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Abstract: The problem of the maximization of the energy produced by a self reacting point
absorber subject to motion restriction is addressed. The main objective is to design a control
system suitable for real-time implementation. The method presented for the solution of the
optimization problem is based on the approximation of the motion of the device and of the
force exerted by the power take off unit by means of a linear combination of basis functions.
The result is that the optimal control problem is reformulated as a non linear program where
the properties of the cost function and of the constraint are affected by the choice of the basis
functions. An example is described where the motion and the force are approximated using
Fourier series; an optimization algorithm for the solution of the non linear program is also
presented. The control system is implemented and simulated using a real sea profile measured
by a waverider buoy.

1. INTRODUCTION

A Wave Energy Converter (WEC) is a device that pro-
duces electricity by converting the energy carried by water
waves, usually ocean waves. The WEC considered in this
work is a self-reacting point absorber; a floating body is
said to be a point absorber when its horizontal dimensions
are small compared to the length of the incident wave. A
self-reacting point absorber is a WEC composed of several
point absorbers that converts energy from the relative
motion between the bodies. The energy is recovered by a
Power Take Off (PTO) unit, which is a mechanical device
capable of exerting a force between the bodies of the WEC;
the amount of energy flowing through the device can be
controlled by acting on the force exerted by the PTO.

The maximization of the energy produced by a two-body
point absorber has been addressed in Korde [2003] where
the problem is approached in the frequency domain. Mixed
time-frequency domain analysis has been carried out in
Hals et al. [2007] and in Falcao et al. [2009] where two-
body WECs equipped with hydraulic PTO are considered.
In practice most wave energy converters are characterized
by physical limitations, such as the maximum relative
motion between the bodies; in Falnes [1999] the author
studied the effect of motion restriction on the energy
produced by a two-body point absorber. Optimal control
problems for WEC subject to amplitude restriction have
also been addressed for single body devices as in Korde
[2001], Eidsmoen [1996a] and Eidsmoen [1996b]. In Hals

⋆ This work was supported by Enterprise Ireland under grant

TD20060325.

[2010] the author applied model predictive control for the
maximization of the energy produced and considered also
a constraint on the maximum force that can be exerted by
the PTO.

The focus of this paper is to present a method for the
solution of the energy maximization problem for a self-
reacting point absorber subject to amplitude restriction.
The objective is to provide an approximated solution of
the constrained optimal control problem that requires a
computational effort compatible with real time implemen-
tation. The problem is approached by approximating the
force exerted by the PTO and the motion of the device
by a linear combination of basis functions. The optimal
control problem is then transformed into a constrained
finite dimensional optimization problem.

The general formulation of the method is presented in
section 2, while in section 3 an example is presented where
the PTO force and the motion are approximated by means
of Fourier series. Section 4 describes an optimization algo-
rithm used to solve the constrained optimization problem;
the practical implementation of the control system and
simulation results are provided in section 5 and 6, respec-
tively.

2. GENERAL FORMULATION

The point absorber considered is composed of two con-
centric and axisymmetric bodies, both oscillating in heave
(Fig. 1). Body A is a torus with rectangular section and
mass mA while body B is a cylinder with the axis directed
along the vertical direction and with mass mB . The verti-
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Fig. 1. Self-reacting point absorber

cal velocities of body A and body B are denoted vA(t) and
vB(t), respectively. Energy is recovered from the relative
motion between the two bodies by means of the PTO,
which is capable of applying a force fpto(t) between body
A and body B. The energy absorbed by the PTO in a time
interval of length T , J(T ), is equal to the work performed
by fpto(t) in the same interval, that is:

J(T ) =

∫ T

0

fpto(t) (v
A(t)− vB(t)) dt, (1)

thus, the energy absorbed by the device can be controlled
via fpto. The force exerted by the PTO also affects the
motion of the bodies, which is described, for small oscilla-
tions, by the linear model (Falnes [1999]):


















LA(t) = mAv̇A(t) +BAvA(t) + SAuA(t)

− fA
e (t)− fA

r (t) + fpto(t) = 0

LB(t) = mB v̇B(t) +BBvB(t) + SBuB(t)

− fB
e (t)− fB

r (t)− fpto(t) = 0

(2)

where uA(t) and uB(t) are the vertical positions of the
two bodies. The hydrostatic buoyancy is described by SA

and SB while BA and BB are terms describing the linear
viscous loss. The excitation forces on body A and on body
B are denoted by fA

e and fB
e , respectively. The excitation

force is the force acting on a body due to the incident wave
when the body is held fixed. The radiation forces fA

r and
fB
r are forces acting on a body due to the radiated wave
resulting from its own oscillation or by the oscillation of
a second body located in proximity. The radiation forces
may be expressed as functions of vA and vB , evidencing
the interaction between the bodies and the coupling of the
equations in (2), as:

fA
r (t) = −mAA

∞
v̇A(t)− kAA(t) ∗ vA(t)

−mAB
∞

v̇B(t)− kAB(t) ∗ vB(t)

fB
r (t) = −mBB

∞
v̇B(t)− kBB(t) ∗ vB(t)

−mBA
∞

v̇A(t)− kBA(t) ∗ vA(t)

where the symbol ∗ denotes the convolution operator and
the parameters mij

∞
and kij(t), with i, j ∈ {A,B}, are the

asymptotic values of the added mass and the radiation
impulse responses, respectively.

The objective of the work presented in this paper can now
be formally stated as: given the WEC described by the
model in (2), find the optimal profile of the PTO force
(fpto) in a given time interval of length T that maximizes
the absorbed energy J(T ) as defined in (1), subject to:

‖uA(t)− uB(t)‖∞ ≤ ∆Umax, (3)

where the infinity norm ‖ · ‖∞ is defined in (A.1). The
constraint described by (3) is a restriction on the maxi-
mum distance between the two bodies and it is generally
due to the PTO. For example, if the PTO is an electric
linear generator or an hydraulic ram, which are the most
common types of PTOs considered for this kind of WECs,
the constraint defined in (3) may refer to the maximum
excursion allowed by the linear generator or to the stroke
length of the hydraulic piston.

The control of a two-body point absorber subject to
motion restriction has already been addressed in Falnes
[1999], where the problem for the two-body device is re-
formulated as the control of an equivalent WEC composed
of only one body. The author also analyzed the effect
of motion constraints on the average absorbed power,
extending the work in Evans [1981] to a two-body device;
the analysis is carried out in the frequency domain and the
motion restriction is defined as

‖V A − V B‖ = ‖∆V ‖ ≤ ∆V 2
max (4)

with ‖∆V ‖ = ∆V ∗∆V and ∆V ∗ denoting the conjugate
transpose of ∆V . Equation (4) states a condition on the
relative velocity ∆V between the bodies, but it can be
easily converted to a condition on the relative position
∆U considering that V = iωU . If the relative motion
of the device is a sinusoidal oscillation, then the con-
straint ‖∆U‖ ≤ ∆U2

max is equivalent to (3). However, if
the motion is still periodic with period T but not sinu-
soidal, the satisfaction of the frequency domain condition
‖∆U‖ ≤ ∆U2

max does not imply the satisfaction of (3); in
fact, applying Parseval’s theorem and (A.3) immediately
shows that ‖∆U‖ ≤ ‖uA(t) − uB(t)‖2

∞
. Thus, there may

exist some values of t for which |uA(t)− uB(t)| > ∆Umax

even if (4) is satisfied. Therefore, the formulation in (4)
for the amplitude restriction is not adequate because (3)
describes a physical limit of the device that cannot be
violated.

The solution presented in this paper is based on the
discretization, in the time domain, of the PTO force and of
the motion of the device in order to transform the problem
into a Non Linear Program (NLP). The approach is similar
to the direct simultaneous method used for the solution
of optimal control problems (Cuthrell and Biegler [1987]),
where both the control variables and the state variables
are discretized.

The PTO force is assumed to be such that fpto(t) ∈
L2([0, T ]), where L2([0, T ]) is the Hilbert space of square
integrable functions in the interval [0, T ]; also vA(t), vB(t) ∈
L2([0, T ]) because they are velocities of physical bodies.
The PTO force and the velocities are then approximated
as a linear combination of basis functions in a finite di-
mensional subspace of the space L2([0, T ]):

vA(t) ≈ v̂A(t) =
N
∑

j=1

xA
j φj(t) (5)

vB(t) ≈ v̂B(t) =

N
∑

j=1

xB
j φj(t) (6)

fpto(t) ≈ f̂pto(t) =

NP

∑

j=1

pj φ
P
j (t) (7)
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where {φ1(t), . . . , φN (t)} is a basis for the finite dimen-
sional subspace SV ⊂ L2([0, T ]) and {φP

1 (t), . . . , φ
P
NP (t)}

is a basis for the finite dimensional subspace SP ⊂
L2([0, T ]). For any given set of coefficients describing the
PTO force {p1, . . . , pNP }, the components of the velocities
are calculated by solving the system:

{

〈LA(t), φj〉 = 0

〈LB(t), φj〉 = 0
∀j = 1, . . . N (8)

where 〈·, ·〉 denotes the inner product defined as

〈f, g〉 =

∫ T

0

f(t)g(t) dt. (9)

Developing the calculations (Appendix B), the system (8)
results in the linear system

G

[

XA

XB

]

= T P +K (10)

with XA = [xA
1 , . . . , x

A
N ], XB = [xB

1 , . . . , x
B
N ]T , P =

[P1, . . . , PNP ]T , and G is an N -by-N matrix, T is an N -
by-NP matrix and K is a vector of dimension N . The
existence of a solution for the linear system (10) depends
on the choice of the basis functions φj(t) and on the
hydrodynamic parameters characterizing the WEC, which
determine the singularity of the matrix G. If a solution
exists then, by an appropriate partitioning of the matrix
G−1T as [TA TB ]T and of the matrix G−1K as [EA EB ]T ,
the energy converted by the device, described by (1), can
be written as a quadratic equation in the vector P :

J(P ) = PT (XA −XB) = PT∆TTAP +∆EAP (11)

with ∆T = TA − TB , ∆E = EA − EB and the elements

of the matrix A defined as Aij =
∫ T

0
φi(t)φ

P
j (t)dt.

The approximated absolute vertical positions of the bodies
are obtained by integrating (5) and (6):

ûA(t) = uA
0 +

N
∑

j=1

xA
j ϕj(t),

ûB(t) = uB
0 +

N
∑

j=1

xB
j ϕj(t),

with ϕj(t) =

∫ t

0

φj(τ) dτ,

and with uA
0 = ûA(0) and uB

0 = ûB(0). With the
substitution of ûA(t) and ûB(t) into (3), the constraint
can be expressed as a function of the components of each
velocity (XA and XB), which are related to the PTO force
components through the affine transformation (10). The
result is that the constraint (3) becomes a function of the
PTO force components P :

‖∆u0 +Φ(t) (∆T P +∆E)‖
∞

≤ ∆Umax, (12)

where ∆u0 = uA
0 − uB

0 and Φ(t) = [ϕ1(t), . . . , ϕN (t)].

The problem to be solved is now a finite dimensional
constrained optimization problem in the variable P with
the quadratic cost function in (11) and the inequality
constraint in (12).

3. DISCRETIZATION USING FOURIER SERIES

Given the oscillatory nature of the problem, a truncated
Fourier series is an intuitive choice for the discretiza-
tion and approximation of the problem. Furthermore,
choosing w0 = 2π/T , the set of functions {sin(ω0 T ),

cos(ω0 T ),. . . , sin(Nω0 T ),cos(Nω0 T )} form an orthogo-
nal basis for the space SV with the inner product (9), thus
giving the linear system (10) and the cost function (11)
favorable properties. The constant term of the basis is not
considered because it is assumed that all the functions have
zero mean; in practice, it is assumed that the reference
frames of the bodies are chosen such that the origins
oscillate around their mean position with respect to the
inertial reference frame.

Using a zero mean truncated Fourier series with N fre-
quency components for both the velocities and the PTO
force, the dimension of each of the spaces SV and SP is 2N ,
and the resulting approximating functions (5)-(7) become:

v̂A(t) =

N
∑

n=1

aAn cos(nω0t) + bAn sin(nω0t) (13)

v̂B(t) =

N
∑

n=1

aBn cos(nω0t) + bBn sin(nω0t) (14)

f̂pto(t) =

N
∑

n=1

aPn cos(nω0t) + bPn sin(nω0t). (15)

For the practical implementation of the algorithm, de-
scribed in section 5, it is convenient to approximate the
excitation forces by a truncated Fourier series containing
N frequency components:

fA
e (t) ≈ f̂A

e (t) =
N
∑

n=1

eAc

n cos(nω0t) + eAs

n sin(nω0t) (16)

fB
e (t) ≈ f̂B

e (t) =
N
∑

n=1

eBc

n cos(nω0t) + eBs

n sin(nω0t). (17)

The mean value of the excitation forces can be considered
as zero with no loss of generality. In fact, the excitation
force is calculated as the convolution of the wave elevation
with the excitation force kernel (Falnes [1999]); the wave
elevation can be transformed into a zero mean function by
changing the origin of the reference frame, resulting in a
zero mean excitation force.

3.1 Equation of motion

Substituting (13)-(17) into (2), the linear system corre-
sponding to the equation of motion (10) is:

[

GAA GAB

GBA GBB

] [

XA

XB

]

=

[

EA

EB

]

+

[

−I2N
I2N

]

P (18)

where I2N is the identity matrix of size 2N ,

XA = [aA1 , b
A
1 , a

A
2 , b

A
2 , . . . , a

A
N , bAN ]T ,

XB = [aB1 , b
B
1 , a

B
2 , b

B
2 , . . . , a

B
N , bBN ]T ,

EA = [eAc

1 , eAs

1 , eAc

2 , eAs

2 , . . . , eAc

N , eAs

N ]T ,

EB = [eBc

1 , eBs

1 , eBc

2 , eBs

2 , . . . , eBc

N , eBs

N ]T ,

P = [ap1, b
p
1, a

p
2, b

p
2, . . . , a

p
N , bpN ]T ,

Gij =





















Dij
1 M ij

1 0 · · · 0 0

−M ij
1 Dij

1 0 · · · 0 0

0 0
. . .

...
...

...
...

. . . 0 0

0 0 · · · 0 Dij
N M ij

N

0 0 · · · 0 −M ij
N Dij

N





















,
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with i, j = {A,B}, and

DAA
n = RAA(nω0) +BA,

MAA
n = nω0

(

mA +mAA(nω0)
)

− SA/(nω0),

DBB
n = RBB(nω0) +BB ,

MBB
n = nω0

(

mB +mBB(nω0)
)

− SB/(nω0),

DAB
n = RAB(nω0), MAB

n = nω0

(

mAB(nω0)
)

,

DBA
n = RBA(nω0), MBA

n = nω0

(

mBA(nω0)
)

.

The radiation resistances Rij(nω0) and the added masses
mij(nω0) are related to the impulse responses kij(t) and
to the asymptotic added masses mij

∞
by means of the

equations in Ogilvie [1964].

The matrix Gij is block diagonal and each block is a 2-by-2
normal matrix of the form

[

a b
−b a

]

. (19)

This particular structure is due to the orthogonality of
the Fourier series and it allows the study of the existence
of the solution of the linear system (18) by studying the
singularity of each of the N 4-by-4 matrices

Gn =









DAA
n MAA

n DAB
n MAB

n

−MAA
n DAA

n −MAB
n DAB

n

DBA
n MBA

n DBB
n MBB

n

−MBA
n DBA

n −MBB
n DBB

n









. (20)

Each matrix Gn corresponds to a frequency nω0; thus,
should the system in (18) be singular, a possible solution
might be to perform a different frequency discretization by
selecting a different fundamental frequency ω0.

3.2 Cost function

If the solution of (18) exists, the cost function (11)
describing the amount of energy absorbed by the PTO
is

J(P ) = −PTHP + PT (QAEA −QBEB) (21)
where

H = S−1
GBB +GAA−1

GABS−1
GAA

+GBB−1
GBAS−1

GBB + S−1
GAA ,

QA = S−1
GBB +GBB−1

GBAS−1
GBB ,

QB = GAA−1
GABS−1

GAA + S−1
GAA .

SGAA and SGBB are, respectively, the Schur complements
of GAA and GBB , and they are defined as

SGAA = GBB −GBAGAA−1
GAB

SGBB = GAA −GABGBB−1
GBA.

It can be shown that the matrix H is positive definite
because it is block diagonal with 2-by-2 blocks of the form
(19); therefore, the quadratic cost function (21) is concave
and the global maximum of the unconstrained problem is
obtained for

P̄ = (H +H ′)−1(QAEA −QBEB). (22)

3.3 Constraints

The relative position between the bodies ∆u(t) is calcu-
lated by integrating the difference between (13) and (14);

the substitution of ∆u(t) into (12) provides the expression
for the amplitude restriction
∥

∥

∥

∥

∥

∆u0 +

N
∑

n=1

[(

bAn − bBn
nω0

)

(1− cos(nω0t))

+

(

aAn − aBn
nω0

)

sin(nω0t)

)

∥

∥

∥

∥

∥

∞

≤ ∆Umax,

which can be written in matrix form as
∥

∥∆u0 +Φ(t)
(

XA −XB
)

W
∥

∥

∞
≤ ∆Umax

with

Φ(t) = [sin(ω0t), 1−cos(ω0t), . . . , sin(Nω0t), 1−cos(Nω0t)]

and W a diagonal matrix

W = diag

[

1

ω0
,
1

ω0
,

1

2ω0
,

1

2ω0
, . . . ,

1

Nω0
,

1

Nω0

]

.

From (11) and (21), it follows that

XA −XB = −H P +QAEA −QBEB ;

therefore, the amplitude constraint can be expressed as a
function of the PTO force and of the excitation forces as:

∥

∥∆u0 +Φ(t)(−HP +QAEA −QBEB)W
∥

∥

∞

≤ ∆Umax. (23)

4. OPTIMIZATION ALGORITHM

The algorithm used to solve the constrained optimization
problem

max
P

J(P ) subject to ‖∆u‖∞ ≤ ∆Umax (24)

is the penalty method (Nocedal and Wright [2006]); the
constrained maximization problem (24) is reformulated as
the unconstrained minimization problem

min
P

−J(P ) + µmax{0, ‖∆u‖∞ −∆Umax}, (25)

where µ > 0 is the penalty parameter. The solution of the
problem is sought by solving a sequence of subproblems
for increasing values of µ; the larger µ is the more heavily
penalized is the constraint violation in the cost function.
If at the step k, where µ = µk, the constraint is violated,
the subproblem to be solved is:

min
P

−J(P ) + µk(‖∆u‖∞ −∆Umax).

By the property of the Fourier series (A.4), if there exist
a value of P such that

max
{

0,
√

(2N + 1)/2π ‖∆u‖2 −∆Umax

}

= 0

that is, if the constraint is satisfied using the 2-norm, then
it is also satisfied using the infinity norm:

max {0, ‖∆u‖∞ −∆Umax} = 0.

The reason for using the 2-norm is that each subproblem

min
P

−J(P ) + µk(‖∆u‖2 −∆Umax)

can be solved analytically and the solution P ∗

k is:

P ∗

k =
(

H +HT + 2µkH
TW 2H

)−1

(I2N + 2µkH
TW 2)(QAEA −QBEB).

The existence of the solution for the problem (25) is
verified by taking the limit

lim
µk→∞

P ∗

k = P ∗

∞
= H−1(QAEA −QBEB). (26)

The substitution of P ∗

∞
into (23) results in ‖∆u0‖∞ ≤

∆Umax, that is, if the initial condition |∆u0| satisfies the
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constraint then, by increasing µk, it is possible to find
a vector P ∗

k for which (23) is satisfied. The limit case is
for µk → ∞, where the relative velocity is zero, and the
relative position remains constant in the interval t ∈ [0, T ].

In practice, the optimization problem is solved by starting
with µ1 = 0, which corresponds to the unconstrained
problem; if the solution violates the constraint then µk

is updated as µk+1 = αµk with α > 1, and the new
solution P ∗

k+1 is calculated. If the constraint is satisfied
the algorithm stops, otherwise the process is repeated
until the solution is found. The choice of the parameter
α affects both the accuracy and the time required for
the computation of the solution. For α → 1 the time
required for the calculation of the solution increases,
because smaller steps are taken, that is the norms (both
‖ · ‖2 and ‖ · ‖∞) decrease slowly. This means that, when
increasing µk, the first value of P

∗

k satisfying the constraint
provides a value of the norm ‖∆u‖∞ very close to ∆Umax.
If bigger steps are taken, the first value of P ∗

k may provide
‖∆u‖∞ much smaller than ∆Umax, that is restricting the
oscillation amplitude more than necessary, thus reducing
the produced energy by a significant amount with respect
to the optimal value.

The solution provided by the algorithm using the 2-norm is
suboptimal when compared to the solution obtained when
solving each subproblem using the infinity norm. The main
advantage in using the 2-norm is in the time required for
the calculation of the solution.

5. CONTROL SYSTEM IMPLEMENTATION

The control system presented in this paper is composed
of a feed-forward part and a feedback part; the feed-
forward block generates the reference trajectories for the
relative velocity, the relative position and the PTO force,
that maximize the produced energy while satisfying the
amplitude constraint. The feedback controller corrects the
PTO force reference signal generated by the feed-forward,
in order to minimize the difference between the reference
motion and the actual motion of the device. The feedback
controller is obtained by solving a continuous time LQ
tracking problem as described in Anderson and Moore
[1990].

The reference trajectories generated by the feed-forward
controller are obtained by solving the optimization prob-
lem presented in section 4; the solution of the optimization
problem depends on the vectors describing the excitation
forces EA and EB , which affect both the cost function
(21) and the constraint (23). The excitation forces are
estimated using the equations of motion (2) and assuming
that measurements of the vertical accelerations and of
the relative position are available. Each excitation force is
also predicted, using an autoregressive model AR(6), for
a prediction horizon of length tp. The reference trajecto-
ries are updated periodically with a period ∆th; at every
th = ∆th h, with h = 1, 2, . . ., the motion optimization
problem and the LQ tracking problem are solved over
the time interval Th = [th + tp − T, th + tp] of length T .
The components of the vectors EA and EB are calculated
applying the FFT to the time series obtained by the
estimation and prediction of the excitation forces over the
interval Th. The length of Th is such that T ≥ tp, that is
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Fig. 2. Relative position ∆u(t). The controller is active
from t = 100s to t = 380s and ∆Umax = 0.1m.

past values of the excitation forces are also passed to the
FFT in order to increase the length of the interval Th, thus
increasing the frequency resolution of the Fourier series. A
Tukey window is applied to the signals prior to the FFT
to reduce the effect of the spectrum leakage.

6. SIMULATION RESULTS

The control system is simulated using excitation forces
calculated from a real sea profile measured by a waverider
buoy. The trajectory is updated with a period ∆th = 0.5s,
the length of Th is T = 32s, the number of frequency
components considered is N = 61 and the maximum
relative position is set to ∆Umax = 0.1m. The simulation
results for the relative position ∆u(t) (Fig. 2) show that
when the control is active, from t = 100s to t = 380s,
the constraint is satisfied. The control algorithm is imple-
mented in MATLAB and the total time required for the
computation of the solution of both the constrained mo-
tion optimization and the LQ tracking problem is less than
0.3s on a 2.4GHz dual core personal computer. The time
required by the controller for computation can be further
reduced by implementing the algorithm on a dedicated
hardware.

7. CONCLUSION

A method for solving of the motion optimization problem
of a self-reacting point-absorber subject to constraint has
been presented. The method provides an approximated
solution, but allows the constrained optimization problem
to be reformulated as a NLP through the discretization
of PTO force and of the motion of the bodies. The PTO
force and the motion of the device are approximated as
linear combinations of basis functions, and the choice of
these basis functions determines the properties of the cost
function to be optimized and of the constraint. Therefore,
the choice of the basis also determines the time required
to compute the solution. The approximation by means of
the Fourier series has been considered as an example; it
provides an orthogonal basis and the resulting cost func-
tion is a concave quadratic function. The algorithm used to
solve the motion optimization with amplitude restriction
provides a suboptimal solution, but the convergence is
guaranteed and the computational effort is small, making
it a candidate for real time implementation.

The study of different basis functions and their effect on
the properties of the cost function and on the constraint
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will be the subject of future research. Furthermore, addi-
tional constraints will be considered, such as restrictions
on the force applied by the PTO, and different optimiza-
tion algorithms will be tested.

Although the device considered is axisymmetric, concen-
tric and oscillating in heave, the method developed can be
applied also to a different device oscillating in a different
mode.
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Appendix A. USEFUL PROPERTIES OF NORMS

The 2-norm ‖f‖2 of the function f(t) is defined as

‖f‖2 =

(
∫ T

0

|f(t)|2dt

)1/2

, (A.1)

while the infinity-norm ‖f‖∞ is defined as

‖f‖∞ = sup
t∈[0,T ]

|f(t)|. (A.2)

A general property relating the 2-norm and the infinity-
norm of a function f , for which the norm (A.2) exists, is
(Atkinson and Han [2005])

‖f‖2 ≤
√

2π/ω0 ‖f‖∞. (A.3)

For a Fourier series with N frequency components fN , the
inequality (Timan [1994])

‖fN‖∞ ≤
√

(2N + 1)/2π ‖fN‖2 (A.4)

provides an upper bound for the infinity-norm as a func-
tion of the 2-norm.

Appendix B. SOLUTION OF THE EQUATION OF
MOTION

For brevity, only the inner products relative to LA(t) will
be developed, since the derivations for LA(t) are very
similar. Substituting the approximations (5) - (7) into (2)
and rearranging, the approximated equation of motion of
the body A:

LA(t) =

N
∑

i=1

xA
i Γ

AA
i (t) +

N
∑

i=1

xB
i Γ

AB(t)

+

NP

∑

i=1

piφ
P
i (t)− fA

e (t) + SAuA
0 (t) (B.1)

where

ΓAA
i (t) =

(

mA +mAA
∞

)

φ̇i(t) + kAA(t) ∗ φi(i)

+BA + SA

∫ t

0

φi(τ)dτ

ΓAB
i (t) = mAB

∞
φ̇i(t) + kAB(t) ∗ φi(i).

The substitution of the equation of motion (B.1) into the
inner product (8) results in:

N
∑

i=1

xA
i g

AA
ij +

N
∑

i=1

xB
i g

AB
ij +

NP

∑

i=1

Pig
P
ij + gAj = 0 (B.2)

∀ j = 1, . . . , N , where

gAA
ij =

T
∫

0

ΓAA
i (t)φj(t) dt, gAB

ij =

T
∫

0

ΓAB
i (t)φj(t) dt,

gPij =

T
∫

0

φP
i (t)φj(t) dt, gAj =

T
∫

0

(

SAuA
0 − fA

e (t)
)

φj(t)dt.

Equation (B.2) can be conveniently rewritten in matrix
form as:

GAAXA +GABXB − TAP −KA = 0

where gAA
ij are the elements of the matrix GAA, gAB

ij are

the elements of the matrix GAB , −gPij are the elements of

TA and −gAj are the elements of KA.

Equation (10) is then obtained by repeating the same
derivations for the inner products 〈LB(t), φj(t)〉 and defin-

ing the matrix G =

[

GAA GAB

GBA GBB

]

.
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