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Abstract

The non-local photopolymerization driven diffusion (NPDD) model predicts that a reduction in
the non-local response length within a photopolymer material will improve its high spatial
frequency response. The introduction of a chain transfer agent reduces the average molecular
weight of polymer chains formed during free radical polymerization. Therefore a chain transfer
agent (CTA) provides a practical method to reduce the non-local response length. An extended
NPDD model is presented, which includes the chain transfer reaction and most major
photochemical processes. The addition of a chain transfer agent into an acrylamide/polyvinyl
alcohol photopolymer material is simulated and the predictions of the model are examined. The
predictions of the model are experimentally examined in part II of this paper.

Keywords: holographic data storage, photopolymer material, chain transfer agents, spatial
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Photopolymer materials are being actively studied for
practical applications such as holographic data storage, hybrid
optoelectronics, photo-embossing, including the manufacture
of refractive and diffractive optical elements, and the self-
trapping of light [1-4]. Generally, in photopolymers, the
photosensitizer absorbs light of an appropriate wavelength,
becoming excited and causing the production of primary
radicals, R'. In free radical polymerization systems, the
generation of R' leads to monomers being polymerized.
During holographic exposure, a grating is formed by the
interference fringe pattern. The resulting polymer chains
formed grow away from their point of initiation, which
results in a loss of recording fidelity and a reduction in
the refractive index modulation amplitude [5]. The non-
local photopolymerization driven diffusion (NPDD) model was
introduced to describe the observed decrease in the material’s
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response for higher exposing spatial frequencies [6, 7]. The
photopolymer’s response at high spatial frequencies is very
important as it determines the material’s recording resolution
and thus data storage capabilities. The NPDD model predicts
that a reduction in the extent of the non-local effects within
a material will result in an improvement in the high spatial
frequency response, and this prediction has been previously
studied and experimentally confirmed [7, 8].

Early models used to describe photopolymer perfor-
mance [9-11] did not include the non-local effects, and
did not predict the high spatial frequency roll-off. The
NPDD model [7, 12, 13] provides a more accurate physical
description, which explains the high spatial frequency cut-
off and the experimentally observed temporal evolution of
holographic grating formation. In a free radical polymerization
system, the physical and mechanical characteristics of the
polymer chains formed depend on their molecular weight.
The application of chain transfer agents (CTAs) as a means
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to control polymer chain length grown has therefore received
much attention [14—17]. In this series of papers, we study in
detail the effects of the addition of chain transfer agents into an
acrylamide/polyvinyl alcohol (AA/PVA) based photopolymer
material in order to improve its spatial frequency response. Our
objective is to understand and fully quantify the performance
and kinetics of the CTAs under examination.

In this first paper, part I, the NPDD model is extended
to include the kinetic behaviour of CTAs during holographic
grating formation in photopolymer materials. This paper is
organized as follows. In section 2, we briefly review the
photochemical processes occurring during holographic grating
formation in an AA/PVA based photopolymer material and
describe the chain transfer process in such a free radical
based system. In section 3, the kinetic model governing the
photochemistry is presented. Then the equations describing
diffraction by holographic gratings recorded in these materials
are reviewed. In section 4, the kinetic behaviour of the
reactions and the resulting material spatial frequency response
are simulated using the developed model. Predictions for
various parameter values are presented and compared. A brief
conclusion is given in section 5.

In part IT [18], the results of a series of experiments are
analysed using the model developed here in part 1. Various
concentrations of two different CTAs are included in the
standard AA/PVA material and their effects on the average
molecular length of the polyacrylamide (PA) chains formed
during exposure are examined. Then the spatial frequency
responses of these different materials are examined with and
without the various concentrations of the chain transfer agents
present, in order to determine CTA performance. The model is
then used to estimate the physical parameters associated with
both types of CTA used by fitting the modified NPDD model
to the experimental results.

2. Photochemical reactions

In the case of free radical photopolymerization systems, the
kinetic model describing what takes place involves five main
processes: (1) initiation, (2) propagation, (3) termination,
(4) inhibition, and (5) chain transfer, each of which may
involve several physicochemical reactions. We highlight the
major chemical reactions in each process below [19-23].

(1) Initiation

During illumination, the reaction between the photo-
sensitizer and the electron donor (co-initiator) leads to the
production of initiator radicals, R°, which can react with the
monomers to produce chain initiators, M [21]:

NS

(1a)

R+M -2 M, (1b)
where [ is the initiator, v indicates the energy absorbed
from a photon, k; is the chain initiation kinetic constant and
M represents a monomer molecule. The absorption process,
which occurs during the initiation step, will be discussed in
more detail in section 3.1.

(2) Propagation
The chain initiator, M;, will attach itself to another
monomer molecule, M, by addition to the C=C bond, yielding

a growing polymer radical with an active tip. Through
propagation the polymer chain grows [19]:
k
M +M = M, 2)

where k,, is the rate constant of propagation and M,, and M, _,
are the growing macro-radical chains of n and (n + 1) repeat
monomeric units (n > 1).

(3) Termination

Termination can occur in three ways. Two of these,
disproportionation and combination, involve two growing
macro-radicals interacting, i.e., the bimolecular termination
mechanism:

le
Mn + Mm — M}’H—mv (3a)
M, + M;, 2 M, + M, (3b)

where k. and ky are the rate constants of combination and
disproportionation termination respectively. M,, M,, and
M, ., represent terminated chains which have no radical tip,
i.e., a dead polymer. In this analysis, k¢ and kg will be treated
as a single lumped rate constant, k; = ki 4k (cm® mol~! s1),
as the mode of termination does not affect the polymerization
kinetics [21].

A third possible termination mechanism involves primary
radical termination [21, 24]:

. . klP
M, + R — MR, 3o)

where ki, is the rate constant of primary radical termination. In
this step, a growing macro-radical chain reacts with a primary
radical (initiator radical) leading once again to the production
of inactive or dead polymer chains [21].

(4) Inhibition

Inhibitors are chemicals which react with the initiating and
propagating radical species by rapidly removing or scavenging
these radicals. Polymerization is completely halted until they
are all consumed [20]. Several possible inhibitor reaction
mechanisms are listed below:

k.
Dye* + Z =% Leuco Dye + Z*, (4a)
R +7Z 5% (R+ 27 andlor RZ'), (4b)
M +2Z 5% (M, + Z°, andlor M, Z), (4¢)

where Z is the inhibitor species, e.g., oxygen, dye* is the
excited photosensitizer, Z is the concentration of singlet
oxygen [20, 23-25], and k;p, k; p-, and k; p- are the rate
constants of inhibition of the photosensitizer, the macro-
radicals and the primary radicals respectively.

Inhibition leads to a dead band at the start exposure,
i.e., no initial grating formation during exposure. The effects
of inhibitors are especially significant when lower exposure
intensities are used, for example when large areas must be
exposed or short pulses must be used [23]. In order to
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further simplify the reaction modelling, we assume that Z*,
RZ and M, Z" do not re-initiate polymerization and that they
terminate without regeneration [21, 23]. In addition, Z*, R—
Z" and M,—Z" are assumed to play no further part in grating
formation, i.e., no further chain transfer mechanisms involve
them. Furthermore, in the sealed material layer, it is assumed
that the inhibitors are rapidly consumed at the start of the
exposure [26].

(5) Chain transfer mechanism

In many polymerization systems, the average polymer
weight is observed to be lower than that predicted by the
chain transfer reaction [8, 14-17, 20, 27]. Generally, the chain
transfer process causes the premature termination of a growing
macro-radical chain and arises because of the presence of a
CTA [20]. Due to this reaction, a new radical is produced
which is referred to as a re-initiator. This re-initiator reacts
with a monomer molecule to initiate a new growing macro-
radical chain. The chain transfer reactions can be written as

tr,S

M+ (RI—X) 2% (M, — X)+RI',  (5a)

ki

RI'+M — (RI — M), (5D)

where RI — X is the chain transfer agent,—X is the atom
or species transferred and R is the re-initiator which has a
radical tip. ks and k,; are the transfer rate constant to chain
transfer agent and the re-initiation rate constant respectively.
Due to the premature termination reaction with the chain
transfer agent, RI — X, the propagating polymer chains
will stop growing earlier than they would have if the CTA
was not present. We assume that the free radical RI —
M’ produced can be treated as acting chemically identically
to a chain initiator M°. Therefore the re-initiator, RI",
simply initiates a new growing chain with a radical tip M".
Thus, while the polymer chains are shortened, the amount
of monomer polymerized and the rate of polymerization can
remain high.

3. Photochemical kinetic model

3.1. Absorption

During holographic grating formation in the AA/PVA based
photopolymer, photosensitization and initiation depend on
the type and concentrations of both the dye and electron
donor. During appropriate illumination of such a layer,
sensitized with a xanthene or thiazine type dye [19, 26],
the photosensitizer absorbs a photon and is promoted into
an excited state. As described in equation (1), an initiating
species R° is produced by the reaction between an excited
dye molecule and an electron donor molecule (triethanolamine
(TEA), CeH;5sNOs3) [19]. The major reactions taking place
during this step are as follows [23]:

Dye + hv LN Dye*, (6a)
kzp

Dye* + Z — Leuco Dye, (6b)

Dye* LN Dye, (6¢)

Dye* + ED —% R+ H* + Dye™ —> R + HDye', (6d)

ED + HDye' —%> H,Dye + E Dy, (6e)

where Dye represents the photosensitizer (dye) species, ED
is the co-initiator (electron donor) and Z is the inhibitor.
HDye" represents a radicalized dye, which has abstracted
a hydrogen ion from the co-initiator, and H,Dye is the

di-hydro transparent form of the dye, i.e., a bleached
transparent form of the dye molecule. ED;, is an
intermediate form of the co-initiator [19]. k, (s7!) is

the rate of production of excited state photosensitizer; k, p
(cm® mol~' s7!) is the inhibition rate constant associated
with the reaction of the inhibitor with the excited dye
molecules, i.e., the formation of Leuco Dye; k; ™Y is
the rate of recovery or regeneration of the photosensitizer
back to the ground (absorbing) state; kq (cm® mol~! s7!) is
the rate of dissociation of the initiator; and ky is the rate
constant of bleaching. In equation (6d), the dye radical
formed abstracts a hydrogen molecule from the TEA free
radical.

Applying the Beer—Lambert law, the rate of production
of the excited state photosensitizer in equation (6a) can
be expressed as k, = q)sdl(; (s7Y) [23, 26], where ¢
(mol/Einstein) is the quantum efficiency of the reaction, ¢
(cm? mol™!) is the molar absorptivity coefficient of the dye,
d is the material layer thickness and I(; (Einstein cm =2 s~ 1)
is the incident intensity corrected for Fresnel and scattering
losses using the factor Ti¢.  The exposure intensity Iy
is typically measured in units of mW cm~2, and must be

converted into units of Einstein cm~2s~!. This conversion
. /' _  TyBly, A
can be performed using I, = =L Nahc), where A

(nm) is the wavelength of incident light, N, (mol™!) is
Avogadro’s constant, ¢ (ms~') is the speed of light, and
h (J s) is Plank’s constant. B = 1 — e#Md g
the absorptive fraction which determines a material layer’s
initial absorptive capacity and is a function of the dye’s
initial concentration, [Ao] (mol cm—3) [23]. The evolution
of the concentration of the excited state dye, Dye*, can
be determined for a given exposure intensity and initial
photosensitizer concentration assuming ¢, ¢, d and Ty are
known.

3.2. NPDD model

We assume illumination by a spatial distribution of irradiance
I(x,1) = I(;[l + V cos(K x)], where V is the fringe visibility
and K = 2m/A, where A is the grating period [9, 28].
The chemical equations, presented in equation (6), describe
in detail primary radical production, which was previously
summarized in section 2. We now derive a set of coupled
differential equations representing the spatial and temporal
evolutions of the material concentrations associated with
equation (6). Combining these with those previously presented
in [23, 26], a more complete set of governing rate equations is
now presented:

d[D
% = —ku[Dye(x, )] + k(Dye* (x, 1)1, @
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UDye . O _ k. IDye(x, 0] - kDye*(x. 1)]

dr

— ka[Dye* (x, HI[ED(x, 1)]

— k. p[Dye* (x, HI[Z(x, 1)], (3)
d[ED(x,1)] .
—a - —ka[Dye™(x, )][ED(x, 1)]

— kp[HDye (x, HI[ED(x, 1)], )
d[HDye (x, t)] "
—a - ka[Dye™(x, DI[ED(x, 1)]

— kp[HDye'(x, )I[ED(x, 1)],
dlZ(x,n] d d[Z(x,1)] }

)
dr dx{ 2 D4

— kzp[Dye" (x, DI[Z(x, ] — ko g [Z(x, D[R (x, 1)]
— ke [Z(x, ONM (x, D]+ 1:{Zo — [Z(x, D]} (D)

As indicated in equation (11), the non-uniform recording
irradiance gives rise to concentration gradients, which result
in the diffusion of inhibitor from the dark regions into the
bright illuminated regions. Equation (11) is derived based on
the assumption that the oxygen is relatively free to diffuse,
and does so rapidly, resulting in a one-dimensional standard
diffusion equation for the concentration of inhibitor [23, 29].
As in the previous analysis [21-23], in equation (11) it
is assumed that the effect of inhibition during exposure
is caused by the initially dissolved oxygen present within
the photopolymer layer and replenishing oxygen from the
surrounding environment. In such an unsealed material layer
case we introduced the parameter 7, to represent the rate
of replenishing of oxygen into the material layer from the
surrounding environment. Also, we assume that k, = k, z- =
k. m- and k,p < k;, as the reactivity of oxygen with the
excited state form of the photosensitizer will be much lower
than with R* or M" [20]. [Z(x, t)] is the instantaneous inhibitor
concentration, Dz (x, t) is the diffusion rate of the inhibitor
in the dry material layer, and Z, (mol cm~3) is the initial
dissolved inhibitor concentration. In addition, the diffusion
of dye molecules (due to the concentration gradient) from the
dark regions into the bright regions will eventually take place
over an appreciably long time [30]. However, clearly the dye
concentration following such diffusion cannot be larger than
its initial value. We assume that the effects of dye diffusion are
negligible in this paper.

The equation governing the concentration of primary
radicals is given by

d[R (x,
% = ky[Dye*(x. DI[ED(x, 1)]

— kiR (x, D][ux, )] — k[ R (x, H][M"(x, 1)]
— k[R'(x, DI[Z(x, D],

(10)

12)

where u(x,t) is the free-monomer concentration.  This
equation states that the contributions to the rate of change
of the primary radical concentration include the generation
of primary radicals by photon absorption, and the amounts
removed by (a) the initiation of macro-radicals, (b) primary
termination with growing polymer chains, and (c) inhibition
by oxygen.

The equation governing the macro-radical concentration is
then

d[M"(x,
% = kil R (e, Ollu(x, 0] — k(M (x, 1))

— kp[R'(x, OI[M (x, )] = k[ Z(x, D][M"(x,0)].  (13)

The generation term in this equation previously appears
as the removal term, arising due to macro-radical initiation, in
equation (12). The removal terms include the effects of both
types of termination mechanism, i.e., primary and bimolecular
(the squared term), and the effects of inhibition [21-23].

The co-sinusoidal irradiance leads to monomer concen-
tration gradients, that result in monomer diffusion from the
dark regions into the monomer depleted exposed regions. The
polymer concentration distribution produced by the exposure
provides the permanent modulation of refractive index in the
material, i.e., the holographic grating. We represent the
monomer concentration using the following 1D equation [23]:

dlu(x, )] d

a E{Dm(x’t)

M} kIR 5 0)]

dx

X [u(x,t)] — / kp[M'(x/, t)][u(x/, ]G (x, x/) dx/,
(14)

where D,,(x,t) represents the monomer diffusion rate, and
G(x, x') is the non-local material spatial response function
given by [7]

G, x) = — [_(X _x/)z} (15)
X, x') = ex ,

V2o P 20
in which o is the non-local response parameter. The non-

local spatial response function represents the effect of initiation
at a location x” on the amount of monomer polymerized at
location x [6-8, 21-23, 26, 31, 32]. /o represents the non-
local response length, which is related to the average polymer
chain length [31].

The equation governing the polymer concentration is

dIN G, D] _ _i{DN(X,t)d[N(X’”]}
dr dx dx

(o]

+ / koM (x", )][u(x’, )]G (x, x") dx’, (16)

—0oQ
where Dy (x, t) represents the polymer diffusion rate. If the
polymer chains are not cross-linked sufficiently, they will tend
to diffuse out of the exposed regions where they are formed [8].
This process will result in a decay of the grating strength with
time. However, in this paper we assume that there is sufficient
cross-linking and therefore Dy(x,t) = 0, i.e., very stable
gratings are formed.

In the radical chain polymerization system [8, 20], the
polymerization rate can be expressed as

Rp = kp[M"(x, D)][u(x, 1)]. a7
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The polymerization rate, R,,, is also related to the number-
average degree of polymerization, DP,. DP, is defined as
the average number of structural units per polymer chain. It
indicates the average length and therefore molecular weight
of the polymer chains formed. According to the Mayo
equation [14, 20]

[CTA] [/]

L_ K ic +
DP,  RuP " T "ul’

(18)

This quantifies the effect of the various chain transfer reactions
on the number-average degree of polymerization. [u], [CT A],
and [/], represent the concentrations of monomer, chain
transfer agent and initiator, respectively. The chain transfer
constants, Cy, Ccra and Cj, for each particular substance are
defined as the ratios of the rate constants for chain transfer of a
propagating radical with that substance to the propagation rate
constant, k,. They are given by

k tr,CTA
kP

_ ktr,u

C
u kp

; Cera = , and

19)

where ki, kicrta, ki1 represent rate constants for chain
transfer to monomer, chain transfer agent and initiator
respectively. For the case examined here the chain transfer
constants to monomer and initiator can be omitted as they
are typically very low for acrylamide [33, 34], and therefore
equation (18) can be simplified to

1 _ k[Rp
DP,  K[u]?

[CTA]
(u]

+ Ccra (20)

which will be discussed in detail in section 3.3.

3.3. Model development

In order to begin to examine the effects of the presence of CTA
on the material non-local response length, /o, we introduce a
rate equation governing the CTA concentration:

d[CTA(x,n] d d[CTA(x,1)] }

L Degatx
dr dx{ et )=

— kus[CTA(x, )][M(x, 1)]. 2D

It should be noted that in the following analysis, which is
based on the assumptions stated earlier in sections 2 and 3,
we only consider chain transfer to the chain transfer agent.
To further simplify the analysis in this paper, we assume that
ko = ki.cta and that the CTA diffusion rate, Dcra, is similar to
the diffusion rate of monomer, Dy, as their molecular weights
are similar in the cases examined, i.e., Dcta & Dpy.
The equation governing the re-initiator concentration is

d[RI'(x,1)] .
—a - ke[CTA(x, )][M'(x,1)]

— ki[RI (x, H)][u(x, 1)], (22)
where RI° denotes the re-initiator concentration. The

generation term here is the removal term arising in equation (5)
due to the chain transfer process. Since it is assumed that

the initiator radical, R’, dominates the primary termination
and inhibition processes, we only consider how the re-initiator,
R, reacts with the monomer.

Furthermore the chain transfer and re-initiation reactions
affect the variation of macro-radical, [M '], and monomer, [u],
concentrations. Therefore equations (13) and (14) must be
generalized:

d[M*(x, )]
dr
— kM (x,)]* — kiR (x, D)][M (x, 1)]
—k[Z(x, DM (x, )] — ke [CTA(x, D][M (x, 1)],
(23)

= kiR (x, )]u(x, )] + kil RI(x, )][u(x, 1)]

dlu(x, )] d

=__{Dmu,ﬂ9@£&£H
dr dx

i }— kiR (x, 1)]

x [u(x, )] — / koM (x', D)][u(x’, )]G (x, x") dx’

[e¢]

— ki[RI (x, t)][u(x, 1)]. (24)

All the concentrations appearing in equations (7)—(12)
and (16), (21)—(24), will be periodic even functions of x and
can therefore be written as Fourier series, i.e., [X(x,1)] =
ZC;O:O X;(t)cos(jKx), where X represents the particular
species, i.e., Dye, Dye*, ED, HDye', R, M', CTA, RI', u,
N or Z. A set of first-order coupled differential equations can
then be obtained by gathering the coefficients of the various
co-sinusoidal spatial components and writing the equations
in terms of these time varying spatial harmonic amplitudes,
X ;(t). Assuming that harmonics of order greater than j = 3
are negligible, equations (25)—(29) can be obtained in the same
manner as described in [21-23]. For brevity, we only present
the coupled equations for the first two harmonics of [CT A],
[RI'], [M'], and [u], all of which are directly involved in
reactions with the transfer agent.

3.3.1. Chain transfer agent concentration. Retaining the first
four concentration harmonic amplitudes in the analysis, the
following first-order coupled differential equations govern the
chain transfer agent concentration amplitudes, CT A ;:

dCT Ay(1) ) 1 )
= “CTAOM®) = SkeCT A1 ()M (1)

— 5ke CT A2 (1) M5(1) — 5ko CT A3 (1) M5(1), (25a)
dCT A (1) 5 .
= ~DennK’CT A1) = ke CT A1) M (1)

— ke CT Ag()M; (1) — 5ku CT A2 (1) M (1)
— 2kyCT A1 (1)M5(t) — Sk CT A3 (1) M;(1)

— 2koCT Ay (1) M;(1). (25b)

3.3.2. Re-initiator concentration. The equations governing
the re-initiator concentration amplitudes, RIJ'-, are

dRI(1)
dr
+ %kuCTAz(t)Mé @) + %knCTAa(t)Mé(t)

— ka RIG(Ouo(t) — SkaRI; (D) (1)
— ki RL;(Du (1) — 3k RI;(1)us(1),

1
= kuCT Ao(1) M (1) + EktrCTA] (OM; (@)

(26a)
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dRI; (1)
dr

3.3.3. Macro-radical concentration.

=keCTA (t)M(t) + ke CT Ag(t) M (1)

+ 2k CT A2 ()M (1) + ke CT Ay (1) M (1)
+ LkeCT A3 () M5 (1)

+ $ko CT Ay ()M (1) — ki RI; () uo (1) — ke RIG(1)u1 (1)

— ki RI;(1)uy (1) — 5k RI; (1) (1)
— ki R (Duz (1) — Sk RI(1)uz(1).

equations governing the M; are

AMy(1) ke

dr

dM;

dr

3.3.4. Monomer concentration.

= —E[ZCTAO(I)M(;(I) + CT A (H)M; (1)
+ CT A ()M (1) + CT As(1)M;(1)]

k¢ .
_ E[2Mo(z)2 + M;(1)* + M;(1)* + M;(1)*]

ky
- TP[ZM{)(t)R{)(t) + MR (1) + M;(t)R; ()

k.

+ M;(H)R;(1)] — ?”[ZM{)(I)Zo(t) + M ()Z,(t)
+ M, () Zy(t) + M3 (1) Z3(1)]

ki
+ 5[2R6(l)uo(l) + Ry (Duy (1) + Ry (H)ua (1)

ki
+ Ry(Wus ()] + ?[ZRI(;(I)MO(I) + RI{(t)u;(t)

+ RI;(Oua (1) + RI;(Hus(1)],

© = —%[ZCTAI(I)M(')(I) +2CT Ao(t)M; (1)

(26D)

From equation (23), the

27a)

+ CTA,()M; (1) + CT A{(1)M; (1) + CT A3(t) M5 (1)
+ CT A, (OM;(1)] — k[2M(1)M; (1) + M; (t)M; (1)

kq
+ My () M;5(1)] — TP[ZMI'(I)R{)(I) +2M (1) R; (1)

+ M;(t)R; (1) + M; (1) R (1) + M; (1) R; (1)
ke oo .

+ Mé(t)Ré ] — 3[2M1 (1) Zo(t) + ZMO(I)Zl(t)
+ M5(1) Z,1 (1) 4+ M; (1) Z(1) + M; (1) Za (1)
+ M;(1) Z3(1)] + §[2Ri(f)uo(l) + 2R (Nuo(t)
+ Ry (1)uy (6) + R (Dua (1) + Ry (1)ua(t)

ki
+ Ry (0us(0)] + T 2RI (Ouo(t) + 2RI (Duo(r)
+ RL;(Ou, (t) + RI; (Hua (1)
+ RI; (Duy(t) + RIz'(t)ug(t)].

the monomer concentration harmonics, u ;, are

dup(t) &

dr

2
ki
+ M3()us(t)] — 5[213[)(0”00) + Ry (Huy (1)

kri
+ Ry (ux(1) + Ry(Dus()] — 7[2R16(l)uo(l)
+ RI;(t)u () + RI,()ux(t) + RI;(H)usz(t)],

Q27b)

The coupled equations for

= —22M;(t)uo(t) + M; (1) (2) + M;(t)us(z)

(284)

du (1) Slkp . . .
Frane —T[2M1(I)Mo(t) + 2Mo(D)uy (1) + M5 ()uy (1)

+ M (Oux(t) + M3(0)ux(t) + M;(1)us(1)]

ki . . .
- 5[2R1(I)uo(t) + 2Ry (0)u1 (1) + Ry (H)u (1)

+ Ry (Dua(t) + Ry (Hua(t) + R (Huz(t)]

kri

— E[ZRll'(t)uo(t) +2RI()u(t) + RI;(t)u(t)

+ RI;(H)ux(t) + RI;()uax(t) + RI;(1)us(t)]

— K*{[Dino(t) — 3 D 2(1)]u1 (1) + [ Dy, 1 (1)

— D3 (®)]uax(t) — %Dm,z(t)m(t)}, (28b)
where §; = exp(—I’K?0/2) [6, 21]. For generality, in
equation (28) we retain Dy, o, D 1, D2 and Dy, 3. However,
in our simulations we assume Dy,,, j > 0 =09, 21].

These coupled equations must be solved for the initial
concentration values given in section 5, i.e., when ¢ = 0:

[Dyej;o] =[HDj ol =[Rj>ol = [Mj>]

= [RI] = [Njzl =0,  and (29)

[Dye; ol =[Zj>0l = [uj>0]l = [EDj>0l = [CT Aj>0] = 0.

3.4. Refractive index modulation

Kogelnik’s two wave coupled wave theory [28] predicts that
the diffraction efficiency of an unslanted volume transmission
phase grating replayed on-Bragg is

7le’l1

)
= , 30
7= s (A cos i, ) G0

where A is the replay wavelength, 6;, is the on-Bragg angle
inside the layer during the reconstruction step and n; is the
amplitude of the first refractive index modulation harmonic.

In order to model the temporal evolution of the refractive
index modulation, n; (¢), which is determined by the behaviour
of the photopolymer, it is necessary to know the refractive
indices of the individual material components and their volume
fractions. The temporal evolution of the average refractive
index modulation in the layer can be determined using the
Lorentz—Lorenz relation [21, 23, 26, 35, 36]

n?—1 n2 —1 n:—1
— oM pm___— (e
n?+2 ¢ ()nfn—l-2+¢ ()n§+2
2 2
ng — 1 ng — 1
+ P (1) 2— + P () E—, 31
¢ ()n§+2 ¢ ()n%_'_2 (€2

where nn,, np, n, and ny are the refractive indices of
monomer, polymer, background material and holes, and q)(m),
o®, ¢® and ¢™ are the corresponding volume fractions
of these species. During holographic grating formation,
the volume fractions vary as a result of photochemical
processes. During the polymerization of acrylamide, carbon
double bonds are converted into carbon single bonds resulting
in localized shrinkage [37] following the collapse of the
holes generated [35]. Eventually, material mass transport
by diffusion leads to swelling in the exposed areas [37].
However, in this paper we neglected all such shrinkage and
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Figure 1. Simulation of the variation of polymerization rate, R,

(mol cm~* s~1), during exposure for four different initial

concentrations of CTA, [CT A]y(mol cm™): {0 (solid), 3 x 10~*
(long dashed); 7 x 10~* (dashed) and 1 x 1073 (short dashed)}.

swelling effects, and the hole concentration was assumed
negligible [21, 35, 38]. In all the cases, the sum of the volume
fractions of the individual components are assumed conserved:

o™ @)+ 0) + (1) = 1. 32)

The temporal evolution of the refractive index modulation is
expressed as [21, 23, 26]

_ (nga.rk + 2)2 (m) ( —1 n% - 1)
”‘(”—W[ a2 w2
2
) ol
+ 6, (r)( e §+2>}’ (33)

where ng,y is the refractive index of the photopolymer layer
before exposure measured at the replay probe wavelength.
qbfm)(t) and qb(p)(t) are the time varying first harmonic
volume fraction components of monomer and polymer
respectively [38]. Thus, n;(t) is predicted by combining
equation (33) with the model described in section 3.

4. Numerical results

The predictions of the model presented in this paper are
now discussed. All kinetic parameter values are assigned
appropriate values, which are typical for the AA/PVA
photopolymer material examined. = The simulations are
performed retaining four spatial concentration harmonics and
therefore four coupled equations are solved for the initial
conditions given in equation (29). In all cases, [U]y = 2.83 x
1073 mol cm™3, [A]p = 1.22 x 107® molecm ™3, [ED]y =
3.18 x 107 molem™>, [CTA]ly = 1 x 107° molem™,
and [Z]p = 1 x 10~® molcm™> [8, 22, 23], where [U]y,
[Alo, [ED]o, [CT Ao and [Z], represent the concentrations
at = 0 of monomer, photosensitizer, electron donor, transfer
agent and inhibitor, respectively. In this paper we assume that
time varying viscosity effects are negligible, i.e., Dy j~0 =
0, and that Dy = 1.0 x 107%m? s~! [39, 40]. For an

R, (mol/cm S )
[x10 ]

14 ' L L B L B x;

) ke = 1x107 cm*/mol s ]

1.2 ' ]

ki = 1107 em®/ mol s ]

].0 7]
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Figure 2. Simulation of the variation of polymerization rate, R,
(s71), during exposure for four different re-initiation rates, k,;
(cm® mol~' s7): { 1 x 10 (very short dashed); 1 x 10° (short
dashed); 1 x 10° (dashed) and 1 x 107 (long dashed)}.

exposure intensity of Iy, = 1 mWem™2, A = 532 nm
and thickness d = 100 um, the absorption parameters

are, ¢ = 1.43 x 108 em> mol™!, ¢ = 0.01 mol/Einstein
and T4 = 0.76. The oxygen diffusion coefficient is
D.(x,t) = D. = 1.0 x 108 ecm?>s™ ! and 7. = 0, ie.,

sealed layers are used [23]. The typical rate constants used
were k, = ki = 1 x 107 ecm®*mol™'s7!, k = 3 x
10> em® mol™' s™!, ky = kt x 10, k¢ = ky = 1.6 x
10> cm® mol~ts™!, ky = 1 x 107 cm® mol~! s, ky =
1 x 10° cm®mol~!'s7!, k&, = 3 x 10" cm® mol~! s},
and k&, = 1.2 x 1073 s7! [20, 23, 26, 41]. Assuming
typical recording conditions for an unslanted transmission type
volume holographic grating, i.e., period A = 400 nm and
fringe visibility V' = 1, the resulting predictions of the
temporal and spatial behaviour of the photochemical processes
are now examined.

Figure 1 shows the polymerization rate, R, which
appears in equation (17), simulated for four different initial
concentrations of CTA, [CTA]y = {0,3 x 107%,7 x 1074,
and 1 x 1073} mol cm™>. As the initial concentration of CTA
is reduced to zero, it can be seen that the polymerization rate
increases more rapidly towards a higher maximum value and
then decreases at a faster rate. From figure 1, it should be
noted that, for [CT A]y < [u]o, the effects of CTA on the
polymerization rate are not very large, i.e., a similar number
of monomer molecules will be consumed per unit time during
grating formation.

The effects of various CTA re-initiation rates, &, on the
polymerization rate are shown in figure 2, where the rate
constant of chain transfer is k, = 1 x 107 ¢cm® mol~! s~!
and four different re-initiation rates, ki ~ {1 x 10%, 1 x 10°,
1 x 10%and 1 x 107} cm?® mol~! s7!, are examined. Figure 2
clearly shows that the effect of a CTA on the polymerization
rate is highly dependent on whether the re-initiation rate is
comparable to the propagation rate, k, = 1 x 107 [20]. It can
be seen that there is a large decrease in the polymerization rate,
Ry, as the re-initiation rate decreases. When the re-initiation
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Figure 3. Effects of initial CTA concentration on the number-average
degree of polymerization, D P,, and contributions of various rate
constants of chain transfer, k, (cm® mol~! s™1): { 1 x 10° (solid);

3 x 103 (short dashed); 1 x 10° (dashed) and 1 x 107 (long dashed)}.

rate, ki, is comparable to the propagation rate, k,, one observes
very little change in the polymerization rate. When the re-
initiation rate, k, is slow compared to the propagation rate,
i.e., when ki <« kp, one observes a large decrease in the
polymerization rate, R,.

Different types of transfer agents will exhibit different
kinetic behaviours, which result in variations in the
polymerization rate and therefore changes to the number-
average degree of polymerization, D P, [20]. The results in
figure 3 demonstrate the effects of varying the initial CTA
concentration on the D P, when the re-initiation rate k; =
1x10° cm® mol~! s~!. For a particular type of CTA, i.e., when
ke = 1 x 107 cm® mol~! s~! (long dashed curve in figure 3),
it can be seen that increasing the initial CTA concentration
leads to a rapid decrease in DP, and that the DP, value
decreases more slowly to the lowest value shown. This result
indicates that, for an appropriate concentration of CTA, i.e.,
1 x 107% < [CTA]yp < 4 x 107° molcm™3, DP,, is always
reduced with the inclusion of CTA and that the reduction is
larger for higher CTA concentrations. Furthermore, when
ke > 1 x 107 cm® mol~! s7!, the model predicts that above
some specific CTA concentration a threshold exists and further
increases do not result in any further significant reduction in
DP,, ie., when [CTA]y > 4 x 107° molcm™3. Ideally,
one wishes to identify the least amount of CTA required in
order to achieve the largest reduction in the number-average
of polymerization, D P,,. We also note that, for the same initial
CTA concentration, a reduction in D P, also takes place for an
increase in chain transfer kinetic value, k. Thus the addition
of different types and concentrations of chain transfer agent is
predicted to have different effects on the value of DP, and
therefore on the average polymer chain length in the otherwise
identical photopolymer system. As discussed in section 3,
the non-local response length, /o, and the number-average
degree of polymerization, D P,,, are both related to the average
polymer chain length. We would expect that any significant
reduction in the number-average degree of polymerization,

i -~ e e = =]
1.5 ¢ - :X_ T A
¥ , Jo=60nm 1
10t 4, Jo=45nm :
¥ 4 Jo=30nm ]
05 ]
00 L —— —
0 50 100 150
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Figure 4. Simulations of the growth curves of refractive index
modulation, n;, at A = 400 nm for various values of the non-local
response length, /o (nm): {0 (solid); 30 (long dashed); 45 (dashed)
and 60 (short dashed) }.
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Figure 5. Simulations of the spatial frequency response of saturation
refractive index modulation, 72, for various values of the non-local
response length, /o (nm): {0 (solid); 30 (long dashed); 45 (dashed)
and 60 (short dashed)}.

DP,, should be accompanied by a reduction in the non-local
response length, 4/o, and therefore by an improvement in the
refractive index modulation, 1, which can be recorded at high
spatial frequencies in the material.

In order to demonstrate the relationship between /o and
ny, figure 4 shows four simulated growth curves of refractive
index modulation, np, for four different values of +/o. In all
cases the same typical rate constant values employed earlier
in this section are used. We see that larger values of /o
lead to lower saturation (maximum) values of n; for the same
grating period. In other words, a lower /o value indicates
that more localized polymerization, involving the generation of
shorter polymer chains, takes place during holographic grating
formation.

Figure 5 shows the saturation refractive index modulation,
n{", plotted as a function of the grating spatial frequency,
for the same grating parameter values as used in figure 4.
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These results predict that lower /o values lead to a significant
improvement in the high spatial frequency response of the
material and therefore a reduction in the high spatial frequency
roll-off observed experimentally.  This is an important
prediction of the NPDD model and motivates the study of
the feasibility of applying chain transfer agents in free radical
based photopolymer materials.

5. Conclusion

A detailed discussion of a kinetic model of free radical
photopolymerization has been presented, which includes the
major photochemical reactions and mass transport effects
known to occur during the holographic grating formation
process. This extended NPDD model, which includes the
effects of chain transfer and re-initiation kinetics, has been
applied to examine (i) the general effect of chain transfer agents
on the photopolymer kinetic performance, (ii) the specific
effects of chain transfer agent on the average polymer chain
length formed, and (iii) the effects of the non-local spatial
frequency response parameter on the photopolymer material.

In this paper, for the first time, an extended NPDD
model is presented, which can be used to study the effects
of CTAs. It has been shown that the model predicts that
the average chain length formed can be controlled chemically
in this way, and that optimum types and concentrations of
CTAs can be identified. The extended NPDD model has
also been shown to predict that as the non-local parameter
decreases in size the high spatial frequency response of these
material systems improves. For the free radical photopolymer
system discussed, the non-local parameter has been associated
with polymerization taking place due to polymer chain growth
at points away from the point of initiation. Therefore,
this is assumed to be an intimate link between the average
polymer chain length, the polymer radius of gyration and the
smearing effect during formation [31], which is quantified in
the NPDD model by the non-local parameter, o. Based on our
results, it is reasonable to suggest that a detailed quantitative
experimental study of the use of CTAs to control the spatial
frequency response should be carried out. An experimental
examination of a number of chain transfer agents is presented
in part II of this series of papers. This experimental study
involves various concentrations of a number of CTAs being
added to the standard AA/PVA material and followed by
the extraction of key kinetic parameter values by fitting the
extended NPDD model presented in this paper, part I, to the
resulting experimental data. The results support the use of
CTAs to improve spatial frequency response in free radical
photopolymerization systems.
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