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Abstract: This paper discusses optimal damping profiles for a heaving buoy Wave Energy
Converter (WEC) with a single degree of freedom. The goal is to examine how the device can
be controlled to harvest maximum energy from incident waves. Both latching and declutching
strategies are allowed via a general parametrization of the damping force. Ultimately, the
research attempts to determine the best control strategy to apply considering the relative
resonant frequency of the device and the monochromatic wave frequency set.
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1. INTRODUCTION

When the excitation force of the waves hitting a heaving
buoy WEC is in phase with the velocity of the device,
the energy captured is maximum (Falnes (2002)). Nev-
ertheless, this phenomenon of resonance rarely occurs in
real sea conditions. Consequently, to enhance the energy
extracted, some control method have been investigated.
Among several strategies suggested since the past three
decades, latching and declutching are categorized as phase
control method. Latching was originally observed by Budal
and Falnes (1975). Further work has been done by a variety
of researchers (Falnes and Lillebekken (2003); Babarit et
al. (2004); Korde (2002); Wright et al. (2003); Greenhow
and White (1997)).

Declutching was introduced later on by Salter et al. (2002)
and also by Wright et al. (2003), under the label of ’free-
wheeling’, while Babarit et al. (2009) has explored this
control strategy in detail.

Control is not only made difficult by the randomness of the
waves but also by the wave-device interaction as a process
with memory. To overcome this challenge, control should
be considered as a crucial issue to improve the efficiency
of a point absorber.

To date, although several papers examine separately both
latching and declutching, no one can reasonably state
which strategy would be the most appropriate for a WEC
and under which conditions. The following study aims
to confront a broad range of damping profiles permitted
by our parametrization including both latching and de-
clutching. At the end, this paper aims to find out which
damping profile is the most favorable in terms of capture of
energy for each monochromatic excitation force frequency
experienced.

Table 1. Hydrodynamic model parameters

Parameter Description
A(ww) Amplitude of the excitation force
Brad(ww) Radiation damping
Bpro(t) PTO damping
K Stiffness
M Mass of the device
My (ww) Added mass
Ww Wayve frequency

2. MATHEMATICAL MODEL
2.1 Governing Equations

In this work, a cylindrical buoy, constrained to move in the
vertical motion (heave motion) only, has been considered.
Each term of the hydrodynamic model is described in table
1, with the dynamics governed by (1). A(wy), Brad(ww),
K, M and m,(w,) has been directly computed in the
time domain using the seakeeping dedicated BEM code
ACHIL3D Clement (1997) The approach here focusses on
simplifying the fully parameterized hydrodynamic model
keeping the main characteristics of a realistic mathemati-
cal model. The governing equation is given by:

Fer(t) = (M + my(wey))E(t) + (Bred(ww) + Bpro(t))(t)

+Kx(t)

(1)

(1) can be conveniently expressed in state-space (compan-
ion) form, as:
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(2) was directly coded using a zero-order hold (ZOH) dis-
cretization method to calculate the hydrodynamic model.
During all this study, the excitation force will be assumed
to be monochromatic.

Fer(t) = A(wy) sin(wy,t) (3)
where A(w,,) is the amplitude of the excitation force at
Wep-

2.2 Power and Energy
The Power Take-Off (PTO) device is represented by

the damper. Subsequently, the power transferred to the
damper Py for such a hydraulic system is given by:

Py(t) = force x velocity = Bpro(t)x(t) x &(t)

The energy developed in the damper over a period t; is:

Eaty) = [ Patt)dt = /OtprTo(t)j:(t)th (5)

0

The objective of our study is to maximize the energy
developed in the damper. Theoretically, one can determine
that energy is maximized when:

wa = KT +my () = wa (6)
where m,(c0) is the added mass at the infinity of the
device when the w,, tends to the infinity, wg is the natural
resonance frequency of the device and w,, is the incident
wave frequency. Under such a condition, the velocity
profile of the device is in phase with the excitation force.

3. PARAMETRIZATION OF THE DAMPING FORCE
3.1 Sigmoid Parametrization

The main idea behind our study is borne by the parametriza-
tion of the damping profile Bpro. Indeed, the choice of a
general sigmoid function to evaluate the optimal loading
regime is crucial. The form of the sigmoid function is
detailed as followed:

Bmam - Bmzn

BPTO(t) = 1—|—e(_ﬁ(t—t*))

Such a function allows a certain range of possibili-
ties for the damping profile. In particular, three well-
distinguished parameterizations can be found with regards
to (7): a latching-like, an invariant constant value and a
declutching-like (as illustrated by fig. 1).

In order to achieve this degree of freedom within the
parametrization, the four variables of (7) (see table 2)
will be treated simultaneously. Fig. 1 shows that profiles
of both phase control solutions are in stark contrast to
each other. Latching initially employs a large damping
value, effectively locking the device in position, whereas
declutching initially employs a tiny damping value in or-
der to achieve velocity build up. Since the wave energy
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—--- Declutching-like
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Fig. 1. Three possible damping profiles with the sigmoid

Table 2. Sigmoid parameters

Parameter Description
Bmax upper boundary
Bpin lower boundary

B slope
t* time delay

absorbed is converted in the damping term (see (6)), the
question arises as to which of these damping profiles is
optimal in terms of energy conversion?

The sign of the parameter 3 determines wether latching
(8 negative) or declutching (8 positive) has to be applied.
In other words, 3 has to be considered as the decisive
parameter for the purpose of this study.

8.2 Latching Control

Latching control consist of locking the motion of the body
at the very moment when its velocity vanishes. Then, the
body is released after the most favorable time to main-
tain the device motion in phase with the wave excitation
force. An important number of studies has been done
on latching control. In the early 80’s, Budal and Falnes
(1975) introduced firstly this concept applied to a point
absorber. It has been theoretically detailed by Greenhow
and White (1997) as well as Eidsmoen (1995). Practical
studies inspired from this work have been led by Korde
(2002).

Probably the main advantage of latching remains on the
no-need to deliver energy to the device while it is engaged.
Practically, this can be achieved by means of a mechanical
brake or open close valves on the hydraulic lines of the
PTO system.

In our work, the sigmoid is implemented and synchronized
on a period-by-period bias. Discrete control methods to
configure latching are explored in the paper by Babarit et
al. (2004) such as the ramps alternated maxima as well as
the equal ending ramps strategies.

Here, latching is effected when  is negative as illustrated
in fig. 1. Moreover, the finite damping value reached af-
ter releasing the device, has to be chosen by considering
energy absorption versus design limitations on the ampli-
tude of the oscillation of the buoy. From Ringwood and
Butler (2004), it can be proven that the choice of damping
value has insignificant effect on the optimum latched time



period. Thus, the single and most crucial control variable,
for a point absorber system employing a latching strategy,
becomes the latching duration, denoted T7,. Fig. 2 depicts
the calculation of the latched time as a representation of
the velocity and the position.
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Fig. 2. Latching calculations

One can graphically evaluate the dynamic response period
as (see figure 2):

tl—t():tg—tQZTw/2—TL (8)

with T, the period of the incoming waves.

3.8 Declutching Control

Position

Position

Time

Fig. 3. Position and velocity controlled by declutching

Notionally, declutching can be seen as the reverse control
strategy of latching (see fig. 2). Also called unlatching
or freewheeling, as denoted by Wright et al. (2003), this
strategy was originally introduced by Salter et al. (2002).
Prior to Salter et al. (2002), declutching was mentioned by
Justino and Falcao (2000) for an oscillating wave column
device but not as a mean of controlling the PTO force. At
some stage during a declutching procedure, the PTO force

encountered a zero value.

To date, the article written by Babarit et al. (2009) ex-
plores precisely the issue of declutching. It is shown that
declutching can assess the energy capture width of a point
absorber as efficiently as a continuous controlled variation
of the PTO force strategy. In their paper, Babarit et al.
(2009) emphasize the fact that declutching requires only a
by-pass valve in the circuit of the hydraulic cylinder to be
implemented.

Unlike latching, declutching corresponds to a positive
value of the slope of the damping profile. Once again,
declutching strategy is passive. Therefore, it does not need
reactive power which means no extra power contribution is
required to control the PTO force. Unfortunately, Babarit
et al. (2009) have proven that the issue of the future
knowledge of the excitation force stays when irregular sea
states are considered. Following the same pattern as fig.
2, fig. 3 shows the two main motion characteristics of the
declutching.

4. OPTIMIZATION PROCEDURE

In this section, the tools used to compute the parametriza-
tion of the sigmoid function and run the optimization
will be pointed out. Since our problem is non-convex and
stochastic, a genetic algorithm (GA) and the Nelder-Mead
algorithm have been chosen to find the global maximum of
our objective function [5]. Finally, to improve the accuracy
of the results obtained, the Levemberg-Marquardt has
been used.

4.1 Genetic Algorithm

The parameters of the sigmoid in (7) were adapted, us-
ing a genetic algorithm (Goldberg (1989)), in order to
maximize the energy function over a wave period (5).
During the optimization process, it is assumed that the
shape of the damping profile remains independent of the
model of our hydrodynamic system (2). Henceforth, the
optimal damping profile expected will be accepted as the
best one in order to harvest the maximum of energy. A
genetic algorithm (GA), with elitism, was chosen since
the performance surface to be searched is non-convex with
respect to the sigmoid parameters.

The capabilities of such algorithms for optimizing control
problems was examined by Gunn et al. (2009). Addition-
ally, Gunn et al. (2009) explains GA suits particularly
well problem which requires a parametrization within the
objective function. Hereby, the main benefit of using GA
rest on the wide range which can be attributed for each of
the four variables used. Since the performance function to
be searched is non-convex and the problem is stochastic,
GA has been naturally employed. For the study, a binary
type of coding was performed. Table 3 defines the main
settings provided for this particular type of coding.

The range of each parameter are grouped together in the
table 4. One can note that both latching and declutching
cases can be achieved throughout such ranges, respecting
what has been raised in section 3.1.



4.2 Nelder-Mead Algorithm

In order to check the results get from the GA simulations,
one algorithm will be introduced.

Nelder-Mead algorithm is a well known method for op-
timizing a numerical problem. It is considered as part
of the simplex algorithm type. Basically, the concept of
a simplex relies on the extrapolation of the behavior of
the objective function following the decision vector. Unlike
modern optimization methods, the NelderMead heuristic
can converge to a non-stationary point unless the problem
satisfies stronger conditions than are necessary for modern
methods.

For the purpose of our work, the simplex algorithm pro-
vides a second optimization method which is meant to
ensure that directions taken by Bi,in, Bmaz, t° and 3
via the GA are correct. Furthermore, the Nelder-Mead
was run before all optimization for key initializations.
The objective of such tests relies on the validation of the
hydrodynamic model by checking few well-known results.

4.8 Levemberg-Marquardt Algorithm

Levemberg-Marquardt resembles the well-known Gauss-
Newton algorithm. Actually, the minimization is based on
a gradient descent method. Levemberg-Marquardt opti-
mization is considered to be more robust than the Gauss-
Newton as it finds a solution even if it starts very far
off the global minimum. On the other hand, for well-
behaved functions and reasonable initial parameters, the
Levemberg-Marquardt tends to be a bit slower than the
Gauss-Newton.

For the purpose of our study, the gradient algorithm
Levemberg-Marquardt has refined the four values coming
from the GA for each wave frequency experienced. In the
mean time, the absorbed energy possibly to be captured
was slightly improved.

5. RESULTS AND DISCUSSIONS

This section displays and comments the results brought
by the optimization procedure. A set of 11 successive wave
frequency has been experienced (from w,, = 0.4 rad/s to
wy = 1.3 rad/s plus the resonance case). Table 5 gathers
the parameters optimized for each of them.

Around both sides of the resonance case, final values at-
tained for the maximization of the energy clearly indicate
the optimality of a specific strategy.

In terms of energy, fig. 4 provides the variation of the
maximized amount of energy which can be harvested over
one period with the wave frequency. One can appreciate

Table 3. Genetic algorithms settings

Table 4. Range of parameter

Range Bmin Bmax t* Jé]
Min 0 0 0 —2000
Max 50 1e20 1Period 2000
Table 5. Optimized parameters of the sigmoid
Ww Bmin Bmam t* ﬂ strategy
0.4 21 3.7TE+08 | 4.2 —500 Latching
0.5 38 43E+08 | 2.6 | —200 Latching
0.6 33 82E+06 | 1.7 | —100 Latching
0.7 6 5.5E + 08 1 —3000 Latching
0.8 5 9.9E +05 | 0.8 | —3000 Latching
0.865 | 2.6E+04 | 2.6E + 04 0 0 Linear

0.9 35 92E+04 | 1.9 3000 Decluthcing
1.0 17 6.8E+19 | 34 100 Decluthcing
1.1 36 3.3E406 | 2.4 100 Decluthcing
1.2 36 5.7TE 406 | 2.2 100 Decluthcing
1.3 13 70E 416 | 2.6 100 Decluthcing

Parameter Binary
Population size 100
Individual size 4

Number of generations 30
Generation gap 0.7

Selection Roulette Wheel
Recombination Crossover shuffle
Crossover rate 0.7

Mutation Simple mutation
Mutation rate 0.035

the steadily decreasing curve followed by our target char-
acteristic, the absorbed energy. One should also notice
the benefit, in the energy absorption, brought by both
declutching and latching strategies in comparison with the
uncontrolled case.

1.E+08

< Latching strategy

x Linear strategy

< A Declutching strategy
o Uncontrolled

1.E+07

1.E+06 -

E+05

Energy (Ws)

1.E+04

1.E+03

1.E+02

03 04 05 0.6 07 .8 0.9 1
Wave Frequency (rad/s)

Fig. 4. Variation of the energy developed in the damper
over one period with the wave frequency

5.1 wy < wy, Latching strategy

When the natural resonance frequency of the device is
greater than the incoming waves frequency, the value of
[ obtained is negative. The magnitude of the parameter §
is quite important. Hence, the transition between the two
steady extreme states of the damping profile has to be
almost instantaneous. In such a case, a latching strategy
has to adopted. Fig. 5 plots the profile of the damping
force which should be applied following the optimized
parameters found when w,, < wqy.

Fig. 6 represents the motion of the device at the wave
frequency w,, = 0.5. One can note that this graph is in
consistence with fig. 2. One can also assess the important
amplitude of the device elevation.

It is interesting to compare the optimized parameter t*
with the theoretical optimal latching duration determined
by extrapolation of (8). As illustrated in fig. 7, one can
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Fig. 5. Best damping profile strategy to apply when w,, <
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Fig. 6. Simulation of the motion of a heaving buoy wave
energy converter with latching control

appreciate the very relevant adequacy of the value given
though the optimization procedure to the theoretical latch-
ing duration expected.
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Fig. 7. Variation of the optimal latching time with the

wave frequency

5.2 wy = wq, Linear constant damping

At resonance, w,, = 0.865 (rad/s), our optimization pro-
cedure leads to a linear damping profile. Besides, the
constant damping value indicated for the PTO (Bpro =
26567 (kg/s))is very close to the radiation damping at
this very particular wave frequency (Byqq(w, = 0.865) =
24095 (kg/s)).

To assess the accuracy of this result, fig. 8 confirms that
the position and the excitation force are in phase. As a
result, phase control is no longer required which support
the linear damping profile pointed out by the optimization
procedure. Furthermore, Falnes (2002) has proven that to
magnify the capture of energy at resonance, the PTO has
to fully compensate the radiation damping (consequence
of the governing equation (1)).
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Fig. 8. Simulation of the motion of a heaving buoy wave
energy converter at resonance

5.8 wy > wq, Declutching strategy

For a wave frequency greater than the natural resonant
frequency of the device, our optimization procedure gives
a declutching strategy. Unlike the case described in section
5.1, the best value of § is negative. The typical damping
profile for the wave frequency greater than wy is plotted
in fig. 9 (wy, = 1.2 (rad/s)).

The motion of the device when w,, = 1.2 (rad/s) is given
by fig. 10. One can note the smaller amplitude of the
motion in comparison with both latching and linear cases
observed in fig. 6 and 8. In addition, the sudden increase
slope of the velocity notable in fig. 10 impose the body to
maintain itself in phase with the excitation force. At the
very moment the velocity suddenly changes, one can note
that the body is thus force to oscillate faster.

Fig. 9, as well as fig. 5 includes only very sharp transition
for the optimal damping profile. The absolute value of §
remains important which implies that the best strategy
should implement an almost instantaneous transition be-
tween the two extreme damping states (initial and final
damping values).
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Fig. 10. Simulation of the motion of a heaving buoy wave
energy converter with declutching control

6. CONCLUSION

In this paper, the damping profile for a heaving buoy over
each wave period was parameterized by a general sigmoid
function. By employing an optimization technique, we
calculated the optimal damping profile for a range of inci-
dent wave frequencies, including the resonant frequency of
the device. The optimal damping strategy moves from a
latching strategy when w,, < wq to a declutching strategy
when w,, > wq. Interestingly, a hard switching function
for Bpro(t) is preferred in both cases. This is consistent
with what is traditionally known for latching, but also
conforms the recommendations in Babarit et al. (2009)
for economical declutching.

In order to focus on fundamental properties, this work has
considered monochromatic waves; however, a greater range
of (potential overlapping) possibilities exist for polychro-
matic seas and situations where latching and/or declutch-
ing is considered over multiple wave periods or pseudo-
periods.
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