
  

 

Abstract— This paper describes the calculation of statistical, 

spatial and spatiotemporal features from a novel non-contact 

technology for sleep monitoring, the Under Mattress Bed 

Sensor (UMBS). Data was collected from two relatively healthy 

adults with a possible sleep disorder in a clinical setting. 

Methods for the extraction of statistical data describing overall 

bed restlessness, a spatial description of movement (centre and 

spread of pressure) and a spatiotemporal description of each 

in-bed body movement over the entire sleeping episode are 

discussed using the pressure sensing grid. These provide a 

quantitative description of sleep and restlessness throughout 

the night.  

I. INTRODUCTION 

T has been found that sleep duration (for both long and 

short sleepers) is associated with an increased risk of 

death (relative risk of 1.3 and 1.12  respectively) [1]. It has 

also been shown that sleep disturbances may be indicative of 

poor health and functional deficits, especially in older adults 

[2,3]. Total sleep time is reduced in the elderly and this is 

not due to a reduced need for sleep, but in a diminished 

ability to sleep [4]. The NIH in the US  has identified the 

need for a large scale screening and diagnoses methodology 

to evaluate the large population suspected of having sleep 

disorders [5]. Long term sleep monitoring has been shown to 

reflect changes in health status, such as those from serious 

life events and progression of an illness, specifically in older 

adults [6]. We propose a non-contact, ambient sleep 

monitoring technology, suitable for long-term deployment, 

which examines bed restlessness and sleeping patterns. 

Polysomnography (PSG) is the gold standard sleep 

assessment technology and involves the recording of 

multiple physiological signals (including brain activity, 

muscle tone, eye movements, heart rate and respiration) 

during sleep. This is intrusive, costly, time consuming, often 

alienates the patient and is not suitable for large scale 

screening or diagnosis . Each 30-second epoch of sleep is 

classified by a trained scorer according to a strictly defined 

set of rules [7]. An inter-rater agreement rate of 82% has 

been reported using data from multiple subjects and across 
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separate sleep laboratories [8]. Wrist actigraphy is the 

current ambulatory gold standard accumulating the activity 

of the patient using a single metric over a pre-defined 

duration [9]. It has been shown to estimate nocturnal sleep 

duration and sleep-wake patterns reliably where PSG is not a 

suitable alternative. A low wake detection capacity is often 

reported with this device and accuracy is dependent on the 

active participation of the wearer. Sleep diaries are 

subjective questionnaires used (often concomitantly with 

wrist actigraphy) to estimate sleep duration, however their 

validity again relies on the participant. Each of these 

technologies has advantages and disadvantages, linked to the 

trade-off made between accuracy and long term deployment.  

Indirect technologies offer a more ambient, practical 

approach to long term sleep monitoring (by avoiding 

conscious participation of the subject) and can include video 

and PIR based monitoring, radar based technologies, load-

cell movement detection sensors and under mattress sensors. 

We demonstrate the potential of the under mattress bed 

sensor (UMBS) in capturing nocturnal movement 

information such as a slow turn or a higher intensity posture 

shift. The UMBS consists of a grid of 24 fibre optic based 

pressure sensors, or tactels, integrated into a lightweight 1cm 

x 90 cm x 23cm foam mat. It was originally developed by 

Tactex Controls Inc. as a bed occupancy sensor. However 

the application of novel algorithms provides a description of 

in-bed movement throughout the sleeping episode. This 

system is an ideal ambient, pervasive sleep monitoring 

solution and a genuine competitor to wrist actigraphy [10].  

This paper provides a validation of algorithms which 

extract movement-related features furthering previous 

discussion regarding its potential sleep monitoring 

application. Section II provides details of the technology, the 

data collection system and of the cohort. Section III 

discusses the extraction of statistical, spatial and 

spatiotemporal features from the UMBS data. The results are 

presented in Section IV and a brief discussion is given in 

Section V.  

 

 
Figure 1. Typical Position of UMBS Relative to the Subject. 
In practice, it is placed beneath the mattress during recording. 
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Figure 2. Example Bed Movement Data with the Posture of the Subject Changing from Lying on their Back (B), Front (F), Left (L) and 
Right (R) Sides. The change in the centre and spread of mediolateral (ML) position across the UMBS shows postural shifts.

II. METHODS 

A. UMBS and Data Collection System 

The UMBS pressure sensing grid was placed beneath the 

upper torso of the subject for the purpose of this data 

collection as shown in Figure 1. As the subject lies on the 

mattress, their body weight results in an increased pressure 

across the pressure sensing grid. Example data showing 

repeated postural shifts can be seen in Figure 2. 

The pressure applied to each of the 24 individual 

pressure tactels are continuously refreshed internally within 

the UMBS at a rate of 20 Hz. Data were polled from the 

UMBS using customized software run on a Dell Precision 

laptop with 2Gb of RAM and an Intel CPU. Data were 

collected at a non-constant sampling (mean: 15.28Hz; range: 

9.1Hz – 21.74Hz). This was due to a simplex polling 

protocol within the UMBS resulting in an inconsistent 

sampling rate. Linear interpolation was used to provide a 

constant sampling rate of 10Hz. Tactel values are nonlinear 

and could not be converted to absolute pressure values. 

B. Clinic-based UMBS Data Collection 

The sensor was deployed in a cohort of relatively healthy 

adults undergoing assessment for a potential sleep disorder 

at the Sleep Clinic in Peamount Hospital, Newcastle, Co. 

Kildare. This study was granted ethical approval by the 

Ethics Review Board at NUI Maynooth. Initial data from the 

two participants is analysed in this paper. Typical nocturnal 

UMBS data recorded over the first 233.3 minutes of the 

night for one participant can be seen in Figure 3.  

C. Typical Nocturnal Bed Movements 

The nocturnal UMBS movement patterns can be broadly 

classed into two separate categories: 1) large body 

movements, such as postural shifts and movement-related 

arousals, and 2) small body movements, such as those 

relating to breathing and heart rate. Data relating to large 

body movements are discussed in this paper. The large body 

movement patterns were further split into three categories; 

1) quick postural shifts, 2) quick postural shifts with a 

corresponding mediolateral change in position across the bed 

and 3) slow rolling movements across the bed.   

 

 
Figure 3. (a) Typical Nocturnal UMBS Data. (b) 

corresponding mediolateral shifts in the centre-point of 
pressure and spread of the pressure throughout the night. 

III. FEATURE EXTRACTION 

A flow chart describing the process of extracting the 

statistical, spatial and spatiotemporal features from the 

sensor data is given in Figure 5. 

A. Statistical Data 

Statistical UMBS features were derived to provide inter- 

and intra-daily comparisons of bed-restlessness. Data 

relating to general sleeping patterns can be derived from the 
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UMBS. Such metrics include nocturnal restlessness, number 

and duration of bed exits, time in bed, settling time and sleep 

start/end times. Nocturnal restlessness was quantified using 

the derivative of the UMBS data. The UMBS derived 

motion metric was validated using 60-seconds epochs in 

experimental conditions on 4 healthy adults against a web-

cam and a motion detecting algorithm [11]. The optimal 

movement detection threshold was selected empirically to 

provide high sensitivity and specificity rates. A previous 

comparison of UMBS motion metrics against wrist 

actigraphy has shown high agreement rates. Derived UMBS 

data has been shown to indicate bed restlessness and 

nocturnal rhythms in a community dwelling older adult 

population . 

B. Spatial Data 

Spatial UMBS features were derived to describe changes 

in the distribution of pressure across the sensor throughout 

the night. For each frame of data, the centroid of all „active 

tactels- (CAAT), derived using an empirically defined 

threshold, was found over both the horizontal and vertical 

directions and defined as the „centre of pressure‟. The 

„spread of pressure‟ across the UMBS was calculated by 

firstly reducing each frame of UMBS data to a one 

dimensional axis through a summation of the vertical tactels. 

This eight point axis was then linearly interpolated to 

contain 100 points. The spacing representing an eighty 

percent spread of pressure, beginning from the CAAT-point 

and spreading outwards, was calculated for each frame of 

UMBS data.  

Slow rolling turns result in a slow shift in the centre of 

pressure and a relatively low magnitude of movement. 

However, sudden movements contain a large magnitude of 

movement, as shown in Figure 2. The spread of the data was 

proposed to distinguish between side-lying, supine or prone 

sleeping postures. 

C. Spatiotemporal Data 

Spatiotemporal UMBS features examined motion-in-bed 

and extracted magnitude, duration and medio-lateral 

displacement for each movement. Epochs deemed to contain 

motion, as defined in Section III (A), were analysed using an 

empirically defined refractory period to find the end of that 

motion . Low-pass filtering was applied to smoothen out the 

signal and remove any non-large-movement related 

artefacts, such as breathing. Subsequently movement was 

defined to have occurred if the difference between the 

current tactel value and the next over all of the 24 tactels 

exceeded an empirically defined threshold. Metrics derived 

for each movement included: 

 The quantity of movement: the area under the curve 

during the movement; see Figure 4(b). 

 The magnitude of movement: the quantity of 

movement normalised by the duration of that 

movement 

 The displacement due to the movement: the medio-

lateral change in centre of pressure as a result of 

that movement. 

 The time to the peak motion: the time difference 

between the movement start and the peak time of 

movement. 

IV. RESULTS 

Example UMBS movement data is shown in Figure 2. 

However, these data are atypical as the movements are rapid 

(typically less than 5 seconds in duration) and the period 

between movements is short.  

Example statistical, spatial and spatiotemporal features 

for two participants are given in Table 1. The statistical data 

describes the nocturnal restlessness of the participant 

expressed as a percentage of time in bed. This was further 

broken down empirically into small, medium and large 

movements. A spatial analysis of the UMBS data describes 

the medio-lateral displacement between samples during the 

recording period. The spatiotemporal data extracted from the 

UMBS provides quantitative statistics on individual 

nocturnal movements. The duration of such movements over 

a whole night for two participants is detailed. 

 
Figure 4. (a) Typical UMBS data during a movement. (b) UMBS 

motion metric derived from active UMBS data; movement start 
and end times are shown (a refractory period is employed). 

 

 
Figure 5. UMBS feature extraction flow chart 
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Table I. Derived Nocturnal Movement Data 

  Sub 1 Sub 2 

Statistical 

Restlessness (%)   

Small 10.8 9.16 

Medium 2.35 4.05 

Large 4.32 4.26 

Spatial 

ML Change (%)   

< 0.1 Tactels 99.62 99.71 

0.5 > Tactels ≥ 0.1 0.358 0.27 

1 > Tactels ≥ 0.5 0.014 0.007 

≥ 1 Tactels 0.001 0.002 

Spatiotemporal 

Duration  

(no. movements) 
  

< 1 Sec 15 8 

5 > Sec ≥ 1 40 31 

10 > Sec ≥ 5 18 12 

≥ 10 Sec 25 16 

V. DISCUSSION AND CONCLUSIONS 

This paper describes a non-contact method of sleep 

monitoring suitable for real-world and clinical settings. It 

derives movement features from a participant‟s time-in-bed. 

It extracts general statistics relating to bed-restlessness over 

the whole night and also quantifies the in-bed-motion 

throughout the night. Methods of extracting spatial 

variations in posture and a spatiotemporal quantification for 

each movement are also discussed. For example, this system 

has the ability to discriminate between prolonged low 

intensity movements and sudden high intensity movements.  

Previous research has reported high agreement rates in 

the temporal discrimination of movement/non-movement 

monitoring using the UMBS compared to wrist actigraphy 

[12]. In addition to this, the calculation of quantitative 

statistics of nocturnal restlessness from the UMBS deployed 

in a real-world setting has also been previously reported 

upon [10]. This paper expands on this by taking advantage 

of the UMBS and analysing the movements spatially 

throughout the night. Collectively, the statistical, spatial and 

spatiotemporal descriptions of the nocturnal movements 

provide a more tangible description of in-bed-movement 

compared to wrist actigraphy, air-cells and RF motion 

sensors [9,13,14].  

A larger and more varied cohort will present a more 

coherent description of the variation of in-bed-movement 

amongst healthy adults, older adults and relatively healthy 

adults. This validation is currently underway. Future 

research will investigate the inferring of sleep quality, the 

detection of sleep apnoeas through the examination of the 

small body movements and the estimation of sleep and 

wakefulness augmenting the approach currently used in 

wrist actigraphy. 
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