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ABSTRACT

Gaussian Process (GP) model interpolation is used
extensively in geostatistics. We investigated the effec-
tiveness of using GP model interpolation to generate
maps of cortical activity as measured by Near Infrared
Spectroscopy (NIRS). GP model interpolation also pro-
duces a variability map, which indicates the reliability of
the interpolated data. For NIRS, cortical hemodynamic
activity is spatially sampled. When generating cortical
activity maps, the data must be interpolated. Popular NIRS
imaging software HomER uses Photon Migration Imaging
(PMI) and Diffuse Optical Imaging (DOI) techniques
based on models of light behaviour to generate activity
maps. Very few non-parametric methods of NIRS imaging
exist and none of them indicate the reliability of the inter-
polated data. Our GP model interpolation algorithm and
HomER produced activity maps based on data generated
from typical functional NIRS responses. Image results
in HomER were taken as the bench mark as the images
produced are commonly considered to be representative of
the true underlying hemodynamic spatial response. The
output from the GP approach was then compared to these
on a qualitative basis. The GP model interpolation appears
to produce less structured image maps of hemodynamic
activity compared to those produced by HomER, however
a broadly similar spatial response is compelling evidence
of the utility of GP models for such applications. The ad-
ditional generation of a variability map which is produced
by the GP method may have some utility for functional
NIRS as such information is not explicitly available from
standard approaches. GP model interpolation can produce
spatial activity maps from coarsely sampled NIRS data
sets without any knowledge of the system being modelled.
While the images produced do not appear to have the
same feature resolution as photonic model-based methods
the technique is worthy of further investigation due to its
relative simplicity and, most intriguingly, its generation
of ancillary information in the form of the variability
map. This additional data may have some utility in NIRS
optode design or perhaps it may have application as
additional input for response classification purposes. This
GP technique may also be of use where model information
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is inadequate for DOI techniques.
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1 Introduction

Near-infrared spectroscopy (NIRS) is a non-invasive
method for measuring localised hemodynamics in the
brain. This technique uses light at multiple near-infrared
wavelengths to measure concentrations of oxygenated
haemoglobin (HbO) and deoxygenated haemoglobin
(HbR). Since there is a relationship between cerebral vas-
cular responses and neural stimulation, the recorded HbO
and HbR signals give an indirect measurement of neuronal
activity.

NIRS only interrogates a small area of cortex so in-
terpolation of the data is required to produce a spatial ac-
tivity map. The most popular method for producing im-
ages from NIRS data is through a linear approximation to
the photon diffusion equation [1]. This method is imple-
mented in the NIRS data analysis package HomER. Cruder,
more familiar, methods of interpolation have been applied
to NIRS signals before [2]. However, the method employed
by HomER is widely trusted to be the highest standard of
NIRS imaging.

The Gaussian process model is a probabilistic, non-
parametric black-box model. It differs from most of the
other black-box modelling approaches as it does not try to
approximate the modelled system by fitting the parameters
of the selected basis functions but rather searches for the
statistical relationship among measured data.

Gaussian process models are closely related to ap-
proaches such as Support Vector Machines and especially
Relevance Vector Machines. Typically, Gaussian process
models have been explored for various applications as a
method for classification or regression. Various interesting
applications (e.g. [3], [4] in medicine and bioengineering
fields) have exploited different properties of Gaussian pro-
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cess models. In the field of geostatistics Gaussian Process
regression models are used for probabilistic analysis of data
and are more commonly known under name Kriging. It is
the latter application of GP which we are applying here.

Here, we apply the GP interpolation process to NIRS
data and compare results to those obtained in HomER. GP
model interpolation is unique in that it produces an interpo-
lated magnitude map and also a variance map. The levels
of variance at each interpolation point give an indication of
how reliable the estimated magnitude value is. This is the
first time as far as the authors are aware that a Kriging ap-
proach has been applied to data generated by near infrared
spectroscopy methods and it may open up new vistas of
research at least for non-parametric approaches to image
construction in this domain.

2 Background
2.1 NIRS Theory

In NIRS, near-infrared wavelengths of light are shone on
to the scalp. Some of the emitted photons are absorbed
and some are scattered. Some of the scattered photons are
‘back-scattered’ so that they exit the scalp again. A pho-
todetector can be placed on the scalp to record the inten-
sity of the transmitted light exiting at that point. A pairing
of light source to photodetector is called an ‘optode’. The
light recorded by a photodetector is predicted to have trav-
elled in a roughly banana-shaped path [5]. By controlling
the separation of the light source and photodetector, the ex-
pected depth of the photon path can be controlled. This
source-detector separation is set so that a small area of cor-
tex is interrogated by the photons.

The intensity of the back-scattered light is related
to the amount of light that has been absorbed and scat-
tered. The absorption spectrum of HbO and HbR has been
recorded before [6]. Using the absorption coefficients of
HbO and HbR at the two wavelengths used, the modified
Beer-Lambert law can be used to calculate concentrations
of HbO and HbR along the path [7]. This indicates the
changes in HbO and HbR in the interrogated area of cor-
tex. A more detailed introduction to NIRS can be found
elsewhere [8].

2.2 The Gaussian process model

The Gaussian process model is an example of the use of
a flexible, probabilistic, non-parametric model with uncer-
tainty predictions. It fits naturally in the Bayesian mod-
elling framework in which instead of parameterizing map-
ping function f(x), a prior is placed directly on the space of
possible functions f(x) which could represent the nonlin-
ear mapping from input x to output y. This prior represents
the modeller’s beliefs about the mapping, usually involving
smoothness assumptions. This prior is combined with the
likelihood of the identification (training) set of N observed
input-output data pairs, {x*,y*}},, to provide us with the
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Figure 1. Optode configuration. The solid dark green cir-

cle labelled A indicates the location of the light source. The

open circles, labelled 1-4 indicate the locations of the pho-

todetectors. The solid red circles indicate the midpoints

of the paths, which are used as the data source locations

for GP model interpolation. Points on the grid are 0.5 cm
apart.

posterior distribution for model predictions. x* € R (so
that X is the N x D matrix of inputs) and 3* € R. For an
introduction to the background on this work, see [9].

The simplest type of priors over functions is the Gaus-
sian one.

A Gaussian process is a Gaussian random func-
tion, fully characterized by its mean and covariance func-
tion. It can be viewed as a collection of random vari-
ables which have a joint multivariate Gaussian distribu-
tion, where for simplicity, we assume a zero-mean process:
f(xY), ..., f(x™) ~ N(0,X), where ¥, gives the covari-
ance between f(xP) and f(x?) and is a function of the
corresponding x” and x9: ¥, = C(xP,x?). The covari-
ance function C(.,.) can be of any kind, provided that it
generates a positive definite covariance matrix ¥. Assum-
ing a stationary process, which means that the covariance
between two points depends only on the distance between
them and is invariant to translation in the input space, a
common choice of covariance function is

D
C(xP,x9) = viexp l—; de(xz - xZ)Q] (D)
d=1

where D is the input dimension and vy, ws,...,wp are
free parameters. Typically, covariance functions are cho-
sen such as (1) so that points close together in the input
space are more correlated than points far apart (a smooth-
ness assumption). The parameter v; controls the vertical
scale of variation and the w;’s are inversely proportional to
the horizontal length-scale in dimension i (A\; = 1/y/w;,).
Other forms of covariance functions are discussed in [9].
Let the input/target relationship be y = f(x) + e.
We assume an additive white noise with variance vg, € ~



N (0,vp), and put a GP prior on f(.) with covariance func-
tion as (1) with unknown parameters. Within this prob-
abilistic framework, we have y!,... y" ~ N(0,Kn41)
with KNHpq = Ypg + Vo0pg, Where §pg = 1if p = ¢, 0
otherwise.

Based on a set of N training data pairs, {x, yi}ij\il,
we wish to find the predictive distribution of y* correspond-
ing to a new given input x*.

We need to estimate the unknown parameters of the
covariance function, as well as the noise variance vg. This
is done via maximization of the log-likelihood

1 1 B N

log(p(y[X)) = 3 log(| K |) — 2y K"y — = log(2r)

2

where © is the vector of parameters, © =

[wy...wp vy v1]T and K is the N x N training
covariance matrix.

*The predictive distribution of y* is p(y*|y, X, x*) =

’; (();'Igi)) . It can be shown that this distribution is Gaussian

with mean and variance

—_ k(X*)T K71 y
= k(x*) — k(x")T K™ k(x*)

3)
“4)

where k(x*) = [C(x!,x*),...,C(xY,x*)]T is the N x 1
vector of covariances between the test and training cases
and k(x*) = C(x*,x*) is the covariance between the test
input and itself.

The vector k(x*)T K~! can be interpreted as a vec-
tor of smoothing terms which weight training outputs y, to
make a prediction at the test point x*. This is the reason
why predictions of GP model can be used for interpolation
of missing data of the function of interest. GP models can
be effectively used as a smoothing mechanism for noisy
and multiple data.

If the new input is far away from the data points,
the term k(x*)7 K~! k(x*) will be small hence o2 (x*)
large. This indirectly also means that GP models are more
suitable for interpolation of data than for its extrapolation.
Areas of the input space where there is little data, where
the data has high complexity or the data is noisy are high-
lighted through a high variance.

3 Method
3.1 HomER NIRS data analysis

HomER (Hemodynamic Evoked Response) is a piece of
software for the analysis and imaging of NIRS signals. It
is developed by The Center for Functional Neuroimaging
Technologies [10] and the Martinos Center’s Photon Mi-
gration Imaging Lab and is freely available online [11].
HomkER is based on Matlab and utilises the Photon Mi-
gration Imaging (PMI) toolbox [12] (also developed by
The Center for Functional Neuroimaging Technologies)
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Figure 2. Input signals to both GP model and HomER.
Red lines indicate image sample times at 3.5, 7.5 and 11.5
seconds.

to solve Diffuse Optical Imaging (DOI) forward and in-
verse problems. HomER can be used to generate image
sequences of spatially resolved hemodynamic responses
[13]. For the purposes of this study, specific images from
the sequence at various points of time during a response
were used for comparison with those produced by the GP
method. The resolution was set at 20 x 20 interpolation
points.

3.2 GP model interpolation

The GP model as described above was implemented in
Matlab. For each time sample, the GP model calculates a
field of Gaussians, each with a mean estimated magnitude
and estimation variance. Maps of estimated magnitudes
and their corresponding variances are plotted. These maps
are the two results of the GP model interpolation technique.
The process was then repeated for each time sample. Each
time sample calculated a field of 20 x 20 Gaussians. Be-
cause GP models require that each signal has a point of
activity, we chose that the location of signal activity be at
the midpoint of the path since this is where the photon path
interrogates cortical tissue according to models [5].

3.3 NIRS data

A sample NIRS data set included in the HomER package
was modified slightly and used to compare the two pro-
cesses. We decided to use this data because it featured
a very obvious change in activity and would make com-
parison clearer. The source-detector layout for the data is
shown in Figure 1. The layout consisted of a single light
source and four photodetectors. The light transmitted was
at wavelengths of 690 nm and 830 nm. There are 4 paths
of light and 2 wavelengths so the data set had 8 channels
of data. Samples of the results were taken at three sample
times (3.5, 7.5 and 11.5 seconds) for comparison. Variance
maps from GP model interpolation at these sample times
were also recorded.
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Figure 3. Comparisons of image maps of all methods at three different sample times. (a), (b) and (c) show image maps
generated with HomER at times ¢t = 3.5, r = 7.5 and ¢ = 11.5 seconds, respectively. (d), (e) and (f) show image maps for same
data for Gaussian Process model interpolation. (g), (h) and (i) are variance maps from Gaussian process model interpolation.

3.4 Preprocessing

Previous NIRS studies have used various cut-off frequen-
cies for band-pass filtering of the raw NIRS signals. Our in-
vestigation used 0.01 — 0.8 Hz as the band-pass range. The
raw data was first low-pass filtered with a 3rd-order But-
terworth filter at 0.8 Hz. The signals were then normalised
by dividing each signal by its mean value. The data was
then high-pass filtered using a 3rd-order Butterworth filter
at 0.01 Hz. The signal was then offset to unity mean. The
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negative logarithm of these filtered intensity signals were
taken to convert them to delta Optical Density measure-
ments. By implementing the modified Beer-Lambert law
as it is standard for NIRS [14], signals indicating changes
in HbO and HbR (delta concentration signals) were calcu-
lated. The HbO delta concentration signals were then used
as input to the GP model and to HomER since their acti-
vation was greater compared to the HbR signals, although
both sets of signals were similar. The HbO delta concen-
tration signals are shown in Figure 2. “Channel 1 (HbO)”



is the HbO delta concentration signal for the photon path
from the light source to detector 1. Similar naming applies
to the other three channels.

4 Results
4.1 Imaging results

Samples of the interpolation results were taken at 3.5, 7.5
and 11.5 seconds (as shown on Figure 2) to demonstrate
typical results at three different states of activity. Activity
magnitude results produced by HomER are shown in Fig-
ure 3 (a)—(c). Activity magnitude results produced by our
Gaussian Process model interpolation method are shown in
Figure 3 (d)—(f) and the corresponding variance results are
shown in Figure 3 (g)—(1).

HomER is expected to produce the most accurate re-
sults, so the GP model interpolation results are compared
directly to them. At ¢ = 3.5 seconds, there is low activ-
ity for all 4 HbO signal channels (Figure 2). The HomER
result (Figure 3 (a)) displays low activity as does the GP
result (Figure 3 (d)). The two image maps for this time
sample are very similar. The GP variance map (Figure 3
(g)) shows that the variance was very low for each of the
400 (20 x 20) Gaussians plotted. From the low levels of
variance for this time sample, we believe that we can trust
the GP interpolated magnitude result. By comparing the
GP result to the HomER result, we know this to be true.

At t = 7.5 seconds, HbO signal activity is increasing.
From Figure 2 we expect that channel 1 displays the high-
est level of activity, channels 2 and 3 display medium lev-
els of activity and that channel 4 display very low levels of
activity. The HomER result for this time sample (Figure
3 (b)) indeed displays the highest activity along the path
from source A to detector 1 (channel 1). Lower activity
is displayed along the paths from source A to detectors 2
and 3 (channel 2 and channel 3). Activity along channel
4 is only just noticeable. The GP result (Figure 3 (e)) dis-
plays a high centre of activity on the channel 1 path, but is
not ‘stretched’ along the direction of the path. Looking at
the corresponding variance map (Figure 3 (h)), we see that
the variance has increased along with activity. The vari-
ance increases with distance from the nearest data source.
While we trust the brighter areas of the map where vari-
ance is low, where the variance has increased and the map
gets darker we mustn’t place much trust in the correspond-
ing interpolated magnitude result. A variance threshold of
0.2x10~'2 was arbitrarily selected and highlighted on the
variance maps during image processing. We decided to
trust the data within the threshold and disregard data values
outside of the threshold marker. Many of the data points are
actually extrapolated, not interpolated, since the points do
not lie between data sources. As mentioned earlier, the GP
model is more suited to interpolation than extrapolation, so
extrapolated magnitudes typically have much higher vari-
ance than interpolated magnitudes.

Comparing the GP magnitude result to the HomER
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result, we can clearly see differences. The most obvious
differences are near the edges of the magnitude map, e.g. in
the bottom-left corner. The GP result shows high activity,
but the HomER result does not. By taking the variance
map into consideration, we can discard those extrapolated
values because their variance is relatively high. Looking
only at the mainly interpolated values within the threshold,
we can still see differences, but they’re not as large. By
choosing a lower threshold, the results might look more
similar.

At t = 11.5 seconds, the signal activity is at its high-
est. The HomER result (Figure 3 (h)) displays high activity
along channel 1 and medium activity along channels 2 and
3. There is still very little activity along channel 4. These
are the results we expect given the signals in Figure 2. The
corresponding GP result (Figure 3 (f)) looks very different
compared to the HomER result. The GP model has extrap-
olated Gaussians with very high mean values to the bottom-
left of the image map. Such high activity is not seen in the
HomER result. The GP variance map, however, tells us that
those estimated values are of a relatively high variance, are
outside of our threshold, and are therefore not to be trusted.
The increase in activity has given rise to higher variance
around the edge of the image map.

By again only concerning ourselves with the interpo-
lated magnitude data within the variance threshold limit,
the GP magnitude map is improved and is qualitatively sim-
ilar to that produced by HomER. The GP magnitude map
displays a large area of high activity around the midpoint of
channel 1, where the HomER result only displays a small
area of high activity. This is most likely a data extrapola-
tion effect.

4.2 Variance map

The variance map is shown to be very important for GP
model interpolation. When there is little difference be-
tween the channel data, the variances of the interpolated
Gaussians stay low and the variance map indicates we can
trust the interpolated magnitude values. When the differ-
ence in magnitude between data sources increases, the vari-
ance of the mean magnitudes also increases. In the case of
extrapolation, the variances can be very large. The variance
map tells us which data on the magnitude map we can trust.

5 Conclusion

What we have presented here is a unique method of produc-
ing image maps of cortical activity as measured by NIRS.
The interpolation method is based on generating a large
number of Gaussians and estimating their mean interpo-
lated magnitude and the variance of those magnitudes. This
method was compared to the current standard for generat-
ing cortical activity maps and was shown to be compara-
ble, but clearly not exactly the same. The results show that
GP models can interpolate data points to produce hemo-



dynamic images which may have utility in applied neuro-
science applications. This method is unique because the
GP model is non-parametric; it has no knowledge about
the medium being interrogated, the measurement modality
or even the direction of the channel paths. By comparison,
DOI does know these parameters and utilises them effec-
tively. Although the GP interpolation method lacks in this
respect, it is still interesting to see how the results are not
too dissimilar and have compared quite well. This GP in-
terpolation technique may be of some use when NIRS is
applied in other biological contexts where model informa-
tion, as it would be used by DOI, is sparse or less adequate.

The GP model interpolation technique is also unique
in that it indicates the reliability of its results. Using the in-
terpolated magnitude map alone would produce inaccurate
and misleading results. The variance map is therefore very
important for producing useful results, indicating the relia-
bility of and the amount of trust to be placed in the magni-
tude estimations. No other interpolation technique has this
feature and it is perhaps something that can be exploited
during subsequent response processing.

Future work on this subject would be a general im-
provement to the results presentation by combining the
magnitude and variance maps into a single result. Investi-
gations into the ideal variability threshold level should also
be carried out since the variance map is so important for
this method. There is also a possibility of utilising the vari-
ability map for guiding optode placement in NIRS experi-
ments.
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