A Model for the Sensitivity of
Non-Causal Control of Wave Energy Converters to
Wave Excitation Force Prediction Errors

Francesco Fusco
Center for Ocean Energy Research (COER)
National University of Ireland Maynooth (NUIM)
Maynooth, Co. Kildare, Ireland
E-mail: francesco.fusco@eeng.nuim.ie

Abstract—Wave Energy Converters (WECs) consisting of os-
cillating bodies can gain significant benefit from a real-time
controller that is able to appropriately tune the system operation
to the incident wave, thus allowing for a higher energy capture
in a wider variety of wave conditions. Some of the proposed
controllers, however, are non-causal and need predictions of the
excitation force to be implemented in practise. A frequency-
domain model is proposed, for the estimation of the effects that
the wave- excitation-force prediction error has on the reference
velocity that is calculated from the non-causal control law and,
ultimately, on the absorbed power. The model can easily be
derived exclusively from the predictor and from the non-causal
law, with no additional information about the excitation force.
Such a frequency-domain model can be valuable for the design
of a robust control architecture, where the prediction error
has a limited effect on the performance (power absorption).
Focus is put on reactive control, but it is shown how the
proposed sensitivity model can be generalised to other non-causal
strategies, such as model predictive control.

Index Terms—wave energy converter, control, wave forecasting.

I. INTRODUCTION

Wave Energy Converters (WECs) consisting of oscillating
bodies can gain significant benefit from a real-time controller
that is able to appropriately tune the system operation to
the incident wave, thus allowing for a higher energy capture
in a wider variety of wave conditions. The ideal uncon-
strained control solution, that is reactive control [1], gives
the conditions for the oscillating velocity and power take-off
(PTO) force of the system such that maximum wave energy
absorption is achieved, in any possible wave condition. Much
attention, however, has been drawn by alternative control
solutions where physical constraints are also accounted for in
the optimisation process. Such solutions are usually based on
model predictive control (MPC) [2], [3], [4], where the energy
absorption over a finite receding time-horizon is maximised,
taking into account limitations on the system’s motion and
PTO machinery forces.

Both reactive control and MPC, however, require prediction
of the wave excitation force to be implemented in practise.
Short-term wave forecasting was studied either with a deter-
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ministic approach [5]-[7], and as a purely stochastic univariate
time series problem [8], [9]. In the latter, in particular, it is
demonstrated how accurate predictions of the low-frequency
wave components, for more than one mean wave period
ahead, can be achieved with simple linear autoregressive (AR)
models. Such models are also valid for the prediction of the
wave excitation force, which is the effect of the incident wave
elevation on the floating system, that results from the appli-
cation of a low-pass filter. Whatever the selected prediction
model is, however, an error is inevitably introduced, and this
can negatively affect the performance of the controller.

This study presents a methodology for the quantification of
the sensitivity of reactive control and MPC to the excitation
force prediction error. A general structure of the real-time
controller is firstly introduced, in section II, where a non-
causal law, based on MPC or reactive control, is utilised for
the calculation of the optimal velocity that the WEC should
have for maximum power absorption. Tracking of this velocity
reference, which in practise would be achieved by some lower-
level control loop, is assumed perfect here.

A frequency-domain model of the propagation of the pre-
diction error into the reference velocity and, ultimately, into
the loss of power absorption, is then proposed in section III.
Although only valid for linear control strategies, like reactive
control and unconstrained MPC, such a frequency-domain
interpretation of the sensitivity to the wave-excitation-force
prediction error can be extremely valuable. Guidelines for the
design of the prediction model and of the velocity tracking
control loop can, in fact, be derived such that the influence of
the prediction error on the performance (power absorption) is
reduced.

In section IV, the introduced methodology is proven, by
simulating an ideal WEC, consisting of a floating cylinder
constrained to move in one degree of freedom. The main
conclusions are finally outlined in section V.

II. REAL-TIME CONTROL OF A HEAVING BUOY

The wave-energy conversion system considered in this study
consists of a generic floating body, oscillating in heave. The
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Fig. 1. A floating cylinder oscillating in heave.

relative motion with respect to the sea bottom is converted
into useful electricity by a power take-off (PTO) mechanism,
which is left unspecified at this stage. The motion of such a
system, schematised in Fig. 1, is described by the following
dynamic equation:

Mo(t) + /0 z2(t — T)v(r)dr + Kpo(t) + Ksx(t) =
fea(t) + fu(t), (1)

where M is the mass of the body, v(t) and x(t) its velocity
and position, z(t) is the kernel function modelling the radi-
ation impedance, K is a constant loss resistance and K is
the restoring coefficient (modelling the linear restoring force
resulting from the balance between buoyancy and weight).
The external forces acting on the systems are the excitation
force, fe.(t), due to the incident waves, and a controllable
load force, f,(t), produced by the PTO. Note that Eq. (1) is
valid under the assumption of zero initial conditions, that is
z(0) = v(0) = 0.

The model of the WEC, as linearity is assumed for all the
hydrodynamic forces, can alternatively be expressed in the
frequency domain:

Zi(w)V(w) = Fep(w) + Fyu(w), 2)

where all the properties of the system are conveniently incor-
porated in the intrinsic mechanical impedance, Z;(w), defined
as:

K,

w?

Zi(w) = B(w) + K¢ + jw | M + My(w) — 3)
In Eq. (3), the Fourier transform of the radiation kernel is
expressed as Z {z(t)} = B(w) + jwM,(w), in terms of the
radiation resistance, B(w), and the added mass, M, (w). Note
that such a Fourier transform is only valid in a generalised
sense, as M, (w) does not, in general, vanish in the limit w —
+oo [1].

The excitation force, fe.(t), is the effect that the incident
wave elevation, 7)(t), has on the system, determined by the

non-causal excitation transfer function H.,(w) [1]:
Fer(w) = Hep(w)E(w) )

Note that in Eq. (4), E(w) represents the Fourier transform of
the wave elevation, =(w) = .7 {n(t)}.
The average power absorbed by the system, over the time
T, is:
1 (T
Py=—m [ fulyo(dt, (5)
0
which can be equivalently expressed in the frequency domain
by using Parseval’s theorem [1]:

1 o

Py=——
2nT 0

F,(w)V*(w) + Fj(w)V(w)dw. (6)
The notation (-)* indicates the complex-conjugate operation.
Note that the Parseval’s theorem can only be applied if the
force and velocity signals, f,(t) and v(t), are supposed to be
zero outside the time interval [0, 7.

The control objective is to opportunely tune the system’s
motion so that the wave power absorption is maximised,
eventually accounting for any constraint that may be imposed
by physical realisability (e.g. motion/force constraints) or by
other practical considerations. A general control framework
is represented in the blocks scheme of Fig. 2. From mea-
surements (or estimates) of the excitation force, a reference
oscillation velocity is calculated according to a certain higher-
level control (HLC) logic. A lower-level control (LLC) loop
then imposes the desired velocity on the WEC, by acting
on the PTO force. The reference generation can be based
on analytical solutions, like for example reactive control [1],
or numerical optimisation algorithms which may additionally
include constraints, MPC being the best example of such
a category [2], [3], [4]. As also highlighted in the control
scheme of Fig. 2, the reference generator requires, in general,
predictions of the excitation force. Such requirements depend
on the actual control strategy and on the specific system to
be controlled [10], but it is widely recognised that they are
usually necessary [10], [11], [12], [13], [2]. Note, however,
that there is also the possibility to implement suboptimal but
causal control strategies, where only current and/or past values
of the excitation force are utilised to determine the reference
velocity [14], [15].

It is important to mention, here, that other architectures
have been proposed where the velocity is not controlled
directly, but the PTO force is optimised and imposed on the
system in a feed-forward fashion [16], [14]. Such solutions,
in the authors opinion, may loose their effectiveness in a real-
world implementation, where inaccuracies in the model (non-
linearities, uncertainties in the parameters or prediction errors)
could lead to poor control actions. Unless a very accurate
(non-linear) model is utilised in the optimisation, the velocity
resulting from application of such a force may not be the one
expected, thus leading to a performance drop. Inclusion of the
velocity in the control loop, on the other hand, allows a more
robust correction of the effects of unknown (or non-modelled)
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Fig. 2. General structure for a real-time controller of a WEC.

components of the system. Note that the control objective is
usually to amplify the motion of the system (for maximum
wave energy absorption), which goes against the assumption
of small motions that is behind the linear models commonly
utilised for the control system design.

In the remainder of this section, two non-causal reference-
generation strategies are outlined: reactive control and MPC.
These well known case studies will serve for the introduction
of a methodology that can be used in order to determine the
effects that excitation-force prediction errors can have on the
reference velocity and ultimately on the performance of the
control system, that is the power capture.

A. Unconstrained Reactive Control

It was demonstrated [1] that maximum average power is
transferred from the waves to the system under the two
following conditions:

1

VO - 7FE$
pi () 2B(w) + 2K

(w) )

 Zr(w)
QB(UJ) + 2Kf e

which we term optimal velocity, V,pi(w) = F {vope(t)}, and
optimal load force, Fy, opi(w) = F { fu,opt(t)}

Within the control framework that is assumed in this paper,
as shown in Fig. 2 and described in section II, the condition of
Eq. (7) is implemented by the reference generator to calculate
the reference velocity from estimates/measurements of the
excitation force. At time ¢:

Foopt(w) = —Z1 @)V (w) = (@), ®)

“+o0
UOPt (t) = / hopt (T)fer (t - T)dT; (9)
where
_ g1 1 _ g1
hopt(t) =7 {2B(w)+2Kf} = {Hopt(w)}' (10)

Note that the Fourier inversion of Eq. (10) is only valid
in a generalised sense, as explained in [10]. The function
Hopi(w), in fact, tends to the constant 1/2Ky at low and

high frequencies, so that the kernel function h,p(t) can be
decomposed as:

1

hopt (t) = 2K,

o(t) + k(¢), an

where 0(t) is a Dirac delta function and

1
5k =7 K}
(12)

After the singularity of the kernel function A, (t) is isolated,
the Fourier transform in Eq. (12) is now well defined, as
K,pi(w) tends to zero for high and low frequencies.

By combining Equations (9) and (11), the optimal reference
velocity is finally given by:

Fo(t) = 71 {H (@)

Vopt(t) = Q;{f Foult)+ /_ Fopt(7) fon(t — T)dr.  (13)

It is well known, however, that the kernel function Ay (t),
and therefore k,p(t), is non-causal [11], [1]. In particular,
hopt(t) and kopi(t) are real and even functions. This means
that evaluation of the convolution of Eq. (13) requires past
as well as future values of the excitation force. Moreover,
values infinitely far into the future need to be known, as the
convolution starts from 7 = —oo. The kernel function k.. (t),
however, tends to zero and can be neglected after some time, so
that only a finite future (and past) time horizon is required, in
practise, for the calculation of the optimal velocity. In [17] and
[10], in particular, a methodology is introduced to determine
the finite prediction horizon over which the excitation force
must be known in order to approach the optimal velocity
within a certain degree of accuracy.

Considering also that the actual implementation of the
reference generator has to be in discrete time, the optimal
reference velocity, based on reactive control, is ultimately
calculated as:

L
(K] + Ts > Foptli] fealk — 3,

j=—L

Vopt [k] =~ (14)

1
57 Jea
2K



where T is the sampling time and L is the future (and past)
horizon after which additional knowledge of the excitation
force has no significant influence on the velocity calculation.

B. Model Predictive Control

The optimal velocity given by reactive control is based on
the minimisation of the average power at every frequency, over
an infinite time horizon. MPC, on the other hand, optimises
the operation of the system (velocity and/or force) such that
the average power, or the energy, over a finite future horizon,
is maximum. In particular, at each time step k, the following
functional is maximised, over a given time horizon L,:

L
Tk == fulk+ jlolk + 4], (15)
j=1

possibly subject to constraints on the system’s variables. Note
that the length of the receding horizon, L, has a different
meaning that the quantity L used in Eq. (14), for the cal-
culation of the optimal velocity with reactive control. In both
cases, however, L indicates the prediction horizon required for
a practical implementation, and that’s why the same symbol
has been adopted.

In the presence of constraints, an explicit solution for
the transfer function between reference velocity and exci-
tation force cannot be found, in general. The discussion,
here, focuses on the unconstrained solution, which allows
the expression of the reference velocity as a linear function
of the excitation force (future and past), just as found for
reactive control, in Eq. (14). Such a solution is immediately
derived if a state space model for the floating system is
available. For this purpose, a finite-order approximation of the
radiation convolution of Eq. (1) is required, as this is only
known numerically from some hydrodynamic software (refer
to [18], [19] for details on radiation identification of floating
structures).

Suppose that the following discrete-time model of the
radiation force has been identified:

alk 4+ 1] = Az k] + Boolk]
fr[k] - Crzr [k] ’

where f,.[k] is the radiation force, v[k] is the system’s velocity
and z,[k] is a state variable whose dimension represents the
order of approximation. Note that the system in Eq. (16)
does not exactly represents the radiation force but only its
component after the singularity of the added mass at infinite
frequency is removed [4]. Based on Eq. (16), the unconstrained
minimum of the functional in Eq. (15) is found by adapting
the results from [4]:

BoplH] = 5 (0 + Ky 1)~ (<500 + FualK])
where, all the signals have expressed as extended vectors over
the future horizon L:

(16)

a7

f}OPt[k] = (UOPt [k +1] Vopt [k + L])T
5k = (2 b+ 1T Zk+LT)" (8
fealk] = (feulk + 1] fealk+L)7,

and the matrices I’ and F, only depends on the radiation
system:

C,A,
- | C.A2 Ll T
C.AL
with
C.B, 0 .0
C,A,.B, C,.B, o 0
= ) . (20)
C,AL-'B, C,AF?B, C,B,

Note that ()7 denotes the transposed of a vector or matrix
and I, in Eq. (17), is the identity matrix.

At each instant & we are only interested in forcing the sys-
tem to follow the first value of the optimal vector ¥, [k], that
is vopt [k+1] (at the following instant, k+2, a new optimisation
is performed). Therefore, the reference-generation strategy is
actually:

Vopt [k + 1] = H feu[k] — HE, 2, [k] =
L L
S hifealk+ 5]+ hiCr ALz k], (21)
Jj=1 J

1

1 _
0)§(F4—K}I)1::

(b1 he ht)

Note the similarity of the reference generation for reactive
control, Eq. (14), with the solution of the unconstrained MPC,
Eq. (21). In the latter, the past values of the excitation force
are accounted for in the term depending on the radiation state
variable, z.[k]. The future horizon L is determined by the
time horizon chosen for the optimisation. One may expect that
MPC will converge towards reactive control if an infinitely (or
sufficiently) long horizon L is considered.

(22)

III. EFFECTS OF PREDICTION ERRORS ON CONTROL
PERFORMANCE

Within the general control framework proposed in section II,
and schematised in Fig. 2, the velocity reference is generated
from predictions of the excitation force. This study aims at the
definition of a methodology that would aid the quantification
of the effects that the inevitable prediction errors have on the
reference velocity and ultimately on the control performance
(absorbed power). Having a proper understandings of these
effects would make it possible to increase the robustness of
the control, by acting on the reference-generation logic or on
the lower-level control. From this perspective, a frequency-
domain interpretation of the mapping between excitation-
force prediction error and velocity reference is of particular
interest. The latter is introduced in section III-B, after the
excitation-force prediction error is characterised in section
II-A. Section III-C, then, analyses how the error propagates



from the reference velocity to the power absorption of the
system.

Note that, while the focus is maintained on the two
reference-generation strategies outlined in section II, based on
reactive control and MPC, the methodology presented here can
be extended to other possible linear control approaches.

A. Characterisation of excitation-force prediction error

At every instant k, the future values of the excitation force
are approximated through some prediction model:

fealk +1E] = feulk + 1] + e[k + 1|K], (23)

where f.,[k+1|k] is the l-step ahead prediction and é[k + | k]
is the prediction error.

If a stochastic time series model is utilised as a predictor,
the one-step ahead prediction is usually calculated as a com-
bination, not necessarily linear (e.g. neural networks), of past
values of the excitation force:

feulk + 11K = @(feulk], fealk =11, .. fexlk —n]), (24)

where ¢(+) is an unspecified function. The multi-step predic-
tions are then determined recursively as:

fealk + Uk = (fealk + 1 — 1]K],
fealk +1—=2],... fealk —n+1-1]). (25

The one-step ahead prediction error, é[k + 1|k|, can be
assumed to be a white noise with zero mean and variance
2.
o

e[k + 1]k] ~ R(0,0?). (26)

The assumption in Eq. (26) is reasonable if the prediction
model accurately captures all the dynamics of the real system.
The multi-step ahead prediction errors, however, for the re-
cursive nature of the predictor, will be a combination of white
noises and, therefore, colored noise, which can be described
by its spectral density. Particularly for a linear predictor, it
is quite straightforward to derive the spectral model of the
prediction error.

Suppose that an AR prediction model, which was shown to
be suitable for wave forecasting [9], is utilised:

Fealk + 1K) =" aj feulk +1— j] + [k + 1],

Jj=1

@7

where a;, with j = 1, ...n, are the parameters of the model
and ([k] is white noise. The multi-step ahead prediction error
resulting from an AR model is a moving average system [20]:

e[k + k] = oF' (2)C[k +1] =
o1+ fiz+ -+ fid ") (e +1] =

o (Clk+ 1+ ficlk+1=1]+---+ fir([k+1]),  (28)

where z is the discrete complex frequency and the coefficient
of the transfer function F!(z) are directly calculated from the

parameters of the AR model. In particular F'(z) derives from
the following identity [20]:

1=A()F'(2) + 2'G(2), (29)

where it can be calculated as the quotient when dividing 1 by
A(z). In Eq. (29), the coefficients of A(z) are the parameters
of the AR model, a;, while the term 2'G(2) is the remainder
of the polynomial division.

The variance of the multi-step ahead prediction error is
easily calculated as:

E{elk+1k*} =0+ ff+ -+ [f1)o" =

T l(,—Jw l w
0—2/ de_ (30)
0

™

Note that the absolute value squared of the transfer function
F'(z) represents the spectral distribution of the I-step ahead
prediction error, that is how this error is distributed in the
frequency domain.

B. Effects of prediction errors on the reference velocity

The two velocity-reference-generation strategies based on
reactive control, in Eq. (14), and MPC, Eq. (21), can both be
written in the following general form:

—1
Vres K] = 0]+ Y heslilfeall =31, 31
j=—L

where vﬁ?f denotes the causal part of the calculation of the

reference velocity and h,. r[j] is the impulse response function
of the reference generator, whose specific values depend on
the strategy adopted. Note that for reactive control the causal
part is the convolution involving current and past values of the
excitation force, while in the case of MPC it involves current
and past values of the radiation state variable (which ultimately
depend on the excitation force).

What is of interest, here, is to understand how the prediction
error maps into the reference velocity and possibly to give
a frequency-domain interpretation of this transfer. The actual
reference velocity calculated from predicted values is:

’lA)T@f[k} = ’Ur@f[k} + Avref[k} =

-1
’L)?(_Z)f[k] + Z href[j]fex[k —Jjlk] =
p—

—1
replkl + Y heeslilelk — Ik, (32)
j=—1L
where Awv,.s[k] denotes the deviation from the desired veloc-
ity, due to the prediction error, é[k + [|k], whose expression
was given in Eq. (23).

By introducing the model of the prediction error, Eq. (28),
the error in the reference is readily written as a stochastic
process driven by a white noise representing the one-step
ahead prediction error:

Avreglkl = 3 hoeslilo POk — i) (33)
j=—L



It is straightforward to verify that the reference-velocity error
model, in Eq. (33), is a moving average stochastic process:

Avyeslk] = oG*(2)(k + L] =
o (90 “"glz‘f'"'-l-gLleL_l) Clk+ L) =
o (goClk + L]+ gi¢lk + L — 1] + -+ gr_1C[k +1]),
(34

where the coefficients of the filter G(z) are calculated from
the reference generation impulse response function, hy.s[k],
and from the multi-step ahead error model, (), as:

go = hr@f[*L]
91 = href[=Llf1 + hrep[—L + 1]

grL—1 = href[_L]fol + -+ href[_2]f1 + href[_]-]'
(35)
The absolute squared value of the filter G(z) represent the
spectral distribution of the error in the velocity reference and
the total variance is:

E{Avpes[k+ 1k} = (95 + 97+ +97-1) 0% =
™ YL, —jw L, jw
o [ CHTIE ),
0

™

(36)

By using Equations (34) and (36) it is possible, given the
prediction model and the characteristics of the one-step ahead
prediction error, to estimate the error in the reference velocity
and its frequency distribution.

C. Effect of errors in the reference velocity on the performance

The error in the reference velocity, produced by incorrect
estimates of the future excitation force, causes a velocity,
which is different from the desired one, to be imposed on the
system. Tracking the incorrect reference, through the lower
level control loop, can result in a performance drop, that is a
loss of power absorption. In this section, the effect of the error
in the reference velocity on the average power absorption is
quantified with a frequency-domain interpretation.

Within the scope of this study, focus is put on reactive
control, which allows for the derivation of a simple analytical
model in the frequency domain. In particular, the power loss
due to error in the velocity reference is calculated as deviation
from the ideal unconstrained optimal power achievable with
reactive control. In the case of MPC, even if unconstrained,
such model is not as straightforward to derive and it is left for
further studies.

The spectral density of the absorbed power, from Eq. (6),
is:

1

Pw) = 5= RV (@) + Fi@V@)], 6]

and represents the average power absorbed at each frequency,
in W - s/rad. In the case of reactive control, the spectral
density of the maximum average power absorbed, is:

1
Popt,u(w) = = —5 B(w)[Vopt (@), (38)

where Equations (8) and (7) were utilised. As a result of
the prediction error, the following velocity, in the frequency
domain, is actually imposed on the system:

Vopt(w) = Vopt (w) + A‘/opt (w)v (39)

as from Eq. (33). The actual absorbed power is therefore:

P,(w) (@) Vi (@) + (@) Vo(@)], @0)

" 2T
where F, (w) is the load force that is applied by the PTO on the
floating system to impose the (incorrect) velocity reference:

Fu(w) = Zi(w) [Vope (W) + AV(W)] = Fex(w), (41)

which is based on the model of the system, Eq. (2).
By substituting Equations (39) and (41) in Eq. (40), it is
possible to show that:

Puw) = == B@) Vo @) + —=B@)AV@)P. @)

At each frequency, the average power loss is proportional
to the absolute value squared of the error in the velocity
reference. In particular, in relative terms:

Popt(w) - Pu(w) _ ‘AV(M)P

= . (43)
Popt(w) [Vopt (w)|?
Note that, by using Eq. (34):
AV (w)[? = o*GH(e7)GH(e?), (44)

which represents the spectral distribution of the variance of
the reference velocity error, as shown in Eq. (36).

A frequency-domain model for the power drop due to
inaccuracies in the reference velocity, produced by excitation-
force prediction errors, has therefore been found. In particular,
the average power loss, at each frequency, is proportional,
through the system’s radiation, to the spectral density of the
velocity error, which is easily determined, Eq. (39), from the
spectral distribution of the one-step ahead prediction error, the
parameters of the predictor and the reference-generation kernel
function.

IV. RESULTS AND DISCUSSION

The validity of the frequency-domain models, introduced
in section III, for the estimation of effects of excitation-force
prediction error on the velocity reference and on the power
absorption, is verified here. A wave-energy conversion system
consisting of a floating cylinder, as described in section II, is
considered. Its geometry is defined by the radius R = 5m, the
height H = 25m and the draught ~ = 20 m. The radiation
and excitation characteristics are shown in Fig. 3 and were
identified with the aid of the hydrodynamic software Wamit
[21].

Reactive control was implemented, as outlined in section
II-A, for two different wave systems, which come from real
data collected at the Belmullet wave-energy test site, off the
West coast of Ireland. In particular, a wave field consisting
of a well defined swell centered at low frequencies and a
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Fig. 3. Frequency response of the selected floating cylinder, with radius

R = 5m, height H = 25m and draught h = 20 m.

wider-band sea state, centered at higher frequencies, were
selected. The two data sets consist of 2304 measurements with
a sampling rate of 1.28 Hz, but they were interpolated and
the calculations were all performed (to increase the accuracy)
at 2.56 Hz. The wave-energy spectrum of the selected sea
states is shown in Fig. 4, along with the spectrum of the
corresponding excitation force produced on the WEC.

According to the methodology presented in [10], a predic-
tion horizon of L = 150 steps (almost 60 s at 2.56 Hz) was
chosen, for the implementation of the non-causal law in Eq.
(14). In particular such a prediction horizon is required for
a very close approximation of the optimal velocity that the
system should follow for maximum wave energy absorption.
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collected at the Belmullet test site, off the West coast of Ireland.
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Fig. 5. AR predictor goodness of fit. The variance of the one-step ahead
prediction error is o2 = 1.75 x 103 for the higher frequency sea state (blue
line) and o2 = 1.86 x 10* for the low frequency swell (green line).

A linear AR model was identified and estimated to provide
the real-time predictions of the excitation force, on the basis
of the study presented in [9]. Fig. 5 shows the goodness of fit
along the whole prediction horizon of 150 steps, for the two
wave systems selected. As expected, the AR model is more
accurate for the prediction of the sea state with a narrower
bandwidth centered at a lower frequency (again, refer to [9]).
More interestingly, however, note that the accuracy drops down
very quickly and predictions seem reliable only for a fraction
of the wave period (Fig. 5).

Based on the AR prediction model and on the non-causal
law for the generation of the reference velocity, a spectral
distribution of the variance of the error in the reference
velocity is estimated, using Eq. (36). Fig. 6(a) and 6(d)
compare such estimate with the real variance of the velocity
error, F gAuzef [k]} The latter is determined numerically
from the difference between optimal velocity, calculated from
ideal future values of the excitation force, and the velocity
resulting from the use of predicted values. The estimated
spectral model seems to describe quite accurately the distri-
bution of the error’s variance, particularly within the band
of frequencies were the excitation force (and therefore the
velocity) is significant. It is quite over-conservative, though, at
frequencies where there is no excitation force, which comes



from the fact that a constant variance (white noise) is supposed
to be the input of such stochastic model. The one-step ahead
prediction error of the excitation force, in fact, is actually
only a band-limited white noise, within the frequencies where
the excitation force is contained, while it is practically zero
elsewhere.

Note that the spectral model, |G(e?*)|?, is such that the
prediction error is significantly attenuated in the range of
frequencies between approximately 0.4 and 1rad/s, while
it is amplified at lower and higher frequencies. This band
is strictly related to the systems radiation and to the fre-
quency domain reference generation function, H,,:(w), as
it can be seen in Fig. 7. Moreover, the excitation force is
usually contained mostly within this band of frequencies, as
any higher-frequency components are filtered down by the
excitation transfer function, Fig. 3(b), whose cut-off frequency
is related to the bandwidth of the radiation resistance [1],
B(w), and therefore to H,,:(w). In essence, any sea state
components at high frequencies are significantly attenuated
by the system’s excitation properties, such that the error in
the velocity reference, although amplified, would be not be
very significant at those frequencies.

As regards the power, the losses due to the use of a wrong
reference velocity can be determined through the spectral
model proposed in section III-C. From Eq. (42), the average
power loss, in the frequency domain, is proportional to the
radiation resistance of the system multiplied by the spectral
density of the error in the reference velocity. As can be seen in
Figs. 6(b) and 6(e), given the resonant behavior of the radiation
resistance, eventual errors at higher and lower frequencies than
the radiation bandwidth are attenuated.

More insight can be gained from Figs. 6(c) and 6(f), which
express the spectral density of the velocity error (real and
estimated) with respect to the variance distribution of the
optimal velocity. As from Eq. (43), this also expresses the ratio
between power lost and optimal absorbed power. In absolute
terms, the average power lost within the band of resonance of
the system radiation is significant, but in relative terms such
loss is very small. On the other end, the relative power loss at
low and high frequencies is quite significant, but that’s only
because the ideal power absorption is almost zero at those
frequencies, due to the aforementioned absence of excitation
force components.

In order to have an idea of the cumulated effect of the
excitation-force prediction error on the actual power produced,
the spectral densities were integrated, over the frequencies
were the model matches the actual data well. The total variance
of the error in the velocity reference, over the variance of the
optimal velocity is:

E{Av3,, (K]}
E {ngt,l[k]}
E {Avgpt,Q[k]}
E {ngt,z[k]}

wher the subscripts 1 and 2 refer, respectively to the low-

0.29

Q

(45)
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Fig. 7. Non-causal transfer function Hopt(w) = 1/[2B(w) 4+ 2K f] utilised
to generate the optimal reference velocity from the excitation force, as from
Eq. (7).

frequency and higher-frequency sea states. Considering that
the accuracy of the predictions is only acceptable over a short
part of the future time horizon utilised for the velocity cal-
culation (almost 60 seconds), note that the reference velocity
error is quite small. As regards the average power:

E{APop K]}
E {Pozvt,l[k]}
E{APop2[k]}
E {Pom,2[k]}

For the sea state 1, that is the low frequency swell, only a
8.5% drop in absorbed power is experienced due to the error
in the excitation force. On the other hand a 40% power is
lost due to the prediction error in the case of the sea state
centered at higher frequencies. Such results are surprising,
considering that the relative error in the velocity reference,
Eq. (45), is bigger (more than double) for the low frequency
swell. However, from comparison of Fig. 4 and Fig. 6(c), it
can be noticed that most of the power for the sea state 2 is
actually concentrated at frequencies where the power loss, in
relative terms, gets bigger.

~ 0.085
(46)
~ 0.40.

V. CONCLUSION

This paper proposed a model for the estimation of the effects
that the wave-excitation-force prediction error has on the
reference velocity that is calculated from a non-causal control
of a WEC, aimed at maximum power absorption. In particular,
the spectral density of the error in the reference velocity, and
the average power loss, are expressed as stochastic models
driven by a white noise, representing the one-step ahead
prediction error of the excitation force. The model can be
directly derived from the parameters of the predictor and
from the non-causal reference generator, with no additional
information about the excitation force required. Simulation
results have shown how such model is able to give an accurate
estimation of the frequency distribution of the variance of the
velocity errors and of the average absorbed power, at least
within the band of frequencies where the excitation force is
contained.

The value of the proposed frequency domain model is
critical for the design of a real-time controller, based on a non-
causal calculation, whose performance is as robust as possible
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Fig. 6. Spectral density estimates (blue solid line) against real spectral densities (dashed black line) of errors in the reference velocity and absorbed power,
due to errors in the prediction of the excitation force: (a), (b), (c) refer to the sea state at concentrated at low frequencies; (d), (e), (f) refer to the wider sea

state at higher frequencies.

to inevitable prediction errors. It was shown, in fact, how
prediction errors at different frequencies can have different
impact on the error in the reference velocity. In the same
way, errors in the reference velocity, at certain frequencies, are
significantly attenuated by the control and system dynamics,
so that they do not affect the power absorption. Important
specifications can therefore be derived for the wave-excitation-
force prediction model, so that a maximum desired error is
achieved within a certain band of frequencies, but also for
the lower level loop. In particular, the closed loop transfer
function can be shaped such that velocity errors at certain
band of frequencies are attenuated.

While the numerical example utilised in the paper was based
on reactive control, it was shown how the proposed model can
be adapted for different non-causal control strategies, such as
MPC, although further work needs to be done in this direction.
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