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A LITTLE HELP FROM MY FRIENDS

ANTHONY G. O’FARRELL

This article is based on a talk given at a one-day meeting in NUI,
Maynooth on the Fourth of April, 2008, held to honour David Walsh
and Richard Watson.

1. Introduction

This is a tribute to my dear colleagues and friends David Walsh
and Richard Watson, who were here before me in Maynooth, and who
laboured with me in the day and the heat. They cheerfully shouldered
with me a teaching load that would, apparently, kill the academics of
today. The teaching load required, in order to ensure that our students
were adequately trained, continued to be a problem until the presidency
of Mı́chael Ledwith, in the early 1990’s. It was not easy to pursue
research while giving 275 lectures a year, but they gave it their best. At
distinct times, both helped me in my investigations. David was sound
on complex analysis and hard analysis, so we joined forces to tackle
some problems that required technical estimates for integral kernels
that solve the ∂̄-problem. Richard had a sound background in algebra,
and he worked with me on problems that could be addressed using
algebras of smooth functions. Richard became my Ph.D. student, after
a while, and then, after graduating, continued to work with me for
a few years. My period of active collaboration with David was in the
early eighties, and with Richard the nineties. Recently, both have taken
some interest in my reversibility project.
Most of the sources referred to in what follows will be found in the

references cited in our joint papers, which are listed in the bibliography
below.

2. A Way to think of Complex Analysis

Holomorphic functions are the solutions to the ∂̄ equation

∂̄f = 0,
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where

∂̄f =
∂f

∂z̄
dz̄,

∂f

∂z̄
=

1

2

{

∂f

∂x
+ i

∂f

∂y

}

.

We shall refer to both ∂̄ and ∂
∂z̄

as “the ∂̄ operator” (pronounced d-bar
operator), as convenient.
The ∂̄ operator is skew:

∫

C

φ
∂ψ

∂z̄
dx dy = −

∫

C

ψ
∂φ

∂z̄
dx dy,

whenever φ and ψ belong to the space D of C∞ complex-valued func-
tions on C, having compact support.
The adjoint operator acts on distributions:

〈

φ,

(

∂

∂z̄

)∗

f

〉

=

〈

∂

∂z̄
φ, f

〉

,

whenever φ ∈ D, and f belongs to D′. In view of the skewness, we
define

∂f

∂z̄
= −

(

∂

∂z̄

)∗

f, ∀f ∈ D′,

so that the operator ∂
∂z̄

on D′ is the weak-star continuous extension of
∂
∂z̄

on D, when we regard D as a subset of D′, under the identification
of each f ∈ L1

loc(dxdy) with the distribution represented by f , given by

〈φ, f〉 =
∫

C

φfdxdy, ∀φ ∈ D.

Complex Radon measures (Borel-regular complex-valued measures
on C, having finite total variation on each compact subset of C) also
represent distributions. The measure µ acts continuously on the space
C0

cs of continuous complex-valued functions on C having compact sup-
port, and equipped with the usual inductive limit topology, via

〈φ, µ〉 =
∫

C

φfdµ, ∀φ ∈ C0
cs

and hence restricts to a continuous linear functional on D. If we iden-
tify f ∈ L1

loc with the measure fdxdy, then this generalises the previous
remark. A measure is uniquely-determined by the corresponding dis-
tribution, because D is dense in C0

cs, so we may identify the measure
and distribution, without fear of confusion.

The ∂̄ operator is linear and translation-invariant. It is also elliptic:
this means that it is almost invertible; more precisely it has finite-
dimensional kernel and cokernel, when restricted to a suitable space.
When restricted to D′, it has a very big kernel, the space of all entire
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functions. This statement is a case of Weyl’s Lemma: a distributional
solution u ∈ D′(U) (where D(U) is the space of C∞ complex-valued
functions on U) of ∂̄u = 0 on an open set U ⊂ C is representable by
a holomorphic function on U . This is a good thing, because it gives
complex analysts a nontrivial field of study. But when restricted to E ′,
the dual of the space of C∞ functions on C with compact support, ∂̄ is
injective. The fundamental solution is the locally-integrable function
−1/πz, i.e.

∂

∂z̄

(

− 1

πz

)

= δ0,

the point mass at 0. For φ ∈ D, we have

∂

∂z̄
φ̂ = φ,

where

φ̂ =

(

− 1

πz

)

∗ φ,

the Cauchy transform of φ. We extend the transform to a map E ′ → D′

by setting

〈φ, f̂〉 = −〈φ̂, f〉, ∀φ ∈ D, ∀f ∈ E ′.

We have
∂

∂z̄
f̂ = f, ∀f ∈ E ′.

In particular, for each f ∈ E ′, the distribution f̂ is (represented by) a
holomorphic function off sptf , (the support of f . Because of all this,
the Cauchy transform is intimately connected with analytic function
theory, and one can use it to establish many interesting results.

3. Some Holomorphic Approximation Theorems

For X ⊂ Cn, let O(X) denote the space of functions holomorphic
near X . For compact Hausdorff X , let C0(X) denote the Banach space
of all continuous, complex-valued functions on X , with the sup norm.

Theorem 3.1 (Hartogs-Rosenthal, 1931). Suppose X ⊂ C is compact
and has area zero. Then O(X) is dense in C0(X).

Proof. By the Separation Theorem for Banach spaces, it suffices to
show that

L ∈ C0(X)∗ ∩ O(X)⊥ ⇒ L = 0.

By the Riesz Representation Theorem, the dual C0(X)∗ =M(X), the
space of (complex, Radon) measures supported on X .
Fix µ ∈M(X) with µ ⊥ O(X), i.e.

∫

f dµ = 0 whenever f ∈ O(X).
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Regarding µ as a distribution on C, we find that µ̂ is the locally-
integrable function given by

µ̂(ζ) =
1

π

∫

dµ(z)

z − ζ
, ∀ζ ∈ C.

Since the function z 7→ 1/(z − ζ) belongs to O(X) for ζ 6∈ X , we have
µ̂ = 0 dxdy-a.e., hence µ̂ = 0 as a distribution, hence

µ =
∂µ̂

∂z̄
= 0.

�

Corollary 3.2 (A. Browder). Suppose X ⊂ Cn is compact, and each
coordinate projection of X has area zero. Then O(X) is dense in
C0(X).

Proof. Denote z = (z1, . . . , zn), and zj = xj + iyj. Fix j ∈ {1, . . . , n}.
Let πj : z 7→ zj . Then πj(X) has area zero, so by Hartogs-Rosenthal
z 7→ xj and z 7→ yj are uniform limits of functions (depending only on
πj(z)) that are holomorphic on a neighbourhood of π−1

j (πj(X)), and
hence belong to O(X). Thus the uniform closure A on X of the algebra
O(X) contains all the coordinate functions xj and yj, so by La Valleé
Poussin’s extension of Weierstrass’ Polynomial Approximation Theo-
rem (a special case of the Stone-Weierstrass Theorem), we conclude
that A = C0(X). �

Consider the function spaces, for 0 < α < 1 and compact X ⊂ Cn:

Lip(α,X) =

{

f ∈ C0(X) : sup
z 6=w

|f(z)− f(w)|
|z − w|α < +∞

}

,

and

lip(α,X) =

{

f ∈ Lip(α,X) : sup
0<|z−w|<δ

|f(z)− f(w)|
|z − w|α → 0 as δ ↓ 0

}

.

With a suitable norm, Lip(α,X) becomes a Banach algebra, and the
subspace lip(α,X) is a closed subalgebra, equal to the closure of D in
Lip(α,X). The elements of the dual lip(α,X)∗ may be represented in
a manner somewhat similar to the Riesz representation, as follows.
Fix any a0 ∈ X .
Given L ∈ lip(α,X)∗, there exist λ ∈ C and a measure µ on the

product X ×X having no mass on the diagonal, such that

Lf = λf(a0) +

∫

X×X

f(z)− f(w)

|z − w|α dµ(z, w),
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whenever f ∈ lip(α,X). If L1 = 0, then λ = 0. For such λ, this

permits us to represent L̂ by integration against an L1
loc function:

L̂(ζ) =
1

π

∫

(w − z) dµ(z, w)

(ζ − z)(ζ − w)|z − w|α .

Using this, and essentially the same proof as given for the Hartogs-
Rosenthal Theorem, one obtains [6, p. 387]:

Theorem 3.3. If X ⊂ C is compact with area zero, then O(X) is
dense in lip(α,X) for 0 < α < 1.

Corollary 3.4. If X ⊂ Cn has all its coordinate projections of area
zero, then O(X) is dense in lip(α,X).

4. Higher-dimensional Cauchy Transforms

The utility of the Cauchy transform in one dimension prompted peo-
ple to seek a similar tool for problems of several complex variables.
Here one must use forms. The kernel −1/πz must be replaced by a
(2n− 1)-form of type (n, n− 1):

Ω =
n

∑

j=1

Kj(ζ, z) dζ̄1 ∧ · · · dζ̄j−1 ∧ dζ̄j+1 ∧ · · · ∧ dζ̄n ∧ dζ1 ∧ · · · ∧ dζn,

such that

(1) φ(z) =

∫

Ω(ζ, z) ∧ ∂̄φ(ζ)

holds for test functions φ. A form Ω that does this is called a Cauchy-
Leray-Fantappié form. There are many such forms, and depending
on the end in view, one prefers one or another. There are also more
complex forms, involving boundary terms (analogous to Pompeiu’s for-
mula), useful for specific purposes.
In joint work with David Walsh, and the late Ken Preskenis, we

obtained the following [8]:

Theorem 4.1. Let X ⊂ Cn be compact and holomorphically-convex.Let
E ⊂ X be closed, and suppose that each point a ∈ X ∼ E has a neigh-
bourhood N ⊂ Cn such that X ∩ N is a subset of a C1 submanifold
without complex tangents. Then

closC0(X)O(X) = C0(X) ∩ closC0(E)O(X),

and

closLip(α,X)O(X) = lip(α,X) ∩ closLip(α,E)O(X), for 0 < α < 1.
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In other words, approximation problems on X reduce to approxima-
tion problems on the singular set E ⊂ X .
This generalised and extended to Lip(α) earlier work of Range and

Siu (E = ∅), Weinstock (X polynomially-convex), and ourselves [7]
(See below).
The proof comes down to showing that if a distribution L that acts

continuously on lip(α,X)∗ annihilates O(X), then L is supported on E.
To do this, one constructs a kernel Ω(ζ, z) such that Equation (1) holds
for z on a neighbourhood U of X and φ ∈ D(U), and a second kernel
Ω̃(ζ, z) such that Ω̃(ζ, z) = Ω(ζ, z) for z ∈ X and ζ ∈ U , and Ω̃ has

coefficients K̃j(ζ, z) that are holomorphic in z ∈ U for each ζ ∈ U ∼ X ,
and have another technical property. This construction is based on
work of Berndtsson, building on the special Bochner-Martinelli kernel.
Then, representing L as before by a measure µ on X×X with no mass
on the diagonal, we can represent

〈φ, L〉
=

∫

X×X

1

|z − w|α
∫

U

{Ω(ζ, z)− Ω(ζ, w)} ∧ ∂̄φ(ζ) dµ(z, w)

=

∫

U

∫

X×X

1

|z − w|α {Ω(ζ, z)− Ω(ζ, w)} dµ(z, w) ∧ ∂̄φ(ζ),

by Fubini’s Theorem. (There are substantial technical estimates in-
volved in justifying this.)
It remains to show that

∫

X×X

1

|z − w|α {Ω(ζ, z)− Ω(ζ, w)} dµ(z, w) = 0

for almost all ζ ∈ U . The fact that Ω(ζ, z) = Ω̃(ζ, z) for z ∈ X and
that the latter is holomorphic in z, and the technical properties (the
most important of which is an “omitted sector property”) allow us to
approximate each coefficient in the integral by elements of O(X), and
gives the desired result. For the details, see [8].

Corollary 4.2 (Range-Siu). If E = ∅, then O(X) is dense in C0(X).

Corollary 4.3. Let F ⊂ Y , where Y is a compact subset of Cn and
F is a closed subset of Y . Let f be a Cn-valued function defined on a
neighbourhood of Y , let X = f(Y ) and E = f(F ). Suppose that X is
polynomially-convex, and the matrix fz̄ (with columns ∂f

∂z̄j
) is invertible

on Y ∼ F . Then

(2) closC0(X)C[z, w] = C0(X) ∩ closC0(E)C[z, w],
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and

(3) closLip(α,X)C[z, w] = lip(α,X) ∩ closLip(α,E)C[z, w].

Equation 2 is due to Weinstock.

Corollary 4.4. Suppose ρ is a C2 strictly plurisubharmonic function
on a neighbourhood of bdyX, where X is a compact subset of Cn, with
interior D, and that bdyX = {z : ρ(z) = 0}, {z : ρ(z) < 0} ⊂ D, and
E = closD. Then Equations 2 and 3 hold.

In this case, Equation 2 is due to Henkin and Leiterer.

5. Extending Smooth Functions

According to one view, Geometry is an aspect of Group Theory. But
more accurately, Geometry is Ring Theory. To be absolutely precise,
Geometry is Topological Ring Theory.
Let M be a Ck manifold, and X ⊂ M . Given f : X → R, when

does there exist a Ck function f̃ : M → R such that the restriction
f̃ |X = f? This problem arises in many applications, and has been
studied since the 1930’s, with important work of Whitney and Glaeser.
Richard Watson and I studied it in the early 1990’s drawing on some
ideas of mine that go back to the 1970’s.
We deal now with real-valued functions, real vector spaces and alge-

bras, and i is just an index, or multi-index, and not
√
−1 any more.

Let Ck(M) now denote the algebra (under pointwise operations) of
Ck real-valued functions on M . This is a Frechet algebra (a complete
metric algebra) with the natural topology. For S ⊂ Ck(M), let

S⊥ = {L ∈ Ck(M)∗ : Lf = 0, ∀f ∈ S},
where Ck(M)∗ denotes the space of continuous linear functionals L :
Ck(M) → R. Note that Ck(M)∗ is a module over Ck(M). For X ⊂ M ,
let

X⊥ = {f ∈ Ck(M) : f(a) = 0, ∀a ∈ X}.
Let a⊥ = {a}⊥, when a ∈ X . Each X⊥ is an ideal in Ck(M). The ideal
(a⊥)

k+1 is generated by products of k + 1 elements of a⊥. Its annihi-
lator ((a⊥)

k+1)⊥ consists of the so-called “k-th order point differential
operators”. In local coordinates (x1, . . . , xd), each ∂ ∈ ((a⊥)

k+1)⊥ takes
the form

∂f =
∑

|i|≤k

αi

∂f

∂xi
(a), ∀f ∈ Ck(M),

where i = (i1, . . . , id) ∈ Zd
+ denotes a multi=index, |i| = ∑

j ij , and
αi ∈ R are constants depending on ∂, but not on f .
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The k-th order tangent space to M at a is defined as

Tank(M, a) = Ck(M)∗ ∩ ((a⊥)
k+1)⊥,

and the k-th order tangent space to X at a is defined as

Tank(M,X, a) = Tank(M, a) ∩ (X⊥)
⊥,

the set of k-th order point differential operators ∂ at a such that ∂f
depends only on the values of f on X . The disjoint unions

T k(M) = ˙⋃
a∈MTank(M, a),

and

T k(M,X) = ˙⋃
a∈MTank(M,X, a)

are called the k-th order tangent bundle of M , and the k-th order tan-
gent sheaf of X , respectively. The stalks Tank(M,X, a) have the struc-
ture of finite-dimensional modules over a finite-dimensional real alge-
bra, and provide numerical Ck invariants for the pair (M,X), since the
tangent construction behaves functorially. A Ck function F :M →M ′

between Ck manifolds induces an algebra homomorphism

F# :

{

Ck(M ′) → Ck(M)
g 7→ g ◦ F

and a Ck-module homomorphism

F# = (F#)∗ : Ck(M)∗ → Ck(M ′)∗.

If F maps X into X ′, then F# maps the stalk Tank(M,X, a) to the
stalk Tank(M ′, X ′, f(a)), and so induces a map F∗ : T k(M,X) →
T k(M ′, X ′). We established the following [9]:

Theorem 5.1. Let X be a closed subset of a Ck manifold M , f : X →
R be continuous, and

π :

{

M × R → M
(x, y) 7→ x

be the projection. Then f has a Ck extension to M if and only if the
map

π∗ : T
k(M × R, f) → T k(M,X)

is bijective.

This result, and the k-th order tangent concept, are not particu-
larly difficult, but are completely fundamental for the extension prob-
lem. They reduce the extension problem to the problem of deciding
whether or not two integral dimensions (of Tank(M × R, f, (a, f(a))
and Tank(M,X, a)) agree at each point a ∈ X . We were gratified by
the favourable reception of our paper, which included a congratulatory
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letter from Malgrange. It remained a problem to come up with a con-
structive procedure for deciding the question. Whitney himself dealt
with this in dimension one, for all k. We provided a way to do it in
1993, in case k = 1, for all dimensions. In recent years, C. Fefferman
and co-workers have gone as far as can be done in providing a construc-
tive procedure for general k. See the website [5] where this monumental
corpus may be downloaded. Their work employs, inter alia the k-th or-
der sheaf we introduced and our result. Fefferman was unaware of our
work, having taken the concept and result from the 2003 Inventiones
paper of Bierstone, Milman and Pawluckii [4]. I supplied a copy of our
paper to Pawlucki in December 1997, at his request. These authors
included our paper among their references, but did not attribute the
concept to us. They referred to our paper only in order to make a
gratuitously dismissive remark about it. I am at a loss to understand
this behaviour. They called the tangent sheaf the Zariski paratangent
bundle (although it is not in general a bundle), and subsequently a
number of authors have referred to it as the Zariski paratangent bundle
of Bierstone, Milman and Pawlucki. The bundle T k(M) was originally
introduced by Pohl and Feldman, but the sheaf T k(M,X) appeared
first in our paper.
I must also mention the work of Declan O’Keeffe [10], who proved

the analogous result for Ck+α extensions (k ∈ N, 0 < α < 1), and who
also used T k to study algebraic curve singularities in C2.

6. Approximating C∞ Functions

In conclusion, here is a brief summary of the joint work with the late
Graham Allan, Grayson Kakiko and Richard, on Segal’s problem. The
problem called for a characterization of the closed subalgebras of the
algebra C∞(M,R), for a smooth manifold M . The problem is local,
so that we may take M = Rd. There is not much loss in generality in
considering subalgebras that are topologically-finitely-generated, i.e.
those of the form

A(Ψ) = closC∞(Rd)R[Ψ] = closC∞(Rd){g ◦Ψ : g ∈ C∞(Rr,R),

where Ψ = (ψ1, . . . , ψr) ∈ C∞(Rd. In 1950, Nachbin conjectured a
solution, analogous to Whitney’s Spectral Theorem for closed ideals.
Let R[[x1, . . . , xn]] denote the algebra of formal power series in n inde-
terminates, let

T ′
a : C

∞(Rd,Rr) → R[[x1, . . . , xd]]
r
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denote the truncated Taylor series map, for each a ∈ Rd, and let Taf =
f(a) + T ′

af be the full Taylor series. (Note that xj would have to be
replaced by (xj−aj) in these series in applications of Taylor’s Theorem.)
In case Ψ ∈ C∞(Rd,Rr) is injective, Nachbin’s conjecture comes

down to

(4) A(Ψ) =
⋂

a∈critΨ

T−1
a R[[T ′

aΨ]],

which may be stated in loose terms as: f ∈ A(Ψ) if and only if f has
the “right kind” of Taylor series at each point.

Theorem 6.1 (Tougeron 1971). Suppose that for each compact K ⊂
R

d there exists α > 0 and β > 0 such that

|Ψ(x)−Ψ(y)| ≥ α|x− y|β, ∀x, y ∈ K.

Then Equation (4) holds.

Corollary 6.2. If Ψ is injective and real-analytic, then Equation (4)
holds.

Our main result was this [1]:

Theorem 6.3. If Ψ is injective and d = 1, then Equation (4) holds.

The proof involves some hard analysis, to oversome the problems
around the accumulation points of the critical set.
We say that Ψ is flat at a if T ′

aΨ = 0. We also proved the following
useful result [2]

Theorem 6.4. If Ψ is injective and f ∈ C∞(Rd) is flat at each critical
point of Ψ, then f ∈ A(Ψ).

Corollary 6.5. If Ψ is injective and flat on critΨ, then Equation (4)
holds.

Corollary 6.6. If Ψ is injective and critΨ is discrete, then Equation
(4) holds.

In further work [3], we studied A(Ψ) as a Frechet algebra, for injective
Ψ. We established that it is always regular, and that membership of
A(Ψ) is a local property.

7. Notes

It is convenient to take this opportunity to correct the definition of
proxy distance given on p.49 of our paper [2] in the proceedings of the
meeting at Blaubeuren. This should read:



A LITTLE HELP FROM MY FRIENDS 11

Definition Let E ⊂ Rd be closed and κm ≥ 1 (m = 0, 1, 2, . . .). A
function dE : Rd → [0,+∞) that is C∞ on Rdi ∼ E is called a {κm}
proxy distance for E if

1

κ0
dE(x) ≤ dist(x, E) ≤ κ0dE(x), ∀x ∈ R

d

and
|DmdE(x)| ≤ κm · dist(x, E)1−m, ∀x ∈ R

d, ∀m ≥ 1.

No other change to the paper is needed, and it all remains true.
(The reason for the change is that dE cannot be C∞ on the whole

of Rd when ∅ 6= E 6= Rd; in the subsequent application dE is always
composed with functions φ that vanish near 0, so φ ◦ dE is C∞ on Rd.)

I would also like to point out to readers of [8] that the interesting
case of Example 3.2 is when X 6= int closX . It is even interesting when
X has no interior.
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