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Abstract—Physical constraints need to be considered in the
design of control systems for an oscillating body Wave Energy
Converter (WEC). In the case of a hydraulic Power Take Off
(PTO) unit, such constraints include the length of the stroke of
a hydraulic piston or the maximum pressure permitted in the
hydraulic circuit. In the paper, two types of WEC are considered:
A 1-body point absorber oscillating in heave and a 2-body point
absorber also oscillating in heave. A procedure for the analysis of
the constraints is presented. It provides sufficient conditions for
the satisfaction of both constraints and/or the violation of at least
one constraint. The procedure is based on the discretization of
the equations of motion of the WECs by approximating the forces
and the velocities with a linear combination of basis functions.
A special case is presented in which truncated Fourier series are
used for the approximation. It is shown that the constraints can
be interpreted as a geometrical object in a finite dimensional
vector space, and that the study of sufficient conditions for the
satisfaction of both constraints and for sufficient conditions for
the violation of at least one constraint can be seen as the study
of the intersection between these geometrical objects. It is also
shown that the method allows the study of the effect of constraints
on the amount of produced energy.

Index Terms—WEC, Single body, Self reacting, Control, Con-
straints.

I. INTRODUCTION

The design of Wave Energy Converters (WECs) requires
the analysis of constraints introduced by physical limitations
of the components used to build the device. For a heaving buoy
point absorber, which is considered in this paper, examples of
such limitations are the maximum force that the Power Take
Off (PTO) unit can exert and the maximum amplitude of its
oscillation. The analysis of constraints is important not only
with respect to the maximum amount of energy that the device
can produce, but also for the study of the survivability of the
WEC to a specific wave climate. For example, the amplitude
of the relative motion, between the two bodies composing the
self-reacting heaving buoy point absorber in Fig 1, depends on
the excitation force and on the force applied by the PTO. Each
body composing the WEC is subject to a different excitation
force; if the difference is large, the PTO may not be able to
keep the relative motion within the limits, risking damage to
the device.
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The method presented in this paper provides a tool that can
be used in the design stage of a WEC to quickly analyze
the physical requirements on the PTO force and on the
oscillation amplitude as function of the sea state. In particular,
it provides sufficient conditions for the satisfaction of both
force and amplitude constraints, and sufficient conditions for
the violation of at least one of the constraints.

The procedure is based on the discretization of the equations
of motion of the WECs by means of the approximation of the
forces and of the velocities with a linear combination of basis
functions. A special case is considered, in which truncated
Fourier series are used for the approximation. This case is
particularly interesting because the results are in strict analogy
with the frequency domain theory of wave energy conversion,
as in [1]. The discretization was initially motivated by the
study of an optimal controller for the maximization of the
energy converted by the device, subject to constraints. Only the
details crucial to the development of the constraint framework
are described here. The full details of the underlying control
framework are given in [2].

Two types of WECs are considered: a two-body self-
reacting point absorber restricted to heave motion, which is
depicted in Fig. 1, and a single body point absorber restricted
to heave motion, which is considered as a particular case of
the two-body device.

The two-body device is considered in Section II; both
frequency and time domain models are presented to introduce
the terminology that will be used through the rest of the
paper. In Section II-A the discretization of the time domain
model is described, at first using general basis functions for the
approximation of the forces and velocities, and subsequently
truncated fourier series are considered. In Section II-B, force
and amplitude constraints are defined using the infinity norm
and then approximated by the 2-norm. The introduction of
the 2-norm is motivated by the fact that it allows the ana-
lytical formulation of some useful results that will be used
in Section II-C to study conditions for the satisfaction and/or
violation of constraints. The single body WEC is considered
in Section III as a particular case of the two-body device.
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Fig. 1. Self-reacting point absorber.

Section IV provides the example of a vertical cylinder with the
step by step description of the practical implementation of the
method, and a discussion concerning the effect of constraints
on the amount of converted energy.

II. SELF-REACTING POINT ABSORBER

The general form of device considered is a two-body self-
reacting point absorber restricted to heave motion only, as
depicted in Fig. 1, and described by the frequency domain
model [3]:
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where V4 and VB are the vertical velocities of body A and
body B, respectively. The radiation force F,. is
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where Z=Z(w) is the radiation impedance matrix. 2 and F.?
denote the excitation forces, m“ and m®P are the masses, S4
and S the hydrodynamic stiffness, B4 and B® are damping
coefficients used to model linear losses due to viscous effects
and frictions of mechanical components. The PTO applies
a force Fl, on both bodies with the same magnitude and
opposite direction. The time domain formulation of the model
in Equation 1 is
LA®) = mAo?(t) + BAo?(t) + SAu(t)
— JA®) = FAO) + forot) = 0
LE(t) = mPoB(t) + BBuB(t) + SBuP (1)
= [ = [P () — foro(t) = 0
where u“(t) and uP(t) are the vertical positions of the
two bodies, and 0 (¢) and 9P (t) their vertical accelerations.
The forces and velocities, denoted with lowercase letters in

Equation 2, are the inverse Fourier transform of the corre-
sponding uppercase variables in equations 1. The radiation
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forces become

FA) = =miot () = kA4 ()« 0 (1)
—mABoB(t) — k2B (t) x vB (1)

FP() = —mZPoP () — kPP () = vP (1)

—mBApAt) — EBA(t) x v (1)

where the symbol * denotes the convolution operator and the
parameters m’. and k% (t), with i, j € {A, B}, are related to
the elements of the radiation impedance matrix Z through the
expressions [4]:

m(w) = Im{ 20 ()} = miZ — - /Ooo 9 (8) sin(wt) dt,

R (w) = Re{ 27 (w)} = /0 "R (1) cos(wt) dt, 3)

mt = wleréo Im{Z" (w)}.

The energy absorbed in the interval [0,7], neglecting the
losses, corresponds to the work performed by the PTO, that
is:

J(T) = / forolt) @A) — 0B @) dt. @)

A. Discretization

The PTO force is assumed to be such that f;Z(t) €
L3([0,T]), where L?([0,7]) is the Hilbert space of square
integrable functions in the interval [0, T; also vA(t),v5(t) €
L?([0,T7]) because they are velocities of physical bodies. The
PTO force and the velocities are then approximated as a linear
combination of basis functions in a finite dimensional subspace

of the space L2([0,T)):
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where {¢1(¢),...,dn(t)} is a basis for the finite dimensional
subspace SV C L2([0,T]) and {¢1(t),....¢5s(t)} is a
basis for the finite dimensional subspace S < L2([0,7)).
For any given set of coefficients describing the PTO force
{p1,...,pnr} and excitation forces f* and fZ, the compo-
nents of the velocities are calculated by applying the Galerkin
method [5]:

{ (LA(), én) =0
(LB(t), én) = 0

where (-, -) denotes the inner product defined as

=1,...,N 7)

T
(f.9) = / F(t)gt) dt, ®)

and LA(t) and LP(t) are the equations of motion in the
System 2 with the velocities and the forces approximated by



using Equations 5 and 6. The Galerkin method is a projection
method for the discretization of integral and differential equa-
tions; the solution of Equation 7 is the set of the velocities
components z!, that minimizes the difference between the
original equations of motion (L*, L?) and their approximation
(L4 and LB). In other words, for any given PTO force and
excitation forces, the solution of the Equation 7 provides the
best approximation of the motion of the WEC in terms of the
velocities components.

Given the oscillatory nature of the problem, a truncated
Fourier series, also known as a trigonometric polynomial, is
an intuitive choice as the basis for SV and S*. Further-
more, choosing wo=27/T, the set of functions {sin(wyT),
cos(wo T),. .. ,sin(Nwo T),cos(Nwo T)} form an orthogonal
basis for the spaces SV and S with the inner product defined
in Equation 8. The constant term of the basis is not considered
because it is assumed that all the functions have zero mean; in
practice, it is assumed that the reference frames of the bodies
are chosen such that the origins oscillate around their mean
position with respect to the inertial reference frame.

Using a zero mean truncated Fourier series with N fre-
quency components for both the velocities and the PTO force,
the dimension of each of the spaces SV and S* is 2N, and
the resulting approximating functions in Equations 5 and 6
become:

oA(t) = Z ait cos(nwot) 4 b sin(nwot) )

n=1

0P (t) = af cos(nwot) + bf sin(nwot)  (10)
n= 1
fpto Z a;, cos(nwot) + b sin(nwot). 11

n=1

For the practical implementation of the method, it is also
convenient to approximate the excitation forces by a truncated
Fourier series containing N frequency components:
A
fE®)

Ze ¢ cos(nwot) + = sin(nwot) (12)

fB( Z e, cos(nwot) + € sm(nwot) (13)

The mean value of the excitation forces can be considered to
be zero with no loss of generality. In fact, since the excitation
force is calculated by the convolution of the wave elevation
with the excitation force kernel [3], the wave elevation can be
transformed into a zero mean function by changing the origin
of the reference frame, resulting in a zero mean excitation
force.

Substituting Equations 9-13 into Equation 2, the system of
Equations 7 becomes the linear system [2]:
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where I is the identity matrix of size 2N,
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with i, j={A, B}, and
D = R (nuwp) + B', (16)
M} = nwoy (m* + m"(nwo)) — 5"/ (nwy), a7
D = R (nwp), for i#j (18)
M:sznwo mij(nwo) for i# j. (19)

The matrix G;; is block diagonal and each block is a 2-by-2
normal matrix of the form

5

This particular structure is due to the orthogonality of the
Fourier series and it allows the study of the existence of the
solution of the linear system in Equation 14 by studying the
singularity of each of the N 4-by-4 matrices

(20)
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Each matrix G, corresponds to a frequency nwy; thus, should
the system in Equation 14 be singular, a possible solution
might be to perform a different frequency discretization by
selecting a different fundamental frequency wy.

If the solution of the linear system in Equation 14 exists,
the amount of energy absorbed by the PTO, described by
Equation 4, is

J(P)=-PTHP + PT(Q*E* —QPE®) (22)

where
_ 1 _
H=5-1 GBB +GAA GABSQAA
+GBBTIGBAS L, + 50k, (23)

Q* = S5k, +GBBTIGPAS L,
QB =G TIGABSL, + Sk

(24)
(25)



Sgaa and Sges are, respectively, the Schur complements of

GA4 and GBB, and they are defined as
GBB _ GBAGAA_lGAB (26)

@7

Sgaa =
SGBB _ GAA _ GABGBB_lGBA.

It can be verified that the symmetric part of the matrix H (i.e.
(H+ HT)/2) is positive definite; therefore, the quadratic cost
function in Equation 22 is concave and the global maximum
of the unconstrained problem is obtained for

P=(H+H)YQ*E* - QPEP). (28)
B. Description and approximation of constraints
The force constraint is defined as
prto”oo § Fmaza (29)
while the constraint on the relative amplitude is
A, < AUas, (30)
where the infinity norm || - ||« is defined in the appendix
(Equation 68) and Ad(t) = a4(t) — aP(t), with
N bA
~ A A n A .
t) = 1 (1-— t 1),
o (t) = uf + ; nwo( cos(nwot)) + a;, sin(nwot)
€2y
N bB
wB(t) = uf + Zl n—zo(l — cos(nwot)) + a2 sin(nwot).
j=
(32)

Using the Inequality 69, it is possible to find sufficient
conditions for the satisfaction of the Inequalities 29 and 30 in
terms of the 2-norm, defined in the appendix (Equation 67):

A [2N
fpta”oO S T

fptOH2 S Fma:m (33)
Jaal < 2T A, € Alpes. B4)

The Inequalities 33 and 34 state that the 2-norm multiplied
by 1/2N/T is an upper bound for the infinity norm; as a
consequence, if the inequality is satisfied for the 2-norm, it is
also satisfied for the infinity norm. In practice, the condition
on the 2-norm is more restrictive than the condition on the
infinity norm.

Sufficient conditions for the violation of at least one of the
constraints, also in terms of the 2-norm, can be obtained using
the Inequality 70:

||fpto||oo > 1/\/T||fpto|’2 > Fmax

|Adl| > 1/VT||Ad

(35)

y > AUpaa. (36)

oo

The meaning of the Inequalities 35 and 36 is that the 2-norm
multiplied by 1/ VT is a lower bound for the infinity norm;
thus, if the 2-norm multiplied by 1/ /T violates the constraint,
then the infinity norm also violates it.

The 2-norm of the force and amplitude constraints are
calculated by applying Parseval’s theorem, resulting in

sz T 2 2 T r
Fotoll; = 5 D ((@h)* + @8)*) = TPTP. (37)
n=1
|aa)? =L XN: LB 4 (0 — o))
2 2 — nwo n n n n
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where the amplitude constraint is obtained by setting the initial
relative position A (0) as

bB _pa
AG(0) = n N

; nwo
to obtain a zero mean valued relative position, and the matrix
W is:

1/(4}() 0 te 0 0
0 1/wg -~ 0 0
W=l . (39)
0 0 1/Nwy 0
0 0 - 0  1/Nwg

Using Equations 23-25, the 2-norm of the amplitude constraint
in Equation 38 becomes a function of the vector P:

|Ad

27T T r7T 152
275(PHVVHP

—2Q"W2H P+ QTW?Q). (40)

Substituting the Equations 37 and 40 into the Inequalities 33
and 34, the sufficient conditions for satisfaction of the con-
straints are

1
pPT'p < _F? 41
<y Fmass (41)
and
PTHTW?HP -2QT W?H P
1
+QTW2Q < NAUﬁm, (42)

while the sufficient conditions for constraint’s violations are

PTP>2F2 (43)
and
PTHTW?HP -2QT W?HP
+QTW?2Q > 2AU? .. (44)

The Inequalities 41-44 describe the constraints as a function
of the PTO force only, in terms of the vector P, for given
excitations £ A and EB, embedded in the vector Q.



C. Geometrical interpretation of the constraints

Defining the sets

S¢(Ry) ={P:P"P < Ry}, (45)
Su(R,) ={P:PTH"W?HP -2Q" W?HP
+Q"W?Q < R,} (46)

a sufficient condition for the satisfaction of both the force
and the amplitude constraints described by the Inequalities 29

and 30 is
AU2 =+

while the sufficient condition for the violation of at least one
of the Inequalities 29 or 30 is

St (2F2,,) N Sy (2AU2,,) = 0. (48)

The force constraint defined by the set S¢(Rys) can be
interpreted as the region of the 2N-dimensional space S
enclosed by the hypersphere centered in the origin and of
radius \/R. The amplitude constraint S, (R,,) is the region of
the space enclosed by the hyperellipsoid with axes parallel to
the elements of the basis of ST, because the matrix HTW?2H
is diagonal and with all positive elements. The center P, of
the ellipsoid is

(47)

P.=H'Q=HYQ'E* - QPE?P), (49)
while the radii r; are given by
R,
s= 50
r N (50)

where )\; are the eigenvalues of H” W2 H, that is the diagonal
elements.

The Equation 47 states that if the intersection between
the hypersphere describing the force constraint and the hy-
perellipsoid describing the amplitude constraint is not the
empty set, then, for the given excitation forces, the device
is able to satisfy both the amplitude and the force constraints.
Conversely, Equation 48 states that if the intersection between
the two sets is the empty set, then at least one constraint will
be violated.

In the following section, the procedure for a single body
WEC is presented as a special case of the self-reacting
WEC; Section III-A explains in greater details the practical
significance of Equations 47 and 48.

III. SINGLE-BODY POINT ABSORBER

A single body heaving buoy is now considered as a special
case of the self-reacting point absorber described in Section II,
given by the frequency domain model

(iwm+ B+ Z(w) + S/iw)V = Fe — Fpo.  (51)
The corresponding time domain model is
L(t) = (m 4+ moo)0(t) + k(t) * v(t) + Bo(t)
+ Su(t) - fe(t) + fpto(t) =0, (52

and the energy absorbed by the PTO, neglecting losses, is

T) = /OT Foro(t) v(t) dt

Following the same steps performed for the self-reacting
device, using a truncated Fourier series to approximate the
excitation force, the velocity and the PTO force, as in Equa-
tions 9, 11 and 12, and solving

(53)

(L(t),¢n) =0 Vn=1,...N, (54)
the equation of motion results in the linear system
GX=E-P (55)

The matrix G is block diagonal with 2-by-2 blocks of the form
in Equation 20; the elements on the main diagonal are the real
parts of the mechanical impedance at the N frequencies nwy,
as defined in Equations 16-19. If the matrix G is invertible,
the converted energy is

J(P)=P'X =-P'G'P+ PTG 'E. (56)
where the symmetric part of the matrix G~! is positive
definite, because the elements on its main diagonal (linear
damping plus radiation resistance) are positive. As a conse-
quence, the quadratic function J(P) is concave and the PTO

force P that maximizes Equation 56 is

P=GT+caH'G'E. (57)
The force constraint is defined as
| fotoll . < Finaas (58)
and the amplitude constraint is defined as
il . < Unaa- (59)

The 2-norm of the force constraint is defined as in Equa-
tion 37, while the 2-norm of the amplitude constraint is

_ T(PTG_TWQG_l
2
—2ETGTTW G'P + ETG‘TWQG‘lE) . (60)

A. Geometrical interpretation of the constraints

Defining the set
Sy(Ry) ={P: PTG"W?G™!
—2ETG Tw2G='P+ ETG™ TWQG‘lESRu}, (61)

a sufficient condition for the satisfaction of both the force and
the amplitude constraints defined by the Inequalities 58 and 59

Sy (117 mar)msl < mm> #0

and a sufficient condition for the violation of at least one
constraint is

(62)

Sy (2F2,,) NS, (2U2,,) = 0. (63)
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Fig. 2. Example for one-body device, with N=1. The intersection is not
empty (shaded region), thus the sufficient condition in Equation 62 is satisfied.
The axes P; and P, are the components of the vector P describing the PTO
force, that is P = [Py PQ}T.

The set S! (R,,) describes the region of the space S¥ enclosed
by an hyperellipsoid centered at P.=L; the principal axes
are parallel to the elements of the basis because the matrix
G-TW?2G~! is diagonal and the radii are

ri= f— (64)
where )} are the eigenvalues of G=TW?2G~1.

An example for N=1 (i.e. 2-dimensions, P; and P,) is
shown in Fig. 2; the matrix G~ is of the form in Equation 20,
thus G-TW?2G ! is diagonal with two coincident eigenvalues
X, and the set S!,(U2,,.) is a disc centered at P.=F with ra-
dius 7'=U, 4. /v . Considering that the intersection between
two disks is non empty if the sum of the radii is larger that
the distance between the centers, it follows that the sufficient
condition in Equation 62 can be simplified as:

U,
2 > el
A further example, also for N=1, is depicted in Fig. 3;
a situation is shown in which the intersection between the
regions describing the sufficient conditions for the violation
of at least one constraint, expressed by Equation 63, is empty;
in this case, for the given excitation F, at least one constraint
will be violated. Equation 63, for N=1, can be simplified to:

UTY
\[2<Fmax+ \/L/\i,x) < ||E||2

IV. ILLUSTRATIVE EXAMPLE AND DISCUSSION ON THE
METHOD’S APPLICATION

Fraz + (65)

(66)

The introduction of the 2-norm for the description of the
force and amplitude constraints allows the study of their

Py

rr=V2Fpab

v

Py

Fig. 3. Example for one-body device, with N=1. The intersection is empty,
thus at least one constraint will be violated. The axes P; and Ps are the
components of the vector P describing the PTO force, that is P = [Py P»]T.

properties analytically. The analysis is not exact, in the sense
that the sufficient conditions described by Equations 47 and 62
are conservative, and the device might satisfy both constraints
(Inequalities 29-30 and 58-59) even if Equations 47 and 62
are not true. In practice, during the design of the WEC, the
Equations 47 and 62 provide an estimate of the requirements
for the mechanical components of the device. In particular,
the necessary conditions in Equations 48 and 63 describe the
minimum requirements that a WEC has to meet for a particular
sea spectrum described by the excitation E. In other words,
if Equations 48 and 63 are not satisfied, then the WECs
will definitely not be able to satisfy both constraints at the
same time for the given excitation ££. When considering one
frequency at the time (/N=1), the formulation of the constraints
presented in Sections II and III can be visualized in a 2-
D plot, as in Fig. 2 and Fig. 3. For a higher dimension
(N>2), the Equations 47, 48, 62, and 63 require the analysis
of the intersection of a hypersphere with a hyperellipsoid,
which can be studied using numerical methods only, although
it is not a difficult problem because both the hypersphere
and the hyperellipsoid are convex surfaces. Some analysis
of the constraint’s requirements can still be carried out by
considering the largest hyperspheres contained in each of the
ellipsoids and the smallest hyperspheres that contain each of
the ellipsoids. In this case, an estimate of the approximation
is provided by the ratio 7,4z /Tmin, Where e, and ripm,
are the largest and the smallest radii of the hyperellipsoid, as
defined in Equations 50 and 64.

The first step for the practical implementation of the method
is to build the matrix G which is used to calculate the radii r;
and 7} and the center P, of the hyperellipsoid describing the
amplitude constraint. In the case of a self-reacting WEC, G is
composed of four blocks G* (Equation 14), each of which is
block diagonal (Equation 15) and their elements are calculated
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Fig. 4. Example for one-body device with N=1, Fi;q4=50kN, Upmqs=3m,
T=9s.
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Fig. 5. Example for one-body device with N=1, Fi;q0=20kN, Upmqs=3m,
T=9s.

directly from the frequency domain hydrodynamic coefficients
of the bodies composing the device, by using Equations 16—19.
If only one frequency component wy is considered (i.e. N=1),
then the matrix G is 4-by-4 and its structure is given explicitly
by Equation 21, with n=1. Once G has been built, the radii
r; can be calculated directly (Equation 50) from the elements
\; of the diagonal matrix HTW?2H , where W is defined in
Equation 39 and H is obtained by combining the blocks G%,
as described by Equation 23. The center of the hyperellipsoid
P. (Equation 49) depends on the matrices Q4 and QP that
are by calculated from the block G* (Equations 26 and 27 ),
and on the vectors of the Fourier coefficients of the excitation
forces £ and EP, defined in Equations 12 and 13. If only
one frequency at the time is considered (N=1), then the
hyperellipsoid is a circle, the matrix HTW?2H is 2-by-2 and
the diagonal elements are equal, that is Aj=Aa=).

In the case of a single body WEC, the procedure is simpler
in that the matrix G corresponds exactly to the one described

—6"“ NI

Fig. 6. Example for one-body device with N=1, Fi,q4=50kN, Upqz=3m,
at resonance: the optimum PTO force is in phase with the excitation force.

in Equation 15 setting i=7, that is G=G*. Only Equations 16
and 17 are needed to calculate the elements of GG since the
cross-coupling terms (i£7j) are not present. The radii of the
hyperellipsoid r are calculated directly from the diagonal
elements of the matrix G~7W?2G~! by using Equation 64,
while the position of the center P, is equal to FE, that is
the vector of the Fourier coefficients of the excitation force.
When only one frequency component at the time is considered
(N=1), the matrix G is 2-by-2 and the amplitude constraint
is described by a circle centered in E; for the case of the
sufficient condition for constraints satisfaction (Fig. 2), its
radius is 7'=U,,,q,/V/ N, that is obtained setting R,=U?2,,, in
Equation 64, while the radius of the circle describing the force
constraint is 7y=F,q; (Equation 62). When considering the
sufficient condition for the violation of at least on constraint
(Fig. 3), the radius of the circle relative to the amplitude con-
straint is 7'=1/2/X Uppqz, that is obtained setting R,=2U2,,..
in Equation 64, while the radius of the circle describing the
force constraint is r f:ﬁme (Equation 63).

Besides the analysis of the violation of the constraints, it is
also possible to study the effect of constraints on the energy
absorbed by the PTO. Figures 4 and 5 shows the sufficient con-
ditions for constraint satisfaction relative to the same device, a
vertical cylinder with radius 5m and draft 25m, subject to the
same monochromatic wave profiles, but with different force
constraints. The vector P corresponds to the optimal PTO
force provided by Equation 57, while P, is the center of the
disc describing the amplitude constraint, as depicted in Fig 2.
The circular dotted lines centered in P are the contour lines
corresponding to constant absorbed energy. The maximum
energy absorbed, while satisfying the constraints, is achieved
for P=P.,,str; for the situation depicted in Fig. 4, where
Fraz=50kN, increasing Fj,,, will provide a small increase
on the absorbed energy, because P.onstr Will move along the
circle described by the amplitude constraint, and the tangent to
that circle at that point is almost parallel with the contour lines.
Increasing U,,q, by the same amount, in percentage terms,



will provide a larger increase, because P.opstr will move along
the circle described by the force constraint, which is almost
orthogonal to the contour lines. The situation is completely the
opposite in Fig 5, where F;,,,= 20kN; in this case, the larger
increase in the absorbed energy is provided by the increasing
F max-

The situation in Fig. 6 corresponds to the resonance fre-
quency of the vertical cylinder, which can be seen by the fact
that the optimal PTO force is in phase with P, which is, for
the single body case, equal to the excitation F. In this case,
a variation in F;,,, has no effect on the amount of absorbed
energy, because the only active constraint in P,y s, 1S the one
due to the amplitude.

The radius of the circle relative to the amplitude constraints
at resonance is smaller than the same radius at 7=9s (Fig. 4);
this is due to the fact that ' = 1/v/NUpae, and X takes
its largest value at resonance. In fact, it can be verified by
using Equations 16-19 that X" is inversely proportional to the
magnitude of the mechanical impedance of the device.

The procedure described in sections II and III provides
results on the conditions for satisfaction of the constraints that
can be obtained directly using the theory currently available in
text books, such as [1]. However, the discretization allows the
study of the constrains in a finite dimensional vector space,
giving the possibility to interpret their meaning from an intu-
itive point of view, (i.e. geometrical objects), and allowing the
use of the wide range of tools available for this mathematical
structure. Furthermore, the discretization of the equations of
motion by means of the Fourier series is just a special case.
Different basis functions can be used in Equations 5 and 6,
providing different conditions for the satisfaction and violation
of the constraints, which can still be interpreted as geometrical
objects. The cost function describing the energy absorbed by
the PTO in Equation 22 will still be quadratic with respect to
the vector P.

V. CONCLUSION

This paper presents a procedure for the analysis of the force
and amplitude constraints on a self-reacting point absorber;
the special case of a single body in also considered. Sufficient
conditions for the satisfaction of both constraints and/or the
violation of at least one constraint have been identified. The
viability of a PTO system or a device geometry is quickly ver-
ified, for specific sea states, by means of a few linear algebra
operations, avoiding the time consuming task of numerically
integrate the equations of motion.

If reliable estimates for the economic cost of the PTO
capacity, namely F,,, 4, and U,,,., are available, the sensitivity
of the absorbed energy with respect to the maximum PTO
force and to the maximum oscillation amplitude, described
in section IV, could also be useful in the techno-economical
optimization of the device.

For these reasons, we envisage this method being a useful
tool in the design stage, in particular prototyping and opti-
mization, of wave energy converters.

APPENDIX
The 2-norm || f||2 of the function f(¢) is defined as
- 1/2
7= | 1r@pa) . a
0
while the infinity-norm || f||~ is defined as
[]lc = sup |f(1)]- (68)
te[0,T]

A general property relating the 2-norm and the infinity-norm
of a function f, for which the norm defined by Equation 68
exists, is [6]

171l < VT

For a zero mean Fourier series with N frequency components

the inequality [7]
2N
13lloe < o/ 17w

provides an upper bound for the infinity-norm as a function
of the 2-norm.

(69)

(70)
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