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ABSTRACT 
In a previous report, it is shown how the chaotic Baker’s map can be used to 
implement Boolean functions.  This suggests that the Baker’s Map can be used as 
the basis for a more general pattern classification paradigm.  In this note, we 
demonstrate that this is the case by presenting a learning algorithm for training the 
Baker’s Map based pattern-classification system presented in [1]. 
 
1. INTRODUCTION 
The properties of nonlinear and chaotic systems are being investigated by many 
research groups, in the hope that some engineering applications will result.  
Indeed, the study of chaotic dynamics for general information processing 
applications has proceeded in a number of directions, most notably chaos-based 
communications, chaos-based encryption, and memory based on chaotic maps.  
We have shown in recent work [1, 2] how the chaotic Baker’s map can be used as 
a natural XOR gate, by considering the variation of the Lyapunov Dimension of 
the chaotic attractor against different parameter values.  In this note, we complete 
this work by developing a learning algorithm so that the system can be trained to 
classify patterns. 
 
The rest of the paper is laid out as follows: In Section 2, we summarize our 
previous work on this subject.  In Section 3, we describe the characteristics of 
simulated annealing algorithms, and in Section 4, we apply the simulated 
annealing algorithm to our chaotic Baker’s map system. 
  
 
2. BACKGROUND 
 
A. THE XOR PROBLEM 
 
The pattern recognition problem consists of designing algorithms that 
automatically classify feature vectors associated with specific patterns as 
belonging to one of a finite number of classes.  A benchmark problem in the 
design of pattern recognition systems is the Boolean Exclusive OR (XOR) 
problem.  The standard XOR problem is depicted in Figure 1.  Here, the 
diagonally opposite corner-pairs of the unit square form two classes, A and B (or 
NOT A).  From the figure , it is clear that it is not possible to draw a single 
straight line which will separate the two classes.  This observation is crucial in 
explaining the inability of a single-layer perceptron to solve this problem.  
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Figure 1 The Exclusive OR (XOR) Problem: Points (0,0) and (1,1) are 

members of class A; Points (0,1) and (1,0) are members of class B. 
 
This problem can be solved using multi-layer perceptrons (MLPs), or by using 
other single-layer artificial neural networks such as the radial basis function neural 
network [3].  However, the inability of simple artificial neural networks, such as 
the Adeline [4], to solve this problem, effectively ended research interest in the 
area of artificial neural networks for over twenty years, which highlights the 
importance of the XOR problem in the design of pattern recognition systems.  In 
this paper, we show that the Generalised Baker’s Map can be trained to solve this 
problem in a straightforward manner. 
 
 
B. The Generalised Baker’s Map 
 
In their classic study of fractal dimensions, Farmer et al.[5] introduced the 
Generalised Baker’s Map in order to obtain rigorous results on the dimension of 
strange attractors.  It is a transformation of the unit square [0,1][0,1], and has 
three parameters, R1, R2 and S: 
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We illustrate the Baker’s map transformation in Figure 2.  As can be seen from 
(3), the mapping depends on whether the point in question is above or below a 
horizontal line y = S.  All points lying in the region below y = S are compressed 
by a factor R1  in the x-direction and stretched by a factor 1/S in the y-direction.  
All points lying in the region above y = S are compressed by a factor R2 in the x-
direction, and stretched by a factor 1/(1-S) in the y-direction. This entire region is 
then translated by x x + 0.5 . 
 
Since the Baker’s Map is a mapping of the unit square, we restrict S to the range 
(0,1) and R1 and R2 to the range (0, 0.5].  In Figure 2, we show the action of the 
map on the entire unit square.  Iterating the map gives two vertical strips, whose 
widths depend on R1 and R2.  Iterating the map again gives four strips, then eight 
strips, and so on.  The attractor is the union of a line segment (vertical direction) 
and a Cantor set (horizontal direction).   
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Figure 2 Action of Baker’s map on unit square: Transforms square into two 
strips, then four strips, eight strips, and so on. 
 

 
C.  Lyapunov Numbers and Lyapunov dimension of the Baker’s map 
 
It can be seen in Figure 2 that the action of the map leads to ‘stretching’ in the y-
direction and ‘compressing’ in the x-direction.  It is possible to put these actions 
into a more mathematical framework by using the notion of Lyapunov numbers.  
These numbers characterise the stability of the map, and are defined as follows: 
 
Let , where J(x) is the Jacobian of the map, 

, for some map F. 
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Then the Lyapunov numbers are given by: 
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Since the Baker’s map is two-dimensional, it will have two Lyapunov numbers, 
characterising the average stretching/compression factors in the x and y directions 
(see Figure 3).  Note that the Lyapunov Exponents are simply the logarithms of the 
Lyapunov numbers.  It is customary to order the Lyapunov numbers, so that 
1>2>…>n. 

 n iterations of the 
Baker's map


n



n


 
Figure 3 Lyapunov Numbers characterise the average stretching factors of 

some small circle of radius . In this case, 1>1 and 2<1. 
 
The Lyapunov dimension was introduced by Kaplan and Yorke [6] in the so-
called Kaplan-Yorke Conjecture: that the Lyapunov dimension DL is the same as 
the Information Dimension1 for “typical” attractors.  For the Baker’s map, 
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It can be shown [5] that the Lyapunov Exponents are given by: 
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In our implementation of the XOR gate, we only require two input parameters, so 
we shall let R2 = R1, in which case we find that: 

1loglog Rx            (7) 
 
From (5), the Lyapunov dimension is given by: 
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1 There are numerous ways to measure dimension (see, for example, Ott[13].  Grassberger[14], and Hentschel and 
Procaccia[15] defined a dimension Dq which depends on a continuous index q.  The Information Dimension is the 
name generally given to D1, and it takes into account the relative frequencies with which the chaotic orbit visits 
different regions of the attractor.  (A rigorous account of D1 is given by Ott[13].) 
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In Figure 4, we who how the Lyapunov (fractal) dimension) varies with R and S, 
and in Figure 5, we plot DL against R, with S as a parameter.  Notice that the 
fractal dimension varies between 1 and 2, as we would expect, and is symmetrical 
about S = 0.5.  We have chosen slightly asymmetrical values of S in Figure 5 to 
illustrate this. 
 

 
Figure 4 Variation of Fractal Dimension 

 
 

We can choose values of R and S, so that a pair (low R, high S) and another pair 
(high R, low S) give the same fractal dimension, say DA.  This corresponds to a 
diagonally opposite corner pair in the XOR problem.  We can say, therefore, that 
if the fractal dimension DL = DA, then the inputs are in class A, and if DL  DA, 
then the inputs belong to class B.   
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Figure 5 Variation of Fractal Dimension with varying parameter values. 

 
 

Table I 
Parameter values and their corresponding fractal dimension, and class, as in 

Figure 5. 
 

R Value S Value Fractal Dimension Class 
~0.1 0.5 1.3 A 
~0.36 ~0.1 1.3 A 
~0.1 ~0.1 ~1.14 B (NOT A) 
~0.36 0.5 ~1.68 B (NOT A) 
 
 
Obviously, the points in Table I do not lie on a perfect square, but that is 
unimportant.  The key idea is that two pairs of diagonally opposing points are 
mapped to the same class.  It is also clear that we are quite restricted in the 
possible pairs of points which we can map to the same fractal dimension.  
However, if we choose any four (R, S) pairs of points corresponding roughly to 
(low, low), (low, high), (high, low) and (high, high), then by drawing a straight 
line through the (low, high), (high, low) points and intersecting the y-axis, we can 
effectively solve the XOR problem for a much larger set of inputs.  We call the 
intersection of this line with the y-axis, DM, the (modified) Lyapunov Dimension.  
This is illustrated in Figure 6. 
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Figure 6 A more general way of solving the XOR problem: Draw a straight 
line through the two points belonging to class A (say), and find where the line 

intersects the y-axis. 
 

Procedure for calculation of DM: 
(i) Given four points in the R-S plane, select the two points belonging to the 

same class: (Ra, Sb), (Rb, Sa) in the Figure  drawn above. 
(ii) Calculate the Lyapunov dimensions corresponding to the two points, called 

D1, D2. 
(iii) Calculate the slope, m = (D1 – D2)/(Ra – Rb). 
(iv) The dimension DM = D1 +m.Ra = D2 + m.Rb. 
 
As DM is constantly calculated, we can tell whether the inputs are in class A, or 
not.  An algorithm of this form is referred to as a training algorithm in the 
artificial neural network and statistical pattern recognition literature [7]. The 
availability of such an algorithm, and its complexity, ultimately determines the 
applicability of a particular paradigm for a given problem.  In our case, given a set 
of class labels, and a set of vectors, the training parts of the pattern recognition 
problem is trivial, involving only the simple calculation of a slope.  For an ANN, 
solving this problem requires repeated calculation of the slope for at least two 
hyperplanes, and so is more computationally intensive. 
 
In order to generalise the system, we would like an algorithm which, if given the 
R-S points and the class labels, would calculate the slope m and intercept DM 
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automatically.  This task can be formulated as an optimisation problem, and can 
be accomplished using several different methods.  For illustration purposes, we 
shall use a simulated annealing algorithm, and we describe the algorithm in the 
next section. (There are, of course, many other possible algorithms which would 
achieve the same result.) 
 
3. SIMULATED ANNEALING 
 
A. Methodology 
Annealing is a process used to toughen steel, so that it may be machined or cold-
worked [8].  It involves heating a solid to a high temperature, and then slowly 
cooling it in a controlled manner.  At high temperatures, the molecules have a lot 
of energy and are able to move randomly within the solid.  They tend to move to 
positions that lower the energy of the system as a whole, but can also move to 
positions of higher energy, with a probability e-E/T, where E is the change in 
energy of the system, and T is the temperature of the system.  The cooling process 
wipes out any traces of previous structure, and relieves internal stresses within the 
metal, making it less likely to fracture.  With an absence of defects, the metal 
crystal is in a global minimum energy state.   
 
Metropolis et al.[9] proposed a simulation scheme for the evolution of 
thermodynamic systems to equilibrium, in 1953.  Thirty years later, Kirkpatrick et 
al.[10] realized that the Metropolis algorithm could be applied to optimisation 
problems in general, with a cost function taking the place of energy.  Simulated 
annealing is particularly suited to optimisation problems where the global 
minimum is located amongst many poor local minima [11].  In order to apply the 
Metropolis Algorithm, we require the following elements [12]: 
 

(i) A description of possible system configurations 
(ii) A method of randomly perturbing the system configurations 
(iii) A cost function (analog of energy), whose minimisation is the aim of the 

procedure 
(iv) A control parameter T (analog of temperature) which determines the 

likelihood of an increase in cost being accepted.   
 
The simulated annealing algorithm then follows these basic steps: 

1. Initialise the system with some state S, and control parameter T = 
T0. 

2. Perturb system randomly to a new state SN. 
3. Determine change in cost function, E = E(SN) – E(S), due to the 

random perturbation. 
4. If E < 0, accept new system state SN, OR, if E > 0, accept SN 

with probability e-E/T. 
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5. Repeat steps 2 to 4 for, say, 100 successful reconfigurations. 
6. Let T = T * c, where c < 1, and then repeat steps 2 to 5. 
7. Stop when T gets small, or E cannot be reduced further. 

 
The annealing schedule, which determines how many perturbations are carried out 
at a given temperature, and the value of the control parameter c, is usually 
determined through experimentation.  The initial temperature T0 is chosen so that 
exp(-E/T0)  1, that is to say, most random perturbations leading to an increase 
in energy will be accepted.  Herein lies the power of simulated annealing – the 
system is able to escape from local minima.  As the temperature is lowered, only 
small perturbations are accepted, and so the system gradually approaches 
equilibrium. 
 
In our system, we wish to position a line so that it will either map two patterns to 
the same modified Lyapunov dimension DM, or separate patterns so that we can 
say that values of DM less than a certain value belong to, say, Class A, and all 
others are class B. 
 
For illustration purposes, we show three possible situations: 
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Figure 7:  Three possible class configurations (out of a possible 16) 
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The three illustrations show different class configurations in the R- DL plane  
(with S as a parameter).  Illustration 1 is simply an XOR gate.  Illustration 2 is an 
AND gate.  Illustration 3 is an inverting logic gate (every value of DM leads to a 
NOT Class A outcome).  Obviously, there are 16 possible variations on this 
theme.  We seek a way of training the dotted line in the figures so that it correctly 
classifies the patterns presented to it. 
 
If we consider a line given by ax + by + c = 0, the perpendicular distance from a 
point x1,y1 to the line is given by: 
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Figure 8: Distances from each pattern cluster to the separating line. ‘+’ symbols 
are patterns belonging to Class A; ‘o’ symbols belong to Class B. 
 
B. Training and Testing of the Classifying Lines 
 
In the pattern classification literature, it is usual to train the classification scheme 
using a certain set of patterns, and then test the system with a different set of 
patterns to see if these are classified correctly.  This shows that the system can 
generalise — that it can classify patterns that it hasn’t seen before.  In our scheme, 
we will train two different classifying lines to take account of the possibility of an 
XOR-type arrangement of the pattern classes.  In the testing process, we choose 
the classifying line that gives the fewer classification errors. 
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Consider a set of patterns and classes as in Figure 8 above, with a line, slope m, 
and y-intercept y0 lying in the plane. Considering each pattern in turn, if the point 
lies on the correct side of the line for classification purposes, we say that the 
distance is negative, otherwise it is positive.  In Figure 8, the line classifies 
patterns in three of the clusters correctly. Hence we have d2, d3, d4 < 0, and d1 > 0.  
We use a cost function based upon the hyperbolic tan function (see Figure 10), 
where we sum over all the patterns in all the classes. 
 
Cost Function 1:

,

tanh( )i
class A B

E d   

If the pattern classes are in an XOR-type arrangement, we just consider one of the 
pattern classes, and using simulated annealing to train a line which runs through 
the centroid of both pattern clusters.  The cost function we use has the following 
form: 
Cost Function 2:  2tanh( )i

class A

E d 
 
 

 
Figure 10 Tanh functions: Solid line is tanh(d) ; dotted line is tanh(5d) 

 
When the annealing algorithms for both cost functions have converged to a 
solution (a slope and an intercept), we test the two solutions using a new set of 
patterns.  The correct classifying line should give a zero or minimal error. 
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As an illustration of the simulated annealing process, we will demonstrate with a 
set of classes as in Figure 11.  The desired line should separate the two classes as 
shown.  We will choose an initial line with slope m = 2 and y-intercept = -3.  We 
determine the perpendicular distances from points scattered randomly about the 
centroids of the individual patterns (0,0),(1,0),(0,1) and (1,1), and determine if the 
line is orientated to the correct side of each of the patterns. 
 
 
In Figure 12, we show an energy landscape of the system, where the elevation 
represents the cost of a particular line.  The uplands represent regions where all 
patterns are classified incorrectly, and the basin represents the desired line, which 
in this case has slope of –1 and intercepts the y-axis at 1.55.  The simulated 
annealing algorithm will find the minimum energy point of this landscape.   
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desired line

initial line
B
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A

 
Figure 11: Illustrative example of Simulated Annealing.  The Initial line has 
slope m = 2, and y-intercept = -3.  The desired line should have slope m = -1, and 
y-intercept > 1 
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Figure 12: Energy Landscape for patterns in Figure 11.  Minimum Energy = -3.84, 
when m = -1 and y0 = 1.55. 
 
 
Note that for simplicity in this example, we only used four patterns, and the 
minimum value of cost function is, as a consequence, approximately –4.  For 
cases where we have several hundred patterns, the minimum energy would be 
considerably lower. 
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Figure 13:  Plot of Energy (Cost) as Temperature is decreased, using simulated 
annealing algorithm. 
 
In Figure 13, we show four different plots of energy during the annealing process. 
Clearly, there is quite a lot of variation because it is a random process, however 
the final value of energy is very close to –4 in each case.  It is advantageous to 
introduce an extra condition into the cost function to ensure that the values of 
slope and intercept remain small: 

4

0
1

tanh( ) | | | |
i

E d m


   y . 

In Figure 13, this condition is relaxed near the “250” mark on the x-axis, and 
accounts for the small drop in energy at that point.  The choice of cost function 
depends on the type of patterns we wish to classify, as there may be occasions 
where we need a large slope. 
 
A typical final output from the algorithm is: 
 
System Energy = -3.93811   
Slope = -0.970605  
Y-Intercept = 1.50911  
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4. TRAINING OF CHAOTIC BAKER’S MAP SYSTEM 
 
In [1], we showed how the system could be used as an XOR gate, and an AND 
gate, and we also combined these into a half-adder.  In fact, there are 16 possible 
2-bit patterns which we could classify using our 2-parameter Baker’s Map 
System, as shown in Figure 14.  Each value of R and S can be high or low, and so 
defining Class A or B to be either high or low, we essentially have all 16 possible 
2-bit logic gates. 
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Figure 14 All possible 2-bit Pattern Classes 
 

We will illustrate the training procedure for two representative patterns, though by 
suitable choice of cost function, we can train the slope to classify any of the 
patterns in Figure 14. 
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A. Example 1 
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Figure 15 Pattern Classes for example1. 

 
 

It is necessary to assign values to R and S, representing high and low. We 
arbitrarily choose the following values (though limiting both R and S to (0,0.5). 
 

Pattern R Value S Value 
0   0 0.1 0.1 
0   1 0.1 0.45 
1   0 0.45 0.1 
1   1 0.45 0.45 

 
The training procedure is carried out on a line in the R-DL plane, so we find the 
corresponding values of Lyapunov Dimension DL for each (R,S) pair.  We can do 
this because there exists a closed-form expression for DL in terms of R and S [5]. 
 

   ln 1/ (1 ) ln 1/(1 )
1

lnL

S S S S
D

R

  
   

 
R-Value S-Value DL 

0.1 0.1 1.141182 
0.1 0.45 1.2988549 
0.45 0.1 1.4071 
0.45 0.45 1.8618 

 
We now apply the simulated annealing algorithm to find a line which will classify 
the patterns correctly, as in Figure 16.  Then we apply test patterns to the Baker’s 
map, to verify that the correct patterns are detected. 
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Figure 16 Pattern Classes mapped into the R-DL plane. 
 
 
When we apply the simulated annealing algorithm, we find that the slope m = 
2.14831 and y-intercept = 0.620018.  This information is used to separate the 
classes, as shown in Figure 16.  The Lyapunov numbers, (and hence the Lyapunov 
Dimension) are jumpy because of the nature of the map (eqn 1.above).  We find 
average values of the Lyapunov Dimension, using a 500-point averaging window.  
In Figure 17, we apply the four possible patterns to the system, as inputs.  After 
modifying the Lyapunov dimension, points lying below the separating line 
correspond to the pattern Class B. 
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Figure 17 Patterns above the dotted line are Class A. We can classify the 
patterns simply by looking at their Modified Lyapunov Dimension. 
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B. Example 2 
 
In the second example, we train the system to classify an XOR-type set of 
patterns, as shown in Figure 18. 
 
For the cost function, we shall associate tanh functions with class B, and inverted 
Gaussian functions with class A, in order to give an appropriate energy minimum 
for the line that will classify the patterns correctly. 
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Figure 18 Pattern Classes for Example 2 

 
 

Pattern R Value S Value 
0   0 0.2 0.2 
0   1 0.2 0.4 
1   0 0.4 0.2 
1   1 0.4 0.4 

 
 

R-Value S-Value DL 

0.2 0.2 1.3109 
0.2 0.4 1.4182 
0.4 0.2 1.5461 
0.4 0.4 1.7345 

 
The simulated annealing algorithm returns the following values for slope and 
intercept: 
 
Slope = 0.487 
Intercept  = 1.34 
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The modified Lyapunov Dimension will be approximately 1.34 for the patterns in 
Class A.  In practice, the dimension will lie in a small band about 1.34.  Thus by 
deciding if the modified Lyapunov Dimension lies within or outside this band, we 
can determine if the applied pattern belongs to class A or class B. 
 
 

 
Figure 19 Pattern Classification for example 2. If the Modified Lyapunov 
Dimension lies within the dotted lines, the pattern is classified as Class A. 
 
5. CONCLUSIONS 
 
We have shown that the chaotic Baker’s Map system can be trained to classify any 
2-bit pattern, thus illustrating the flexibility of the approach.  A simulated 
annealing algorithm was used to train the system, although it would be possible to 
use other methods, such as a perceptron algorithm, to achieve the same goal. 
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