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a b s t r a c t

A highly selective dopamine sensor was fabricated by doping polypyrrole with a sulfonated �-
cyclodextrin. This composite material enabled the selective sensing of dopamine in the presence of a
large excess of ascorbic acid and prevented the regeneration of dopamine through the homogeneous cat-
alytic reaction of the ascorbate anion with the dopamine-o-quinone. A single redox wave, corresponding
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to the oxidation of dopamine, was observed in dopamine/ascorbate mixtures, giving a truly selective
dopamine sensor. The limit of detection was measured as 3.2 × 10−6 M for dopamine.

© 2010 Elsevier B.V. All rights reserved.
scorbic acid
elective detection

. Introduction

Dopamine is one of the most important catecholamine neuro-
ransmitters in the mammalian central nervous system. Abnormal-
ties in dopamine concentrations have been linked with several
eurological disorders such as the debilitating ailment Parkinson’s
isease and the mental disorder schizophrenia [1,2]. Dopamine is
lso believed to play a central role in Huntington’s disease, a fatal
enetic neurodegenerative movement disorder and has also been
ssociated with drug addiction and attention disorders [3–5].

Monitoring the concentration of dopamine is particularly
hallenging using electrochemical methods because dopamine co-
xists with many interfering compounds in biological samples.
hese interfering compounds are usually present at concentrations
uch higher than dopamine and, moreover, they are oxidised at

imilar potentials to dopamine at most solid electrodes. This is par-
icularly true of ascorbic acid, the main interfering compound in
he determination of dopamine. The concentration of the ascorbate
nion is typically 10−3 M, while the concentrations of dopamine
re considerably lower, in the range of 10−8 to 10−6 M. Ascorbic
cid is easily oxidised having a range of E1/2 values between −100

nd 400 mV vs. SCE on most solid electrodes. This lies in the same
otential region as dopamine, which has a range of E1/2 values
etween 100 and 250 mV vs. SCE for various electrode substrates
6]. Furthermore, ascorbic acid reacts with the oxidised dopamine

∗ Corresponding author. Tel.: +353 1 708 3770; fax: +353 1 708 3815.
E-mail address: claire.c.harley@nuim.ie (C.C. Harley).

925-4005/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2010.09.012
product (dopamine-o-quinone) which is generated through the
electrochemical oxidation of dopamine. This reaction leads to the
regeneration of dopamine making it available for further electro-
chemical oxidation, complicating the analysis [7,8].

A number of modified electrodes have been used in an attempt
to resolve these problems. The most popular strategies include
polymer, self-assembled monolayer, metal nanoparticle, carbon
nanotube and surfactant modified electrodes [9–13]. In particular,
there has been much interest in the development of sensors based
on electrodes modified with polymeric films. Electropolymerised
films of pyrrole, aniline, 3-methylthiophene, acridine red, sulfosal-
icylic acid, 3,5-dihydroxy benzoic acid and acid chrome K have all
been reported [14–18]. Overoxidised polymer modified electrodes
have also been employed to sense dopamine and ascorbic acid [19].
However, the most common approach is to use Nafion®, a perflu-
orinated polymer. Nafion® has terminal sulfonate groups that can
repel the negatively charged ascorbate anion from the electrode
surface, enabling the discrimination of the ascorbate and dopamine
oxidation waves [20].

Cyclodextrins are naturally occurring macrocyclic oligosaccha-
rides built from �-1,4-linked d-glucopyranose units. Cyclodextrins
are well-known to bind with suitable guest molecules in aqueous
solutions to form inclusion complexes [21]. They also exhibit excel-
lent biocompatibility and as a result have been incorporated into

various dopamine sensors. For example, Izaoumen et al. [22] and
Bouchta et al. [23] have used polymer films modified with neutral
cyclodextrins and doped with perchlorate anions for the sens-
ing of dopamine, while Alarcon-Angeles et al. [24] have modified
multiwall carbon nanotubes with �-cyclodextrins for the sensing

dx.doi.org/10.1016/j.snb.2010.09.012
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:claire.c.harley@nuim.ie
dx.doi.org/10.1016/j.snb.2010.09.012
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The dopamine response at the bare platinum electrode and at
the polypyrrole sulfonated �-cyclodextrin film was examined using
cyclic voltammetry, Fig. 1(a) and (b), respectively. The electrodes
were cycled in a 1.0 × 10−3 M dopamine solution dissolved in a
C.C. Harley et al. / Sensors an

f dopamine. The electrochemical synthesis of polypyrrole doped
ith sulfonated �-cyclodextrins has been reported by Temsamani

t al. [25], Bidan et al. [26] and Reece et al. [27]. However, there
re no reports, to the best of our knowledge, on using these mate-
ials in the selective sensing of dopamine. The modified sensor
sed here differs from the majority of all other publications on
yclodextrin modified dopamine sensors, as the anionic cyclodex-
rin is introduced into the polymer matrix as an immobile dopant.
urthermore, it is the sole dopant, as no other anions are used in
he electropolymerisation step.

In this paper, we show that polypyrrole films doped with
ulfonated �-cyclodextrins are readily formed and that these mate-
ials have excellent selectivity in the determination of dopamine
oncentrations, facilitating the oxidation of dopamine, but inhibit-
ng the oxidation of ascorbate. In addition, there is no evidence of
he regeneration of dopamine through the ascorbate/dopamine-o-
uinone reaction. Also, the exceptional biocompatibility properties
f the materials used make the cyclodextrin-doped polypyrrole
ensor considerably more suitable for in vivo detection compared
o some of the more complex electrodes already considered in the
ensing of dopamine.

. Experimental

.1. Materials

Dopamine, ascorbic acid, pyrrole, citric acid, disodium hydro-
en phosphate and sulfonated �-cyclodextrin were obtained from
igma–Aldrich or its subsidiary company, Fluka. All chemicals were
sed as supplied except for the pyrrole monomer which was dis-
illed before use and stored at −4 ◦C. All solutions were prepared
reshly before each experiment and were deoxygenated with nitro-
en. Platinum rod (99.95%, 4 mm in diameter) and glassy carbon
4 mm in diameter) were supplied by Goodfellow or Alfa Aesar. A
50 mL citrate phosphate buffer solution (pH 6.0) was prepared by
ixing 150 mL of 0.2 M disodium hydrogen phosphate and 100 mL

f 0.1 M citric acid.

.2. Apparatus

The performance of the sensor was evaluated using both cyclic
oltammetry measurements and constant potential amperome-
ry. All data were recorded using a Solartron 1285A potentiostat
t room temperature in a 0.10 M Na2SO4 supporting electrolyte,
H 6.0. The constant potential amperometry was performed by
otating the electrode at 2000 rpm using a rotating disc electrode
ssembly, EG&G Model 363. A platinum rotating disc electrode was
sed as the working electrode. In each case, the modified electrodes
ere first cycled in the background electrolyte, between −0.10 V

s. SCE and 0.90 V vs. SCE for 10 cycles to ensure the release of any
yrrole or oligomers from the surface.

A standard three-electrode electrochemical cell configuration
as employed for all electrochemical experiments. A platinum or

lassy carbon rod electrode was used as the working electrode.
hese were embedded in epoxy resin in a Teflon holder with elec-
rical contact being achieved by means of a wire threaded through
he holder to the rod substrate. A platinum wire was used as an aux-
liary electrode and a saturated calomel electrode (SCE) was used as
he reference electrode. Tencor analysis was carried out on a Ten-
or Veeco Dektac 6M Stylus Profilometer in the Tyndall National
nstitute, University College Cork.
.3. Fabrication of polymers

Prior to each experiment, the platinum electrode was polished
o a mirror finish, using successively smaller sizes of diamond paste,
Fig. 1. Cyclic voltammograms of (a) bare platinum electrode and (b) a polypyrrole
sulfonated �-cyclodextrin modified electrode in (···) a 0.10 M Na2SO4 solution and
in (–) a 1.0 × 10−3 M dopamine/0.10 M Na2SO4 solution. Scan rate = 100 mV s−1.

down to a 1 �m sized diamond paste, rinsed with distilled water
and finally cleaned in an ultrasonic bath. The cyclodextrin doped
polypyrrole films were prepared at the platinum electrode from a
0.20 M pyrrole and 0.01 M sulfonated �-cyclodextrin solution1 at a
constant potential of 0.80 V vs. SCE until a charge of 0.24 C cm−2

was passed (approximately 35 s). The polypyrrole sulfonated �-
cyclodextrin modified electrode was finally washed with distilled
water and dried.

3. Results and discussion

3.1. Oxidation of dopamine at the polypyrrole sulfonated
ˇ-cyclodextrin film
1 Commercially available sulfonated �-cyclodextrin has approximately 7–11 sul-
fonated groups per cyclodextrin. A mean value of 9 sulfonated groups was assumed
when calculating the molecular weight.
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Fig. 2. (a) Steady-state currents from constant potential amperometry, recorded at
a rotating disc electrode at 2000 rpm at 0.65 V vs. SCE, plotted as a function of the
00 C.C. Harley et al. / Sensors an

.10 M Na2SO4 supporting electrolyte, between −0.10 V and 0.90 V
s. SCE at a scan rate of 100 mV s−1. It can be seen in Fig. 1(a) that
he oxidation of dopamine at the bare platinum electrode exhibits
wo pairs of redox peaks. The pair of redox peaks observed at
he higher potentials corresponds to the oxidation of dopamine
o dopamine-o-quinone, whereas the redox couple observed at
he lower potentials relates to the oxidation of leucodopamine to
opaminochrome. These redox peaks are consistent with the elec-
rochemical oxidation of dopamine at unmodified substrates [28].

The electrochemistry of dopamine at the polypyrrole sulfonated
-cyclodextrin film is very different (Fig. 1(b)). Only one pair of

edox peaks, corresponding to the oxidation of dopamine (0.46 V
s. SCE) and the reduction of the dopamine-o-quinone (0.27 V vs.
CE), is observed and the peaks currents are considerably higher.
his marked increase in the peak current can be attributed to the
olymer and not the metal surface. Indeed, this is further sup-
orted by the fact that the oxidation potential of dopamine at
he polymer-modified electrode is some 150 mV lower than that
bserved at the bare platinum electrode. In addition, the pres-
nce of this polymer on the platinum electrode has decreased
he potential difference between the oxidation and reduction
eaks of dopamine, making the reaction more reversible than
hat observed at a bare platinum electrode. The peak poten-
ial separation (�Ep) is approximately 190 mV at the polymer

odified electrode, compared to 480 mV at the bare platinum elec-
rode, indicating a significant increase in the reversibility of the
ystem. This increase may be attributable to improved kinetics,
owever, the rate constant, k, was found to be 3.9 × 102 M−1 s−1

t the polymer modified electrode. This was determined using
otating disc voltammetry and the Koutecky–Levich equation,
/iL = 1/nFACok� + 1/0.62nFAD2/3�−1/6Coω1/2, where, iL is the mea-
ured limiting current, n is the number of electrons transferred, F
s the Faraday constant, A is the electrode area, Co is the dopamine
oncentration, k is the rate constant, � is the surface coverage, D
s the diffusion coefficient, � is the kinematic viscosity and ω is
he rotation speed. If a linear Koutecky–Levich relationship exists
etween the inverse of the limiting current and the inverse of the
quare root of the rotation speed then k can be determined from the
ntercept of this line. This value for k is reasonably high, indicating a
airly fast electrocatalytic process. However, higher rate constants
ave been reported in the literature [29,30]. Therefore, the obvious

ncrease in the reversibility may not be solely due to the polymer
lm having a catalytic effect on the oxidation of dopamine.

Another aspect that must be taken into consideration is the
orous nature of the polymer film. The thickness of the polypyr-
ole sulfonated �-cyclodextrin film was determined as 505 ± 50 nm
sing a Tencor profilometer. The thickness of the films was also the-
retically calculated as 600 nm from the total charge passed using
relationship derived by Diaz et al. [31] that assumes that 1 C cm−2

s equivalent to 2.5 �m of polymer growth. This is slightly higher
han the experimental analysis however, it is important to high-
ight that the relationship quoted by Diaz et al. [31] was for a simple
hloride dopant, which has been shown to form thicker films than
olypyrrole films doped with tosylate and polystyrene sulfonate
hen the same amount of charge has been passed [32]. The val-
es obtained from both the experimental and theoretical analyses

ndicate that the polypyrrole sulfonated �-cyclodextrin films are
orous and may exhibit thin film diffusion. Henstridge et al. [33]
ave shown that a reduction in the overpotential of a voltammet-
ic signal at a porous film is due to planar diffusion and thin film
iffusion rather than a faster rate of electron transfer. Therefore,

he more reversible electrochemistry of dopamine at the polypyr-
ole sulfonated �-cyclodextrin film may be also connected with this
henomena.

Another characteristic of the voltammograms recorded by the
olymer film is that the dopamine oxidation peak is more symmet-
dopamine concentrations (n = 4). Inset shows the constant potential amperometry
with current plotted as a function of time and as a function of successive additions of
dopamine aliquots ranging from 50 �L to 5 mL. (b) The linear response of dopamine
at low concentrations.

ric in comparison to the bare electrode. This may be connected to
the capacitance of the polymer film. As evident in Fig. 1(b), the
background current in the cyclic voltammograms is large, indi-
cating a high charging capacitance. Indeed, the capacitance of
the polypyrrole sulfonated �-cyclodextrin film was found to be
1.2 × 10−3 F cm−2 which is significantly higher than the capacitance
associated with the bare platinum electrode. This higher capac-
itance may be responsible for the more symmetric shape of the
dopamine oxidation wave. Indeed, it has been shown that the
cyclic voltammograms of dopamine can become more symmetric
in shape as the capacitance increases [34].

3.2. Sensitivity of the polypyrrole sulfonated ˇ-cyclodextrin film

In order to obtain information on the sensitivity of the sensor,
constant potential amperometry data were measured. A typical plot

is presented in the inset of Fig. 2(a), showing the amperometric
response of the cyclodextrin-doped polypyrrole film to successive
additions of dopamine. The solution was agitated by rotating the
electrode at 2000 rpm, while a constant potential of 0.65 V vs. SCE
was applied. The response time (time for the signal to increase from
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Fig. 3. (a) Cyclic voltammograms of a polypyrrole sulfonated �-cyclodextrin mod-
ified electrode in (- -) a 1.0 × 10−3 M dopamine/0.10 M Na2SO4 solution, (–) a
1.0 × 10−3 M ascorbic acid/0.10 M Na2SO4 solution and (···) a 1.0 × 10−3 M ascor-
bic acid/1.0 × 10−3 M dopamine/0.10 M Na2SO4 solution. Scan rate = 100 mV s−1. (b)
Peak currents and (c) potentials, from the cyclic voltammograms, of dopamine
C.C. Harley et al. / Sensors an

0% to 80%) was less than 3.3 s, which indicates a reasonably quick
esponse of the modified electrode to dopamine. This compares
ery well with the typical response times of dopamine at other
odified electrodes [35].
The relationship between the measured current and the

oncentration of dopamine is shown in Fig. 2(a). A curve is
btained over a wide concentration range, while a clear lin-
ar region is observed at lower concentrations, as shown in
ig. 2(b). The regression equation was Ipa = 0.886cDA, with a cor-
elation coefficient of 0.999. This gives a current to concentration
atio of 0.886 �A �M−1. This sensitivity is reasonable given the
act that the sensitivities of the majority of polymer modified
opamine sensors are similar, if not, lower than this. For exam-
le, Gopalan et al. [36] obtained a sensitivity of 0.22 �A �M−1

n the presence of ascorbic acid using a poly(4-aminothiophenol)
odified electrode embedded with gold nanoparticles while Bal-

murugan and Chen [37] acquired a sensitivity of 1.0 �A �M−1

or dopamine using an poly(3,4-ethylenedioxythiophene-co-(5-
mino-2-naphthalenesulfonic acid)) modified electrode.

Using the linear calibration curve, the limit of detection was
ound to be 3.2 × 10−6 M dopamine. This was obtained using the
xpression Cm = 3Sb/m, where Cm is the detection limit, Sb is the
tandard deviation of the blank response and m is the slope of the
inear calibration curve. Although this concentration is not suffi-
iently low for a viable in vivo dopamine sensor, it may be possible
o reach lower detection limits by using pulsed techniques, such
s differential pulse voltammetry, or by miniaturising the elec-
rode. Interestingly, a limit of detection of 4.0 × 10−5 M dopamine,
btained by Ferreira et al. [38], was sufficient to detect dopamine
n a pharmaceutical product. Therefore, the polypyrrole sulfonated
-cyclodextrin modified electrode may have potential in this area.

.3. Effect of ascorbic acid on the sensing of dopamine

In Fig. 3(a), the cyclic voltammograms of the cyclodextrin
oped polypyrrole films cycled in 1.0 × 10−3 M dopamine and in
.0 × 10−3 M ascorbate are compared. In both cases, the potential

s cycled in the potential range where dopamine and ascorbate are
ikely to oxidise. No oxidation wave is observed for the ascorbate
ystem at the polypyrrole sulfonated �-cyclodextrin film. When
scorbic acid and dopamine are simultaneously mixed in the same
olution, only the dopamine peak is detected at the polypyrrole
ulfonated �-cyclodextrin electrode, giving very good selectivity,
ig. 3(a).

The influence of ascorbate on the dopamine signal is sum-
arised in Fig. 3(b) and (c), where the magnitude of the oxidation

eak currents and potentials obtained with pure dopamine, are
ompared to the values measured when 1.0 × 10−3 M ascorbate is
resent. The concentration ratio of ascorbic acid to dopamine in
he combined solution was varied from 1.0 (1.0 × 10−3 M ascor-
ic acid and 1.0 × 10−3 M dopamine) to 16.7 (1.0 × 10−3 M ascorbic
cid and 6.0 × 10−5 M dopamine). The values reported are averaged
ver at least three determinations (the errors in the measurements
re less than 1.5%). It can be seen that the dopamine signal is not
ffected by the presence of ascorbic acid. Also, regardless of the
oncentration of dopamine, there is no evidence of any increase in
he dopamine oxidation current as a result of the solution reaction
etween dopamine-o-quinone and ascorbic acid (Scheme 1).

In fact, no interference was observed when the concentra-
ion of ascorbic acid was increased to 1.0 × 10−2 M. At this high
oncentration the oxidation peak from ascorbic acid should be

ufficient to overcome the background current. The mean Ip and
p values for 1.0 × 10−3 M dopamine at the polymer film were
.65 × 10−3 A cm−2 and 0.459 V vs. SCE, respectively (n = 3). Sur-
risingly, mean Ip and Ep values of 3.64 × 10−3 A cm−2 and 0.459 V
s. SCE were obtained in the presence of 1.0 × 10−2 M ascorbate

as a function of the concentration of dopamine in the ( ) presence (n = 3) and
(�) absence (n = 4) of 1.0 × 10−3 M ascorbic acid in a 0.10 M Na2SO4 supporting
electrolyte. The concentration ratio of ascorbic acid to dopamine in the combined
solution was varied from 1.0 (1.0 × 10−3 M ascorbic acid and 1.0 × 10−3 M dopamine)
to 16.7 (1.0 × 10−3 M ascorbic acid and 6.0 × 10−5 M dopamine).
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Scheme 1. Mechanism of the electrocat

n = 3). The fact that this high concentration of ascorbic acid does
ot interfere is remarkable given that it is significantly higher than
he typical concentrations of ascorbic acid found in most biological
amples.

These results show clearly that both 1.0 × 10−3 M and
.0 × 10−2 M ascorbate do not interfere with the detection of
opamine, with the polypyrrole sulfonated �-cyclodextrin films
liminating the signal of ascorbic acid. This is somewhat rare given
hat the majority of reports for modified electrodes in the litera-
ure are related to the simultaneous determination of dopamine
nd ascorbic acid [39].

.4. Mechanism of sensing

The data presented in Section 3.3 clearly show that the
yclodextrin-doped polypyrrole films have excellent selectivity.
he sulfonated �-cyclodextrin is highly charged, with 7 to 11 –SO3

−

roups. An important consideration is the number of sulfonated
roups on each cyclodextrin that takes part in the doping process.
f all the sulfonated groups on the �-cyclodextrin were involved
n charge balance there would be considerable steric strain in the
olymer matrix. Therefore, it is highly probable that some free
ulfonated groups are present within the polymer. Furthermore,
aoi and co-workers [40], in studying the doping of polypyrrole
ith mono-, di- and tri-sulfonated naphthalene, concluded that

he polypyrrole-trisulfonate doped films possessed free sulfonated
roups without any charge compensation. This is consistent with
he lack of any signal from the oxidation of the ascorbate anion,
s the anion will be repelled from the negatively charged sur-
ace. On the other hand, the protonated dopamine (pKa = 8.87)
ill be attracted to the interface. In addition, this local negative

harge is sufficient to maintain the ascorbate (pKa = 4.10) at a suf-
cient distance from the interface, enabling the reduction of the
opamine-o-quinone back to dopamine during the reduction cycle
f the voltammogram, avoiding any, or little, regeneration of the
opamine through the ascorbate catalysed reaction.
In order to see if there was any binding interaction between
he dopamine and the polypyrrole sulfonated �-cyclodextrin film,
he Michaelis–Menten equation, V = Vmax[S]/Km + [S], was applied
o the constant potential amperometry data (Fig. 2(a)). The

ichaelis–Menten equation describes the relationship between
oxidation of ascorbic acid by dopamine.

the rate of substrate conversion by an enzyme and the concentra-
tion of the substrate, where, V is the rate of substrate conversion,
Vmax is the maximum rate of substrate conversion, [S] is the
substrate concentration and Km is the Michaelis constant. Even
though the polypyrrole sulfonated �-cyclodextrin film is not an
enzyme, the Michaelis–Menten equation can be applied to this sys-
tem to gauge if there is any binding interaction between it and
the dopamine. This is because cyclodextrins can mimic enzyme-
catalysed reactions and this has been well documented in the
literature [41]. For this case, V is equal to the current I, and sub-
sequently Vmax is equal to Imax. The curve in Fig. 2(a) obeys the
Michaelis–Menten equation with a correlation coefficient of 0.999.
The Km and Imax were determined from this curve with values
of 1.53 × 10−3 M and 1.17 × 10−3 A cm−2 obtained, respectively. As
this value of Km is relatively high this would suggest that the
dopamine [DA] interacts weakly with the polypyrrole sulfonated
�-cyclodextrin film [PPy-SCD] to give the complex [PPy-SCD-DA],
which can easily dissociate into the polypyrrole sulfonated �-
cyclodextrin film [PPy-SCD] and the oxidised dopamine product,
dopamine-o-quinone [DA-O-Q]. This can be summarised by

[PPy-SCD] + [DA]
k1�

k−1

[PPy-SCD-DA]
k2−→[PPy-SCD] + [DA-O-Q]

where k1 and k−1 are rate constants for the association and dis-
sociation of dopamine and polypyrrole sulfonated �-cyclodextrin,
respectively. The rate constant for the dissociation of converted
dopamine (dopamine-o-quinone) is k2.

The results acquired from the Michaelis–Menten kinetics indi-
cate that there is an interaction between the dopamine and the
polypyrrole sulfonated �-cyclodextrin film. The interaction could
be purely electrostatic, with the negatively charged sulfonated
groups on the cyclodextrin attracting the cationic dopamine to
give an ion pair. Alternatively, it could be a combination of both
an electrostatic interaction and the dopamine forming an inclusion
complex with the sulfonated �-cyclodextrin.

Cyclic voltammetry was used to investigate the nature of this

binding interaction between the dopamine and the sulfonated
�-cyclodextrin in solution. These data were recorded with a
fixed concentration of dopamine, 5.0 × 10−4 M, at a glassy car-
bon electrode in a buffered citrate-phosphate, pH 6.0, solution.
The concentration of the sulfonated cyclodextrin was varied from
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Fig. 4. (a) Cyclic voltammograms of a bare glassy carbon electrode in (–)
5.0 × 10−4 M dopamine and in 5.0 × 10−4 M dopamine/( ) 2.0 × 10−2 M, ( )
1.0 × 10−2 M, (- -) 5.0 × 10−3 M and in (···) 2.5 × 10−3 M sulfonated �-cyclodextrin.
All solutions were made up in a 0.30 M citrate phosphate buffer solution (pH
of all solutions ∼6.0). Scan rate = 50 mV s−1. Electrochemical window: −0.25 V to
0.80 V vs. SCE. (b) Cyclic voltammograms of a bare glassy carbon electrode in (–)
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.0 × 10−4 M ascorbic acid and in (···) 5.0 × 10−4 M ascorbic acid/1.0 × 10−2 M sul-
onated �-cyclodextrin. All solutions were made up in a 0.30 M citrate phosphate
uffer solution (pH of all solutions ∼6.0). Scan rate = 50 mV s−1. Electrochemical
indow: −0.25 V to 0.80 V vs. SCE.

.0 × 10−2 M to 2.5 × 10−3 M to give dopamine-containing solu-
ions with an excess of the anionic sulfonated �-cyclodextrin, while
he 0.3 M buffer solution provided a near constant ionic strength.
he voltammograms recorded for the pure dopamine solution are
ompared to the data recorded in the presence of the sulfonated �-
yclodextrin in Fig. 4(a). On addition of sulfonated �-cyclodextrin
o the dopamine solution, there is a clear anodic shift in the peak
xidation potential and a decrease in the peak oxidation current. In
ontrast, no evidence of any interaction was observed between the
scorbate anion and the sulfonated �-cyclodextrin when a similar
nalysis was carried out (Fig. 4(b)). This reduction in the peak cur-
ent and the anodic shift of the peak potentials for the oxidation of
he analyte are consistent with the formation of an inclusion com-

lex [42,43]. The increase in the oxidation potential is connected to
he fact that it is more difficult to oxidise the included dopamine,
hile the decrease in the peak currents is consistent with a lower
iffusion coefficient of the included dopamine compared to that of
ree dopamine. The sulfonated �-cyclodextrin is large and bulky
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and this will give rise to a measurable decrease in the diffusion
coefficient of the encapsulated dopamine. Although these data are
consistent with the formation of an inclusion complex the driving
force for this inclusion event may be the electrostatic attraction
between the anionic sulfonated �-cyclodextrin and the cationic
dopamine. Indeed our studies show that there is no apparent
interaction between the neutral �-cyclodextrin and dopamine in
solution.

Interestingly, there is no change in the potential at which the
dopamine-o-quinone is reduced and converted back to dopamine,
Fig. 4(a). For example, the peak potential is 0.064 V vs. SCE in
the absence of the sulfonated �-cyclodextrin and 0.060 V vs. SCE
in the presence of the 2.0 × 10−2 M sulfonated �-cyclodextrin.
These observations illustrate that once the included dopamine is
converted to dopamine-o-quinone, it is expelled from the cavity,
enabling the detection of dopamine in subsequent cycles, corrobo-
rating the Michaelis–Menten analysis.

Assuming that the cavity is accessible when the cyclodextrin
is doped within the polypyrrole matrix, then an inclusion com-
plex between the dopamine and the cavity is likely. Interestingly,
Bidan et al. [26] showed that N-methylphenothiazine (NMP) was
encapsulated within the cyclodextrin cavity by simply immersing
the polypyrrole-sulfonated �-cyclodextrin film in an acetonitrile
(CH3CN) solution containing NMP, indicating that the cavities are
available for suitable guest molecules.

4. Conclusions

A sulfonated �-cyclodextrin doped polypyrrole film was formed
at 0.80 V vs. SCE in a 0.20 M pyrrole and 0.01 M sulfonated �-
cyclodextrin solution. This polymer has excellent selectivity for the
detection of dopamine in the presence of ascorbate. The ascorbate
anion is not detected. A linear calibration curve was obtained to give
a sensitivity of 0.886 �A �M−1 and a detection limit of 3.2 × 10−6 M
for dopamine.
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