A Simple Complexity Measurement for
Software Verification and Software Testing

- Discussion Paper -

Zheng Cheng*, Rosemary Monahan, and James F. Power

Computer Science Department
National University of Ireland Maynooth
Co. Kildare, Ireland
{zcheng,rosemary, jpower}@cs.nuim. ie

Abstract. In this paper, we used a simple metric (i.e. Lines of Code)
to measure the complexity involved in software verification and software
testing. The goal is then, to argue for software verification over software
testing, and motivate a discussion of how to reduce the complexity in-
volved in software verification. We propose to reduce this complexity by
translating the software to a simple intermediate representation which
can be verified using an efficient verifier, such as Boogie [2].

Keywords: Intermediate Verification Language, Software Testing, Soft-
ware Verification, Metrics

1 Introduction

Software testing cannot guarantee that a tested program will be free from errors,
whereas software verification can [1]. However, full verification of entire systems
is often impossible because of resource limitations and complexity. Therefore,
software testing is still the most common technique for ensuring the reliability
of software systems [11].

In this paper, we discuss a possible metric for comparing the complexity of
software verification and software testing. The goal is to motivate a discussion of
how to reduce the complexity involved in software verification, thereby making
verification more applicable for industrial usage.

Using different metrics to measure the complexity of software programs is
an active research area, see [4] for an overview. We propose using the Lines of
Code (LoC) metric to measure the complexity involved in software verification
and software testing. The result of LoC-based complexity measurement shows
that if using an efficient program verifier, software verification can be no harder
than software testing, while improving our confidence in the correctness of our
software. We argue that the Boogie verifier is a suitable verifier and suggest how
to correctly translate software to a suitable intermediate representation for input
to this verifier.

* Funded by John & Pat Hume Scholarship and Doctoral Teaching Scholarship from
the Computer Science Department of NUI Maynooth.

Outline A case study is presented in Section 2. The discussion topic of this
paper and our view to it are both suggested in Section 3. Finally, the conclusion
is made in Section 4.

2 Case Study

As a case study, we demonstrate a two-way sorting algorithm, taken from the
software verification competition of VSTTE 2012 [10], and see how many LoC*
are written to complete its verification task and its testing task?. By “com-
plete”, we mean that all the pre-defined criteria for each task have been checked
thoroughly.

2.1 Criteria Setting

First, we set one criterion for software testing, i.e., functional behaviour (ensuring
an array of booleans is sorted in the given order). Then, we manually generate
code to meet the criterion. This code is usually referred to as “test cases” and can
be executed by a test runner (in this case, the code targets NUnit [9]). We count
the LoC of all test cases as the complexity measurement for software testing.

Next, we set three criteria for software verification, i.e. functional behaviour,
termination and safety (e.g. ensure no invalid array access). Then, we manually
generate annotations (e.g. preconditions, postconditions and loop invariants) to
meet the criteria. These annotations can be interpreted by an automated pro-
gram verifier (in our case we use Dafny [6]). We count the LoC of annotations
as the complexity measurement result for software verification. Regarding the
conjunction(s) in a proof obligation, the LoC would count the conjunction sym-
bols (e.g. ampersand symbol) plus 1. For example, in Dafny, a postcondition
expressed as “requires A & B;”, which would count as two LoC. We have to
admit that the current methodology for counting LoC of software verification is
informal, and requires further research to make it formalized.

2.2 Results

The LoC measurement results for software verification and software testing are
listed in Table 1.

Generally, it is infeasible to test the absence of an event [7]. Thus, the ter-
mination and safety criteria are more appropriate for verification than testing.
For example, if a program executes and does not stop, all that we know is that
the program has not halted yet and no conclusion can be derived from such a
circumstance. Whereas in program verification, proof of program termination

! The LoC is counted by logical line of code, i.e. a statement followed by a domain-
specific termination symbol (e.g. semicolon) will count as one logical line of code.

2 The full description of this case study can be found at:
http://www.cs.nuim.ie/~zcheng/ COMPARE2012 /case.html

Question under Study: Two-way Sort Algorithm
Functional Behaviour|Termination|Safety|Total
Software Testing 16 N/A N/A | 16
Software Verification 13 0 2 15
Table 1: LoC measurement result for the Two-way Sort Algorithm

can ensure a program will always halt. For example, the Dafny program verifier
uses the keyword decreases to express the variant functions which are used to
proof termination. It is also capable of automatically guessing simple variant
functions.

Regarding the functional behaviour criterion, we can see the LoC for soft-
ware testing is greater than for software verification. Moreover, software testing
by nature cannot guarantee all the circumstances are tested. Therefore, in order
to get more confidence about a program under test, new code (i.e. test cases) is
needed. In contrast, the LoC for functional behaviour checking in software veri-
fication is a fixed number (i.e. no extra annotations are needed once a program
is verified).

One approach for reducing the LoC involved in software verification is using
an intermediate verification language such as the Boogie language [2]. For ex-
ample, the Dafny program verifier translates its program and specifications into
the Boogie language, which allows the Dafny program verifier to use the Boogie
verifier as its back-end. The Boogie verifier features abstract interpretation for
inference of properties such as loop invariants. Moreover, mathematical theories
(e.g., set theory and tree theory) are encoded in the Boogie language in advance,
which allows Dafny program verifier writing concise model-based specifications.
All these features of intermediate verification language can reduce the quan-
tity of annotations that must be discharged in the verification process. Related
work shows that program verifiers powered by the Boogie verifier are excellent
in accuracy and efficiency [8].

3 How to Reduce the Complexity of Software Verification

We think using a suitable program verifier can lower the complexity of software
verification. In [5], we proposed a reliable generic translation framework for the
Boogie language (shown in Figure 1), allowing convenient access to the Boogie
verifier. The modelling and metamodelling approach [3] provides the foundation
of the framework. An intermediate representation, i.e. the Boogie Extension
Metamodel, is introduced to bridge the translation from different source lan-
guages to the Boogie language, thereby reducing the translation complexity. By
the assistance of proposed framework, it is expected that software verification
would be accessible for software developers even more.

We also believe that there are many potential solutions to reduce the com-
plexity of software verification, and further discussion on this topic is warranted.

[Eloogie Extension Metamodel

Source Language B ie Language
Metamodel verified translation n:etamodel
conforms to conforms to

Source code Boogie Code

Fig. 1: Overview of Our Proposed Generic Translation Framework

4 Conclusion

In this paper, we used a simple metric (i.e. LoC) to measure the complexity
involved in software verification and software testing. The result motivates the
use of software verification over software testing, and shows that an efficient pro-
gram verifier can greatly reduce the verification complexity. How to reduce the
complexity of software verification is still an open question that deserves further
discussion. In our opinion, the Boogie verifier is a suitable verifier for efficient
software verification. To interact with the Boogie verifier, a Boogie program is
required as the intermediate representation of the source program to be verified.
Our proposed translation framework, based on metamodelling, provides the ideal
platform for a reliable translation from a source program to a Boogie program.

References

1. Barnes, J.: High integrity software: The Spark approach to safety and security.
Addison-Wesley (2003)

2. Barnett, M., Chang, B.Y.E., Deline, R., Jacob, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. Lecture Notes in Computer
Science Vol. 4111 (2006)

3. Bézivin, J.: In search of a basic principle for Model-Driven Engineering. UPGRADE
Vol. 5, No. 2 (2004)

4. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity
of process models (survey paper). Lecture Notes in Computer Science Vol. 4103
(2006)

5. Cheng, Z.: A proposal for a generic translation framework for Boogie language. In:

European Conference on Object-Oriented Programming, PhD Workshop (2012)

Dafny: http://research.microsoft.com/en-us/projects/dafny/

Dijkstra, E.W.: Notes On Structured Programming. Academic Press Ltd. (1972)

8. Klebanov, V., Miiller, P., Shankar, N., Leavens, G.T., Wiistholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weif3, B.: The 1st verified software competition:
Experience report. In: Symposium on Formal Methods, Limerick, Ireland (2011)

9. NUnit: http://www.nunit.org/

10. VSTTE.2012.Competition: https://sites.google.com/site/vstte2012/compet/

11. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-

tice and experience. ACM Computing Surveys Vol. 41, No.4 (2009)

o

