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Abstract

This paper examines the short-term dynamics, macroeconomic
sensitivities, and longer-term trends in the variances and covariances
of national equity market index daily returns for eleven countries in
the Euro currency zone. We modify Colacito, Engle and Ghysel�s
Mixed Data Sampling Dynamic Conditional Correlation Garch model
to include a new scalar measure for the degree of correlatedness in
time-varying correlation matrices. We also explore the robustness of
the �ndings with a less model-dependent realized covariance estima-
tor. We �nd a secular trend toward higher correlation during our
sample period, and signi�cant linkages between macroeconomic and
market-wide variables and dynamic correlation. One notable �nding
is that average correlation between these markets is lower when their
average GDP growth rate is lower or when more of them have negative
GDP growth.
JEL Classi�cations: C51, C58, G15.
Keywords: dynamic conditional correlation, multivariate GARCH,

international stock market integration, European Monetary Union.

�Corresponding author. Tel: (353) 1 708-6662, Fax: (353) 1 708-3934, Email: Gre-
gory.connor@nuim.ie.

1



1 Introduction

This paper explores the changing magnitude of equity index return volatilities
and correlations within the Eurozone, both in response to dynamic variation
in the economic environment and in response to secular trends toward greater
capital market integration. Although there are other regional economic co-
operation agreements around the globe, the Eurozone is unique in the depth
and breadth of its economic and �nancial integration, including the use of a
common currency. This paper analyzes the equity market risk dynamics of
this uniquely integrated regional capital market.
We use the Midas-Garch model of Engle et al. (2008) to model the

dynamic volatilities of the daily returns of eleven Eurozone stock market
indices. As in Colacito et al. (2011), we combine the Midas-Garch model with
the Dynamic Conditional Correlation (DCC) model of Engle (2002) to model
the dynamic correlation matrix of the returns. We modify the DCC model
to include a new univariate measure of multivariate correlation magnitude.
With this simpli�ed DCC model, which is a special case of Engle�s more
general speci�cation, we analyze the relationship between macroeconomic
variables and the time-varying correlations between Eurozone markets.
As a robustness check, we also apply less model-dependent realized co-

variance estimators, together with the same univariate measure of correlation
magnitude, and �nd reasonably consistent empirical results.
We �nd that covariance stationary, two-component Midas-Garch volatil-

ity models with Garch(1,1) short-term components and mean-reverting, exponentially-
weighted medium-term components �t our daily equity index returns data
sample reasonably well. There is an autoregressive pattern in our scalar
measure of correlation magnitude. There is a strong positive trend toward
higher correlation magnitudes across these Eurozone markets over our sam-
ple time period. We �nd some evidence for a "downside correlation" e¤ect,
so that, ceteris paribus, Eurozone markets seem to be more correlated when
recent cumulative returns are on average lower within the region. We also
�nd evidence for a positive dynamic link between cross-market average vari-
ance and correlation magnitude within the region. Interestingly, correlation
magnitude varies positively with Eurozone GDP growth measures. In one
speci�cation of this e¤ect, we �nd a negative link between Eurozone business
downturns (the proportion of markets with negative quarterly GDP growth
rates) and correlation magnitude. In an alternative, related, speci�cation
correlation magnitude is higher during quarters when the cross-country av-

2



erage quarterly GDP growth rate is higher.
Our paper is related to several strands of the research literature. One

topic of considerable interest concerns the level and secular trend in interna-
tional capital market integration, e.g., Lessard (1974), Heston and Rouwen-
horst (1994), Drummen and Zimmerman (1992), Beckers et al. (1996),
Rouwenhorst (1999), Hopkins and Miller (2001) and Gri¢ n and Karolyj
(1998). Much of the work in this area has focussed upon European mar-
kets, re�ecting the continent�s six-decade experiment in politically-led re-
gional economic integration.
Another relevant research strand examines international spillover e¤ects

in stock markets, e.g., King andWadhwani (1990), Hamao et al. (1990), Bail-
lie et al. (1993), Engle et al. (1994), Booth and Tse (1996), and Goetzmann
et al. (2005). Related to this is the accumulated evidence that correlations
between �nancial markets are signi�cantly higher during periods of volatile
markets, as in Ang and Bekaert (1999), Longin and Solnik (1995, 2001), and
Capiello et al. (2006), and higher during "down" markets than during "up"
markets, as found by Erb et al. (1994), Longin and Solnik (2001) and De
Santis and Gerard (1997). Another related research area concerns empiri-
cal examination of the relationships between macroeconomic variables and
stock market volatility, e.g., O¢ cer (1973), Schwert (1989), Hamilton and
Lin (1996) and Brandt and Kang (2004).
In terms of econometric technique, we utilize a covariance-stationary, two-

component Garch-type model. The component speci�cation distinguishes
between short- and longer run sources of volatility. Engle and White (1999)
proposed a Garch model with a short and long run component. Various
two-component volatility models have been proposed by Ding and Granger
(1996), Chernov et al. (2003), and Adrian and Rosenberg (2006). The Midas-
Garch component model was inspired by two earlier contributions, Ghysels
et al. (2005) on Midas �lter and Engle and Rangel (2008) on spline-Garch.
Engle et al. (2008) formulate the Midas-Garch component speci�cation that
we employ.
For correlation modeling we use a variant of the Dynamic Conditional

Correlation (DCC) model. Bollerslev (1990) develops a multivariate time se-
ries model with time varying conditional variances and covariances, but con-
stant conditional correlations. Building upon this, Engle (2002) proposed the
DCC model, in which conditional correlation is also time varying. Colacito
et al. (2011) utilized these speci�cations and proposed a new class of com-
ponent correlation models, the DCC-Midas correlation models. Our paper
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extends the DCC model by imposing a one-dimensional structure on the mul-
tivariate dynamic correlations. We �nd that our model is numerically easy
to estimate by maximum likelihood, at least in the case of a modest number
of asset returns (there are eleven assets in our application to Eurozone equity
market indices). This may be due in part to the simpli�ed one-dimensional
dynamic correlation measure which we introduce in this paper.
Section two describes our main econometric model and estimation tech-

nique. Section three describes an alternative, realized-covariance-based esti-
mator, also based on our one-dimensional dynamic correlation measure but
employing a simpler estimation methodology. Section four describes our data
and presents all our empirical �ndings. Section �ve summarizes the paper.

2 ADCC-Midas-Garch Speci�cation with Uni-
variate Correlation Dynamics

We adopt the Dynamic Conditional Correlation Midas-Garch model but add
to it a univariate measure of dynamic correlatedness. We do this by imposing
a particular functional form on the dynamics of the correlation matrix.
We observe an n�vector of returns rt on n assets over the interval t� 1

to t. We assume that the n�vector of returns rt has a time-constant vector
of means � and time-varying nonsingular covariance matrix Ct :

rt = �+ C
1=2
t �t (1)

where �t is an i.i.d. mean-zero n�vector time series process with covariance
matrix equal to the identity matrix. We denote the vector of demeaned
returns by ert:
Let st = (�1t; :::; �nt) denote the n�vector of individual asset return

volatilities for time t returns based on time t � 1 information, and let 
t =
fCovt�1(rit=�it; rit=�it); i; j = 1; :::; ng denote the conditional correlation ma-
trix of returns, conditional on time t� 1 information.

2.1 A Review of Midas-Garch

The starting point in Engle�s DCC approach is to model the individual re-
turn volatilities separately. For the components of st we use a model essen-
tially identical to that in Colacito et al. (2011) and Engle et al. (2008):
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each individual return volatility follows a Midas-Garch model. Midas-Garch
di¤ers from standard Garch in allowing time t "baseline" variance to vary
slowly through time. This ameliorates a substantial �aw in standard Garch
when applied to long time samples, in particular, the empirically untenable
assumption in standard Garch that baseline variance is time-constant, see
Taylor (1986).
Letting hit denote baseline variance for asset i at time t � 1 for time t

returns; we assume that it is a weighted linear combination of unconditonal
variance h0i and lagged realized variances:

hit = (1� �)h0i + �ic(!i)
KX
k=1

exp(�!ik)RVi;t�nk

with estimable parameters h0i; �i;and !i; and where RVi;t denotes the J-
period realized variance up to time t:

RVit =
1

J

JX
j=1

er2i;t�j;
and c(!i) = (

KP
k=1

exp(�!ik))�1 ensures that the exponential weights sum to

one. The model requires h0i > 0 and 0 � �i < 1 to guarantee a covariance
stationary process.
The slowly-changing variate hit captures the low-frequency component

of volatility but misses short-term Garch e¤ects. These are captured via a
standard Garch(1,1) model with unit unconditional variance:

git = (1� �i � �i) + �igit�1 + �i
er2i;t�1
hit�1

;

with �i; �i � 0 and �i + �i < 1: The product of baseline variance and the
short-term Garch e¤ect gives time t variance:

�2it = hitgit: (2)

2.2 AModi�ed DCCModel with Univariate Dynamics

We use Diag[x] to denote an nxn diagonal matrix with the n�elements of
the vector x on the diagonal, and diag[X] to denote the diagonal matrix
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consisting of the diagonal elements of any square matrix X with all non-
diagonal elements set to zero. By de�nition the covariance matrix is the
quadratic product of the volatilities and correlation matrix:

Ct = Diag[st]
tDiag[st]: (3)

Building upon the constant conditional correlation model of Bollerslev (1990)
(in which 
t = 
; a time-constant matrix), Engle (2002) suggests modeling
the correlation matrix separately from the volatilities and then combining
them via (3) to produce a dynamic covariance matrix. Let X1t; X2t denote
two symmetric, positive semi-de�nite nxn matrices at least one of which is
strictly positive de�nite and let m1t;m2t denote two strictly positive scalars.
(We are using the case of two explanatory variables for notational convenience
only; more or less are acceptable). Engle de�nes the quasi-correlation matrix
Qt as the linear combination:

Qt = m1tX1t +m2tX2t: (4)

The matrix Qt is symmetric and positive de�nite but lacks one required prop-
erty of a correlation matrix since the diagonal elements are not necessarily
equal to one. Engle suggests a simple nonlinear transformation to impose this
property while still maintaining symmetry and positive de�niteness:


t = diag[Qt]
�1=2Qtdiag[Qt]

�1=2 (5)

Equations (4) and (5) de�ne Engle�s dynamic conditional correlation (DCC)
estimator. Together with models for the individual volatilies st; this gives a
composite model of the dynamic covariance matrix.
Our model di¤ers from standard DCC in the way we restrict the dynamics

of the correlation matrix. Engle�s DCC model is very clever, but is too high-
dimensional for our application. The major objective of our paper is to
explore the changing magnitude of correlation within the Eurozone, both in
response to the dynamically varying economic environment and in response
to European capital market integration trends. In place of the 1

2
n(n � 1)-

dimensional correlation dynamics in (4) we want a univariate measure of
time-varying correlation. This scalar measure of correlation magnitude should
leave the pattern of correlation between individual markets essentially �xed.
We now modify Engle�s model to produce such a scalar measure.
We want to �nd a model for 
t with a simple one-dimensional state

variable mt capturing the time variation in 
t: When the univariate state
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variable mt is high, the correlations between markets are relatively strong,
when mt is low, the correlations are relatively weak, and when mt equals
zero the correlations are average. Except for this state variable the general
"structure" of correlations is assumed invariant through time.
Let 
0 denote the time-constant unconditional correlation matrix:

(
0)ij = cov0[
erit
�it
;
erjt
�jt
]i;j=1;::;n = E0[ert((Diag[st])�2)er0t] (6)

where the 0 subscript denotes the unconditional information set. Let U the
nxn matrix consisting entirely of ones. Our simple model for 
t is as follows:


t = 
0 +mt�1(U � 
0), for � 1 < mt�1 < 1 (7)

The variable mt�1 is restricted to the interval (�1; 1): We must show that
(7) meets Engle�s condition (4) that 
t is a positive linear combination of
positive-semide�nite matrices. Suppose that the following condition holds:

2
0 � U is strictly positive de�nite. (8)

A necessary condition for this to hold is that all the o¤-diagonal elements
of 
0 are positive; in the case that they are all equal this is also a su¢ cient
condition. Con�rming that condition (8) holds is a straightforward empirical
task, and is a condition easily met in our application to Eurozone equity
markets. Note that (7) can be written as 
t = at�1(2
0 � U) + (1 + at�1)U
where at�1 = 2(mt�1� 1

2
): Since U is positive semi-de�nite and 0 < at�1 < 1

the system (7) meets the positive de�niteness criterion. Conveniently we do
not need to use (5) since our construction always gives a matrix with units
on the diagonal.
Figure 1 illustrates the model using the actual estimated unconditional

correlation matrix described later. It shows all the pairwise correlations as
mt varies between �1 and 1; with mt = 0 corresponding to the unconditional
sample correlation. The model captures in a simple and intuitive way the
notion that in some states of nature all correlations move higher, and in other
states, lower. It provides a univariate measure of this dynamic correlation.
It sacri�ces the generality of Engle�s original DCC (where all the correlations
can move independently) in favour of greater simplicity and interpretability.
Our variant of the DCC model has some parallels to the Engle and Kelly

(2011) Dynamic Equicorrelation (DECO) model. Our model, like the DECO
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model, is motivated by a desire for greater parsimony than the unrestricted
DCC model. The DECO model does this by assuming that at each time
point all correlations are equal; this produces a dynamic model of correlations
which is truly univariate. In contrast, our model permits the unconditional
correlation matrix to be unconstrained with full dimension, but imposes uni-
variate dynamics on the movement of the conditional correlation matrix rel-
ative to its unconditional value. The di¤erence in our approach relative to
DECO re�ects the di¤erence in application: Engle and Kelly seek to model a
very large cross-section of individual equities, whereas we want examine the
dynamics in a moderate number (eleven) of national equity indices.
As in Engle et al. (2008), we impose a linear structure on mt based on a

low-dimensional vector xt of explanatory variables (such as macroeconomic
variates and �nancial market stress indicators):

mt = b
0xt (9)

subject to �1 < mt < 1: This mandates that the explanatory variables xt
have bounded support and imposes implicit restrictions on the parameters b
(analogous to the positive-coe¢ cient requirements of a GARCH model). It
follows from (7) that the explanatory variables xt must have unconditional
expectations of zero.
Our model for 
t consists of (6), (7), (8) and (9) with estimable parame-

ters a0; b;
0: In our application, the endogenous variable mt is daily but the
explanatory variables are constant for all days within a quarterly frequency;
this does not a¤ect the econometric methodology.
Consider the average correlation at time t, found by averaging the o¤-

diagonal elements of the time-t correlation matrix:

avecorrt =
1

n(n� 1)
X
i6=j

[
t]ij (10)

As we show next, the linear dynamic equation for the correlation matrix
(9) implies a univariate linear model of avecorrt. Applying the matrix o¤-
diagonal averaging transformation (10) to both sides of the dynamic corre-
lation matrix equation (7) and rearranging, gives a variable we will call the
correlation ratio; it is the deviation of time t average correlation from its
long-term average, divided by one minus the long-term average:

ratiot =
avecorrt � avecorr0
(1� avecorr0)

= mt: (11)

8



Inserting ratiot into (9) gives:

ratiot = bxt; (12)

so that equation (9) in the dynamic system implies this linear model of time-
varying average correlation.

2.3 A Maximum Likelihood Estimation Procedure

We follow Engle (2002) and Colacito et al. (2011) in applying two-component
maximum likelihood to estimate the DCC-Garch-Midas model. We begin by
supposing that the innovation process �t is i.i.d. multivariate normal; it is
unit variance and uncorrelated by de�nition; see (1). Weakening the assump-
tion of normality gives rise to a quasi-maximum likelihood interpretation
rather than true maximum likelihood. Recall that Ct = Diag[st]
tDiag[st]
where Ct is the time-t covariance matrix. Using a standard result, under
i.i.d. multivariate normality of the innovations the data generating process
for our sample return vector has log likelihood function:

L = �1
2
(
TX
t=1

(n log(2�) + log(jCtj) + er0tC�1t ert))
= �1

2
(
TX
t=1

(n log(2�) + log(jDiag[st]
tDiag[st]j) (13)

+ er0t(Diag[st]
tDiag[st])�1ert))
Let �1 = fh0i; �i; !i; �i; �igi=1;:::;n denote the parameters of the Garch-Midas
model, and �2 = (
0; a0; b) the parameters of the dynamic correlation matrix
model. Following Engle (2002) we use a two-component maximum likelihood
approach. In the �rst step we use the individual time series of returns to es-
timate the Midas-Garch parameters �1 for each asset separately. Note that
this is a collection of n unrelated individual-asset Midas-Garch maximization
likelihood estimation problems. Then in the second step we use these con-
sistent, limited-information maximum likelihood values of �1 to substitute
Diag[bst] for Diag[st] in (13) to �nd the maximum likelihood estimate of �2.
The �rst-step estimation decomposes into a collection of individual Garch-

type model estimation problems with additively separable log likelihood max-
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imization problems:

b�1i = argmaxb�1i L1i where

L1i = f�
1

2
(
TX
t=1

(log(2�) + log(hit) +
er2it
hit
)g (14)

There are two commonly-used estimators for the covariance matrix of the
parameters in (14). These are the inverse of the outer product of the score
vector, and the inverse Hessian; under standard conditions either provides a
consistent estimator:

E[(
@L1i

@b�1i )(@L1i@b�1i )0]�1 =T E[@
2L1i

@2b�1i ]�1 =T cov[b�1i; b�01i] (15)

where =
T
denotes approximately equal for large T and relies on consistent

estimates of b�1i (see, e.g., Greene (2008)). As discussed next, we use the
outer product of the score vector.
In the second step, we use the �rst-step estimates from (14) to compute bst

and then substitute this for st in (13) giving a maximum likelihood problem
in the parameters �2 only. Engle (2002) notes that the standard errors
of the coe¢ cients in the second-step correlation matrix estimation are in
general inconsistent due to the use of �rst-step estimated volatilities. Engle
and Sheppard (2001) derive a consistent estimate of the covariance matrix of
the estimated parameters in the second step by adjusting for the �rst-step
estimation error:

cov[b�2; b�02] =
T
E[(

@L

@b�2 )( @L@b�2 )0]�1E[yy0]E[( @L@b�2 )( @L@b�2 )0]�1 (16)

y =
@L

@b�2 � E[ @2L

@�1@�2
]E[
@2L1
@2�1

]�1
@L1

@b�1 :
Note that this is the matrix product of the standard outer-product-based
estimator (the �rst term in (16) as in (15)) times an adjustment matrix (the
second and third terms).
Consider the special case in which expectations of all the cross-partial

derivatives of the log likelihood function equal zero, E[ @2L
@�1j@�2k

] = 0 for all
j; k where j; k run over all the elements of the parameter vectors �1 and �2,
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respectively. In this special case, the adjusted covariance matrix simpli�es,
and is equal to the unadjusted estimate using the outer product of the score
vector:

cov[b�2; b�02] = E[( @L
@b�2 )( @L@b�2 )0]�1

which is easy to see since if E[ @2L
@�1@�2

] = 0 then E[yy0] = E[(( @L
@b�2 )( @L@b�2 )0] and

the adjustment matrix equals the identity matrix. This becomes relevant in
our empirical application below.

3 Model-Robust Alternative Estimators Us-
ing Realized Covariances

A drawback to the estimation approach of the last section is its reliance on
numerical maximum likelihood and on the speci�c functional form of the
DCC-Midas-Garch model. In this section we describe a stochastic-volatility
variant of the model, treating the daily time interval as small and replacing
the DCC-Midas-Garch speci�cation with nonparametric, realized covariance
estimators. This produces a model parallel to that of the previous sections,
but which is easier to estimate, relying only on quarterly sample moments
of daily returns and linear time series regression. It relies on the same one-
dimensional dynamic measure of average correlation, using the implication
of this model for the dynamic correlation ratio (11). This model is parallel
to, rather than identical to, the model of the last two sections, but the
empirical �ndings provide a robustness check on the main results from the
more complex estimation methodology.
Let pt denote a continuous-time n�vector stochastic process for the log

prices of the stock indices, and suppose that this price vector follows Brown-
ian motion with time-constant drift and time-varying covariance matrix Ct

dpt = �dt+ Ctdzt; (17)

see Barndor¤-Nielsen et al. (2011). Letting � denote a �xed-length, high-
frequency return measurement interval de�ne the return vector rt;t+� =
pt+� � pt: Using a �xed �nite window Q de�ne the integrated covariance
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matrix over the interval:

Ct�Q;t =
1

Q

tZ
t�Q

Ctdt

and the realized covariance estimator as the sample counterpart using high-
frequency returns:

bCt�Q;t = 1

(Q=�)

X
1�j�Q

�

rt��(j+1);t��jr
0
t��(j+1);t��j:

From Barndor¤-Nielsen et al. (2011), letting �! 0;with Q �xed, and under
appropriate regularity conditions, bCt�Q;t is a consistent and asymptotically
normal (CAN) estimate of Ct�Q;t: The dynamic correlation ratio (11) of the
discrete daily model in the last section has an obvious realized-covariance
analogue in this continuous-time model:

ratiot�Q;t =
avecorrt�Q;t � avecorr0

(1� avecorr0)
: (18)

Note that the integrated correlation matrix, 
t�Q;t = Diag[Ct�Q;t]�
1
2 (Ct�Q;t)Diag[Ct�Q;t]

� 1
2

and its average o¤-diagonal component are smooth transformations of Ct�Q;t.
Hence, the preservation of CAN under smooth transformations guarantees
that the same functions applied to bCt�Q;t provide consistent asymptotically
normal estimates of ratiot�Q;t. We estimate the linear relation between
ratiot�Q;t and and a set of zero-mean explanatory variables by time-series
ordinary least squares regression at frequency Q. That is, we impose the
data generating process:

ratiot�Q;t = b
�xt�Q;t + "t; (19)

where xt�Q;t is a set of explanatory variables measured over the same fre-
quency Q, and b� is a vector of linear coe¢ cents. These regression esti-
mates provide alternative, less model dependent, parallels to the maximum-
likelihood estimates of the dynamic model (9) described in the previous two
subsections.
In our application, we use � equal to one day, and Q (the window length)

equal to the number of days in one quarter of the year (approximately 65
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trading days depending on the calendar). This matches the frequency of
some of the independent variables in (12). There is not an exact match
between the two models, but they capture related information over the same
data history. We do not attempt to relate the simple regression speci�cation
(19) to the data generating process for individual returns (17). We view
this regression model as a simpler alternative to the model described in the
previous two sections, capturing some of the same empirical phenomena on
the same data history.

4 Data and Empirical Findings

We use adjusted daily closing prices from December 31st 1991 to December
31st 2010 for eleven European equity indices, Austria, Belgium, Finland,
France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, and Spain,
obtained from Datastream. (Although the Euro currency formally came into
existence on January 1st 1999, the Maastricht Treaty committing signatory
states to join the currency was drafted in December 1991, and signed by
delegates of the member states in February 1992.) We compute daily log
returns. The datastream database skips weekends and a few major holidays
(Christmas and New Year�s Day) but reproduces yesterday�s closing price
on other days on which a particular national exchange is closed. To partly
correct for this, we ignore closing prices on days on which four or more of
the eleven national exchanges are closed, and treat such a day the same as a
weekend (the two-day return becomes a one-day return for the entire cross-
section). This keeps the panel dataset balanced and seems to deal reasonably
well with non-synchrony in the return computations (see below). There is
a maximum two-hour time zone di¤erence between the national markets in
the sample; Ireland and Portugal are one hour behind the core European
countries, and Greece is one hour ahead.
Table 1 shows the annualized means and standard deviations, skewness,

excess kurtosis, and �rst four autocorrelations for each of the eleven returns
series. Two markets (Greece and Portugal) have fairly high �rst-order au-
tocorrelations, indicating illiquid pricing or stale pricing of the daily index.
Table 2 shows the sample correlation matrix, above the diagonal, and the
�rst-order autocovariance and crosscovariance adjusted correlation matrix
below the diagonal. The diagonal elements are autocorrelation-consistent
estimates of the annualized standard deviations. There is little di¤erence
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between the adjusted and unadjusted correlations or standard deviations
(compare to Table 1). This re�ects the limited cross-correlation of returns,
as shown in Table 3. By skipping days on which four or more markets are
closed, and restricting our panel to European markets (with their similarity
of trading hours), we avoid the large cross-correlations found in correlation
analysis of global equity markets, see Martens and Poon (2001).

4.1 The Midas-Garch Models of Individual Market In-
dex Volatility

Table 4 shows the estimates for the Midas-Garch model. For all countries
the sum of the two Garch coe¢ cient is well within the stationary boundary
�i + �i < 1: The exponential weighting is close to 0 in most markets so that
the optimal weighting is close to equal weighting of the four lagged �xed-
window realized variances. The estimated decay coe¢ cient �i is close to 1=2
in most markets. As a contrast, Table 4 shows standard Garch(1,1) models.
For all eleven markets, the estimated Garch(1,1) coe¢ cients are closer to or
(in one case) exceed the stationarity boundary �i + �i < 1. This shows one
relative advantage of the Midas-Garch model.
Figure 2 illustrates the trends in Euro-area volatility using two proxies:

the square root of the cross-sectional average of the predicted variances from
the Midas-Garch models, and the square root of the cross-sectional average
of the 65-day rolling window variances. Both proxies are annualized by mul-
tiplying by the square root of 261, the average number of trading days per
year in our sample. The Midas-Garch volatilities are noticeably more vari-
able through time, but the two proxies follow each other closely in terms of
lower-frequency components.

4.2 ADynamicModel of Eurozone EquityMarket Cor-
relations

Recall that the DCC-Midas-Garch maximum-likelihood estimation problem
decomposes into Midas-Garch and the separate estimation of the correlation
matrix dynamics. In this subsection we discuss the second-step estimation of
the correlation matrix using the dynamic volatilities from the last subsection
to standardize returns. For the dynamic correlation matrix model (9) we
examine a variety of speci�cations. For explanatory variables we use a time
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trend, the average cumulative returns to the eleven indices using the previous
65 days of returns, the proportion of the eleven markets which had negative
real GDP growth during the current quarter, the lagged correlation ratio (11)
using the previous 65 days of daily returns, and the lagged average sample
variance using the previous 65 daily returns. As an alternative speci�cation,
we also use the cross-sectional average of national GDP growth in the current
quarter. This has a correlation of �:89 with the negative-growth-proportion
variable, so we use one or the other of these two explanatory variables but
not both simultaneously. All the explanatory variables are de-meaned.
With six potential explanatory variables, there is an unmanageable num-

ber of possible speci�cations by adding or dropping variables. We impose
discipline on our speci�cation search as follows. We include the lagged daily
correlation ratio and time trend in all speci�cations. Both of these have
a fairly strong empirical/theoretical foundation. For the other variables,
the cumulative return measure, negative GDP growth proportion or average
GDP growth, and lagged average variance, we try the combinations: none,
each alone, and all three together. This gives seven speci�cations in total.
There are 55 estimable parameters in 
0 since it is a symmetric 11x11

matrix with unit diagonal. Additionally there are between two and �ve para-
meters in b depending upon the speci�cation. We use the sample correlation
matrix b
0 as an initial (and consistent) estimate. Next, we estimate b con-
sistently by limited information maximum likelihood applied to L (see (13))
with the value of b
0 held �xed at this initial estimate. Finally we use these
initial estimates of bb and b
0 and re-estimate all the parameters simultane-
ously by maximum likelihood. For all seven speci�cations, the maximum
likelihood estimation problem converges quickly, and the b estimates are rel-
atively una¤ected by the simultaneous estimation of b
0, that is, the initial
and �nal estimates of b are quite similar. The initial estimates of b and 
0
are not shown but are available in Connor and Suurlaht (2012) along with
other ancillary results and estimation code.
The results are presented in Table 6, using unadjusted one-step standard

errors based on the outer product of the score vectors. (We will show in the
next subsection that Engle�s adjustment has negligible impact on the stan-
dard errors). Not surprisingly, there is an autocorrelation e¤ect, captured
in the positive coe¢ cient on the lagged 65-day empirical correlation ratio.
There is a strong positive trend in correlation magnitude over this time period
within the Euro region. These are the two strongest �ndings. The "downside
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correlation" e¤ect linking cumulative return negatively to correlation mag-
nitude is only signi�cant in the �ve-variable model including average GDP
growth. When cumulative return is used without either of the GDP-based
variables, the coe¢ cient is signi�cant with the "wrong" sign (this could be
ascribed to a missing variable bias). There is a positive relationship between
average variance and the dynamic correlation measure.
There is also a business-cycle-related e¤ect: correlations are lower when

the proportion of markets with negative GDP growth is higher. The same
�nding holds when average GDP growth is used as a replacement variable
(with the opposite sign, obviously). This shows that, for some reason for
which we do not have a ready theory, there seems to be greater diversity in
the national index returns when several Eurozone economies are in a busi-
ness cycle downturn or their average GDP growth is lower. This �nding
di¤erentiates our results from those of Erb et al. (1994) on the dynamic cor-
relations of G7 equity markets. Erb, Harvey and Viskanta use the Center for
International Business Cycle Research national business cycle peak/trough
indicator to divide monthly return data pairs (each G7 market matched with
each of the other G7 markets in pairs) into three subsamples: both national
markets in a macroeconomic expansion phase, both in a macroeconomic con-
traction phase, and mixed (one in each phase). They �nd that the return
correlations are lowest in the expansion-expansion subsamples and highest in
the contraction-contraction subsamples. Treating our proportion of markets
with negative GDP growth as a contraction/expansion indicator, our results
for the Eurozone �nd an opposite e¤ect. We attribute this di¤erence to the
di¤erent nature of the capital market and macroeconomic links within the
tightly-integrated Eurozone versus the G7. However, we do not claim to have
a satisfactory macroeconomic-�nancial theory to explain the �ndings.
Suurlaht (2012) has applied exactly the same methodology as we use to

G7 markets, and �nds that a (somewhat weaker) positive integration trend is
statistically signi�cant for those markets, but the "downside correlation" ef-
fect and GDP-related e¤ect are much weaker than for the Eurozone markets.
Neither e¤ect is statistically signi�cant, or is only marginally signi�cant, de-
pending upon the speci�cation.

4.3 Adjusted Second-step Coe¢ cient Standard Errors

In this subsection we implement the adjustment to the second-step para-
meter standard errors proposed by Engle (2002). Note that there are 44
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parameters in the �rst-step parameter vector �1 (4 parameters per national
market index and 11 national market indices). Consider either model 6 or 7
in Table 6, in which there are 60 parameters in the second-step parameter set
�2 = (b;
0). In this case the matrix of expected cross-partial derivatives,
E[@

2L(�1;�2)
@�1j@�2h

], has dimension 60x44. This matrix is numerically somewhat
cumbersome to compute since it links the two steps of the component max-
imum likelihood procedure. The other elements of (16) are straightforward
to compute; the score vectors of the likelihood function are created naturally
as part of numerical maximum likelihood. Let d1j denote a 44�vector with
a one in element j and zeros elsewhere, d2h denote a 60�vector with a one in
element h and zeros elsewhere. For every combination j; h of �rst and second
stage parameters we perturb each individual parameter positively and neg-
atively away from its pre-estimated value, and re-estimate the second-stage
expected log likelihood E[L(��1;�

�
2)] using the time-series average as a con-

sistent estimate of the expectation. A linear combination of perturbed values
of the expected log likelihood gives an approximation to the cross-partial
derivative matrix:

E[
@2L(�1;�2)

@�1j@�2h
] = lim

�j ;�h!0

1

4�j�h
fE[L(�1 + d1j�1j;�2 + d1h�2h)]

� E[L(�1 + d1j�1j;�2 � d2h�2h)]
� E[L(�1 � d1j�1j;�2 + d2h�2h)]

+E[L(�1 � d1j�1j;�2 � d2h�2h)]g (20)

We use (20) to approximate the cross-partials numerically, using appropri-
ately small values for �j; �h. We compute the second-step likelihood time-
series sample realizations for each of the 4 � 60 � 44 = 105600 combinations
of positive/negative parameter perturbations in (20) and take a time-series
sample mean for each realized sample of log likelihood observations. The
other terms of (16) are straightforward.
Table 7 compares the adjusted and unadjusted standard errors of the

second-step coe¢ cients for the two �ve-variable models (speci�cations 6 and
7) from Table 6. The adjustment has a negligible impact, which is unsur-
prising when the nature of the adjustment is traced. The perturbation of a
�rst-step parameter has only a very modest and indirect impact on the likeli-
hood scores of second-step parameters. A perturbation to one of the �rst-step
parameters modestly in�uences bs and this, in turn, very modestly in�uences
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correlations via (3), which can theoretically at least in�uence the regression
coe¢ cients in (9). To summarize our �ndings in this regard, Engle�s adjust-
ment is theoretically appealing, but it is time-consuming and cumbersome
to implement and has negligible impact in this application.

4.4 Alternative Estimates Using Realized Variances and
Covariances

Table 8 parallels Table 6 but using the �xed-window variances and covari-
ances and quarterly linear regression (19) in place of the DCC-Midas-Garch
model. The dependent variable is the correlation ratio for each calendar quar-
ter, based on the sample correlation matrix of daily returns during the quar-
ter. The lagged correlation ratio among the explanatory variables is lagged
by one full calendar quarter. The other explanatory variables are contem-
poraneous with the dependent variable over the same quarter. Although
the model and methodology are di¤erent, the �ndings mostly parallel those
with the DCC-Midas-Garch model. The coe¢ cients on the lagged correlation
ratio and time trend are both positive and signi�cant, as in the DCC-Midas-
Garch model. The coe¢ cient on the proportion of markets with negative
GDP growth is negative as in the DCC-Midas-Garch model. The alterna-
tive variable choice, average-GDP growth, has a positive and signi�cant sign
in the �ve-variable model but is not signi�cant when used alone (in the
DCC-Midas-Garch model it was positive and signi�cant in both cases). The
"downside correlation" e¤ect is signi�cant and negative (the expected sign)
when used alone and in one of the two �ve-variable models.

5 Summary

This paper uses a new variant of the Dynamic Conditional Correlation Mixed
Data Sampling Garch model (DCC-Midas-Garch) to examine the dynamic
volatilities and correlations of daily equity index returns for eleven countries
in the Eurozone over the sample period January 2nd 1992 to December 30th
2010.
We develop a new variant of Engle�s DCC model which simpli�es the

structure of that model by imposing a univariate measure of the dynamic
changes in the correlation matrix. We use this new univariate measure of
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dynamic correlation magnitude to relate the dynamic variation in average
correlation of equity markets in Europe to relevant macroeconomic variables.
We �nd that European markets show a signi�cant positive trend toward

higher inter-market correlations over the 1991-2010 time period. There is
time�series autocorrelation in the magnitude of cross-market return corre-
lations. Correlations are higher when cross-country average variances are
higher. A "downside correlation" e¤ect, negatively linking cumulative re-
turns to dynamic correlations, is signi�cant in some but not all of our chosen
speci�cations. Also, there is a signi�cant business-cycle e¤ect: cross-market
correlations tend to be lower when a larger proportion of the economies are
in a negative-growth quarter. Alternatively (using a slightly di¤erent spec-
i�cation) correlations are higher when cross-market average GDP growth is
higher. It is interesting to theorize as to why lower GDP growth, captured ei-
ther by average growth or the proportion of countries with negative growth,
is dynamically related to greater diversity of returns across national stock
markets within the tightly-integrated Eurozone.
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Table 1: Summary Statistics 

 

Series 
Annualized 

Mean Return 

Annualized 

Std Deviation 
Skewness 

Excess 

Kurtosis 
ρ1 ρ2 ρ3 ρ4 

Austria 6.71 21.80 -0.37 8.71 0.0745 -0.0354 -0.0064 0.0162 

Belgium 4.81 19.08 0.04 7.20 0.0886 -0.0097 -0.0447 0.0230 

Finland 13.25 30.08 -0.36 6.76 0.0286 -0.0209 -0.0161 0.0335 

France 4.35 23.16 0.01 4.78 -0.0119 -0.0414 -0.0541 0.0373 

Germany 8.40 23.86 -0.11 4.83 -0.0164 -0.0329 -0.0180 0.0418 

Greece 2.91 27.15 -0.12 3.89 0.1305 -0.0159 -0.0129 0.0278 

Ireland 4.07 21.03 -0.62 9.53 0.0665 0.0007 0.0018 0.0124 

Italy 3.91 23.76 -0.02 4.10 0.0270 -0.0029 -0.0233 0.0697 

Netherlands 5.85 23.08 -0.13 6.54 -0.0036 -0.0227 -0.0570 0.0479 

Portugal 8.40 16.30 -0.33 12.86 0.1053 0.0184 0.0248 0.0438 

Spain 7.52 22.98 -0.02 5.75 0.0191 -0.0394 -0.0323 0.0202 

 

Notes: Summary statistics including the first four autocorrelations for the eleven Eurozone stock market index 

daily log return series over the sample period from January 2, 1992 to December 30, 2010 (4788 observations).  

 

Table 2: The Sample Correlation Matrix and Annualized Standard Deviations 

 

        R1t        R2t      R3t     R4t    R5t   R6t  R7t R8t           R9t          R10t           R11t 











































232.0669.0771.0738.0585.0463.0782.0796.0609.0709.0615.0

650.0171.0609.0572.0533.0484.0611.0616.0519.0579.0552.0

783.0618.0230.0739.0662.0475.0864.0871.0662.0852.0640.0

738.0573.0739.0241.0560.0414.0730.0757.0575.0678.0575.0

554.0515.0609.0520.0217.0471.0620.0628.0491.0665.0624.0

368.0389.0382.0323.0379.0289.0472.0465.0376.0467.0451.0

736.0579.0818.0696.0540.0344.0237.0866.0668.0764.0613.0

818.0620.0868.0759.0589.0366.0812.0230.0677.0786.0612.0

601.0525.0655.0555.0487.0315.0618.0649.0305.0532.0446.0

670.0575.0804.0651.0597.0379.0706.0760.0528.0199.0643.0

570.0540.0585.0531.0561.0361.0570.0572.0448.0585.0226.0
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Notes:  Sample correlation matrix for the eleven Eurozone stock market index return series (1. Austria 

2.Belgium 3.Finland 4.France 5.Germany 6.Greece 7.Ireland 8.Italy 9.Netherlands 10.Portugal 11.Spain) over 

the sample period from January 2, 1992 to December 30, 2010. Sample correlations of national stock index 

returns are above the diagonal, and first-order autocovariance and cross-covariance adjusted correlations below 

the diagonal. The diagonal elements are first-order autocovariance-consistent estimates of the annualized 

standard deviations. 

 



Table 3: Cross-Correlation Matrix 

 

       R1t-1         R2t-1         R3t-1       R4t-1          R5t-1         R6t-1       R7t-1        R8t-1          R9t-1         R10t-1       R11t-1 



















































































191.0087.0009.0020.0091.0119.0023.0011.0041.0042.0107.0

027.0105.0021.0019.0063.0101.0021.0032.0005.0005.0055.0

015.0043.0004.0000.0097.0113.0005.0014.0031.0045.0099.0

003.0055.0009.0027.0083.0099.0007.0012.0037.0034.0093.0

034.0001.0023.0017.0067.0083.0032.0048.0024.0004.0063.0

010.0052.0009.0025.0055.0131.0016.0012.0011.0018.0065.0

023.0079.0043.0031.0126.0138.0016.0025.0071.0066.0099.0

008.055.0009.0016.0104.0114.0017.0012.0049.0044.0108.0

019.0023.0016.0001.0052.0079.0017.0015.0029.0011.0040.0

009.0065.0039.0032.0114.0121.0018.0011.0045.0089.0115.0

034.0007.0022.0020.0043.0709.0040.0050.0020.0004.0075.0
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Notes: Cross-correlations for the eleven Eurozone stock market index return series (1. Austria 2.Belgium 

3.Finland 4.France 5.Germany 6.Greece 7.Ireland 8.Italy 9.Netherlands 10.Portugal 11.Spain) over the sample 

period from January 2, 1992 to December 30, 2010. The diagonal elements are sample estimates of the first-

order autocorrelations.     

  



Table 4: Midas-Garch Coefficient Estimates  

 

  Α β θl Ω 

Austria 0.11127 0.86022 0.54449 -0.00355 

  (13.17094) (75.03387) (6.73553) (-0.01041) 

Belgium 0.13268 0.84256 0.46776 0.89665 

  (16.92474) (82.07313) (6.1407) (1.84557) 

Finland 0.07518 0.90306 0.81930 0.42064 

  (20.64728) (145.8165) (14.80239) (1.57613) 

France 0.07758 0.90912 0.35795 0.31148 

  (11.6316) (102.45957) (2.58299) (0.55674) 

Germany 0.09387 0.88731 0.47957 0.41147 

  (13.87461) (98.61603) (4.46619) (0.87202) 

Greece 0.14410 0.79593 0.79747 0.32651 

  (14.23207) (55.93516) (19.42899) (1.49283) 

Ireland 0.08239 0.89804 0.55263 -0.04928 

  (16.03312) (127.34827) (8.20791) (-0.15872) 

Italy 0.11068 0.86887 0.59665 0.58016 

  (12.44145) (73.56442) (6.98272) (1.44295) 

Netherlands 0.10720 0.87572 0.57756 0.63954 

  (14.18318) (92.62391) (6.6847) (1.48048) 

Portugal 0.16607 0.80362 0.58411 0.68731 

  (25.59861) (96.88936) (10.08113) (2.13498) 

Spain 0.10353 0.87091 0.51957 0.96486 

  (13.2313) (79.51477) (6.85726) (1.45853) 

Notes: Individual Midas-Garch models are fitted to eleven Eurozone stock market indices using quasi-maximum 

likelihood estimation. Each Midas-Garch model is composed of several equations with a parameter space Θ = 

{α,β,θ,ω}.  hit denotes the baseline variance for asset i at time t-1 for time t returns capturing the low-frequency 

component of volatility:     (    )       (  )∑    (    )        
 

   
, where RVit denotes the 65-

day realized variance up to day t:      ∑  ̃     
 

  

   
. Short-term Garch effects are captured via a standard 

Garch(1,1) model:      (     )             
 ̃     
 

      
 . The t-statistics are reported in parentheses below 

the coefficient estimates. 

  



Table 5: Garch(1,1) Coefficient Estimates  

 

  c α β 

Austria 0.00000 0.10694 0.87563 

 
(5.57982) (10.61244) (77.05259) 

Belgium 0.00000 0.11428 0.87307 

 
(5.63099) (11.65358) (83.80542) 

Finland 0.00000 0.06279 0.93507 

 
(3.59846) (9.00308) (134.70374) 

France 0.00000 0.07270 0.91880 

 
(4.21632) (10.19124) (117.51801) 

Germany 0.00000 0.09300 0.89690 

 
(5.53149) (10.90098) (102.59965) 

Greece 0.00001 0.14006 0.84882 

 
(5.6409) (10.15294) (61.27865) 

Ireland 0.00000 0.08243 0.90878 

 
(5.09238) (10.21416) (101.83785) 

Italy 0.00000 0.10821 0.88742 

 
(4.47576) (10.84912) (90.02237) 

Netherlands 0.00000 0.09863 0.89497 

 
(4.9819) (12.14323) (109.75847) 

Portugal 0.00000 0.17532 0.83143 

 
(5.81078) (12.18645) (67.68329) 

Spain 0.00000 0.10263 0.88493 

 
(5.41381) (10.34265) (81.99908) 

 

Notes: Individual Garch(1,1) models are fitted to eleven Eurozone stock market indices using quasi-maximum likelihood 

estimation. The parameter space for each Garch(1,1) model is Φ = {c,α,β}.  The standard Garch(1,1) model is defined as:  

                 
 ̃     
 

      
  where hit  is the conditional variance. The t-statistics are reported in parentheses below the 

coefficient estimates. 

  



Table 6: Daily Models of Dynamic Correlation Magnitude  

  1 2 3 4 5 6 7 

ratiot-1 
0.5181 0.5330 0.5086 0.5070 0.5750 0.4958 0.5482 

  
 (20.8918)  (20.5290)  (19.6310) 

 

(19.6679) 
 (22.4218)  (18.7651)  (20.4794) 

trendt 
0.0320 0.0316 0.0323 0.0362 0.0310 0.0364 0.0323 

  
 (18.4682)  (18.1130)  (18.3673) 

 

(19.0318) 
 (17.7246)  (19.2757)  (17.8254) 

cumrett-1  0.0024    0.0005 -0.0045 

   
 (2.2649) 

   
 (0.2533)  (-2.5038) 

negGDPt    -0.0624  -0.0744   

     
 (-4.9480) 

 
 (-3.8709)   

avegrowtht     0.0027  0.0047 

      
 (5.8862) 

 
 (7.1487) 

avevart-1   0.1077   0.2419 0.2454 

       (1.4118)      (2.5504)  (2.6086) 

 

Notes: The table reports estimated coefficients for the dynamic model of the correlation magnitudes using maximum 

likelihood. The sample period is January 2, 1992 to December 30, 2010.  The seven columns correspond to seven different 

specifications and differ only in the choice of the explanatory variables. Dependent variable is the dynamic correlation 

magnitude for all seven regressions. The six macroeconomic variables are a lagged correlation ratio (using the previous 65 

daily returns), a time trend, the average of the cumulative returns to the eleven indices over the previous 65 days, the 

contemporaneous proportion of the eleven markets which had negative real GDP growth during the quarter, the cross-

sectional average of national GDP growth in the current quarter, and the lagged average sample variance (using the previous 

65 daily returns) between the eleven markets. The t-statistics are reported in parentheses below the coefficient estimates.  

 

Table 7: Effect of Adjusting for the First-Step Estimation Error 

Specification 6       
  Unadjusted St Deviations Adjusted St Deviations % Difference 

ratiot-1 0.02642365 0.02642774 0.0155% 

trendt 0.00188942 0.00188939 -0.0016% 

cumrett-1 0.00193435 0.00193489 0.0281% 

avevart-1 0.09485253 0.09487655 0.0253% 

NegGDPt 0.01922016 0.01922470 0.0236% 

Specification 7       

  Unadjusted St Deviations Adjusted St Deviations % Difference 

ratiot-1 0.02676794 0.02677458 0.0248% 

trendt 0.00180933 0.00180947 0.0077% 

cumrett 0.00181604 0.00181634 0.0166% 

avevart-1 0.09407798 0.09412734 0.0525% 

avegrowtht 0.00066152 0.00066161 0.0133% 
 

Table 7 compares the adjusted and unadjusted standard errors of the second-step coefficients for the dynamic correlation 

magnitude models 6 and 7 from Table 6. The standard errors of the coefficients in the second-step correlation matrix 

estimation are in general inconsistent due to the use of first-step estimated volatilities (Engle(2002)). To adjust for the first-

step estimation error the standard outer product of the score vector (the chosen estimator for the covariance matrix of 

coefficients from the Midas-Garch model) is multiplied by an adjustment matrix (see equation (19)).  The variables are the 

same as in Table 6. 

 



 

Table 8: Quarterly Models of the Dynamic Correlation Ratio 

  1 2 3 4 5 6 7 

qratiot-1 0.3085 0.3382 0.2146 0.3320 0.3058 0.2761 0.3063 

   (2.7501)  (3.2657)  (1.9943)  (2.8824)  (2.3809)  (2.6351)  (2.5949) 

trendt 0.0424 0.0384 0.0447 0.0418 0.0412 0.0415 0.0400 

   (5.2411)  (5.1071)  (5.9187)  (4.9754)  (4.5892)  (5.7010)  (4.8686) 

qcumrett 

 

-0.0619 

   

-0.0404 -0.0395 

  

 

 (-3.7631) 

   

 (-2.0710)  (-1.7768) 

NegGDPt 

   

-0.0495 

 

-0.2351   

  

   

(-0.5582) 

 

 (-2.6943)   

avegrowtht 

    

0.0012 

 

0.0110 

  

    

 (0.3068) 

 

 (2.6309) 

qavevart 

  

6.0117 

  

5.8118 6.3577 

       (3.5379)      (2.6643)  (2.7210) 

Adj. R2 0.774 0.809 0.805 0.762 0.662 0.828 0.753 

SSR 2.484 2.076 2.116 2.372 2.219 1.811 1.567 

 

Notes: Table 8 reports estimated coefficients for the time series quarterly regressions to explain the movement in cross-

sectional average correlation, where the correlations are estimated using one quarter of daily returns. Each quarter consists of 

the trading days in a nonoverlapping three-month period, starting with January –March. The sample period is January 2, 

1992 to December 30, 2010.  The seven columns correspond to seven different specifications and differ only in the choice of 

the explanatory variables. Dependent variable is the ratio 
(                  )

(          )
 , where qavecorrt is the cross-sectional average 

correlation for all six regressions and avecorr0 is the average cross-sample correlation. The six independent variables are the 

lagged correlation ratio for each calendar quarter, a time trend, the average of the contemporaneous quarterly returns to the 

eleven indices, the contemporaneous proportion of the eleven markets which had negative real GDP growth during the 

quarter, the cross-sectional average of national GDP growth in the current quarter, and the contemporaneous average sample 

variance (also using one quarter of daily returns) between the eleven markets. The t-statistics are reported in parentheses 

below the coefficient estimates. The last two rows report the adjusted R2 and the sum of squared residuals. 

  



Figure 1: Depiction of the Correlations of Returns as a Function of mt 

 

 

Notes: The graph illustrates the correlation within all country pairs in our sample as a function of the correlation 

magnitude variable, mt. The correlations follow the simple model for Ωt: Ωt= Ω0 +mt-1(U-Ω0), for -1< mt-1<1. See 

Table 2 for individual correlation coefficients between countries. 

 

Figure 2: Midas-Garch and Rolling Window Annualized Return Standard Deviations 

 

 

Notes: The figure shows the cross-sectional average of the annualized predicted return standard deviations from 

the Midas-Garch models and the cross-sectional annualized average of the 65-day rolling window return 

standard deviations.  
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