.9 1.1 � 0.7 0.2 � 0.1

OVA 8.0 � 1.7 4.1 � 0.9 2.9 � 1.2 0.6 � 0.1 0.5 � 0.2

BpOVA 5.0 � 0.8 2.4 � 0.8* 2.1 � 0.8 0.4 � 0.1 0.5 � 0.3

Groups of mice were killed (37 days), bronchoalveolar lavage (BAL) cells were collected, counted, and cytospin preparations stained to obtain the differential

leucocyte count. Data represent mean (� SE) values; n5 5–8 mice per experiment.
*Po0.05 vs. OVA group.

Fig. 6. Bordetella pertussis increases the severity of
airway pathology to sensitizing antigen. Photomicro-
graphs a–d illustrate representative morphological
changes in transverse sections of bronchioles at 37 days
(n5 5 per group). (a) Control group; (b) B. pertussis
infected group (mild mural and peri-airway inflammation
evident); (c) ovalbumin (OVA)-sensitized group illustrating
moderate mural and peri-airway inflammation with ac-
companying moderate mucus metaplasia (blue staining
goblet cells) and hyperplasia of epithelium; (d) Combined
B. pertussis/OVA-treated group illustrating severe mural
and peri-airway inflammation, moderate epithelial hyper-
plasia and severe mucous metaplasia with accompanying
mucus plugging of the lumen (P). All sections stained with
a combined Discombes/Alcian blue stain. Original mag-
nification � 400.
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2) observed in the BpOVA group is most likely because of the
modulation of IL-5 responses in these mice (Fig. 3a). IL-5 is a
cytokine necessary for the regulation of eosinophil growth,
differentiation, activation and survival and plays a critical
role in the recruitment of eosinophils to the lung [40]. Similar
responses were observed by Wu et al. [41] using murine
cytomegalovirus infection in conjunction with the murine
model of OVA-induced allergic airway disease. Previous
studies in humans have demonstrated that IL-13 mRNA and
protein levels are elevated in the lungs of atopic and non-
atopic asthmatics [42, 43], suggesting that overproduction of
IL-13 may predispose toward the development of both types
of asthma [43]. Walter et al. [44] showed that an OVA-specific
Th2 line generated from IL-13� /� mice, which produced
high levels of IL-4 and IL-5, but not IL-13, failed to induce
AHR, demonstrating the essential role of IL-13 in the
development of AHR. IL-13 may also increase AHR directly.
IL-13 induces smooth muscle proliferation in vitro [45] and
can aid contractions of tracheal smooth muscle [46]. Airway
smooth muscle cells have also been shown to express IL-13
receptors, including both components of the IL-13R complex
[47]. Amrani et al. [48] have suggested that increased levels of
IFN-g in asthmatic individuals may promote AHR and
exacerbate asthma by directly modulating contractile re-
sponses. OVA sensitization of infected mice in the combina-
tion group induced significant levels of IFN-g detectable in
the BALF (Fig. 4d), suggesting that IFN-g may contribute to
the observed exacerbation of pathology (Fig. 6d). This
correlates well with studies in humans where increased IFN-g
was seen in asthmatic patients compared with normal subjects
[49, 50]. It has also been shown that AHR can manifest
independently of pulmonary inflammation [51] although this
was not seen in this study. Respiratory syncytial virus (RSV),
commonly associated with lower lung infections in infancy is
also known to exacerbate asthma [52, 53]. Matsuse et al. [54]
found that the effect of RSV infection varies depending upon
the inflammatory context of the lung. Both primary and
recurrent RSV infections augment ongoing allergic inflam-
mation, however, in the absence of allergic sensitization, the
effects of RSV were transient. Comparable with our own
study with B. pertussis, Lukacs et al. [55] found that an initial
RSV infection can initiate a pro-asthmatic environment that
promotes a more severe asthmatic response, even when the
allergic response is initiated at a time after clearance of the
RSV-induced reactions. Likewise, OVA sensitization of mice
infected intravenously with Listeria monocytogenes, converts
a non-lethal infection to a lethal disease. In that model IL-10
plays a critical role in the suppression of anti-listerial
resistance in OVA-immunized mice [56]. Other groups have
shown that heat-killed Mycobacterium bovis-BCG suppressed
the development of OVA-induced airway eosinophila [57, 58].
In many of these studies the timing of sensitization and
infection influence the outcome, however, the exacerbation
mediated by B. pertussis appears to be persistent and long
lived (data not shown). Taken together, these studies suggest
that pathogens may induce an altered cytokine environment
in the context of airway remodelling that ultimately provides
for an exacerbated asthmatic-type response [55].
Immune counter-regulation based on Th1/Th2 mechanisms

or even regulatory T cells secreting IL-10 have been suggested
as mechanisms that could protect against asthma. We show

here that this response must be viewed in the broader context
of the host–pathogen interaction. B. pertussis fulfils many of
the criteria for a potent immunomodulator that should
protect against asthma. However, the potent influence on
airway remodelling during infection means that this bacter-
ium has the opposite effect. This study clearly shows that
while the hygiene hypothesis is an attractive theory, it is of
limited validity as currently stated. Furthermore, our results
raise concerns regarding immunomodulatory therapies aimed
at the conversion of Th2-dominated allergic inflammatory
responses into Th1-dominated responses based on counter-
regulation that may be of limited efficacy, or even harmful.
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