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ABSTRACT

Efficient Probit Estimation with Partially Missing Covariates

A common approach to dealing with missing data is to estimate the model on the common
subset of data, by necessity throwing away potentially useful data. We derive a new probit
type estimator for models with missing covariate data where the dependent variable is binary.
For the benchmark case of conditional multinormality we show that our estimator is efficient
and provide exact formulae for its asymptotic variance. Simulation results show that our
estimator outperforms popular alternatives and is robust to departures from the benchmark
case. We illustrate our estimator by examining the portfolio allocation decision of Italian
households.
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1. Introduction

Many approaches for dealing with missing data in regression type analyses have appeared in
both the econometrics and mainstream statistical literature. Reviews of the statistical
literature are contained in Little (1993), Schafer (1997), Allison (2001) and Little and Rubin
(2002). In the econometrics literature, relevant papers commence from Dagenais (1973),
continuing through Gourieroux and Monfort (1981) and Conniffe (1983), and more recently
include Horowitz and Manski (2006) and Wooldridge (2009), with an overview provided in
Cameron and Trivedi (2005). Yet enthusiasm for the practical application of the methods
seems muted at best. For example, the popular econometrics textbook by Wooldridge (2009,
p- 322) notes that while missing data is common in real world applications, the improvement
from using alternative estimators “is usually slight, while the methods are somewhat
complicated. In most cases, we just ignore the observations that have missing information.”

Both the practical complications and the lack of efficiency gains cited by Wooldridge
are most easily overcome when parametric estimation, tailored to the model of interest, is
applied to a tractable data pattern. This paper estimates a probit equation when some
explanatory variables are unrecorded on » of the original n observations, but the binary
dependent variable and the remaining explanatory variables are recorded on all observations.
We show that explicit formulae for coefficient estimators and their variances are quite
straightforward and easily implemented on standard econometrics packages such as Stata.
Taking multinormality as an initial benchmark case we show the estimator is efficient and
that improvements over complete case analysis can be very substantial. We show by
simulation and analysis of real data, that our estimator can outperform other popular
techniques for dealing with missing data. By considering departures from the initial model
we also show that these findings extend beyond the benchmark case.

Any approach to missing data analysis requires assumptions about the process
causing the absence of data. There is a large literature on this topic with Rubin (1974, 1976)

of central importance. We assume data are missing at random (MAR), that is, that the



probability of data being missing on W, say, is unrelated to the value of W conditional on
other variables in the model. We will discuss the plausibility of MAR and show how to test
for it later.' In later sections we also discuss testing of the parametric assumptions embodied
in the demonstration of efficiency, assess robustness of our estimator to departures from
these assumptions and consider what modifications to our estimator, if any, may be
appropriate in these circumstances.

Our ability to obtain closed form expressions for the estimator and its variance is
facilitated by the tractable missing data pattern we consider. Fortunately this pattern is quite
common in real world data sets and often arises when collecting data on all variables, from
all respondents, is expensive or otherwise difficult. In this case deliberate “double sampling”
for surveys, as described by Cochran (1963), is often used. A large scale example of such a
procedure was that adopted by the U.S. Bureau of the Census when collecting the 2000
Census data. Each household received either a short-form or a long-form. The long-form
questionnaire included the same 6 population questions (related to age, gender and marital
status) and 1 housing question as on the Census short-form, p/us 26 additional population
questions (including education, health, employment status and income) and 20 additional
housing questions. About 1 in every 6 households received the long form, giving rise to this
paper’s data structure. This pattern, generated by deliberate double sampling, can be
reinforced when researchers try to match Census data across different years.”

The data structure of r complete and (rn—r) incomplete observations also arises
frequently in econometrics through mechanisms other than deliberate random sampling. In
many fields, such as labour economics, there is a growing tendency to draw data from

multiple sources. Often the sample sizes can differ between two data sources. Dolton and

" If the process generating the missing data is (using Rubin’s term) non-ignorable, inference based on
the complete observations alone may not be representative of the population of interest. Correct
inference may be obtainable by joint modelling of the process along with the model of substantive
interest, although this requires extra assumptions as, for example, with Heckman’s (1976, 1979)
sample-selection models. For the worst case scenario of no prior information Horowitz and Manski
(2006) propose bounds for parameter magnitudes, but applications often find the resulting intervals too
wide to be useful.

* Beenstock (2004) estimates an income mobility model using matched Israeli Census data in which
complete case analysis uses only 20% of the base sample.



O’Neill (1996) evaluated a government training programme in the UK where data on
personal characteristics such as sex, age and treatment status, along with some outcome data,
were obtained at the initial interview stage for a sample of 8925 individuals. However other
data, such as more detailed personal characteristics, previous employment history, search
behaviour and data on non-labour income were obtained from a survey conducted 6 months
later, but completed by only 5200 of the original sample.

Even when there is no timing difference in the two data sources, one source may be
more prone to non response than the other. In using linked employer-employee data sets for
example (for a review see for Hamermesh (1999)) firm related data such as tenure, wages
and firm size are often available for all respondents from payroll data, whereas individual
level data such as education and health require individual surveys. Differences in the
response rate across firms and workers can give rise to our data structure. This situation also
arises when combining administrative and survey data, where the administrative data provide
measures such as earnings or unemployment histories, with limited personal data (often age
and gender) and the survey data are used for more detailed personal characteristics such as
education, marital status and family size (examples include the long-run evaluations of
training programmes by Couch (1992) and Dolton and O’Neill (2002)). Researchers in this
situation have either used the full sample restricted to the subset of variables obtained from
the administrative data or the full range of explanatory variables for the complete cases only.
Neither approach is ideal.

Thus while a range of missing data patterns can occur in practice, these examples
show that our assumed pattern of » complete and (n—7) incomplete observations is not only
tractable, but also relevant in real world settings.

Our application examines the portfolio allocation decisions of Italian households
using the Bank of Italy’s Survey of Household Income and Wealth (SHIW). A major
advantage of SHIW for the study of portfolio allocation is that it contains a question that
permits estimation of a quantitative measure of risk-aversion. However, the question was

only asked of a randomly chosen half of the total sample. This example is one whereby most



of the missing data is ignorable by design and where complete case analysis involves
dispensing with over half of the original sample. Using our estimator on all the data reduces
the estimated standard errors of the coefficients greatly compared to complete case analysis
and several coefficients, previously imprecisely estimated, become significant. Such
dramatic changes are a clear illustration of the potential gains which may be achieved by
using all available data in an efficient manner.

The structure of the paper is as follows. Section 2 specifies the model. Section 3
presents the efficient estimator for this model and obtains explicit formulae for the
asymptotic variance of our estimator. Section 4 describes how to test the assumptions
underlying our estimator and discusses modifications to our estimators that might be required
as a consequence. Section 5 briefly discusses extensions of our approach to some other
models. Section 6 presents some Monte Carlo simulations to assess the performance of our
estimator. Section 7 presents the empirical application using the SHIW data and section §

concludes. All proofs are provided in the Appendices.

2. Model Specification
This paper focuses on estimation of a probit binary choice model. We follow
standard practice and relate the observed binary variable Z; to an underlying unobserved

continuous latent variable Y;, as follows :
LR 1)
0 if ¥ <0
As in standard probit analysis, we assume a linear index function
Y, =X,B.+W,B, +¢ (2)
where X; and W; are (k x 1) and (/ x 1) vectors of regressors, independent of &,,

which is assumed to be distributed N(O,l).3 We consider situations where data are available

on {X;, W, Z;} for i=1....r. This represents the complete observation sample. In addition

? The choice of a unit variance matches the conventional assumption of standard probit analysis.



there are the further (n-7) observations on which {X;,Z;} alone are measured. To utilise these
additional observations we initially assume
W, =X,C+u, 3)
where C is a (k x [ ) matrix of parameters, u, ~ MVN(0,%). These assumptions are

both convenient analytically and permit efficient estimation. We show later that these
assumptions are testable and in section 4 we discuss possible approaches in the event that the
parametric assumptions are rejected. However, the results presented in section 6 indicate that
the desirable properties of our estimator are robust to many plausible departures from the
parametric assumptions in (3).

In conjunction with (2), equation (3) implies that, conditionally on X only,
Y=X(B +CB)+e with variance o, = 1+ B:VZBW and (e ,W') are multivariate
normally distributed. Sometimes a stronger assumption, namely that all regressors {X;, W;}
are joint normally distributed, is made in the literature on discrete choice analysis (see
Greene, 2008, p. 810), accompanied by a warning that occurrence of dummy variables etc.
would invalidate this assumption. Dummy variables that appear in the {X;} variables require
no special attention or assumptions in our model, while the case where dummy variables
appear in {#;} is considered in section 6.

The parameter vector to be estimated, &, consists of the £ components of B_, the /
components of B, , the /*k elements of the matrix C and the [é(l + l)j distinct elements of

Y. Complete case analysis estimates & using only the observations i=1....r. In the next
section we develop an efficient estimator for our data structure that makes use of the

additional (n-r) observations.

3. Efficient Estimators and Variances

To derive our efficient estimator we use the fact that whenever @ is a \/; consistent

estimator for @ then the ‘one-step’ estimator



e a5 -
0 =0+ J(H)%Ln ) 4

where

[ e h
J(0)= {—phm{ 5000 L(H)H

is asymptotically efficient (for example, Cox and Hinkley, 1974, p.308).

Let 6 = (l?;,,l?'w,vec'(’f , vech 'i) denote the maximum likelihood estimator obtainable
from the » complete observations. Ex and Ew are the coefficients from a standard probit
analysis with X and ¥ as explanatory variables, C is (,,,,.¢,), where ¢ ,is the OLS

coefficient vector for regression of the jth W on the X variables and % is the estimator of T

based on the OLS residuals. As @ is the ML estimator it is \/; consistent and therefore \/;

consistent if we assume z proportional to ». Using (4) it follows that:
é—éu(é)iL 0) (5)
00 "
is asymptotically efficient for 4.
The derivation of @ requires the calculation of J(&) and %Ln (6). For our data

structure the log-likelihood function may be written

Ln = Lr’z‘w + Lr,w + Ln—r,z (6)

where the subscript » indicates complete observations and (#—7) indicates
incomplete observations. In Appendix A we use this to derive the required components of the

efficient estimator (5). We show that efficient estimators for B. and B, are given by:

oo [afaa) = () = sV =
B =B {V{@_BXL +Cxw,(£Jg}(VA 7 N'a-4) @

and



(B,+CB,) _ 1
J1+B.2B, o,

where 4 =

(B, +CB,) and A results from A by replacing

0 by§ . Note that A is not obtained from the simple probit of Z; on X; for the » complete

observations, which we will denote as 4 * , but makes use of the multinormality assumption

on the Ws to improve on that simple probit. In fact Ais actually Chesher’s (1984) efficient

estimator for joint estimation of a probit equation and a system of linear equations with the
same explanatory variables. A is the probit estimator obtained from the (n-r) incomplete

observations where the underlying index function is ¥ = X (B, +CB,) +e . I7;1 and 7, are
the corresponding estimated variance matrices. Likewise ». and ¥, denote the variance-
covariance matrices of Ex and EW respectively, evaluated at the MLE estimates from L, w

and C_, their estimated covariance matrix.

The asymptotic variances of B, and B, are derived in Appendix B. Since B, and

Ex —{V){%J+ CXW(%H(VA +V5 )71 (Z —Z) differ only in terms of O, (n”") they

have the same asymptotic variance so

Var(B)=V. - {Vx [a—A] +C., [a—AH(VA +v,) {Vx [a—A] +C. [a—Aﬂ 9)
0B 0B, 0B. 0B,

and the estimated variance is obtained by replacing the Vs by Vs , C_ by Qw and

the derivatives by their values evaluated at @ . Similarly, the variance of Z§W may be shown

to be

Var(B,)=V, - {C'M [a—A] +V, [a—AH(VA +V, )’1 {C'M [a—A] +V, [a—AH (10)
OB, OB, OB, OB,

X

and the covariance of Z§x and Z§W to be

Cov(B,,B,)=C_, - {Vx [a—A] +C, [a—AH(VA +V, )’1 {C'W [a—A] +V, [a—Aﬂ (11)
B, B, OB, OB,



While it is intuitively obvious from the data structure that the variance of Z§x may be
much smaller than that of Ex , we would not expect the same for the variance of éw relative

to Ew. This is because we have extra observations on the X variables from the (n — r)

incomplete observations, but no extra information on the W variables. We will discuss this in

more detail later in the paper.

4. Testing Assumptions and Possible Modifications

From examination of (7) and (8) it is clear that consistency of Z§x and l?w requires

that (4— A) be a consistent estimator of zero. A necessary condition for this is that the

missing data for W are MAR. The MAR assumption is obviously valid if the » observations
have been deliberately chosen at random from the n. Otherwise the assumption can be
assessed by comparing the coefficient estimates based on complete data with the estimates
using all data. If true, the former are consistent, but inefficient, while the latter are consistent
and efficient. If the estimates look quite similar with reduced standard errors for the
estimates based on all the data the assumption is probably true. If the estimates look very
different the assumption is probably untrue. More formally, a Hausman (1978) type test can

be performed based on the explicit variance formulae derived in the previous section. The
efficient estimator is Z§x with variance given by (9) and Ex is a consistent estimator with

variance V. The asymptotic variance of the difference between an efficient estimator and

another consistent one is the difference of the variances and so

TR RN | A N IR T B A ) A B RO . —5.)
X X X aBX 5 Xw aBW - A A X aBX - Xw aBW - X X

0 0

is asymptotically y > with k degrees of freedom.



10

If the MAR assumption is inappropriate then the above y°test should prove

statistically significant. However it is also possible that the test may prove significant when

the MAR assumption is true but another maintained assumption of our estimator is false. For
instance in deriving our estimator we estimated 4 by 4 . If the normality assumption

underlying Chesher’s estimator is invalid, (4 —A4) might not have (asymptotic expectation
ying g ymp

zero or at least, A might not be the efficient estimator of 4 under the true (unknown) joint

distribution. Correspondingly Z§X would no longer be efficient. However, we can investigate

this assumption by comparing Aand A* , again employing a variant of the Hausman test,

this time using only the » complete observations, the estimate (A3) of the variance of A and
the standard probit formula for the variance of A * .

If MAR seems appropriate, but joint normality is not, several approaches are possible.

The device, going back at least to Rao (1967), of modifying a consistent estimator 0 through
0=60+QS, (12)

where S is a statistic correlated with @, with asymptotic expectation zero and Q is

a constant could be employed. We could choose 0 = EX and S =A%*—-A4. The resulting
estimator resembles (7) with 4 * instead of A , but may have some disadvantages. First as
demonstrated by Chesher (1984) in SURE estimation of a probit and by Ronning and Kukuk
(1996) for the ordered probit problem, failure to exploit joint normality when it does hold can

imply substantial loss of estimation efficiency, suggesting that these estimators should not be

set aside lightly. Second, not every value of €2 will achieve a significant, or perhaps any,
improvement over B and it is unclear how to choose Q without assumptions. For minimum
variance in its class €2 should be the covariance of Ex and A" — A multiplied by the inverse

of the variance of A" — A. But Aand A" are functions of the Z and W variables and

without our distributional assumptions this optimal €2 cannot be calculated. A possible way
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A

forward is to remember that & is consistent for any constant Q, even if inefficient, and to

use the multinormal case multiplier derived for A-4

0A 0A o
V"(G_BJ +CXW(GTWJ s +73)

and its corresponding estimate, as in (7).

Another approach is to continue to use the estimators outlined in (7) even when the
joint normality assumption is untrue in the hope that the estimator is reasonably robust. As
will be seen in Section 6, this option works well for many of the examined departures from

the benchmark models, some of which involve extreme departures from normality.

5. Other Models

While this paper is primarily concerned with estimation of the coefficients of a

probit regression of Z on X and W, the estimator é, as given by (AS) in Appendix A,
provides solutions to other models that might well be relevant for our data structure. If an
equation of interest relates a continuous dependent variable, W, measured only on the r
observations, to a set of explanatory X variables, it is well known that extra observations on
just the explanatory variables cannot increase the precision of estimation. But joint
estimation with another dependent variable, measured on all observations can do so. When

that variable is binary and modelled by a probit, the efficient estimator is that given by

Conniffe (1997). The C estimators from (AS) are the generalisation of that estimator to a set
of / linear equations of the ¥ variables on the X variables. The overall model may be viewed
as seemingly unrelated regressions with one dependent variable binary, recorded on the extra
n — r observations.

Another interesting model arises if the dependent variable Y is continuous and
observed for all observations and we want to estimate its regression on the W variables and

the X variables. In Appendix C we show that, with the same joint normality assumptions as
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in Section 2, efficient estimators of the regression coefficients on X and W for this linear

model are

B, =B, -7 (7 7,) (A~ 4) ana B, =B, (13)
Yy

respectively, where EX and Ew are the usual OLS estimators, 4 and A are OLS

estimators of coefficients of Y on just the X variables for the  and (n—r) observations, o,

estimated from the error mean square of the regression of ¥ on the X and W variables for the

r complete observations, and o, is estimated from the error mean square of regression of ¥

on X alone. Failure to improve on Ew is intuitively plausible for the reason mentioned at the

end of Section 3.* These estimators are not new and, written a little differently, were obtained
previously by Conniffe (1983). Conniffe’s approach was not based on the likelihood

approximation used in this paper but rather on the device (12) as discussed above. In this

linear case C provides the seemingly unrelated regression estimators for the system with ¥
and the W variables as regressands and the X variables as regressors (see also Conniffe
(1985)).

Models for seemingly unrelated regression with extra observations for an equation
are closely related to models that have appeared in the statistical literature on the use of
auxiliary or surrogate outcome data. Some authors, for example, Pepe (1992), Pepe, Reilly
and Fleming (1994) and Chen and Chen (2002) have employed partially semi-parametric
approaches that permit relaxation of the assumptions about joint distributions. However, the
estimators often cannot be implemented without imposing strong and possibly implausible
conditions on data, and even then can involve substantial loss of information compared to

parametric analysis.’

* The ML estimator of B ,, differ from B ,, but its variance is asymptotically the same.
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6. Simulations
Before studying the determinants of portfolio allocation using the Bank of Italy’s
SHIW, we assess the performance of our estimator using Monte Carlo simulations. The

model used for the first simulations is

Y =XB +WB, +¢ (14)

where X and W are both scalar random variables and & ~N(0,1). For the simulation

we assume that X, ~ N(0,1). In addition:
W =X.C+u, (15)
where u, ~ N(0,0).
The true parameter vector @', is therefore a (1x4) vector consisting of (B_, B, , C,

o). For the simulation we set 8'=(1,1,1,1).

We observe X, W and Z, where
= >0 (16)
0 i 0

We consider situations where data are available on {X;, W, Z;} for i=1....r. This
represents the complete observation sample. In addition there are a further (n-r) observations
on which {X;,Z;} alone are measured. The simulations ensure that the data are missing at
random. For most of the simulations presented in the paper we choose 3 missing mechanisms
that generate approximately 25%, 50% and 75% missing data respectively. The precise
missing mechanisms are Pr(M=1|X,)=®(X;-1), Pr(M=11X;)=®(X;) and Pr(M=1]X;)=D(X+1),
respectively, where @(.) denotes the cumulative standard normal distribution function.® In
this paper we present the simulation results for n=1000, though we have carried out the

analysis with other sample sizes with very similar results.

> This topic has been discussed in detail in Conniffe (1996). Chen and Chen (2002), using the idea
represented by (12), do derive a partially semi-parametric estimator for linear seemingly unrelated
regressions equivalent to that of Conniffe (1985).

6 Similar missing mechanisms were used in Little and Rubin (2002) to illustrate the MAR assumption.
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The results of the simulations, are given in Table 1. The estimates for our new
estimator are easily obtained from a new user-written Stata package provided by the authors.’
The first four columns correspond to the point estimates and variances from the complete
case analysis. The second four columns present the corresponding results using our efficient
estimator. The results for the point estimates are as expected. There appears to be a small
bias in both estimators that goes to zero as r—w.® As expected there are no significant
differences between the estimates across the two estimators and the true parameter vector is
not rejected in any of the simulations.

However, when we turn to the estimated variances we see significant improvements
in precision when our efficient estimator is used. In keeping with the findings from the

linear regression model there is very little difference in the estimated variance of B, . The
failure to improve on Ew is intuitively plausible since the W variables are only measured on

the » complete observations. However, a comparison of the estimated variances of B, and

B_ shows significant improvements in precision. As expected the biggest reductions in

variance arise when the proportion of missing data is highest. In the worst case scenario
considered, when 75% of the data are missing, we see an approximate seventy percent
reduction in the variance. Even in cases with more moderate degrees of missing data the
reductions in the estimated variance are non-trivial. The reduction in variance is of the order
of twenty percent when we consider missing data of the order of twenty five percent of the
initial sample.’

The results presented in Table 2 allow us to compare the performance of our
estimator to other popular approaches used with missing data. For ease of exposition we

repeat the results from our efficient estimator in the first row of each panel. Underneath the

7 This program, called probitmiss, along with a help file is available for download at
http://economics.nuim.ie/staff/oneill/probitmissprograms.shtml.

¥ This is to be expected as the standard complete case Probit estimator is biased, as are maximum
likelihood estimators in general.



http://economics.nuim.ie/staff/oneill/probitmissprograms.shtml
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results for our efficient estimator we provide two sets of estimates based on imputation
techniques. The first row of results uses mean imputation, where the missing values for W
are replaced by the mean of the observed W. This variable is used instead of the observed W
in the probit, along with a dummy variable indicating whether or not the observation was
imputed. In addition to simple mean imputation we also report estimates based on a popular
multiple imputation technique for handling missing data. Underneath the estimates based on
mean imputation, we present results using the multiple imputation package provided in Stata
(see Royston (2004)). This package imputes values for missing data by drawing imputations
at random from the posterior distribution of the missing values of X, conditional on the
observed values and the variables in {Z X}."

The results reported in Table 2 indicate biases in both imputation techniques. For
mean imputation, the estimated coefficient on X is biased upwards, with the bias being large
even for moderate degrees of missing data. Although still widely used in practice, these
results support earlier claims that simple mean imputation is not a satisfactory way of dealing
with missing data."' On the other hand we see that the coefficients on both the complete and
partially observed variables are biased towards zero with the multiple imputation approach,
with the biases growing as the proportion of missing data increases."

As we noted earlier the assumption of conditional normality of the missing
regressors, W, permits efficient estimation of our model. In the remainder of this section we
use simulation methods to examine the robustness of our estimator when the normality
assumption fails. The first departure from normality is a rather mild one whereby we assume

the W variable has a logistic rather than a normal distribution. This allows us to examine the

? Other simulations, not presented, suggest that the improvements in efficiency increase as the
correlation between X and W falls and as B, decreases. These findings are intuitive and consistent

with the results for the linear regression model (Conniffe (1983)).

' We also compared the performance of our estimator to the inverse probability weighted estimator
discussed by Wooldridge (2007). However, given our structure this latter estimator is dominated by the
unweighted complete case analysis and so the results are not presented (see Wooldridge 1999).

"' For a related discussion in the context of the linear regression model see Jones (1996).

"2 Paul et al (2008) report biases of similar magnitude to us when applying multiple imputation
techniques to a logistic model. It is interesting to note that in our simulation the bias in the multiple
imputation is only evident with the binary dependent variable. When Y; is assumed to be fully
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robustness of our estimator to heavy tailed distributions. In a second case we maintain the
continuity assumption but allow the regressor to be uniformly distributed. The third model
takes a more dramatic departure from normality and considers the case where the missing
regressor is a binary variable dependent on the observed regressors.

The results of the simulations for each of these three cases are given in Table 3. These
results show that our estimator is very robust to these departures from conditional normality
in the missing regressors. With both the logistic and uniform models the estimated efficiency
gains are similar to the normal case. More surprising perhaps is the fact that we observe
larger efficiency gains when our estimator is applied to a missing binary regressor than we
did with the continuous normal regressor. Interestingly, and unlike the continuous regressor
case, the simulation results presented in the fourth row of Table 3 show that the multiple
imputation approach also performs well in the case of missing binary data. Further
simulations showed that our estimator achieved efficiency levels close to those obtained by
the MLE with no missing data. The exceptional performance of both estimators in this
situation suggests that missing data on a binary regressor can be effectively dealt with using
either approach. The intuition for this result is easiest to see in the multiple imputation
approach. When the missing regressor is binary imputation need only impute the sign of the
underlying latent variable in order to assign it a zero or one. In this case small errors in the
imputation of the level of the underlying latent variable for the missing regressor, that do not
affect its sign, will not affect the final estimate. In this sense imputation of a twofold
classification of a missing variable is more forgiving than imputation of a continuous
variable, in turn leading to greater efficiency gains. While our estimator involves no
imputation, the efficiency gains nonetheless derive from the extra (n-r) observations on the
observed X and a similar intuition can be applied.

In the final part of this section we consider the possibility that equation (3) which

relates W to X is miss-specified, either in the sense that a variable, G, has been omitted from

observed, resulting in the standard linear regression model, the multiple imputation approach appears to
be unbiased even when the degree of missing data is large.
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the model for W or that the parametric relationship between W and X has been miss-
specified. In the simulations here we consider cases where the true relationship between W
and X is quadratic, though similar reasoning carries over to other cases.

The results in the top panel of Table 4 show that the general case of omitted variables
in the model for W is not a problem for our estimator. Our estimator remains consistent and
provides large efficiency gains over complete case analysis even when the omitted variable
G is correlated with X (a correlation of .5 was chosen for the simulation presented). These
results follow from the assumption of MAR.

The middle panel of Table 4 however, shows that failure to account for nonlinearity
in the ¥ function causes a problem for our estimator. In these simulations, where we assume
that the true model for W is quadratic in X but fail to account for it, our estimator for B, is no
longer consistent. Vitally however, we find that our Hausman test is able to identify this
problem and moves us to investigate misspecification further. The nature of the problem is
that non-linearity of W in terms of X implies non-linearity of the marginal distribution of Y
on X. However, estimation of A4 in our approach assumes a linear marginal model and is thus

not a consistent estimator for 4.

One possible approach in this case is to use (4 —A) in our adjustment. Given

MCAR (4’ —A) has asymptotic expectation zero, even though neither estimator is a
consistent estimator of the true coefficient. However, this approach no longer works if we
consider the weaker assumption of MAR. (4" — A) need no longer have expectation zero

when the distribution of X differs in the » complete and (n-r) incomplete samples. This is
most easily seen in the linear regression model. In that case the standard formulae for omitted
variable bias when Y is regressed on X, omitting X, will involve the estimated coefficient
from the regression of X on X°. This in turn will be a function of the moments of the
distribution of X, which need not be equal across the complete and incomplete samples, even

when MAR is assumed to be true.
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We briefly discuss two ways to proceed in this instance. In cases where the Hausman
test indicates a problem of misspecification we could simply adjust the models for both Y and
W to include non-linear terms until the test no longer rejects. Although this may be
appropriate when the number of missing is very large it is actually inferior to complete case
analysis otherwise. The reason is that estimating a coefficient on X* that is zero in the true
model of Y given W ignores the information in a zero-restriction. This is not accounted for in
our adjusted estimator but is automatically imposed in the complete case analysis.
Nevertheless, this approach may still be useful for a number of reasons. Firstly it can help in

establishing the order of adjustment needed for the functional form of W. As noted earlier

(;I—Z) is unlikely to have mean zero if the functional form of W is miss-specified. This

suggests experimenting with expansions of /¥ until the estimates of A are sufficiently close
toA."> Once we have achieved a suitable expansion the estimate of (ZI—Z) from this

extended model can be used to obtain the mean zero component of our required adjustment.

To make use of the information in the zero-restriction we propose using this adjustment in
conjunction with the original l} to form our new estimator. The results in the bottom panel

of Table 4 show that this simple adjustment to our original estimator still leads to substantial
efficiency gains over complete case analysis even if no further adjustment is made to our

weighting matrix.

7. Empirical Application to Portfolio Allocation.
Campbell (2006) presents an overview of recent theoretical® and empirical'®
developments in the area of household financial decision making, noting that empirical
studies in this field often encounter difficulties obtaining the high-quality data necessary. In

this section we apply the results developed in the previous sections to look at the portfolio

" In our simulations this was achieved with a quadratic in X as expected.
' More detailed discussion of the theory underlying household portfolio decision making is provided
by Gollier (2002).
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allocation decisions of Italian households using the Bank of Italy’s Survey of Household
Income and Wealth (SHIW). The SHIW has been used recently to study issues such as the
schooling returns in Italy (Brunello and Miniaci 1999), earnings and employment risk (Guiso
et al 2002), wage risk and intertemporal labour supply (Pistaferri 2003) and intertemporal
choice and consumption mobility (Jappelli and Pistaferri 2006). In the next section we
discuss the strengths of the SHIW for studying portfolio allocation. We outline the problems
of missing data that arise in this application and use our proposed estimator to examine the
decision to hold risky assets. The application illustrates the efficiency gains arising from our

estimator relative to the traditional complete case analysis.

7.1 Bank of Italy’s Survey of Household Income and Wealth

Since 1962, the Bank of Italy has conducted surveys on household budgets, which
allows researchers to examine economic behavior at the micro level. The primary aim of the
survey is to collect detailed information on income and savings of households. Campbell
(2006) argues that an ideal data set for studying household financial decision making should
meet five criteria; it should cover a representative sample of the entire population, should
contain measures of total wealth, should identify individual assets so that one could measure
household diversification, should be reported with a high-level of accuracy and should
follow households over time. The SHIW performs well on each of these measures, being a
repeated nationally representative sample of approximately 8000 Italian households, with
finely disaggregated data on assets and wealth that are measured with reasonable accuracy.'®

In addition to traditional measurement problems, previous studies of portfolio
allocation have been limited by the extent to which they can measure risk-aversion. An
important feature of the SHIW in this respect is that the later surveys contained questions

that attempt to directly measure individual levels of risk-aversion. Both the 1995 and 2000

' Previous empirical studies of portfolio allocation among households include Feldstein (1976), Guiso
et al (1996), Bertaut and Starr-McCluer (2002), and Rosen and Wu (2004).

'® Biancotti et al (2008) provide a detailed analysis of measurement error issues in the SHIW. While
there is variation in the reliability index across disaggregated assets overall the SHIW performed well.
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surveys asked individuals to value a hypothetical lottery so as to measure their degree of risk
aversion. The wording of the question varied slightly between surveys, so for clarity we

focus only on the 2000 survey. In that year the lottery question was as follows:

“You are offered the opportunity of buying shares which, tomorrow, with equal
probability, will be worth either 10 million or nothing. How much would you be prepared to

pay (maximum amount) to buy these shares?”

Thus individuals who pay P lire for this lottery have a 50% chance of winning (10m)
and a 50% chance of winning zero. The expected value of this lottery net of the purchase
price is .5*10m-P. Clearly individuals who are risk neutral will pay anything up to 5m to
play this lottery, since the expected value of the winnings will still be positive. A risk-averse
decision taker will pay less than 5m and a risk-lover would be willing to pay more than 5m
lire. Using a Taylor series approximation of a utility function we obtain the following

approximate expression for the Arrow-Pratt measure of absolute risk aversion'”:

5-P
Ri(y)=—5— =1 (17
(h 56197 sa py
2 2

For individuals who are risk neutral P=5, so that R;(»)=0.

However, there are two data problems associated with the lottery question in the
SHIW. Firstly in 2000 it was only asked of a random sample of one half of the survey. In
terms of the structure of our missing data problem, this is an ideal scenario in that by
construction the data are missing at random. However on top of this we also have a problem
of non-response by those scheduled to answer the question. In total the inclusion of the risk-
aversion question reduces the sample size from 6779 to 1029. A traditional approach to

estimating this model would be to focus on the complete data. However in our application

' See also Hartog et al (2002).
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this involves throwing away over 5000 observations. The estimator proposed in our paper
provides a way of incorporating these additional observations to improve the precision of the
traditional estimator.

Table 5 presents descriptive statistics for the main variables used in our analysis. The
dependent variable in our analysis is a binary variable indicating whether or not the
household held risky assets as part of their savings portfolio at the end of 2000. The sample
is restricted to those who reported positive savings as of the end of 2000. This leaves us with
a base sample size of 6779. As noted earlier restricting ourselves to households with a valid
measure of risk-aversion reduces our sample to 1029. Column one reports summary statistics
for the base sample, while column 2 reported the summary figures for the subsample for
which we can measure risk-aversion. Looking at the base sample we see that 23.5% of the
sample report holding risky assets as part of their savings portfolio.'"® The average age of
head of household was 54, while the proportion with college education was 10.3%. 31.5% of
the household heads were women and 71% were married. The results for the subsample are
given in column 2. The summary measures are broadly consistent with the full-sample,
though they are some differences on the region variable. We will return to this issue when

testing the validity of our missing at random assumption.

7.2 Estimation Results
Table 6 reports the results from our estimated model. The results for the complete
case analysis are presented in the first two columns while the estimates based on the efficient
estimator are given in the final two columns. Looking first at the results for the complete
case analysis we see that as expected the greater the degree of risk-aversion the less likely it

is that a household will hold risky assets in their portfolio. In addition the probability of

'8 Risky assets are defined as bonds, shares of Italian mutual funds or equity. Non risky assets include
deposit accounts and government securities.
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holding risky assets is highest among the middle-aged and more highly educated."” Those
located in the south or the islands are less likely to hold risky assets.”* Of the remaining
coefficients neither the gender, marital status nor the North-West or Centre region variables
are precisely estimated for the complete sample case.

Columns three and four report the results from the efficient estimator developed in
this paper. The fact that the point estimates from the efficient estimator are comparable to
those from the complete case analysis supports our assumption of missing at random.

Applying the Hausman test described in Section 4 gives a test statistic, which under the
assumptions of MAR and joint normality, is asymptotically y* with 10 degrees of freedom.

The resulting value is 11.39, with an associated p-value of .25, which supports the
assumptions underlying our estimator for this application.

Having tested the underlying assumptions of our estimator we can now look at the
efficiency gains achieved from our approach. A comparison of the standard errors across the
two estimators shows substantial efficiency gains from the new estimator. For almost all the
parameters the standard errors from the efficient estimator are half those of the complete case
analysis. The exception is the coefficient on risk-aversion for which the standard error is
virtually the same. This is to be expected since the extra data used in the efficient estimator
contains no independent information on risk-aversion. However, for the other variables the
standard errors have been reduced significantly. The result is that explanatory variables such
as marital status, the north-west dummy and the central regional dummy, which were
insignificant in the complete case analysis, are now precisely estimated with coefficients that

are similar to those from the complete case analysis.

' These results are consistent with previous studies of portfolio allocation (e.g Guiso et al (1996),
Bertaut and Starr-McCluer (2002) and Rosen and Wu (2004)), though these studies had no or only
limited controls for individual risk-aversion.

%% The omitted region refers to those living in the North-East.
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8. Conclusion

In this paper we develop an asymptotically efficient estimator for handling missing
data on explanatory variables in a probit choice model that is easily implemented using
standard software packages such as Stata. We provide closed form expressions for both the
estimator and its asymptotic variance for a benchmark model and relate these to other
approaches discussed in the literature. We also carry out simulations which illustrate that our
estimator outperforms popular alternative approaches and also show that the performance of
the estimator is robust to many departures from the benchmark case.

In our application we use our estimator to study the portfolio allocation decision of
Italian households using the Bank of Italy’s SHIW data. In this situation complete case
analysis results in over half of the data being discarded. A Hausman test is used to verify the
validity of the assumptions underlying our estimator. Use of the efficient estimator leads to
standard errors that are, in most cases, half the size of those obtained using only the complete
cases. As a result a number of coefficients that were imprecisely estimated previously are
now significant.

The substantial improvement in precision arising from our estimator, the transparency
provided by the closed form expressions for the estimator and its variance, its robustness to
distributional assumptions and the ease with which the estimator can be implemented with
standard software packages provides an attractive new option for binary choice analysis with

missing data.
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Appendix A: Efficient estimators of B, and B,

As noted in the main text our data structure implies that the log-likelihood function

over the entire sample L may be written as

(A1) L =L

n r,z‘

w + LV,W + LVI*V,Z
where the subscript » indicates complete observations and (#—r7) indicates
incomplete observations.

Under our normality assumptions the first component of the likelihood based on the

complete observations is

L, = Z{Z, log®(M )+ (1- Z )log[l - D(M )]},

with
M =XB +WB.

The second is

r,w

L =ioe2r - Diogfel - TS (- ) '),
1

which is the likelihood function for a seemingly unrelated regressions model with the

same explanatory variables in each equation. The third is

L =Y {Z log®(M )+ (1-Z)log[l - (M)} ,
with

_X(B+CB) _

JI+BEB

The k element vector 4 is the unconditional (or conditionally on X alone) mean of the

M X4A.

underlying unobserved Y divided by its unconditional standard error. The vector of all
parameters, 6, is the transpose of @ =[B.,B, ,vec'C,vech'Y], where vech denotes the half-

vectorization operator that transforms a symmetric matrix into a vector, omitting the
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duplicated elements above the leading diagonal (see for example Seber (2008)). In total,

thereare ¢ =k + 1+ kl +1(l +1)/2 parameters.
Derivation of the efficient estimator requires the calculation of J(&)and %Ln ()

evaluated at ' = (B.,B,,vec'C, vech'S) , the maximum likelihood estimator of & using only

the » complete observations. Since L, = Lr,z‘w +L,, the EX and EW are independent of C
and 3.

Remembering that 4 is a function of &

oL _oL, oAdL,,
00 060 060 o4

(56), (%), (o) %)
00); \o6); \00),\ o4 )

where 4 results from A by replacing & by§ .

b

and so

Denoting the MLE of 4 from L, (A)by A

2
Oy | _[OLhr| [OLw (A-A4)+0 ().
od ); o4 ); \oded ). ?

The derivative of L,  is zero at A and

oL Y
N e TS
( aAaA'j A

4

3
which estimates V-, the variance of 4 , and satisfies V; =V, +0,(n *). So

oL o4 —. v =
(A2) [£j§ __[QLVA (A-4)+0,(1)

whichis O, (\/n).

Turning to the second derivative
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oL O°L, (GLM j[ 0 aAj [GAJ 0 (GLMJ
= + I, | —vec— |+| — |=—=| ——
06000 0606 |\ o4 "Noeo o0) \00)o6\ o4

and

ofoL,,_ oL, (a_Aj
00\ 04 0404'\ 60 )

oL oL oL, . [a aAj [aAj L, [aAJ'
= — | +||—=| ®I, | —vec—| +|—||——| | —
0000 ), 0000 ), o4 );  *\oo 00); \00);\ oe4 ) \o0);

Now

OL_| -y v0 ()
0000 ), ° oo

where V5 is the variance matrix of @ , the MLE of @ from L (0), estimated by 175.

Also

0A0A 0A0A

(%j :(%j +0p(\/;)=—17;+0p(\/;)

and

04

A

(%j =V (A-4)+0,()

is 0, (V) while

is O,(). So

o’L = (o4 —.(a4)
(8989'}5 ——|:V§ J{%LVA [aejg:lJrOp(\/;).
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Using the matrix inversion formula
(R+STUY' =R =R'S(T" +UR'S) ' UR™!

gives

oL\ Vg—Vg[a—Aj I7A+[8—Aj Vg[a—Aj [a—AJ Vo +0,(n?)
0000 ); 00 ) 00 ); 00 ); 00 )
Since A is a function of @, the asymptotic variance of A is

(2)(2)

which is estimated by

()
00 ), °\ o0 ),

and so

t
t

(A4)
L) =3V, -V [G—AJ [177+T7 ]I[G—AJ V.40 (n%)
0000 | 0" "0\gg) VT A Gg ) [T

Using (A2) and (A4)

(aZ;Le' L [%L - {’75 [%L b7, +7.)]7, }17/1‘ (i-4)+0,™

_ ”4%) 7. +7.)' (A-4)+0,(n).

0

o
20

Using this the efficient estimator, 6 = 0+J (5 )—L, (5 ), can be written as



28

0

7 25_175[%} 7, “72)71(2_2)*0;7(”71)

and since estimators differing only in a term of O, (n™") have the same asymptotic

variance

9 0=0-7| %) ;7] a-3)

is an efficient estimator. Denoting the variance matrix of Ex by V_, that of Ew by

V., and their covariance by C_ ,

w

V., C., 0, 0

C)Lw > I/w > 0’ 0 i
(A6) vy = .

0, 0, 2(X'X)", 0

0, 0, 0, H

where T ® (X' X) " is the variance matrix of vec C , the k*1] vector of coefficients

from OLS regressions of W variables on X and H is the variance matrix of the

[(I +1)/2 element vector of OLS estimates of the lower triangular components of X . The

elements of H are of the form (aﬁaﬁj_* +0.0 )/ r as is shown in standard textbooks (e.g.
Kendall and Stuart, vol. 3, pg 254).

175 , the estimator of V, is obtained by replacing V_,V, and C , in (A6) by
VX , T7w and C - respectively, where these are produced by the standard probit regression for

the » complete observations, and X and H by Sand H , where the o; are replaced by their

estimators based on OLS residuals. From the structure of (A6) it is clear that
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n ~ ~ (04 ~ 0A — o~ }l(~ =
o heET(2) e () |ren) (-7
and
A8) 5 -3 {5;% (G%AJ 7 (G%M(z 7 ) (7= 7).

These are the expressions that appear in equations (7) and (8) of the main text.

For completeness we note that since

_ (B, +CB) 1

A= ' = (B, +CB,)
J1+B.2B, o,
it is clear that
04 1
=,
0B, o,
and
A 1 1 Oo
8 [ Wooqr— 1 Cv 1 ZBWA'.
oB, o, 20,, OB, o, o,
So
04 1 A I~ 1 25 ~
(A9) ( J =——=1, and ( 0 J —C'-—2XB A4',
0B, ); VO 0B, ); Oy Oy
where &, =l+l§"v~§w. It may be worth noting that XB, is the vector of

‘covariances’ of the unobserved Y and the W variables (conditionally on the X variables).

Appendix B: Variances of B and B,

To obtain the variance of Z§x as given by (A7) note that
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3
ploa) Lo (24) _p(2) e (24,0
2B, ) 2B, ). 0B, oB, ) "

X

and

—1

(17Z ”7;) =(V; +VA7)’1 +0p(\/;).

1
Bearing in mind that A — 4 is O ,(n ?) it follows that Z§x and

B - {VX (%j iC, (;?AH(VA v )'(d-7)

w

differ only in terms of O, (n™") and so have the same asymptotic variance. Letting

A=y A e, [
0B, 0B,

and remembering that Ex and A are independent, the (asymptotic) variance of Z§x is
E{ [Ex _A(Vz +V; )71(2 _Z)] [Ex _A(Vz + Vz)fl(z - Z)”_BXBW

—V, —cov(B,, D)V, +V, )N = A, +7. ) cov(4,B)+ AV, +7, ' A

having used the fact that the variance of A-4 is V. +V;. Since

Z:A+8—A(§x —BX)+8—A
OB OB

X w

(EW — B, )+ (terms independent of EX) +0, (n™")

the covariance of Ex and A is A . Therefore the variance of Z§x 1S

Var(B)=V,~A(V;+V;) A

(A10) =V, — {VX (8—/1} +C, (G—AH(VA +v.)! {VX (8—/1} +C, (G—Aﬂ
2B, 2B, 0B, 2B,

This is equation (9) in the main text.

Similarly, the variance of Z§W may be shown to be
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(All)

R e e P e | (S el (R 7 e
oB, 2B, g 2B, 2B,

and the covariance of Z§x and Z§W to be

(Al2)

c. 7| e, X, +v ) e | A w24
oB, 2B, g 2B, 2B,

Appendix C: The case of observed ¥

When Y is observed the components of the likelihood are

r,y‘w

r r 1 <
=-—log2r——logoc ——>»» Y-XB -WB),
2 g 2 £9.,. 20 Z( C )

L =PogzrLlogls| L3 (0 -cx)s (8 —cx)

and

n

n-r -r 1 &
L =-——log2x- logoc ——» (Y-X A),
5 log 5 logo, 20,\2(' A)

where

A=B_+CB,.

B, and B, are now the usual OLS estimators and V_, V, and C_ are the

X

corresponding variances and covariance, while 4 and A are OLS estimators of coefficients
of Y on just the X variables for the » and (n— ) observations respectively. Then it is easily

shown that (A9) become
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and (A7) and (A8) become

8, =B, -[p.+c,cly,+7,)' (i-4)

X

and
B,=B -|c, +7.Cl7, +7.)' (1-4)

Remembering that o, =0, + B 2B,

O &, _
V,+C,C=—2") ="},
& &,.,+B.2B,

where o, is simply estimated from the error mean square of regression of Y on the

w

Xand W variables for the » complete observations, and GXW + Vwa "= 0 then we obtain:

x x w w*

BB - Ty 7 7 ) (A7) wa B, =B

O-}’y

These are the expressions given in (13) of the main text.
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Table 1:

Monte Carlo Study: Comparison of the Efficient Estimator with the Complete Case
Probit Estimator under MAR assumption

Complete Case Analysis Efficient Estimator
Approx EB. EB. v V. EB. |EB Var(B.) | Var(B.) Var(B,)
%missing v ! v ! Y x Y ! —
V.
n=1000
25% 1.009 1.009 .008 .014 1.0098 | 1.0045 | .008 .0109 78
Pr(M=1)=®(x-1)
50% 1.015 1.017 .013 .024 1.016 | 1.007 | .013 .0131 .54
Pr(M=1)=0(x)
75% 1.05 1.04 .038 .071 1.05 1.006 | .0375 .021 .30
Pr(M=1)=®(x+1)
Table 2:
Monte Carlo Study: Comparison of the Efficient Estimator with Imputation approaches
under MAR
Proportion of Missing Estimator B B v vV
Data " ! " !
n=1000
25%
Pr(M=1)=®(x-1) Efficient Estimator 1.0098 | 1.0045 .008 .0109
Mean Imputation 1.003 1.125 .008 .0103
Multiple Imputation .95 .97 .008 .0105
50%
Pr(M=1)=®(x) Efficient Estimator 1.016 1.007 .013 .0131
Mean Imputation 1.006 1.27 .0138 .009
Multiple Imputation .88 93 .012 .012
75%
Pr(M=1)=®(x+1) Efficient Estimator 1.05 1.006 .0375 .021
Mean Imputation 1.028 1.377 .0385 .008
Multiple Imputation 197 .88 .023 018
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Table 3:
Monte Carlo Study: Robustness of our estimator to departures for normality of I¥;
under MAR
Complete Case Analysis Adjusted Estimator
% missing EB EB, vV, vV EB, |EB. | Var(8,) | Var(B,)) | Var(B,)
V.
n=1000
25% missing
Logistic 1.011 1.009 .008 .014 1.011 | 1.005 | .008 0111 78
Uniform 1.01 1.01 .0075 .0135 1.01 1.002 | .0075 .0106 .79
Binary .999 1.01 .0148 .0084 .999 1.012 | .0148 .0065 77
Mult Imp. .988 1.008 | .0148 .0065 77
50% missing
Logistic 1.017 1.025 .0139 .025 1.017 | 1.016 | .0138 .0134 53
Uniform 1.017 1.017 .0124 .0238 1.018 | .993 | .0124 .0127 .54
Binary 1.005 1.012 .023 .013 29995 | 1.03 | .0028 .0068 .50
Mult Imp. 982 1.01 | .0023 .007
75% missing
Logistic 1.046 1.049 .038 .073 1.046 | 1.026 | .038 .0216 .30
Uniform 1.039 1.04 .036 .07 1.04 994 | .036 .0204 29
Binary 1.005 1.024 .056 .032 987 1.07 | .055 .0077 24
Mult Imp. .98 1.012 | .056 .0103
Table 4:
Monte Carlo Study: Robustness of our amended estimator to misspecification of W,
function under MAR.
Complete Case Analysis Adjusted Estimator
% missing EB EB, vV, vV EB, |EB, | Var(B,) | Var(B,) | Var(B,)
V.
n=1000
(Omitted G; Correlation(G,X)=.5)
50% missing 1.02 1.02 .0126 .0327 1.023 | 1.005 | .0125 .0192 .59
Omitted X*: Complete Case versus Original Efficient Estimator)
50% missing 1.013 1.014 077 .0144 1.012 | 1.26 | .0076 .0077
Omitted X*: Complete Case versus Adjusted Efficient Estimator)
50% missing 1.013 1.014 077 .0144 1.013 | 1.014 | .077 .0104 .70
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Table 5

Summary Statistics

Variable Name Complete Sample Subsample
Risky assets 23.5% 30.2%
Age 54 51.2
College Education 10.3% 11.6%
Gender 31.5% 29.35%
Married 71.3% 74%
Region 1 — North-East 27.2% 28%
Region 2 — North-West 22.5% 26.9%
Region 3 — Centre 22.1% 15.7%
Region 4 — South 18.6% 20.9%
Region 5 — Islands 9.6% 8.45%
Risk Aversion 1778
Sample Size 6779 1029

Table 6

Determinants of Portfolio Allocation among Italian Households.
Dependent Variable is a Binary Variable taking the value 1 if Respondents are
Identified as having Held Risky Assets at the end of 2000.

Independent Coefficient Standard Error Coefficient Standard Error
Variable
Complete Case analysis Efficient Estimator
Constant -1.24 .55 -.96 27
Age .06 .02 .04 .01
Age-Squared -.0006 .0002 -.0004 .0001
College .65 13 .62 .06
Gender .01 .10 -.09 .05
Marital Status 18 11 21 .05
North-West 15 1 18 .05
Centre =22 13 =21 .05
South -.50 13 =72 .06
Islands -.98 21 -.70 .08
Risk-Aversion -4.08 77 -3.9 .76






