

A NOVEL PATTERN CLASSIFICATION SCHEME USING THE BAKER’S MAP

ALAN ROGERS, JOHN KEATING AND ROBERT SHORTEN

ABSTRACT
In a previous report, it is shown how the chaotic Baker’s map can be used to
implement Boolean functions. This suggests that the Baker’s Map can be used as
the basis for a more general pattern classification paradigm. In this note, we
demonstrate that this is the case by presenting a learning algorithm for training the
Baker’s Map based pattern-classification system presented in [1].

1. INTRODUCTION
The properties of nonlinear and chaotic systems are being investigated by many
research groups, in the hope that some engineering applications will result.
Indeed, the study of chaotic dynamics for general information processing
applications has proceeded in a number of directions, most notably chaos-based
communications, chaos-based encryption, and memory based on chaotic maps.
We have shown in recent work [1, 2] how the chaotic Baker’s map can be used as
a natural XOR gate, by considering the variation of the Lyapunov Dimension of
the chaotic attractor against different parameter values. In this note, we complete
this work by developing a learning algorithm so that the system can be trained to
classify patterns.

The rest of the paper is laid out as follows: In Section 2, we summarize our
previous work on this subject. In Section 3, we describe the characteristics of
simulated annealing algorithms, and in Section 4, we apply the simulated
annealing algorithm to our chaotic Baker’s map system.

2. BACKGROUND

A. THE XOR PROBLEM

The pattern recognition problem consists of designing algorithms that
automatically classify feature vectors associated with specific patterns as
belonging to one of a finite number of classes. A benchmark problem in the
design of pattern recognition systems is the Boolean Exclusive OR (XOR)
problem. The standard XOR problem is depicted in Figure 1. Here, the
diagonally opposite corner-pairs of the unit square form two classes, A and B (or
NOT A). From the figure , it is clear that it is not possible to draw a single
straight line which will separate the two classes. This observation is crucial in
explaining the inability of a single-layer perceptron to solve this problem.

 1

x1

x2

B

B

1

0 1
0

A

A

Figure 1 The Exclusive OR (XOR) Problem: Points (0,0) and (1,1) are

members of class A; Points (0,1) and (1,0) are members of class B.

This problem can be solved using multi-layer perceptrons (MLPs), or by using
other single-layer artificial neural networks such as the radial basis function neural
network [3]. However, the inability of simple artificial neural networks, such as
the Adeline [4], to solve this problem, effectively ended research interest in the
area of artificial neural networks for over twenty years, which highlights the
importance of the XOR problem in the design of pattern recognition systems. In
this paper, we show that the Generalised Baker’s Map can be trained to solve this
problem in a straightforward manner.

B. The Generalised Baker’s Map

In their classic study of fractal dimensions, Farmer et al.[5] introduced the
Generalised Baker’s Map in order to obtain rigorous results on the dimension of
strange attractors. It is a transformation of the unit square [0,1][0,1], and has
three parameters, R1, R2 and S:



























Syif
S

Sy

SyifSy
y

SyifxR

SyifxR
x

n
n

nn

n

nn

nn
n

1

21

1

2

1
1

 (1)

 2

We illustrate the Baker’s map transformation in Figure 2. As can be seen from
(3), the mapping depends on whether the point in question is above or below a
horizontal line y = S. All points lying in the region below y = S are compressed
by a factor R1 in the x-direction and stretched by a factor 1/S in the y-direction.
All points lying in the region above y = S are compressed by a factor R2 in the x-
direction, and stretched by a factor 1/(1-S) in the y-direction. This entire region is
then translated by x x + 0.5 .

Since the Baker’s Map is a mapping of the unit square, we restrict S to the range
(0,1) and R1 and R2 to the range (0, 0.5]. In Figure 2, we show the action of the
map on the entire unit square. Iterating the map gives two vertical strips, whose
widths depend on R1 and R2. Iterating the map again gives four strips, then eight
strips, and so on. The attractor is the union of a line segment (vertical direction)
and a Cantor set (horizontal direction).

S

1

10 0

S

1

R1 10.5+R20.5
x

y y

x
0 0.5

S

1

Strip widths not to scale

Figure 2 Action of Baker’s map on unit square: Transforms square into two
strips, then four strips, eight strips, and so on.

C. Lyapunov Numbers and Lyapunov dimension of the Baker’s map

It can be seen in Figure 2 that the action of the map leads to ‘stretching’ in the y-
direction and ‘compressing’ in the x-direction. It is possible to put these actions
into a more mathematical framework by using the notion of Lyapunov numbers.
These numbers characterise the stability of the map, and are defined as follows:

Let , where J(x) is the Jacobian of the map,

, for some map F.
)](...)()([11 xJxJxJJ nnn  

)/()(xFx J

Let be the magnitudes of the p eigenvalues of Jn.)(...)()(21 njnjnj p

Then the Lyapunov numbers are given by:

pinj n
i

n
i ,...,2,1,)]([lim 1 


 (4)

 3

Since the Baker’s map is two-dimensional, it will have two Lyapunov numbers,
characterising the average stretching/compression factors in the x and y directions
(see Figure 3). Note that the Lyapunov Exponents are simply the logarithms of the
Lyapunov numbers. It is customary to order the Lyapunov numbers, so that
1>2>…>n.

 n iterations of the
Baker's map


n



n


Figure 3 Lyapunov Numbers characterise the average stretching factors of

some small circle of radius . In this case, 1>1 and 2<1.

The Lyapunov dimension was introduced by Kaplan and Yorke [6] in the so-
called Kaplan-Yorke Conjecture: that the Lyapunov dimension DL is the same as
the Information Dimension1 for “typical” attractors. For the Baker’s map,

2

1

1log

log
1




LD (5)

It can be shown [5] that the Lyapunov Exponents are given by:

21 log)1(loglog
1

1
log)1(

1
loglog

RSRS
S

S
S

S

x

y









 (6a, 6b)

In our implementation of the XOR gate, we only require two input parameters, so
we shall let R2 = R1, in which case we find that:

1loglog Rx  (7)

From (5), the Lyapunov dimension is given by:

x

y
LD




log

log
1 (8)

1 There are numerous ways to measure dimension (see, for example, Ott[13]. Grassberger[14], and Hentschel and
Procaccia[15] defined a dimension Dq which depends on a continuous index q. The Information Dimension is the
name generally given to D1, and it takes into account the relative frequencies with which the chaotic orbit visits
different regions of the attractor. (A rigorous account of D1 is given by Ott[13].)

 4

In Figure 4, we who how the Lyapunov (fractal) dimension) varies with R and S,
and in Figure 5, we plot DL against R, with S as a parameter. Notice that the
fractal dimension varies between 1 and 2, as we would expect, and is symmetrical
about S = 0.5. We have chosen slightly asymmetrical values of S in Figure 5 to
illustrate this.

Figure 4 Variation of Fractal Dimension

We can choose values of R and S, so that a pair (low R, high S) and another pair
(high R, low S) give the same fractal dimension, say DA. This corresponds to a
diagonally opposite corner pair in the XOR problem. We can say, therefore, that
if the fractal dimension DL = DA, then the inputs are in class A, and if DL  DA,
then the inputs belong to class B.

 5

Figure 5 Variation of Fractal Dimension with varying parameter values.

Table I
Parameter values and their corresponding fractal dimension, and class, as in

Figure 5.

R Value S Value Fractal Dimension Class
~0.1 0.5 1.3 A
~0.36 ~0.1 1.3 A
~0.1 ~0.1 ~1.14 B (NOT A)
~0.36 0.5 ~1.68 B (NOT A)

Obviously, the points in Table I do not lie on a perfect square, but that is
unimportant. The key idea is that two pairs of diagonally opposing points are
mapped to the same class. It is also clear that we are quite restricted in the
possible pairs of points which we can map to the same fractal dimension.
However, if we choose any four (R, S) pairs of points corresponding roughly to
(low, low), (low, high), (high, low) and (high, high), then by drawing a straight
line through the (low, high), (high, low) points and intersecting the y-axis, we can
effectively solve the XOR problem for a much larger set of inputs. We call the
intersection of this line with the y-axis, DM, the (modified) Lyapunov Dimension.
This is illustrated in Figure 6.

 6

DM

Figure 6 A more general way of solving the XOR problem: Draw a straight
line through the two points belonging to class A (say), and find where the line

intersects the y-axis.

Procedure for calculation of DM:
(i) Given four points in the R-S plane, select the two points belonging to the

same class: (Ra, Sb), (Rb, Sa) in the Figure drawn above.
(ii) Calculate the Lyapunov dimensions corresponding to the two points, called

D1, D2.
(iii) Calculate the slope, m = (D1 – D2)/(Ra – Rb).
(iv) The dimension DM = D1 +m.Ra = D2 + m.Rb.

As DM is constantly calculated, we can tell whether the inputs are in class A, or
not. An algorithm of this form is referred to as a training algorithm in the
artificial neural network and statistical pattern recognition literature [7]. The
availability of such an algorithm, and its complexity, ultimately determines the
applicability of a particular paradigm for a given problem. In our case, given a set
of class labels, and a set of vectors, the training parts of the pattern recognition
problem is trivial, involving only the simple calculation of a slope. For an ANN,
solving this problem requires repeated calculation of the slope for at least two
hyperplanes, and so is more computationally intensive.

In order to generalise the system, we would like an algorithm which, if given the
R-S points and the class labels, would calculate the slope m and intercept DM

 7

automatically. This task can be formulated as an optimisation problem, and can
be accomplished using several different methods. For illustration purposes, we
shall use a simulated annealing algorithm, and we describe the algorithm in the
next section. (There are, of course, many other possible algorithms which would
achieve the same result.)

3. SIMULATED ANNEALING

A. Methodology
Annealing is a process used to toughen steel, so that it may be machined or cold-
worked [8]. It involves heating a solid to a high temperature, and then slowly
cooling it in a controlled manner. At high temperatures, the molecules have a lot
of energy and are able to move randomly within the solid. They tend to move to
positions that lower the energy of the system as a whole, but can also move to
positions of higher energy, with a probability e-E/T, where E is the change in
energy of the system, and T is the temperature of the system. The cooling process
wipes out any traces of previous structure, and relieves internal stresses within the
metal, making it less likely to fracture. With an absence of defects, the metal
crystal is in a global minimum energy state.

Metropolis et al.[9] proposed a simulation scheme for the evolution of
thermodynamic systems to equilibrium, in 1953. Thirty years later, Kirkpatrick et
al.[10] realized that the Metropolis algorithm could be applied to optimisation
problems in general, with a cost function taking the place of energy. Simulated
annealing is particularly suited to optimisation problems where the global
minimum is located amongst many poor local minima [11]. In order to apply the
Metropolis Algorithm, we require the following elements [12]:

(i) A description of possible system configurations
(ii) A method of randomly perturbing the system configurations
(iii) A cost function (analog of energy), whose minimisation is the aim of the

procedure
(iv) A control parameter T (analog of temperature) which determines the

likelihood of an increase in cost being accepted.

The simulated annealing algorithm then follows these basic steps:

1. Initialise the system with some state S, and control parameter T =
T0.

2. Perturb system randomly to a new state SN.
3. Determine change in cost function, E = E(SN) – E(S), due to the

random perturbation.
4. If E < 0, accept new system state SN, OR, if E > 0, accept SN

with probability e-E/T.

 8

5. Repeat steps 2 to 4 for, say, 100 successful reconfigurations.
6. Let T = T * c, where c < 1, and then repeat steps 2 to 5.
7. Stop when T gets small, or E cannot be reduced further.

The annealing schedule, which determines how many perturbations are carried out
at a given temperature, and the value of the control parameter c, is usually
determined through experimentation. The initial temperature T0 is chosen so that
exp(-E/T0)  1, that is to say, most random perturbations leading to an increase
in energy will be accepted. Herein lies the power of simulated annealing – the
system is able to escape from local minima. As the temperature is lowered, only
small perturbations are accepted, and so the system gradually approaches
equilibrium.

In our system, we wish to position a line so that it will either map two patterns to
the same modified Lyapunov dimension DM, or separate patterns so that we can
say that values of DM less than a certain value belong to, say, Class A, and all
others are class B.

For illustration purposes, we show three possible situations:

A

DM

R

Dim

Illustration 1

B

B

A

DM

R

Dim

Illustration 2

A

B
B

B

 (a) (b)

B

B

DM

R

Dim

Illustration 3

B

B

 (c)

Figure 7: Three possible class configurations (out of a possible 16)

 9

The three illustrations show different class configurations in the R- DL plane
(with S as a parameter). Illustration 1 is simply an XOR gate. Illustration 2 is an
AND gate. Illustration 3 is an inverting logic gate (every value of DM leads to a
NOT Class A outcome). Obviously, there are 16 possible variations on this
theme. We seek a way of training the dotted line in the figures so that it correctly
classifies the patterns presented to it.

If we consider a line given by ax + by + c = 0, the perpendicular distance from a
point x1,y1 to the line is given by:

22

11

ba

cbyax
d




 (9)

d1

d3

d4

A A

B

B

+
+ ++ +

+

+
+

+
++

+
+
+++
+
++

oooo
o
o
oooo

o

ooooo
oo
o

o
o

d2

yo

line, slope m,
intercept y0

o
o o

o
o
o

oo
o
o

oo
o

o

oo

++++
+

++++ +++

+++ +
+

Figure 8: Distances from each pattern cluster to the separating line. ‘+’ symbols
are patterns belonging to Class A; ‘o’ symbols belong to Class B.

B. Training and Testing of the Classifying Lines

In the pattern classification literature, it is usual to train the classification scheme
using a certain set of patterns, and then test the system with a different set of
patterns to see if these are classified correctly. This shows that the system can
generalise — that it can classify patterns that it hasn’t seen before. In our scheme,
we will train two different classifying lines to take account of the possibility of an
XOR-type arrangement of the pattern classes. In the testing process, we choose
the classifying line that gives the fewer classification errors.

 10

Consider a set of patterns and classes as in Figure 8 above, with a line, slope m,
and y-intercept y0 lying in the plane. Considering each pattern in turn, if the point
lies on the correct side of the line for classification purposes, we say that the
distance is negative, otherwise it is positive. In Figure 8, the line classifies
patterns in three of the clusters correctly. Hence we have d2, d3, d4 < 0, and d1 > 0.
We use a cost function based upon the hyperbolic tan function (see Figure 10),
where we sum over all the patterns in all the classes.

Cost Function 1:

,

tanh()i
class A B

E d 

If the pattern classes are in an XOR-type arrangement, we just consider one of the
pattern classes, and using simulated annealing to train a line which runs through
the centroid of both pattern clusters. The cost function we use has the following
form:
Cost Function 2: 2tanh()i

class A

E d 

Figure 10 Tanh functions: Solid line is tanh(d) ; dotted line is tanh(5d)

When the annealing algorithms for both cost functions have converged to a
solution (a slope and an intercept), we test the two solutions using a new set of
patterns. The correct classifying line should give a zero or minimal error.

 11

As an illustration of the simulated annealing process, we will demonstrate with a
set of classes as in Figure 11. The desired line should separate the two classes as
shown. We will choose an initial line with slope m = 2 and y-intercept = -3. We
determine the perpendicular distances from points scattered randomly about the
centroids of the individual patterns (0,0),(1,0),(0,1) and (1,1), and determine if the
line is orientated to the correct side of each of the patterns.

In Figure 12, we show an energy landscape of the system, where the elevation
represents the cost of a particular line. The uplands represent regions where all
patterns are classified incorrectly, and the basin represents the desired line, which
in this case has slope of –1 and intercepts the y-axis at 1.55. The simulated
annealing algorithm will find the minimum energy point of this landscape.

1

1

0

0

desired line

initial line
B

AA

A

Figure 11: Illustrative example of Simulated Annealing. The Initial line has
slope m = 2, and y-intercept = -3. The desired line should have slope m = -1, and
y-intercept > 1

 12

Figure 12: Energy Landscape for patterns in Figure 11. Minimum Energy = -3.84,
when m = -1 and y0 = 1.55.

Note that for simplicity in this example, we only used four patterns, and the
minimum value of cost function is, as a consequence, approximately –4. For
cases where we have several hundred patterns, the minimum energy would be
considerably lower.

 13

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

6

8

10
Plot of Energy Minimsation during Annealing Process

Temperature Decreasing

E
ne

rg
y

of
 S

ys
te

m

Figure 13: Plot of Energy (Cost) as Temperature is decreased, using simulated
annealing algorithm.

In Figure 13, we show four different plots of energy during the annealing process.
Clearly, there is quite a lot of variation because it is a random process, however
the final value of energy is very close to –4 in each case. It is advantageous to
introduce an extra condition into the cost function to ensure that the values of
slope and intercept remain small:

4

0
1

tanh() | | | |
i

E d m


   y .

In Figure 13, this condition is relaxed near the “250” mark on the x-axis, and
accounts for the small drop in energy at that point. The choice of cost function
depends on the type of patterns we wish to classify, as there may be occasions
where we need a large slope.

A typical final output from the algorithm is:

System Energy = -3.93811
Slope = -0.970605
Y-Intercept = 1.50911

 14

4. TRAINING OF CHAOTIC BAKER’S MAP SYSTEM

In [1], we showed how the system could be used as an XOR gate, and an AND
gate, and we also combined these into a half-adder. In fact, there are 16 possible
2-bit patterns which we could classify using our 2-parameter Baker’s Map
System, as shown in Figure 14. Each value of R and S can be high or low, and so
defining Class A or B to be either high or low, we essentially have all 16 possible
2-bit logic gates.

A A

AA

S

R

AA

S

R

A

A

S

R

A

S

R

A

S

R

A

S

R

A

AA

S

R

A

A

S

R

S

R

A

A

S

R

A

A

S

R

S

R

A

S

R

B

A

S

R

A A

A

A

A

A

B

A

B

A

B B

B

B

B BB

B

B

B

B

B

B

B

A

B B

BB

B B

B

B B

S

R

A

BB

B

BB

B

S

R

BB

B B

Figure 14 All possible 2-bit Pattern Classes

We will illustrate the training procedure for two representative patterns, though by
suitable choice of cost function, we can train the slope to classify any of the
patterns in Figure 14.

 15

A. Example 1

A

S

R

AA

B

Figure 15 Pattern Classes for example1.

It is necessary to assign values to R and S, representing high and low. We
arbitrarily choose the following values (though limiting both R and S to (0,0.5).

Pattern R Value S Value
0 0 0.1 0.1
0 1 0.1 0.45
1 0 0.45 0.1
1 1 0.45 0.45

The training procedure is carried out on a line in the R-DL plane, so we find the
corresponding values of Lyapunov Dimension DL for each (R,S) pair. We can do
this because there exists a closed-form expression for DL in terms of R and S [5].

   ln 1/ (1) ln 1/(1)
1

lnL

S S S S
D

R

  
 

R-Value S-Value DL

0.1 0.1 1.141182
0.1 0.45 1.2988549
0.45 0.1 1.4071
0.45 0.45 1.8618

We now apply the simulated annealing algorithm to find a line which will classify
the patterns correctly, as in Figure 16. Then we apply test patterns to the Baker’s
map, to verify that the correct patterns are detected.

 16

Figure 16 Pattern Classes mapped into the R-DL plane.

When we apply the simulated annealing algorithm, we find that the slope m =
2.14831 and y-intercept = 0.620018. This information is used to separate the
classes, as shown in Figure 16. The Lyapunov numbers, (and hence the Lyapunov
Dimension) are jumpy because of the nature of the map (eqn 1.above). We find
average values of the Lyapunov Dimension, using a 500-point averaging window.
In Figure 17, we apply the four possible patterns to the system, as inputs. After
modifying the Lyapunov dimension, points lying below the separating line
correspond to the pattern Class B.

 17

Figure 17 Patterns above the dotted line are Class A. We can classify the
patterns simply by looking at their Modified Lyapunov Dimension.

 18

B. Example 2

In the second example, we train the system to classify an XOR-type set of
patterns, as shown in Figure 18.

For the cost function, we shall associate tanh functions with class B, and inverted
Gaussian functions with class A, in order to give an appropriate energy minimum
for the line that will classify the patterns correctly.

A

A

S

R

B

B

Figure 18 Pattern Classes for Example 2

Pattern R Value S Value
0 0 0.2 0.2
0 1 0.2 0.4
1 0 0.4 0.2
1 1 0.4 0.4

R-Value S-Value DL

0.2 0.2 1.3109
0.2 0.4 1.4182
0.4 0.2 1.5461
0.4 0.4 1.7345

The simulated annealing algorithm returns the following values for slope and
intercept:

Slope = 0.487
Intercept = 1.34

 19

The modified Lyapunov Dimension will be approximately 1.34 for the patterns in
Class A. In practice, the dimension will lie in a small band about 1.34. Thus by
deciding if the modified Lyapunov Dimension lies within or outside this band, we
can determine if the applied pattern belongs to class A or class B.

Figure 19 Pattern Classification for example 2. If the Modified Lyapunov
Dimension lies within the dotted lines, the pattern is classified as Class A.

5. CONCLUSIONS

We have shown that the chaotic Baker’s Map system can be trained to classify any
2-bit pattern, thus illustrating the flexibility of the approach. A simulated
annealing algorithm was used to train the system, although it would be possible to
use other methods, such as a perceptron algorithm, to achieve the same goal.

 20

 21

References:

1. A.Rogers et al. Chaotic Maps and Pattern Recognition –The XOR Problem,

Chaos, Solitons and Fractals, 14, pp.57-70 (2002).
2. A.Rogers et al. Chaotic Maps and Pattern Recognition –The XOR Problem,

Technical Report NUIM SS0109, NUI Maynooth, 2001.
3. C.M.Bishop. Neural Networks for Pattern Recognition. Clarendon Press,

Oxford (1995).
4. S.Haykin. Neural Networks—A Comprehensive Foundation. Prentice-Hall,

New Jersey (1999).
5. J.D.Farmer, E.Ott, and J.A.Yorke. The dimension of chaotic attractors,

Physica D, 7, pp.153-180 (1983).
6. B.D.Ripley. Pattern Recognition and Neural Networks. Cambridge

University Press, Cambridge (1996).
7. J.Kaplan and J.Yorke. Chaotic behaviour of multidimensional difference

equations. In Functional Differential Equations and the Approximations of
Fixed Points, Lecture Notes in Mathematics Vol.730, edited by H.O.Peitgen
and H.O.Walther, pp.204-207. Springer, Berlin (1979).

8. B.H.Amstead et al. Manufacturing Processes. Wiley (1987).
9. N.Metropolis et al. Equation of State Calculations by Fast Computing

Machines, Journal of Chemical Physics, 21, pp.1087-1092 (1953).
10. S.Kirkpatrick, C.D.Gelatt Jr., and M.P.Vecchi, Optimization by Simulated

Annealing, Science 220, pp.671-680 (1983).
11. W.H.Press et al. Numerical Recipes in C++. Camobridge University Press,

Cambridge (2002).
12. J.G.Keating and D. Noonan, The structure and performance of trained

Boolean networks. In Neural Computing: Research and Applications II,
edited by G. Orchard. Irish Neural Networks Association, Belfast, pp. 79-
86 (1994).

13. E.Ott, Chaos in Dynamical Systems. Cambridge University Press,
Cambridge (1993).

14. P.Grassberger, Generalized Dimensions of Strange Attractors, Physics
Letters A, 97, pp.227 (1983).

15. H. Hentschel and I.Procaccia, The Infinite Number of Generalized
Dimensions of Fractals and Strange Attractors, Physica D, 8, pp.435
(1983).

	Alan Rogers, John Keating and Robert Shorten
	Abstract
	B. The Generalised Baker’s Map
	C. Lyapunov Numbers and Lyapunov dimension of the Baker’s map

	3. Simulated Annealing
	A. Methodology
	B. Training and Testing of the Classifying Lines
	A. Example 1
	Pattern
	B. Example 2

	Pattern

