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Abstract — Optical Emission Spectroscopy (OES) is a non-intrusive plasma diagnostic
technique that can be used to measure the chemical changes in a plasma that is in-
creasingly being considered for monitoring and control of plasma etch processes. In the
practice of collecting OES data for plasma etching, it is inevitable that noise is included
in the measurements. The existence of noise can destroy signals or at least make the
identification and interpretation of signal patterns unreliable, hence appropriate filter-
ing and pre-processing of the data is needed prior to application of automated feature
extraction and analysis techniques. In the absence of a priori knowledge of the noise
characteristics and system bandwidth the selection of an appropriate noise suppression
filter bandwidth is a challenging problem. This paper explores the characteristics of the
noise inherent in OES measurements and proposes a systematic method for establish-
ing a suitable noise filter bandwidth based on the auto-correlation and cross-correlation
analyses of the filtered signals and their residuals.
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I Introduction

Optical Emission Spectroscopy (OES) is a non-
intrusive plasma diagnostic technique that can be
used to produce rich plasma chemical information
in real-time. It operates on the principle that plas-
mas emit light due to excited electrons within the
plasma continually falling from higher to lower en-
ergy levels, releasing energy in the form of photons.
The wavelengths of these photons are a function of
the change in energy levels [1] which are uniquely
determined by the structure of chemical species
in the plasma. As such, analysis of plasma emis-
sion spectra can be used to estimate the instanta-
neous composition of a plasma and track the den-
sity changes of the chemical species overtime.

In modern optical emission spectrometers anal-
ysis of light is performed by focusing it onto a
diffraction grating using a lens. The grating then
redirects the light onto a Charged Coupled Device
(CCD) detector with different wavelengths dis-
persed to different CCD pixels as shown in Fig.1.
In the CCD detectors, the photons are detected by

a photoactive detection area where they are con-
verted into electrons and accumulated in a capac-
itor that is periodically discharged for readout.
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Fig. 1: The diagram of an optical emission spectrom-
eter.

As the semiconductor industry moves towards
smaller and smaller feature sizes, OES is in-
creasingly being considered for process monitor-
ing and control of plasma etch processes [2], a key
step in the manufacture of modern integrated cir-
cuits. In a typical plasma etch chamber (Fig. 2)
gas is pumped into the chamber under vacuum



and ionised using a high power Microwave (MF)
source to create a plasma. A radio frequency
(RF) electromagnetic field accelerates the result-
ing ionised species towards the electrode, where
they interact both chemically and physically with
the wafer, etching away the exposed surface. OES
data, which consists of measurements of the op-
tical emission intensities as a function of wave-
length and time, is generally collected from the
exhaust plasma leaving the chamber using a multi-
channel spectrometer. As an example, Fig. 3
shows the OES data obtained for a typical polysil-
icon wafer etch step collected using an Ocean Op-
tics USB2000 spectrometer with a CCD detector
consisting of 2045 pixels (corresponding to 2045
wavelengths, ranging from 170nm to 875nm) with
a sampling interval of 0.75s.
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Fig. 2: A diagram showing the basic features of a
plasma etching chamber: MF=Microwave Frequency;
RF=Radio Frequency.

OES data is characterized by high dimensional-
ity and substantial redundancy making direct vi-
sualization and recognition of useful features and
key wavelengths difficult. Manual inspection is in
general impractical due to the huge volumes of
data involved in a typical manufacturing scenario,
requiring robust and automated data reduction,
feature extraction and analysis techniques. As a
precursor to the application of such techniques a
proper treatment of the noise on the OES signals is
needed, that is, channels with low signal-to-noise
ratio need to be removed and appropriate filtering
applied to the remainder.

It is inevitable that OES signals contain noise.
When significant noise is present the signals can
be completely destroyed or, at the very least, ob-
scured to the extent that the identification and in-
terpretation of signal patterns becomes unreliable.
Hence, it is necessary to produce an estimate of
noise level so that appropriate pre-processing and
filtering can be applied to clean up the signals for
better pattern extraction.

A number of possibilities exist for estimating the
noise level on OES signals. If it is feasible to con-
duct controlled experiments in-situ a direct esti-

Fig. 3: Plasma etch OES data for a single wafer,
recorded over a complete etch step.

mate of the background noise level can be obtained
by collecting OES data in the absence of a plasma
or with the OES CCD detector occluded. However,
this approach is not reliable as OES measurement
noise is known to have signal dependent charac-
teristics and can vary over time, for example, due
to changes in the absorption characteristics of the
plasma chamber wall, chamber temperature and
plasma gases.

An alternative approach is to estimate the noise
level from inactive OES channels during normal
operation, that is, channels that are recording sig-
nals at wavelengths where the plasma is not emit-
ting light. In principle the inactive channels can be
established a priori from knowledge of the plasma
chemistry and excitation levels, but in practice
the complex chemistry and correspondingly dense
spectral emissions of the plasmas employed in etch
processes makes this infeasible. Consequently, in-
active channels are generally selected manually by
empirical observation which is clearly subjective
and can be unreliable since low intensity emissions
can be difficult to detect in the noise. It should also
be noted that using inactive channels as a noise
reference cannot take account of signal dependent
noise characteristics.

A third approach which overcomes the issues
with the previous methods is to estimate the
noise level on each channel following application
of an appropriately selected noise suppression fil-
ter. Defining the raw signal of the ith OES channel
as xi and the filtered signal as xf

i , the noise power
can be estimated as

Ni = pow(xi − xf
i ) = E[(xi − xf

i )2], (1)

where pow(·) denotes the signal power and E[·]
is the expectation operator. Furthermore, the
signal-to-noise ratio (SNR), the standard method
for measuring the strength of a signal relative to
the noise, can be estimated as

SNRi = pow(xf
i )/pow(xi − xf

i ). (2)

The validity of this approach relies on the user
having predetermined the appropriate bandwidth



for the noise suppression filter. In the absence of a
priori knowledge of the characteristics of the noise
and OES signal bandwidth this is a challenging
problem, and the focus of the remainder of this
paper.

In Section two the main characteristics of OES
noise are described. Section 3 considers the corre-
lation that exists between channels and the use of
PCA to detect its presence. Local correlation anal-
ysis is proposed to estimate the number of chan-
nels that are highly correlated. Then a systematic
method for establishing a suitable noise filter band-
width is presented based on the auto-correlation
and cross-correlation analyses of the filtered sig-
nals and their residuals. Throughout the paper
the example data set presented in Fig. 3 is used
as a case study.

II Noise Sources

Before the noise analysis is presented, it is bene-
ficial to have an awareness of the different noise
generation sources in OES. Normally, noise is con-
sidered as being the high frequency variations in
signals. However, in plasma etch OES data, not
all the variations are caused by noise. As such,
we divide different variation sources into two cat-
egories: process variation and sensor noise, where
the process variation refers to any variations oc-
curring in the plasma emission system and sensor
noise refers to the noise occurring in the plasma
measuring system.

Some process variations are driven by recipe
changes, fluctuations in control variables, external
disturbances and the changes in the plasma chem-
istry as a result of etching byproducts, but these
are all relatively low frequency variations. The
high frequency process variations are driven by the
stochastic nature of the plasma emission process
and the inherent instability of the volatile etch by-
products generated by the plasma at room tem-
perature. The interactions between the molecules
and atoms of different etch by-products are unpre-
dictable, causing great uncertainty in the chemical
optical emissions.

The principal noise sources in the measurement
system are: shot noise, caused by the random fluc-
tuations in photon arrival times; thermal noise (or
dark noise), generated by thermal agitation of elec-
trons, the electronic components and wire; and
readout noise, including the conversion from an
analogue signal to a digital number. The strength
of shot noise increases with signal strength and is
generally the dominant noise for large signals.

From the list of sensor noise sources, we can see
that most noise can be regarded as white noise
(broadband noise). Low pass filtering of the signal
can be used to suppress the noise, but only at the
expense of also suppressing the contributions of

the high frequency process variations. However, in
practice this is not a concern as for monitoring and
control purposes we are only interested in patterns
generated by recipe changes, phase transitions and
process transients that operate at a much lower
frequency.

III Selecting the Filter Bandwidth

In using filtering to remove the high frequency
noise from the OES case study data set (Fig. 3),
a low-pass Butterworth filter is used in preference
to other widely used filters such as the Chebyshev
Type I/Type II filter and the elliptic filter, as it is
characterized by having a flat gain in its pass band
and hence, provides minimal distortion of the fil-
tered signals. Due to the slow roll-off into the stop
band, a high-order Butterworth filter is needed to
obtain faster roll-off. Here we employ a 4th-order
Butterworth filter.

a) Selecting the Filter Bandwidth Based on Sin-
gle Channels

To determine the cut-off frequency of the low-pass
filter, we begin by employing the DFT (Discrete
Fourier Transform) [3] to view the signal frequency
distribution. Taking the strongest OES signal as
an example, Fig. 4 (a) and (b) show the DFT
and the cumulative PSD (Power Spectral Density)
analysis of the signal, respectively. The cumulative
PSD analysis shows that 76.3% of the signal power
is contained in the bandwidth 0-0.1Hz and 88.2%
of the signal power contained in the bandwidth 0-
0.3Hz.
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Fig. 4: Analysis of the strongest signal: (a) DFT anal-
ysis; (b) Cumulative PSD analysis

Let xi(Rm×1) denote the raw signal from the
ith OES channel, for a given low-pass Butterworth
filter, the filtered signal (xf

i) is defined as

xf
i = filt(xi) (3)

where filt(·) is the butterworth filtering function
and the residual xr

i is given by

xr
i = xi − xf

i. (4)

One approach to selecting the best low-pass filter
(LPF) bandwidth, fB, is to choose the frequency



that minimises the correlation between the filtered
signal (xf

i) and the residual signal (xr
i), i.e.

fB = arg min
f
|corr(xf

i,x
r
i)|, (5)

where corr(·) denotes the correlation function. A
correlation analysis of the filtered signal and resid-
ual signal, as a function of LPF bandwidth is
shown in Fig. 5 for the two selected signals.
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Fig. 5: Correlation between the filtered signal and
residual signal as a function of f (shaded area showing
the 95% confidence interval for the correlation coeffi-
cient estimates): (a) Strongest signal; (b) The signal
with the third highest power

In Fig. 5 the shaded area shows the 95% con-
fidence interval for the correlation coefficient es-
timates. Fig. 5 (a) shows that the minimal cor-
relation is obtained when f = 0.09Hz and that
the correlation is statistically insignificant for f ≥
0.0755Hz. Using the same method, fB ≥ 0.0708Hz
for the second signal.

To evaluate the consistency of this approach, fB

was computed for each of the OES signals. Based
on a DFT and cumulative PSD analysis, the search
range for fB was set between 0.001Hz and 0.2Hz.
A plot of fB for all the OES channels is shown
in Fig. 6 (a), which shows that there is signifi-
cant uncertainty in the value of fB across channels
and that there is some local correlation in values.
Fig. 6 (b) reveals that the value of fB varies as
a function of signal power with the value of fB at
which correlation becomes insignificant, decreasing
as the power in the signal decreases. In addition
the spread in fB increases substantially as signal
power decreases (from 0.06-0.08Hz for high power
signals to 0.01-0.12Hz for low power signals).
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Fig. 6: fB for each OES signal: (a) Channels ordered
sequentially; (b) Channels in order of decreasing signal
strength.

Since fB estimates in Fig. 6 (b) are lower
bounds on suitable LPF bandwidths and the val-
ues computed for the largest signal powers are
the most reliable, fB ≥ 0.09Hz represents a good
compromise (96.2 % of channels) and choosing
fB = 0.1Hz achieves minimal correlation for most
channels (98.1 % of channels).

b) PCA of the Residual Signals

The single channel analysis in the previous sub-
section suggests that an appropriate LPF band-
width is 0.1Hz. In this section, Principal Compo-
nent Analysis (PCA) is used to look at the pat-
terns contained in the residuals across channels.
The residuals obtained from filtering all channels
with a 0.1Hz bandwidth LPF are shown in Fig. 7
(a). A PCA analysis of the residuals reveals that
the first PC explains 12.61% of the variance, with
4.48% and 3.98% variance explained by the sec-
ond and third PCs, respectively. The variance ex-
plained by the first 20 PCs is shown in Fig. 7
(b). This confirms that inter-channel patterns ex-
ist in the residual data (i.e. some of the resid-
ual signals are correlated). If the residual signals
were independent and identically distributed ran-
dom noise, then the variance explained by each
PC will be nearly the same. Applying PCA to
the residual signals obtained from filtering using
various filter bandwidths shows that inter-channel
correlation still exists in the residuals. This sug-
gests that there may be an intrinsic correlation in
the signals. In fact, because of the limited spectral
resolution of OES spectroscopes, the optical emis-
sion at a given wavelength will be detected over a
number of adjacent channels, leading to local cor-
relation. In the next subsection, an analysis of the
extent of this local correlation is given. Note that
the existence of local correlation in the residuals
corroborates the existence of high frequency pro-
cess variations.
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Fig. 7: (a) Residual signals, obtained by subtracting
the filtered signals from the original signals (LPF band-
width = 0.1Hz); (b) Variance explained by each PC in
a PCA analysis of the residual signals.

c) Local Correlation

Due to the limited OES spectroscope resolution,
the optical emission signals are detected simulta-



neously by a number of adjacent OES channels.
To assess the extent of this spectral spread, the
local correlation between channels is investigated.
The local correlation, rL

j , is defined as the corre-
lation between the signal (xi) from channel i and
the signal from the channel, j channels away from
channel i, (i.e. xi+j) averaged over all channel
positions, that is:

rL
j =

1
n− j

n−j∑

i=1

corr(xr
i ,x

r
i+j), for j ≥ 0 (6)

=
1

n + j

n∑

i=1−j

corr(xr
i ,x

r
i+j), for j ≤ 0. (7)

A plot of rL
j for the 0.1Hz LPF residual is given in

Fig. 8. It can be seen that the spectral spread is
±5 on either side of a given channel. The shaded
area shown in Fig. 8 denotes the 95% confidence
interval associated with each rL

j .
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Fig. 8: Local correlation, rL
j , for the 0.1Hz LPF resid-

ual, xr.

d) Crosscorrelation of the Residual Signals

To estimate the inter-channel correlation between
the residual signals, the following average crosscor-
relation is used:

r̄C =
1

n− l

n−l∑

i=1

(

∑n
j=i+l corr(x

r
i ,x

r
j)

n− i− l + 1
), (8)

where xr
i and xr

j are the ith and jth residual sig-
nals, respectively and l denotes the number of ad-
jacent channels that are correlated due to spectral
leakage. From the analysis in Section c), l = 6.
By omitting the locally correlated channels, the
value of r̄C better reflects the filter bandwidth de-
pendent correlation in the residual signals. Fig.
9 shows a plot of r̄C as a function of LPF band-
width and the shaded area denotes the 95% con-
fidence interval. The value of r̄C decreases with
increasing LPF bandwidth and drops below 0.1 for
fB ≥ 0.05Hz and 0.05 for fB ≥ 0.1Hz.

e) Crosscorrelation between the Residual Signals
and Filtered Signals

Crosscorrelation analysis is used to estimate the
correlation between the filtered signals and resid-
uals. Denoting r̄i as the correlation between xf

i
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Fig. 9: Changes of r̄C as a function of LPF bandwidth.

and xr
i (as defined in Eq. (3) and Eq. (4), respec-

tively), the averaged correlation coefficient (r̄) for
all the channels is defined as

r̄ =
1
n

n∑

i=1

r̄i, (9)

where r̄i = corr(xf
i,x

r
i) and n is the number of

channels. Fig. 10 shows the change of r̄ as a func-
tion of LPF bandwidth. It can be seen that the
averaged correlation between the filtered signals
and residuals is insignificant for fB ≥ 0.1Hz.
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Fig. 10: Changes of r̄ for different LPF bandwidths.

f) Autocorrelation of the Residual Signals

Autocorrelation analysis is employed to estimate
the correlation between the residual signal and its
time-lagged values. If the residual signal is noise,
then no significant correlation should exist. To
measure the autocorrelation for all the residual sig-
nals, we define a new function, r̄A:

r̄A =
1

2(m− 1)n

m−1∑

j=−m+1,j 6=0

|
n∑

i=1

corr(xr
i ,x

r
i (j))|,

(10)

where n is the number of OES channels and xr
i (j)

is the jth lagged signal of xr
i , (xr

i ∈ Rm×1). Hence,
r̄A measures the averaged correlation levels be-
tween the residual signal and its lagged signals
over all channels. The smaller the value of r̄A,
the lower the correlation in the residuals. Fig. 11
shows the variation in r̄A as a function of LPF
bandwidth and the shaded area denotes the 95%
confidence interval. The value of r̄A decreases with
increasing LPF bandwidth and drops below 0.05
for fB ≥ 0.05Hz and close to 0 for fB ≥ 0.1Hz.
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Fig. 11: Changes of r̄A for different LPF bandwidths.

g) Selection of the LPF Bandwidth

While the analysis in the previous sections can-
not provide an exact optimal solution to the LPF
bandwidth, it is clear that there is no method that
can be self-sufficient. As shown in Table 1, the
lower bounds on fB identified using the different
techniques are relatively consistent. Thus, for the
case study considered, 0.1Hz represents a balanced
choice for the noise suppression filter bandwidth.

Method LPF Bandwidth, fB , (Hz)

Single signal based fB ≥ 0.09

r̄C fB ≥ 0.1

r̄ fB ≥ 0.1

r̄A fB ≥ 0.05

Table 1: LPF bandwidth selected by different meth-
ods

IV Filtering Result Visualization

The results of filtering the raw OES signals using
a 0.1Hz, 4th order Butterworth LPF are shown in
Fig. 12. Plot (a) shows the filtered signals and
plot (b) the residuals, respectively.

(a) (b)

Fig. 12: The raw OES data filtered by a 4th order
low-pass Butterworth filter with cut-off frequency set
at 0.1Hz: (a) Filtered signals; (b) Residuals

To observe the effect of filtering on individual
channels, the results for three channels are shown
in Fig. 13. These channels correspond to the
33.33%, 66.67% and 98.85% division points of the
cumulative signal power plot (sorted in descending
order) as shown in Fig. 13 (a). This also confirms
that the selection of 0.1Hz as the LPF bandwidth
is reasonable for filtering the OES signals.
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Fig. 13: Filtering results for three selected signals: (a)
Cumulative signal power plot for signals sorted in de-
scending power order; (b), (c) and (d) show the filter-
ing results for the signals corresponding to the 33.33%,
66.67% and 98.85% division points of the cumulative
signal power plot

V Conclusions

In this paper, an analysis has been presented of
the noise in OES data from plasma etch processes.
Using a representative case study, it has been high-
lighted that the noise varies as a function of signal
power/wavelengths and that noise on successive
channels is correlated due to the limited spectral
resolution of spectrometers. Experimental results
show that the proposed systematic method of us-
ing auto-correlation and cross-correlation to anal-
yse the filtered and residual signals can provide an
effective solution to the problem of selecting the
filter bandwidth for OES signal filtering and noise
removal.
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