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Thesis abstract 

The first study conducted investigated the effect of sire breed and genetic merit for 

growth potential of the transcriptional regulation of the somatotropic axis followed by a 

proteomic approach to assess differentially abundant proteins. Following this, a second 

study was set up to examine the compensatory growth phenomena in cattle which aimed 

to investigate the effect of feed restriction and feed realimentation on animal production 

and physiological variables and the residual effects on meat quality attributes. The final 

chapter in this thesis focused on the transcriptional regulation of compensatory growth 

in M. longissimus thoracis et lumborum in crossbred Aberdeen Angus steers. It is 

evident from this thesis that genetic merit for growth potential in cattle is under 

molecular control and chapters 3 and 4 offer revealing insight into the somatotropic axis 

and glucose metabolism. RNAseq, a highly sensitive approach to transcriptome 

sequencing, was used to conduct the transcriptional sequencing analysis in chapter 7. 

During the differential feeding period, gene pathways relating to lipid metabolism were 

significantly different between the two treatments and consistent with plasma leptin 

concentrations and ultrasonically scanned fat depth data (chapter 5). During the 

realimentation period, when previously restricted steers were experiencing 

compensatory growth, the TGF-βR1 gene involved in the TGF-β signalling pathway, a 

negative regulator of growth, was down-regulated in expression. The results obtained 

from this study offer a novel insight into key regulatory genes and pathways controlling 

compensatory growth in skeletal muscle of cattle which following appropriate 

validation may be incorporated into genomically assisted selection strategies for beef 

cattle. Overall, this thesis has offered significant insight into key pathways regulating 

growth in cattle such as the somatotropic, glycolytic and TGF-β signalling pathways.  
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1.1 Introduction 

 

There are currently over 5.8 million cattle in Ireland with cattle production 

incorporating both dairy and beef breeds and a large amount of cross breeding (AIMS 

Bovine Statistics, 2010). In Ireland, cattle rearing systems are predominantly grass 

based with animals at pasture from March/April to November and then over-wintering 

indoors (Drennan and McGee, 2009; Keane, 2010). Although grazed grass is generally a 

cheap source of feed, feed costs still remain the largest variable cost in beef production 

in Ireland (Connolly et al., 2010; Finneran et al., 2010). Within beef production 

systems, mechanisms to increase profits on the farm involve breeding more productive 

and efficient animals through the exploitation of information available in breeding 

databases leading to the use of sires with higher profit potential (Clarke et al., 2009; 

Campion et al., 2009a). Another approach to increasing profitability involves more 

effective use of pasture. Ireland is unique in Europe with approximately 90 % of 

agricultural land dedicated to grassland and meadow (Drennan et al., 2005). 

Implementation of feeding strategies to more efficiently utilise the available herbage 

would reduce the dependency on bought feed stuffs, such as concentrates. This study 

aims to contribute to efficiency and profitability in beef production through the 

identification and examination of key genes and pathways controlling growth in cattle. 

Although huge advances at an in vitro level have been made in recent years in 

understanding the mechanisms underlying muscle growth and development, further 

research in the animal, at an in vivo level, is required. To improve the usefulness and 

accuracy of the Irish database of genetic merit traits for beef cattle, incorporation of 

information relating to key genes and pathways regulating growth traits at a 

transcriptomic or proteomic level is important. 
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1.2 Skeletal Muscle 

 

1.2.1 Introduction 

Skeletal muscle is a heterogeneous tissue which attaches to bones and consists of 

numerous bundles, called fascicles. Fascicles contain many fibres which are 

multinucleated and surrounded by a cell membrane, the sarcolemma. Each muscle fibre 

consists of myofibrils which in turn are divisible into two kinds of myofilaments: thin 

filaments and thick filaments. Thin filaments contain two strands of actin and two 

strand of regulatory protein, called troponin and tropomyosin, coiled around one another 

(Hooper et al., 2008). Thick filaments consist of the protein myosin. Sarcomeres are 

repeating units found along the length of the myofibrils. The thin filaments are attached 

to the ends of the sarcomere, called Z lines. The thick filaments are located in the centre 

of the sarcomere making up the area known as the A band. When a muscle fibre is at 

rest, the thick and thin filaments do not overlap completely and the area near the end of 

the sarcomere consisting of only thin filaments is called the I band. The H zone is 

located in the centre of the sarcomere and contains only thick filaments as the thin 

filaments do not reach this area. This design and arrangement of the thin and thick 

filaments is key to how the whole muscle contracts (Hooper et al., 2008; Figure 1.1). 

 

1.2.2 Classification of muscle fibres 

Different methods of classification and the advent of new technologies have resulted in 

a wide range of nomenclatures for muscle fibre types, both within and across species. In 

the 1970s, Peter et al. (1972) classified muscle fibres according to their contractile and 

metabolic properties based on histochemical stains for succinate dehydrogenase and 

ATPase (Nemeth and Pette, 1981). This resulted in the classification of three main fibre 

types - slow oxidative, fast glycolytic and fast oxidative-glycolytic. Previous to this, 
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fibres were referred to by their colour - red, intermediate and white (Gauthier, 1969). As 

techniques developed, fibres were classified as type I, IIa, and IIx and with the use of 

immuno-histochemistry IIb and IIc (a hybrid fibre) were identified at a later stage (Oury 

et al., 2010). In bovine skeletal muscle type I, IIa, IIx, IIb, and IIc fibres have been 

identified and classified in detail (Vestergaard et al., 1994; Bouley et al., 2005; Oury et 

al., 2010); however, it must noted that often IIx fibres were classified as IIb as the 

isoforms did not allow these fibres to be distinguished (Oury et al., 2010).  

 

Figure 1.1 Detail of the interaction between thick and thin filaments in muscle 
fibres 
Ca2+ binds troponin C, allowing exposure of the myosin binding sites on actin (left-
hand myosin head). Following this an inorganic phosphate is released (middle myosin 
head) allowing movement of the myosin head (left-hand myosin head) (adapted from 
Hopkins, 2006) 
 

1.2.3 Metabolic properties of muscle cells 

 

1.2.3.1 Glycogenesis and glycogenolysis 

The formation of glycogen from glucose is known as glycogenesis. The major glycogen 

stores are present in skeletal muscle and liver. In brief, glucose is converted to glucose 

6-phosphate by the enzymes glucokinase and hexokinase and then converted to glucose-
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1-phosphate by phosphoglucomutase. Glucose-1-phosphate is then converted to 

glycogen, a polymer of glucose by the enzyme glycogen synthase, as reviewed by Jiang 

and Zhang (2003). Glycogen is converted back to glucose and is regulated by the 

hormone glucagon by a process called glycogenolysis which plays a critical role in 

maintaining glucose homeostasis. Additionally, glucagon inhibits glycogenesis by 

regulating glycogen synthase in the liver (Jiang and Zhang, 2003). Overall, insulin 

stimulates glycogenesis whereas glucagon functions antagonistically to insulin in 

regulating the balance between glucose and stored glycogen (Bansal and Wang, 2008). 

 

1.2.3.2 Glycolysis and oxidation of carbohydrates 

Glycolysis, meaning to split sugars, involves the formation of pyruvate or lactate (or 

both) from glucose. Glucose, a six carbon sugar is broken down into two three-carbon 

sugars and then these sugars are oxidised to form pyruvate. Overall, two adenosine 

triphosphate (ATP) molecules are used in glycolysis; however four ATP molecules are 

released with a net gain of two ATP. In skeletal muscle, energy for the contraction on 

fibres is supplied by ATP via glycolysis and oxidative phosphorylation, as recently 

reviewed by Ohlendieck (2010). Following glycolysis, if oxygen is present, pyruvate, 

first converted to Acetyl-CoA by the enzyme pyruvate dehydrogenase, enters the 

mitochondria where the citric acid cycle (also known as the tricarboxylic acid cycle or 

the Krebs cycle) takes place. The citric cycle oxidises carbohydrates which produces 

reducing equivalents of NAD, which results in the production of large amounts of ATP 

via oxidative phosphorylation, as reviewed by Bowtell et al. (2007). The citric acid 

cycle involves eight steps, each catalysed by a different enzyme (Figure 1.2).  
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Figure 1.2 Schematic representations of glycolysis, pentose phosphate pathway, 
and the citric acid cycle 
Glycolysis involves the formation of lactate or pyruvate from sugars. If oxygen is 
present in the cell, pyruvate is converted to Acetyl CoA which enters the citric acid 
cycle. The citric acid cycle and oxidative phosphorylation are a series of chemical 
reactions that convert Acetyl CoA into carbon dioxide, water and energy (Adapted from 
Wolf et al., 2010). (Source: http://www.impactjournals.com/oncotarget/index.php?jour 
nal=oncotarget&page=article&op=view&path%5B%5D=190&path%5B%5D=265) 
 

1.2.3.3 Lipogenesis 

Ruminants consume forages and grains of which the cell wall and soluble carbohydrates 

are converted to volatile fatty acids (acetate, propionate and butyrate) by fermentation in 
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the rumen, as reviewed by Janssen (2010). As dietary fat impairs rumen function, 

ruminant diets are typically low in fat (Bauman, 1976) and as a result, long chain fatty 

acids synthesised de novo are an important source for triacylglycerol synthesis in 

ruminant adipose tissue (Greathead et al., 2001), the main site of lipogenesis in non-

lactating ruminants (Vernon, 1981).  Acetyl-CoA, produced from the oxidation of 

pyruvate in the mitochondria, is the principal building block of fatty acids. NADPH is 

also required in large amounts for the reduction of acetyl-CoA to fatty acids. In 

ruminants, NAPDH is produced from two major sources, the pentose phosphate 

pathway and NADP isocitrate dehydrogenase (Ingle et al., 1972; Vernon, 1981; Laliotis 

et al., 2010). 

In recent years, many genes, proteins and pathways have been highlighted as 

important regulatory factors in lipogenesis (Lee et al., 2007; Kim et al., 2009; Liu et al., 

2009; Canovas et al., 2010). Acetyl-CoA carboxylase an important rate limiting enzyme 

involved in the carboxylation on Acetyl-CoA to malonyl-CoA and glucose-6-phosphate 

dehydrogenase, a rate limiting enzyme in the pentose phosphate pathway, are of 

particular interest in ruminants and warrant further investigation at a molecular level in 

bovine. 

 

1.2.3.4 Intramuscular fat accumulation 

The term ‘marbling’ describes the unique intramuscular fat build-up between the fibres 

bundles within the muscles (Smith et al., 2009). Greater levels of intramuscular fat 

accumulation are a consequence of higher numbers of intramuscular adipocytes in the 

muscle as well as an increase in their volume (Damon et al., 2006; Hocquette et al., 

2010). In bovine, intramuscular fat marbling differ in structure and distribution 

depending on breed i.e. Holstein-Friesian animals have a greater number and slightly 

finer structure compared to German Angus or Belgian Blue (Albrecht et al., 2006). It 
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has been established by Smith and Crouse (1984) that glucose, rather than acetate, 

contributes a greater proportion of acetyl units for fatty acid synthesis in intramuscular 

fat accumulation. Further research into genes and pathways regulating intramuscular fat 

accumulation in bovine has been carried out (for a review see Hocquette et al., 2010). 

Intramuscular fat marbling increases flavour and juiciness of meat and this is discussed 

in greater detail in section 1.6.3.2  

 

1.2.4 Muscle characteristics of cattle in Ireland 

Approximately, 40% of all dairy cows in Ireland are bred to beef bulls of Aberdeen 

Angus (13.9%), Hereford (10.2%), Limousin (6%) Belgian Blue (2.6%), Charolais 

(1.8%) and other (6.2%) breeds (AIMS Bovine Statistics Report, 2010). The off-spring 

are reared to slaughter in Ireland as they do not meet the carcass conformation standards 

required for high-value live export trade to continental Europe. 

 

1.2.4.1 Holstein-Friesian 

There are 1.0 million dairy cows in Ireland with the Holstein-Friesian breed accounting 

for up to 95% of this figure (WHFF, 2010). Friesian Cattle were first introduced to 

Ireland from England and Scotland around the 1920s with Holstein cattle arriving to 

Ireland from Canada in 1974 (Dillon, 2008). Holstein-Friesian cows are renowned for 

their superior genetic merit for milk yield with Irish Holstein-Friesians producing on 

average 6700 litres of milk in 305 days of lactation (WHFF, 2010); however, the breed 

has very low muscling. 

 

1.2.4.2 Aberdeen Angus 

The Aberdeen Angus breed is an early maturing compact breed which is black in colour 

and naturally polled. Aberdeen Angus are a breed renowned for their easy calving 
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ability (McGuirk et al., 1998) and distinct for fat ‘marbling’ within the muscle. The 

breed was developed in north-eastern Scotland with the breed introduced to Ireland in 

the mid nineteenth century (Irish Aberdeen Angus Association, 2011). Aberdeen Angus 

cattle rank highly compared to other breeds of cattle with regards to quality and sensory 

analysis of the meat. This is attributed to their intramuscular fat marbling which 

increases sensory traits such as juiciness, and flavour (for review see Oddy et al., 2001). 

There is, however, conflicting reports whether tenderness is affected directly from 

intramuscular fat marbling, as reviewed by Hocquette et al. (2010). 

 

1.2.4.3 Belgian Blue 

Belgian blue cattle are a late-maturing breed which accumulates more muscle compared 

to their early-maturing counterparts (Sadkowski et al., 2009). Belgian Blue animals are 

renowned for their ‘double muscling’ effect (section 1.3.8.2.2), producing high 

quantities of very lean meat. Consequently, Belgian Blue is a favoured sire choice by 

farmers for dairy cows in Ireland due to the high monitory value of the calves. 

Crossbred animals that are heterozygous for the double muscle mutation are larger in 

size compared to their ‘single’ muscle equivalents (Casa et al., 2004). However, 

negative effects of double muscling include higher rates of dystocia as a result of a 

longer gestation period and greater birth weights of the calf (Arthur et al., 1988). In 

addition, greater muscling in the cow pelvis results in calving difficulties which require 

assistance to prevent calf mortality (Michaux et al., 1982). 
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1.3 Assessing animal nutrition and muscle growth 

 

1.3.1 Ultrasound scanning measurements  

Ultrasound scanning provides a relatively cheap, non invasive method of assessing 

muscle and fat accretion in live animals. The procedure quickly and accurately assesses 

back fat thickness, longissimus muscle depth, percentage intramuscular fat and gluteus 

medius (rump) fat (Greiner et al., 2003). Researchers to date have used ultrasound 

scanning to estimate these measurements with a high degree of accuracy and 

repeatability (Herring and Kemp; 2001; Greiner et al., 2003; Conroy et al., 2010). In 

breed comparison studies, greater scanned muscle depth has been reported in BB 

animals compared to AA, while AA displayed greater back fat thickness (Campion et 

al., 2009a) (Figure 1.3). 

 

                                

Aberdeen Angus                                                                 Belgian Blue 

Figure 1.3 Ultrasonically scanned muscle and fat depth of Aberdeen Angus × 
Holstein-Friesian and Belgian Blue × Holstein-Friesian steers 
Scanning image (↕) arrows indicates the thickness of subcutaneous fat in Aberdeen 
Angus (left), however this measurement is very small in Belgian Blue animals (right). 
Blue line (↕) indicates muscle depth. White box = 1 cm. 
 

1.3.2 Skeletal measurements 

Skeletal measurements enhance information relating to body weight, as well as 

ultrasonically scanned muscle/fat depth measurements, and these data are of particular 

Hide 
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interest to the beef cattle industry. According to Albertí et al. (2008) a narrow pelvis 

indicates slow skeletal development and low muscling. In addition, Afolayan et al. 

(2006) found that chest girth predicted body weight with high precision in sheep. 

Differences in skeletal size may explain variation in carcass conformation at slaughter 

due to differences in carcass compactness (Campion et al., 2009a). Skeletal 

measurements are also obtained at slaughter including length of carcass, carcass width, 

and thickness, length and width of the leg (Keane et al., 2011). 

 

1.3.3 Metabolites 

Body weight and linear scoring can be complimented with the analysis of circulating 

blood metabolites to give a more comprehensive view of the nutritional and health 

status of an animal (Pambu-Gollah et al., 2000; Ndlovu et al., 2007). Blood glucose, 

urea, β-hydroxy butyrate (βHB) and non-esterified fatty acids (NEFA) are common 

metabolites used to assess the nutritional status of cattle. 

 Circulating plasma glucose and urea concentrations profiles are considered an 

indication of the quantity of starch and protein or the ratio of these nutrients consumed. 

Reduced or insufficient energy intake can lead to lower blood glucose levels in cattle 

(Blum et al., 1985; Rule et al., 1985; Ellenberger et al., 1989; Itoh et al., 2006). In 

addition, in lactating cows, glucose levels are low due to the high energy demand for 

milk production (van Knegsel et al., 2007). Plasma concentrations of NEFA indicate the 

degree of fat metabolism as NEFA are released into circulation as a direct result of lipid 

catabolism (Ndlovu et al., 2007). During periods of intense under nutrition or high 

levels of gluconeogenesis (section 1.2.4.4), blood profiles are characterised by low 

blood glucose levels and high concentrations of NEFA and βHB (Blum et al., 1985; 

Rule et al., 1985; van Knegsel et al., 2007). A large proportion of NEFA are directed 

towards ketone body synthesis in the liver. Ketogenesis represents a mechanism to 
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increase whole body fat utilisation by making NEFA available to the tissues in a more 

water soluble and easily metabolised form (Hocquette et al., 1998). 

 

1.3.4 Insulin 

As a result of fermentation in the rumen, very little glucose is absorbed across the 

gastrointestinal tract of ruminants (Harmon and McLeod, 2001). Ruminants are 

dependent on gluconeogenesis for their supply of glucose. Gluconeogenesis, is the 

formation of glucose from non-glucose molecules such as propionate and lactate and 

this action takes place in the liver. Although differences exist in metabolism between 

ruminants and monogastrics, insulin still plays an important role in glucose metabolism 

in ruminants. Insulin is regarded as a pancreatic hormone although it plays a supportive 

rather than direct role in influencing growth (Lawrence and Fowler, 1997). In humans, 

insulin rapidly stimulates facilitative glucose transport activity in skeletal muscle and 

adipocytes and a similar role for insulin have been reported in ruminants (Abe et al., 

1994; Hocquette et al., 1995; Sasaki, 2002), however, the ability of insulin to stimulate 

glucose transport rate is greater in muscle and adipocytes in monogastrics compared to 

ruminants (Sasaki 1990; Hocquette et al., 1995).  

Facilitative glucose transporter (GLUT) 1 (non-insulin-sensitive) and GLUT 4 

(insulin sensitive) are present in muscle and adipocytes in bovine skeletal muscle, 

however, levels of GLUT 4 are greater in glycolytic and oxido-glycolytic compared to 

oxidative fibres (Hocquette et al., 1995) with concentrations decreasing gradually 

overtime (Abe et al., 1994). Insulin activates the alpha subunit of its specific receptor, 

the insulin receptor tyrosine kinase (IR) on the plasma membrane which results in the 

autophosphorylation of the beta subunit (Figure 1.4). Phosphorylation of the insulin 

receptor substrate (IRS) family of proteins takes place and activation on the 



 13 
 

 

Figure 1.4 Insulin receptor signalling  
Insulin activates the insulin receptor tyrosine kinase (IR) on the plasma membrane 
resulting in the phosphorylation of the IRS family of proteins. Consequently, 
intracellular vesicles containing GLUT 4 are translocated to the plasma membrane 
allowing glucose to enter the cell. (Source: http://www.cellsignal.com/reference/pathwa 
y/Insulin_Receptor.html)  
 

phosphatidylinositol 3-kinase (PI3-K) pathway. PI3-K functions as a key mediator in 

the activation of down stream molecules of PI3-K to exert various metabolic effects of 

insulin generating the production of phosphoinositides. Consequently, intracellular 

vesicles containing GLUT 4 are translocated to the plasma membrane and following 
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fusion of GLUT 4 with the plasma membrane glucose enters the cell (Rose and Richter, 

2005).  

Insulin also functions to regulate gluconeogenesis and the output of glucose 

from the liver in ruminants (Brookman and Laarveld, 1986). The effect of insulin on 

substrate utilisation varies within and across species in that lactate utilisation was 

reduced in sheep, however, no effect of propionate utilisation was reported (Brookman, 

1990). In ruminating bovine however, an increase in propionate utilisation has been 

observed (Donkin and Armentano, 1995).  

 

1.3.4.1 Insulin and lipogenesis in adipocytes  

Insulin is a key factor in lipogenesis and lipolysis in ruminant adipocytes (Cochrane and 

Rogers, 1990). As mentioned previously, insulin binds to IR located on the surface of 

the adipoctye which initiates the transfer of GLUT4 to the cell membrane, which allows 

glucose to enter the cell. Glucose is converted to glycerol-3-phosphate. The effect of 

insulin on lipoprotein lipase (LPL) activity is similar to humans in that insulin activates 

lipoprotein lipase (LPL), synthesised in adipocytes, which allows fatty acids to enter the 

cell through fatty acid transporters such as fatty acid binding proteins, fatty acid 

translocase and fatty acid transporter proteins (Faulconnier et al., 1994). Fatty acids and 

glycerol-3-phosphate are esterified into triglycerides. Refeeding underfed or fasted 

ruminants increases the levels lipogenesis to values on par or even greater than control 

animals (Bonnet et al., 1998). During feed restriction in ruminants, LPL activity is 

reduced however following feed realimentation activity is restored in both oxidative and 

glycolytic muscles (Bonnet et al., 2000; Faulconnier et al., 2001). 
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1.3.5 Bovine growth hormone 

Growth hormone (GH) is produced in the anterior pituitary and regulates metabolism 

and growth in vertebrates. Its actions are mediated by GH receptor (GHR) to which it 

binds to form a receptor dimer as reviewed by Kopchick and Andry (2000) which 

initiates the transcription of many genes including the insulin like growth factor-1 gene 

(IGF-1) (Jiang et al., 2007) (Figure 1.5). 

GH binding protein (GHBP) has also been identified in most species, including 

bovine (Devolder et al., 1993; Davis et al., 1994), despite previous suggestions to the 

contrary (Gavin et al., 1991). In humans, GHBP is the soluble extra cellular domain of 

GHR and has a similar affinity for GH as GHR. In vivo, GHBP act to increase the 

biological activity and prolong the half life of GH (Baumann et al., 1988; Turyn et al., 

1997); however, contradictory findings from in vitro studies suggest that GHBP 

compete with  surface GHR for GH thus inhibiting GH action (Manner et al., 1991). 

Regardless of which mechanism, GHBP may act as a reservoir keeping GH in 

circulation at all times as 60 % of GH is bound to GHBP (Kopchick and Andry, 2000). 

In cattle, the effects of GHBP on GH are still uncharacterised and warrant further 

investigation. 

In addition to inducing growth, GH stimulates milk production postpartum in 

cows. In fact, recombinant bovine GH is a synthetic hormone marketed to farmers and 

administered subcutaneously to dairy cows to increase milk production. However, in 

Europe since 2000, the use of recombinant bovine GH is banned on the grounds of 

animal welfare issues. In addition, human health concerns relating to cancer were also 

considered as a reason for the ban however, no research has yet to substantiate this, 

possibly as a result of a 95 % loss of recombinant GH during pasteurisation (Le Breton 

et al., 2010). 
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Figure 1.5 The growth hormone axis 
Growth hormone (GH) is produced in the anterior pituitary gland and released into 
circulation. GH receptors are present in the liver, muscle, adipose and bone and in 
response to GH, insulin-like growth factors (IGFs) are released (adapted from Kopchick 
et al., 2002). (Source: http://edrv.endojournals.org/content/23/5/623/F2.expansion) 

 

1.3.6 Circulating IGF-1 

The growth promoting effect of GH is mediated by the insulin-like growth factor axis. 

This complex system consists of two ligands (IGF-1 and IGF-2), two receptors (IGF-1R 

and IGF-2R) and six IGF binding proteins (IGFBP1-6). The IGF ligands are structurally 

related to insulin and are critical for growth and development in vertebrates. In addition, 

to promoting somatic growth, IGFs are important for the development and functional 

maturity of the central nervous system, skeletal tissue and reproductive organs (Duan, 

2005). Upon the interaction of GH with hepatic GH-receptors, IGF are produced in the 

liver and released into the circulatory system. IGF are unique among peptide hormones 
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because their receptor, IGF-1R, is present in all cell types and tissues (Clemmons, 

2009). Once a ligand binds to the receptor IGF-1R, activation of multiple intracellular 

signal transduction cascades occurs, including the PI3K-Akt cascade. Activation of this 

pathway leads to increased protein synthesis and inhibition of apoptosis (Clemmons, 

2009). In addition, activation on the RAS/MAP kinase pathway occurs, leading to 

mitogeneis (Figure 1.6). GH, through binding to GHR promotes the release of IGF-1 at 

a local level in various tissues, including skeletal tissue (Adam and McCue, 1998). This 

locally produced IGF promotes myofiber regeneration, hypertrophy and skeletal muscle 

regeneration, as reviewed by Philippou et al. (2007). 

 

 

Figure 1.6 Signalling pathways activated in response to IGF-1 binding with IGF-
1R  
When a ligand binds to IGF-1R multiple signalling cascade are activated, including the 
phosphatidylinositol 3-kinase (PI3-K)-Akt cascade. Akt functions through mTOR and 
p70S6K to stimulate protein synthesis and inhibition of apoptosis (adapted from 
Clemmons, 2009). 
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1.3.6.1 IGFBP binding proteins 

These IGFBP are a family of secreted proteins that serve to potentiate or inhibit the 

actions of IGFs, as reviewed by Hwa et al. (1999). When IGF-1 or IGF-2 is bound in an 

IGFBP ternary structure it is safeguarded for up to 30 minutes (min) in a controlled 

release mechanism, compared with a half-life of 10 to 12 min for free IGF in circulation 

(Guler et al., 1989; Clemmons, 2009) and therefore potentiating its effect. 

Approximately 99 % of the IGFs in plasma are bound to high affinity IGFBP (Figure 

1.7; Hossner, 2005) as IGFBP bind IGF with high affinity that is greater than those of 

the IGF-1R (Denley et al., 2005; Duan et al., 2010). However, this action prevents IGF 

binding to the receptor IGF-1R and therefore inhibits its bioavailability. 

 

 
 
Figure 1.7 Schematic representation of the IGF system 
The IGF system consists of ligands IGF-1 and IGF-2, their receptors, IGF-1R and IGF-
2R, and six high affinity binding proteins, IGFBP1-6. (Source: 
http://www.igfsociety.org) 
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1.3.7 Leptin 

Leptin, produced from the ob gene, is involved in the hypothalamic control of body 

energy homeostasis, an indicator of body fat reserves and regulator of appetite and 

energy expenditure (Delavaud et al., 2002). In both ruminants and monogastrics, 

research has shown a positive correlation between circulating concentrations of leptin 

and fat accumulation (Berg et al., 2003; Geary et al., 2003). In addition, in cattle leptin 

concentrations positively correlate to M. longissimus fat thickness, intramuscular fat 

marbling and kidney, pelvic and heart fat (Geary et al., 2003). In addition, plasma leptin 

is positively regulated by energy intake in the cow as mild feed restriction decreased 

plasma leptin concentrations without any change in adipose cell size or body condition 

score (Delavaud et al., 2002). The authors suggest that the medium-term effects of 

feeding levels on plasma leptin are independent of long term regulation by changes in 

adiposity. Other variables reported to alter leptin concentrations include cold exposure, 

insulin, glucose and oestrogen, as reviewed by Margetic et al. (2002). 

 

1.3.8 Mechanisms regulating muscle growth 

 

1.3.8.1 Myostatin signalling and muscle atrophy 

Myostatin, a member of the transforming growth factor (TGF) ß superfamily, regulates 

muscle mass by the inhibition of myogenesis (Figure 1.8; McPherron et al., 1997). 

Active myostatin ligand binds to ActRIIB, the type II receptor (Lee and McPherron, 

2001), complexes with a second cell receptor, either activin receptor-like kinase (Ark) 4 

or Ark 5, which initiates signalling though the Smad signal pathway (Rebbapragada et 

al., 2003; Zhu et al., 2004). The interaction between myostatin and ActRIIB appears to 

be similar to the interaction of TGF-ß and its receptors. Smad2 and Smad3 form a 

complex with Smad4, a co-Smad which translocates into the nucleus where it regulates 
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expression of genes such as MyoD (Ríos et al., 2002; Zhu et al., 2004). As a result, 

muscle growth is controlled by regulating cell proliferation and differentiation. 

Myostatin can also bind with follistatin, follistatin related gene and growth and 

differentiation factor associated serum protein-1 (GASP-1) to prevent its activity and 

inhibit muscle atrophy (Lee and McPherron, 2001; Hill et al., 2002a,b; Cassano et al., 

2009). 

 

 

 
Figure 1.8 Schematic displaying the main proteins involved in myostatin signalling 
pathways  
Myostatin ligand binds to ActRIIB which initiates signalling though the Smad signal 
pathway. This leads to protein degradation and muscle atrophy (Adapted from Otto and 
Patel, 2010) 
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1.3.8.2 Myostatin mutation 

 

1.3.8.2.1 Muscle hypertrophy 

Muscle hypertrophy, termed double muscling (DM), is a heritable condition which 

involves intensified muscle development due to general skeletal-muscle cell hyperplasia 

and hypertrophy (McPherron et al., 1997). This phenotype has been identified in many 

species including humans, sheep and whippets (Schuelke et al., 2004; Clop et al., 2006; 

Mosher et al., 2007). In addition, muscle hypertrophy has been reported in many 

European cattle breeds including Friesian, Shorthorn (UK), Belgian Blue (Belgium) 

(Figure 1.9), Charolais and Blonde d’Aquitaine (France), Piedmontese (Italy), Rotbunt 

(Germany) and Rubia Gallaga (Spain) (Vissac, 1982). Double muscling in cattle is often 

considered undesirable due to increased dystocia, poor calf viability, slowness of 

females to reach sexual maturity and unfavourable meat attributes due to paler meat 

colour and a lower intramuscular fat content (Kieffer and Cartwright, 1980; Arthur et 

al., 1988; Arthur et al., 1989; Arthur, 1995; Cuvelier et al., 2006a,b). 

 

Figure 1.9 Double muscled Belgian Blue bull 
This double muscled Belgian Blue bull is homozygous for the nt821del(11) deletion in 
the myostatin gene (Soure: http://www.cellbiol.net/ste/bookimages.php) 
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1.3.8.2.2 Muscle hypertrophy due to myostatin mutation 

The muscle hypertrophy phenotype in cattle arises from a failure to produce a functional 

myostatin protein (McPherron and Lee, 1997). There are six identified mutations in the 

myostatin sequence that result in muscle hypertrophy due to alterations in the sequence 

code. The Belgian Blue and Piedmontese breeds both exhibit muscle hypertrophy due to 

mutations in the coding region of the myostatin coding sequence; however, the 

mutations differ across the two breeds, with Belgian Blue having an 11 bp deletion of 

nucleotides in the third exon, referred to as nt821(del11), whereas Piedmontese exhibit 

a missense mutation resulting in an amino acid change in exon 3 (Grobet et al., 1997; 

Bellinge et al., 2005) (Figure 1.10). The nt821(del11) mutation in the sequence of 

myostatin in Belgian Blue results in a truncation of the bioactive C-terminal domain of 

the protein. 

 

Figure 1.10 Representation of myostatin mutations in Belgian Blue and 
Piedmontese cattle compared with wild type Holstein cattle 
Myostatin mutations in Belgian Blue (left) and Piedmontese (right) cattle compared 
with wild type Holstein cattle. Red letters indicate changes in nucleotide and amino acid 
sequence (adapted from McPherron and Lee, 1997). 
 

1.3.8.2.2.1 Muscle hypertrophy and muscle fibre type 

Bouley et al. (2005) studied the effect of the myostatin null mutation on the muscle 

fibre composition in young Belgian Blue bulls and found that double muscled bulls had 

lower levels of slow-twitch oxidative and a greater level of fast twitch glycolytic fibres 

compared to conventional muscle types. Bulls heterozygous for the myostatin null 

mutation were intermediate in their composition. Due to greater amount of fast twitch 
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glycolytic fibres and reduced blood circulation, Belgian Blue cattle experience fatigue 

earlier during forced exercise (Holmes et al., 1973).  

 

1.4 Genetic merit for beef production traits 

 

1.4.1 Introduction 

The main organisation generating genetic information for cattle breeding in Ireland is 

the Irish Cattle Breeding Federation (ICBF). The Cattle Movement and Monitoring 

System (CMMS) is a national computer database operated by the Department of 

Agriculture, Fisheries and Food (DAFF), which records calf registrations and cattle 

mortality, movement, exports and slaughter date. The ICBF breeding database is 

updated daily with information from the CMMS. In addition, the ICBF collects data 

from abattoirs, cattle marts, AI companies and directly from farms. This information 

allows the ICBF to carry out genetic evaluations and develop breeding schemes for the 

benefit of the cattle industry.  

 

1.4.2 Genetic evaluations 

As previously mentioned, the ICBF computes genetic evaluations for Irish dairy and 

beef cattle. In brief, data are collected, added to the cattle breeding database and sire 

expected progeny differences (EPD) are calculated across a range of performance traits 

such as animal growth, carcass traits, reproduction and calving attributes. Sire EPD is 

an estimate of half the estimated breeding value (EBV) of a sire i.e. the breeding value 

of a particular trait that which will be passed on to its potential progeny and sire EPDs 

are the unit indicator of genetic merit in Ireland. The breeding value of an animal being 

the cumulative sum of the additive effects of its genes on a given trait. A sire EPD value 

can be positive or negative as it is relative to a given genetic base. In addition, each sire 
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EPD is assigned a reliability score (0-100%) which indicates the confidence level of the 

measure. The higher the reliability score, the lower the chance that the estimate will 

change as more information is collected on the animal, its progeny and relatives. Sire 

EPDs across a range of traits are examined and genetic merit for carcass weight are 

undertaken in a 15 x 15 multi-trait animal model which include information for: carcass 

weight, carcass conformation class, carcass fat class, cull cow weight, weaning weight, 

live weight, feed intake, hindquarter development, height at withers, length of back, 

length of pelvis, loin development, width at withers, width behind withers and calf 

quality. EPDs are also generated for a range of maternal traits.  

 

1.4.3 Economic and €uro-Star indices 

From the individual trait EPDs, an economic index and €uro-Star indices are estimated 

to help simplify breeding decisions. The development of these economic values is 

described by Amer et al. (2001).  In total, 16 traits are assigned to five sub-indices, and 

finally one overall Suckler Beef Value (SBV) index (incorporating the 5 sub-indices) is 

estimated reflecting the overall economic value of a bull (Cromie, 2008). The five sub-

indices are calving traits, weanling export value, beef carcass value, milk and fertility 

traits and calf quality. Animals are then ranked, both within their own breed and across 

breeds, based on a star rating. The €uro-star rating ranges from 1 star (poor) to 5 stars 

(excellent). An example of a €uro-star index for a bull with AI code RYP is shown in 

Figure 1.11. In this example, the bull has a SBV of €141 suggesting that his progeny 

should return €141 more profit compared to progeny of a sire with a SBV of €0. 

 

1.4.4 Physiological regulation of genetic merit for growth 

Animals of higher genetic merit for carcass weight grow faster and produce heavier 

carcasses (Campion et al., 2009a). However, the mechanisms responsible for this higher 
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growth rate are still at an early stage of elaboration. Many studies have evaluated the 

effect of genetic merit for growth (Crews et al., 2004; Keane and Diskin, 2007; Keane 

et al., 2011); however, few have examined the physiological mechanisms regulating this 

higher growth potential. Both Campion et al. (2009b) and Clarke et al. (2009) examined 

the circulating glucose profile from animals of high or low growth potential and 

reported no difference in glucose levels at any stage throughout their lifetime. 

Interestingly, Clarke et al. (2009) reported no difference in IGF-1 concentrations 

between animals of either high or low growth potential; however, low animals had 

greater insulin concentrations supporting the theory that muscle development and rapid 

growth are associated with decreased plasma concentrations of insulin (Hocquette et al., 

1998). Further research is required into potential molecular mechanisms regulating 

genetic merit for growth, for example the local regulation of IGF-1 in tissues and other 

key genes of the somatotropic axis. 

 

Figure 1.11 Example of a €uro-star index for an AI bull, RYP 
This €uro-Star rating for Rocky Du Pont De Messe (RYP) highlights his star rating both 
within and across breed. RYP has a SBV of €141 suggesting that his progeny should 
return €141 extra profit compared to progeny of a sire with a SBV of €0. (Source: 
http://www.icbf.ie/taurus/bull_search/index.php?search_type=num&search=ryp). 
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1.4.5 Molecular mechanisms regulating genetic merit for growth 

Researchers in France (Bernard et al., 2009) examined the molecular mechanisms 

regulating growth in 15- and 19-month-old Charolais bulls. Using microarray 

technology, the authors reported that genes relating to the glycolytic pathway were 

upregulated in animals classified as high for muscle growth potential. In addition, gene 

expression of fibroblast growth factor 6 (FGF6) was down-regulated in animals with 

high growth potential. Fibroblast growth factors inhibit skeletal muscle differentiation 

(Kudla et al., 1995). Further investigation is required into the physiological and 

molecular mechanisms regulating high and low growth potential. 

 

1.5 Compensatory growth 

 

1.5.1 Introduction 

Following a period of restricted development usually due to reduced feed intake an 

organism has the potential to undergo enhanced growth upon realimentation to a higher 

energy diet, thus enabling it to achieve its pre-determined inherent size (Figure 1.12) 

(Hornick et al., 2000). Bohman (1955) first termed this abnormally rapid growth period 

as ‘compensatory growth’. The fact that animals display compensatory growth indicates 

that growth rate is usually below the potential maximum (Jobling, 2009) and therefore 

compensatory growth models have been of keen interest to researchers studying growth 

and efficiency. There are a vast number of publications investigating feed restriction 

and feed realimentation in humans, ruminants, chickens, fish, and swine (Leeson and 

Zubair, 1997; Ritacco et al., 1997; Johansen and Overturf, 2000; Tsintas et al., 2000; 

Tolla et al., 2003). 
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Figure 1.12 Schematic representation of compensatory growth in cattle 
Animals that undergo feed restriction during the differential feeding period (dotted line) 
experience compensatory growth when a higher energy diet is offered. Animals are 
capable of compensating 100 % to reach their predetermined weight (dark line). 
 

1.5.2 Compensatory growth in cattle 

Compensatory growth in cattle has been widely shown to occur, with animals 

compensating up to 100 % in some instances during the realimentation period (Ryan et 

al., 1990). When animals move from a predominantly forage diet during restriction to a 

predominantly concentrate diet during realimentation a period of adaptation is necessary 

whereby the animal adjusts to the higher plane of nutrition. In cattle this is normally 

three to four weeks and this adaptation process needs to be monitored carefully to avoid 

acidosis (a sudden pH drop in the rumen). Compensatory growth is greatest when 

animals are relatively mature, when the period of restriction is short, (usually about 

three months in cattle) and when the dietary restriction is not too severe (Coleman and 

Evans, 1986; Hornick et al., 2000). This compensatory growth phenomenon has 

attracted the attention of many producers due to the fact it can off-set the effects of feed 

restriction and therefore reduce the costs of production (Table 1.1). Thus, farmers have 
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the flexibility to reduce feed demand at a time when feed is expensive (winter time) and 

allow the animals to compensate when feed is cheap and plentiful (grazing season). 

 

1.5.3 Benefits of compensatory growth-based feeding strategy 

As mentioned previously, the key benefit of a compensatory growth-based feeding 

strategy is a reduction in total feed costs over the lifetime of the animal. In Irish studies, 

a saving in feed costs of up to €90 per animal has been achieved using a compensatory 

growth-based feeding regime (Keane and Drennan, 1994; Keane, 2011, personal 

communication). 

During the winter when animals are housed in slatted floor sheds the slurry 

accumulates in a storage facility underneath the shed. Slurry disposal is expensive, and 

in addition, under the Nitrates Directives (91/676/EEC), herd owners are required to 

limit the amount of nitrogen from manure to 170 kg/hectare/year. As feed input is 

lowered during the winter period in compensatory growth-based production systems, 

this results in a reduction of faecal output with consequent reductions in handling costs 

and organic nitrogen production.  

A compensatory growth feeding strategy has been shown to improve meat 

quality including tenderness in both swine and bovine studies in many instances 

(Hansen et al., 2006; Stolzenbach et al., 2009; Therkildsen et al., 2011), however, not 

all (Sinclair et al., 2001; Kristensen et al., 2004). This topic is discussed in further detail 

in section 1.4.3.  

Ireland is coming under increasing pressure from international agreements such 

as the Kyoto Protocol and EU2020, to substantially reduce greenhouse gas emissions 

including those from agriculture. It is envisaged that a compensatory growth-based 

feeding regime would lead to a reduction in such emissions as cattle become more feed
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Table 1.1 Summary of recent studies involving compensatory growth 
 

Breed1  Sex2 Initial 
Weight 

Restriction 
period 
(day) 

Realimentation 
period  
(day) 

Main effects of CG Reference 

F S 460 kg 56 days 70 days  • No difference between feeding treatments for carcass characteristics 
including carcass weight, fat class or  conformation score 

• Mean fat depth, M. longissimus area and pistola weight were similar for 
both treatments 

 

Moloney et 
al. (2008) 

BR 
 

S 202 kg  120 days 316 days • Animals that experienced weight loss during the restriction period did not 
compensate fully  

• No difference in live weight at the end of the finishing period between 
slow growing animals and control group 

• At slaughter no difference in carcass characteristics, fat depth or eye 
muscle area 

 

Tomkins et 
al. (2006) 

HF 
 

 B 159 kg 97 days 140 days • No difference in absolute feed consumption during realimentation period 
• Circulating IGF-1 concentrations increased and remained high 
 

Therkildsen 
et al. (2005) 

AA, CH, H 
 

S 402 kg 
 

70 days 70 days • No difference between treatments for carcass weight, dressing percentage, 
eye muscle area, fat class or conformation score 

 

Sinclair et 
al. (2001) 

BB  
 

B 310 kg 115 days 
239 days 
411 days 

147 days 
120 days 
112 days 

• No significant difference in slaughter weight and carcass weights between 
treatments except for animals restricted for  411 days whose slaughter 
weight and carcass weights were greater 

• Greater carcass connective and adipose tissue 
 

Hornick et 
al. (1998a) 

HE 
 

 S 250 kg 89 days 330 days • No difference in feed intakes corrected for body weight between control  
and compensating animals for first 12 weeks of realimentation 

Ryan et al. 
(1993) 

1F = Friesian; BR = Belmont Red; AA = Aberdeen Angus; CH = Charolais; HF = Holstein-Friesian; BB = Belgian Blue; HE = Hereford; 2S = Steer; B 
= Bull; 
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efficient following feed restriction and realimentation and therefore produce less 

methane (Hegarty et al., 2007; Nkrumah et al., 2006). However, in many instances 

animals offered a restricted ration have access to more forage in their diet and therefore 

this offsets the reduction in methane outputs during the realimentation period as animals 

on forage based diets produce more methane (Boadi and Wittenberg, 2001). 

 

1.5.4 Compensatory growth and body composition 

Compensatory growth in cattle may affect not only live weight gain but also feed intake, 

viscera size, lean tissue growth, and muscle fibre type (Ryan et al., 1993; Yambayamba 

et al., 1996a,b; Lehnert et al., 2006). Hornick et al. (2000) states that when an animal is 

fed at maintenance, muscle growth is close to zero, however, fat mobilisation continues. 

Frequently, but not always, adipose tissue develops rapidly in cattle during 

compensatory growth following feed restriction and realimentation (Hornick et al., 

1998a). These authors reported higher percentages of connective and adipose tissues at 

slaughter in BB bulls undergoing compensatory growth following a period of feed 

restriction compared to bulls offered a high energy diet throughout the study. 

Several studies have investigated the effect of compensatory growth on viscera 

weights including the liver (Carstens et al., 1991; Yambayamba et al., 1996a). The liver 

is a metabolically active tissue responsible for between 17-26% of total oxygen 

consumption in beef steers (Baldwin et al., 2004). Yambayamba et al. (1996a) reported 

that, during feed restriction, liver and spleen relative to live weight were lighter in 

restricted animals compared to control animals suggesting that feed restriction decreases 

the metabolic activity and size of the liver. However, during the realimentation period 

when the restricted animals were compensating the liver and spleen weights were 

similar to control animals by day 29 of realimentation, and heavier than control animals 

by day 50 of the study. The liver and spleen weights had returned to weights similar to 
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the control weights by day 134 post realimentation. Many studies reported greater feed 

intake in compensating animals following feed realimentation (Sainz et al., 1995), often 

resulting in greater gut fill proportion (Yambayamba et al., 1996a). In ruminants, 

especially large ruminants such as cattle, gut fill fluctuations can account for up to 40 

kg of bodyweight in mature animals (Phillips, 2010). Additional gain in weight due to 

increased gut contents, often mistakenly recognised as compensatory growth, must be 

adjusted for in compensatory growth models when calculating actual live weight gains 

during the realimentation period. 

Myofibre classification was investigated in association with compensatory 

growth (Lehnert et al., 2006). These authors reported a shift from fast glycolytic to 

slow-twitch oxidative fibres in the M. longissimus during the restriction period. 

Following feed realimentation, fibre type percentages returned to values similar to prior 

to feed restriction. 

 

1.5.5 Physiological mechanisms regulating compensatory growth 

The nature of the restriction diet, length of restriction period, and the stage of 

development and body condition of the animal prior to restriction affect the degree of 

compensation. Therefore mechanisms controlling compensatory growth are difficult to 

elucidate.  

A rise in circulating levels of IGF-1 is sometimes considered a regulator of 

accelerated growth; however, reports in the literature are equivocal on this point. 

Yambayamba et al. (1996b) reported a reduction in circulating levels of IGF-1 in heifers 

during a restriction period with IGF-1 concentrations rising to the same concentrations 

as control animals upon realimentation, suggesting that compensatory growth was not 

due to elevated levels of circulating IGF-1. In addition, Ritacco et al. (1997) concluded 

that compensatory growth was not mediated by IGF-1 in runt piglets. However, 
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Ellenberger et al. (1989) and Hornick et al. (1998b) observed greater plasma 

concentrations of IGF-1 in compensating animals compared to control animals during 

the realimentation period.  An in-depth investigation of the somatotropic axis including 

the involvement of the IGFBP would provide more knowledge of the somatotropic axis 

control over compensatory growth. 

The reduction in circulating IGF-1 during a feed restriction period, via negative 

feedback mechanisms, results in an increase in plasma GH concentrations (Hornick et 

al., 1998b; Martínez-Ramreíz et al., 2009). Yambayamba et al. (1996b) noted that 

although IGF-1 rose to the same concentration as control animals by day 10 of the 

realimentation period, GH was still elevated by day 31 suggesting that GH is possibly 

involved in regulating compensatory growth. However, Blum et al. (1985) reported that 

GH concentrations were slightly higher, but not significantly above those of the control 

animals during the realimentation period. 

 

1.5.6 Molecular mechanisms regulating compensatory growth 

Researchers in Australia (Lehnert et al., 2006) attempted to unveil the molecular 

mechanisms regulating compensatory growth in cattle; however, only one gene, relating 

to fibre type, was revealed as being differentially expressed between control and 

compensating animals during the realimentation period. It must be noted however that 

gene expression profiles during the realimentiation period were obrtained 84 days post 

realimentation and by then the animals had entered a normal growth trajectory. None 

the less, this study offers huge insight into genes and pathways differentially expressed 

during the differential feeding period between control and restricted animals.  

 At a proteome level, Lametsch et al. (2006) reported that during compensatory 

growth in pigs, seven proteins were found differentially expressed between control and 

compensating pigs. The seven proteins included heat shock cognate 70 (HSC70), heat 
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shock protein 27 (HSP27), enolase 3, glycerol-3-phosphate dehydrogenase (GPDH), 

aldehyde dehydrogenase E2, aldehyde dehydrogenase E3, and biphosphoglydrtae 

mutase. The heat shock proteins, HSC70 and HSP27, have been associated with muscle 

development. HSC70 plays a role in the regulation of proteolytic pathways during 

muscle development and regulation while HSP27 is involved in stabilisation of 

microfilaments and cytokine signal transduction (Liu and Steinacker, 2001). 

Additionally, enolase 3 and GPDH are involved in glycolysis and lipogenesis, 

respectively. Aldehyde dehydrogenase catalyses the oxidation of aldehydes to 

carboxylic acids (Purich and Allison, 2000), however, the role of aldehyde 

dehydrogenase E2, aldehyde dehydrogenase E3, and biphosphoglydrtae mutase 

enzymes in compensatory growth is unclear. Again, muscle sampling time was late into 

the realimentation period (day 60), suggesting that key regulatory genes and pathways 

were missed in the proteome profiling. 

More recently, Connor et al. (2009) investigated the effect of compensatory 

growth on hepatic gene expression at day -14, +1, and +14 relative to feed 

realimentation following feed restriction, using micro-array technology. The authors 

reported increases in hepatic genes relating to the mitochondrial complex and electron 

transport in animals experiencing compensatory growth. It has been hypothesised that 

differences in mitochondrial activity may be associated with differences in feed 

efficiency (Kolath et al., 2006; Connor et al. 2009). 

 

1.6 Meat Quality 

 

1.6.1 Introduction 

Meat quality is a term used to describe a range of traits that the consumer and/or 

processor perceives as desirable. These traits are divided into visual (colour and texture 
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of the meat, quantity and colour of fat, water holding capacity), sensory (tenderness, 

flavoursome, juiciness), credence traits (safety and health concerns) and more subjective 

traits (‘green’ image, production environment or welfare status) (Becker, 2000; Warner 

et al., 2010). 

 

1.6.2 National and international meat quality standards  

In Ireland, the Bord Bia Quality assurance mark (Figure 1.13), introduced in 1989, is 

used to certify that the product is produced to a particular set of standards and that the 

producer/processor is inspected regularly to ensure that these requirements are met 

(Bord Bia, 2011). In addition, Bord Bia operates the Beef Quality Assurance scheme 

(BQAS) which sets out additional strict guidelines relating to traceability, welfare, 

chilling and hygiene at both the farm and slaughter house. Although these schemes 

ensure high levels of meat quality and safety, this mark does not guarantee tenderness or 

flavour, key issues that consumer research indicated are important elements of eating 

quality (Becker et al., 1998: Moloney et al., 2001). In Australia, an innovative grading 

scheme (Meat Standards Australia, MSA) was adopted in 2000 which guaranteed 

quality score is assigned to meat. Cuts of meat are labelled with a grade: 3 stars 

(tenderness guaranteed), 4 stars (premium tenderness) or 5 stars (superior tenderness) as 

well as a recommended cooking method. Consumers are willing to pay considerably 

more for MSA-graded cuts than non-graded cuts (Lyford et al., 2010). Although there is 

no Irish or European standard for assurance of tenderness, flavour and consistency, 

many large commercial outlets are introducing ‘benchmark’ standards outlining key 

requirements from both the farm and the processor based on perceived consumer needs. 

These include choosing specific breeds, slaughter age, dry aging and an extended aging 

period of 28 days to improve flavour and tenderness in beef. 
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Figure 1.13 Bord Bia quality symbol 
Bord Bia ‘Quality’ assurance mark. (Source: http://bordbia.ie) 
 

1.6.3 Factors affecting meat quality 

 

1.6.3.1 Genotype, feeding level and environment 

Genotype is an important matter affecting meat quality (Monsón, 2004). However, it is 

difficult to compare the effect of genotype in isolation as other factors relating to the 

chosen breeds may differ i.e. early vs. late maturing breeds, intramuscular fat 

accumulation, age at slaughter, production system (grass or concentrates) or mutations 

in their DNA sequence (Piedmontese and Belgian Blue breeds). 

Many researchers to date (Keane and Allen, 1998; French et al., 2001; Moloney 

et al., 2001; 2008) have reported that pre-slaughter feeding level and growth rate had no 

effect on many meat quality traits including tenderness, meat colour, shear force, and 

muscle drip loss percentage. However, other researchers including Hornick et al. 

(1998a), Carrasco et al. (2007) and Therkildsen et al. (2008) reported that muscle and 

fat colour and drip loss percentage were affected by feeding level suggesting further 

study is required to fully elucidate the effects of feeding level on meat quality traits. 

The environment prior to slaughter affects meat quality (although much of this 

research relates to swine rather than bovine) and therefore transport time to abattoir, 

resting time after transport, amount of time spent in the lairage area (holding pens), 

opportunities to mix in large unfamiliar groups and availability of food and water 
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(Warriss, 1990; Lahucky et al., 1998; Honkavaara et al., 2003; Villarroel et al., 2003) 

should be considered also for cattle in order to reduce stress levels. 

 

1.6.3.2 Intramuscular fat  

Intramuscular fat and its effect on meat quality traits, especially sensory traits, has 

evoked much research and debate (Nishimura et al., 1999; Liu et al., 2009; Hocquette et 

al., 2010). In many instances intramuscular fat is positively associated with some 

sensory palatability characteristics including increased juiciness and improved flavour 

in beef and pork (Oddy et al., 2001). Hocquette et al. (2010) reported that intramuscular 

fat marbling directly affects juiciness and flavour but that tenderness was influenced 

indirectly. In a recent report by Hocquette et al. (2011), the authors describe a 

curvilinear relationship between intramuscular fat and flavour. In addition, it has been 

suggested that the relationship between intramuscular fat and tenderness is dependent 

on other factors including muscle type (Nishimura et al., 1999; Oddy et al., 2001). 

 

1.6.3.3 Temperature and pH of carcass post mortem 

As muscle is converted to meat, anaerobic glycolysis takes place and glycogen stores in 

the muscle are depleted (for a review see Pearce et al., 2011). The pH of the muscle 

falls as lactic acid is produced as an end product of glycolysis. The rate of pH fall and 

the ultimate pH (pHu) of the meat effects many aspects of meat quality (i.e. colour and 

water holding capacity). 

Temperature of the cold room has a significant effect on cooling rate (Hannula 

and Puolanne, 2004). If the carcass temperature falls too fast, and glycolysis is too slow 

(i.e. a high muscle pH), sarcomere length is reduced, and as a result toughening of the 

meat occurs (for a review see Maltin et al., 2003; Warner et al., 2010). Alternatively, if 
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the rate of temperature fall is slow, and glycolysis is fast, toughening of the meat can 

also occur (Figure 1. 14). 

 

 

 
Figure 1.14 Ideal pH and temperatre decline in meat post slaughter 
(Source: http://www.shorthorn.com.au/assets/files/PH_temperature_decline_and_Beef 
_eating_quality.pdf 
 

1.6.3.4 Compensatory growth 

Intensive, but often conflicting, research has been undertaken to assess if compensatory 

growth prior to finishing has an effect on meat colour, shear force and organoleptic 

properties of meat (Table 1.2). Many studies to date in swine (Kristensen et al., 2004; 

Wood et al., 2004) state that compensatory growth affects meat quality attributes, with 

an increase in meat tenderness and meat juiciness. However, it must be noted that this 

may be a consequence of differences in intramuscular fat marbling rather than the direct 

effect of compensatory growth. Compensatory growth prior to slaughter improved meat 

quality characteristics in many studies (Stolzenbach et al., 2009; Therkildsen et al., 

2011) but not all (Kristensen et al., 2004; Hansen et al., 2006). In addition, many 

researchers reported that the majority of the effects related to genotype of the animal 

rather than feeding treatment (Lobley et al., 2000; Sinclair et al., 2001; Moloney et al., 

2001; 2008) and this warrants further investigation.   
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Table 1.2 Summary of studies involving compensatory growth and the effect on meat quality traits 
 

 1 HF = Holstein-Friesian; F = Friesian; BR = Belmont Red; BB = Belgian Blue. 2 B = Bull; S = Steer C = Cow. 

Breed1 Sex2 Length of 
restriction 

period (day) 

Length of 
realimentation 

period 

Muscle type Effect of compensatory growth (CG) on meat quality Reference 

HF 
 

C 17 days  17 days M. longissimus thoracis 
et lumborum 
M. semimembranosus 

 

• Lower shear force in both muscle types following CG feeding 
regime 

• No effect on L, a or b measurements 
• Improved sensory and flavour 
• Improved flavour as a result of CG feeding regime 
 

Therkildsen 
et al. (2011) 

F S 56 days 70 days M. longissimus thoracis 
et lumborum 

 

• No effect  on shear force at day 2, 7 or 14 days of ageing 
• No effect on L, a or b measurements at day 2, 7 or 14 days of 

aging 
• No effect on cook loss 
• No effect on sarcomere length 
 

Moloney et 
al. (2008) 

BR 
 

S 120 days 316 days M. longissimus thoracis 
et lumborum 
M. semitendenosis 

 

• No effect on shear force measurements 
• No effect on L, a or b measurements 
• No effect on cook loss  
 

Tomkins et 
al. (2006) 

HF 
 

B 97 days 140 days M. longissimus thoracis 
et lumborum 
M. semimembranosus 
M. supraspinatus 

• Texture was muscle type specific 
• Flavour was muscle specific as LD developed off flavour when 

derived from CG-based feeding regime 
 

Hansen et al. 
(2006) 

BB B 115 days 
239 days 
411 days 

 

147 days 
120 days 
112 days 

M. longissimus thoracis • Cattle exhibiting CG had lower shear force 
• Cattle exhibiting CG had greater redness, yellowness, cooking 

losses and drip losses 

Hornick et al. 
(1998a) 
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1.7 Transcriptomics as a tool to understanding muscle growth 

 

1.7.1 Introduction 

The study of the transcriptome is referred to as transcriptomics. The transcriptome 

consists of all RNA transcripts including: mRNA, rRNA, tRNA, and non coding RNA 

(miRNA and other small RNAs). Transcription is the synthesis of RNA under the 

direction of DNA in the nucleus of the cell. In brief, DNA provides a template for 

assembling a sequence of pre-messenger RNA which contains both introns and exons. 

The introns are removed from the pre-mRNA before the mRNA can leave the nucleus 

for translation to a polypeptide, as reviewed by Witten and Ule (2011). In the past 

decade there have been dramatic advances in our understanding of the bovine genome 

and transcriptome. The bovine genome, version 4.0, was sequenced and annotated by 

the Bovine Genome Sequencing and Analysis Consortium and released in 2007. This 

work was carried out by over 300 researchers across 25 different countries. The 7.1 fold 

coverage bovine genome sequence represents primarily DNA from a Hereford female 

animal. The Bos Taurus genome contains approximately 22,000 protein-coding genes 

with 14,350 orthologs shared among seven mammalian species (Elsik et al., 2009). The 

Btau 4.0 genome is made up of 29 autosomes and the X chromosome with 90% of the 

genome aligning to these chromosomes. 

 

1.7.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was first developed in 1984 by Kary Mullis. This 

process allows the amplification of DNA, without cloning, and this has revolutionised 

the field of molecular biology.  This process was made possible through the discovery 

of Thermus aquaticus, a thermophilic bacterium living in hot springs (Brock and 

Freeze, 1969). A heat resistant enzyme, Taq polymerase, was isolated from Thermus 
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Aquaticus in 1976 (Chien et al, 1976). A PCR reaction involves three main temperature 

adjustments. Firstly, a high temperature (95 °C) is applied for approximately 30 seconds 

and the DNA double helix, consisting of 4 different nucleotide types, is separated into 

two strands. The temperature is then reduced to approximately 55 °C-60 °C, allowing 

primers to anneal to the 5’ region of the DNA strand. The temperature then rises to 72 

°C to optimise the activity of Taq Polymerase. The polymerase then extends the 

complimentary strand of the DNA resulting in the formation of the double helix 

structure again. 

 

1.7.3 Real-time reverse transcription PCR  

Real-time reverse transcription quantitative PCR (RT-qPCR) provides a sensitive and 

accurate method of measuring the amount of target sequence or gene expression in a 

sample. RT-qPCR has the capacity to detect and measure fluorescence which correlates 

with PCR product concentration. In the initial stages of RT-qPCR, there is little change 

in fluorescence; therefore, a baseline is set which acts to subtract the background 

fluorescence from the overall fluorescence. A threshold line is set above the baseline yet 

low enough to be within the exponential growth region (VanGuilder et al., 2008). A 

reporter dye, for example SYBR green, binds double-stranded DNA and the increase of 

fluorescence signals indicates amplification. A cycle threshold (Ct) is calculated and 

this refers to the cycle number at which the amplification curve (fluorescence) crosses 

the threshold line. In addition, a passive reference dye provides an internal fluorescence 

reference to which the reporter dye can be normalised during data analysis. qPCR has 

many applications, such as in the quantification of gene expression, microRNA 

detection, viral and bacterial quantification, gene knockout studies and validation of 

microarray studies (Jiang et al., 2005). For the detection of differentially expressed 

genes, data is normalised to a reference gene, also referred to a house-keeping gene in 
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the past. A reference gene is a gene tested for expression stability, in that the expression 

varies very little (Peréz et al., 2008; Bustin et al., 2009). 

 

1.7.4 Next generation RNAseq 

RNAseq is a recently developed, highly sensitive, approach to transcriptome sequencing 

(Bullard et al., 2010). RNAseq employs deep-sequencing of the transcriptome and 

quantification by counting the number of reads which align to a given transcript. 

RNAseq has many advantages and novel opportunities over earlier technologies in that 

it is not limited to detecting transcripts corresponding to existing genomes, alternative 

splicing can be identified and sequence variation on a nucleotide bases can be revealed 

(Mortazavi et al., 2008). Furthermore, RNAseq has shown high levels of 

reproducibility, both for technical and biological replicates (Nagalakshmi et al., 2008). 

In a short period of time, RNAseq has become the method of choice for transcriptome 

analyses; however, as with all technologies RNAseq is not bias-free. PCR amplification 

during the cDNA library preparation steps introduces bias, although this effect can be 

lessened with the advent of on-flow cell reverse transcription sequencing (FRTseq) 

(Mamanova et al., 2010) and the introduction of fewer PCR cycles. In addition, a gene 

length bias exists in that there is a greater statistical ability to detect longer genes as 

differential expressed (Oshlack and Wakefield, 2009). At present, the above issue is 

addressed by careful statistical modelling with the advent of Goseq software (Young et 

al., 2010) which assesses GO and pathways for a preponderance of long genes and 

corrects accordingly.  

  

1.7.4.1 Illumina sequencing by RNAseq 

The Illumina method of RNAseq involves the sequencing of cDNA libraries, 

synthesised from mRNA. Universal adapters, attached onto the ends of each cDNA 
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library bind PCR primer which are immobilised onto a glass slide, referred to as a 

flowcell. The PCR primers then extend to form a complement of the DNA library 

(Figure 1.15 a,b). The original template is removed and the next step is quite unique in 

that the single stranded DNA bends to allow the adapter at the adjacent end of the strand 

to bind with a neighbouring PCR primer (Figure 1.15 c,d).  Polymerase extends the 

PCR primer, forming a double stranded bridge (Figure 1.15e). This bridge is then 

denatured to form two single stranded templates. This process, known as bridge 

amplification, is repeated numerous times (Fuller et al., 2009) and allows the generation 

of million of clusters. The reverse strands are then cleaved and washed away leaving 

only the forward stranded templates. 

 

  

 

Figure 1.15 Schematic representation of mRNAseq workflow 
cDNA libraries are hybridised onto the flowcell. DNA polymerase extend the length of 
the template making a complement strand (a-b). The original strand is washed away (c) 
and bridge amplification occurs (d-e). The reverse strand is cleaved away and the 
templates are ready for sequencing by synthesis. 
 

The above process takes place on a cluster station and from this the flowcell is 

transferred to the Illumina Genome Analyzer (GA2x) for sequencing. A sequencing 

primer is added to the flowcell which binds the adapter sequence at the 3’ end of each 

                 (a)                      (b)                   (c)                    (d)                     (e)  
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transcript. Following this, the flowcell is flooded with dNTPs and DNA polymerase. A 

single nucleotide attaches to each strand and a laser and camera are used to detect and 

capture the fluorescence at four different wave lengths. Once the signal has been 

documented, the fluorophore, responsible for the fluorescence, is removed and the 

process is repeated again with a new nucleotide. This process is referred to as 

sequencing by synthesis. The GA2x assembles all sequences for each cluster and are 

then exported for bioinformatic analysis. 

 

1.7.4.2 Bioinformatic analysis of RNAseq data 

Paulien Hogeweg and Ben Hesper coined the term “bioinformatics” in the 1970’s for 

the study of informatic processes in biotic systems. However, since the late 1980’s the 

term bioinformatics refers to the computational methods for comparative analysis of 

genome data (Hogeweg, 2011). Bioinformatics allow the organisation, filtering and 

decoding of very large datasets generated from genomic, transcriptomic and proteomic 

analysis. For the analysis of RNAseq transcriptomic data, packages including Bowtie 

(Langmead et al, 2009), Tophat (Trapnell et al, 2009) and EdgeR (Robinson et al., 

2010) are utilised for the alignment of the transcriptome to the genome and differential 

gene expression analysis.  

 

1.7.4.3 Gene ontology and pathway analysis 

Gene ontology (GO) is a standardised and consistent method of describing gene and 

gene products in different databases and was introduced in 2000 by the Gene Ontology 

Consortium. The aim of the Consortium was to provide a controlled vocabulary for 

describing the roles of genes and gene products in any organism (Ashburner et al., 

2000). Gene Ontology’s describe gene products in terms of three domains: biological 

processes, molecular functions, and cellular components (Ashburner et al., 2000). There 
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are many tools available for performing gene ontology (GO) analysis including DAVID 

(Dennis et al, 2003), EasyGO (Zhou and Su, 2007), and GSEA (Subramanian et al., 

2005). Standard methods of gene ontology assume that each gene is independent and 

has equal probability of being detected as differentially expressed (Young et al., 2010). 

However, in RNAseq experiments, the expression level of genes correspond to the 

number of reads that align to that transcript and therefore differences in gene length will 

yield differing numbers of total reads. This makes standard methods of GO unsuitable 

for RNAseq data analysis. New GO software was needed for RNAseq data that 

accounted for selection bias due to gene length resulting in the development of GOseq 

(Young et al., 2010) which accounts for the bias relating to transcript length or total 

read count.  

 Pathway analysis may also be performed and there are many softwares available 

for this procedure, for example Ingenuity Pathway Analaysis (IPA; Ingenuity Systems, 

www.ingenuity.com), InnateDB (Lynn et al., 2008), and Kyoto Encyclopaedia of Genes 

and Genomes (KEGG; Kanehisa and Goto, 2000).  As mentioned above however, there 

is a gene length bias occurring with RNAseq data and therefore caution is required 

when carrying out pathway analysis (Oshlack and Wakefield, 2009). 

 

1.7.5 Proteomics 

 

1.7.5.1 Introduction  

The word ‘proteome’ was coined by Dr. Marc Wilkins in 1994 and comes from the 

words ‘protein’ and ‘genome’. Proteomics refers to study of the proteome.  Proteomic-

based approach offers the researcher a snapshot of the proteins of the cells been studied 

(Guo et al., 2008). Translation occurs in ribosomes whereby proteins are formed when 

base sequences in mRNA are converted into amino acid sequences of a polypeptide. In 
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brief, three base pairs of DNA make up a codon, with each codon representing an amino 

acid i.e. the base triplet UCA on an mRNA strand results in the placement of the amino 

acid serine of the polypeptide. Many mechanisms are available to expand the coding 

capacity of the genome with approximately 22,000 human genes (Pertea and Salzberg, 

2010), similar to the bovine genome (Elsik et al., 2009), coding for tens if not hundreds 

of different proteins (Saghatelian and Cravatt, 2005) although exact quantities are not 

available. Firstly, diversification of proteins occurs at the transcriptional level by 

mRNA splicing (Hampson and Rottmann, 1987), including tissue-specific alternate 

splicing (Fürbass et al., 1997). Alternative splicing allows multiple transcripts to be 

produced from a single gene. Secondly, post-translational modifications of proteins at 

one or more sites may results. There are two types of post-translational modifications; 

covalent modification and cleavage of the protein backbone (Walsh et al., 2005). Post-

translational modifications can determine a protein activity state, turnover and 

interactions with other proteins (Mann and Jensen, 2003). These mechanisms offer the 

organism a diverse range of proteins and their functions.  

The transcriptome and the proteome are irrevocably linked as the transcriptome 

covers all protein-coding genes. One may argue that analysis of the proteome is more 

important for identifying the functional nature of the transcriptome. That said, the 

current generation of proteomic tools is yet to catch up to the rapidly evolving 

transcriptomic tools currently available. 

 

1.7.5.2 2D-gel electrophoresis and protein identification 

A 2D-gel based approach separates proteins firstly based on their isoelectric point (pI), 

followed then by separation based on their molecular mass. The pI of a protein is the 

point on the pH scale at which the net charge of the protein is zero. This technique 
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allows the separation of hundreds of proteins on one 2D gel. The protein spot can be 

excised from the gel and its identification obtained using mass spectrometry. 

Frederick Sanger (with Hans Tubby) was the first to discover a method to 

sequence proteins when he detailed the complete amino acid sequence of the two 

polypeptide chains of bovine insulin (Sanger and Tubby, 1951; Sanger and Thompson, 

1953a,b). This sparked an interest in protein sequences in that it was now known there 

was a well defined genetic code. Most proteome-based experiments incorporate mass 

spectrometry for the identification of proteins. Proteins are digested to peptides using a 

trypsin enzyme and the peptides are fragmented to a ‘MS/MS’ spectra which can then 

be used to identify the protein. Recent developments have resulted in a quantitative 

method to assess protein abundance levels (Ong and Mann, 2005). 
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1.8 Hypothesis and objectives of thesis 

 Based on a review of the literature relating to the physiological and molecular 

mechanisms regulating muscle growth in cattle, further research was required to 

understand mechanisms regulating higher growth potential in cattle. In addition, further 

research was required into the elucidation of key mechanisms driving compensatory 

growth at a physiological and molecular level.  

It was hypothesised that key genes and proteins regulating muscle growth and 

development could be identified between animals of high and low genetic merit for 

growth. Additionally, by selecting all animals of one growth potential, further 

elucidative techniques could unveil key pathways controlling the compensatory growth 

phenomenon in crossbred Aberdeen Angus steers.  

 

To test this hypothesis, two studies were undertaken, with the following five objectives: 

1. To examine the effect of sire breed and sire EPDcwt on the mRNA expression of 

genes of the somatotropic axis in M. longissimus thoracis et lumborum in 

Aberdeen Angus × Holstein-Friesian (AA) and Belgian Blue × Holstein-Friesian 

(BB) cattle using qRT-PCR (chapter 3). 

 

2. To examine the effect of sire breed and sire EPDcwt on the expression of proteins 

in M. longissimus thoracis et lumborum in AA and BB cattle using 2D gel 

electrophoresis and mass spectrometry (chapter 4). 

 

3. To study the response of crossbred AA and BB steers, to differential feeding 

treatments with a view to examining the potential of these two genotypes to 

exhibit compensatory growth following feed realimentation (chapter 5). 
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4. To examine the effect of compensatory growth on meat quality and sensory 

analysis in M. longissimus thoracis et lumborum from AA and BB steers 

(chapter 6). 

 

5. To examine the transcriptome for key regulatory pathways controlling M. 

longissimus thoracis et lumborum growth during feed restriction and 

compensatory growth in AA steers using RNAseq analysis (chapter 7). 
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Chapter 2 
 
 
 
 
 
 

Materials and Methods 
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2.1 Materials 

 

2.1.1 Experimental subjects 

The experimental subjects used in each chapter are described in Table 2.1. Examples of 

AA and BB genotypes are shown in Figure 2.1. 

 

Table 2.1 Description of the experimental subjects used in this thesis 

Chapter Sex n Breed (n) Trial1 Tissue collection 

Chapter 3 
 

Steer 32 AA2 × HF3 (17) 
BB4 × HF (16) 

H5 (16) 
L6 (17) 

Slaughter 

Chapter 4 Steer 207 AA × HF (10) 
BB × HF (10) 

H (10) 
L (10) 

Slaughter 

Chapter 5 and 6 Steer 46  AA × HF (22) 
BB × HF (24) 

H-H8 (23) 
L-H9 (23) 

Slaughter 

Chapter 7 Steer 1210 AA × HF (12) 
 

H-H (6) 
L-H (6) 

Biopsy11 

1Genetic merit (H and L) or compensatory growth (H-H and L-H) study, 2Aberdeen 
Angus, 3Holstein-Friesian, 4Belgian Blue, 5High for genetic merit for growth, 6Low for 
genetic merit for growth, 7Subset of animals used in chapter 3, 8ab libitum access to 
feed throughout the study, 9Restricted feeding for 99 days (d) followed by ad libitum 
access to feed until slaughter (d 299), 10Subset of Aberdeen Angus animals used in 
chapter 5 and 6, 11Biopsy at two time points throughout study [end of differential 
feeding period (d 97) and 32 days post feed realimentation (d 131)]. 
 

 
Figure 2.1 Crossbred Belgian Blue (left) and Aberdeen Angus (right) steers used in 
the compensatory growth model (chapter 5, 6 and 7) 
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2.1.2 RT-qPCR analyses (chapter 3) 

 

2.1.2.1 Nanopure water 

Nanopure water was obtained using the Barnstead NANOpure Water purification 

Systems (Thermo Fisher Scientific Inc., Dublin, Ireland). The water was deionised, 

passed through a total organic carbon analyser, treated with dual band (185 and 254 nm) 

UV light and passed through a 0.2 µm filter. 

 

2.1.2.2 Diethyl pyrocarbonate (DEPC) water 

DEPC solution was obtained from Sigma-Aldrich Ireland Ltd., Wicklow, Ireland 

(catalogue number D5758) and stored at 4 °C. In brief, DEPC inactivates RNase from 

water and other laboratory equipment. To deactivate DEPC the solution is autoclaved as 

this hydrolysis Diethyl pyrocarbonate releasing ethanol and carbon dioxide. 

 

2.1.2.3 TRI reagent 

TRI reagent (Sigma-Aldrich Ireland Ltd., Wicklow, Ireland, catalogue number T9424) 

was ready to use from the bottle and stored at 4 °C. TRI reagent is a mixture of 

guanidine thiocyanate and phenol. It dissolves DNA, RNA, and protein on 

homogenisation or lysis of tissue sample. Once chloroform is added, and centrifuging 

begins the mixture separates into 3 phases: an aqueous phase containing the RNA, the 

interphase containing DNA, and an organic phase containing proteins. The aqueous 

phase can then be removed for subsequent RNA isolation. 

 

2.1.2.4 RQ1 RNase-Free DNase kit 

RQ1 RNase-Free DNase kit was obtained from Promega, Southampton, UK (catalogue 

number 9PIM610) and the regents are listed in Table 2.2. Extracted RNA from tissue 
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will undoubtedly contain DNA. Prior to RT-qPCR, this DNA must be removed as the 

intrigrity of RNA must be maintained. RQ1 RNase-Free DNase degrades double 

stranded and single stranded DNA. 

 

 Table 2.2 Reagent composition for RQ1 RNase-Free DNase 

 

2.1.2.5 Agilent Bioanalyzer and RNA 6000 Nano kit 

RNA quality must be assessed prior to RT-qPCR to determine the degree of RNA 

degradation. An RNA integrity Number (RIN) number, developed by Agilent, classifies 

RNA based on the entire electrophoretic trace, including the 18s:28s ratio. The RIN 

value is a numbering system ranging from 1 (highly degraded) to 10 (intact RNA) and 

was assessed using the Agilent Bioanalyzer 2100 (Agilent Technologies Ireland Ltd., 

Cork, Ireland, catalogue number G2939AA) and the RNA 6000 Nano reagents supplied 

from Agilent (Agilent Technologies Ireland Ltd., Cork, Ireland, catalogue number 

5067-1511). The Agilent Bioanalyzer 2100 is based on a combination of microfluidic 

chips, voltage-induced size separation in gel filled channels and laser-induced 

fluorescence (LIF) detection on a miniaturised scale (Schroeder et al., 2006). The 

reagents are stored at 4 °C and allowed to equilibrate to room temperature prior to use. 

 

2.1.2.6 Other reagents 

Dulbecco’s Phosphate Buffered Saline (DPBS) was obtained through Bio Sciences Ltd., 

Dublin, Ireland (catalogue number 14190-086).  

Reagent Composition and initial concentration of solution 
Reaction Buffer Tris-HCl (pH 8.0) 400 mM  
 Magnesium sulphate (MgS04) 100 mM 
 Calcium Chloride (CaCl2) 10 mM 
Enzyme buffer HEPES (pH 7.5) 10 mM 
 Glycerol 50 %(v/v) 
 Calcium Chloride (CaCl2) 10 mM 
  Magnesium Chloride (MgCl2) 10 mM 
Stop solution EGTA (pH 8.0). 20 mM 
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2.1.2.7 High capacity cDNA reverse transcription kit 

DNAse-treated RNA is reverse transcribed using the High Capacity cDNA Reverse 

Transcription kit supplied by Applied Biosystems (Life Technologies Ltd., Paisley, UK, 

catalogue number 4368814). The kit comprised of 5 reagents, and the concentrations of 

each are listed in Table 2.3. All reagents were stored at -20 °C and ready to use from the 

kit once defrosted on ice.  

 

Table 2.3 Reagent composition of High Capacity cDNA Reverse Transcription kit 

 

2.1.2.8 Oligo primers 

Primers for real-time RT-qPCR (Table 2.4) were commercially synthesised (Sigma-

Aldrich Ireland Ltd., Wicklow, Ireland). The PCR products generated by amplification 

were sequenced to verify their primer specific identity (Biochemistry DNA Sequencing 

Facility, University of Cambridge, UK). 

 

2.1.2.9 Fast SYBR Green Mastermix  

Fast SYBR Green Mastermix was obtained from Applied Biosystems (Life 

Technologies, Paisley, UK, catalogue number 4385616). The composition of Fast 

SYBR Green mastermix were buffer, ampliTaq FAST DNA polymerase ultra pure, 

SYBR Green 1 dye, dNTP, uracil-DNA glycosylase and ROX dye; however, due to 

patenting issue initial concentration are unavailable at present. The SYBR Green dye 

binds to all double-stranded DNA in the sample. SYBR Green dye is stored at -20 °C 

and ready to use once defrosted on ice.  

 

Reagents Initial concentration  Working Volume 
10x RT buffer 1.0 mL 2 µL 
10x RT Random Primers 1.0 mL 2 µL 
25x dNTP Mix 100 mM 0.8 µL 
Multiscribe Reverse Transcription  50 U/µl 1 µL 
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Table 2.4 Bovine oligonucleotide primers 

1Insulin-like growth factor -1 receptor, 2Insulin-like growth factor -2 receptor, 3Acid-
labile subunit, 4Growth hormone receptor,5Glyceraldehyde 3-phosphate dehydrogenase. 
6Elongation factor 1 alpha 2, 7Hyrdoxymethylbilane synthase, 8β-Actin, 9McCarthy et al. 
(2009), 10Perez et al. (2008). 
 

2.1.2.10 Other reagents 

Nuclease-free water was obtained from Sigma-Aldrich Ireland Ltd., Wicklow, Ireland 

(catalogue number W4502-1L), aliquoted into vials and stored at -20 °C until use. 

RNaseZAP was obtained from Ambion (Life Technologies Ltd., Paisley, UK, catalogue 

number AM9780). 

 

 

Gene Sequence Accession number  
IGF-1 F: 5’- AGTTGGTGGATGCTCTCCAGT 

R: 3’- CACTCATCCACGATTCCTGTC 
NM_001077828 

IGF-2 F: 5’- ACCAAGGACGAGGAACACAC 
R: 3’- AGGCTCCACTCTCCACTCAA 

NM_174087 

IGF-1R1  F: 5’- AGGTCCTTCGCTTGGTCAT 
R: 3’- GCATCTGGGGTTGTACTGC 

XM_002696504 

IGF-2R2 F: 5’- CTACGTCAACGGGGACAAGT 
R: 3’ - TCGTTCTGGAGCTGAAAGGT 

NM_1743529 

IGFBP1 F: 5’- ACCAGCCCAGAGAATGTGTC 
R: 3’- GCTCCTTCCACTTCTTGACG 

NM_174554 

IGFBP2 F: 5’- CACATCCCCAACTGTGACAA 
R: 3’  GATCAGCTTCCCGGTGTTAG 

NM_174555 

IGFBP3 F: 5’- GGAACTCTGGAAACCGACAA 
R: 3’ - ATGGCTGAGTGGGAAAACAC 

AF305199 

IGFBP4 F: 5’- ATGTGCCTGATGGAGAAAGG 
R: 3’- GCCATCCTGTGACTTCCTGT 

NM_174557 

IGFBP5 F: 5’- AGCAAGCCAAGATCGAAAGA 
R: 3’- GGCAGTGTTCTCAGCTCCTC 

BC149394 

IGFBP6 F: 5’- GGGAGAGAATCCCAAGGAGA 
R: 3’ - AGTGGTAGAGGTCCCCGAGT 

NM_001040495 

ALS3 F: 5’- TGCTACGCTAGACCACAAC 
R: 3’- CGGAGACAGTTCCCAGAGAG 

NM_001146006 

GHR4 F: 5’- ATGGCGGTATTGTGGATCAT 
R: 3’- GGATGTCGGCATGAATCTCT 

NM_176608 

GAPDH5 F: 5’- GGGTCATCATCTCTGCACCT 
R: 3’- GGTCATAAGTCCCTCCACGA 

NM_001034034 

EEF1A26 F: 5’- AGGTGAAGTCGGTGGAGATG 
R: 3’- GATGACCTGGGACGTGAACT 

BC10811010 

HMBS7 F: 5’- CCAGCTGCAGAGAAAGTTCC 
R: 3’- GACCCACAGCATACATGCAC 

NM_00104620710 

ACTB8 F: 5’- ACTTGCGCAGAAAACGAGAT 
R: 3’- CACCTTCACCGTTCCAGTTT 

NM_173979 
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2.1.3 Proteome analyses (chapter 4) 

All chemicals were obtained from Sigma-Aldrich Ireland Ltd., Wicklow, Ireland unless 

other stated. 

 

2.1.3.1 Lysis buffer 

7 M urea, 2 M thiourea, 1 %(w/v) dithiothreitol (DTT), 4 %(w/v) 3-[(cholamidopropyl) 

dimethylammonio] propanesulfonic acid (CHAPS) and 8 %(v/v) ampholytes (pH 3-10; 

Bio-Rad Laboratories, Hertfordshire, UK, catalogue number 163-1113). 

 

2.1.3.2 Bradford assay 

A Bradford assay determines the concentration of solubilised proteins in a sample. 

Bradford solution (Bio-Rad Laboratories, Hertfordshire, UK, catalogue number 500-

002) contains Coomassie Blue G-250 dye, phosphoric acid and methanol. In brief, 

Coomassie Brilliant Blue G-250 dye, shifts from 465 nm to 595 nm when binding to 

proteins occur. The Bradford kit contains Bradford solution and a bovine serum albumin 

(BSA) standard. One part Bradford solution is mixed with four parts deionised water 

and the solution is stored at 4 °C.  

 

2.1.3.3 Immobiline Drystrip gels 

Immobiline Drystrip gels pH 3-10, 24 cm were obtained from GE Healthcare UK Ltd., 

Buckinghamshire, UK (catalogue number 17-6002-44). Immobiline Drystrip gels 

contain a preformed pH gradient immobilised in polyacrylamide gels. Proteins migrate 

through this gradient until they reach their pI. The strips are stored at -20 °C and prior to 

use, the strips are allowed to equilibrate to room temperature, the protective strip is 

removed and the strips are rehydrated in rehydration solution (section 2.1.3.4) over 

night. 



 

 56 
 

2.1.3.4 Rehydration solution 

8 M urea, 0.5 % CHAPS, 0.2 %(w/v) DTT, 0.2 %(v/v) ampholytes (pH 3-10; Bio-Rad 

Laboratories, Hertfordshire, UK; catalogue number 163-1113), 12 µL Destreak (GE 

Healthcare UK Ltd., Buckinghamshire, UK; catalogue number 17-6003-18) and 

Bromophenol Blue. DeStreak reagent (GE Healthcare Biosciences, UK) was added to 

the sample solution to stabilise thiol groups and prevent non-specific oxidation. 

 

2.1.3.5 12 % polyacrylamide gel 

40 %(v/v) Ultrapure Protogel (National Diagnostics USA, Georgia, USA; catalogue 

number EC-890), 26 %(v/v) Protogel buffer (National Diagnostics USA, Georgia, USA; 

catalogue number EC-892), 0.4 %(w/v) ammonium persulfate (APS), 0.04 %(v/v) 

etramethylethylenediamine (TEMED). 

 

2.1.3.6 Equilibration buffer 

6 M urea, 30 %(v/v) glycerol, 2 %(w/v) sodium dodecyl sulphate (SDS), 1.5 M Tris 

buffer (pH 8.8) and Bromophenol Blue. 

 

2.1.3.7 Ruthenium II Bathophenathroline Disulfonate Chelate 20 mM (RuBPs) dye 

Potassium pentachloro aquo ruthenate (0.2 g) was added to 20 mL boiling water and 

kept under reflux. Bathophenanthroline disulfonate (3M, 0.9 g) was added and reflux 

allowed to continue for 20 minutes (min) until a greenish-brown solution occurred. 

Sodium ascorbate solution (500 mM, 5 mL) was the added and reflux was allowed to 

continue for 20 min until a deep orange-brown solution was formed. The dye was 

allowed to cool and then the pH adjusted to 7 with sodium hydroxide. The solution was 

stored at 4 °C in the dark.  
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2.1.3.8 Coomassie stain 

45 %(v/v) methanol, 10 %(v/v) acetic acid and 0.2 %(w/v) Coomassie Brilliant Blue.  

 

2.1.3.9 Sequencing grade modified trypsin  

Sequencing grade modified trypsin was obtained from Promega, Southampton, UK 

(catalogue number V5111). In brief, trypsin is a serine protease that specifically cleaves 

at the carboxylic side of lysine and arginine. The kit comprised 2 reagents; trypsin 

enzyme [lyophilised state, previously dissolved in 50 mM Tris-HCl, 1 mM CaCl2 (pH 

7.6)] and trypsin reconstitution buffer (50 mM acetic acid). Reconstitution buffer (100 

µL) was added to 20 µg trypsin. The solution was aliquoted into 10 x 10 µL and placed 

at -20 °C. 

 

2.1.3.10 Other reagents 

LC-MS chromasolv water (Fluka, Milwaukee, WI, USA; catalogue number 39253) was 

obtained through Sigma-Aldrich Ireland Ltd, Wicklow, Ireland. Protease “Complete 

Mini” inhibitor cocktail was obtained from Roche, Clare, Ireland (catalogue number 

04693116001). 

 

2.1.4 Animal growth and performance (chapter 3 and chapter 5) 

 

2.1.4.1 Linear body measurements and ultrasonically scanned muscle and fat depth 

A calliper was used to measure height at withers, chest depth and width of pelvis while 

a measuring tape was used to record chest circumference and length of back. To obtain 

M. longissimus thoracis et lumborum and fat depth measurements, an ultrasound 

scanner (Concept MCV Veterinary Ultrasound scanner with 3.5 MHz probe; Dynamic 

Imaging, Livingston, Scotland) was used. 



 

 58 
 

2.1.4.2 Area of M. longissimus thoracis et lumborum 

A digital planimeter (Placom KP-90N, Sokkisha, Japan) was used to measure the M. 

longissimus thoracis et lumborum area. 

 

2.1.4.3 Clinical biochemistry 

 

2.1.4.3.1 Glucose 

Circulating concentrations of glucose were determined using the hexokinase method on 

an automatic clinical analyser (Olympus AU400 Clinical Analyser, Tokyo, Japan) using 

reagents supplied by Olympus (catalogue number OSR6121). In brief, glucose is 

phosphorylated by hexokinase in the presence of ATP and Mg2+ to produce glucose-6-

phosphate and ADP. Glucose-6-phosphate dehydrogenase (G6PDH) oxidises glucose-6-

phosphate to gluconate-6-phosphate with the reduction of NAD+ to NADH. The 

increase in absorbance at 340 nm is proportional to the glucose concentration in the 

sample. Final concentration of reactive ingredients include: Piperazine-N,N’–

bis(ethanesulfonic acid (PIPES) buffer (pH 7.6; 24.0 mmol/L), ATP (≥ 2.0 mmol/L), 

NAD+ (≥ 1.32 mmol/L), Mg2+ (2.37 mmol/L), hexokinase (≥ 0.59 kU/L), G6PDH (≥ 

1.58 kU/L). The reagents were ready for use and can be placed directly on board the 

instrument. 

 

2.1.4.3.2 Urea 

Circulating concentrations of urea were determined on an automatic clinical analyser 

(Olympus AU400 Clinical Analyser, Tokyo, Japan) using reagents supplied by 

Olympus (catalogue number OSR6134). Briefly, urea is hydrolysed in the presence of 

water and urease and produces ammonia and carbon dioxide. The ammonia produced 

combines with 2-oxogluterate and NAPD in the presence of glutamate-dehydrogenase 

to yield glutamate and NAD+. The decrease in NADH absorbance per unit time is 
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proportional to the urea concentration. Final concentration of reactive ingredients 

include: Tris buffer (100 mmol/L), NADH (≥ 0.26 mmol/L), tetra-sodium diphosphate 

(10 mmol/L), ethylenediaminetetraacetic acid (EDTA) (2.65 mmol/L), 2-oxogluterate, 

urease (≥ 17.76 mmol/L), ADP (≥ 2.6 mmol/L), glutamate dehydrogenase (≥ 0.16 

kU/L). The reagents required no preparation prior to placement on the instrument. 

 

2.1.4.3.3 NEFA 

Circulating concentrations of NEFA were determined on an automatic clinical analyser 

(Olympus AU400 Clinical Analyser, Tokyo, Japan) using reagents supplied by Randox 

Laboratories, Co. Antrim, NI (catalogue number FA115). The kit comprised 5 reagents 

and the composition of each is described in Table 2.5. Reagents R1a and R2a were 

ready to use from the kit. The enzyme/coenzyme reagent (R1b) was reconstituted with 

10 mL of buffer (R1a). Maleimide (R2b) was reconstituted with enzyme diluent (R2a) 

making sure that maleimide was completely dissolved. This solution was then used to 

reconstitute the enzyme reagent (R2c) and placed on board the instrument. All reagents 

were kept at 4 °C. In brief, NEFA is converted to Acyl CoA adenosine monophosphate  

 

Table 2.5 Reagent composition for quantitative NEFA determination 

Reagent Name Composition and initial concentration of solution 
R1a -Buffer Phosphate buffer (pH 6.9) 0.04 mol/L 
 Magnesium chloride 3 mmol/L 
 Surfactant  
R1b - Enzyme/coenzyme Acyl Coenzyme A synthesase ≥0.3 U/mL 
 Ascorbate oxidase ≥1.5 U/mL 
 Coenzyme A 0.9 mmol/L 
 ATP 5.0 mmol/L 
 4-aminoantipyrine  1.5 mmol/L 
R2a - Enzyme diluent Phenoxyethanol 0.3 %(w/v) 
 Surfactant  
R2b - Malaimide  10.6 mmol/L 
R2c – Enzyme reagent Acyl coenzyme A oxidase ≥10 U/mL 
 Peroxidase 7.5 U/mL 
 TOOS (N-ethyl-N-(2hydroxy-3-

sulphopropyl)m-toluidine 
1.2 mmol/L 
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(AMP) and pyrophosphoric acid (PPi) by Acyl CoA synthetase in the presence of ATP 

and Co enzyme A. Acyl-CoA is then oxidised to 2,3,-trans-Enoyl-CoA and hydrogen 

peroxide in the presence of Acyl-CoA oxidase. In the presence of peroxidise, hydrogen 

peroxide forms a purple adduct by oxidative condensation with N-ethyl-N-(2hydroxy-3-

sulphopropyl)m-toluidine (TOOS). The absorbance of the purple pigment at 550 nm is 

proportional to the concentrations of NEFA. 

 

2.1.4.3.4 β-hydroxybutrate (βHB) 

Circulating concentrations of βHB were determined on an automatic clinical analyser 

(Olympus AU400 Clinical Analyser, Tokyo, Japan) using reagents supplied by Randox 

Laboratories, Co. Antrim, NI (catalogue number RB 1007). The kit comprised 2 

reagents and the composition of each is described in Table 2.6. The buffer was ready to 

use from the kit following gently inversion. The enzyme/coenzyme reagent was 

reconstituted with 10 mL of buffer (a). Reagents were stored a 4 °C prior, to and after 

preparation, and placed onboard the instrument. Briefly, βHB is oxidised to acetoacetate 

by the enzyme 3-hydroxybutyrate dehydrogenase. Associated with this oxidation, 

NAD+ is reduced to NADH and the change of absorbance that accompanies this can be 

directly correlated with the βHB concentration. 

 

Table 2.6 Reagent composition for quantitative βHB determination 

 

 

 

Reagent Composition and  initial concentration of solution 
Buffer Tris buffer (pH 8.5) 100 mmol/L 
 EDTA 2 mmol/L 
 Oxalic acid 20 mmol/L 
Enzyme/Coenzyme NAD 2.5 mmol/L 
 3-hydroxybutyrate dehydrogenase 0.12 U/mL 
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2.1.5 Meat quality and sensory analysis 

 

2.1.5.1 Temperature and pH of the carcasses 

A glass electrode attached to a portable pH meter (Knick Portamess 913 pH meter, 

GmbH & Co., Berlin, Germany) was used. A thermometer probe (Knick Portamess 913 

thermometer, GmbH & Co., Berlin, Germany) was used to measure carcass 

temperature. A portable pH meter (Model no 250A, Orion Research Inc., Boston, USA) 

was used to record ph at 48 hours (h) post slaughter. 

 

 2.1.5.2 Chemical composition of M. longissimus thoracis et lumborum 

The Smart System 5 microwave moisture drying oven and NMR Smart Trac Rapid Fat 

analyser (CEM Corporation, North Carolina, USA) was used to measure the 

intramuscular fat and moisture concentrations. Protein concentration was determined 

using a LECO FP328 (LECO Corp., MI, USA) protein analyser. 

 

2.1.5.3 Muscle and adipose colour 

Samples of M. longissimus thoracis et lumborum and trimmed adipose colour were 

measured using a Hunterlab UltraScan XE colorimeter (Hunter Associates Laboratory, 

Inc., Reston, VA, USA). 

 

2.1.5.4 Warner-Bratzler shear force (WBsf) 

An Instron universal testing machine (Model no. 5543, Instron Europe, High Wycombe, 

Bucks, UK) equipped with a Warner Bratzler shearing device was used to measure 

shear force. The crosshead speed was 5 cm/min. For analysis of the data, Instron Series 

IX Automated Materials Testing System software for Windows (Instron Corporation, 

Bucks, UK) was employed. 
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2.1.5.5 Sensory and flavour analysis 

A computerised sensory system (Fizz, version 2.10, Biosystems, France) was used for 

direct entry of sensory responses. 

 

2.1.6 RNAseq library preparation 

 

2.1.6.1 Dynabeads Oligo (dT) 

 Messenger RNA was isolated from total RNA using Dynabeads Oligo (dT) from Bio 

Sciences Ltd., Dublin, Ireland (catalogue number 610-05). The kit contains 4 reagents 

and the composition of each are listed in Table 2.7. In brief, the Dynabeads oligo (dT) 

bind the poly A tail of mRNA, isolating the mRNA from total RNA. 

 

 Table 2.7 Composition of Dynabeads Oligo (dT) beads 

 

2.1.6.2 Fragmentation reagent  

The isolated mRNA was fragmented using a fragmentation reagent kit supplied by 

Ambion (Life Technologies Ltd., Paisley, UK, catalogue number AM8740). The 

fragment reagent cleaves RNA to sizes between 60-200 nucleotides. The kit contains 

fragmentation reagent in a buffered zinc solution and a stop solution containing 200 

Reagent  Composition and initial concentration of solutions 
Dynabeads Oligo (dT) 25 Dynabeads Oligo (dT) 25 5 mg/ml 

(density 1.6g/cm3) 
 Phosphate –buffered saline (pH 7.4)  
 Tris HCl (pH 7.5) 250 mM 
 EDTA 20 mM 
 Tween-20 1 %(v/v) 
 Sodium azide (NaN3) 0.02 %(w/v) 
Binding Buffer Tris-HCl, (pH 7.5) 20 mM 
 Lithium Chloride (LiCl), 1.0 M 
 EDTA 2.0 mM 
Washing Buffer Tris-HCl, (pH 7.5) 10 mM 
 LiCl 0.15 M 
 EDTA 1 mM 
Tris-HCl Tris-HCl 20mM 
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mM EDTA (pH 8). The solutions are stored at room temperature and are ready to use 

from the kit. The reaction is stopped by the addition of the stop solution. 

 

2.1.6.3 cDNA synthesis 

See Table 2.8 for a list of chemicals required for 1st and 2nd strand cDNA synthesis, 

their concentrations and catalogue numbers. 

 

Table 2.8 Reagents and in cDNA synthesis for RNAseq 

  

2.1.6.4 End repair, adaptor ligation, gel purification and PCR enrichment 

The reagents required for end repair, adaptor ligation, gel purification and PCR 

enrichment, their initial concentrations and supplier are listed in Table 2.9. 

 

2.1.6.5 2% Agarose gel  

Low range ultra agarose (8 g) (Bio-Rad Laboratories, Hertfordshire, UK; Cat no. 161-

3106) was weighed out and placed in a 400 mL Duran bottle. Tris-actetate EDTA (200 

mL) (Sigma-Aldrich Ireland Ltd., Wicklow, Ireland, catalogue number T9650-1L) was 

added to the agarose. The mixture was heated in a microwave for approx 5-8 min 

making sure that the agarose was fully dissolved. In a fume hood, 16 µL of ethidium 

cDNA 
synthesis 

Reagent Conc. Company Code 

1st Strand  Random primers 3 µg/µL Bio Sci 48190-011 
 dNTP Mix 10 mM Bio Sci 18427-013 
 RNaseOUT Recombinant 

Ribonuclease Inhibitor 
40 U/µL Bio Sci 10777-019 

 Superscript II RT  Bio Sci 18064-014 
 First strand buffer 5x - - 
 DTT 100 mM - - 
2nd Strand  Second Strand buffer 5x Bio Sci 10812-014 
 dNTP Mix 10 mM Bio Sci 18427-013 
 Ribonuclease H 2 U/µL Bio Sci 18021-071 
 E. coli DNA Polymerase 1 10 U/µL Bio Sci 18010-025 
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bromide (Sigma-Aldrich Ireland Ltd., Wicklow, Ireland, catalogue number E1510) was 

added to the cooling agarose. The agarose was poured into a gel tray and allowed to set. 

 

2.1.6.6 QIAquick PCR purification kit 

The QIAquick PCR purification kit was obtained from Qiagen Ltd., Sussex, UK 

(catalogue number 28106). The kit contains 3 buffer reagents (buffer PB, buffer PE and 

buffer EB) and QIAquick spin columns. Buffer PB contains guanidine hydrochloride 

and isopropanol. Buffer PE contains sodium perchlorate and isopropanol. Buffer EB 

contains 10 mM Tris Cl (pH 8.5). All components are stored at room temperature. 

 
Table 2.9 Reagents, concentrations and supplier for end repair, adaptor ligation, 
gel purification and PCR enrichment 
 

1New England Biolabs Ltd., Hertfordshire, UK; 2Bio Sciences Ltd., Dublin, Ireland; 3 

Qiagen Ltd., Sussex, UK; 4Bio-Rad Laboratories, Hertfordshire, UK; 5Sigma-Aldrich 
Ireland Ltd., Wicklow, Ireland; 6WebScientific, Cheshire, UK; Illumina United 
Kingdom, Essex, UK. 
 

 Reagent Conc. Company Code 
End Repair T4 DNA Ligase Buffer with 

10mM ATP 
10x NEB1 B0202S 

 dNTP Mix 10 mM Bio Sci2 18427-013 
 T4 DNA Polymerase 3 U/µL NEB1 M0203L 
 Klenow DNA Polymerase 5 U/µL NEB1 M0210S 
 T4 PNK 10 U/µL NEB1 M0201L 
Addition ‘A’ 
Base 

Klenow buffer 6 ml NEB1 B7002S 

 dATP  10 mM Bio Sci2 18252-015 
 Klenow 3’-to-5’ exo- 5 U/µL NEB1 M0212S 
 MinElute Gel extraction kit - Quigen3 28604 
Adaptor Ligation Quick Ligation Kit  NEB1 M2200S 
 Ligase buffer 2x - - 
 T4  DNA Ligase - - - 
Gel Purification Agarose (Low Range Ultra) 2 %(w/v) Bio-Rad4 161-3106 
 Ethidium bromide 400 ng/mL Sigma5 E1510 
 DNA ladder 500 µg/ml NEB1 N3233L 
 TAE buffer 10x Sigma5 T9650-1L 
 Disposable Gel Excision Tip 

(GeneCatcher)  
- Web Scientific6 PKB6.5 

PCR enrichment Phusion HF polymerase 2 U/µL NEB1 F530S 
 dNTP Set 100 mM Bio Sci2 10297-018 
 PCR primer 1.1 25 µM Illumina7 1000537 
 PCR primer 2.1 25 µM Illumina7 1000538 
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2.1.6.7 Qubit fluorometer and HS dsDNA kit 

The Qubit fluorometer and HS dsDNA kit were obtained for Bio Sciences Ltd., Dublin, 

Ireland (catalogue number Q32866). This kit contains 4 reagents: Qubit dsDNA HS 

reagent, Qubit dsDNA HS buffer, Qubit dsDNA HS standard 1 and Qubit dsDNA HS 

standard 2. The reagent and buffer were stored at room temperature and both standards 

were stored at 4 °C. The reagent contained 200x in DMSO solution. Standard 1 contains 

0 ng/L and standard 2 contains 10 ng/µL in TE buffer.  

 

2.1.6.8 Other reagents 

Glycogen (5 mg/mL) was obtained from Ambion (Life Technologies Ltd., Paisley, UK, 

catalogue number AM9510).  
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2.2 Methods 

 

2.2.1 Experimental licence 

All animal procedures performed in this study were conducted under experimental 

licence from the Department of Health and Children, in accordance with the Cruelty of 

Animals Act 1876 and the European Communities Regulations 2002 and 2005. Licence 

Number B100-3984. In addition, ethics approval was granted from the Animal Research 

Ethics Committee, University College Dublin, Belfield, Dublin, Ireland. Application 

No. AREC-P-09-66-Keady-Kenny. Animals were slaughtered in a licensed abattoir, 

Meadow Meats, Rathdowney, Co. Laois, Ireland. 

 

2.2.2 Experimental design  

The experimental design, animal management prior to and during the study and sample 

collection for chapters 3 to 7 are described in detail below. 

 

2.2.2.1 Experimental design and animal management (chapter 3) 

This study utilised muscle samples harvested at slaughter from a larger study by 

Campion et al. (2009a). Briefly, in that study, male progeny (n = 114) of Holstein-

Friesian dairy cows and sired through artificial insemination (AI), by bulls of 2 

contrasting beef breeds, viz. AA (n = 56) and BB (n = 58) were used. Within breed, 

progeny were classified as from sires of either high (H) or low (L) EPDcwt. For AA sired 

animals 32 were of H EPDcwt and 24 of L EPDcwt, while for BB 31 were of H and 27 of 

L EPDcwt. There was no difference between the dams of the various genetic groups in 

estimated genetic merit for beef production and carcass weight (Campion et al., 2009b). 

The finishing diet consisted of a total mixed ration having a grass-silage:concentrate 

ratio of 30:70 on a dry matter (DM) basis (Campion et al., 2009a). For the current 
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study, a representative subset of 33, AA (n = 17) and BB (n = 16), sired steers with 

either H or L EPDcwt were selected. To determine the number of animals to allocate to 

each group a sample size calculation was performed which used gene expression 

variance estimates from existing work from this laboratory (Kelly et al., 2011) as well 

as other published estimates. Within breed, these animals were allocated to one of 4 

groups, in a 2 (sire breed) x 2 (sire EPDcwt) factorial design, based on the original 

blocking criteria of Campion et al. (2009a). The subgroups were as follows (i) AAH (n 

= 8), (ii) AAL (n = 9), (iii) BBH (n = 8), and (iv) BBL (n = 8). Animals represented the 

progeny of 16 different sires (AA; n = 7 and BB; n = 9) and had a mean weight and age 

at slaughter of 591 kg (SD 62 kg) and 764 days (d) (SD 37 d), respectively. Mean 

values for the subgroups used in this study for the main outcome traits were similar to 

that of Campion et al. (2009a) and there was no over dominance of any particular sires 

within group. 

 

2.2.2.1.1 Sample collection (chapter 3) 

Animals were blood sampled (10 mL) for the analysis of plasma concentrations of IGF-

1 and insulin via jugular venipuncture at approximately 7, 14, and 18 months of age and 

again at 2 d before slaughter (24 months of age). Samples of M. longissimus thoracis et 

lumborum were harvested from animals within 30 min of slaughter, washed in sterile 

DPBS and snap-frozen in liquid nitrogen. Samples were stored in dry ice for 1 h before 

being transferred to a -80 oC freezer for long term storage.  

 

2.2.2.2 Experimental design and animal management (chapter 4) 

A representative subset of 20 steers from the larger study by Campion et al. (2009a) 

were selected at slaughter in a 2 (sire breed) x 2 (sire EPDcwt) factorial design (n=5 per 

treatment), giving 4 genetic groups of AAH, AAL, BBH and BBL, based on the original 
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blocking criteria of Campion et al. (2009a). The 20 animals represented the progeny of 

12 sires (AA; n=6 and BB; n=6) with no over dominance of any particular sire within 

group. Mean values for the subgroups used in this study for the main outcome traits 

were similar to that of Campion et al. (2009a).  

 

2.2.2.2.1 Sample collection (chapter 4) 

Samples of M. longissimus thoracis et lumborum were harvested from animals within 

30 min of slaughter, washed in sterile DPBS (section 2.1.2.6) and snap-frozen in liquid 

nitrogen. Samples were stored in dry ice for 1 h before being transferred to a -80 oC 

freezer for long term storage. At 48 h post slaughter, steaks were cut from the M. 

longissimus thoracis et lumborum located at the 6th and 10th rib, vacuum packaged 

immediately, frozen and used for subsequent chemical analysis. 

 

2.2.2.3 Experimental design and animal management (chapter 5, 6, 7) 

Spring-born male progeny (n = 46) of Holstein-Friesian dams and sired by AA or BB 

bulls were identified and sourced from Irish commercial herds in autumn 2009. After 

arrival at Grange Beef Research Centre, the calves were vaccinated against bovine 

respiratory syncytial (BRS) virus, parainfluenza 3 virus and pasturella haemolytica 

using Bovipast RSP (Intervet, Schering-Plough Ltd., Wicklow, Ireland) containing 

inactivated BRS-Virus strain EV908, Parainfluenza-3-virus and pasturella haemolytica 

A1. Animals were also vaccinated against infectious bovine rhinotracheitis (IBR) using 

Rispoval IBR marker live (Pfizer Animal Health, Cork, Ireland) containing Bovine 

herpes virus type 1. In addition, animals were vaccinated for protection against the 

clostridial disease, Blackleg using a vaccine containing C. chauvoei (Intervet, Schering-

Plough Ltd., Wicklow, Ireland). The animals were treated for internal and external 

parasites using Closamectin (Norbrook Laboratories Ltd., Monaghan, Ireland) 
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containing 0.5 % Ivermectin and 12.5 % Closantel as active ingredients. Animals were 

castrated using the burdizzo method (Pang et al., 2009) within 1 month of arrival. They 

were subjected to a 3 month common feeding period of grass silage ad libitum plus 1 kg 

of concentrates per head per day before commencing the study to acclimatise the 

animals to their environment, reduce any latent influence of previous environment and 

facilitate recovery from castration. Mean age at the commencement of the study was 

362 (SD 15.5) and 369 (SD 19.4) d for AA and BB steers, respectively. Mean weights 

were 295 (SD 30.0) and 287 (SD 48.6) kg for AA and BB, respectively. Within 

genotype, animals were blocked by weight and randomly assigned to 1 of 2 treatment 

groups in a 2 (genotypes) x 2 (feeding treatments) factorial design. Over a 99 d period, 

designated as the differential feeding period, 1 group (11 AA and 12 BB) was offered a 

high energy control diet (H-H) consisting of concentrates ad libitum (DM 825 g/kg, in 

vitro DM digestibility (DMD) 862 g/kg, crude protein (CP) 120.9 g/kg, ash 43 g/kg, 

neutral detergent fibre (NDF) 557 g/kg and acid detergent fibre (ADF) 351 g/kg) and 7 

kg of grass silage per head daily (DM 228 g/kg, in vitro DM digestibility 677 g/kg, CP 

112 g/kg, ash 80 g/kg, NDF 557 g/kg, ADF 351 g/kg and pH 3.6). The second group 

(11 AA and 12 BB) was offered an energy restricted diet (L-H) consisting of grass 

silage ad libitum plus 0.5 kg of the same concentrate feed as that offered to H-H per 

head per day. From the end of the differential feeding period (99 d), both groups of 

animals were then offered a total mixed ration (TMR) having a grass silage:concentrate 

ratio of 80:20. The concentrate proportion increased gradually over a 3 week period 

until the animals had ad libitum access to concentrate and 7 kg grass silage per head per 

day. All animals were offered this TMR to facilitate more accurate appraisal of live 

weight and live weight gain and to ensure normal rumen function. This period, which 

lasted 200 d, was known as the realimentation period, and all animals were slaughtered 

together on d 299 of the study. 
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Animals were weighed on 2 consecutive days at the start of the study, at the end of the 

differential feeding period and again at slaughter. Additionally, throughout the study, 

animals were weighed regularly at 2 to 3 week intervals. Weighing was conducted at the 

same time each morning before fresh feed was offered. 

 

2.2.2.3.1 Sample collection (chapter 5) 

Live weights were recorded every 2-3 weeks and live weight gains determined. Feed 

intakes were recorded daily. Linear body measurements, ultrasonically scanned M. 

longissimus thoracis et lumborum and subcutaneous fat depth were recorded on 4 

separate occasions throughout the study: start (d 0), end of differential feeding period (d 

99), 32 d following the commencement of realimentation (d 131) and 2 d prior to 

slaughter (d 297). Blood samples for the analyses of IGF-1, insulin and leptin were 

collected at these time points also. For the analyses of circulating metabolites, animals 

were blood sampled on 8 occasions throughout the study: start, (d 0); middle of the 

differential feeding period (d 55); end of differential feeding period (d 99); early in the 

realimentation period (d 131); another 2 times during the realimentation period (d 233, 

d 273) and again before slaughter (d 299). 

Following slaughter, cold carcass weight, dressing percentage, carcass 

conformation, fat class, visceral weights, linear carcass measurements, M. longissimus 

thoracis et lumborum outline and rib joint composition was recorded. 

 

2.2.2.3.2 Sample collection (chapter 6) 

The right side of each carcass was cold-boned at 24 h post slaughter. Immediately, a 

section of M. longissimus thoracis et lumborum thirty centimetres distal to the 10th rib 

was chosen and transferred on ice approximately 2 h to the Teagasc Ashtown Food 

Research Centre, Dublin, Ireland. Three steaks were cut, each 2.5 cm in thickness. The 
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adhering fat was removed from the steaks and subsequently used for fat colour analysis, 

described later (section 2.2.8.4). The first steak was used immediately for drip loss 

measurement while the second steak was used for colour assessment. Following this the 

steak used for colour assessment was vacuum packed, aged for 14 days at 2 °C, frozen 

at -20 °C and subsequently used in the WBsf assessment (section 2.1.5.4). The third 

steak was vacuum packed, frozen at -20 °C and subsequently used for chemical 

composition assessment as described below. The remaining muscle, with subcutaneous 

fat intact, was vacuum packed immediately, aged for 14 days, frozen at - 20 °C and 

forwarded to the Division of Farm Animal Science, University of Bristol for sensory 

analysis assessment. 

 

2.2.2.3.3 Sample collection (chapter 7) 

The hair was clipped from an area along the back between the 12th and 13th rib (M. 

longissimus thoracis et lumborum). The clipped area was scrubbed and disinfected with 

alcohol. A local anesthesia (Lidocaine injection) was administrated, with the volume 

calculated based on the weight of the animal. A small incision of the skin was made 

with a blade and any blood was cleaned with a sterile swab. A biopsy (~ 0.5 g to 1 g) of 

muscle was taken with a trochar and cannula instrument (Figure 2.2). The incision was 

closed with 2 staples and the area was sprayed with antiseptic spray. The staples were 

removed 10 days later. The muscle was washed in DPBS and snap frozen in liquid 

nitrogen. Samples were stored at - 80 °C until total RNA was extracted (section 

2.2.7.1.1). 

 

 
 
 
 
 
Figure 2.2 Trochar and cannula instrument 
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 2.2.3 RT-qPCR analyses (chapter 3) 

 

2.2.3.1 RNA extraction, quantification and qualification 

 

2.2.3.1.1 RNA extraction from tissue (chapter 3 and chapter 7) 

In a fume hood, approximately, 100 mg of frozen muscle tissue was placed in a 10 mL 

glass bottle containing 3 mL of TRI reagent (section 2.1.2.3). After homogenising for 2 

min, the samples were allowed to stand for 5 min at room temperature to ensure 

complete dissociation following homogenisation. The mixture was then evenly divided 

into 3 Eppendorf tubes and 200 µL of chloroform were added. The tubes were tightly 

closed and shaken vigorously for 15 sec. The samples were allowed to stand for 2 min 

at room temperature. The resulting mixture was centrifuged at 12,000 × g for 15 min at 

4 °C. The centrifugation step separates the mixture into 3 phases: a red organic phase 

(containing protein), an interphase (containing DNA), and a colourless upper aqueous 

phase (containing RNA). The aqueous phase was transferred to a fresh 1.5 mL tube and 

isopropanol was added to each sample at a ratio of 0.6 isopropanol to supernatant (~360 

µL). The tubes were vortexed for 10 sec and the tubes transferred to a pre-chilled 

centrifuge. Samples were centrifuged at 12,000 × g for 10 min at 4 °C. The RNA 

precipitate formed a small white pellet on the bottom of the tube. The supernatant was 

removed and the 1 mL of 75 % ethanol was added to the pellet. The sample was 

vortexed and then centrifuged at 7,500 × g for 5 min at 4 °C. Following centrifugation, 

the ethanol was carefully removed and the pellet air-dried briefly ensuring that the pellet 

did not dry out completely. Nuclease-free water (20 µL) was added to each tube and the 

pellet dissolved completely by gently pipetting. The contents of each tube were pooled 

and added to a sterile 1.5 mL tube. To determine the quantity of total RNA in the 

sample a Nanodrop spectrophotometer was utilised. Before the RNA concentration of 
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the samples could be read, a blank measurement was required. Nuclease-free water (1.2 

µL, section 2.1.2.10) was pipetted onto the end of the fibre optic cable of the 

spectrophometer. A second fibre optic cable was then brought into contact with the 

sample causing the sample to bridge the gap between cables. Once the fluorescence of 

the blank sample was measured at 260 nm the total RNA concentration of the samples 

could be measured. The concentration in ng/µL were recorded for each sample in 

triplicate and the results were averaged. The A260/280 ratio, an indicator of protein 

contamination was also recorded. Samples with ratios between 1.8 and 2.0 were 

accepted. 

 

2.2.3.1.2 RQ1 RNase-Free DNase kit 

RQ1 RNase-Free DNase degrades double and single stranded DNA (section 2.1.2.4) 

Total RNA and reagents were allowed to defrost on ice. Into a 0.5 mL safe-lock 

Eppendorf tube, 2 µg of total RNA was added. RQ1 RNase-Free DNase 10X Reaction 

buffer (1 µL) was added followed by the RQ1 RNase-Free DNase enzyme (2 µL) was 

then added. Nuclease-free water (to a final volume of 10 µL) was added and the mixture 

was mix-pipetted. The solution was allowed to incubate at 37 °C for 30 min. Following 

this, 1 µL of RQ1 DNase stop solution was added to terminate the reaction and the tubes 

were incubated at 65 °C for 10 min to deactivate the DNase. 

  

2.2.3.1.3 Agilent Bioanalyzer and RNA 6000 Nano kit 

RNA quality must be assessed prior to RT-qPCR to determine the degree of RNA 

degradation. An RNA integrity Number (RIN) number, developed by Agilent, classifies 

RNA based on the entire electrophoretic trace, including the 18s:28s ratio. To determine 

the RNA integrity number (RIN) of the total RNA, an Agilent 2100 Bioanalyzer was 

used (section 2.1.2.5). Prior to use an electrode cleaner containing 350 µL of 
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RNaseZAP was placed in the instrument. Following, a second electrode cleaner 

containing 350 µL of nuclease-free water was used. The RNA 6000 Nano kit was used 

according to the manufacturer’s guidelines (section 2.1.2.5). In brief, all reagents were 

allowed to equilibrate to room temperature for 30 min prior to use. Agilent RNA 6000 

Nano gel matrix (red) (550 µL) was pipetted onto the top receptacle of a spin filter. The 

spin filter was placed in a centrifuge and spun for 10 min at 1500 × g. Aliquots (65 µL) 

of the filtered gel were placed in 0.5 mL RNase-free eppendorf tubes. The aliquots were 

stored at 4 °C. The RNA 6000 Nano dye concentrate (blue) was vortexed and spun 

down. RNA 6000 Nano dye concentrate (blue) (1 µL) of was added to a 65 µL aliquot 

of filtered gel, vortexed thoroughly and visually inspected to ensure proper mixing of 

gel and dye. This mixture was spun for 10 min at room temperature at 13,000 × g. A 

RNA Nano chip was placed on the chip priming station and 9.0 µL of the gel-dye mix 

was pipetted carefully into the well marked ‘G’. The plunger was placed at the 1 mL 

position and then the chip priming station was closed. The plunger was pressed until it 

was held by the clip. After exactly 30 seconds, the plunger was released. After 5 

seconds, the plunger was slowly pulled back to the 1 mL position. Carefully, 9.0 µL of 

the gel-dye mix was then pipetted in the 2 wells above ‘G’. RNA 6000 Nano marker 

(green) (5 µL) was pipetted into the well marked with the ladder symbol and each of the 

12 sample wells. One aliquot of the RNA ladder mixture was allowed to thaw on ice. 

The RNA ladder and the total RNA samples were heat denatured for 2 min at 70 °C. 

The RNA ladder (1 µL) was pipetted into the appropriate well. Carefully, 1 µL of each 

sample was placed into each of the 12 sample wells. The chip was vortexed for 60 

seconds and placed into the instrument. Samples with RIN values equal to or greater 

than 8 were deemed acceptable. 
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2.2.3.2 cDNA synthesis  

cDNA was synthesised from total RNA using the High Capacity cDNA Reverse 

Transcription kit (section 2.1.2.7). In brief, RNA (1 µg) up to a volume of 10 µL was 

added into a cDNA mastermix. This contained 2.0 µL 10X RT buffer, 0.8 µL 25X 

dNTP Mix (100 mM), 2.0 µL 10X RT random primers, 1.0 µL Multiscribe Reverse 

Transcriptase and 4.2 µL nuclease-free water per reaction. The tubes were placed in a 

Mastercycler Thermal Cycler Gradient set at 25 °C for 10 min, 37 °C for 120 min 

followed by 85 °C for 5min.  

 

2.2.3.3 Primer design and RT-qPCR 

Primers for real-time RT-qPCR (section 2.1.2.8) were designed to measure expression 

of the candidate and reference genes using the Primer3 software program (Rozen and 

Skaletsky, 2000). Primer specificity was established using the Basic Local Alignment 

Search Tool (BLAST) from the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/BLAST/). To determine the relative gene expression 

levels, a suitable highly stable reference gene was required. Reference genes tested 

across all samples using RT-qPCR included glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), β-actin (ACTB),  hydroxymethylbilane synthase (HMBS) and elongation 

factor 1 alpha 2 (EEF1A2) (Byrne et al., 2005; Pérez et al., 2008). Data were analysed 

using NormFinder, a model-based approach software programme (Andersen et al., 

2004; accessible through MultiD Analyses AB, Gothenburg, Sweden) to measure the 

overall stability of the tested reference genes. The software calculates the intra- and 

intergroup CV and combines both coefficients to give a stability value - a lower value 

implying a higher stability in gene expression. Results showed that both EEF1A2 and 

HMBS, previously reported to be highly stable in bovine M. longissimus thoracis et 

lumborum (Perez et al., 2008), were unsuitable for use in this study, having stability 

http://jura.wi.mit.edu/rozen/
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measures of 0.87 and 0.75 respectively. GAPDH had a stability value of 0.54, and as a 

result was chosen as the reference gene in this study. RT-qPCR reactions were carried 

out using SYBR FAST Green Mastermix (section 2.1.2.9). Real-time PCR 

measurements were performed in triplicate using the Applied Biosystems Fast 7500 

v2.0.1 instrument with the following cycling parameters: 95 °C for 20s; 40 cycles of 95 

°C for 3s; 60 °C for 30s, followed by amplicon dissociation (95 °C for 15s; 60 °C for 

60s; 95 °C for 15s and 60 °C for 15s). Primer concentrations were optimised for each 

gene and disassociation curves were examined for the presence of a single PCR product. 

The efficiency of the reaction was calculated using a 2-fold serial dilution of cDNA and 

generation of a standard curve. All PCR efficiency coefficients were between 0.9 and 

1.0 and therefore deemed acceptable. The software package GenEx 5.2.1.3 (MultiD 

Analyses AB, Gothenburg, Sweden) was used for efficiency correction of the raw cycle 

threshold (Ct) values, interplate calibration based on a calibrator sample included on all 

plates, averaging of replicates, normalisation to the reference gene and the calculation of 

quantities relative to the highest Ct. 

 

2.2.4 Proteomic analysis (chapter 4) 

 

2.2.4.1 Protein extraction and quantification 

 

2.2.4.1.1 Crude protein extraction 

Samples of M. longissimus thoracis et lumborum were harvested from the animals at 

slaughter, washed in sterile DPBS (section 2.1.2.6) and snap frozen in liquid nitrogen. 

Muscle samples were stored at -80 °C until analysis. Frozen muscle (100 mg) was 

weighed and crushed into a fine powder using a mortar and pestle and placed in lysis 

buffer (section 2.1.3.1). To avoid protein degradation, a protease inhibitor cocktail was 
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added (section 2.1.3.10). Samples were shaken vigorously at 4 oC for 150 min before 

centrifugation at 10,000 × g for 20 min at 4 oC. 

 

2.2.4.1.2 Bradford assay 

Bradford colorimetric protein assays were performed to determine protein concentration 

using BSA as a standard (section 2.1.3.2). A dilution series including a blank ranging 

from 0 to 100 µg/mL was produced. Standards were allowed to incubate at room 

temperature for 10 min and then the absorbance was read on a spectrophotometer at 595 

nm and a standard curve generated. The samples of interest were then incubated at room 

temperature for 10 min also and the absorbance read on a spectrophotometer as 

described above. The readings were compared to the standard curve and a relative 

measurement of the concentration of protein was determined. 

 

2.2.4.2 2D gel electrophoresis 

Immobiline DryStrips (section 2.1.3.3), 24 cm, covering a pH range of 3 - 10 were re-

hydrated overnight in 500 µg of sample up to a volume of 450 µL of rehydration buffer 

(section 2.1.3.4). Isoelectric focusing was carried out in an Ettan IPGphor 3 Isoelectric 

Focusing Unit (Geheathcare Biosciences, UK) and the following voltage/time 

programme was used: 100 V for 120 min, 500 V for 90 min, 1000 V 60 min, 2000 V for 

60 min, 4000 V for 60 min, 6000 V for 120 min, 8000 V for 150 min, 500 V for 240 

min and 8000 V for 300 min. Following focusing, strips were equilibrated for 15 min in 

1 %(w/v) DTT followed by 15 min in 2.5 %(w/v) iodoacetamide. After equilibration 

proteins were separated on a 12 % polyacrylamide gel (section 2.1.3.5) using the 

DALTtwelve separation unit (GE Healthcare Biosciences, UK). 

 

 

http://www.gelifesciences.com/aptrix/upp01077.nsf/Content/Products?OpenDocument&moduleid=164457
http://www.gelifesciences.com/aptrix/upp01077.nsf/Content/Products?OpenDocument&moduleid=164457
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2.2.4.3 Protein staining  

RuBPS (section 2.1.3.7) a well-established fluorescent dye for protein staining, was 

applied for 6 h followed by de-staining using 40 %(v/v) ethanol and 10 %(v/v) acetic 

acid for 15 h. Imagemaster platinum analysis software v5.0 was used for imaging gels 

using a Typhoon variable mode image scanner (GE Healthcare Biosciences, UK). 

Progenesis Samespots V3.2.3 software was used for the detection of protein spots, 

background subtraction and detection of proteins with statistically significant 

differences across groups. Differentially expressed protein spots (P < 0.05) between AA 

and BB were classified as biologically significant with a fold change greater than 1.9 

and were selected for tryptic digestion from gels stained with Coomassie Brilliant Blue 

G-250. At a fold change of greater than 1.9, no difference in protein abundance was 

identified between H and L steers. However, normal biological systems are 

characterised by larger number of small changes rather than a small number of large 

changes (Amaral et al., 2004). Therefore, a 1.5 fold induction in protein abundance was 

selected between H and L steers for EPDcwt (AAH vs. AAL; BBH vs. BBL) which is 

consistent with findings of previous research in relation to the H and L for growth rate 

(Bernard et al., 2009).  

 

2.2.4.4 Mass spectrometry 

Protein spots were carefully excised from 2D gels using a sterile pipette tip and digested 

using trypsin (section 2.1.3.9) at 37 °C overnight. The solution was removed and 30 

%(v/v) acetonitrite (ACN) / 0.2 %(v/v) trifluoroacetic acid (TFA) was added to each gel 

plug and incubated for 10 min at 37 oC, followed by 60 %(v/v) ACN / 0.2 %(v/v) TFA 

for 10 min at 37 oC. The solution was dried in a speedy-vac overnight and 10 µL 0.1 

%(v/v) formic acid was added to the protein pellet. Proteins were identified from their 

peptide sequence, searching on the NCBI (National Centre for Biotechnology 
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Information, http://www.ncbi.nlm.nih.gov) and Swiss-prot databases 

(www.expasy.org). These software programmes were checked using MASCOT search 

engine (http://www.matrixscience.com; v20100212 Matrix Science, London, UK) with 

comparison to mammalian databases allowing up to one single trypsin missed cleavage. 

 

2.2.5 Physical measurements (chapter 5) 

 

2.2.5.1 DM intakes and feed analysis  

Animals were individually fed in tie-up stalls during the differential feeding period and 

subsequently moved to individual slatted floor pens for the realimentation period. Fresh 

feed was offered daily and feed refusals were removed and weighed twice weekly. Two 

samples of offered silage were collected weekly and stored at -20 °C. One was used to 

determine DM content whereas the other sample was used for chemical analysis. To 

determine the DM content, samples were weighed and dried at 40 °C for 48 h in a 

preheated oven with forced air circulation. For chemical analysis, samples were dried at 

40 °C for 48 h, pooled on a monthly basis and milled. The pooled samples were 

chemically analysed for DM digestibility (DMD) using the method of Tilley and Terry 

(1963) with the modification that the final residue was isolated by filtration. The CP 

(nitrogen x 6.25) concentration was determined using a Leco FP-528 N analyser based 

on the methods of the Association of Analytical Chemists (AOAC, 1990). An Ankom 

fibre analyser was used to determine NDF values by the method of Van Soest et al. 

(1991) and the filter bag technique of Ankom (2006) was used to calculate ADF 

concentrations. In addition, volatile fatty acids (VFA) and ash were measured as 

described by Cummins et al. (2007). A sample of juice from the silage was obtained for 

the determination of pH and ammonia nitrogen (NH3N) concentration as also described 

by the method of Cummins et al. (2007). Two samples of concentrates were also 

http://www.expasy.org/
http://www.matrixscience.com/
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collected weekly for laboratory analyses. To determine DM, 1 sample was dried at 98 

°C for 16 h. The second sample was dried at 40 °C for 16 h, pooled on a monthly basis, 

milled and subsequently subjected to chemical analysis (DMD, CP, ash, NDF, ADF and 

NE) as described for forage 

 

2.2.5.2 Live weight 

Animals were weighed using a scales (TRU-Test, Co. Cork, Ireland) every 2 to 3 weeks 

at the same time in the morning before fresh feed was offered. Prior to slaughter, 

animals were weighed the day before and again on the morning of slaughter. These 

weights were then averaged to give a final live SW. 

 

2.2.5.3 Ultrasonically scanned muscle and fat depths 

Animals were ultrasonically scanned on their right side at the 3rd lumbar vertebra to 

obtain M. longissimus thoracis et lumborum depth using a Dynamic Imaging ultrasound 

scanner (Concept MCV Veterinary Ultrasound scanner with 3.5 MHz probe; Dynamic 

Imaging, Livingston, Scotland). Measurements were obtained 5 times throughout the 

study: start (d 0); middle of the differential feeding period (d 55); end of differential 

feeding period (d 99); early in the realimentation period (d 131) and again before 

slaughter (d 299), as described by Campion et al. (2009a). In addition, at each muscle 

scan occasion, 3 ultrasonically measured subcutaneous fat depths were taken at the third 

lumbar vertebra with another 4 fat depth measurements taken at the thirteenth rib. These 

measurements were averaged to give a single mean value for fat depth (Campion et al., 

2009a). 
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2.2.5.4 Skeletal measurements 

Linear body measurements (Campion et al., 2009a) were recorded on 4 separate 

occasions: start (d 0); end of differential feeding period (d 99); early in the 

realimentation period (d 131) and again before slaughter (d 299). A calliper was used to 

measure height at withers, chest depth and pelvic width and a measuring tape was used 

to record chest girth and back length. These measurements were expressed relative to 

live weight on the day of measurement.  

 

2.2.6 Physiological measurements (chapter 5) 

 

2.2.6.1 Glucose 

Blood samples were collected by jugular venipuncture into vacutainer tubes containing 

sodium fluoride/potassium oxalate as anticoagulant. Immediately after collection, tubes 

were gently inverted 3 times to prevent blood clotting. Following centrifugation for 10 

min at 2000 × g at 4 °C, plasma was collected and frozen at -20 °C until analysis. 

Circulating concentrations of glucose were determined using an automatic clinical 

analyser (Olympus AU400 Clinical Analyser, Tokyo, Japan) using a enzymatic UV test 

and reagents supplied by Olympus (section 2.1.4.3.1) 

 

2.2.6.2 Urea 

Blood samples were collected by jugular venipuncture into vacutainer tubes containing 

lithium heparin oxalate as an anticoagulant. Tubes were inverted gently 3 times to 

prevent blood clot formation. Following centrifugation for 10 min at 2000 × g at 4 °C, 

plasma was collected and frozen at -20 °C until analysis. Circulating concentrations of 

urea were determined using an automatic clinical analyser (Olympus AU400 Clinical 
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Analyser, Tokyo, Japan) using a UV kinetic test and reagents supplied by Olympus 

(section 2.1.4.3.2). 

 

2.2.6.3 NEFA 

Blood samples were collected by venipuncture into vacutainer tubes containing sodium 

citrate as an anticoagulant. Tubes were immediately inverted 3 times to prevent clotting 

of the blood. Following centrifugation for 10 min at 2000 × g at 4 °C, plasma was 

collected and frozen at -20 °C until analysis.  Circulating concentrations of non-

esterified fatty acids were determined using an automatic clinical analyser (Olympus 

AU400 Clinical Analyser, Tokyo, Japan) using reagents supplied by Randox 

Laboratories (section 2.1.4.3.3). Samples and reagents were mixed and incubated for 

exactly 10 min at 37 °C and absorbance was read.  

 

2.2.6.4 βHB 

Blood samples were collected by venipuncture into vacutainer tubes containing lithium 

heparin as an anticoagulant. Immediately after collection, tubes were gently inverted 3 

times to prevent blood clotting. Following centrifugation for 10 min at 2000 × g at 4 °C, 

plasma was collected and frozen at -20 °C until analysis. Circulating concentrations of 

βHB were determined using an automatic clinical analyser (Olympus AU400 Clinical 

Analyser, Tokyo, Japan) using reagents supplied by Randox Laboratories (section 

2.1.4.3.4). 

 

2.2.6.5 IGF-1 (chapter 3 and chapter5) 

Blood samples were collected by venipuncture into vacutainer tubes containing lithium 

heparin as an anticoagulant. Immediately after collection, tubes were gently inverted 3 

times to prevent blood clotting. Following centrifugation for 10 min at 2000 × g at 4 °C, 
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plasma was collected and frozen at -20 °C until analysis. Circulating concentrations of 

IGF-1 were determined by radioimmunoassay (RIA) after an acid-ethanol extraction 

procedure, as described by Spicer et al. (1988). Intraassay CV values for IGF-1 

quantification were 9.8, 8.2, and 15.9 % for low, medium, and high standards, 

respectively for chapter 3. Interassay CV for IGF-1 were 5.4, 5.2 and 3.3 % for low, 

medium and high standards, respectively for chapter 3. The intraassay CV values for 

IGF-1 quantification in chapter 5 were 14.3, 12.7 and 13.6 % for low, medium, and high 

standards, respectively with the interassay CV for IGF-1 10.8, 3.2 and 8.6 for low, 

medium and high standards, respectively. 

 

2.2.6.6 Insulin (chapter 3 and chapter 5) 

Blood samples were collected by venipuncture into vacutainer tubes containing lithium 

heparin as anticoagulant. Immediately, tubes were gently inverted 3 times to prevent 

blood clotting. Following centrifugation for 10 min at 2000 × g at 4 °C, plasma was 

collected and frozen at -20 °C until analysis. Insulin concentrations were quantified by 

fluoroimmunoassay (AutoDELFIA, PerkinElmer Life and Analytical Sciences, Turku, 

Finland) and validated for bovine plasma (Ting et al., 2004). Intraassay CV for insulin 

was 5.9, 3.5, and 3.1 % for low, medium, and high standards, respectively for chapter 3 

while the interassay CV was 11.5, 8.1, and 7.0 % for low, medium and high standards, 

respectively. The intraassay CV for insulin quantification in chapter 5 were 10.0, 8.8 

and 9.9 % for low, medium, and high standards, respectively with the interassay CV for 

insulin 5.9, 13.4 and 7.2 % for low, medium and high standards, respectively.  

 

2.2.6.7 Leptin 

Blood samples were collected by venipuncture into vacutainer tubes containing lithium 

heparin as anticoagulant. Immediately, tubes were gently inverted 3 times to prevent 
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blood clotting. Following centrifugation for 10 min at 2000 × g at 4 °C, plasma was 

collected and frozen at -20 °C until analysis. Leptin analysis was carried out using a 

double antibody RIA as described by Wylie et al. (2008). In brief, the primary antibody 

(GP-OL3) was raised in guinea pigs against recombinant ovine leptin. The second 

antibody was goat anti-guinea pig IgG. The mean intraassay CV for leptin was 6.9 and 

6.7 % for high and low standards, respectively while the mean interassay CV for leptin 

was 16.5 and 19.9 % for high and low standards, respectively. 

 

2.2.7 Slaughter measurements (chapter 5) 

 

2.2.7.1 Carcass characteristics and non-carcass components  

Animals were weighed the day before slaughter and again on the morning of slaughter. 

These weights were averaged to give final live weight at slaughter (SW). The steers 

were transported 130 km to Meadow Meats commercial slaughter facility in 

Rathdowney, Co. Laois and slaughtered within 1 h of arrival. 

Carcass conformation class and fat class were automatically recorded on a 15 

point scale using video imaging analysis equipment (VBS2000, E + V, Oranienburg, 

Germany) as described by Hickey et al. (2007). Non-carcass components were weighed 

for each animal separately, namely the heart, lungs, gall bladder, liver, spleen, intestines 

(full), rumen and reticulum (but excluding abomasums) and omasum (full and empty), 

fore and hind feet, hide, kidneys, head, and perinephric plus retroperitoneal fat. The 

former measurments were subsequently scaled to SW while perinephric plus 

retroperitonneal fat was scaled to carcass weight. Following slaughter cold carcass 

weight (CW; Hot CW × 0.98) was recorded and dressing percentage calculated as a 

proportion of CW to SW. 
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2.2.7.2 Linear carcass measurements  

Linear carcass measurements (Campion et al., 2009a) were recorded at 3 h post 

slaughter on the right side of each carcass. A measuring tape was used to record the 

carcass length, leg length and chest depth, and callipers used to measure the maximum 

leg width and the leg thickness (width of leg from the medial splitting surface of the 

symphysis pubis). Measurements wers subsequently scaled to CW.  

 

2.2.7.3 Area of M. longissimus thoracis et lumborum and rib dissection 

After 24 h at 4 °C, the right side of each carcass was quartered between the fifth and 

sixth ribs into a pistola hind quarter (without the flank) and a fore quarter that included 

the flank as described by Keane and Allen (1998). The pistola was separated by cutting 

between the 10th and 11th ribs. The M. longissimus thoracis et lumborum outline at the 

10th rib was traced on to translucent paper and the area was subsequently measured 

using a digital planimeter (Placom KP-90N, Sokkisha, Japan). Area of M. longissimus 

thoracis et lumborum was expressed relative to carcass weight. The sixth to 10th rib 

joint (5-rib joint) was weighed and dissected into M. longissimus thoracis et lumborum, 

other muscle, muscle trim, total fat and bone plus ligamentum nuchae/supraspinale.  

 

2.2.8 Meat quality (chapter 6) 

 

2.2.8.1 Temperature and pH of carcass at slaughter 

One hour following slaughter, temperature measurements were recorded by making a 3 

cm incision with a scalpel blade between the 10th and 11th rib and inserting a 

thermometer probe (Knick Portamess 913 thermometer, GmbH & Co., Berlin, 

Germany). Additionally, the pH of the M. longissimus thoracis et lumborum was 

measured by insertion of a glass electrode attached to a portable pH meter (Knick 
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Portamess 913 pH meter, GmbH & Co., Berlin, Germany), close to the insertion point 

of the temperature probe. The pH reading was automatically adjusted for carcass 

temperature. This was repeated periodically for the first 8 h post slaughter. The ultimate 

pH was recorded at 48 h post slaughter (pHu) using a portable pH meter (Model no 

250A, Orion Research Inc., Boston, USA) (section 2.1.5.1). 

 

2.2.8.2 Chemical composition of M. longissimus thoracis et lumborum  

Intramuscular fat and moisture concentrations were determined from thawed M. 

longissimus thoracis et lumborum using the Smart System 5 microwave moisture drying 

oven and NMR Smart Trac Rapid Fat analyser (CEM Corporation, North Carolina, 

USA) according to AOAC Official Methods 985.14 (AOAC, 1995a) and 985.26 

(AOAC, 1995b). Protein concentration was determined using a LECO FP328 (LECO 

Corp., MI, USA) protein analyser based on the Dumas method in accordance with 

AOAC Official Method 992.15 (AOAC, 1995c). 

 

2.2.8.3 Drip loss 

Drip loss was measured using the hanging bag method (Honikel, 1998). In brief, 

samples of M. longissimus thoracis et lumborum of a standard size (4 cm × 4 cm × 2 

cm) and weight (100 g) were cut and weighed at 48 h post slaughter. Samples were 

suspended in plastic bags without any contact with the inside of the bag, stored at 4 °C 

and were reweighed after 72 h of hanging. Drip loss was calculated as the percentage of 

weight lost from the sample over the 72 h period. 

 

2.2.8.4 Muscle and fat colour 

A freshly cut sample of M. longissimus thoracis et lumborum (25 mm) was trimmed of 

adhering adipose tissue at 48 h post slaughter, wrapped with oxygen-permeable PVC 
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film and permitted to bloom in darkness at 4 oC, for 4 h to permit oxygenation of the 

myoglobin. Readings of ‘L’ (lightness), ‘a’ (redness) and ‘b’ (yellowness) values were 

measured and muscle hue angle (‘H’) and saturation (‘C’) were calculated as tan-1 (b/a) 

and [(a) 2 + (b) 2]0.5, respectively, on both the muscle and the trimmed adipose tissue 

using a Hunterlab UltraScan XE colorimeter (Hunter Associates Laboratory, Inc., 

Reston, VA, USA). Final conversion of hue angle from radians to degrees was achieved 

by multiplying tan-1 (b/a) by 180/π (Liu et al., 1996). Four readings were made on non-

overlapping areas of each sample using the optical port (Ø 2.54cm) and average values 

were reported as final readings. Diffuse illumination (D65, 10°) with an 8° viewing angle 

was used. The spectrocolorimeter was used in reflectance mode and the specular 

component was excluded. 

 

2.2.8.5 WBsf and cooking loss 

WBsf was measured according to the procedure of Shackelford et al. (1994). In brief, 

steaks were trimmed of external fat, weighed and cooked in open vacuum pack bags in a 

circulating water bath (Grant instruments Ltd., UK) set at 72 °C, until their internal 

temperature reached 70 °C (assessed using a Minitherm H18751 temperature probe, 

Hanna Instruments Ltd., UK). Steaks were cooled to room temperature, reweighed for 

determination of cooking loss percentage and tempered at 4 °C overnight. Cooking loss 

percentage was determined as the difference between the weight of the steak after 

cooking and its initial weight prior to cooking, expressed as a percentage. Seven cores 

(1.25 cm diameter) parallel to the direction of the muscle fibres were removed from 

each steak and each core was sheared using an Instron Universal testing machine 

(Model no. 5543, Instron Europe, High Wycombe, Bucks, UK) equipped with a Warner 

Bratzler shearing device. The crosshead speed was 5 cm/min. The highest and lowest 

shear force measurements were excluded in calculation of means. For analysis of the 
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data, Instron Series IX Automated Materials Testing System software for Windows 

(Instron Corporation, Bucks, UK) was employed and results were expressed in Newtons 

(N). 

 

2.2.8.6 Sensory and flavour analysis 

On the day before sensory assessment, samples of M. longissimus thoracis et lumborum 

were thawed and steaks 1.9 cm thick were prepared. Steaks were cooked under a 

conventional grill, turning every 3 min until the internal temperature of the muscle 

reached 74 oC as measured by a thermocouple probe. Samples, approximately 2 cm x 2 

cm x 1.9 cm were then cut from the approximate centre of the steaks, avoiding areas of 

connective tissue, and served hot to the 10 member trained sensory panel. Samples were 

assessed for sensory and flavour characteristics. Each booth contained a computer 

screen and optical mouse as part of the computerised sensory system (Fizz, version 

2.10, Biosystems, France) for direct entry of sensory responses. See Appendix Table 

A.1 for list of sensory and flavour terms and definitions derived. 

 

2.2.9 RNAseq library preparation (chapter 7) 

 

2.2.9.1 Extraction of mRNA from total RNA 

Total RNA was extracted from the muscle biopsy as described in section 2.2.3.1.1. 

Total RNA (10 μg) was diluted in nuclease-free water (section 2.1.2.10) up to a volume 

of 50 µL in a 1.5 mL RNase free nonsticky Eppendorf tube. The sample of total RNA 

was heated at 65 °C for 5 min to disrupt the secondary structures. The tube was then 

stored on ice. Dynabeads oligo(dT) (100 µL, section 2.1.6.1) were aliquoted into a 1.5 

mL RNase free non-sticky Eppendorf tube. Dynabeads oligo (dT) bind the poly A tail of 

mRNA, isolating the mRNA from total RNA. The beads were washed twice with 100 
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µL binding buffer, vortexed briefly and the tubes placed on the magnetic rack. The 

beads accumulated at the back wall of the tube close to the magnet. The supernatant was 

removed and the procedure repeated, making sure to work quickly to avoid the beads 

drying out. The beads were then resuspended in 50 µL binding buffer. Heated total 

RNA (50 µL) was added to the beads and the tubes were then rotated for 5 min at room 

temperature. The tubes were then placed on the magnetic stand and the supernatant was 

removed. The mRNA was now bound to the beads. Washing buffer (100 µL) was added 

to the beads, vortexed briefly and the supernatant removed. This washing step was 

repeated and then 20 µL of 10 mM Tris-HCl was added to the beads following removal 

of the washing buffer. The mRNA and beads were heated at 80 °C for 2 min which 

allowed the removal of the mRNA from the beads. The tube was placed on the magnetic 

stand and the supernatant, containing the mRNA was transferred to a 1.5 mL non-sticky 

Eppendorf tube containing 80 µL of binding buffer. The tube was heated to 65 °C for 5 

min and then placed on ice. The beads were washed with 100 µL of washing buffer, to 

prepare the beads for the second round of mRNA binding. This was required to ensure 

minimal carry-over of rRNA contamination. To the washed beads, the 100 µL of 

mRNA was added and the tubes rotated for 5 min at room temperature. The supernatant 

containing rRNA was removed. The beads were washed twice with 100 µL of washing 

buffer and 10 µL of 10 mM Tris-HCl was added and mixed well. The mRNA and beads 

were heated at 80 °C for 2 min and the supernatant (~9 µL) containing the mRNA was 

transferred to a 200 µL thin wall PCR tube. 

 

2.2.9.2 Fragmentation of mRNA 

Fragmentation reagent (1 µL, section 2.1.6.2) was added to 9 µL of mRNA. The tube 

was incubated in a PCR thermocycler at 70 °C for exactly 5 min. Stop buffer (1 µL) was 

added and the tubes were placed on ice. The solution was transferred to a 1.5 mL 
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microcentrifuge tube and 1 µL of 3 M sodium acetate (NaOAc; pH 5.2), 2 µL of 

glycogen (5 ug/µL) and 30 µL of 100 % ethanol was added. The tubes were placed in -

80 °C freezer for 30 min. The tubes were centrifuged at 14,000 × g for 25 min in a pre-

chilled (4 °C) microcentrifuge. Carefully, the supernatant was removed and the pellet 

was washed with 200 µL of 80 % ethanol. The ethanol was removed and the pellet was 

air-dried. The RNA pellet was resuspended in 10.5 µL of RNase-free water. 

 

2.2.9.3 First and second strand cDNA sysnthesis 

The fragmented mRNA (10.5 µL) was transferred to a 200 µL thin wall PCR and 1 µL 

of random hexamer primers (3 ug/µL) were added. The mixture was incubated in a PCR 

thermocycler at 65 °C for 5 min. The tube was placed on ice. To the solution, 4 µL of 

first strand buffer, 2 µL 100 mM DTT, 1 µL dNTP mix (10 mM), 0.5 µL RNaseOUT 

(40 U/µL) were added and the solution mixed well. The tube was heated at 25 °C for 2 

min. SuperScriptII (1 µL) was added to the sample. The tube was incubated in a 

thermocycler with the following program: 25 °C for 10 min, 42 °C for 50 min, 70 °C for 

15 min.  The tube was placed on ice. Nuclease free water (51 µL) was added to the first 

strand cDNA synthesis mix. Second strand buffer (20 µL) was added, followed by 3 µL 

of dNTP mix (10 mM). The solution was mixed well and placed on ice for 5 min. 

RNaseH (1 µL; 2 U/µL) and 5 µL of DNA Pol I (10 U/µL) were added and the mixture 

was incubated at 16 °C for 2.5 h. The DNA was purified with a QIAquick PCR spin 

column (section 2.1.6.6). The cDNA was eluted in 30 µL of EB solution. 

 

2.2.9.4 End repair 

Nuclease-free water (45 µL) was added to the eluted cDNA. To the mixure, 10 μL of T4 

DNA Ligase buffer with 10 mM ATP, 4 μL dNTP mix (10 mM), 5 μL T4 DNA 

Polymerase (3 U/μL),  1 μL Klenow DNA Polymerase (5 U/μL) and 5 μL T4 PNK (10 
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U/μL) were added. The sample was incubated at 20 °C for 30 min. The DNA was 

purified using a QIAquick PCR spin column. The cDNA was eluted in 32 μL of EB 

solution. 

 

2.2.9.5 Addition of a single ‘A’ base and adapter ligation 

This step adds an ‘A’ base to 3' end of blunt phosphorylated DNA fragments, using the 

polymerase activity of Klenow (3'-to-5' exo minus) prepares ends for ligation to the 

adapters which have a single 3'-T overhang. To the 32 µL eluted DNA, 5 µL Klenow 

buffer, 10 µL dATP (1 mM),  3 µL Klenow 3'-to-5' exo- (5 U/μL) were added. The 

samples were incubated at 37 °C for 30 min. The DNA was purified using a QIAquick 

MinElute column. The cDNA was eluted in 23 μL of EB solution. This protocol ligates 

adapters to the ends of the cDNA fragments, preparing them to be hybridised to a flow 

cell. In brief, 25 µL 2X Quick DNA Ligase buffer, 1 µL adapter-oligo mix and 1 µL T4 

DNA Ligase was added to 23 µL eluted DNA and the solution mixed well. The tube 

was incubated at room temperature for 15 min. Following this, the cDNA with ligated 

adapters was purified with a QIAquick MinElute column and the cDNA were eluted in 

10 μL of EB solution. 

 

2.2.9.6 Gel purification of adapter ligated DNA templates 

DNA ladder (8 µL) was loaded on an agarose gel. Loading buffer (10 µL) was added to 

the eluted adapter ligated DNA and the mixture was loaded onto the gel. To prevent 

cross contamination, 2 wells between samples were left empty. Gel electrophoresis was 

performed at 120 V for 90 min. On a Dark Reader Transilluminator, the gel was 

visualised. A clean GeneCatcher disposable gel excision tip was used to cut a gel slice 

(300 bp) at the position of the sample using the ladder to orientate the sample. The gel 
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slice was weighed and a QIAquick Gel Extraction kit was used to purify the sample. 

The DNA was eluted with 30 µL of EB solution. 

 

2.2.9.7 PCR enrichment of purified adapter ligated DNA templates 

The following PCR master mix was prepared in a thin-walled PCR tube: 10 µL cloned 

Phusion HF buffer, 1 µL PCR primer 1.1, 1 µL PCR primer 2.1, 0.5 µL 25 mM dNTP 

mix, 0.5 µL Phusion polymerase (2 U/µL), and 7 µL nuclease-free water.  The 30 µL of 

gel purified adapter ligated material was added to the mastermix. The following PCR 

programme was used to amplify/enrich the library. Step 1: 98 °C for 30 sec, Step 2: 98 

°C for 10 sec, Step 3: 65 °C for 30 sec, Step 4: 72 °C 30 sec: Step 5: Repeat step 2 and 3 

15 times: Step 6: 72 °C for 5 min. The DNA was purified using a QIAquick PCR spin 

column. The DNA was eluted in 30 μL of EB solution. 

 

2.2.9.8 Quality control and sequencing of cDNA libraries 

The DNA was quantified using a Qubit Fluorometer and HS dsDNA kit. In brief, 10 µL 

of Qubit reagent was added to 1,990 µL of Qubit buffer to generate a working solution. 

This working solution (190 μL) was added to each of 2 thin-walled, clear 0.5 mL Qubit 

assay tubes. 10 µL of each Qubit standard (0ng/µL and 10n/µL) was added to the 

appropriate tube and the samples were mixed by vortexing. 199 µL of the working 

solution was added to thin-walled tube and 1 µL of the DNA sample was added. The 

final volume in each tube was 200 µL. The tubes were allowed to equilibrate at room 

temperature for 2 min. Standard 1 was inserted into the Qubit 2.0 fluorometer, the lid 

closed and the absorbance read. The same procedure was carried out for standard 2. The 

fluorometer was now calibrated. The tubes containing the samples were then inserted 

into the fluometer and the absorbance read as before. A DNA chip (Agilent) was used to 

assess the DNA size and quality. The sequencing of the RNAseq libraries was 
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performed on the Illumina Genome Analyser II at the Conway Institute, University 

College Dublin, Dublin, Ireland using 40bp, paired-end, version 4 kits, according to the 

manufacturer’s instructions.  

 

2.2.10 Data mining and analysis 

 

2.2.10.1 Quality check of reads 

FastQC (version 0.9.2) (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) was 

used to assess the quality of the reads. Such assessments included per base sequence 

quality, per base N count, per sequence quality and over represented sequences. The per 

base sequence quality assigns an average Phred score to each lane of the flow cell which 

relates to the possibility of an error in calling that base i.e, if a Phred score of 30 is 

assigned to a base, there is a 1 in 1000 chance of that base being called incorrectly.  

 

2.2.10.2 Aligning of sequenced reads to the bovine genome 

Following FastQC, Tophat (version 1.3.1) was used to align the reads to the bovine 

genome (version Btau_4.0). The Tophat script (Figure 2.3) used allowed an inner mate 

distance (-r) of 250bp plus a mate standard deviation of 30bp, a segment length of 20 

(therefore 2 x 20bp sequences per 40 bp reads) with 1 mismatch allowed per segment 

length. Additionally, a single read (-g 1) was retained for each location and the other 

‘duplicates’ removed. This is to avoid any potential PCR bias (putative PCR 

duplication) introduced during the library preparation. Furthermore, library type was 

unstranded as the sequence reads were not strand specific. Following alignment, the 

BAM output file was converted to a SAM file and sorted by read name, rather than 

chromosomal location.  
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tophat -r 250 --mate-std-dev 35 --segment-length 20 --segment-
mismatches 1 -g 1 -o "/home2/skeady/data/flowcell1/lane1" --

solexa1.3-quals --library-type fr-unstranded Btau_4.0 
/data/skeady/run_110218/s_1_1_sequence.txt 
/data/skeady/run_110218/s_1_2_sequence.txt 

 

Figure 2.3 Tophat script used for aligning reads to genome 

 

2.2.10.3 Gene counts and identification of differentially expressed genes 

Htseq-count (version 0.5.3; http:///www-huber.embl.de/users/anders.HTSeq) was used 

to convert aligned reads into counts per gene using the union model and the Ensembl 

(version 61) annotation of the bovine genome (ftp:ftp.ensembl.org/pub/release-

61/fasta/bos_taurus/dna/) (Figure 2.4). To identify differentially expressed genes bases 

on read counts assigned by Htseq, the R (version 2.12.1) Bioconductor package EdgeR 

(version 1.6.12) (Robinson et al., 2010) was employed. EdgeR models data as a 

negative binomial distribution to account for biological and technical variation using a 

generalisation of the Poisson distribution model. Firstly, data was normalised across 

library size using the trimmed mean of M-values normalisation method (Robinson and 

Oshlack, 2010). Genes were then classified as differentially expressed with a 

Benjamini-Hochberg false discovery rate (FDR) corrected P - value of < 0.1 with a fold 

change of > 2.0 (Benjamini and Hochberg, 1995). 

 

 
htseq-count -m union -t exon -i gene_id -s no 

accepted_hits_sorted.sam 
/data/shared/genomes/Btau_4.0/Bos_taurus.Btau_4.0.62.gtf > 

htseq38.txt 
 

Figure 2.4 Htseq-count script used for generating gene counts 
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2.2.10.4 Identification of over-represented GO terms and pathways 

There is greater statistical power to detect longer genes as significantly differentially 

expressed compared to shorter genes, as differential gene expression in RNAseq is 

based on the number of reads aligning to that gene location (Oshlack and Wakefield, 

2009). To correct for this bias with analysing RNAseq data and to identify GO terms 

which were significantly more represented than expected by chance, the R package 

GOseq (version 1.1.7) which corrects for gene length bias was used (Young et al., 

2010). GO terms were considered statistically significant with a FDR < 0.1.  

Bovine Ensembl genes were converted to human Ensembl orthologs prior to 

pathway analysis using InnateDB pathway analysis tool (Lynn et al., 20080). InnateDB 

identifies significantly over-represented biological pathways using a hypergeometric 

test and incorporates pathway annotations from many publicly available databases 

including: Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the NCI-

Nature Pathway Interaction Database (PID), Integrating Network Objects with 

Hierarchies (INOH) database, Netpath and Reactome databases. Pathways were 

considered statistically significant with a FDR of < 0.1.  

 

2.2.11 Statistical analysis 

 

2.2.11.1 Statistical analysis (chapter 3) 

Data were checked for normality using the UNIVARIATE procedure of statistical 

analysis software (SAS, 2008). Relative gene expression data for IGF-2R, IGFBP5, and 

IGFBP6 were transformed as appropriate by raising to the power of λ (TransReg 

procedure, SAS, 2008). The remaining non-normally distributed gene expression values 

were log transformed using log2.  Plasma analyte data were analysed using repeated 

measures ANOVA (PROC MIXED, SAS) with sire breed and sire EPDcwt, and day of 
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sampling included as fixed effects together with their interaction term as appropriate. 

Day of sampling was included as the repeated term and an unstructured variance-

covariance structure was selected. Gene expression data were analysed using mixed 

models ANOVA (PROC MIXED). Sire breed and sire EPDcwt were included as fixed 

effects in the statistical model together with the interaction term, where appropriate. Sire 

was included as a random effect. The Tukey critical difference test was performed to 

determine the existence of statistical differences between treatment mean values. 

Spearman correlation coefficients amongst gene expression values and production traits 

were determined using the CORR procedure of SAS. The Spearman correlation 

procedure was the chosen method due to the non-parametric nature of the data. 

 

2.2.11.2 Statistical analysis (chapter 4) 

Data relating to the chemical composition of the muscle and key performance data from 

Campion et al. (2009a,b) were checked for adherence to normality using the 

UNIVARIATE procedure of statistical analysis software (SAS, 2008). Non-normally 

distributed data were transformed as appropriate by raising to the power of λ (TransReg 

procedure). Data were analysed using mixed models ANOVA (PROC MIXED). Sire 

breed and genetic merit for growth potential were included as fixed effects in the 

statistical model together with the interaction term, where appropriate. Sire was 

included as a random effect. The Tukey critical difference test was performed to 

determine the existence of statistical differences between treatment mean values. 

Using Progenesis Samespots V3.2.3, the gel images were placed into groups 

(AA, BB, AAH and AAL) and analysis was carried as follows: AA vs. BB; AAH vs. 

AAL; BBH vs. BBL. The Progenesis Samespots software uses a one way ANOVA test 

and therefore the interaction term could not be tested. For sire breed comparison, gel 

images from both breeds were matched to a single reference gel image. Power analysis 
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was performed independently for each protein spot with changes displaying a power of 

< 0.8 being removed from the analysis. Statistical analysis of the relative abundance of 

each matched protein spot across the data sets was carried out using student t-test. 

Additionally, t-tests between mean protein differences, with a P-value of > 0.05 were 

removed from analysis. 

 

2.2.11.3 Statistical analysis (chapter 5) 

The MEANS procedure of Statistical Analysis Software (SAS; 2008) was used to 

determine the average ages and weights of the steers. Data collected from the study 

were checked for normality using the UNIVARIATE procedure (SAS, 2008). Where 

appropriate, data were transformed by raising to the power of λ using the TransReg 

procedure (SAS, 2008). Data were analysed using mixed models methodology (PROC 

MIXED, SAS). Within genotype, animals were blocked by weight to treatment. Block, 

genotype, feeding treatment (H-H or L-H) and their interaction were included as main 

effects and sire was included as a random effect in the statistical model. Where no 

interactions were observed, the data were reanalysed for main effects only. The Tukey 

critical difference test was performed to determine the existence of statistical 

differences between treatment mean values. For data with repeated measures (live 

weight, blood metabolites and hormones, linear body measurements and muscle and fat 

scans), sample day was included as a repeated effect with an unstructured or compound 

symmetry covariance structure assumed amongst records within animal, employed as 

appropriate. The choice of residual covariance structure was based on the magnitude of 

the Akaike Information Criterion (lower is better). 
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2.2.11.4 Statistical analysis (chapter 6) 

Data were checked for normality using the UNIVARIATE procedure of statistical 

analysis software (SAS Institute, 2008). Where appropriate, data were transformed by 

raising to the power of λ using the TransReg procedure (SAS, 2008). Data were 

subsequently analysed using mixed model methodology within the MIXED procedure 

of SAS. Within genotype, animals were blocked by weight to treatment. Block, 

genotype (AA vs BB), feeding treatment (H-H or L-H) and their interaction were 

included as main effects and sire of the animal was included as a random effect in the 

statistical model. Where no statistically significant interactions were observed, the data 

were reanalysed for main effects only. The Tukey critical difference test was performed 

to determine the existence of statistical differences between treatment mean values. For 

data with repeated measures (pH and temperature of carcasses at slaughter), sample 

time was included as a repeated effect with an unstructured or compound symmetry 

covariance structure assumed among records within animal as appropriate. The choice 

of residual covariance structure was based on the magnitude of the Akaike Information 

Criterion (lower is better). To assess the contribution of intramuscular fat to tenderness 

and sensory and flavour characteristics, data relating to the sensory and flavour 

characteristics, as well as WBsf, were reanalysed and adjusted for intramuscular fat, 

with the same traits as mentioned previously transformed to ensure normality. 

Additionally, Spearman correlation coefficients amongst meat quality values and 

production traits were determined using the CORR procedure of SAS. 
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Chapter 3 
 
 
 
 
 
 

Effect of Sire Breed and Genetic Merit for 

Carcass Weight on the Transcriptional 

Regulation of the Somatotropic Axis in M. 

longissimus thoracis et lumborum 
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3.1 Introduction 

Bovine skeletal muscle is a tissue of significant economic importance to the global 

economy. Worldwide, beef production is projected to increase at a rate of 0.9 - 1.4% 

annually over the next decade (European Commission, 2010). The Irish Cattle Breeding 

Federation undertakes genetic evaluations for a range of performance traits across all of 

the main cattle breeds. Breeding value for carcass weight, an important trait reflecting 

lifetime growth, is estimated using a multi-trait animal model and is expressed as the 

expected progeny difference for carcass weight (EPDcwt) (Campion et al., 2009a). 

Similar genetic evaluations for carcass characteristics are routinely conducted 

worldwide (Crews et al., 2004; Van Groningen et al., 2006) and sires can be ranked 

based on their EPDcwt. 

Bernard et al. (2009) examined the effects of genetic selection in favour of high 

muscle growth on gene expression in muscle of young bulls. These authors reported that 

many genes of the somatotropic axis were differentially expressed between bulls 

selected for high compared with low growth potential. In vivo and in vitro studies have 

shown that both IGF-1 and IGF-2 stimulate proliferation and differentiation of muscle 

cells, through their interaction with IGF receptors (Jones and Clemmons, 1995; 

Oksbjerg et al., 2004). Consequently, the somatotropic axis is likely to be a promising 

target for candidate genetic markers for improving meat yield in cattle. To the author’s 

knowledge, there is little published information available on comparisons of different 

breeds and within breed genetic merit for carcass growth on the expression of 

component genes of the somatotropic axis in bovine muscle.  

Therefore, the objective of this study was to determine the effect of (i) sire breed 

and (ii) sire EPDcwt on the gene expression within the somatotropic axis system in M. 

longissimus thoracis et lumborum in Aberdeen Angus (AA) and Belgian Blue (BB) 

cattle. In brief, animals of either high (H) or low (L) EPDcwt were allocated to 1 of 4 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Van%20Groningen%20C%22%5BAuthor%5D
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groups, in a 2 (sire breed) x 2 (sire EPDcwt) factorial design, based on the original 

blocking criteria of Campion et al. (2009a). The subgroups were as follows (i) AAH (n 

= 8), (ii) AAL (n = 9), (iii) BBH (n = 8), and (iv) BBL (n = 8). Blood plasma was 

collected throughout the animals’ lifetime for the analysis of IGF-1 and insulin 

concentrations. At slaughter, M. longissimus thoracis et lumborum was collected due to 

its high commercial value and RT-qPCR analysis was carried out to determine gene 

expression levels within the somatotropic axis. In addition, correlation analysis was 

conducted to determine possible positive or negative relationships between genes of the 

somatotropic axis and animal production variables.  
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3.2 Effect of sire breed and genetic merit for carcass weight on physiological 

measurements and gene expression in M. longissimus thoracis et lumborum 

 

3.2.1 Plasma concentrations of IGF-1 and insulin 

See section 2.2.2.1 and 2.2.2.1.1 for full details of experimental design and animal 

selection. No effect (P > 0.05) of sire breed or EPDcwt or their interaction was observed 

for plasma concentrations of IGF-1 or insulin (Table 3.1). Plasma concentrations of 

IGF-1 increased linearly between 7 and 24 mo of age. A similar trend was observed for 

circulating concentrations of insulin with levels increasing linearly overtime throughout 

the lifetime of the animal. 

 

3.2.2 Gene expression of the somatotropic axis 

Despite a sire breed × EPDcwt interaction being detected for IGFBP3, this interaction 

was found to be non significant (P > 0.05). Consequently, the effects of breed and 

EPDcwt are reported below (Table 3.2). There was a statistically significant difference (P 

< 0.001) in transcript levels for IGFBP3 between the breeds with expression greater in 

AA compared with BB; however, no effect (P > 0.05) of EPDcwt was observed in 

expression levels of IGFBP3. Similarly, transcript levels of IGF-1R were greater (P < 

0.001) in AA animals compared with BB. No difference (P > 0.05) was observed in 

gene expression levels for IGF-1R across EPDcwt groups. A difference in mRNA 

expression levels for IGF-1 was observed between EPDcwt groups with transcript levels 

up-regulated (P < 0.01) in H compared to L animals. There was no difference (P > 0.05) 

in gene expression levels across breed for IGF-1. Neither was an effect of sire breed or 

EPDcwt evident (P > 0.05) for gene expression levels of IGF-2, IGF-2R, IGFBP4, 

IGFBP5, IGFBP6 or GH receptor (GHR). Even after 40 amplification cycles, gene 



 

 103 
 

expression of IGFBP1, IGFBP2, and ALS in M. longissimus thoracis et lumborum 

remained undetected.  
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Table 3.1 Effect of sire breed and EPD for carcass weight (EPDcwt) on the plasma concentrations of IGF-1 and insulin1 
 

a-cLeast squares means within a row without a common superscript differ (P < 0.05). 
1Animals were blood sampled by jugular venipuncture at approximately 7 mo, 14 mo, and 18 mo of age, and again 2 d before slaughter at 24 mo of 
age. 2AA = Aberdeen Angus; BB = Belgian Blue. 3H = high for EPDcwt; L = low for EPDcwt. 4No statistically significant interactions (B × EPDcwt; B × 
T; EPDcwt × T) were observed. 

 

 

 

 Breed2  EPDcwt
3  Time  (T)  P-Values4 

Trait AA BB SED H L SED 7 mo 14 mo 18 mo 24 mo SEM B EPDcwt T 
IGF-1, ng/mL 249.5 275.3 40.54 255.7 268.9 40.61 132.8a 271.9b 288.2b 309.7b 28.5 0.579 0.747 < 0.001 
 
Insulin, µIU/mL 

 
12.3 

 
14.5 

 
1.54 

 
13.5 

 
13.3 

 
1.55 

 
3.48a 

 
5.98b 

 
7.52b 

 
19.43c 

 
1.32 

 
0.175 

 
0.877 

 
< 0.001 
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Table 3.2 Effect of sire breed (B) and expected progeny difference for carcass 
weight (EPDcwt) on the relative expression of genes1 of the somatotropic axis 
 

1Gene expression values were normalised to the reference gene after adjustment for 
efficiencies and interplate variation and converted to values relative to the greatest cycle 
threshold (Ct) within each data set. 2AA = Aberdeen Angus; BB = Belgian Blue. 3H = 
high for EPDcwt; L = low for EPDcwt. 

4IGF-1R = IGF-1 receptor. 5IGF-2R = IGF-2 
receptor. 6GHR = GH receptor. 7Gene expression of IGFBP1, IGFBP2, and acid-labile 
subunit (ALS) remained undetected. 
 

 

3.3 Correlation analyses 

 

3.3.1 Correlation between expressions of genes in the somatotropic axis 

Correlation analysis was carried out to examine potential associations between genes of 

the somatotropic axis (Table 3.3). In summary, IGF-1 gene expression values were 

positively correlated with expression of IGFBP3, IGFBP4, IGFBP5, and IGFBP6, 

whereas IGF-1R gene expression was negatively associated with IGFBP5 and IGFBP6 

but positively associated with IGFBP3 and GHR. Gene expression of IGF-2 was 

positively associated with gene expression of IGFBP4 and GHR while negatively 

correlated with IGFBP6. Gene expression of IGF-2R was negatively correlated with 

expression of IGFBP3 and IGFBP5 but positively correlated with expression of 

IGFBP6. Finally, gene expression of IGFBP5 was positively correlated with expression 

of IGFBP3. 

 

 Breed2  EPDcwt
3  P- values 

Gene7 AA BB SED H L SED B EPDcwt B × 
EPDcwt 

IGF-1 6.83 5.12 0.948 7.60 4.36 0.973 0.091 0.004 0.154 
IGF-1R4 17.2 2.81 2.833 8.41 11.6 2.883 0.0003 0.781 0.496 
IGF-2 16.1 20.9 3.407 15.8 21.3 3.524 0.183 0.139 0.064 
IGF-2R5 1.72 5.42 1.799 4.09 3.06 1.782 0.197 0.248 0.463 
IGFBP3 57.9 4.61 10.231 41.4 21.2 10.231 < 0.0001 0.239 0.07 
IGFBP4 6.26 9.61 4.175 9.63 6.23 4.175 0.359 0.964 0.411 
IGFBP5 22.1 24.1 8.496 23.8 22.4 8.496 0.314 0.814 0.403 
IGFBP6 3.59 3.68 1.146 4.57 2.71 1.146 0.822 0.167 0.327 
GHR6 13.7 7.81 3.128 9.41 12.1 3.128 0.074 0.077 0.112 
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Table 3.3 Associations1 between expression of genes of the somatotropic axis in M. longissimus thoracis et lumborum 

1Values presented are Spearman correlation coefficients r from unadjusted data (n = 33). 2IGF-1R = IGF-1 receptor. 3IGF-2R = IGF-2 receptor. 4GHR 
= GH receptor. *P < 0.05; **P < 0.01; ***P < 0.001.  
 
 

Gene IGF1 IGF-2 IGF1R2 IGF2R3 IGFBP3 IGFBP4 IGFBP5 IGFBP6 
IGF2  0.11        
IGF1R2 0.09 0.24       
IGF2R3 -0.33 0.17 0.14      
IGFBP3 0.54 *** -0.24 0.48 ** -0.47 **     
IGFBP4 0.45 ** 0.60 ** 0.09 -0.01 0.05    
IGFBP5 0.44 ** -0.21 -0.35 * -0.69 *** 0.47 ** 0.05   
IGFBP6 0.47 ** -0.52 *** -0.48 ** 0.39 * 0.32 0.03 0.03  
GHR4 0.31 0.57 *** 0.39 * -0.26 0.31 0.24 0.18 -0.23 
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3.3.2 Correlation between expression of genes and animal production variables. 

Correlation analysis was carried out to examine the potential associations between 

expression of genes of the somatotropic axis and relevant accompanying animal 

production traits, recorded as part of the studies of Campion et al. (2009a,b). The 

Spearman correlation coefficients for these associations are presented in Table 3.4. In 

brief, weight at slaughter and carcass weight were negatively correlated with expression 

of IGF-2 and GHR, whereas both measures of animal weight were positively correlated 

with expression of IGF-2R. Pre-slaughter ultrasonically scanned M. longissimus 

thoracis et lumborum depth and area were negatively associated with expression of 

IGFBP3 and GHR whereas M. longissimus thoracis et lumborum area per kilogram of 

carcass weight correlated negatively with expression of IGF-1R and IGFBP3 but was 

positively associated with expression of IGFBP4.  
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Table 3.4 Associations1 between expression of genes of the somatotropic axis in M. longissimus thoracis et lumborum and production variables 
 

1Values presented are Spearman correlation coefficients r from unadjusted data (n = 33). 2UMD = Pre-slaughter ultrasonically scanned M. longissimus 
thoracis et lumborum depth. 3Expressed per kilogram of carcass weight. 4IGF-2R = IGF-2 receptor. 5IGF-1R = IGF-1 receptor. 6GHR = GH receptor. * 

P < 0.05; **P < 0.01; ***P < 0.001.  
 

 

Gene Slaughter weight, kg Carcass weight, kg UMD2, mm 
M. longissimus thoracis et 

lumborum area, cm2 
M. longissimus  thoracis et 

lumborum area3, cm2/kg 
IGF-1 0.01 -0.06 -0.02 -0.09 0.15 
IGF-2 -0.46 ** -0.43 ** -0.23 -0.17 0.29 

IGF- 1R4 -0.12 -0.25 -0.25 -0.55 *** -0.41 ** 
IGF-2R5 0.37 * 0.40 * 0.26 0.41 * 0.01 
IGFBP3 -0.11 -0.25 -0.37 * -0.63 *** -0.40 * 
IGFBP4 -0.19 -0.15 0.05 0.06 0.37 * 
IGFBP5 -0.18 -0.23 -0.27 -0.22 0.11 
IGFBP6 0.33 0.36 * 0.34 0.28 0.07 
GHR6 -0.67 *** -0.71 *** -0.41 * -0.52 ** 0.21 
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3.4 Chapter summary, discussion and conclusion 

 

3.4.1 Chapter summary  

The somatotropic axis plays an important role in postnatal growth, development, and 

differentiation of skeletal muscle. The aim of this study was to examine the effect of sire 

breed and sire EPD for carcass weight (EPDcwt) on the expression of components of the 

somatotropic axis in M. longissimus thoracis et lumborum of beef cattle at slaughter. 

Crossbred Aberdeen Angus (AA; n = 17) and Belgian Blue (BB; n = 16) steers born to 

Holstein-Friesian dams and sired by bulls with either high (H) or low (L) EPDcwt were 

employed in the study. Thus, there were 4 genetic groups viz. BBH (n = 8), BBL (n = 8), 

AAH (n = 8), and AAL (n = 9). Blood samples were collected via jugular venipuncture at 

regular intervals for analysis of plasma concentrations of IGF-1 and insulin. Total RNA 

was isolated from M. longissimus thoracis et lumborum collected at slaughter and the 

mRNA expression of IGF-1, IGF-2, cognate receptors (IGF-1R; IGF-2R), 6 IGFBP, 

acid labile subunit (ALS), and GH receptor (GHR) was measured by RT-qPCR. There 

was no effect of either sire breed or EPDcwt on concentrations of circulating IGF or 

insulin (P > 0.05). Gene expression of IGF-1R and IGFBP3 was up-regulated in AA (P 

< 0.001) compared to BB whereas IGF-1 was up-regulated in H compared to L animals 

(P < 0.01). Correlation analysis indicated moderate positive associations between gene 

expression of IGFBP3 and IGF-1 (r = 0.54; P < 0.001) and IGF-1R (r = 0.48; P < 0.01). 

In addition, correlation analysis revealed that mRNA expression of IGFBP3 was 

moderately negatively associated with M. longissimus thoracis et lumborum area per 

kilogram carcass weight (r = -0.40; P < 0.05). Greater gene expression of IGF-1 and 

reduced transcript levels of IGFBP3 in muscle may play a role in increased muscle 

growth potential in steers during the finishing period. These data will contribute to a 

better understanding of the molecular control of muscle growth at a tissue level in cattle. 
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3.4.2 Chapter discussion 

The main objective of this study was to examine the effects of both sire breed and sire 

EPDcwt on the expression of constituent genes of the somatotropic axis in muscle tissue. 

There is clear evidence that breed type influences carcass characteristics including both 

yield and quality of saleable meat from cattle (Keane and Moloney, 2010). The AA and 

BB sire breeds were selected because of their well documented differences in carcass 

conformation, muscle composition and maturation rates (early versus late) (Bellinge et 

al., 2005; Keane and Drennan, 2008; Dinh et al., 2010). Campion et al. (2009a) 

reported that M. longissimus thoracis et lumborum area and M. longissimus thoracis et 

lumborum area adjusted for carcass weight were greater for BB compared to AA sired 

steers and also for AA animals sired by bulls with H compared to L breeding values for 

carcass weight. As M. longissimus thoracis et lumborum was obtained from a subset of 

AA and BB animals from Campion et al. (2009a), the following briefly summarises the 

main findings. There was no effect of EPDcwt on daily DMI or DMI per kilogram live 

weight during the finishing period. Additionally, progeny from AA sires of H EPDcwt 

had greater growth rates and produced heavier carcasses compared to progeny from AA 

sires of L EPDcwt. However, there was no detectable effect of sire EPDcwt on growth rate 

or carcass weight for BB. At slaughter, BB had heavier carcasses and greater dressing 

percentage compared with AA cattle. Pre-slaughter ultrasonically scanned M. 

longissimus thoracis et lumborum depth, carcass M. longissimus thoracis et lumborum 

area, M. longissimus thoracis et lumborum area per kilogram carcass weight were all 

greater for BB compared to AA animals. In addition, ultrasonically scanned M. 

longissimus thoracis et lumborum depth was greater in AAH compared to AAL. 

The somatotropic axis, also known as the GH-IGF system, consists of peptide 

hormones, cell surface receptors, and binding proteins (Denley et al., 2005). The axis is 

critical in regulating postnatal growth, development and differentiation of skeletal 
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muscle (Clemmons, 1997; Duan and Xu, 2005; Duan et al., 2010). Muscle growth is 

mediated by the activation, proliferation, and differentiation of muscle cells and appears 

to also be modulated by mitotic and myogenic activity of locally produced IGF-1 

(Philippou et al., 2007). Furthermore, muscle cell cultures have been shown to produce 

IGF and IGFBP. 

The action of GH in regulating growth and development is mediated by its 

plasma-membrane bound receptor, GHR (Isaksson et al., 1985). Dauncey et al. (1994) 

and Katsumata et al. (2000) reported that mRNA expression of GHR in M. longissimus 

was up-regulated in pigs growing at a slower rate than pigs with faster growth rates. In 

the current study, gene expression of GHR was not different across either sire breed or 

EPDcwt. Spurlock et al. (2006) found that after administration of clenbuterol, a ß2-

adrenergic receptor agonist, male mice experienced increased body weight. 

Consequently, gene expression of GHR in muscle was down-regulated compared to 

control mice. In addition, Castigliego et al. (2010) reported that expression of GHR was 

down-regulated in bovine muscle after administration of recombinant bovine GH. The 

results of the correlation analysis support these findings (Dauncey et al., 1994; 

Katsumata et al., 2000; Spurlock et al., 2006) in that moderate negative associations 

were observed between expression of GHR and weight at slaughter, carcass weight and 

M. longissimus thoracis et lumborum area per kilogram of carcass weight. 

In addition, to circulating in blood, IGF concentrations are also regulated in 

tissues. In muscle cell lines and cultures, IGF-1, and IGF-2 were produced and secreted 

into the culture medium (Jones and Clemmons, 1995; Oksbjerg et al., 2004). Local 

production of IGF-1 in skeletal muscle is thought to play a predominant role in 

supporting normal muscle growth through autocrine or paracrine (or both) mechanisms 

(Sjögren et al., 1999; Dayton and White, 2008). In addition, it was observed that locally 

produced IGF-1 in muscle, plays a key role in myofiber regeneration and hypertrophy 
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(Isgaard, 1992; Philippou et al., 2007). For example, Chen et al. (2011) reported that 

gene expression of IGF-1 was significantly lower in M. longissimus tissue of growth 

restricted piglets compared to control animals.  In the current study, a statistically 

significant difference in mRNA transcript levels for IGF-1 between H and L groups for 

EPDcwt was consistent with the findings of Campion et al. (2009a) who reported that 

animals of H EPDcwt produced heavier carcasses with greater M. longissimus thoracis et 

lumborum area compared to animals of L EPDcwt. This increased muscle growth can 

possibly be attributed to the greater local IGF-1 gene expression observed, as no 

statistically significant difference in plasma concentrations of IGF-1 or insulin was 

detected across sire breed or EPDcwt. 

In addition, 6 different IGFBP have been identified and these play a critical role 

in the somatotropic axis by regulating IGF/IGF-R activity by potentiating or inhibiting 

the role of IGF action in muscle (Jones and Clemmons, 1995; Duan et al., 2010). When 

IGF-1 or IGF-2 is bound in an IGFBP ternary structure it is safeguarded for up to 30 

min in a controlled release mechanism, compared with a half-life of 10 to 12 min for 

free IGF in circulation (Guler et al., 1989; Clemmons, 2009). At a tissue level, IGFBP 

can both inhibit and potentiate IGF action by either preventing IGF from binding with 

IGF-1R or by releasing IGF to bind IGF-1R (Denley et al., 2005). Both IGF-1 and IGF-

2 have a greater affinity for IGFBP3 compared to their receptor, IGF-1R (Jones and 

Clemmons, 1995). Consequently, IGFBP3 binds IGF-1 resulting in a decrease in the 

bioavailability of IGF-1 (Jones and Clemmons, 1995; Sadkowski et al., 2009). For 

example, Tilley et al. (2007) found that mRNA transcript levels of IGFBP3 were 

greater in porcine foetuses which were small in size for their gestational age compared 

with foetuses of normal size. In the current study, AA had greater levels of IGFBP3 in 

muscle tissue compared to BB. The suggestion that IGFBP3 may function to inhibit 

growth is supported by the fact, that, in this study the BB animals had consistently 
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larger scanned M. longissimus thoracis et lumborum depth than AA at all times 

throughout their lives (Campion et al., 2009a) and at slaughter had larger M. 

longissimus thoracis et lumborum area per kilogram of carcass weight (Campion et al., 

2009b). Furthermore, Clemmons (2009) suggests that lower concentrations of IGFBPs, 

including IGFBP3 alter the equilibrium between IGF-1 and IGF-1R to enhance IGF-1 

effects, further supporting this theory.  

The endocrine, autocrine, and paracrine functions of IGF-1 are mediated through 

binding to IGF receptors (IGF-1R and IGF-2R). IGF-1 and IGF-2 bind to IGF-1R with 

varying degrees of affinity and the IGF-1R-activated intracellular processes can affect 

cell proliferation and differentiation (Phillippou et al., 2007; Duan et al., 2010). An 

effect of sire breed was recorded for IGF-1R, with AA having greater mRNA 

expression compared to BB. However, both systemic IGF-1 concentrations as well as 

local IGF-1 gene expression in muscle were not different between sire breeds. In 

addition, there was no association between IGF-1R expression and circulating IGF-1 

concentrations at slaughter (data not shown). Tilley et al. (2007) reported that IGF-1R 

mRNA levels were greater in small foetuses compared with foetuses of average size. In 

addition, Micke et al. (2011) found that expression of IGF-1R was up-regulated at 

slaughter in muscle of cattle that were smaller at birth and suggested that this increase in 

gene expression acts as a compensatory effect in lighter animals to promote muscle 

growth. The positive association between IGFBP3 and IGF-1R expression reported in 

the current study supports that finding. 

Myostatin, a member of the TGF-ß superfamily is a negative regulator of muscle 

mass (McPherron et al., 1997). However, in the current study there was no value in 

measuring gene expression of myostatin to investigate its regulatory effect on muscle 

growth as mutations in the myostatin coding sequence result in a truncated protein and 

consequently muscle hypertrophy or ‘double’ muscling occurs (McPherron et al., 1997; 
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Fahrenkrug et al., 1999). The Piedmontese and BB are two such breeds in which this 

phenomenon is observed (McPherron et al., 1997). The myostatin mutation 

phenomenon and its effect on muscle growth and the somatotropic axis must be 

considered when attempting to address potential effects of sire breed or EPDcwt for 

crossbred BB animals. Crossbred BB animals that are heterozygous for the double 

muscling myostatin mutation have increased muscle mass compared to their 

conventional counterparts (Casas et al., 2004). At slaughter, BB had heavier carcasses, 

greater dressing percentage and greater muscle size compared with AA. The IGF-1 and 

myostatin signaling pathways work simultaneously to achieve a controlled but flexible 

system for controlling muscle growth (Otto and Patel, 2010). Kamanga-Sollo et al. 

(2003) reported that myostatin caused increased production (doubling) of IGFBP3 

mRNA in porcine embryonic cells compared to control cultures which consequently 

resulted in reduced cell proliferation. It has been reported that free IGFBP3 which is not 

bound to IGF, affects cells via IGF-independent methods (Hwa et al., 1999; Baxter, 

2000). A number of mechanisms have been proposed which characterise the 

relationship between IGFBP3 and myostatin (Dayton and White, 2008); however, the 

full process has yet to be elucidated. A potential mechanism derived from the work of 

Dayton and White (2008) postulated that IGFBP3 mediates the proliferation-

suppression actions of myostatin by down-regulating the production of co-repressors, 

Ski and SnoN. In the current study, as BB animals had lower mRNA transcript levels of 

IGFBP3 compared to AA animals, we suggest that myostatin produced in the AA 

animals is fully functioning resulting in greater mRNA transcript levels of IGFBP3 in 

AA compared to the BB animals. In contrast, all of the BB cattle employed in this 

study, should have been heterozygous for the myostatin mutation resulting in smaller 

levels of active myostatin and therefore IGFBP3 expression remained low. 



 

 115 
 

Consequently, the lower levels of IGFBP3 may have contributed to the greater muscle 

mass in BB animals. 

The main IGFBP secreted by skeletal muscle is IGFBP5 (Duan et al., 2010). 

Depending on tissue type and circumstance, IGFBP5 has the ability to inhibit or 

potentiate IGF action (Clemmons, 1997; Ewton et al., 1998; Schneider et al., 2002). In 

skeletal muscle, Mukherjee et al. (2008) concluded that IGFBP5 inhibited IGF-1 action. 

They noted that the majority of other studies analyzing IGFBP5 action on IGF-1 in 

muscle reported similar findings, however, they emphasised that many of these case 

studies involved over-expression of IGFBP5. Surprisingly, in the current study IGFBP5 

was not differentially expressed across sire breed or EPDcwt. Lehnert et al. (2007) 

highlighted the gene expression pattern of IGFBP5 in M. longissimus of developing 

bovine foetuses, as well as new born calves. The authors reported that expression of 

IGFBP5 was significantly reduced in new born calves compared with d 60, d 135, and d 

195 of fetal development, suggesting that IGFBP5 may play a role in early muscle 

development in the bovine. The animals in the current study had a mean slaughter age 

of 764 d. To examine the potentiating or inhibitory effects of IGFBP5, muscle sampling 

by biopsy collection would be required at key growth periods throughout the animals’ 

life, starting at an earlier age. Alternatively, Ning et al. (2007) proposed that IGFBP3 

can compensate for the loss of a functioning IGFBP5 protein in mammary tissue. In that 

study, IGFBP5 knockout mice exhibited normal growth and body composition. In the 

current study, although IGFBP5 was highly expressed in both breeds, increased 

IGFBP3 expression in AA was possibly compensating for the lack of a change in gene 

expression of IGFBP5 in these animals. However, this theory warrants further 

investigation in bovine skeletal muscle as correlation analyses detected a positive 

relationship between gene expression of IGFBP5 and expression of IGFBP3.  
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3.4.3 Chapter conclusion 

This is the first study to examine and report differences in the expression of key 

somatotropic genes in the muscle of cattle of H or L EPDcwt and across breeds of such 

contrasting morphology and maturity type. We have demonstrated that elevated IGF-1 

expression in muscle tissue may serve to promote growth in vivo supporting many other 

research findings (Powell-Braxton et al., 1993; Clemmons, 2009). The current study 

supports the findings of previous research, whereby IGFBP3 was proposed to mediate 

the equilibrium between IGF-1 and IGF-1R to enhance IGF-1 effects, thus promoting 

growth. Together an increase in gene expression of IGF-1 and a reduction in transcript 

levels of IGFBP3 in muscle may play a role in greater muscle growth potential in steers 

during the finishing period. Consequently, IGFBP3 and IGF-1 may serve as potential 

candidates for future investigation of molecular markers for muscle growth including 

exploration of small RNA regulation, transcription factors, and copy number and SNP 

variation. Indeed, recent data has shown that a SNP in the promoter region of IGF-1, 

predicted to introduce binding sites for transcription factors Heat Shock Factor 1 

(HSF1) and Zinc finger protein 217 (ZNF217) was associated with increased cow 

carcass weight (Mullen et al., 2011). Future studies should focus on sequencing the 

entire IGF-1 and IGFBP3 genes and regulatory regions in large numbers of animals 

divergent in growth performance for SNP discovery and subsequent association studies. 

Following appropriate validation, such markers could be incorporated into future cattle 

breeding programs to improve the accuracy of selection for muscle growth. However, as 

this study clearly demonstrates, the expression of these key genes varies between 

breeds, thus emphasizing the necessity to validate all markers for growth across breed. 
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Chapter 4 
 
 
 
 
 
 

Proteomic Profiling of M. longissimus thoracis et 

lumborum from Aberdeen Angus and Belgian 

Blue Steers Varying in Genetic Merit for Carcass 

Weight 
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4.1 Introduction 

Bovine skeletal muscle is a tissue of significant economic importance worldwide. 

Approximately 17 kg in Europe and up to in 37 kg in USA of beef is consumed per 

capita annually (USDA, 2011). Genetic evaluations for a range of performance traits 

across all of the main cattle breeds in Ireland are undertaken by the Irish Cattle 

Breeding Federation. Breeding value for growth rate, an important commercial trait 

reflecting lifetime growth, is estimated using a multi-trait animal model and is 

expressed as the expected progeny difference for carcass weight (EPDcwt) (Campion et 

al., 2009a). Similar genetic evaluations for carcass characteristics are routinely 

conducted worldwide (Crews et al., 2004; Van Groningen et al., 2006). 

Sire breed type and sire EPDcwt influence carcass characteristics including both 

yield and quality of saleable meat from cattle (Campion et al., 2009a,b; Keane and 

Moloney, 2010; Keane et al., 2011). Previously, Campion et al. (2009a) reported that 

M. longissimus thoracis et lumborum area and M. longissimus thoracis et lumborum 

area per unit carcass weight were greater for Belgian Blue × Holstein Friesian (BB) 

compared to Aberdeen Angus × Holstein Friesian (AA) sired steers and also for AA 

animals sired by bulls with high (H) compared to low (L) breeding values for carcass 

weight.  

BB is a late-maturing breed which accumulates more muscle compared to its 

early-maturing counterparts whereas AA, an early-maturing breed, are renowned for 

higher levels of marbling fat in muscle, which is favourably associated with tenderness 

and flavour of beef (Kuber et al., 2004). Bovine skeletal muscle is a heterogeneous 

tissue comprised of several fibre types, type I, IIa, IIb, IIc, IIx (Bouley et al., 2005; 

Oury et al., 2010) influenced by genotype of the animal (Bouley et al., 2005; Chaze et 

al., 2008). Additionally, its properties evolve during postnatal life and can be modified 

by environmental conditions (Therkildsen, 2005; Shibata et al., 2009).  



 

 119 
 

Studies to date have investigated the physical and physiological differences in 

animals varying in EPDcwt (Crews et al., 2004; Keane et al., 2011). In addition, Bernard 

et al. (2009) examined the effects of genetic selection in favour of high muscle growth 

on gene expression in muscle of young Charolais bulls using microarray technology. 

These authors showed that many genes of the glycolytic pathway were differentially 

expressed in bulls selected for H or L growth potential. Research has also been 

undertaken to understand the molecular difference in muscle characteristics of various 

cattle breeds (Lehnert et al., 2007; Sadkowski et al., 2009). However, to the authors’ 

knowledge, few data exist on the effect of either breed or genetic merit for carcass 

growth on global protein abundance in bovine muscle. Therefore, the objective of this 

study was to determine the effect of (i) sire breed and (ii) sire EPDcwt on the expression 

of proteins in M. longissimus thoracis et lumborum in AA and BB cattle. Proteomic-

based approaches offer researchers a snapshot of the proteins of the tissue being studied 

(Guo et al., 2008) and the M. longissimus thoracis et lumborum was selected due to its 

high commercial value. 
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4.2 Effect of sire breed and genetic merit for carcass weight on the chemical 

analysis and protein abundance of M. longissimus thoracis et lumborum 

 

4.2.1 Chemical analysis of M. longissimus thoracis et lumborum 

 See section 2.2.2.2 and 2.2.2.2.1 for full details of experimental design and animal 

selection. There was a difference in the chemical composition of the muscle between 

breeds (Table 4.1) with BB having higher (P < 0.001) protein and moisture (P < 0.02) 

content and a lower (P < 0.001) lipid concentration compared with AA. There was no 

effect (P > 0.05) of EPDcwt or sire breed × EPDcwt interaction on M. longissimus 

thoracis et lumborum composition following chemical analysis. 

 
Table 4.1 Effect of sire breed (B) and expected progeny difference for carcass 
weight (EPDcwt) on the chemical composition of M. longissimus thoracis et 
lumborum at slaughter 

 1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 2H 
= high for EPDcwt; L= low for EPDcwt. *P < 0.05, **P < 0.01, ***P < 0.001. 
 

 

4.2.2 Effect of sire breed on protein abundance  

Twenty-one protein spots, relating to sixteen protein products, were identified as 

different (P < 0.01) in their abundance across sire breed with fold changes larger than 

1.9 (Figure 4.1 and Table 4.2). To investigate the functional significance of the 

identified differentially expressed proteins, Ingenuity Pathway Analysis (IPA) software 

(IPA V9.0; Ingenuity Systems, Mountain View, CA http://www.ingenuity.com) was 

used. Overall the top canonical pathway identified was glycolysis/gluconeogenesis with 

three proteins [glycogen phosphorylase (PYGM), phosphoglycerate mutase 2 (PGAM2) 

Variable, % Breed1  EPDcwt
2  P-value 

 AA BB SED H L SED B EPDcwt B × 
EPDcwt 

Protein  22.22 23.12 0.16 22.76 22.57 0.16 0.001 0.25 0.88 
Moisture 71.39 73.29 0.27 72.39 72.30 0.27 0.02 0.73 0.64 
Fat 6.01 2.99 0.37 4.39 4.62 0.37 0.001 0.53 0.84 
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and aldolase A (ALDOA)] within the pathway activated. The second canonical pathway 

identified as activated was the citric cycle with enzymes aconitase-2 (ACO2) and 2-

oxoglutarate dehydrogenase (OGDH) identified as greater in abundance in AA 

compared to BB. The third canonical pathway was the protein kinase A signalling 

(PKA) pathway with proteins; myosin light chain 1 (MYL1), myosin light chain, 

phosphorylatable (MYLPF), PYGM, and troponin I (TNNI2) differing in abundance 

across breed. Finally, the fourth canonical pathway identified was the pentose phosphate 

pathway with ALDOA and phosphoglucomutase (PGM1) activated within the pathway. 

Other proteins identified as greater in abundance in AA compared to BB include AMP 

deaminase 1 (AMPD1), LIM domain binding 3 (LDB3), vinculin (VCL), capping 

protein alpha (CAPZA2), heat shock protein beta-1 (HSPβ1) and peroxiredoxin 6 

(PRDX6). 

 

4.2.3 Effect of EPDcwt on protein abundance  

No difference (P > 0.05) in protein spot abundance was detected between BBH and 

BBL animals. For AA however, a difference (P < 0.05) in protein abundance of three 

glycolytic enzymes was observed between H and L EPDcwt groups. These three proteins 

glucose-6-phosphate isomerase (GPI), enolase (ENO1) and pyruvate kinase (PKM2), 

were identified in the top canonical pathway, glycolysis/gluconeogenesis. These three 

proteins were higher in abundance in AAH compared to AAL steers (Table 4.3 and 

Figure 4.2). 
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Figure 4.1 Representative 2-D gel image of M. longissimus thoracis et lumborum of 
crossbred steers 
The proteins are indicated by spot number which correspond to those identified as 
varying with statistical significance between the different groups (see Table 4.2 and 
4.3). 
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Table 4.2 Proteins differentially expressed between Belgian Blue (BB) and Aberdeen Angus (AA) steers1 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 2↑ = Increased in AA vs. BB; ↓ = Decreased in AA vs. BB. 
3Phosphorylase, glycogen, muscle; 4Phosphoglycerate mutase 2; 5Phosphoglucomutase; 6Aldolase A; 7Aconitase-2; 82-oxoglutarate dehydrogenase; 9 
AMP deaminase 1;  10Slow Troponin T (slow); 11Troponin I type 2 (fast); 12Myosin light chain 1, skeletal, fast; 13Myosin light chain, phosphorylatable 
skeletal, fast; 43LIM domain binding 3; 15Vinculin isoform2, isoform 1; 16Capping protein alpha; 17Heat shock protein beta-1; 18Peroxiredoxin 6. 
 

No. Identified Protein NCBI accession 
No. (Source)1 

Mascot score Fold Change2 P - value Matched peptides / 
sequence coverage 

% 

Theoretical pI  /  
Mr (kDa) 

 Metabolic       
1 
2 
3 
6 

PYGM3 gi|73983205 (Canine) 
gi|154426116  
gi|28461197 

 224 
1652 
1374 
 609 

5.7↑ 
2.9↑  
2.8↑ 
2.0↑ 

<0.0001  
<0.0001 
<0.0001 

0.002 

6/10 
 34/47 
31/37 
18/24 

6.6/ 97.5 
6.7/97.5 
6.7/97.6 

4 PGAM24 gi|84000195 643 2.9↑ 0.004 13/49 9.0/28.8 
5 PGM15 gi|116004023 1029 2.2↓ 0.0001 21/52 6.4/61.8 
7 ALDOA6  gi|156120479 804 2.8↑ <0.0001 15/53 8.5/39.9 
8 ACO27 gi|74268076 816 5.3↑ 0.0006 17/30 8.0/85.9 
9 OGDH8 gi|115496742  491 3.9↑ 0.0001 12/12 6.3/116.8 
18 AMPD19 gi|154152079 279 4.0↑ 0.0002 6/10 6.9/87.2 
 Contractile apparatus       
10 TNNT110 gi|21039010 219 3.9↑ <0.0001 5/23 6.2/30.1 
11 TNNI211 gi|76658412  213 3.5↑ <0.0001 4/17 8.9/21.5 
19 MYL112 gi|1181841 451 4.6↓ <0.0001 8/52 4.7/18.8 
20 
21 

MYLPF13 gi|115497166 206 
497 

2.8↓ 
2.1↓ 

0.003 
0.005 

5/31 
9/61 

4.9/19.1 

 Cell structure       
12 LDB314 gi|78369256 362 4.0↑ 0.003 7/33 9.3/35.5 
13 
17 

VCL15 gi|194679459 
gi|194679457   

440 
432 

2.3↑ 
1.9↑ 

0.006 
0.003 

10/13 
10/10 

5.9/11.7 
5.6/124.3 

14 CAPZA216 gi|433308 (Human) 382 2.2↑ <0.0001 8/44 5.6/32.9 
 Cell defence       
15 HSPβ117 gi|85542053 750 2.2↑ 0.0006 15/76 6.0/22.4 
16 PRDX618 gi|27807167 626 1.9↑ 0.0003 13/60 6.0/25.1 
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Table 4.3 Proteins differentially expressed between Aberdeen Angus1 steers of either high (H) vs. low (L) for sire expected progeny difference 
for carcass weight (EPDcwt) 
 

1AA = Aberdeen Angus × Holstein Friesian; 2↑ = Increased in H compared to L for EPDcw; 3Enolase-3; 4Glucose-6-phosphate isomerase; 5Pyruvate 
Kinase. 
 

 

 

 

 

No. Identified Protein NCBI Accession No. 
(Source)1 

Mascot 
score 

Fold 
Change2 

P - value Matched peptides/ 
sequence coverage% 

Theoretical pI /  
Mr (kDa) 

 Metabolic        
22 ENO13 gi|87196501 (Canis) 1117 1.5↑ <0.0001 21/50 7.6/47.5 
23 GPI4 gi|94966765 646 1.8↑ 0.003 13/24 7.3/63.0 
24 PKM25 gi|73587283 894 1.7↑ 0.012 14/34 8.6/62.0 
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Figure 4.2 Representattion of 2-D gel ‘spots’ showing the protein abundance 
differences between AAH and AAL genotypes 
Clear visual differences in protein spot abundance can be identified for proteins a) 
glucose-6-phosphate b) pyruvate kinase and c) enolase between AAH and AAL steers.  
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4.3 Chapter summary, discussion and conclusion 

 

4.3.1 Chapter summary 

Bovine skeletal muscle is a tissue of significant value to the beef industry and global 

economy. Through proteome analysis, it may be feasible to detect potential molecular 

mechanisms regulating muscle growth and intramuscular fat accumulation. The current 

study aimed to investigate differences in protein abundance in skeletal muscle tissue of 

two cattle breeds of contrasting maturity (early vs late maturing), adiposity and muscle 

growth potential, Belgian Blue × Holstein Friesian (BB) and Aberdeen Angus × 

Holstein Friesian (AA). Twenty AA (n=10) and BB (n=10) steers, the progeny by 

artificial insemination of sires of either high (H) or low (L) genetic merit, expressed as 

expected progeny difference for carcass weight (EPDcwt), were evaluated as four genetic 

groups viz. BBH, BBL, AAH, and AAL (n=5 per treatment). Chemical composition 

analysis of M. longissimus thoracis et lumborum showed higher protein and moisture, 

and lower lipid concentrations for BB compared to AA. To investigate the effect of sire 

breed and EPDcwt on M. longissimus thoracis et lumborum, proteomic analysis was 

performed using 2-D gel electrophoresis followed by mass spectrometry.  Proteins were 

identified from their peptide sequences, using the NCBI and Swiss-prot databases. In 

terms of sire breed, metabolic enzymes involved in glycolysis (glycogen phosphorylase, 

phosphoglycerate mutase) and the citric acid cycle (aconitase-2, oxoglutarate 

dehydrogenase) were increased in AA whereas myosin light chain isoforms were 

decreased in AA compared to BB animals. Protein abundance of glucose-6-phosphate 

isomerase, enolase-3 and pyruvate kinase was higher in AAH compared to AAL 

animals. No difference in protein spot abundance was detected between BBH and BBL 

animals. This information will aid in the understanding of genetic influences controlling 
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muscle growth and fat accumulation, and could contribute to future breeding 

programmes to increase lean tissue gain of beef cattle. 

 

4.3.2 Discussion 

The current study examined the differences in protein abundance in M. longissimus 

thoracis et lumborum across two contrasting breeds of cattle (AA and BB) divergent in 

EPDcwt. These breeds were selected based on their well documented differences in (i) 

maturation rates (early vs. late) and (ii) intramuscular fat accumulation as well as 

perceived meat quality differences (Kuber et al., 2004; Sadkowski et al., 2009). 

 

4.3.2.1 Effect of sire breed on protein abundance  

The top canonical pathway identified as significantly different between sire breed was 

glycolysis/gluconeogenesis with three proteins, PYGM, PGAM2 and ALDOA within 

the pathway activated. Bernard et al. (2009) found that glycolytic enzymes were 

increased in bulls divergently selected for high, compared with low muscle growth. 

However, in the current study, AA had higher abundance of proteins involved in 

glycolysis and the citric cycle compared to BB cattle. Results from this study and those 

of Bernard et al. (2009) may differ due to the difference in sire breed genetics and age 

of the animals employed in the study. Purebred and crossbred AA animals are renowned 

for having large amounts of intramuscular adipose tissue content within the muscle 

which increases with age (Hocquette et al., 1998; Dinh et al., 2010). In the current 

study, chemical analysis of M. longissimus revealed, that at slaughter, AA animals had 

higher lipid concentrations, thereby supporting this theory. A possible explanation for 

higher abundance of glycolytic enzymes in AA may be due to ‘marbling’ of fat within 

the muscle. In support of the current findings, Murigiano et al. (2010) compared M. 

longissimus from two distinct pig breeds, Casertana (high lipid deposition) and Large 
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White (lean meat production) and reported that the Casertana breed had higher 

abundance of glycolytic enzymes compared to Large White animals. Additionally, 

consistent with the current findings, Sieczkowska et al. (2010) reported that high PKM2 

protein abundance, an enzyme involved in the glycolytic pathway, was linked with an 

increase in intramuscular fat content in M. longissimus in pigs. In fatty acid synthesis, 

NADPH is required to support lipogenesis. In ruminants, 50 - 80% of NADPH required 

for fatty acid synthesis in adipose tissue is produced by glucose oxidation via the 

pentose phosphate pathway (Vernon, 1981). Up to 50% of NADPH used in fatty acid 

synthesis is also generated via decarboxylation of isocitrate to α-ketoglutarate (isocitrate 

dehydrogenase pathway) (Vernon, 1981; Nafikov and Beitz, 2007). This action is 

preceded by the activity of the enzyme ACO2 and followed by a reaction involving the 

enzyme OGDH. These enzymes are involved in the citric cycle, the third canonical 

pathway identified, which were increased in AA compared to BB steers in the current 

study. This suggests that greater protein abundance of enzymes relating to oxidative 

metabolism may be associated with intramuscular fat accumulation in muscle, however, 

there are greater quantities of mitochondria, where the citric acid cycle takes place, in 

slow-twitch compared to fast-twitch fibre and therefore this warrants further 

investigation. This study reveals that different metabolic actions are taking place in the 

muscle tissue which directly relates to sire breed type in cattle. Intramuscular fat 

accumulation may be associated with increased abundance of enzymes relating to 

glycolysis and the current research supports these findings (Murgiano et al, 2010; 

Sieczkowska et al, 2010). 

Glucose-1-phosphate is converted to glucose-6-phosphate during glycogen 

breakdown by phosphoglucomutase (PGM1) allowing it entry into the glycolytic 

pathway (McMurry and Begley, 2005). Alternatively, this enzyme functions in reverse 

also, facilitating glycogen synthesis. A 2.2 fold increase was observed in expression of 
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PGM protein for BB compared to AA cattle. Consistent with the current results, 

Hamelin et al. (2006) reported that the protein abundance of PGM and PGM2 was 

increased in longissimus muscle of rams with muscular hypertrophy compared to 

conventional genotypes. Muscular hypertrophy or ‘double’ muscling occurs from 

mutations in the myostatin coding sequence result in a truncated protein (McPherron et 

al., 1997). Consequently, muscle fibre type is altered with double-muscle breeds having 

greater fast-twitch glycolytic and reduced slow-twitch oxidative fibres (Bouley et al., 

2005). Fast-twitch glycolytic, also referred to as white fibres, store high quantities of 

glycogen (Sherwood, 2006) and therefore it is hypothesised that in the current study 

PGM functions in glycogen synthesis rather than glycogen breakdown. 

The second canonical pathway identified in the current study was the PKA 

signalling pathway which incorporated proteins such as MYL1, MYLPF and TNNI2. 

This pathway is central to many functions in the cell as well as plays a role in 

cytoskeleton regulation. In the study of Murigiano et al. (2010), M. longissimus from 

two distinct pig breeds, Casertana and Large White, was compared. Proteins related to 

MYL1 were increased in Large White, a breed which excels in growth of lean muscle 

tissue, consistent with the data for BB cattle. 

 

4.3.2.2 Effect of EPDcwt on protein abundance  

The glycolytic pathway provides cells with metabolic precursors and a rapid source of 

energy (Murgiano et al., 2010). The results of the current study show that within AA, a 

statistically significant difference in enzymes relating to glycolysis and gluconeogenesis 

were observed between animals of H compared with L EPDcwt, with GPI, ENO3 and 

PKM2 exhibiting increased protein expression in AAH compared to AAL animals. 

Bernard et al. (2009) examined the effects of genetic selection in favour of high muscle 

growth on gene expression in the muscle of young Charolais bulls using microarray 
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technology. Consistent with the current findings, the authors reported that gene 

expression of GPI and ENO3 was increased in bulls of H compared to L muscle growth. 

In addition, it has been established that animals undergoing accelerated muscle growth 

(e.g. compensatory growth) exhibit greater gene and protein abundance of GPI, ENO3 

and PKM2 (Lametsch et al, 2006; Lehnert et al., 2006). Teltathum and Mekchay, 

(2009) and Doherty et al. (2004) reported that during pectoralis muscle growth in 

chickens, enzymes relating to the glycolytic pathway (ENO3 and PKM2) were greater 

in abundance during a growth phase compared to at hatching. In ovine studies, Hamelin 

et al. (2010) reported that the protein abundance of ENO3 and PKM2 was greater in the 

M. longissimus of fast compared to slow growing rams. These findings indicate that 

high muscle growth potential may be associated with increased glycolysis, and in the 

case of Bernard et al. (2009), decreased oxidative metabolism. 

In contrast to the findings for AA, no effect of EPDcwt on protein abundance was 

detectable for BB animals. This result is consistent with the performance data for these 

animals, reported by Campion et al. (2009a), where no difference in growth rate or 

carcass weight between BB steers of H or L EPDcwt was observed. The authors 

(Campion et al., 2009a) proposed that this absence of a genetic merit effect on growth 

rate in BB steers may be associated with the fact that these animals are crossbred from 

Holstein-Friesian cows and heterozygous for the mutation in the myostatin gene, 

whereas EPDcwt values are calculated based on performance data from both crossbred 

and purebred (heterozygous and homozygous for the mutation in the myostatin gene, 

respectively) animals. 

 

4.3.3 Chapter conclusion  

We have provided evidence for different metabolic processes taking place in muscle of 

crossbred AA and BB steers which are specific to breed type. AA, an early maturing 
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breed lays down intramuscular fat at an earlier age while late maturing breeds like BB 

continue growing to a heavier mature weight. Proteins related to fibre type were 

increased in BB steers, with proteins involved in glycolysis and the citric cycle, in 

greater abundance in the muscle of AA animals. In addition, this study facilitated 

greater insight into differential muscle proteome expression across bovine breeds 

divergently selected for muscle growth rate potential, with proteins involved in 

glycolysis increased in AAH compared to AAL steers. Data from this study will aid in 

the understanding of genetic influences controlling muscle growth and fat accumulation 

and future work will continue to examine the potentiating or inhibitory effects of sire 

breed and EPDcwt at more critical time points during the growth phase of the animal to 

elucidate key proteins regulating muscle growth. Glycolytic enzymes are potential 

candidates for future investigation including exploration of single nucleotide 

polymorphisms. Following appropriate validation, these markers could be incorporated 

into future cattle breeding programs to improve the accuracy of selection for muscle 

growth. 
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Chapter 5 
 
 
 
 
 
 

Live Weight Gain, Feed Intake, Linear Body 

Measurements, Carcass Measurements and 

Plasma Hormones and Metabolite 

Concentrations in Steers Undergoing 

Compensatory Growth 
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5.1 Introduction 

In beef cattle production, feed accounts for approximately 75% of total variable costs 

(Connolly et al., 2010; Finneran et al., 2010). Thus, strategies to reduce costs without 

compromising overall feed efficiency or animal performance are of particular interest to 

the sector. Compensatory growth is the ability of an animal to undergo accelerated 

growth after a period of restricted feeding, as reviewed by Hornick et al. (2000). The 

exploitation of this biological phenomenon facilitates redistribution of feed supply from 

a time when feed is expensive (e.g. wintertime) to when it is cheap and plentiful (e.g. 

pasture in spring/summer) while still maintaining overall production targets through 

utilisation of compensatory growth potential. Animals undergo compensatory growth 

when previous growth rates are below the potential maximum (Jobling, 2010). Due to 

its potential benefits to the economic efficiency of cattle production, the trait has been 

the subject of numerous studies worldwide (Ritacco et al., 1997; Leeson and Zubair, 

1997; Tolla et al., 2003; Johansen and Overturf, 2006). Many of these studies have 

investigated the effect of feed restriction, followed by compensatory growth, on body 

weight, carcass composition, meat quality, blood metabolites and hormones and 

metabolic organ size (Coleman and Evans, 1986; Keane and Drennan, 1994; Sainz et 

al., 1995; Yambayamba et al., 1996a,b; Hornick et al., 1998a,b; Tolla et al., 2003; 

Lehnert et al., 2006; Fiems et al., 2007; Connor et al., 2009).  Metabolic and blood 

hormone profiles have offered revealing insights into the physiological changes taking 

place in the animals body during feed restriction and compensatory growth 

(Yambayamba et al., 1996a,b). However, further research in now required to 

stimultaneously elucidate all aspects of this growth phenomena including performance 

traits, feed intake, blood metabolites and hormones, and carcass characteristics together 

with possible interations with maturity genotype. The objective of this study therefore 

was to eluicidate the response to realimentation following dietary restriction in growth 
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rate, feed efficiency, metabolite and metabolic hormone profiles and body and carcass 

characteristics across two beef cattle genotypes representing contrasting maturity types. 
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5.2 Effect of genotype and feeding treatment on the live weight, live weight gain, 
feed intake, linear body measurements, carcass measurements and plasma blood 
hormones and metabolites 
 

5.2.1 Dry matter intake (DMI) and feed conversion ratios (FCR) 

See section 2.2.2.3 and 2.2.2.3.1 for full details of experimental design and animal 

selection. The effect of both genotype and feeding treatment on DMI and feed 

conversation ratio (FCR) is presented in Table 5.1. A genotype × feeding treatment 

interaction was observed during the differential feeding period with AA/L-H consuming 

more silage DM compared to BB/L-H. As expected, there was a feeding treatment 

effect (P < 0.001) for both silage and total DMI with L-H consuming more silage but 

less total DM compared to H-H steers during the differential feeding period. 

Interestingly, during the feed realimentation period, there was no difference (P > 0.05) 

in total DMI between groups. Overall, for the entire period there was no effect of 

genotype (P > 0.05) on DMI; however, L-H consumed 20 % less feed on a DM basis 

compared to H-H steers (P < 0.001).  

FCR was not affected by genotype (P > 0.05) at any time throughout the study. 

There was an effect of feeding treatment, however, with L-H animals having a greater 

FCR (P < 0.05) during the differential feeding period. During the realimentation period 

though, the converse was true, with H-H having a greater FCR (P < 0.001). For the 

study overall, there was no effect of genotype on FCR but FCR was better for L-H 

compared to H-H steers. 

 

5.2.2 Live weight and live weight gain 

Live weight changes and live weight gains as affected by both genotype and feeding 

treatment are reported in Table 5.2. No genotype × period interaction (P > 0.05) was 

observed for live weight with both genotypes having similar live weights across the
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Table 5.1 Effect of genotype (G) and feeding treatment (F) on total DM intakes (DMI) and feed conversion ratio (FCR) 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 2H-H = ab libitum access to feed throughout the study; L-H = 
Restricted feeding for 99 d followed by ad libitum access to feed until slaughter. 3Interaction, there was a G × F interaction (P < 0.05) with values for 
AA/H-H, AA/L-H, BB/H-H and BB/L-H 2.14, 3.99, 2.15 and 3.93 kg/day, respectively. 4Live weight gain ÷ total DMI. 
 

Trait Genotype1 

(G) 
 Feeding 

treatment2  (F) 
 P-value 

 AA BB SED H-H L-H SED G F 
DMI, kg/d         

Differential feeding period, d 0 to 99         
Silage3 3.07 3.04 0.02 2.14 3.96 0.02 0.09 <0.0001 
Total 6.92 6.96 0.06 9.48 4.41 0.08 0.99 <0.0001 

Early realimentation period, d 99 to 131         
Total 10.27 10.32 0.09 10.34 10.25 0.09 0.99 0.89 

Final period to slaughter, d 131 to 253         
Total 10.24 10.21 0.09 10.12 10.33 0.09 0.99 0.20 

Entire period, d 0 to 253         
Total 8.91 8.92 0.07 9.93 7.89 0.19 0.82 <0.0001 

Feed Conversion Ratio4          
Differential feeding period, d 0 to 99 7.44 6.99 0.58 6.51 7.92 0.56 0.45 0.02 
Early realimentation period, d 99 to 131 6.92 7.42 0.62 8.72 5.63 0.61 0.44 <0.0001 
Finishing period, d 131 to 253 6.29 5.78 0.34 6.45 5.61 0.33 0.14 0.01 
Entire period, d 0 to 253 6.44 6.15 0.18 6.65 5.94 0.18 0.13 0.0005 
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Table 5.2 Effect of genotype (G) and feeding treatment (F) on mean live weight and live weight gain 
 
 

Trait Genotype1  
(G) 

 Feeding 
treatment2 (F) 

 P-value 

Live weight, kg AA BB SED H-H L-H SED G F 
Start, d 0  307 288 7.01 296 298 6.89 0.79 1.00 
End of differential feeding period, d 99 404 390 7.01 438 356 6.89 0.99 <.0001 
Realimentation, d 131 452 438 7.01 474 416 6.89 0.99 <.0001 
Slaughter, d 299 655 644 7.10 669 630 6.99 1.00 0.04 

Live weight gain, kg/d         
Differential feeding period, d 0 to 99 1.06 1.12 0.052 1.55 0.63 0.050 0.28 <.0001 
Realimentation period, d 99 to 131 1.50 1.50 0.097 1.26 1.74 0.093 0.98 <.0001 
Realimentation period, d 131 to 195 1.65 1.90 0.07 1.63 1.91 0.06 0.001 0.0001 
Realimentation period, d 195 to 253 1.34 1.33 0.09 1.34 1.33 0.09 0.89 0.87 
Realimentation period, d 253 to 299 0.91 0.64 0.18 0.84 0.71 0.17 0.14 0.47 
Entire period, d 0 to 299 1.25 1.26 0.038 1.33 1.18 0.036 0.81 0.0004 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue× Holstein Friesian. 2H-H = ad libitum access to feed; L-H = restricted access to feed 
for 99 d followed by ad libitum access to feed until slaughter. There was no G × F interaction. 
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various measurement timepoints. No difference for live weight (P < 0.001) was 

observed between feeding treatments observed at the start (d 0); however, H-H were 

heavier compared to L-H steers at the end of the differential feeding  period (d 199; P < 

0.001) which sustained until slaughter (d 299; P < 0.05). 

There was no effect of genotype on live weight gain for any period throughout 

the study with the exception of between d 131 to d 195 (middle of the realimentation 

period) when BB had greater gains compared to AA steers (P < 0.001). There was an 

effect of feeding treatment during the differential feeding period (P < 0.001) with live 

weight gains greater in H-H compared to L-H steers; however, from the end of the 

differential feeding period (d 99) to early in the realimentation period (d 131) live 

weight gain was greater (P < 0.001) for the L-H compared to the H-H steers. This 

greater (P < 0.001) live weight gain of L-H steers continued up to d 195 i.e. 96 d post 

commencement of the realimentation period. There after, there was no difference (P > 

0.05) between feeding treatments in live weight gain for the remainder of the study.  

 

5.2.3 Linear measurements and ultrasonically scanned muscle and fat depth 

The effect of genotype and feeding treatment on carcass linear measurements and 

ultrasonically scanned muscle and fat depths are reported in Table 5.3. No genotype × 

period (P > 0.05) interaction was observed for height at withers, chest girth, back length 

or chest depth throughout the study; however, there was an overall effect of genotype 

with height at withers (tendency; P = 0.06), back length (P < 0.01) and chest depth (P < 

0.05) greater in BB compared to AA steers. For pelvic width measurements scaled to 

live weight, BB had greater (P < 0.01) values compared to AA steers at the end of the 

differential feeding period (d 99) with a strong tendency for greater pelvic width 

proportions in BB compared to AA early in the realimentation period (d 131; P = 0.06). 
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Table 5.3 Effect of genotype (G) and feeding treatment (F) on linear body 
measurements and ultrasonically scanned muscle and fat depths 
 

 1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 
2H-H = ab libitum access to feed throughout the study; L-H = Restricted feeding for 99 
d followed by ad libitum access to feed until slaughter. 3DFP = Differential feeding 
period. 4M. longissmus thoracis et lumborum. 5Average 13th rib and lumber fat 
measurements. There was no G × F interactions.  

Trait Genotype1  
(G) 

 Feeding 
treatment2 (F) 

 P-value 

 AA BB SED H-H L-H SED G F 
Linear body measurement         
Height at withers, mm/kg         

Start, d 0 3.69 3.86 0.102 3.73 3.82 0.101 0.76 0.99 
End of DFP3, d 99 3.03 3.11 0.056 2.79 3.34 0.055 0.81 <.0001 
Realimentation, d 131 2.65 2.69 0.050 2.55 2.79 0.049 0.97 <.0001 
Slaughter, d 299 2.01 2.06 0.039 1.98 2.09 0.038 0.85 0.08 

Chest girth, mm/kg            
Start, 0 d 4.78 4.72 0.082 4.75 4.75 0.081 0.99 1.00 
End of DFP3, d 99 4.34 4.39 0.059 4.13 4.59 0.059 0.99 <.0001 
Realimentation, d 131 3.91 3.90 0.053 3.79 4.02 0.052 1.00 0.001 
Slaughter, d 299 3.29 3.24 0.103 3.26 3.27 0.102 0.99 1.00 

Length of back, mm/kg         
Start, 0 d 3.27 3.45 0.063 3.38 3.31 0.063 0.22 0.94 
End of DFP3, d 99 2.71 2.72 0.044 2.50 2.93 0.044 1.00 <.0001 
Realimentation, d 131 2.27 2.33 0.045 2.23 2.37 0.044 0.94 0.03 
Slaughter, d 299 1.81 1.88 0.048 1.78 1.90  0.048 0.75 0.21 

Chest depth, mm/kg         
Start, d 0 1.85 1.93 0.039 1.87 1.90 0.039 0.47 0.99 
End of DFP3, d 99 1.56 1.59 0.026 1.47 1.69 0.026 0.94 <.0001 
Realimentation, d 131 1.37 1.39 0.022 1.33 1.43 0.022 0.93 <.0001 
Slaughter, d 299 1.10 1.13 0.021 1.10 1.14 0.021 0.88 0.63 

Pelvic width, mm/kg            
Start, d 0 1.29 1.44 0.079 1.43 1.29 0.079 0.63 0.71 
End of DFP3, d 99 1.08 1.13 0.015 1.04 1.17 0.015 0.01 <.0001 
Realimentation, d 131 0.94 0.99 0.018 0.93 1.01 0.017 0.06 0.001 
Slaughter, d 299 0.82 0.85 0.049 0.82 0.84 0.023 0.21 0.98 

Ultrasound measurement         
Muscle depth4, mm         

Start, d 0 44.26 46.64 1.389 45.90 45.01 1.367 0.78 0.99 
Middle of DFP3, d 99 49.51 51.85 1.389 53.12 48.25 1.367 0.81 0.02 
End of DFP3, d 99 50.92 54.14 1.389 56.02 49.05 1.367 0.38 <.0001 
Realimentation, d 131 55.65 60.43 1.389 59.04 57.04 1.367 0.03 0.90 
Slaughter, d 299 58.77 67.06 1.417 62.49 63.33 1.393 <.0001 0.99 

Fat Depth5, mm         
Start, d 0 0.79 0.61 0.065 0.74 0.67 0.065 0.15 0.97 
Middle of DFP3, d 99 1.06 0.70 0.085 0.98 0.79 0.085 0.001 0.48 
End of DFP3, d 99 1.41 0.79 0.136 1.53 0.67 0.136 0.001 <.0001 
Realimentation, d 131 3.51 2.51 0.287 3.42 2.60 0.286 0.021 0.12 
Slaughter, d 299 7.41 5.14 0.481 6.77 5.78 0.48 0.001 0.55 
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A feeding treatment × period interaction (P < 0.001) existed for all body linear 

measurements. These were generally due to there being no difference between the 

feeding treatments at the start and large differences at the end of the differential feeding 

period which subsequently declined in magnitude during the realimentation period. For 

height at withers, chest girth, back length and chest depth H-H animals having lower 

proportions relative to bodyweight at the end of the differential feeding period (d 99; P 

< 0.001) and early in the realimentation period (d 131; P < 0.05) whereas, there was no 

difference between feeding treatments at the start (d 0; P > 0.05) or at the end of the 

study (d 299; P > 0.05). For pelvic width, H-H and L-H animals had similar values at 

start of the study (d 0; P > 0.05) and again at slaughter (d 299; P > 0.05); however, H-H 

had greater proportions relative to bodyweight when compared to L-H animals at the 

end of the differential period (d 99; P < 0.001) and beginning of the realimentation 

period (d 131; P < 0.001). 

There was no difference for muscle depth between genotypes at the start of the 

study (d 0; P > 0.05), during the differential feeding period (d 55; P > 0.05) or at the 

end of the differential feeding period (d 99; P > 0.05); however, BB had greater muscle 

depth during the realimentation period (d 131; P < 0.05) to slaughter compared to AA 

steers (d 299; P < 0.001). Across feeding treatment, L-H had lower muscle depth during 

the differential feeding period (d 55; P < 0.05) and at the end of the differential feeding 

period (d 99; P < 0.001) compared to H-H steers; however, early into the realimentation 

period this difference was negated (d 131; P < 0.05).  

Both genotypes had similar fat depth values at the start of the study (d 0; P > 

0.05); however, AA had greater fat depths compared to BB animals at the end of the 

differential feeding period (d 99; P < 0.01), during the realimentation period (d 131; P < 

0.05) and at slaughter (d 299; P < 0.001). L-H steers had lower fat depth values at the 

end of the differential feeding period (d 99; P < 0.001) compared to H-H steers, 
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however early into the realimentation period this difference was absent (d 131; P > 

0.05) which continued until slaughter (d 299; P > 0.05). 

 

5.2.4 Metabolic hormones and metabolites   

The effect of feeding treatment on plasma concentrations of IGF-1 is reported in Figure 

5.1a. No genotype × period interaction (P > 0.05) was observed for concentrations of 

IGF-1. L-H animals had lower values for plasma concentrations of IGF-1 compared to 

the H-H steers at the end of the differential feeding period (d 99; P < 0.001) but similar 

values at all other times throughout the study. 

A similar profile to IGF-1 was observed for concentrations of insulin. No effect 

of genotype or no genotype × period interaction (P > 0.05) was observed with similar 

values for AA and BB steers at all stages throughout the study. Plasma concentrations 

of insulin with similar for H-H and L-H animals at the start of the study (d 0; P > 0.05), 

during the realimentation period (d 131; P > 0.05) and at slaughter (d 299; P > 0.05); 

however, lower values were detected in L-H steers at the end of the differential feeding 

period (d 99; P < 0.001), compared to H-H steers (Figure 5.1b). 

Leptin concentrations were greater in AA at slaughter (d 299; P < 0.01) but 

similar values at the start of the study (d 0; P > 0.05), at the end of the differential 

period (d 99; P > 0.05) and during the realimentation period (d 131; P > 0.05) compared 

to BB steers. L-H animals had lower plasma concentrations of leptin at the end of the 

differential feeding period (d 0; P < 0.001) compared to the H-H steers but similar 

values at all other times (Figure 5.1c). 

No effect of genotype or interaction involving genotype (P > 0.05) was observed 

for blood glucose concentrations. Blood glucose concentrations were similar for H-H 

and L-H steers at the start of the study (d 0; P > 0.05), late in the realimentation period 

(d 233 and d 273; P > 0.05) and at slaughter (d 299; P > 0.05); however, L-H had lower 
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Figure 5.1 Effect of feeding treatment1,2 on plasma concentrations of blood 
hormones 
***P < 0.001. Error bars equal standard error (s.e.). 1H-H = ab libitum access to feed 
throughout the study; L-H = Restricted feeding for 99 d followed by ad libitum access 
to feed until slaughter. 2There was no differences observed between genotypes at any 
time so feeding treatments effect reported only. 3d 0 = Start; d 99 = End of differential 
feeding period; d 131 = Realimentation period; d 299 = Slaughter.  
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values during, and at the end of the differential feeding period (d 55 and d 99, 

respectively; P < 0.001) compared to the H-H steers with the opposite effect evident 

early in the realimentation period (d 131; P < 0.01). During the realimentation period 

the differences narrowed and by d 233 of the study (after 134 d post commencement of 

realimentation) there was no difference in glucose concentrations between feeding 

treatments (Figure 5.2a). 

Plasma urea concentrations (P < 0.001) were greater for AA compared to BB 

(5.46 vs. 4.34, respectively) at d 233 of the study, after 134 d post realimentation but 

similar values at all other times throughout the study. Additionally, blood urea 

concentrations for H-H and L-H steers were similar at the start (d 0; P > 0.05), end of 

the realimentation period (d 233 and d 273; P > 0.05) and at slaughter (d 299; P > 0.05); 

however, during the differential feeding period and early in the realimentation period, 

L-H had lower values (P < 0.05) compared to H-H animals (Figure 5.2b). 

No effect of genotype or interaction involving genotype (P > 0.05) was observed 

for βHB concentrations. Plasma concentrations of βHB were lower for L-H animals 

during (d 55) and at the end of the differential feeding period (d 99; P < 0.001) and 

early in the realimentation period (d 131; P < 0.05) compared to H-H animals but no 

difference thereafter (Figure 5.2c).  

Similarly, no effect of genotype or feeding treatment or interaction (P > 0.05) or 

interaction between them was observed for plasma concentrations of NEFA (Figure 

5.2d). 

 

 

 

 

 



 

 144 
 

 

3.7

4.2

4.7

5.2

G l
 u 

c o
 s e

,   
 m

 m
 o 

l / 
L

 

1.0

2.5

4.0

5.5

U r
 e a

,   
m 

m 
o l

 / L

 

0.1

0.2

0.3

0.4

B H
 B,

   m
 m

 o 
l / 

L

 

0.0

0.2

0.4

0.6

NE
FA

,   
 m

 m
 o 

l / 
L

 

 
 
 
Figure 5.2 Effect of feeding treatment1 on plasma concentrations of blood 
metabolites 
*P < 0.05, **P < 0.01, ***P < 0.001. 1H-H = ab libitum access to feed throughout the 
study; L-H = Restricted feeding for 99 d followed by ad libitum access to feed until 
slaughter. 2Betahydroxybutyrate = βHB. 3d 0 = Start; d 55 = Middle of differential 
feeding period; d 99 = End of differential feeding period; d 131 = Realimentation 
period; d 233 = Realimentation period; d 273 = Realimentation period; d 299 = 
Slaughter. 
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5.2.5 Carcass traits and non-carcass components 

The effect of genotype and feeding treatment on carcass traits, 5-rib joint weight, M. 

longissimus thoracis et lumborum area, rib joint tissue proportion and non-carcass 

components are summarised in Table 5.4. No genotype × feeding treatment interaction 

was recorded for any of these traits. There was an effect of genotype (P < 0.05) and 

feeding treatment (P < 0.001) for CW with H-H and BB animals having heavier 

carcasses compared to L-H and AA animals, respectively.  

An effect of genotype (P < 0.001) was observed for dressing percentage with 

BB having greater values compared to AA steers. There was no effect of feeding 

treatment (P < 0.05) on dressing percentage. 

There was an effect of genotype (P < 0.001) on carcass conformation class with 

BB carcasses having greater values compared to AA carcasses. However, there was no 

effect (P > 0.05) of feeding treatment on carcass conformation class. 

An effect of genotype (P < 0.001) for carcass fat class was also observed with 

AA having greater values compared to BB carcasses. There was no effect of feeding 

treatment on carcass fat class, though, L-H tended (P = 0.08) to have a lower carcass fat 

class value compared to H-H carcasses. 

No genotype × feeding treatment interaction was observed for M. longissimus 

thoracis et lumborum area, weight of 5-rib joint or 5-rib joint composition. There was 

no effect of genotype (P > 0.05) on 5-rib joint weight however, there was an effect of 

feeding treatment (P < 0.001) with H-H having a heavier 5-rib joint compared to L-H 

carcasses. There was an effect of genotype (P < 0.001) on M. longissimus, total muscle 

and fat proportions with greater values for the first two traits for BB and a greater value 

for the latter for AA carcasses. There was no effect of genotype on the proportion of 

other muscle (P > 0.05), muscle trim (P > 0.05) or bone plus ligamentum total fat 

proportions (P < 0.05) with nuche/supraspinale proportions (P > 0.05). 
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Table 5.4 Effect of genotype (G) and feeding treatment (F) on slaughter traits, 5-
rib joint weight, M. longissimus thoracis et lumborum area, rib joint dissection and 
selected non-carcass components and carcass measurements 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 
2H-H = ab libitum access to feed throughout the study; L-H = Restricted feeding for 99 
d followed by ad libitum access to feed until slaughter. 3Scaled 1 (poorest) to 15 (best). 
4Scaled 1 (leanest) to 15 (fattest). 5M. longissimus thoracis et lumborum expressed per 
kilogram carcass weight; 6Expressed per kilogram of total 5-rib joint weight. 7Expressed 
per kilogram slaughter weight. 
 

Trait Genotype1  

(G) 
 Feeding 

treatment2 (F) 
 P-value 

 AA BB SED H-H L-H SED G F 
Cold carcass weight, kg 354 369 5.860 373 350 5.538 0.02 0.0003 
Dressing percentage, % 52.7 56.6 0.409 54.7 54.6 0.398 <.0001 0.75 
Carcass conformation3 7.25 9.08 0.411 8.33 8.02 0.402 <.0001 0.44 
Fat class4 10.39 7.96 0.478 9.59 8.75 0.466 <.0001 0.08 
Perinephric plus 
retroperitoneal fat, kg 

11.69 11.41 0.798 12.45 10.65 0.778 0.72 0.03 

Perinephric plus 
retroperitoneal fat5, g/kg  

34.24 31.20 2.246 34.24 31.20 2.191 0.18 0.17 

5-rib joint, kg 8.39 8.58 0.232 8.91 8.06 0.219 0.42 0.0006 
M. longissimus area5, cm2/kg 0.24 0.28 0.012 0.25 0.27 0.012 0.004 0.29 
Ribs joint composition6, g/kg         

M. longissimus 226.82 275.30 10.869 245.52 256.60 10.59 <.0001 0.31 
Other muscle 278.12 284.49 14.205 271.83 290.78 13.61 0.66 0.18 
Muscle trim 76.48 91.10 8.160 86.74 80.85 7.957 0.08 0.47 
Bone and other tissue 236.89 236.31 5.811 232.62 240.58 5.535 0.92 0.16 
Fat 185.70 115.84 13.070 166.59 134.96 12.74 <.0001 0.02 
Total muscle 569.64 641.95 11.866 594.41 617.18 11.57 <.0001 0.06 

Linear carcass measurements5         
Length of carcass, mm/kg 3.84 3.64 0.068 3.65 3.82 0.064 0.006 0.01 
Carcass depth, mm/kg 1.39 1.32 0.030 1.31 1.40 0.029 0.04 0.004 
Leg width, mm/kg 1.22 1.21 0.023 1.17 1.25 0.022 0.75 0.001 
Leg thickness, mm/kg 0.83 0.82 0.014 0.80 0.84 0.014 0.49 0.005 
Leg length, mm/kg 2.07 1.98 0.038 1.97 2.08 0.036 0.03 0.006 

Non-carcass components6         
Heart, g/kg 4.27 4.05 0.167 4.03 4.28 0.163 0.21 0.13 
Lungs, g/kg 11.48 11.01 0.551 11.11 11.38 0.529 0.40 0.61 
Gall bladder, g/kg 1.14 1.16 0.088 1.14 1.16 0.088 0.75 0.74 
Liver, g/kg 10.56 10.58 0.383 10.45 10.69 0.373 0.95 0.53 
Spleen, g/kg 2.00 1.70 0.199 1.96 1.74 0.169 0.15 0.21 
Intestines, g/kg 41.76 38.54 1.33 40.63 39.67 1.29 0.02 0.46 
Rumen full, g/kg 58.41 54.39 2.627 53.88 58.90 2.468 0.14 0.05 
Rumen empty, g/kg 17.44 16.66 0.637 16.34 17.75 0.622 0.23 0.03 
Fore feet, g/kg 9.21 9.61 0.263 9.34 9.48 0.257 0.13 0.61 
Hind feet, g/kg 9.77 9.94 0.234 9.68 10.03 0.222 0.48 0.13 
Hide, g/kg 96.77 81.55 1.865 88.47 89.85 1.818 <.0001 0.45 
Kidney, g/kg 1.98 1.99 0.059 1.93 2.03 0.058 0.85 0.09 
Head, g/kg 28.95 30.23 0.548 28.94 30.24 0.534 0.03 0.02 
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There was an effect of feeding treatment on H-H having greater values compared to L-H 

carcasses. However, there was no effect of feeding treatment on the proportions of M. 

longissimus thoracis et lumborum (P > 0.05), other muscle (P > 0.05), muscle trim (P > 

0.05) or bone plus ligamentum nuche/supraspinale (P > 0.05). A strong tendency (P = 

0.06) for L-H animals to have greater total muscle proportion compared to H-H animals 

was also detected. There was an effect of genotype (P < 0.01) on scaled M. longissimus 

thoracis et lumborum area with values greater for BB compared to AA carcasses 

however there was no effect of feeding treatment (P > 0.05) on scaled M. longissimus 

thoracis et lumborum area.  

An effect of genotype was observed for scaled measurements of carcass length 

(P < 0.01), carcass depth (P < 0.05) and leg length (P < 0.05) with proportions in BB 

lower compared to AA carcasses. There was an effect of feeding treatment (P < 0.01) 

on all carcass measurements, when scaled for carcass weight, in that proportions were 

greater for L-H compared to H-H animals.  

There was an effect of genotype on weight as a proportion of SW of full 

intestines (P < 0.05), hide (P < 0.001) and head (P < 0.05) with greater values for the 

former two offal components for AA and a greater value for the latter for BB. There 

was no effect of genotype (P > 0.05) on the proportional weights of heart, lungs, gall 

bladder, liver, spleen, full rumen, empty rumen, feet (fore or hind), kidney, perinephric 

plus retroperitoneal and perinephric plus retroperitoneal fat scaled for carcass weight. 

When scaled for SW, there was an effect of feeding treatment on the weight of the 

rumen both full (P < 0.05) and empty (P < 0.05), and on the head (P < 0.05) with values 

greater in L-H compared to H-H steers. There was no effect of feeding treatment (P > 

0.05) on scaled measurements of weight for heart, lungs, gall bladder, liver, spleen, 

intestines full, feet (fore or hind), hide or kidney. There was an effect (P < 0.05) of 

feeding treatment on weight of perinephric plus retroperitoneal fat with H-H having 
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greater values compared to L-H carcasses; however, when scaled for carcass weight this 

effect was not statistically significant (P > 0.05).  
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5.3 Chapter summary, discussion and conclusion 

 

5.3.1 Chapter summary 

Compensatory growth is the ability of an animal to undergo accelerated growth after a 

period of restricted feeding. Crossbred Aberdeen Angus × Holstein Friesian (AA; n = 

22) or Belgian Blue (BB; n = 24) × Holstein Friesian steers were assigned to one of two 

treatment groups in a 2 (genotypes) x 2 (feeding treatments) factorial design. Over a 99 

d differential feeding period, one group (11 AA and 12 BB) was offered a high energy 

control diet (H-H) whereas the second group (11 AA and 12 BB) was offered an energy 

restricted diet (L-H). At the end of the differential feeding period (99 d), both groups of 

animals were then offered the H-H ration. This period, which lasted 200 d, was known 

as the realimentation period, and all animals were slaughtered on d 299 of the study. 

During feed restriction, L-H consumed less DM, had a poorer feed conversion ratio 

(FCR) and lower concentrations of plasma hormone and metabolites compared to H-H 

steers. Additionally, L-H had lower muscle and fat development, as accessed 

ultrasonically, compared to H-H steers. During feed realimentation, there was no 

difference in DM intakes (DMI) between feeding treatments; however, L-H had greater 

live weight gain compared to H-H steers. Overall, H-H consumed greater quantities on a 

DM basis, however these animals had a better FCR compared to L-H steers. Following 

slaughter, carcass weight was affected by feeding treatment with H-H having heavier 

carcasses than L-H steers. Additionally, at slaughter, there was no difference in plasma 

metabolite or hormone concentrations, linear body measurements, ultrasonically 

scanned fat depth, carcass conformation or dressing percentage between H-H and L-H 

steers. Overall, L-H had a compensatory growth (or recovery) index of 52 % and did not 

fully compensate for the loss of gains during the differentially feeding period; however, 
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ultrasonically scanned M. longissimus thoracis et lumborum, a tissue of high economic 

value, recovered completely making it a target of interest for further investigation.  

 

5.3.2 Chapter discussion 

The objective of this study was to examine the response in a large number of 

performance and physiological traits to a period of restriction feeding across two 

genotypes varying in age of maturity, on their potential to exhibit compensatory growth 

following feed realimentation. The AA and BB genotypes were selected because of 

their well documented differences in carcass conformation, muscle composition and 

maturation rates (early vs. late; Bellinge et al., 2005; Keane and Drennan, 2008; Dinh et 

al., 2010). This study offers revealing insight into the compensatory growth phenomena 

in cattle while further elucidating the mechanisms regulating its control.  

 

5.3.2.1 DMI and FCR 

Although AA consumed greater intakes of silage compared to BB when offered the 

restricted energy diet, this difference was not observed between breeds allowed ad 

libitum feed intake during the same period. However, H-H animals were offered 

concentrates ad libitum with silage offered restrictively to ensure high dietary energy 

consumption and therefore this effect of genotype may not have been observed for 

forage intake. 

Sainz et al. (1995) reported that ad libitum feeding following feed restriction in 

beef steers resulted in greater feed intakes during the realimentation period. However, 

this was not observed in the current study, with no difference in DMI between feeding 

treatments during the realimentation period. This is consistent with Hornick et al. 

(1998a) who reported no difference in DMI during feed realimentation in BB double 

muscled bulls following feed restriction. Although no difference was observed in feed 
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intakes between feeding treatments during the realimentation period, live weight gain 

was increased in L-H compared to H-H steers which resulted in a better FCR for L-H. 

An overall increased efficiency was also observed in some compensatory growth studies 

reported in the literature (Yambayamba et al., 1996; Ritacco et al., 1997) but not in 

others (Coleman and Evans, 1986; Sainz et al., 1995; Hornick et al., 1998a; 

Vasconcelos et al., 2009). 

 

5.3.2.2 Live weight and live weight gain 

Greater mature live weight and live weight gain in late maturing compared to early 

maturing cattle breeds have been reported in some (Coleman and Evans, 1986) but not 

all (Cuvelier et al., 2006a; Albertí et al., 2008) studies, with both traits dependent on 

feeding intensity and age (Coleman and Evans, 1981). In the current study, all steers 

were crossbreds, born to Holstein-Friesian cows and therefore the absolute effect of 

breed on live weight differences was diluted, and reflected the overall absence of breed 

differences for weight gain. This is in in agreement with both Campion et al. (2009a) 

and Keane et al. (2011) who also compared crossbred AA and BB steers. Overall, AA 

and BB steers responded similarly to feed restriction and feed realimentation with a 

difference only observed in live weight gains during the middle of the realimentation 

period (d 131 to d 195 of the study). In a similar study involving early and late maturing 

breeds subjected to differential feeding followed by realimentation on a high energy 

diet, Coleman and Evans (1981) reported compensatory growth in Charolais steers but 

not in Angus steers during the finishing period. This may have been due to the 

immaturity of the Angus at the start of that study and also to the length of the 

differential feeding period (306 d). Indeed Hornick et al. (2000) states that 

compensatory growth is enhanced when the duration of the restriction period is short 

(approximately 3 months in cattle). In the current study, greater compensatory growth 



 

 152 
 

was observed early into the realimentation period in L-H compared to H-H steers. This 

is consistent with the literature which generally states that the phenomenon is typically 

expressed mainly between d 30 and d 60 of realimentation after adaptation to a new diet 

(for review see Hornick et al., 2000). Although considerable compensatory gain was 

observed in the L-H animals it was not complete. This may have been due to the levels 

of feeding compared during the differential feeding period as Neel et al. (2007) reported 

greater compensatory gains in crossbred steers that had a growth rate of 0.23 kg/d 

compared with growth rates of 0.45 and 0.68 kg/d during the restriction period. The 

growth rate of the L-H group during the differential feeding period in the present study 

was 0.63 kg/d and the realimentation period was continued until compensation had 

completely ceased. All animals were adequately finished for market, when slaughtered. 

 

5.3.2.3 Linear body measurements and ultrasonically scanned muscle and fat depth 

Campion et al. (2009a) reported an effect of genotype on chest girth, back length and 

chest depth scaled for live weight with BB having lower scaled measurements 

throughout their lifetime compared to AA steers. In the current study, and contradictory 

to those findings, no difference was observed between genotypes for chest girth, back 

length and chest depth. According to Albertí et al. (2008) a narrow pelvis indicates slow 

skeletal development and low muscularity. This observation in respect of muscling is 

confirmed in the present study in which AA had a relatively smaller pelvic width than 

BB at the end of the differential feeding period (d 99) and early in the realimentation 

period (d 131) in addition to a lower M. longissimus thoracis et lumborum depth, 

smaller M. longissimus thoracis et lumborum area and a lower proportion of total 

muscle in the 5-rib joint. By the time of slaughter, the differences in scaled body 

measurements between feeding treatments were absent which is consistent with studies 

in sheep and rabbits (Kamalzadeh et al., 1998; Yakubu et al., 2007). As no feeding 
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treatment or genotype × feeding treatment interaction existed for linear body 

measurements at slaughter it would appear that relatively mild growth retardation 

followed by expression of compensatory growth has no latent effects on skeletal 

development.  

Scanned M. longissimus thoracis et lumborum depth was greater for BB animals 

from the early realimentation period up until slaughter, which reflects the well 

documented greater muscularity and better carcass conformation of this breed 

(McPherron and Lee, 1997; Hickey et al., 2007; Keane and Moloney, 2010; Keane et 

al., 2011). Ultrasonically scanned muscle depth was greater, as expected, in H-H during 

the differential feeding period compared to L-H animals. However, as L-H experienced 

compensatory growth, this difference in muscle depth between dietary groups 

disappeared early into the realimentation period. This supports the findings of 

Schoonmaker et al. (2004) who also reported a difference in ultrasonically scanned 

muscle depth in steers offered different planes of nutrition but no difference in 

ultrasonically scanned muscle depth at slaughter after a period of feed realimentation. 

Importantly, it can be concluded that a feeding regime designed to exploit compensatory 

growth similar to that employed in the current study, has no residual effect on the 

growth of the economically important M. longissimus thoracis et lumborum. 

The subcutaneous fat depth for BB animals compared with AA was expected as 

late maturing breeds, and particularly BB animals, deposit less fat compared to early 

maturing beef breeds, when compared at the same age or weight (Sadkowski et al., 

2009). Greater fat depth was observed for H-H at the end of the differential feeding 

period (d 99) compared to L-H steers which stands to reason and is consistent with the 

findings of previous reports (Vasconcelos et al., 2009). Similarly for muscle depth, the 

difference in fat depth between dietary groups disappeared early into the realimentation 

period (d 131). Again, this was also observed by Vasconcelos et al. (2009) in that 
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scanned fat depths were similar for steers offered a low compared to a high energy 

ration before the finishing period. 

 

5.3.2.4 Metabolic hormones and metabolites 

Circulating IGF-1 is critical to regulating postnatal growth, development and 

differentiation of skeletal muscle (Clemmons, 1997; Duan and Xu, 2005; Duan et al., 

2010) through its interaction with IGF receptors (Jones and Clemmons, 1995; Oksbjerg 

et al., 2004). Yambayamba et al. (1996b) reported a reduction in circulating levels of 

IGF-1 in heifers during a dietary restriction period with IGF-1 concentrations rising to 

the same level as control animals upon realimentation on a higher energy ration. A 

similar outcome was observed in the current study with L-H steers exhibiting lower 

plasma levels of IGF-1 during the restricted period. Upon realimentation, however, 

plasma levels of IGF-1 in L-H rose to, but did not exceed those of H-H animals, 

suggesting that compensatory growth is not a direct consequence of elevated systemic 

availability of IGF-1. Similarly, in pigs during compensatory growth, system 

concentrations of IGF-1 rose to levels comparable with that of control animals but did 

not surpass the control concentrations. In fact, Ritacco et al. (1997) concluded that 

compensatory growth was not mediated by IGF-1 in runt piglets. However, although L-

H did not have IGF-1 concentrations greater than H-H animals, local production of IGF-

1 within tissues or variation in expression levels of key genes in the somatotropic axis, 

for example IGF-1 receptors may have induced compensatory growth and therefore this 

warrants further investigation.  

In ruminants, post-prandial absorption of VFA from the gastrointestinal tract 

after feeding trigger the secretion of insulin from the pancreas (de Jong, 1982; Hornick 

et al., 1998b). Insulin stimulates facilitative glucose transport activity in skeletal muscle 

and adipocytes (Hocquette et al., 2000; Sasaki, 2002). Yambayamba et al. (1996b) 
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reported that insulin concentrations decreased in Hereford heifers offered a restricted 

ration, however by d 10 of feed realimentation insulin had increased to the same 

concentration as control animals. A comparable trend was observed in the current study 

with no difference in insulin concentrations between feeding treatments by d 131 of the 

study, 32 d post commencement of realimentation. The greater intake of energy and 

protein in the diet during the differential feeding period resulted in greater plasma 

glucose and potentially greater portal plasma amino acids and therefore greater 

concentrations of insulin in the H-H animals (Hornick et al., 1998b). In the L-H steers, 

the increase in insulin concentrations during the realimentation period is associated with 

the consumption of the higher energy ration. Whereas glucose declined linearly during 

the realimentation period, insulin concentrations remained high during this period and 

through to slaughter. Insulin stimulates glucose uptake by initiating the translocation of 

glucose transporters to the plasma membrane, allowing the uptake of glucose into the 

cell (for review see Hocquette and Abe, 2000) and therefore lowering peripheral blood 

glucose levels (Dunshea et al., 1995). In addition, insulin promotes lipogenesis and 

inhibits lipolysis (Beeby et al., 1988; Istasse et al., 1990) by directing long chain fatty 

acids towards triglyceride storage rather than oxidation in muscle (Hocquette et al., 

2000; Daix et al, 2008). In fact, Matsuzaki et al. (1997) reported a positive relationship 

between plasma insulin concentrations and carcass fat proportions. However, no 

difference in insulin concentrations was detected between genotypes although AA had 

greater scanned fat depths, greater carcass fat class (tendency) and greater rib joint fat 

proportion compared to BB steers.  

Leptin is involved in the hypothalamic control of body energy homeostasis; is an 

indicator of body fat reserves and regulator of appetite and energy expenditure 

(Delavaud et al., 2002). In ruminants, research has shown a positive correlation between 

circulating concentrations of leptin and fat accumulation (Berg et al., 2003; Geary et al., 
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2003). The results of the current study support this finding in that leptin concentrations 

were lower in L-H animals at the end of restriction which corresponds with lower 

ultrasonically scanned fat depths. Following realimentation, leptin concentrations rose 

to similar values as H-H, coinciding with increases in scanned fat depths. Across 

genotype however, leptin concentrations did not correspond with fat reserves. Indeed, 

AA had great scanned subcutaneous fat depths from early into the study; however, a 

difference in leptin concentrations was only observed at slaughter and this warrants 

further investigation. 

Reduced plasma concentrations of glucose during the differential feeding period 

compared to H-H steers was expected due to the lower availability of substrates in the 

diet. Consistent with the current results, Yambayamba et al. (1996) and Hornick et al. 

(1998b) all reported lower blood glucose concentrations in restricted bulls and heifers 

compared to animals offered a high energy ration. It is unclear why glucose 

concentrations dropped in the H-H steers at d 131 of the study, 32 d post 

commencement of realimentation. In the current study, after realimentation, glucose 

concentrations in L-H increased considerably with values greater than H-H steers during 

this period. In fact, concentrations were equal to values for the H-H steers during the 

differential feeding period. Similarly, Yambayamba et al. (1996b) and Hornick et al. 

(1998b) all reported that plasma glucose levels rose in bulls, heifers and steers during 

similar realimentation periods with concentrations of glucose never rising about that of 

animals on a continual plane of nutrition throughout the study. As glucose 

concentrations in L-H never exceeded values observed for H-H animals during the 

differential feeding period, it appears that greater systemic availability of glucose is not 

a major driver of compensatory growth; however, greater utilisation potential at a local 

level must be considered and warrants further investigation. 
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Both Ellenberger et al. (1989) and Fiems et al. (2007) observed no difference in 

blood urea nitrogen concentrations in steers and cows during feed restriction compared 

to animals offered a control ration. Yambayamba et al. (1996b) reported a decrease in 

urea concentrations during feed restriction and in the current study L-H animals had 

greater urea concentrations during the differential feeding period. Overall, AA had 

greater urea concentrations compared to BB animals throughout the study. Consistent 

with this, Campion et al. (2009b) also observed greater systemic levels of urea in 

crossbred AA compared to BB steers at slaughter. In addition, Beeby et al. (1988) 

reported greater urea concentrations in early maturing compared to late maturing cattle. 

The authors attributed this result to the early maturing steers requiring less of their 

protein intake for muscle growth with the excess being deaminated. 

Concentrations of plasma βHB were lower in L-H during the differential feeding 

period compared to H-H animals which supports the findings of both Thorp et al. 

(1999) and Cummins (2009) who reported that animals offered a silage-based diet had 

lower glucose and βHB concentrations compared to animals fed a ration consisting 

mainly of concentrates due to the lower DMI of the animals. Campion et al. (2009b) 

noted that circulating levels of βHB were similar in crossbred AA and BB steers 

throughout life with only a genotype effect evident at 10 mo of age. Similarly, no effect 

of genotype was detected in the current study. 

An increase in circulating NEFA concentrations in steers and heifers following 

feed restriction was noted by Blum et al. (1985) and Yambayamba et al. (1996b). 

NEFA concentrations subsequently decreasing to levels equivalent with animals offered 

the control ration within 10 d of increasing their plane of nutrition (Blum et al. 1985; 

Yambayamba et al., 1996b). In the current study, all animals were in a positive energy 

balance and not catabolising body tissue. Therefore, NEFA concentrations were not 

altered by genotype or feeding treatment. In support of these findings, Ellenberger et al. 
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(1989) reported that moderate feed restriction had no effect on NEFA levels in Angus × 

Hereford steers.  

 

5.3.2.5 Carcass traits and non-carcass components 

As expected, BB had greater CW compared to AA which was a contribution from their 

greater SW and greater dressing percentage. Keane and Moloney (2010) reported a 

similar result with crossbred BB steers having greater carcass weights and dressing 

percentages compared to AA animals. Although compensatory gain occured in the L-H 

animals it was not sufficient to offset their previous lower gains during the differential 

feeding period, with an average difference between H-H and L-H of 40 kg and 23 kg in 

SW and CW, respectively. The absence of a difference in dressing percentage between 

feeding treatments was surprising as dressing percentage generally increases with 

increasing weight (Patterson et al., 1994). Yaqoub and Babiker (2008) reported no 

difference in dressing percentage after compensatory growth in chickens. This lack of a 

difference, in the current study, between feeding treatments suggests that mild feed 

restriction followed by compensatory growth does not have residual effects on dressing 

percentage following 200 d of feed realimentation. 

The superior carcass conformation of BB compared with AA agrees with many 

reports in the literature (Keane and Drennan, 2008; Campion et al., 2009a; Keane and 

Moloney, 2010). Due to the association of carcass conformation with CW (Keane et al., 

2006) the absence of a difference between the two feeding treatments was surprising 

given that carcasses were heavier for H-H compared to L-H. Schiavon et al. (2010) 

reported that following compensatory growth in bulls no difference in conformation 

score was evident between treatments. In addition, Keane (2010) reported no difference 

in carcass conformation scores in steers, with a live weight of 620 kg, following a 

compensatory growth feeding regime. Thus, it may be concluded that a period of mild 
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feed restriction followed by a sufficient period of compensatory growth does not affect 

carcass conformation in cattle of either early or late maturing genotypes.  

As BB is a late maturing breed type which preferentially partitions nutrients to 

muscle rather than fat accretion compared to early maturing counterparts (Campion et 

al., 2009a,b; Sadkowski et al., 2009; Keane, 2010), and especially as BB animals have 

particularly low carcass fat, the difference between the genotypes in fat class was 

unsurprising. Interestingly, Hornick et al. (1998a) reported greater fat deposition in 

animals experiencing compensatory growth compared to control bulls. However, in a 

study carried out by Keane (2010), crossbred BB steers offered grass silage for 84 d 

followed by concentrates ad libitum had similar carcass fat class values to steers offered 

concentrates ab libitum throughout. Just a tendency for a difference in fat class was 

observed in the current study with L-H having lower fat class suggesting that mild feed 

restriction for a short period of time followed by an adequate realimentation period does 

not adversely affect fat class.  

Once scaled for CW, the difference in weight of perinephric plus retroperitoneal 

fat between the dietary treatments disappeared. Yambayamba et al. (1996a) reported 

that abdominal fat was lower in animals subjected to a feed restriction period compared 

to animals offered ad libitum access to feed. However, Moloney et al. (2008) reported 

that growth pattern before slaughter did not affect either the weight of perinephric plus 

retroperitoneal fat or weight of perinephric plus retroperitoneal fat proportional to CW 

in Friesian steers, which supports the current findings. Additionally, there was no effect 

of genotype on perinephric plus retroperitoneal fat between crossbred AA and BB steers 

which is in line with similar findings including Keane and Moloney (2010) and Keane 

et al. (2011). However, Keane and Drennan, (2008) reported a greater proportion of 

perinephric plus retroperitoneal fat in crossbred AA compared to BB animals. 

Generally, fat is partitioned in the order perirenal, intermuscular and subcutaneous 
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adipose depots with intramuscular being the last adipose depot to develop (Hammond, 

1955; Sainz and Hasting, 2000). However, certain breeds of bovine (Wagyu and Angus) 

have the potential to partition energy to muscle adipocytes at an earlier growth stage 

promoting marbling. Indeed, higher levels of intramuscular fat were observed in meat 

from AA compared to BB (chapter 4). 

As there was a difference in CW between genotypes, a variation between the 

genotypes in the weight of the 5-rib joint would also be expected. However, only a 

numerical difference in ribs joint weight proportional to the difference in CW was 

observed. This is in agreement with Keane and Moloney (2010) who also found a 

numerical but non-significant difference in the weight of the ribs joint between 

crossbred AA and BB steers. The difference in the weight of the 5-rib joint between H-

H and L-H steers, with greater values for the former, is broadly proportional to the 

difference in CW between the feeding treatments.  

Generally, the literature shows that crossbred BB animals have greater M. 

longissimus thoracis et lumborum area compared to AA animals (Keane and Drennan, 

2008; Campion et al., 2009b; Keane and Moloney, 2010; Keane et al., 2011). 

Additionally, crossbred BB animals heterozygous for the double muscling myostatin 

mutation have increased muscle mass compared to their conventional counterparts 

(Casas et al., 2004). The current results support these findings with greater muscle 

proportions observed in BB compared to AA carcasses. Steen and Kilpatrick (2000) 

reported no difference in M. longissimus area at slaughter between steers offered either 

a restricted or ad libitum access to feed before finishing. This is consistent with the 

findings of the present study, with no difference in M. longissimus thoracis et lumborum 

area between H-H and L-H animals. This, in turn, supports the ultrasonically scanned 

muscle depth observations. 
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M. longissimus thoracis et lumborum and total muscle values in the 5-rib joint 

were greater in BB steers compared to AA with no difference in bone plus ligamentum 

nuchae/supraspinale proportions between genotypes, which is consistent with Keane et 

al. (2011) who found similar results for these genotypes. In the current study, other 

muscle was not affected by genotype; however, Keane et al. (2011) reported greater 

values in BB compared to AA steers. Typically, an increase in total fat proportion of the 

ribs joint for AA animals compared to BB is observed (Keane and Moloney, 2010; 

Keane et al., 2011) as AA are an early maturing breed which lay down fat at an earlier 

age and lighter weight. The current study supports this with AA having a greater 

proportion of fat compared to BB. Total fat proportion was greater in H-H compared to 

L-H carcasses. This is contrary to Hornick et al. (1998a) who reported greater 

percentages of connective and adipose tissue at slaughter in bulls exhibiting 

compensatory growth after a period of feed restriction compared to bulls offered a high 

energy diet throughout the study; however in that study, animals were younger and 

exposed to a longer restriction period and shorter realimentation period. Yambayamba 

and Price (1991) reported that heifers experiencing compensatory growth after a period 

of feed restriction had similar fat proportions compared to animals offered ad libitum 

feed throughout the study. Again, these animals were younger which may account for 

similar fat proportions in that study, not observed in the present study. In the current 

study, differences relating to fat proportions in the 5-rib joint between feeding 

treatments maybe due to ration rather than feeding treatment as the H-H animals had 

access to the greater energy diet for a longer period of time with is consistent with 

Wilkinson and Prescott (1970). 

Keane and Moloney (2010) reported that carcass length and carcass depth 

(scaled for carcass weight) were greater in crossbred AA steers compared to crossbred 

BB with no difference found between genotypes for leg width and leg thickness. In 
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support of these findings, AA animals in the current study had greater scaled carcass 

length and depth with no difference in leg width and leg thickness. Additionally, 

Campion et al. (2009a) and Keane et al. (2011) found that crossbred AA steers had 

greater relative leg length compared to BB steers supporting the current results. Greater 

carcass measurements for AA indicate a greater body size relative to live weight which 

parallels their poorer conformation. The smaller linear carcass values for BB indicate 

greater carcass compactness in this genotype (Keane et al., 2011). Patterson and Steen 

(1995) reported that plane of nutrition before finishing did not affect carcass 

measurements in Friesian steers; however, feeding treatment had an effect on all carcass 

measurements in the current study with H-H having reduced proportions compared to 

L-H animals. Greater carcass compactness in the H-H animals was observed although 

this was not reflected in conformation with, as discussed earlier, no difference observed 

in carcass conformation between H-H and L-H animals. 

BB had lighter intestinal weight when scaled for SW which contributed to their 

greater dressing percentage. This supports the findings of McPherron and Lee (1997) 

who reported that a myostatin null mutation in cattle (BB breed) is associated with a 

reduction in size of internal organs. Interestingly, L-H animals showed greater rumen 

(empty and full) proportions compared to H-H animals. The greater full rumen weight 

would suggest greater feed intakes in L-H animals however, this was not observed with 

no difference in DMI between feeding treatments during the realimentation period. 

Empty rumen proportion wease greater in L-H compared to H-H steers which is in 

agreement with Yambayamba et al. (1996a) who reported that beef heifers undergoing 

compensatory growth during a realimentation period also had greater empty stomach 

proportions. They suggested that this indicated a greater metabolic activity in that organ 

resulting in a greater capacity for recovery. However, a larger rumen would consume 

more energy and reduce feed efficiency. Liver and gastrointestinal tract weights appear 
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to increase and decrease proportionally to feed intake and consequently the energy 

required to sustain these organs increases proportionally also (Johnson et al., 1990). 

The greater hide weight for AA compared to BB animals when expressed per 

unit of live weight supports the findings of Campion et al. (2009a) for animals of the 

same genotype. The difference may be attributed to breed effects in skin thickness 

(Tulloh, 1961). Ansay and Hanset (1979) reported that hide plus internal organ weights 

from double muscled cattle were only 81% of the corresponding value for their 

conventional counterparts. Although the present BB animals were not homozygous for 

the double muscling myostatin mutation the presence of 1 myostatin allele with the 

myostatin mutation for muscle hypertrophy contributes a proportion of the 2 allele 

effect (Short et al., 2002; Casas et al., 2004). Overall, a lack of interactions indicates 

compensatory growth influenced carcass traits and non-carcass components similarly 

across both genotypes. 

A simple economic appraisal was carried using current Irish input and output 

costs and values for initial live weight value (CSO, 2010a), silage cost (Finneran et al., 

2011), concentrates cost (CSO, 2010b), and carcass value (Bord Bia, 2010). The L-H 

feeding model set up to exploit compensatory growth yielded on average of €35 

premium per head over the continual feeding regime. This figure is based on average 

gross margin over feed costs and does not consider overhead costs such as labour, 

veterinary aid and electricity; these were assumed to be constant across the two feeding 

treatments. 

 

5.3.3 Chapter conclusion 

It is concluded that the degree of feed restriction applied in this study had an effect on 

live weight, live weight gain, blood metabolite and hormone concentrations, 

ultrasonically scanned muscle and fat depths and linear body measurements. After 
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realimentation, many of these traits including blood metabolite and hormone 

concentrations, ultrasonically scanned muscle depths and linear body measurements 

returned to levels detected in the unrestricted steers. Although compensatory gain was 

exhibited by the restricted animals it did not fully offset the loss in potential gains 

during the differential feeding period with a difference of 23 kg difference in CW. 

However, measurements of muscle such as ultrasonically scanned muscle depth and 

muscle proportions in the rib joint returned to their inherent size, as observed in animals 

on a continual plane of nutrition. In fact, total muscle from the 5-rib joint had a 

tendency to be greater in L-H steers suggesting that the differences in CW were partly 

due to fat. Indeed, fat class was greater in unrestricted compared to previously resticted 

stters. In the current study, this absence of total compensation may be due to the level of 

dietary restriction not being severe enough as discussed earlier. In brief therefore the 

mild feed restriction applied in this study followed by compensatory growth during a 

200 d realimentation period had no lasting effects (positive or negative) at slaughter on 

plasma metabolite or hormone concentrations, linear body measurements, ultrasonically 

scanned fat depth, carcass conformation or dressing proportion in crossbred AA and BB 

steers. Although the restricted animals had a compensatory index (Hornick et al., 

1998a) of just 52 %, M. longissimus thoracis et lumborum a muscle of high economic 

value recovered completely as indicated by the ultrasonic scanning. The processes 

regulating compensatory growth in this tissue may also offer revealing insights into the 

compensatory growth process. Therefore, M. longissimus thoracis et lumborum makes 

an interesting tissue of choice for investigating the molecular mechanisms regulating 

compensatory growth in bovine in the future. 
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6.1 Introduction 

Compensatory growth is the ability of an animal to undergo accelerated growth 

following a period of restricted feed intake (Hornick et al., 2000). In grass based 

systems, compensatory growth allows the realignment of feed demand from a time 

when feed is expensive to a time when feed is plentiful and cheap (Keane and Drennan, 

1994). Exploitation of the compensatory growth phenomena can facilitate a reduction in 

feed costs, which account for the majority of variable costs in beef production (Finneran 

et al., 2010) as well as leading to increased feed efficiency and profitability (Keane and 

Drennan, 1994; Yambayamba et al., 1996; Ritacco et al., 1997). However, in both 

bovine and porcine models there is extensive, but oftentimes conflicting data, as to the 

effect of compensatory growth on meat quality, particularly its effect on meat 

tenderness (Sinclair et al., 2001; Kristensen et al., 2004; Hansen et al., 2006; 

Therkildsen et al., 2008; Stolzenbach et al., 2009; Therkildsen et al., 2011). The 

literature has also been equivocal on whether a compensatory growth feeding regime 

influences intramuscular fat concentrations with many researchers reporting that 

intramuscular fat increases (Therkildsen et al., 2011) while others finding no difference 

or less intramuscular fat compared to animals on a continual plane of nutrition 

(Yambayamba et al., 1991; Hornick et al., 1998; Tomkins et al., 2006; Moloney et al., 

2008). Additionally, information on whether the effects of compensatory growth on 

aspects of meat quality are consistent across different cattle breeds is lacking. In chapter 

5, it was concluded that compensatory growth resulted in no negative residual effects on 

growth of skeletal muscle. Therefore, this study sought to clarify whether animals that 

underwent a compensatory growth feeding regime produced meat of a more tender 

nature with higher intramuscular fat or whether the opposite is the case, as the literature 

has been equivocal on these issues. 
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6.2 Effect of compensatory growth on meat quality characteristics 

 

6.2.1 Live weight and live weight gain 

Results relating to live weight and live weight gain have been described in detail in 

chapter 5. In brief, H-H steers were heavier than L-H steers at the end of the differential 

feeding period (d 199; P < 0.001) and this difference remained at slaughter (d 299; P < 

0.05) (Table 6.1). Compensatory growth was evident early into the realimentation 

period in the L-H animals; however, animals failed to compensate completely with a 

compensatory growth recovery index (Hornick et al., 2000) of 52 %. Sometime between 

d 195 and d 253 of the study, during the realimentation period, compensatory growth 

ceased and for a substantial period prior to slaughter, there was no difference in live 

weight gain between treatments (chapter 5). Live weight was not difference between the 

two genotypes at any stage during the study; however, between d 131 and d 195 of the 

study, BB had greater live weight gains compared to AA animals. 

 

6.2.2 Temperature and pH of carcasses post slaughter 

The pH and temperature data are reported in Figure 6.1. There was no feeding treatment 

× time interaction (P > 0.05) for M. longissimus thoracis et lumborum temperature but 

mean temperature was greater for the H-H compared to the L-H carcasses (P < 0.01). 

There was no effect of genotype (P > 0.05) or interaction involving genotype (P > 0.05) 

for temperature measurements post slaughter. There was no effect of feeding treatment 

(P > 0.05), genotype (P > 0.05) or their interaction on pH at 1.5 h, 3 h, 4.5 h post 

slaughter or on pHu (48 h). Data were not collected at 6 and 8 h post slaughter due to 

instrument malfunction.  
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Table 6.1 Effect of genotype (G) and feeding treatment (F) on selected production 
and meat quality attributes 

 1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein-Friesian. 
2H-H = ab libitum access to feed throughout the study; L-H = Restricted feeding for 99 
days (d) followed by ad libitum access to feed until slaughter (d 299). 3 M. longissimus 
thoracis et lumborum 4Hue = [tan-1 (b/a)] × [180/Π]. 5Chroma = [(a2 + b2)]0.5. 6Warner-
Bratzler shear force. 7Warner-Bratzler shear force adjusted for intramuscular fat. 
8Genotype × feeding treatment interaction (P < 0.05).Values equal 28.70, 28.72, 27.07, 
29.67 for AA/H-H, AA/L-H, BB/H-H, BB/L-H, respectively. 
 

 

Variable Genotype1 (G)  Feeding 
treatment2 (F) 

 P-value 

 AA BB SED H-H L-H SED G F 
Live weight, kg         

Start, d 0  307 288 7.010 296 298 6.894 0.79 1.00 
End of differential feeding period, d 
99 

404 390 7.010 438 356 6.894 0.99 <.0001 

Realimentation, d 131 452 438 7.010 474 416 6.894 0.99 <.0001 
Slaughter, d 299 655 644 7.103 669 630 6.989 1.00 0.04 

Live weight gain, kg/d         
Differential feeding period, d 0 to 
99 

1.06 1.12 0.052 1.55 0.63 0.050 0.28 <.0001 

Realimentation period, d 99 to 131 1.50 1.50 0.097 1.26 1.74 0.093 0.98 <.0001 
Realimentation period, d 131 to 195 1.65 1.90 0.07 1.63 1.91 0.06 0.0007 0.0001 
Realimentation period, d 195 to 253 1.34 1.33 0.09 1.34 1.33 0.09 0.89 0.87 
Realimentation period, d 253 to 299 0.91 0.64 0.18 0.84 0.71 0.17 0.14 0.47 
Entire period, d 0 to 299 1.25 1.26 0.038 1.33 1.18 0.036 0.81 0.0004 

Carcass weight 354 369 5.860 373 350 5.538 0.02 0.0003 
Carcass conformation 7.25 9.08 0.411 8.33 8.02 0.402 <.0001 0.44 
Fat class 10.39 7.96 0.478 9.59 8.75 0.466 <.0001 0.08 
Muscle3 Composition         

Protein, % 21.69 22.41 0.327 21.87 22.24 0.318 0.04 0.25 
Moisture, % 70.35 73.37 0.684 71.67 72.04 0.665 0.0001 0.58 
Fat, % 7.45 3.64 0.787 5.90 5.18 0.767 <.0001 0.35 
Ash, % 1.09 1.11 0.030 1.08 1.12 0.030 0.77 0.27 

Drip loss, % 1.41 2.07 0.209 1.67 1.81 0.200 0.004 0.48 
Muscle3 colour          

L (lightness) 35.18 37.37 0.491 36.30 36.25 0.479 0.0001 0.90 
a  15.09 14.19 0.329 15.04 14.24 0.321 0.01 0.02 
b 8.51 9.01 0.197 8.91 8.61 0.192 0.02 0.13 
Hue4 29.62 32.60 0.471 30.84 31.38 0.448 <.0001 0.24 
Chroma5 17.50 16.94 0.358 17.63 16.82 0.348 0.13 0.03 

Fat colour         
L (lightness) 68.07 67.65 0.815 67.84 67.87 0.794 0.61 0.97 
a 7.73 7.35 0.658 7.75 7.34 0.640 0.57 0.52 
b 14.82 15.37 0.346 15.14 15.06 0.336 0.12 0.81 
Hue 62.77 64.75 1.626 63.14 64.39 1.585 0.23 0.44 
Chroma 16.66 17.02 0.566 16.96 16.72 0.546 0.53 0.66 

WBsf6, N 25.29 32.63 2.801 25.09 32.83 2.731 0.014 0.009 
WBsf7, N 27.94 30.59 3.629 25.84 32.69 2.651 0.47 0.02 
Cooking loss8, % 28.71 28.37 0.572 27.89 29.19 0.559 0.56 0.03 



 

 169 
 

5

5.4

5.8

6.2

6.6

0 5 10 15 20 25 30 35 40 45 50

Time (h)

pH

 
 
 
 
 
 
 
 
 

10

20

30

40

0 1 2 3 4 5 6 7 8

Time (h)

Te
m

pe
ra

tu
re

 (C
el

ci
us

)

 
 
 
 
Figure 6.1 Effect of genotype (G) and feeding treatment (F) on carcass pH and 
temperature decline post slaughter 
Carcass pH measurements at 6 h and 8 h were unattainable due to instrument 
malfunction. AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein 
Friesian. H-H = ab libitum access to feed throughout the study; L-H = Restricted 
feeding for 99 days (d) followed by ad libitum access to feed until slaughter (d 299). 
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6.2.3 Chemical composition of M. longissimus thoracis et lumborum 

There was no effect of feeding treatment or interaction involving feeding treatment on 

the chemical composition of the M. longissimus thoracis et lumborum. Protein and 

moisture proportions were greater (P < 0.05) and fat proportions lower (P < 0.001) for 

BB compared to AA (Table 6.2). 

 

6.2.4 Muscle drip loss and cooking loss 

Drip loss together with muscle and fat colour values are presented in Table 6.2. No 

feeding treatment × genotype interaction (P > 0.05) was detected for drip loss. In 

addition, there was no effect of feeding treatment but drip loss was greater (P < 0.01) 

for BB compared to AA. Cooking loss percentage was greater (P < 0.05) in meat from 

L-H animals compared to H-H animals. However, there was no effect of genotype on 

cooking loss percentage. 

 

6.2.5 Muscle and fat colour 

There was no feeding treatment × genotype interaction (P > 0.05) for any of the muscle 

colour characteristics. Both redness (a) (P < 0.05) and chroma (P < 0.05) values were 

lower in L-H compared to H-H animals. Lightness (L) (P < 0.001), yellowness (b) (P < 

0.01) and hue (P < 0.001) values were lower for AA compared to BB. The a (P < 0.01) 

value was lower for BB compared to AA animals. There was no effect of either 

genotype (P > 0.05) or feeding treatment (P > 0.05) or their interaction (P > 0.05) of 

any of the fat colour variables measured. 
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Table 6.2 Effect of genotype (G) and feeding treatment (F) on the sensory 
characteristics of M. longissimus thoracis et lumborum 
 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 
2H-H = ab libitum access to feed throughout the study; L-H = Restricted feeding for 99 
days (d) followed by ad libitum access to feed until slaughter (d 299). 3Eight point scale. 
4One hundred point scale.  

Trait Genotype1  (G)  Feeding treatment2 (F)  P-value 
 AA  BB SED H-H L-H SED G F 

Attributes3         
Tenderness 4.58 4.21 0.231 4.60 4.19 0.225 0.12 0.08 
Juiciness 5.23 4.95 0.109 5.12 5.06 0.107 0.02 0.60 
Beef 4.60 4.23 0.079 4.43 4.40 0.078 <.0001 0.72 
Abnormal 2.34 2.60 0.088 2.40 2.54 0.085 0.005 0.12 

Hedonic3         
Flavour liking 5.13 4.67 0.100 4.99 4.81 0.098 0.0001 0.07 
Overall liking 4.81 4.35 0.14 4.71 4.45 0.13 0.002 0.09 

Cutting4         
Ease of cutting 50.02 44.51 3.301 50.85 43.69 3.178 0.11 0.03 
Cleanness of 

cut 
60.69 57.27 2.398 59.05 58.05 2.328 0.16 0.43 

Initial Bite4         
Toughness 46.48 53.89 3.338 47.34 53.03 3.231 0.04 0.09 
Juiciness 55.38 49.40 1.448 52.42 52.37 1.412 0.0003 0.97 
Sponginess 23.42 23.03 1.326 24.19 22.26 1.256 0.77 0.14 
Crunchy 29.23 28.54 1.831 28.11 29.66 1.749 0.71 0.38 

Eating4         
Toughness 44.32 51.50 3.315 45.20 50.63 3.231 0.04 0.10 
Moisture 55.91 49.73 1.665 53.44 52.20 1.624 0.001 0.45 
Pulpy 61.65 55.25 1.811 58.63 58.27 1.766 0.0015 0.84 
Chewiness 42.13 48.18 3.349 42.73 47.59 3.267 0.08 0.15 
Gristle 8.23 7.61 1.391 7.66 8.18 1.356 0.66 0.70 
Fibres 46.38 50.19 2.021 48.56 48.01 1.970 0.07 0.78 
Greasiness 18.52 14.59 1.335 16.38 16.73 1.301 0.007 0.79 
Dissoluble 43.13 40.41 2.86 43.58 39.95 2.736 0.35 0.20 

Residue4         
Greasy 20.07 15.25 1.619 17.12 18.20 1.579 0.006 0.50 
Swallow 54.71 48.09 2.727 54.15 48.65 2.598 0.022 0.04 
Particles 43.65 46.33 1.120 45.53 44.45 1.069 0.024 0.32 
Mouth feel 59.27 52.77 1.577 55.87 56.17 1.538 0.0003 0.85 
Pulpy 61.85 56.00 1.491 59.87 57.99 1.454 0.0006 0.21 

Flavour4         
Greasy 18.00 11.31 1.349 14.51 14.81 1.315 <.0001 0.82 
Bloody 5.62 5.60 0.733 5.80 5.42 0.714 0.97 0.59 
Livery 6.09 6.24 0.75 6.45 5.88 0.73 0.70 0.53 
Metallic 9.22 10.77 1.033 10.42 9.57 1.007 0.15 0.40 
Bitter 4.14 5.66 0.59 4.52 5.28 0.58 0.007 0.17 
Sweet 16.95 11.91 1.383 14.71 14.16 1.332 0.001 0.68 
Rancid 0.60 0.59 0.21 0.59 0.60 0.20 0.82 0.69 
Fishy 2.65 2.51 0.199 2.51 2.66 0.187 0.49 0.43 
Acidic 5.65 8.59 0.628 6.88 7.36 0.602 <.0001 0.43 
Cardboard  13.02 17.29 1.108 14.32 15.98 1.079 0.0007 0.14 
Vegetable 12.25 14.24 0.762 13.31 13.18 0.742 0.01 0.86 
Dairy 24.40 16.34 1.500 21.76 18.97 1.461 <.0001 0.07 

         
Overall 51.93 42.41 1.732 49.15 45.20 1.688 <.0001 0.03 
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6.2.6 WBsf  

No feeding treatment × genotype interaction (P > 0.05) was detected for WBsf. 

However, the M. longissimus thoracis et lumborum from L-H animals had higher WBsf 

values (P < 0.01) compared to H-H animals while BB animals had greater (P < 0.05) 

WBsf values compared to AA animals. When adjusted for intramuscular fat, the 

genotype effect disappeared (P > 0.05); however, the effect of feeding treatment was 

still evident (P < 0.05).  

 
 

6.2.7 Sensory and flavour characteristics of M. longissimus thoracis et lumborum 

The results of the sensory analysis are presented in Table 6.3. There was no feeding 

treatment × genotype interaction (P > 0.05) for any of the characteristics investigated. 

H-H had greater values for ease of cutting (P < 0.05), swallow (P < 0.05) and overall 

flavour (P < 0.05). Additionally, there was a tendency for tenderness (tendency; P = 

0.08), flavour liking (tendency; P = 0.07), overall liking (tendency; P = 0.09) and dairy 

(tendency; P = 0.07) to be lower in L-H while toughness (P = 0.09) to be higher in L-H 

compared to H-H steers. AA had greater values for juiciness (P < 0.05), beef (P < 

0.001), flavour liking (P < 0.001), overall liking for sensory characteristics (P < 0.01), 

juiciness on biting (P < 0.001), moisture (P < 0.001), pulpy (P < 0.01), greasiness on 

eating (P < 0.01), greasy residue (P < 0.01), swallow (P < 0.05), mouth feel (P < 

0.001), pulpy residue (P < 0.001), greasy flavour (P < 0.0001), sweet (P < 0.001), dairy 

(P < 0.001) and overall flavour (P < 0.001). BB had greater values for abnormal (P < 

0.01), toughness on biting (P < 0.05), toughness on eating (P < 0.05), chewiness 

(tendency; P = 0.08), fibres (tendency; P = 0.07), particles (P < 0.05), bitter (P < 0.01), 

acidic (P < 0.001), cardboard (P < 0.001) and vegetable (P < 0.01). When adjusted for 

intramuscular fat concentration the effect of genotype for many of sensory 

characteristics disappeared. However, regardless of intramuscular fat, overall flavour  
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Table 6.3 Effect of genotype (G) and feeding treatment (F) on the sensory 
characteristics of M. longissimus thoracis et lumborum with intramuscular fat as a 
covariant 

1AA = Aberdeen Angus × Holstein Friesian; BB = Belgian Blue × Holstein Friesian. 
2H-H = ab libitum access to feed throughout the study; L-H = Restricted feeding for 99 
days (d) followed by ad libitum access to feed until slaughter (d 299). 3Eight point scale. 
4Adjusted data - values in parenthesis represent back transformed means. 5One hundred 
point scale.  
 

 

Trait Genotype1  (G)  Feeding treatment2 (F)  P-value 
 AA  BB SED H-H L-H SED G F 

Attributes3         
Tenderness 4.46 4.31 0.313 4.57 4.19 0.228 0.63 0.12 
Juiciness 5.08 5.06 0.133 5.08 5.07 0.096 0.85 0.93 
Beef 4.53 4.28 0.104 4.41 4.40 0.076 0.03 0.95 
Abnormal 2.35 2.59 0.121 2.41 2.54 0.088 0.06 0.14 

Hedonic3         
Flavour liking 5.04 4.75 0.130 4.97 4.82 0.095 0.03 0.12 
Overall liking 4.69 4.45  0.17 4.68 4.46 0.12 0.002 0.09 

Cutting4         
Ease of cutting 49.79 45.84 4.474 51.19 44.45 3.275 0.39 0.05 
Cleanness of cut 60.66 57.81 3.293 60.08 58.38 2.406 0.39 0.48 

Initial Bite4         
Toughness 47.95 51.33 4.419 47.25 52.02 3.228 0.45 0.15 
Juiciness 53.31 50.99 1.707 51.83 52.47 1.247 0.18 0.61 
Sponginess 23.22 23.54 1.762 24.26 22.51 1.296 0.86 0.19 
Crunchy 29.30 28.46 2.471 28.12 29.64 1.814 0.73 0.41 

Eating4         
Toughness 46.61 49.63 4.417 45.81 50.43 3.227 0.49 0.16 
Moisture 53.70 51.44 2.010 52.81 52.32 1.469 0.27 0.74 
Pulpy 60.15 56.41 2.382 58.21 58.35 1.740 0.12 0.93 
Chewiness 43.46 47.16 4.576 43.10 47.52 3.343 0.42 0.19 
Gristle 8.37 7.50 1.919 7.69 8.17 1.402 0.66 0.74 
Fibres 47.14 49.60 2.763 48.77 47.96 2.018 0.38 0.69 
Greasiness 16.97 16.60 1.517 16.23 17.34 1.112 0.80 0.32 
Dissoluble 42.33 43.00 3.739 44.05 41.27 2.738 0.85 0.31 

Residue4         
Greasy 19.40 18.75 1.795 17.98 20.17 1.319 0.72 0.11 
Swallow 53.98 50.11 3.584 54.46 49.64 2.631 0.29 0.08 
Particles 43.67 46.36 1.509 45.55 44.48 1.109 0.09 0.34 
Mouth feel 58.35 54.93 1.959 56.12 57.16 1.437 0.09 0.47 
Pulpy 60.06 57.39 1.851 59.37 58.08 1.352 0.16 0.35 

Flavour4         
Greasy 15.39 13.55 1.294 13.79 15.14 0.935 0.17 0.16 
Bloody 5.69 5.54 1.028 5.82 5.41 0.743 0.88 0.58 
Livery 6.44 5.94 1.03 6.55 5.83 0.75 0.63 0.40 
Metallic 10.19 9.93 1.356 10.68 9.44 0.980 0.85 0.22 
Bitter 4.59 5.28 0.80 4.64 5.21 0.58 0.40 0.31 
Sweet 16.47 14.11 1.717 15.19 15.38 1.236 0.18 0.87 
Rancid 0.60 0.59 0.29 0.59 0.60 0.21 0.99 0.74 
Fishy 2.69 2.44 0.270 2.50 2.63 0.195 0.38 0.53 
Acidic 5.87 7.69 0.791 6.69 6.87 0.569 0.03 0.76 
Cardboard  14.67 15.87 1.287 14.77 15.77 0.930 0.35 0.29 
Vegetable 12.54 13.99 1.058 13.39 13.14 0.765 0.18 0.75 
Dairy 23.61 18.78 1.848 22.16 20.23 1.332 0.02 0.16 

         
Overall 50.36 43.75 2.286 48.72 45.40 1.652 0.008 0.06 
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(P < 0.01) was still greater in AA compared to BB steers with beef (P = 0.03), flavour 

liking (P < 0.05), overall liking (P < 0.01), mouth feel (tendency; P = 0.09) and dairy (P 

< 0.05) greater with values for abnormal (tendency; P = 0.06), particles (tendency; P = 

0.09) and acidic (P < 0.05) lower in AA compared to BB. 

 

6.3 Correlation analysis 

 

6.3.1 Association between production and meat quality variables 

Correlation analysis between meat quality characteristics and production variables are 

presented in Table 6.4. In summary, CW was not associated with any meat quality traits 

with the exception of cook loss whereby a negatively correlation was observed (r = -

0.33; P < 0.05). Similarly, live weight gain prior to slaughter (d 195 to d 299) was not 

correlated with the meat quality characteristics measured. WBsf was negatively 

correlated with both intramuscular fat (r = -0.41; P < 0.01) and sensory tenderness (r = -

0.45; P < 0.01) while intramuscular fat was negatively correlated with drip loss 

percentage (r = -0.58; P < 0.001) and positively correlated with sensory tenderness (r = 

0.32; P < 0.05). Additionally, drip loss was negatively correlated with both sensory 

tenderness (r = -0.45; P < 0.01) and cook loss percentage (r = -0.43; P < 0.01). No 

statistically significant correlations were observed between pHu and production and 

meat quality variables. 
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Table 6.4 Association1 between production and meat quality variables 

 1Values presented are Spearman correlation coefficients r from unadjusted data. 2Cold 
carcass weight. 3Live weight gain prior to slaughter (d 195 to d 299). 4Warner-Bratzler 
shear force. 5Ultimate pH at 48 h. 6Intramuscular fat percentage. 7Sensory tenderness. * 

P < 0.05; **P < 0.01; ***P < 0.001.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable CW2 LWG3 WBsf4 pHu5 IMF6 Drip 
loss 

Tenderness7 

LWG3 0.10       
WBsf4 -0.28 0.19      
pHu5 -0.24 0.13 0.13     
IMF6 -0.05 0.20 -0.41** -0.02    
Drip loss 0.27 0.07 0.24 -0.13 -0.58***   
Tenderness7 -0.07 -0.12 -0.45** -0.15 0.32* -0.45**  
Cook loss -0.33* -0.24 0.18 0.006 0.007 -0.43** 0.13 
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6.4 Chapter summary, discussion and conclusion 

 

6.4.1 Chapter summary 

The objective of this study was to examine the effect of feed restriction followed by 

compensatory growth on meat quality and sensory characteristics in meat from 

Aberdeen Angus × Holstein-Friesian (AA) and Belgian Blue × Holstein-Friesian (BB) 

steers. Compensatory growth during a 200 day realimentation period following 99 d of 

feed restriction had no effect on carcass pH and temperature decline, chemical 

composition, drip loss, fat colour, or juiciness. However, Warner-Bratzler shear force 

increased and tenderness and overall flavour decreased as a result of this compensatory 

growth feeding strategy. Within BB, cooking loss percentage was greater in animals 

that experienced compensatory growth; however, this was not observed in AA animals. 

Meat from AA had greater sensory flavour characteristics compared to BB steers. 

Correlation analysis was carried out to assess potential relationships between traits. In 

brief, live weight gain prior to slaughter (d 195 to d 299) was not correlated with the 

meat quality characteristics measured. Additionally, WBsf was negatively correlated 

with both intramuscular fat (r = -0.41) and sensory tenderness (r = -0.45) while 

intramuscular fat was negatively correlated with drip loss percentage (r = -0.58) and 

positively correlated with sensory tenderness (r = 0.32). Overall, genotype has greater 

effects of meat quality that feeding treatment, supporting other research findings in this 

area. These data suggest that the compensatory growth-based feeding regime applied 

here had little permanent effect on meat quality characteristics. However, the fact that 

animals who exhibited compensatory growth had reduced tenderness and flavour cannot 

be ignored and this area warrants further investigation. 
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6.4.2 Chapter discussion 

The objective of this study was to examine the effect of restricted feeding followed by 

compensatory growth during a realimentation period, on meat quality and sensory and 

flavour characteristics in AA and BB genotypes. Due to the overall lack of statistical 

and in particular biological significant interactions between genotype and feeding 

treatment, the two factors are discussed separately. 

 

6.4.2.1 Effect of feeding treatment on meat quality attributes 

 

6.4.2.1.1 Temperature and pH of carcasses post slaughter 

Meat quality traits are affected by the rate of pH and temperature fall, however many of 

these relationships are still not fully understood (Maltin et al., 2003; Van Laack et al., 

2011). If the carcass cools too quickly, and glycolysis occurs too slowly, resulting in a 

high pH and a reduced sarcomere length, meat toughening occurs (for a review see 

Maltin et al., 2003; Warner et al., 2010). Alternatively, if the temperature decline is 

slow, and glycolysis fast, toughening of the meat can also occur. The rate of decline in 

pH and temperature was similar for both genotypes and feeding treatments, indicating 

that anti-mortem glycogen stores were equivalent in all groups (Moloney et al., 2008). 

Additionally, Moloney et al. (2008) reported no difference in the pattern of temperature 

or pH decline or pHu between steers that experienced compensatory growth following 8 

weeks feed restriction and those on a continual plane of supporting the results of the 

current study. 

 

6.4.2.1.2 Chemical composition of M. longissimus thoracis et lumborum 

Although a difference was found in the weight of fat in the 5 rib joint with H-H having 

greater proportions (chapter 5), no difference was found in intramuscular fat 
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concentration between feeding treatments. This supports the findings of both porcine 

(Kristensen et al., 2004; Heyer and Lebret, 2007) and bovine based (Moloney et al., 

2008) studies. Additionally, Moloney et al. (2008) reported no difference in moisture 

and protein proportions in animals offered a continuous plane of nutrition or animals 

subjected to L-H feeding regime supporting the current findings. 

 

6.4.2.1.3 Muscle drip and cook loss  

Appearance is often the only criterion available to consumers to appraise meat prior to 

purchase (Andersen, 2000; Otto et al., 2006). According to Andersen (2000), drip loss, 

marbling and colour are the key factors when evaluating meat prior to purchase. 

Hornick et al. (1998) reported that meat from animals which experienced compensatory 

growth prior to slaughter resulted in greater drip loss when the restriction period was 

extended from 115 days to 239 days. However, the authors report that this finding may 

be related to the fat content of the muscle rather than accelerated growth prior to 

slaughter as a low fat content in meat is associated with higher water content (Hornick 

et al., 1998). Keane and Allen (2009) reported that feeding level prior to slaughter had 

no effect on muscle drip loss percentage in steers. The results of the current study 

support this finding with no effect of feeding treatment on drip loss percentage in H-H 

and L-H animals. Therefore, it can be concluded that a compensatory growth feeding 

regime applied in this study has no direct effect on percentage meat drip loss at 

slaughter.  

As a result of cooking, meat loses a large quantity of its mass as meat juices, 

which are typically 90 % water (Oillic et al., 2011). Within BB animals, meat from L-H 

animals (BB/L-H) had a greater cooking loss percentage compared to meat from the 

BB/H-H animals; however, this was not observed in meat from the AA animals. 

Hornick et al. (1998) reported that BB bulls that exhibited compensatory growth had 
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greater cooking loss supporting the finding in the current study. In contrast, Moloney et 

al. (2008) reported no difference in cooking loss in Friesian steers suggesting that 

perhaps differences in cooking loss resulting from compensatory growth are genotype 

specific resulting from the BB animals being heterozygous for the myostatin mutation 

although this theory warrants further elucidation. 

 

6.4.2.1.4 Muscle and fat colour 

Muscle and fat colour have a large influence on consumer selection of meat at the retail 

outlet (Brugiapaglia and Destefanis, 2009). Moloney et al. (2008) reported no difference 

in M. longissimus thoracis et lumborum colour variables between steers offered 

different levels of feeding before slaughter which supports the results from the current 

study for lighness, b and hue variables. However, a and chroma values were lower for 

L-H compared to H-H steers. Hornick et al. (1998) reported that compensatory growth 

in BB bulls resulted in greater values for a; however, these difference in a were 

dependent on the length of the restriction and realimentation periods. Similarly, the 

difference in chroma values between H-H and L-H animals reflects the difference in a 

values from which it was calculated. Researchers in Australia (Lehnert et al., 2006) 

reported that nutritional restriction in beef steers resulted in lower concentrations of type 

2 (fast glycolytic) myofibers and consequently higher levels of type 1 (slow oxidative) 

in M. longissimus thoracis et lumborum. However, during realimentation fibre 

distribution returned to normal. The authors suggest that under-nutrition and weight loss 

in cattle result in a mechanism that preserves slow-twitch fibres (Lehnert et al., 2006). 

Greater concentrations of slow-oxidative fibres results in lower a measurements 

suggesting that perhaps the compensatory growth-based regime implemented here had 

permanent effects on fibre type however further investigation is required. 
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Research has shown that β-carotenes in the diet of cattle accumulate in 

subcutaneous adipose which results in the tissue acquiring a yellow colour (for review 

see Dunne et al., 2009). Despite the major differences in diet during the differential 

feeding period, no residual effect on fat colour was observed between feeding 

treatments suggesting that the feeding regime implemented had no lasting effects on 

subcutaneous fat colour. It is likely that the length of the realimentation period (200 d), 

when all animals were offered ad libitum access to a high concentrate based diet 

‘diluted’ any residual effects on fat colour introduced during the differential feeding 

period.  

 

6.4.2.1.5 Tenderness and sensory and flavour analysis 

The most important and critical assessment of beef occurs in the mouth of the 

consumer. Tenderness and flavour are important factors determining eating quality as 

indicated by consumer research (Becker et al., 1998: Moloney et al., 2001). Sinclair et 

al. (2001) and Moloney et al. (2008) reported that pre-slaughter growth rate had no 

effect on meat tenderness with the major effects appearing to relate to genotype. 

Therkildsen et al. (2008; 2011) reported that a compensatory growth feeding regime 

may improve tenderness in meat from Friesian cows, however this was muscle-type 

specific in bulls. The higher WBsf in M. longissimus thoracis et lumborum from the L-

H steers was not consistent with findings by Moloney et al. (2008) which stated that at 

slaughter WBsf values were similar between animals that exhibited compensatory 

growth and those on a continuous plane of nutrition throughout the study. Additionally, 

Chaosap et al. (2011) reported that feed restriction followed by ad libitum access to feed 

during the finishing period had no effect on WBsf measurements in meat aged for 8 

days from crossbred female pigs. Additionally, when data were adjusted for 

intramuscular fat the difference between treatments was still present. The WBsf data are 
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consistent with findings from the sensory analyses in that tenderness (tendency towards 

statistical significance) and ease of cutting were both lower, while toughness on biting 

was higher, in meat from L-H compared to H-H steers. When using a mechanical 

methodology to assess tenderness a significant difference was observed between 

treatments while at a sensory level a tendency for a difference was also observed. 

Additionally, it must be noted that although differences were observed between feeding 

treatments even the higher average value of 33 N recorded for the L-H would be 

considered tender (AFRC, 2008). In the current study, both H-H and L-H had similar 

growth rates prior to slaughter, were exposed to similar pre-slaughter conditions, pH 

and temperature fell at similar rates and the chemical composition, including fat 

percentage, within the muscle was comparable across treatment. These pre- and post-

slaughter variables are considered as potentially important in determining meat 

tenderness (Maltin et al. 2003). Perhaps live weight gain during the differential feeding 

period or early realimentation period had a residual effect on tenderness, as a result of 

fibre type composition (meat colour was also affected as discussed earlier), resulting in 

higher shear force measurement in the L-H compared to H-H animals noticeable at 

slaughter; however, this warrants further investigation.  

Flavour characteristics were also affected by feeding treatment with dairy 

(tendency) and overall flavour lower in meat from L-H compared to H-H animals. This 

suggests that a compensatory growth-based feeding model affects not only mechanical 

and sensory tenderness but other attributes relating to flavour. However, ease of cutting 

and overall flavour (tendency) were greater in meat from H-H compared to L-H steers 

suggesting a compensatory growth-based feeding regime has an effect of meat quality 

which is not explainable by differences in fat content. However, it must be noted that a 

difference of between 2 and 6 on a 100 point scale was identified and while statistically 



 

 182 
 

significant, the untrained consumers’ palate may not be sensitive enough to detect these 

subtle differences. 

 

6.4.2.2 Effect of genotype on meat quality attributes 

 

6.4.2.2.1 pH and temperature of carcass at slaughter 

Kuber et al. (2004) reported a difference in rate of decline of pH across genotypes 

(Wagyu, Limousin and their F1 hybrid); however, the Wagyu genotype typically has 

very high concentrations of intramuscular fat which may alter the pH decline (Bendall, 

1978).  Despite AA having double the muscle fat content of BB and scoring nearly 25 

% higher in carcass fat class there was no effect of genotype, which supports the 

findings of both Sinclair et al. (2001) and Cuvelier et al. (2006a). These authors 

detected no difference in pH decline in steers and bulls across very different genotypes 

also. In addition, the authors reported no difference in pHu at 48 h post slaughter which 

is consistent with the current study. However, Page et al. (2001) examined the pHu of 

longissimus muscle from 1062 beef carcasses varying in breed and gender and found 

the mean pHu to be 5.50. The pHu in this study is lower than expected and the reason 

behind this warrants further investigation. Perhaps, ad libitum access to concentrates 

over a 200 day period resulted in high glycogen stores within the muscle and 

consequently a low pH post slaughter; however, this observation was not observed with 

pigs (Chaosap et al., 2011). It has been suggested that a low pHu results in meat of 

poorer eating quality and reduced tenderness (Maltin et al., 2003); however, the sensory 

characteristics analysis and WBsf measurements provided no evidence for this. 

Carcasses with greater levels of subcutaneous and intramuscular fat often cool 

more slowly compared to leaner carcasses (Lochner et al., 1980); however, this was not 

detected in this study with AA and BB carcasses. On the other hand, Cuvelier et al. 
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(2006a) reported a temperature difference in carcasses from AA and BB bulls 1 h post 

slaughter with AA having greater temperature loss compared to BB. The authors 

suggest that this may be associated with the lower CW, although the greater carcass fat 

in AA should have limited this from happening. 

 

6.4.2.2.2 Chemical composition of M. longissimus thoracis et lumborum 

Genotype had an effect on the chemical composition of the muscle which supports the 

findings of Keane et al. (2011) for similar genotypes. Generally, intramuscular fat in 

muscle is perceived as important as intramuscular fat correlates strongly with flavour 

and juiciness (Hocquette et al. 2010). Despite this however, consumers are also 

becoming more health conscious, choosing leaner cuts of meat (Resurreccion, 2003). 

Therefore, a demand exists in the market for cuts of meat with varying levels of 

intramuscular fat content. 

 

6.4.2.2.3 Muscle drip and cook loss 

A low pHu is associated with increased drip loss (Maltin et al., 2003); however, in the 

current study the difference in drip loss between genotypes could not be explained by 

pHu, which was similar across both genotypes. Additionally, no statistically significant 

correlation was observed between pHu and drip loss. Cuvelier et al. (2006b) suggested 

that BB bulls have greater drip losses due to their greater meat water content. Greater 

moisture content in meat from BB was observed in the current study and in further 

agreement Keane et al. (2011) also reported that crossbred BB steers had greater 

moisture content in M. longissimus thoracis et lumborum compared to AA steers 

supporting this theory.  The effect of genotype on cook loss was described previously. 
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6.4.2.2.4 Muscle and fat colour 

Kim et al. (2004) reported that myoglobin gene expression was greater in red muscle 

compared to white muscle. Double muscled animals have a greater percentage of white 

muscle fibres compared to their conventional counterparts (West, 1974). Consequently, 

BB animals being heterozygous for double muscling are likely to have lower myoglobin 

levels in their muscle and this explains the greater L and lower a values for BB 

compared to AA steers. The divergence in lightness values observed here would be a 

perceivable difference by the eye (Zhu and Brewer, 1999) and therefore this meat colour 

difference would be noticeable to the consumer. The difference in a values between 

genotypes support the findings of Keane et al. (2011); however, Campion et al. (2009) 

found no difference in a value between similar AA and BB genotypes. Additionally, 

AA had lower b values compared to BB steers. This result is at variance with Campion 

et al. (2009), Cuvelier et al. (2006a) and Keane et al. (2011) who all found no 

difference in b values in muscle from AA and BB bulls or steers and this warrants 

further investigation. The difference in hue values across genotypes reflects the 

differences in a and b values from which it was calculated.  

Differences in fat colour across genotypes have been noted in the past with dairy 

breeds having more yellow subcutaneous fat than British or European beef breeds when 

offered similar diets (Barton and Pleasants, 1993; Dunne et al., 2004; Dunne et al., 

2009). Boom and Sheath (1997) suggest that subcutaneous fat thickness affects fat 

colour as carotenes which accumulate in subcutaneous fat are diluted or concentrated as 

the fat increases or decreases in thickness, respectively. However, in the current study, 

no difference in b values were observed despite AA having greater fat thickness 

(ultrasonically assessed) and carcass fat class (chapter 5). 
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6.4.2.2.5 Tenderness and sensory and flavour analysis 

While in the current study, the meat was aged for 14 days, Cuvelier et al. (2006a,b) 

reported no effect of genotype on WBsf measurements in meat from AA and BB bulls 

aged for 2 days and 8 days, respectively. Alternatively in this study, greater WBsf 

values were observed in meat from BB compared to AA animals. Again, this finding is 

supported by the sensory characteristics in that toughness on biting, toughness while 

eating and chewiness (tendency) were higher in meat from BB compared to AA steers. 

Interestingly, no difference in tenderness measured at a sensory level was detected 

between genotypes. Correlation analysis indicated just moderate negative associations 

between the two measures of tenderness which is similar to the findings in many other 

studies (Caine et al., 2003; Peachey et al., 2002). When adjusted for intramuscular fat, 

the effect of genotype disappeared supporting findings that intramuscular fat affects 

tenderness (Hocquette et al., 2010) 

There is extensive and often conflicting, research into the contribution of 

intramuscular fat to the sensory characteristics of meat. Hocquette et al. (2010) reported 

that intramuscular fat directly affects juiciness and flavour but that tenderness was 

influenced indirectly. In addition, Sinclair et al. (2001) reported that intramuscular fat 

had no effect on tenderness of meat from AA steers with similar values being reported 

for Charolais steers. The authors did however report that juiciness, flavour and overall 

acceptability were greater in M. longissimus thoracis et lumborum from AA steers 

compared to Charolais. However, when sensory analysis was carried out on M. biceps 

femoris from the same animals (Sinclair et al., 2001) there was no difference in 

juiciness or beef flavour between the genotypes suggesting that the relationship between 

intramuscular fat and many of the traits associated with meat quality may be related to 

muscle type. In the current study, juiciness and moisture were greater in AA which are a 

result of greater intramuscular fat (indeed when data were adjusted for intramuscular fat 
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these differences disappear) which is in agreement with Sinclair et al. (2001); however, 

in contrast, overall flavour, when adjusted for intramuscular fat, remained greater in AA 

compared to BB. 

 

6.4.2.3 Association between production and meat quality variables  

Wbsf was just moderately negatively correlated with sensory tenderness. Research in 

this area has shown a high variation between association studies (Shackelford et al., 

1994; Caine et al., 2003) suggesting that WBsf may not always be a reliable indicator of 

tenderness as perceived in the mouth of the consumer. Live weight gain in the preceding 

104 days prior to slaughter was not correlated with any meat quality trait which is 

surprising as research in this area would indicate otherwise (Zgur et al., 2003). 

Intramuscular fat was just moderately positively correlated with sensory tenderness 

supporting the findings of a number of previous studies (Seideman et al., 1989; 

Hocquette et al., 2010). 

 

6.4.3 Chapter conclusion 

Nutritional restriction followed by compensatory growth during a 200 day 

realimentation period had no lasting effects, either positive or negative, on carcass pH 

and temperature decline, chemical composition, drip loss, fat colour or many of the 

sensory characteristics including juiciness measurements. However, this feeding regime 

did affect cooking loss (in BB steers only), overall flavour and both mechanical and 

sensory measurements of tenderness resulting in tougher meat of poorer flavour. Further 

research is now required to explain the basis behind these findings to minimise any 

potential negative effects of this widely practiced management regimen on consumer 

perceptions of the resulting beef. 
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Although animals employed in this study were crossbred, many of the meat 

quality differences observed between purebred AA and BB genotypes for chemical 

composition of the M. longissimus thoracis et lumborum, muscle and fat colour 

varaibles, tenderness and sensory and flavour attributes were still obvious. Overall, 

meat from AA had greater sensory and flavour characteristics compared to BB steers. 

This was apparently mainly driven by the intramuscular fat which directly affects 

flavour and juiciness of the meat. Overall, it can be concluded that genotype has greater 

effects of meat quality that feeding treatment, supporting other research findings in this 

area. 
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Chapter 7 
 
 
 
 
 
 

Transcriptional Regulation of M. longissimus 

thoracis et lumborum during Nutritional 

Restriction and Compensatory Growth in 

Aberdeen Angus Steers Employing RNAseq 

Technology 

 

 

 

 

 

 



 

 189 
 

7.1 Introduction 

Compensatory growth is the ability of an animal to undergo accelerated growth 

following a period of restricted feeding. The fact that compensatory growth is 

achievable indicates that growth rate in cattle is usually below the inherent maximum 

potential (Jobling, 2010) and therefore the mechanisms regulating this accelerated 

growth rate warrant further elucidation. To date, studies have attempted to elucidate the 

mechanisms controlling compensatory growth in a number of livestock species 

including cattle (Lehnert et al., 2006; Connor et al., 2009) and pigs (Lametsch et al., 

2006); however, key genes and pathways underlying this mechanism in muscle have yet 

to be sufficiently characterised in any species. Data from chapter 5 of this thesis has 

shown that M. longissimus thoracis et lumborum, a tissue of high economic value, 

rapidly recovered following realimentation in cattle which had previously experienced 

nutritional restriction for 99 d and therefore chosen for transcriptomic analysis in this 

chapter. There is a dearth of information regarding the molecular mechanisms 

governing this period of accelerated growth in muscle tissue. Transcriptomic analysis of 

muscle tissue, harvested during the peak of compensatory growth, provides a detailed 

view of numerous molecular processes simultaneously, which greatly increases the 

understanding of accelerated muscle growth.  

The experimental design is described in detail in section 2.2.2.2 and 2.2.2.3.1. In 

brief, crossbred Aberdeen Angus × Holstein Frisian (AA; n = 22) or Belgian Blue × 

Holstein Frisian (BB; n = 24) steers were assigned to 1 of 2 treatment groups. Over a 99 

d differential feeding period, 1 group (11 AA and 12 BB) was offered a high energy 

control diet (H-H) whereas the second group (11 AA and 12 BB) was offered an energy 

restricted diet (L-H). At the end of the differential feeding period (99 d), both groups of 

animals were then offered a TMR having a grass silage:concentrate ratio of 80:20, with 

the concentrate proportion increasing gradually over a 3 week period to H-H ration. 
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This period, which lasted 200 d, was termed the realimentation period (d 99 – d 299), 

and all animals were slaughtered on d 299 of the study.  

It was concluded in chapter 5 of this thesis that compensatory growth was 

evident in both Aberdeen Angus and Belgian Blue steers following nutritional 

restriction and feed realimentation and that very few biological interactions were 

observed. For this reason, and in an effort to reduce costs, a representative subset of 12 

AA steers, H-H (n = 6) and L-H (n = 6), were selected and M. longissimus thoracis et 

lumborum biopsies were collected at the end of the differential feeding period (d 97) 

and again 32 days post realimentation (d 131) (section 2.2.2.3.5). Additionally, muscle 

tissue harvested from AA steers was chosen as to avoid confounding effects of the 

presence of myostatin mutation in the BB steers. RNA was extracted from the muscle 

tissue (section 2.2.3.1.1) and an RNAseq analysis was performed (section 2.2.9) as this 

technology offers a highly sensitive approach to examining differential gene expression. 
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7.2 Transcriptional profiles of M. longissimus thoracis et lumborum during 

nutritional restriction and compensatory growth in steers 

 

7.2.1 Raw RNAseq data 

Twenty-four cDNA libraries were sequenced using RNAseq technology. These libraries 

represented 12 animals (H-H, n=6; L-H, n=6) at 2 different time points (end of the 

differential feeding period and during the realimentation period). Overall, 

approximately 14,222 genes were expressed in bovine skeletal tissue with at least one 

reported read sequence per gene. On average 33,209,342 reads were sequenced per lane 

with 20,479,312 reads per lane aligning to the bovine genome (Btau4.0) (see Appendix 

Table A.2). This resulted in approximately 36 % of reads failing to align. A reason for 

this high percentage of reads failing to align includes removal of multiple reads that 

align to the same position on a chromosome. A strict approach was taken (allowing only 

1 read per genomic location with the remaining reads discounted) to ensure that putative 

PCR duplication introduced during the library preparation steps is reduced. PCR 

duplication may bias sequencing results and therefore this strep was taken for 

qualitative reasons.  

 

7.2.2 L-H vs. H-H steers at the end of the differential feeding period 

At the end of the differential feeding period (d 97), there were 86 genes differentially 

expressed between L-H and H-H steers with human orthologs identified for 77 of these 

genes. Of these 86 genes, 15 were up-regulated and 71 down-regulated in L-H 

compared to H-H. InnateDB pathway analysis software (Lynn et al., 2008) identified 40 

over-enriched pathways (see Appendix Table A.3). For this study, 4 key pathways of 

interest (Table 7.1) were chosen for further discussion which includes: Peroxisome 

proliferator activated receptor (PPAR) signalling, adipocytokine signalling, insulin 
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Table 7.1 Statistically significant over-enriched pathways between L-H and H-H steers at the end of the differential feeding period (d 97) 
 

1Up-regulated genes in L-H versus H-H steers denoted in RED font; down-regulated genes in L-H versus H-H steers denoted in GREEN font. 
2Numbers in parenthesis represent Log fold changes (i.e. Log 1 is a 2-fold change). 3ADIPOQ = adiponectin, C1Q and collagen domain containing; 
ANGPTL4 = angiopoietin-like 4; FABP4 fatty acid binding protein 4, PCK = phosphoenolpyruvate carboxylase; PLIN1 = perilipin 1; LEP = leptin; 
FASN = fatty acid synthase; SOCS2  = suppressor of cytokine signalling 2; ELOVL6  = elongation of long chain fatty acids; adipocyte. 
 

 

 

 

 

Pathway No. of genes in 
pathway 

No. of genes 
identified 

Gene name and Log fold change1,2,3 

PPAR signalling 70 6 ADIPOQ (-2.6), ANGPTL4 (1.8), FABP4 (-3.1), PCK1 (-2.4), PCK2   
(-4), PLIN1 (-2) 
 

Adipocytokine signalling 68 4 ADIPOQ (-2.6), LEP(-4.7), PCK1 (-2.4), PCK2 (-4) 
 

Insulin signalling 135 4 FASN (-2), PCK1 (-2.4), PCK2 (-4), SOCS2 (1.5) 
 

Metabolism of lipids and lipoproteins 231 4 ELOVL6 (-2.8), FABP4 (-3.1), FASN (-2), PLIN1 (-2) 
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signalling and metabolism of lipids and lipoproteins. These pathways were chosen as 

they represent the most statistically significant pathways with the highest proportion of 

differentially expressed genes. The PPAR signalling pathway consists of 70 genes with 

6 genes associated with this pathway identified as differentially expressed in the current 

study. Of these 6 genes, 5 were down-regulated and 1 gene up-regulated in L-H 

compared to H-H steers. The second pathway identified was adipocytokine signalling 

with 4 genes in this pathway identified as down-regulated in L-H compared to H-H 

steers. These genes were adiponectin, C1Q and collagen domain containing (ADIPOQ), 

leptin (LEP), phosphoenolpyruvate carboxylase (PCK) 1 and PCK2. The third pathway 

of interest was insulin signalling pathway with 4 genes identified as differing in 

expression. These genes include fatty acid synthase (FASN), PCK1, PCK2 and 

suppressor of cytokine signalling 2 (SOCS2). Expression of SOCS2 was up-regulated in 

L-H with the remaining identified genes down-regulated in the pathway. Four genes 

associated with the pathway involved with metabolism of lipids and lipoproteins were 

identified as differentially expressed with all genes down-regulated in L-H animals. 

These genes included elongation of long chain fatty acids (ELOVL6), fatty acid binding 

protein 4, adipocyte (FABP4), FASN and perilipin 1 (PLIN1). 

In addition, GOseq analysis identified 53 over-enriched GO terms between L-H 

and H-H. The most significant GO terms of interest returned included terms for 

“extracellular region part”, “lipid metabolic process” and “cell differentiation” (Figure 

7.1). The most statistically significant GO term, extracellular region part, comprised of 

9 genes in total with 1 gene up-regulated and 8 genes down-regulated in L-H compared 

to H-H steers. For a full representation of GO terms identified as statistically significant 

see appendix Table A.4. 
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Figure 7.1 Statistically significant over-enriched GO terms identified between L-H and H-H steers at the end of the differential feeding period 
(d 97) 
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7.2.3 L-H vs H-H steers during the realimentation period 

During the realimentation period, when previously restricted animals (L-H) were 

experiencing compensatory growth (day 131), there were 65 genes differentially 

expressed between L-H and H-H steers, with human orthologs identified for 49 of these 

genes. Of these 65, 40 genes were up-regulated and 25 genes down-regulated in L-H 

compared to H-H. InnateDB pathway analysis software (Lynn et al., 2008) identified 19 

pathways (see appendix Table A.5) as over-enriched. For the purpose of this study, 4 

key pathways of interest (Table 7.2) were chosen which include: Transforming growth 

factor-β (TGF-β) signalling, mitogen-activated protein kinase (MAPK) signalling, 

Forkhead box protein M1 (FOXM1) transcription factor network and mitotic (M) phase. 

Again, these pathways were chosen as they represented the highest proportion of 

differentially expressed genes and were selected based on their biological relevance to 

growth and differentiation.  

The TGF-β signalling pathway comprises 84 genes with 4 of these genes 

identified as differentially expressed (Table 7.2). These genes were COMP (cartilage 

oligomeric matrix protein) and PPP2Cβ (protein phosphatase 2, catalytic subunit, β 

isozyme) which were up-regulated in L-H compared to H-H and PPP2R1β (protein 

phosphatase 2, regulatory subunit A, β) and TGF-βR1 (transforming growth factor-β 

receptor 1) which were down-regulated in L-H compared to H-H steers. The MAPK 

signalling pathway is a key regulator of skeletal muscle development and comprises 268 

genes, with 3 genes in the current study down-regulated in L-H steers: FOS (FBJ 

murine osteosarcomma viral oncogene homology), PPM1A (protein phosphatase, 

Mg2+/Mn2+ dependent, 1A) and TGF-βR1. The FOXM1 transcription factor network 

was identified as over-enriched with 2 genes (FOS and FOXM1) that encode 

transcription factors differentially expressed between treatments. Finally, the M phase 

signalling pathway was identified as over-enriched with 2 genes up-regulated in L-H 
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during compensatory growth. These genes, CDC20 (cell division cycle 20 homology) 

and CDCA8 (cell division cycle associated 8) play key roles in cell division during 

mitosis. No significant over-enriched GO terms were returned from GOseq analysis. 

Although not correcting for gene length bias in its analysis, Innatedb software (Lynn et 

al., 2008) was used for GO term analysis and 1 GO term, “positive regulation of cell 

growth” was identified as over-enriched. 
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Table 7.2 Statistically significant over-enriched pathways between L-H and H-H steers during the realimentation period (d 131) when L-H 
animals were exhibiting compensatory growth 
 
 
Pathway No. of genes in 

pathway 
No. of genes 
identified 

Genes name and Log fold change1,2,3 

TGF-β signalling  84 4 COMP (2.5), PPP2CB (2.2), PPP2R1B (-2),TGF-βR1 (-2.9) 
 

FOXM1 transcription factor network 39 2 FOS (-1.9), FOXM1 (2.7) 
 

M phase 83 2 CDC20 (1.8), CDCA8 (2.3) 
 

MAPK signalling, 268 3 FOS (-1.9), PPM1A (-1.7), TGF-βR1 (-2.9) 
 

1Up-regulated genes in L-H versus H-H steers denoted in RED font; down-regulated genes in L-H versus H-H steers written in GREEN font. 
2Numbers in parenthesis represent Log fold changes (i.e. Log 1 is a 2-fold change). 3COMP = cartilage oligomeric matrix protein; PPP2Cβ = protein 
phosphatase 2, catalytic subunit, β isozyme; PPP2R1β = protein phosphatase 2, regulatory subunit A, β; TGF-βR1 = transforming growth factor, β 
receptor 1; FOS = FBJ murine osteosarcomma viral oncogene homology; PPM1A = protein phosphatase, Mg2+/Mn2+ dependent, 1A; FOXM1 = 
Forkhead box protein M1; CDC20 = cell division cycle 20 homology; CDCA8 = cell division cycle associated 8. 
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7.3 Chapter summary, discussion and conclusion 

 

7.3.1 Chapter summary 

Compensatory growth is the ability of an animal to undergo accelerated growth after a 

period of restricted feeding, as reviewed by Hornick et al. (2000). The objective of this 

study was to examine the transcriptional regulation of key genes and pathways 

controlling M. longissimus thoracis et lumborum growth during feed restriction and 

compensatory growth in Aberdeen Angus steers with a view to elucidating key gene and 

pathways regulating this growth phenomenon.  

During the differential feeding period 40 pathways were identified as 

statistically significantly different between restricted and unrestricted steers, with four 

key pathways of interest chosen for further discussion. These pathways include PPAR 

signalling, adipocytokine signalling, insulin signalling and metabolism of lipids and 

lipoproteins. These pathways, relating to lipid metabolism, support the findings for 

differences in plasma leptin concentrations and ultrasonically scanned fat depths 

between L-H and H-H steers (chapter 5).  

During the realimentation period, 19 pathways were identified as statistically 

significantly different between previously restricted and unrestricted steers, with four 

key pathways of interest chosen for further discussion. These pathways include: TGF-β 

signalling, MAPK signalling, FOXM1 transcription factor network and M phase. The 

TGF-β signalling pathway generally is a negative regulator of growth and TGF-βR1. 

TGF-βR1, a key gene in this pathway, was down-regulated in animals exhibiting 

compensatory growth during the feed realimentation period.  

The results obtained from this study offer a new and exciting insight into key 

regulatory genes and pathways controlling compensatory growth in skeletal muscle of 
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cattle which following appropriate validation may be incorporated into genomically 

assisted selection strategies for beef cattle. 

 

7.3.2 Chapter discussion 

 

7.3.2.1 L-H v H-H steers at the end of the differential feeding period 

The timing of the first biopsy marked the end of 97 days of feed restriction for the L-H 

steers. By this time restricted steers had lower live weights, lower ultrasonically 

scanned muscle and fat depths and smaller carcass size proportional to bodyweight. In 

addition, restricted steers had lower plasma concentrations of IGF-1, insulin, leptin, 

glucose and BHB, as discussed in chapter 5. 

Five key pathways of interest were selected for further discussion with many of 

these pathways containing genes involved in lipid metabolism. Firstly, the PPAR 

signalling pathway is an important route during adipocyte tissue development, 

differentiation and activation of lipogenesis (Cánovas et al., 2010). Adiponectin C1Q 

and collagen domain (ADIPOQ) is regulated by this pathway and was down-regulated 

in L-H compared to H-H steers. The protein, ADIPOQ, is mainly secreted from adipose 

tissue in mammals; however, recent findings have reported its expression in muscle 

tissue (Krause et al., 2008). In vitro, ADIPOQ stimulates fatty acid oxidation and 

glucose uptake in muscle cells (Yamauchi et al., 2002). In the current study, restricted 

steers had lower concentrations of plasma glucose and ultrasonically scanned 

subcutaneous fat (chapter 5) at the end of the differential feeding period compared to 

animals offered a high energy diet, thereby highlighting concordance between 

biochemical and genetic findings. Whether ADIPOQ expression levels are originating 

from muscle cells, adipocytes, or both, warrants further investigation before detailed 

conclusions can be drawn, as whole muscle tissue was used in this study, and it is 
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expected that small quantities of adipocytes would be included in the cellular milleu of 

harvested tissue. A second differentially expressed gene of particular interest targeted 

by the PPAR signalling pathway is angiopoietin-like 4 (ANGPTL4), also referred to as 

the fasting induced adipose factor. ANGPTL4 plays a key role in maintaining metabolic 

homeostasis and inhibiting fat accumulation (Backhed et al., 2007; Mamedova et al., 

2010). This gene was up-regulated in L-H compared to H-H steers supporting the 

findings of many studies (Kersten, 2000; Yoon et al., 2000; Dutton and Trayhurn, 2008; 

Kersten et al., 2009; Kim et al., 2010) which stated that caloric restriction increased 

ANGPTL4 plasma concentrations and mRNA expression in skeletal muscle. As a well 

characterised marker of caloric restriction, this result indicates that the L-H animals 

were adequately restricted in dietary intake.   

Additional pathways associated with lipid metabolism (i.e. adipocytokine 

signalling, insulin signalling pathway and metabolism of lipids and lipoproteins) were 

identified as having differentially expressed genes. Although adipose tissue is often 

thought of as a major storage depot for triglycerides; adipose functions as an active 

endocrine tissue which secretes hormones, called adipocytokines. Plasma 

concentrations of leptin (chapter 5) and leptin (LEP) gene expression were down-

regulated in L-H compared to H-H steers supporting the findings of Geary et al. (2003) 

where plasma leptin concentrations were positively correlated to M. longissimus fat 

thickness. Furthermore, Delavaud et al. (2002) reported that circulating leptin is 

positively regulated by feed energy intake. Thus results of the current study suggest that 

decreased plasma leptin was a direct result of a down-regulation of LEP gene 

expression in response to reduced energy intake and fat tissue accumulation. 

Studies to date have examined the transcriptional response to nutritional 

restriction in skeletal muscle of rats, pigs, fish, human (Sreekumar et al., 2002; da Costa 

et al., 2004; Johansen and Overturf, 2006; Tsintzas et al., 2006; Rescan et al., 2007) and 
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cattle (Byrne et al., 2005; Lehnert et al., 2006; Connor et al., 2009). The degree of feed 

restriction applied in the current study, did not alter genes relating to protein catabolism 

or muscle fibre type redistribution as previously described in Byrne et al. (2005) and 

Lehnert et al. (2006). This suggests that although animals were restricted in energy 

intake, and were always in a positive energy balance, the length and degree of 

restriction applied in this study did not produce adverse or potentially harmful effects. 

 

7.3.2.2 L-H v H-H steers during the realimentation period 

Although both groups of steers were offered the same diet during the realimentation 

period, animals that were previously feed restricted prior to feed realimentation had 

higher live weight gains, as expected and discussed in chapter 5. The molecular 

mechanisms controlling this compensatory growth phenomenon are unknown, as 

previous attempts by other researchers to fully characterise the transcriptome and 

proteome during this realimentation period have been unsuccessful (Lametsch et al., 

2006; Lehnert et al., 2006). Lehnert et al. (2006) examined transcriptional regulation in 

bovine muscle tissue during a compensatory growth period using microarray 

technology. The authors reported that just one gene, relating to muscle fibre type, was 

differentially expressed between treatments. Evidently, 84 days following feed 

realimentation was too late to examine differences in gene expression as animals had 

entered a normal growth trajectory (Lehnert et al., 2006). Additionally, Lametsch et al. 

(2006) examined the proteomic profile of muscle from pigs at the end of the 

realimentation period and reported that just 7 proteins were significantly altered with 

functions relating to glycolysis and lipogenesis. Again, in the Lametsch et al. (2006) 

study, muscle sampling was late into the realimentation period and it was hypothesised 

that key proteins regulating compensatory growth had returned to baseline levels 

(Lametsch et al., 2006). Therefore, in the current study, 32 days post realimentation was 
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chosen for muscle sampling to examine compensatory growth when previously 

restricted steers had greater average daily gains compared to animals on a continual 

plane of nutrition. Additionally, RNAseq was employed as it provided a highly sensitive 

approach to examine global transcriptional gene expression.  As a result, numerous 

differential gene expression changes were identified with potential roles in regulating 

compensatory growth in bovine. Four pathways of interest were chosen for further 

discussion and these offer novel insight into potential and promising molecular 

mechanisms regulating compensatory growth in the bovine. 

The role of the TGF-β signalling pathway is to translocate an activated SMAD 

transcription factor to the nucleus of the cell. By doing so, a potential number of target 

genes may respond to the SMAD transcription factor (Massague, 2000). In general, 

TGF-β signalling has a negative effect on cell growth and controls a diverse range of 

processes including cell proliferation, differentiation and apoptosis. TGF-β does not 

interact with type 1 receptors directly; however, they bind TGF-βR2 as a result of its 

high affinity for type 2 receptors (Massague, 1998; Shi and Massague, 2003). This 

binding facilitates the phosphorylation and activation of TGF-βR1 which results in 

down stream signalling of the SMAD proteins. In the current study, genes in the TGF-β 

signalling pathway exhibited differential expression. As TGF-βR1, a key member in the 

TGF-β signalling pathway was down-regulated it is hypothesised that the signalling 

effects of this pathway are reduced thereby promoting cell growth and proliferation in 

previously restricted steers experiencing compensatory growth.  

The signalling effects of the TGF-β pathway are not restricted to the SMAD 

proteins. In fact, in human prostate stromal cells, TGF-β1, a member of the TGF 

signalling pathway, although not identified as differentially expressed in this study, is 

known to inhibit expression of FOXM1 (Untergasser et al., 2005). FOXM1, a 

transcription factor encoded by the FOXM1 gene, stimulates cell proliferation and 
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promotes cell cycle progression. FOXM1 was up-regulated in steers experiencing 

compensatory growth; however, whether the stimulatory effects of TGF-β1 on FOXM1 

are also evident in skeletal muscle is unknown and warrants further investigation. In 

addition, FOXM1 regulates genes that control G1/S-transition, S-phase progression, 

G2/M-transiton and M-phase progression. Interestingly, genes relating to the M-phase 

pathway (CDC20, CDCA8) were up-regulated in L-H compared to H-H steers. The M-

phase pathway is the last stage in the cell cycle. A key component of the anaphase 

promoting complex, which is FOXM1 dependent, is CDC20 (Wang et al., 2002; Davis 

et al., 2010). Gene expression of CDC20 was found to be up-regulated in muscle of L-H 

steers. These data suggest that during compensatory growth, genes regulating the cell 

cycle were up-regulated to meet the demands of accelerated muscle growth and 

development. 

Extracellular signals are transmitted to their intracellular targets through the 

interaction of proteins (Seger and Krebs, 1995). Cells up-regulate or down-regulate 

gene expression as a consequence of these actions, leading to altered metabolism, 

differentiation or apoptosis (Hwang and Rhee, 1999). The MAPK signalling pathways 

are frequently used as a paradigm for receptor-mediated protein kinase cascades 

(Hwang and Rhee, 1999). One gene associated with this pathway, PPM1A, is a protein 

phosphatase, the mRNA levels of which were down-regulated in L-H compared to H-H 

steers. Research (Lin et al., 2006) has shown that PPM1A functions to dephosphorylate 

and inhibit MAPK and TGF-β signalling. Based on the observations of Lin et al. (2006), 

it would be hypothesised that PPM1A would be up-regulated in L-H steers promoting 

muscle growth and therefore its down-regulation in the current study warrants further 

consideration. Additionally, PPM1A has also been known to positively regulate insulin 

sensitivity through direct activation of P13K (Yoshizaki et al., 2004). Alternatively, 

knockout of PPM1A led to decreased insulin-stimulated GLUT4 translocation 
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(Yoshizaki et al., 2004). During the realimentation period in the current study, plasma 

concentrations of glucose and insulin rose sharply with glucose levels higher in L-H 

compared to H-H animals (chapter 5). It may be hypothesised that lower expression 

levels of PPM1A in L-H animals during the realimentation period resulted in higher 

peripheral concentrations of glucose as glucose uptake was reduced due to a decrease in 

GLUT4 translocation. However, the biological reasoning behind this and particularly 

the down-regulation of PPM1A in the current study may become clearer with further 

research in this area when the full functionality of this protein phosphatase becomes 

more apparent. 

 

7.3.3 Chapter conclusion 

To the authors’ knowledge, this study is the first to effectively characterise the bovine 

transcriptome during a compensatory growth model. Through the harvesting of muscle 

tissue just 32 d post feed realimentation at the peak of compensatory growth, and the 

subsequent use of RNAseq technology key genes and pathways regulating this growth 

phenomenon were identified, which again, until now had not been previously identified  

during accelerated muscle growth. TGF-βR1, a key receptor in the TGF-β signalling 

pathway was down-regulated in previously restricted animals during compensatory 

growth. It is hypothesised that the signalling effects of the TGF-β pathway are reduced 

thereby promoting accelerated cell growth and proliferation in muscle tissue of animals 

experiencing compensatory growth. Overall, during the realimentation period, 65 

differentially expressed genes were annotated to 19 over-represented pathways using 

InnateDB software (Lynn et al., 2008). These data indicate that transcriptional 

mechanisms regulating compensatory growth in the bovine are not limited to many 

differential gene expression changes in a few pathways but fewer discreet changes in 

many pathways. Although, further investigation of mechanisms regulating 
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compensatory growth is required, this work offers revealing and novel insight into the 

transcriptional regulation of M. longissimus thoracis et lumborum during feed 

realimentation following feed restriction in AA steers. Earlier muscle sampling time 

points, possibly just weeks or even days following the start of feed realimentation and 

across a range of other metabolically important tissues, will additionally serve to further 

elucidate the transcriptional mechanisms regulating compensatory growth in the bovine. 
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8.1 Introduction 

The focus of this thesis was to investigate how skeletal muscle growth in beef cattle is 

controlled at a molecular level with a view to better understanding these key 

mechanisms. The approach taken in this thesis was to combine key physiological and 

molecular analyses regulating the growth and development of M. longissimus thoracis 

et lumborum in an attempt to elucidate key genes, proteins and pathways that influence 

muscle growth in animals differing in genetic merit for growth potential as well in 

animals set up to undergo compensatory growth. The focus of this thesis is primarily on 

M. longissimus thoracis et lumborum due to its primary economic important in cattle 

production.  

In order to elucidate these key genes and proteins regulating and controlling muscle 

growth in beef cattle a number of areas needed to be examined, which involved two 

studies being undertaken with the following five objectives: 

1. To examine the effect of sire breed and sire EPDcwt on the mRNA expression of 

genes of the somatotropic axis in M. longissimus thoracis et lumborum in AA 

and BB cattle using qRT-PCR (chapter 3). 

 

2. To examine the effect of sire breed and sire EPDcwt on the expression of proteins 

in M. longissimus thoracis et lumborum in AA and BB cattle using 2D gel 

electrophoresis and mass spectrometry (chapter 4). 

 

3. To study the response of crossbred steers, AA and BB, to differential feeding 

treatments with a view to examining the potential of these two genotypes to 

exhibit compensatory growth following feed realimentation (chapter 5). 
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4. To examine the effect of compensatory growth on meat quality and sensory 

analysis in M. longissimus thoracis et lumborum from AA and BB steers 

(chapter 6). 

 

5. To examine the transcriptome for key regulatory pathways controlling M. 

longissimus thoracis et lumborum growth during feed restriction and 

compensatory growth in AA steers using RNAseq analysis (chapter 7). 

 

8.2 Discussion 

This thesis first examined potential gaps in the knowledge with regard to regulatory 

systems controlling growth potential and muscle growth in cattle. From a review of the 

literature it was concluded that animals of higher growth potential grew at faster and 

higher growth rates (Keane and Diskin, 2007; Campion et al., 2009; Clarke et al., 2009; 

Keane et al., 2011); however, the reasons behind and the regulatory systems controlling 

this higher growth rate are poorly understood, with a dearth of published information on 

this area (Bernard et al., 2009). Additionally, mechanisms regulating compensatory 

growth were insufficiently characterised in bovine muscle although efforts to 

characterise the molecular mechanisms regulating compensatory growth at a 

transcriptome and proteome level were undertaken previously (Lametsch et al., 2006; 

Lehnert et al., 2006).  

 Chapters 3 and 4 of this thesis focused on potential differences in gene 

expression and protein abundance in M. longissimus thoracis et lumborum between 

progeny of sires varying in their growth potential. Chapter 3 employed a candidate gene 

approach examining potential differences in expression of genes between breeds and 

growth potentials in the somatotropic axis while chapter 4 focused on the differential 

protein abundance across genotype and growth potential. It was evident from both of 
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these chapters that growth potential is under molecular control in skeletal muscle, which 

supports findings of a previously published report in a similar area (Bernard et al., 

2009). Following proteomic analysis, proteins involved in the glycolytic pathway were 

up-regulated in animals of high compared low growth potential. The somatotropic axis 

and glucose metabolism are unavoidably linked with GH synthesis influencing glucose 

metabolism (Renaville et al., 2002). Furthermore, following a fasting period in cattle, 

feed intake is associated with a decline in plasma GH concentrations (Hornick et al., 

1998).  

 A common thread running between chapters 5 and 7 was both the plasma 

concentrations of leptin and its gene expression reduced at the end of the differential 

feeding period in animals offered a restricted feed intake compared to animals on a 

continual plane of nutrition. Leptin is involved in the hypothalamic control of body 

energy homeostasis, an indicator of body fat reserves and regulator of appetite and 

energy expenditure (Delavaud et al., 2002); however, knowledge on its full 

functionality is continually growing. During the differential feeding period when feed 

intakes were decreased in L-H steers, subcutaneous fat depth was reduced and therefore 

the decrease in peripheral concentrations of leptin supports the findings of Geary et al. 

(2003) and Delavaud et al. (2002) who found that plasma leptin concentrations were 

positively correlated to subcutaneous fat thickness and feed energy intake. 

 It was evident from the ultrasonically scanned fat measurements, taken at the 

end of the differential feeding period, that animals on a restricted feed intake had lower 

subcutaneous fat accumulation (chapter 5) as previously mentioned. In agreement, 

genes in pathways relating to lipid metabolism, identified from RNAseq analysis, were 

differential expressed between treatments (chapter 7). Furthermore, fat tissue anabolism 

returned fat depths to similar depths as observed in the steers on a continual plane of 
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nutrition just 32 d post feed realimentation (chapter 5), which resulted in similar 

expression profiles for genes and pathways involved in lipid metabolism. 

 In the compensatory growth model (chapter 5), ultrasonically scanned M. 

longissimus thoracis et lumborum in previously restricted animals had returned to its 

inherent size by day 32 of the realimentation period with no difference also observed in 

muscle depth or M. longissimus thoracis et lumborum area at slaughter between 

treatments. Full recovery happened quickly in this muscle tissue making it an ideal and 

promising tissue to assess compensatory growth in bovine muscle. Thirty-two days post 

feed realimentation, when previously restricted animals were offered a higher energy 

intake, a second biopsy was taken from all AA steers. RNAseq technology, a highly 

sensitive approach to examine gene expression changes, effectively allowed the 

inspection of differential gene expression change between animals that exhibited 

compensatory growth and control animals. Interestingly, RNAseq analysis, carried out 

on mRNA extracted from the muscle tissue harvested during the realimentation period, 

found that the TGF-β and M-phase pathways were activated in that muscle at the same 

time that accelerated growth was occurring in the M. longissimus thoracis et lumborum 

making these pathways of immense interest when assessing increased growth in cattle. 

Furthermore, these pathways are potential targets to assess compensatory growth in all 

muscles in the bovine. Additionally, the TGF-β signalling pathway is a key target of 

interest for future differential gene expression studies between animals of high and low 

growth potential with the purpose of identifying a biomarker of high growth potential.  

 Tenderness and flavour are important factors determining eating quality as 

indicated by consumer research (Becker et al., 1998: Moloney et al., 2001). Chapter 6 

aimed to assess the effect of a compensatory growth feeding regime on meat quality 

characteristics in AA and BB genotypes. An interesting result observed was the effect 

of compensatory growth on meat quality (chapter 6) especially on such critical factors 
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as meat tenderness and flavour. Many previous studies to date found no difference or 

even an improved quality (Sinclair et al., 2001; Kristensen et al., 2004; Hansen et al., 

2006; Therkildsen et al., 2008; Stolzenbach et al., 2009; Therkildsen et al., 2011) from 

this type of feeding regime, so therefore a reduction in tenderness and overall flavour 

was interesting. Many of the effects of restricted nutrition that were evident in the steers 

(lower metabolite and blood hormone concentrations, ultrasonically scanned muscle and 

fat depths etc.) were transient, with levels returning to baseline or to similar levels to 

that of the control animals with five weeks (chapter 5). However, although animals were 

restricted for a relatively short period of time during their lifetime, residual effects of 

this restriction event (or the accelerated growth during feed realimentation) had an 

effect on meat quality characteristics at slaughter. Although these differences in meat 

quality attributes were statistically significant, the differences were small and unlikely 

to negatively impact eating quality (chapter 6). To assess this, future work could 

evaluate these small differences and whether they are deemed noticeable by the 

consumer, rather than a trained sensory team. 

 Additionally, meat quality attributes as affected by breed were also assessed 

(chapter 6). Peroxiredoxin (PRDX6) is an antioxidant enzyme and has been suggested 

as a potential marker for meat tenderness of beef (Jia et al., 2009; Picard et al., 2011). 

Jia et al. (2009) reported that PRDX6 was more abundant in tender meat, both in muscle 

from living animals and in the meat sampled post slaughter. In the study outlined in 

chapter 4 of this thesis, protein abundance of PRDX6 was increased in AA compared to 

BB which was consistent with the results of tenderness assessments, examined using 

both a mechanical and sensory approach, showing increased values for AA compared to 

BB steers (chapter 6). Intramuscular fat in the Angus breed has been shown to 

favourably influence tenderness of the meat and this was also shown in both shear force 

and sensory assessments in chapter 6 when intramuscular fat was used as a covariate in 
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the statistical analysis. Although intramuscular fat attributed highly to tenderness and 

juiciness, attributes such as beef flavour and overall flavour were still found to be 

greater in meat from AA compared to BB, irrespective of fat concentrations. Recent 

findings from Hocquette et al. (2011) suggested that intramuscular fat in bulls, between 

the ranges of ~ 10 and 25 mg/g, showed a close relationship with flavour; however, 

when intramuscular fat concentrations were greater than this no relationship was 

observed. Perhaps in the current study, as intramuscular fat concentrations were high, 

the relationship was in a ‘plateau’ phase (Hocquette et al., 2011) and thus the variables 

were independent of each other. Possibly differences in fibre type distribution or 

myoglobin concentrations as a result of the BB animals being heterozygous for the 

myostatin mutation, negatively affected flavour (Clinquart et al., 1998). 

RNAseq is classed as the ‘next-generation’ in sequencing and many researchers 

have opted to use this sequencing technique as it offers a highly sensitive approach to 

transcriptome sequencing. This study utilised this most up to date technology and 

carefully chosen bioinformatic tools to carefully identify differentially gene expression 

in muscle tissue.  Paired-end sequencing, compared to single read or fluorescence based 

sequencing approaches, offers users an increased confidence in results obtained. 

Additionally, a strict bioinformatic approach was carried out to address potential PCR 

and gene length bias and therefore confidence in identified genes and pathways was 

ensured. 
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8.3 Main conclusions 

In conclusion, the main findings of this thesis are: 

1. Plasma concentrations of IGF-1 and insulin throughout the lifetime of the 

animal, from 7 months of age to slaughter, were not affected by either breed or 

genetic merit for carcass weight (H or L) in AA or BB steers (chapter 3). 

2. An increase in gene expression for IGF-1 and a reduction in transcript levels of 

IGFBP3 in M. longissimus thoracis et lumborum may play a regulatory role in 

increased muscle growth potential in steers during the finishing period (chapter 

3). 

3. Proteins relating to the glycolytic pathway, ENO1, GPI and PKM2, were 

increased in AAH compared to AAL steers, which offers revealing insights into 

the molecular mechanisms regulating muscle growth rate potential in AA steers 

(chapter 4). The finding support previously published data in this area (Bernard 

et al., 2009) which aids in the understanding of genetic influences regulating 

muscle growth. 

4. Proteins related to fibre type, such as MYL1 and MYLPF, were increased in BB 

steers, while proteins involved in the glycolytic and citric acid cycle were in 

greater abundance in muscle of AA animals (chapter 4). These data provide 

evidence for different metabolic processes taking place in muscle of crossbred 

AA and BB steers, supporting research findings in porcine studies (Murgiano et 

al., 2010; Sieczkowska et al., 2010). 

5. In the compensatory growth study (chapter 5), there was no difference in DMI 

during feed realimentation; however, live weight gain was increased in 

previously restricted animals compared to animals on a continual plane of 

nutrition. The animals which underwent nutritional restriction exhibited greater 

feed efficiency when offered ad libitum access to feed.  
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6. Following a simple economic analysis, the compensatory growth model yielded 

on average a €35 premier per head over the continual feeding regime (chapter 5). 

7. M. longissimus thoracis et lumborum has the ability to recover to its inherent 

size quickly during feed realimentation following a period of restricted feed 

intake (chapter 5). The fact that M. longissimus thoracis et lumborum is of high 

economic importance, and its ability to recover following restricted feed intake, 

made it an excellent tissue for further investigation into the molecular control of 

compensatory growth in bovine (chapter 7). 

8. A compensatory growth feeding regime resulted in an increased shear force, and 

reduced tenderness and overall flavour. Irrespective of intramuscular fat, there 

was still a trend for overall flavour to be lower in animals that experienced 

compensatory growth compared to animals on a continual plane of nutrition 

(chapter 6). 

9. Meat from AA had a reduced shear value and greater sensory flavour 

characteristics compared to BB steers. Intramuscular fat, which affects flavour 

and juiciness of the meat was greater in AA. When the sensory data were 

adjusted for intramuscular fat overall flavour was still greater in meat from AA 

compared to BB steers (chapter 6). 

10. During the differential feeding period, restricted steers had lower peripheral 

concentrations of leptin. At a transcription level, the LEP gene was also 

identified as down-regulated in restricted animals. These data support much of 

the research in the area of fat reverses and energy intake, as reviewed by Wylie 

et al. (2011)  

11. During feed realimentation, the TGF-β signalling pathway was identified as 

having genes with differential expression in animals exhibiting compensatory 
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growth compared to control steers. This finding has offered revealing insight 

into the molecular control of compensatory growth in bovine muscle (chapter 7).  

12. Overall, the transcriptional control of compensatory growth in M. longissimus 

thoracis et lumborum is not limited to changes in expression of many genes in a 

few pathways but fewer discreet changes in many pathways. 

 

 

8.4 Future work and implications 

There are a number of possible future directions for further investigation arising from 

the results obtained from the studies conducted in this thesis: 

1. It is evident from this work that EPDcwt is under molecular control in cattle. 

Although chapters 3 and 4 offer enlightening insight into some genes and 

pathways, this regulation of muscle growth potential is still elusive. RNAseq 

technology, applied in chapter 7 of this thesis, offered new and revealing 

insights into the regulation of increased muscle growth. Therefore a similar 

approach whereby the entire transcriptome of animals divergent for growth rate 

potential are characterised, would offer revealing insight into all mechanism 

regulating growth in M. longissimus thoracis et lumborum.  

2. As mentioned in chapter 3, the IGFBP3 and IGF-1 genes are potential 

candidates for future investigation of molecular markers for muscle growth. 

Future studies could focus on sequencing the entire IGF-1 and IGFBP3 genes 

and regulatory regions in large numbers of animals divergent in growth 

performance for SNP discovery and subsequent association studies. 

3. Clearly, compensatory growth of muscle tissue is under molecular control in 

cattle and therefore it would be of great interest to also assess changes arising 

from feed restriction and transcriptional regulation in other metabolically 
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important tissues such as liver harvested using a biopsy technique to avoid any 

confounding gene expression changes relating to slaughter i.e. stress relating to 

transport, fasting, strange environment and mixing with unfamiliar cohorts.  

4. In the compensatory growth model, rumen weight both full and empty was 

larger at slaughter in animals that exhibited compensatory growth compared to 

animals on a continual plane of nutrition suggesting a greater capacity for 

recovery. However, a larger empty rumen would consume more energy and 

reduce feed efficiency and therefore the biological reasoning behind this 

warrants further investigation to assess the implications of this observation. 

5. There was no difference in absolute DMI across treatments; however, animals of 

high genetic merit for growth potential and animals offered a restricted ration 

during the differential feeding period exhibited higher live weight gains 

compared to animals of low genetic merit for growth potential and animals on a 

continual plane of nutrition, respectively (chapters 3 and 5). Research (Zhou et 

al., 2009) has shown that changes in microbial populations may influence feed 

efficiency and therefore a future study could be designed to incorporate the 

collection of both rumen fluid and solids for the assessment of differences in 

both quantity and species of microbial populations across treatments to address 

this question in a compensatory growth model.  

6. Additionally, gastrointestinal tissue such as duodenum, jejunum, and ileum 

could be examined to access differences in expression of genes relating to 

nutrient absorption during the differential feeding period and feed realimentation 

from restricted and control animals as well between animals of high and low 

genetic merit for carcass weight.  

7. Although a compensatory growth feeding regime can save money in feed costs, 

as evident in chapter 5, from chapter 6 it is apparent that this type of feeding 
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regime may negatively impact both sensory and flavour characteristics. 

Although, at this stage the reasoning behind this is unclear and further 

investigatory work is required before a compensatory growth feeding regime is 

encouraged for fear that meat quality may be affected and beef consumption 

reduced. As mentioned in section 8.2, assessing these differences in meat quality 

on consumers, rather than a trained sensory panel as observed in this thesis, may 

truly identify differences, if any, in meat quality characteristics. 

8. Key pathways regulating compensatory growth in M. longissimus thoracis et 

lumborum, such as the TGF-β signalling pathway were identified. This is novel 

and insightful information which had never been previously known and 

therefore these genes and pathways warrant further research across varying 

bovine breeds and tissues. 

 

This work has offered insight into key pathways regulating growth in cattle such as the 

somatotropic axis, glycolytic pathway and TGF-β signalling pathways. Although 

introduction of biomarkers into any environment is a difficult task to achieve, and 

findings from this thesis are at a very early stage of investigation, following future 

investigatory work as outlined above, such information could be incorporated into 

future breeding programs, as potential biomarkers for muscle growth, or used along side 

production traits in assessing AI bulls around the country. Breeding programs and 

information databases incorporating genetic merit for growth are already in existence in 

Ireland (section 1.4). These programs include both live and carcass information 

regarding the sire itself and information regarding its progeny with a reliability score 

assigned to that animal. When choosing and assessing biomarkers for growth for 

inclusion in breeding programs, care needs to be taken to choose animals not only with 

the largest carcass weights and highest growth rates but also animals which are the most 
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efficient. Choosing biomarkers to assess in selection criteria for large, fast growing 

animals for breeding studies is potentially harmful as large animals may have larger 

maintenance requirements and therefore selectively breeding low efficiency animals 

may persist. In this thesis, both models looking at genetic merit for increased growth as 

well as a response to dietary feed allowance focused on improving growth in terms of 

increasing muscle growth and carcass weight but also examined feed efficiency. 

Therefore, not only did this thesis offer revealing insight into key genes and proteins 

regulating growth, it presented potential markers for assessing efficiency in steers, such 

as animals of high and low residual feed intake (RFI). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 

 219 
 

 
 
 
 
 

Chapter 9 
 
 
 
 
 
 

Bibliography  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 220 
 

Abe, H., Morimatsu, M., Aso, H., Shimizu, Y., Nikami, H., Kosaka, K., Synto, B. 

and Saito, M. (1994). Tissue distribution of major insulin-responsive glucose 

transporters (GLUT 4) protein in cattle. Proceedings of the Society of Nutrition 

Physiology 3, 214. 

 

Adams, G. R. and McCue, S. A. (1998). Localized infusion of IGF-I results in skeletal 

muscle hypertrophy in rats. Journal of Applied Physiology 84, 1716-1722. 

 

Afolayan, R. A., Adeyinka, I. A. and Lakpini, C. A. M. (2006). The estimation of live 

weight from body measurements in Yankasa sheep. Czech Journal of Animal Science 8, 

343-348. 

 

AFRC, (2008). Adding value to beef forequarter muscles. 

http://www.teagasc.ie/research/reports/foodprocessing/4898/eopr-4898.pdf. (accessed 

4th October 2011). 

 

AIMS Bovine Statistics Report, (2010). http://www.agriculture.gov.ie/media/migratio 

n/animalhealthwelfare/animalidentificationandmovement/cattlemovementmonitoringsys

tem/AIMBOVINESTATISTICS2010.pdf. (accessed 4th October 2011). 

 

Albertí, P., Panea, B., Sañudo, C., Olleta, J. L., Ripoll, G., Ertbjerg, P., 

Christensen, M., Gigli, S., Failla, S., Concetti, S., Hocquette, J. F., Jailler, R., 

Rudel, S., Renand, G., Nute, G. R., Richardson, R. I. and Williams, J. L. (2008). 

Live weight, body size and carcass characteristics of young bulls of fifteen European 

breeds. Livestock Science 114, 19-30. 



 

 221 
 

Albrecht, E., Teuscher, F., Ender, K. and Wegner, J. (2006). Growth- and breed-

related changes of marbling characteristics in cattle. Journal of Animal Science 84, 

1067-1075. 

 

Amaral, L. A. N., Díaz-Guilera, A., Moreira, A. A., Goldberger, A. L. and Lipsitz, 

L. A. (2004). Emergence of complex dynamics in a simple model of signaling 

networks. Proceedings of the National Academy of Science USA 101, 15551-15555.  

 

Amer, P. R., Simm, G., Keane, M. G., Diskin, M. G. and Wickham, B. W. (2001). 

Breeding objectives for beef cattle in Ireland. Livestock Production Science 67, 223-

239. 

 

Andersen, C. L., Jensen, J. L. and Ørntoft, T. F. (2004). Normalization of real time 

quantitative reverse transcription-PCR data: A model-based variance estimation 

approach to identify genes suited for normalization, applied to bladder and colon cancer 

data sets. Cancer Research 64, 5245–5250.  

 

Andersen, H. J. (2000). What is pork quality? In: Quality of meat and fat in pigs as 

affected by genetics and nutrition. EAAP publication No. 100, Zurich, Switzerland, pp. 

15-26. 

 

Ankom, (2006). Acid Detergent Fiber in Feeds Filter Bag Technique. Ankom Inc., 

Macedon, NY, USA. 

 



 

 222 
 

Ansay, M. and Hanset, R. (1979). Anatomical, physiological and biochemical 

differences between conventional and double-muscled cattle in the Belgian Blue and 

white breed. Livestock Production Science 6, 5-13. 

 

AOAC, (1990). Official methods of analysis of the Association of Official Analytical 

Chemists. 15th edition. Washington, DC, Association of Official Analytical Chemists. 

 

AOAC. (1995a). Official methods 985.14. “Moisture in Meat and Poultry Products”, in 

Official Methods of Analysis of AOAC International. P. Cuniff, Ed., Arlington, VA. 

 

AOAC, (1995b). Official Methods 985.26. “Solids (Total) in Processed Tomato 

Products”, In Official Methods of Analysis of AOAC International. P. Cuniff, Ed., 

Arlington, VA. 

 

AOAC, (1995c). Official Methods 992.15 “Crude Protein in Meat and Meat Products 

including Pet Foods”, In Official Methods of Analysis of AOAC International. P. 

Cuniff, Ed., Arlington, VA. 

 

Arthur, P. F. (1995). Double muscling in cattle: a review. Australian Journal of 

Agricultural Research 46, 1493-1515. 

 

Arthur, P. F., Makarechian, M. and Price, M. A. (1988). Incidence of dystocia and 

perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal 

cattle. The Canadian Veterinary Journal 29, 163-167. 

 



 

 223 
 

Arthur, P. F., Makarechian, M., Price, M. A. and Berg, R. T. (1989). Heterosis, 

maternal and direct effects in double-muscled and normal cattle: I. Reproduction and 

growth traits. Journal of Animal Science 67, 902-910. 

 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D, Butler, H., Cherry, J. M., 

Davis, A. P., Dolinski, K, Dwight, S. S., Eppig, J. T., Harriss, M. A., Hill, D. P., 

Issel-Tarver, L., Kasarskis, A., Lewis, S. Matese, J. C., Richardson, J. E., 

Ringwald, M., Rubin, G. M. and Sherlock, G. (2000). Gene ontology: tool for the 

unification ofbiology. The Gene Ontology Consortium. Nature Genetics 25, 25-29.  

 

Backhed, F., Manchester, J. K., Semenkovich, C. F. and Gordon, J. I. (2007). 

Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. 

Proceedings of the National Academy of Science USA 104, 979-984. 

 

Baldwin, R. L., McLeod, K. R., Klotz, J. L. and Heitmann, R. N. (2004). Rumen 

development, intestinal growth and hepatic metabolism in the pre- and postweaning 

ruminant. Journal of Dairy Science 87, E55-E65. 

 

Bansal, P. and Wang, Q. (2008). Insulin as a physiological modulator of glucagon 

secretion. American Journal of Physiology- Endocrinology and Metabolism 295, E751-

761. 

 

Barton, R. A. and Pleasants, A. B. (1993). Fat colour and meat colour in different 

breeds of steers in five consecutive years raised on pasture and slaughtered at 30 months 

of age. Proceedings of the New Zealand Society of Animal Production 53, 389-391. 

 



 

 224 
 

Bauman, D. E. (1976). Intermediate metabolism of adipose tissue. Federation 

proceedings 35, 2308-2313. 

 

Baumann, G., Amburn, K. and Shaw, M. A. (1988). The circulating growth hormone 

(GH)-binding complex: a major constituent of plasma GH in man. Endocrinology 122, 

976-984. 

 

Baxter, R. C. (2000). Insulin-like growth factor (IGF)-binding proteins: interactions 

with IGFs and intrinsic bioactivities. American Journal of Physiology- Endocrinology 

and Metabolism 278, E967–E976. 

 

Becker, T. (2000). Consumer perception of fresh meat quality: a framework for 

analysis. British Food Journal 102, 158-176. 

 

Becker, T., Benner, E. and Glitsch, K. (1998). Summary report on consumer 

behaviour towards meat in Germany, Ireland, Italy, Spain, Sweden, and the United 

Kingdom. Hohenheim, Germany: Department of Agricultural Policy and Agricultural 

Economics. 

 

Beeby, J. M., Haresign, W. and Swan, H. (1988). Endogenous hormone and 

metabolite concentrations in different breeds of beef steer on two systems of production. 

Journal of Animal Production 47, 231-244. 

 

Bellinge, R. H. S., Liberles, D. A., Iaschi, S. P. A., O’Brien, P. A. and Tay, G. K. 

(2005). Myostatin and its implications on animal breeding: a review. Animal Genetics 

36, 1–6. 



 

 225 
 

Bendall, J. R. (1978). Variability in rates of pH fall and of lactate production in the 

muscles on cooling beef carcasses. Meat Science 2, 91-104. 

 

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a 

practical and powerful approach to multiple testing. Journal of the Royal Statistical 

Society. Series B (Methodological) 57, 289-300. 

 

Berg, E. P., McFadin, E. L., Maddock, K. R., Goodwin, R. N., Baas, T. J. and 

Keisler, D. H. (2003). Serum concentrations of leptin in six genetic lines of swine and 

relationship with growth and carcass characteristics. Journal of Animal Science 81, 167-

171. 

 

Bernard, C., Cassar-Malek, I., Renand, G. and Hocquette, J. F. (2009). Changes in 

muscle gene expression related to metabolism according to growth potential in young 

bulls. Meat Science 82, 205–212. 

 

Blum, J. W., Schnyder, W., Kunz, P. L., Blom, A. K., Bickel, H. and Schürch, A. 

(1985). Reduced and compensatory growth: endocrine and metabolic changes during 

food restriction and refeeding in steers. Journal of Nutrition 115, 417-424.  

 

Boadi, D. A. and Wittenberg, K. M. (2001). Methane production from dairy heifers 

fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas 

technique. The Canadian Veterinary Journal 82, 201-206. 

 

Bonnet, M., Faulconnier, Y., Flechet, J., Hocquette, J. F., Levoux, C., Langin, D., 

Martin, P. and Chilliard, Y. (1998). Messenger RNAs encoding lipoprotein lipase, 



 

 226 
 

fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed 

ewes. Reproduction Nutrition Development 38, 297-307. 

 

Bonnet, M., Leroux, C., Faulconnier, Y., Hocquette, J. F., Bocquier, F, Martin, P. 

and Chilliard, Y. (2000). Lipoprotein lipase activity and mRNA are up-regulated by 

refeeding in adipose tissue and cardiac muscle of sheep. Journal of Nutrition 130, 749-

756. 

  

Boom, C. J. and Sheath, G. W. (1997). Nutritional effects on beta-carotene 

concentrations in the fat of beef cattle. Proceedings of the New Zealand Society of 

Animal Production 57, 282-285. 

 

Bord Bia, (2010). http://www.bordbia.ie/industryservices/information/cattle/pages/de 

fault.aspx (accessed 27th October 2010).  

 

Bord Bia, (2011). http://www.bordbia.ie/aboutfood/quality/pages/default.aspx 

(accessed 27th January 2011). 

 

Bouley, J., Meunier, B., Chambon, C., De Smet, S., Hocquette, J. F. and Picard, B. 

(2005). Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics 5, 490-

500. 

 

Bowtell, J. L., Marwood, S., Bruce, M., Constantin-Teodosiu, D. and Greenhaff, P. 

L. (2007). Tricarboxylic Acid Cycle intermediate pool size. Sports Medicine 37, 1071-

1088. 

 



 

 227 
 

Brock, T. D. and Freeze, H. (1969). Thermus aquatiucus gen. n. and sp. N., a Non-

sporulating extreme thermophile. Journal of Bacteriology 98, 289-297. 

 

Brookman, R. P. (1990). Effect of insulin on the utilization of propionate in 

gluconeogenesis in sheep. British Journal of Nutrition 64, 95-101. 

 

Brookman, R. P. and Laarveld, B. (1986). Effect of insulin on gluconeogenesis an the 

metabolism of lactate in sheep. Canadian Journal of Physiology Pharmacology 64, 

1055-1059. 

 

Brugiapaglia, A. and Destefanis, G. (2009). Sensory evaluation of meat colour using 

photographs. Italian Journal of Animal Science 8, 480-482. 

 

Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010). Evaluation of 

statistical methods for normailization and differential expression in mRNA-Seq 

experiments. BMC Bioformatics 11, 94. 

 

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., 

Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J. and 

Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of 

quantitiative real-time PCR experiments. Clinical Chemistry 55, 611-622. 

 

Byrne, K. A., Wang, Y. H., Lehnert, S. A., Harper, G. S., McWilliam, S. M., Bruce, 

H. L. and Reverter, A. (2005). Gene expression profiling of muscle tissue in Brahman 

steers during nutritional restriction. Journal of Animal Science 83, 1–12. 

 



 

 228 
 

Caine, W. R., Aalhus, J. L., Best, D. R., Dugan, M. E. R. and Jeremiah, L. E. 

(2003). Relationship of texture profile analysis and Warner-Bratzler shear force with 

sensory characteristics of beef rib steaks. Meat Science 64, 333-339. 

 

Campion, B., Keane, M. G., Kenny, D. A. and Berry. D. P. (2009a). Evaluation of 

estimated genetic merit for carcass weight in beef cattle: Live weights, feed intake, body 

measurements, skeletal and muscular scores, and carcass characteristics. Livestock 

Science 126, 87-99.  

 

Campion, B., Keane, M. G., Kenny, D. A. and Berry, D. P. (2009b). Evaluation of 

estimated genetic merit for carcass weight in beef cattle: Blood metabolites, carcass 

measurements, carcass composition and selected non-carcass components. Livestock 

Science 126, 100-111.  

 

Cánovas, A., Quintanilla, R., Amills, M. and Pena, R. N. (2010) Muscle 

transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC 

Genomics 11, 372. 

 

Carrasco, S., Joy, M., Albertí, P., Ripoll, G., Blanco, M., Panea, B. and Casasús, I. 

(2007). Effect of winter feeding on meat quality of Parda de Montana 18-month-old 

steers. XXXVIII Jornadas de Estudio, XII Jornadas sobre Produccion animal, Zaragoza, 

Spain, 16-17 Mayo, 2007. Tomo I and II 2007 pp. 780-782. 

 

Carstens, G. E., Johnson, D. E., Ellenberger, M. A. and Tatum, J. D. (1991). 

Physical and chemical components of the empty body during compensatory growth in 

beef steers. Journal of Animal Science 69, 3251-3264. 



 

 229 
 

Casas, E., Bennett, G. L., Smith, T. P. L. and Cundiff, L. V. (2004). Association of 

myostatin on early calf mortality, growth, and carcass composition traits in crossbred 

cattle. Journal of Animal Science 82, 2913-2918. 

 

Cassano, M., Quanttrocelli, M., Crippa, S., Perini, I., Ronzoni, F. and Sampaolesi, 

M. (2009). Cellular mechanisms and local progenitor activation to regulate skeletal 

muscle mass. Journal of Muscle Research and Cell Motility 30, 243-253. 

 

Castigliego, L., Armani, A., Grifoni, G., Rosati, R., Mazzi, M., Gianfaldoni, D. and 

Guidi, A. (2010). Effects of growth hormone treatment on the expression of 

somatotropic axis genes in the skeletal muscle of lactating Holstein cows. Domestic 

Animal Endocrinology 39, 40–53. 

 

Chaosp, C., Parr, T. and Wiseman, J. (2011). Effect of compensatory growth on 

forms of glycogen, post mortem proteolysis and meat quality in pigs. Journal of Animal 

Science 89, 2231-2242. 

 

Chaze, T., Meunier, B., Chambon, C., Jurie, C. and Picard, B. (2008). In vivo 

proteome dynamics during early bovine myogenesis. Proteomics 8, 4236-4248 

 

Chen, R., Yin, Y., Pan, J., Gao, Y. and Li, T. (2011). Expression profiling of IGFs 

and IGF receptors in piglets with intrauterine growth restriction. Livestock Production 

Science 136, 72–75. 

 



 

 230 
 

Chien, A., Edgar, D. B. and Trela, J. M. (1976). Deoxyribonucleic acid polymerase 

from the extreme thermophile Thermus aquaticus. Journal of Bacteriology 127, 1550-

1557. 

 

Clarke, A. M., Drennan, M. J., McGee, M., Kenny, D. A., Evans, R. D. and Berry, 

D. P. (2009). Live animal measurements, carcass composition and plasma  hormone and 

metabolite concentrations in male progeny of sires differing in genetic merit for beef 

production. Animal 3, 933-945. 

 

Clemmons, D. R. (1997). Insulin-like growth factor binding proteins and their role in 

controlling IGF actions. Cytokine and Growth Factor Reviews 8, 45-62. 

 

Clemmons, D. R. (2009). Role of IGF-I in skeletal muscle mass maintenance. Trends 

in Endocrinology and Metabolism 20, 349–356. 

 

Clinquart, A., Hornick, J. L., Van Eenaeme, C. and Istasse, L. (1998). Influence de 

caractere culard sur la production at la qualite de la viande des bovines blanc Bleu 

Belge. INRA Productions Animales 11, 285-297. 

 

Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., 

Caiment, F., Elsen, J-M., Eychenne, F., Larzul, C., Laville, E., Meish, F., 

Milenkovic, D., Tobin, J., Charlier, C. and Georges, M. (2006). A mutation creating 

illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. 

Nature Genetics 38, 813-818. 

 



 

 231 
 

Cochrane, W. and Rogers, M. P. (1990) Sensitivity of freshly isolated ovine 

adipocytes to inhibition of lipolysis. Comparative Biochemistry and Physiology B 96, 

331-333. 

 

Coleman, S. W. and Evans, B. C. (1981). Effect of age, size and biological type on 

feedlot performance of steers following two planes of nutrition. Animal Science 

Research Report, Oklahoma State University and USDA-SEA-112.El Reno, OK.  

Coleman, S. W. and Evans, B. C. (1986). Effect of nutrition, age and size on 

compensatory growth in two breeds of steers.  Journal of Animal Science 63, 1968-

1982. 

 

Connolly, L., Kinsella, A., Quinlan, G. and Moran, B., (2010). National Farm Survey 

2009. Athenry, Galway. http://www.agresearch.teagasc.ie/rerc/downloads/NFS/NFS 

Report09.pdf  

 

Connor, E. E., Kahl, S., Elsasser, T. H., Parker, J. S., Li, R. W., Van Tassell, C. P., 

Baldwin VI, R. L. and Barao, S. M. (2009). Enhanced mitochondrial complex gene 

function and reduced liver size may mediate improved feed efficiency of beef cattle 

during compensatory growth. Functional and Integrative Genomics 10, 39-51 

 

Conroy, S. B., Drennan, M. J., Kenny, D. A. and McGee, M. (2010). The 

relationship of various muscular and skeletal scores and ultrasound measurements in the 

live animal, and carcass classification scores with carcass composition and value of 

bulls. Livestock Science 127, 11-21. 

 



 

 232 
 

Crews, D. H. Jr., Pollak, E. J. and Quaas, R. L. (2004). Evaluation of Simmental 

carcass EPD estimated using live and carcass data. Journal of Animal Science 82, 661-

667. 

 

Cromie, A. (2008). Understanding genetic indices for dairy and beef cattle (Part 1). 

Veterinary Ireland Journal 64, 285-288. 

 

CSO, (2010a). Agricultural Input and Output Absolute Prices: By month and statistic. 

Available online at http://www.cso.ie/px/pxeirestat/database/eirestat/Agricultural% 

20Input%20and%2Output%20Absolute%20Prices/Agricultural%20Input%20and%20O

utput%20Absolute%20Prices_statbank.asp?SP=Agricultural%20Input%20and%20Outp

ut%20Absolute%20Prices&Planguage=0 Dublin, Republic of Ireland: Central Statistics 

Office. (accessed 29th October 2011). 

 

CSO. (2010b). Feed Stuff Price by Type of Feedstuff by Month. Available online at 

http://www.cso.ie/px/pxeirestat/database/eirestat/Agricultural%20Input%20and%2Outp

ut%20Absolute%20Prices/Agricultural%20Input%20and%20Output%20Absolute%20P

rices_statbank.asp?SP=Agricultural%20Input%20and%20Output%20Absolute%20Pric

es&Planguage=0 Dublin, Republic of Ireland: Central Statistics Office. (accessed 29th 

October 2011). 

 

Cummins, B., Keane, M. G. O’ Kiely, P. and Kenny, D. A. (2007). Effects of breed 

type, silage harvest date and pattern of offering concentrates on intake, performance and 

carcass traits of finishing steers. Irish Journal of Agricultural and Food Research 46, 

149-168.  

 



 

 233 
 

Cummins, B., O’ Kiely, P., Keane, M. G. and Kenny, D. A. (2009). Feed intake 

pattern, behaviour, rumen characteristics and blood metabolites of finishing beef steers 

offered total mixed rations constituted at feeding or ensiling. Irish Journal of 

Agricultural and Food Research 48, 57-73. 

 

Cuvelier, C., Cabaraux, J. F., Dufrasne, I., Clinquart, A., Hocquette, J. F., Istasse, 

L. and Hornick, J. L. (2006a). Performance, slaughter characteristics and meat quality 

of young bulls from Belgian Blue, Limousin and Aberdeen Angus breeds fattened with 

a sugar-beet pulp or a cereal- based diet. Animal Science 82, 125-132. 

 

Cuvelier, C., Clinquart, A., Hocquette, J. F., Cabaraux, J. F., Dufrasne, I., Istasse, 

L. and Hornick, J. L. (2006b). Comparison of composition and quality traits of meat 

from young finishing bulls from Belgian Blue, Limousin and Aberdeen Angus breeds. 

Meat Science 74, 522-531. 

 

da Costa, N., McGillivray, C., Bai, Q., Wood, J. D., Evans, G. and Chang, K.-C. 

(2004). Restriction of dietary energy and protein induces molecular changes in young 

porcine skeletal muscles. The Journal of Nutrition 134, 2191-2199. 

 

Daix, M., Pirotte, C., Bister, J. L., Wergifosse, F., Cuvelier, C., Cabaraux, J. F., 

Kirschvink, N., Istasse, L. and Paquay, R. (2008). Relationship between leptin 

content, metabolic hormones and fat deposition in three beef cattle breeds. The 

Veterinary Journal 177, 273-278.  

 

Damon, M., Louveau, I., Lefaucheur, L., Lebret, B., Vincent, A., Leroy, P., 

Sanchez, M. P., Herpin, P. and Gondret, F. (2006). Number of intramuscular 



 

 234 
 

adipocytes and fatty acid binding protein-4 content are significant indicators of 

intramuscular fat level in crossbred Large White × Duroc pigs. Journal of Animal 

Science 84, 1083-1092. 

 

Dauncey, M. J., Burton, K. A., White, P., Harrison, A. P., Gilmour, R. S., 

Duchamp, C. and Cattaneo, D. (1994). Nutritional regulation of growth hormone 

receptor gene expression. The FASEB Journal 8, 81–88. 

 

Davis, D. B., Lavine, J. A., Suhonen, J. I., Krautkramer, K. A., Rabaglia, M. E., 

Sperger, J. M., Fernandz, L. A., Yandell, B. S., Keller, M. P., Wang, I-M, Schadt, 

E. E. and Attie, A. D. (2010). FoxM1 is upregulated by obesity and stimulates β-cell 

Proliferation. Molecular Endocrinology 24, 1-13. 

 

Davis, S. L., Wehr, N. B. Laird, D. M. and Hammond, A. C. (1994). Serum growth 

hormone-binding protein (GHBP) in domestic animals as measured by ELISA. Journal 

of Animal Science 72, 1719-1727. 

 

Dayton, W. R. and White, M. E. (2008). Cellular and molecular regulation of muscle 

growth and development in meat animals. Journal of Animal Science 86, E217–225. 

 

de Jong, A., (1982). Patterns of plasma concentrations of insulin and glucagon after 

intravascular and intraruminal administration of volatile fatty acids in the goat. Journal 

of Endocrinology 92, 357-370. 

 



 

 235 
 

Delavaud, C., Ferlay, A. Faulconnier, Y., Bocquier, F. Kann, G. and Chilliard Y. 

(2002). Plasma leptin concentration in adult cattle: effects of breed, adiposity, feeding 

level, and meal intake. Journal of Animal Science 80, 1317-1328.  

 

Denley, A., Cosgrove L. J., Booker, G. W., Wallace, J. C. and Forbes, B. E. (2005). 

Molecular interactions of the IGF system. Cytokine and Growth Factor Reviews 16, 

421–439. 

 

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and 

Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated 

discovery. Genome Biology 4, R60. 

 

Devolder, A., Renaville, R., Sneyers, M., Callebaut, I., Massart, S., Goffinet, A., 

Burny, A. and Portetelle, D. (1993). Presence of growth hormone-binding proteins in 

cattle plasma and milk. Journal of Endocrinology 138, 91-98. 

 

Dinh, T. T. N., Blanton, J. R. Jr., Riley, D. G., Chase, C. C. Jr., Coleman, S. W., 

Phillips, W. A., Brooks, J. C., Miller, M. F. and Thompson, L. D. (2010). 

Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure 

breeds of cattle. Journal of Animal Science 88, 756–766. 

 

Doherty, M. K., McLean, L., Hayter, J. R., Pratt, J. M., Robertson, D. H. L., El-

Shafei, A., Gaskell, S. J. and Beynon, R. J. (2004). The proteome of chicken skeletal 

muscle: Changes in soluble protein expression during growth in a layer strain. 

Proteomics 4, 2082-2093. 

 



 

 236 
 

Donkin, S. S. and Armentano, L. E. (1995). Insulin and glucagon regulation of 

gluconeogenesis in preruminating and ruminating bovine. Journal of Animal Science 

73, 546-551. 

 

Drennan, M. J. and McGee, M. (2009). Performance of spring-calving beef suckler 

cows and their progeny to slaughter in intensive and extensive grassland management 

systems. Livestock Science 120, 1-12. 

 

Drennan, M. J., McGee, M. and Keane, M. G. (2005). Post-weaning performances 

and carcass characteristics of steer progeny from different suckler cow breed types. 

Irish Journal of Agricultural and Food Research 44, 195-204. 

 

Duan, C., and Xu, Q. (2005). Roles of insulin-like growth factor (IGF) binding 

proteins in regulating IGF actions. General and Comparative Endocrinology 142, 44–

52. 

 

Duan, C., Ren, H. and Gao, S. (2010). Insulin-like growth factors (IGFs), IGF 

receptors, and IGF-binding proteins: Roles in skeletal muscle growth and 

differentiation. General and Comparative Endocrinology 167, 344–351. 

 

Dunne, P. G., Keane, M. G., O’Mara, F. P., Monahan, F. J. and Moloney, A. P. 

(2004). Colour of subcutaneous adipose tissue and M. longissimus dorsi of high dairy 

and beef × dairy cattle slaughtered at two live weights as bulls and steers. Meat Science 

68, 97-106. 

 



 

 237 
 

Dunne, P. G., Monahan, F. J., O’Mara, F. P. and Moloney, A. P. (2009). Colour of 

bovine subcutaneous adipose tissue: A review of contributory factors, associations with 

carcass and meat quality and its potential utility in authentication of dietary history. 

Meat Science 81, 28-45. 

 

Dunshea, F. R., Boisclair, Y. R., Bauman, D. E. and Bell, A. W. (1995). Effects of 

bovine somatotropin and insulin on whole-body and hindlimb glucose metabolism in 

growing steers. Journal of Animal Science 73, 2263-2271. 

 

Dutton, S. and Trayhurn, P. (2008). Regulation of angiopoientin-like protein 

4/fasting-induced adipose factor (Angptl4/FIAF) expression in mouse white adipose 

tissue and 3T3-L1 adipocytes. British Journal of Nutrition 100, 18-26. 

 

Ellenberger, M. A., Johnson, D. E., Carstens, G. E., Hossner, K. L., Holland, M. 

D., Nett, T. M. and Nockels, C. F. (1989). Endocrine and metabolic changes during 

altered growth rates in beef cattle. Journal of Animal Science 67, 1446-1454. 

 

Elsik, C. G., Tellam, R. L., Worley, K. C. and Consortium, T. B. G. S. A. A. (2009). 

The genome sequence of taurine cattle: A window to ruminant biology and evolution. 

Science 324, 522-528. 

 

European Commission. (2010). Agricultural commodity markets outlook 2010-2019. 

http://ec.europa.eu/agriculture/analysis/tradepol/worldmarkets/outlook/2010_2019_en 

.pdf (accessed 18th February 2011). 

 



 

 238 
 

Ewton, D. Z., Coolican, S. A., Mohan, S., Chernausek, S. D. and Florini, J. R. 

(1998). Modulation of insulin-like growth factor actions in L6A1 myoblasts by insulin-

like growth factor binding protein (IGFBP)-4 and IGFBP-5: A dual role for IGFBP-5. 

Journal of Cellular Physiology 177, 47–57. 

 

Fahrenkrug, S. C., Casas, E., Keele, J. W. and Smith, T. P. (1999). Technical note: 

Direct genotyping of the double-muscling locus (mh) in Piedmontese and Belgian Blue 

cattle by fluorescent PCR. Journal of Animal Science 77, 2028–2030. 

 

Faulconnier, Y., Bonnet, M., Bocquier, F., Leroux, C. and Chilliard, Y. (2001). 

Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase 

activity and mRNA level in dry non-pregnant sheep. British Journal of Nutrition 85, 

299-306. 

 

Faulconnier, Y., Thevenet, M., Flechet, J. and Chilliard, Y. (1994). Lipoprotein 

lipase and metabolic activities in incubated bovine adipose tissue explants: effects of 

insulin, dexamethasone, and fetal bovine serum. Journal of Animal Science 72, 184-

191. 

 

Fiems, L. O., Vanacker, J. M., De Boever J. L., Van Caelenbergh, W., Aerts, J. M. 

and De Brabander, D. L. (2007). Effect of energy restriction and re-alimentation in 

Belgian Blue double-muscled beef cows on digestibility and metabolites, Journal of 

Animal Physiology and Animal Nutrition 91, 54-61.  

 



 

 239 
 

Finneran, E., Crossan, P., O’Kiely, P., Shalloo, L., Forristal, D. and Wallace, M. 

(2010). Simulation modelling of the cost of producing and utilising feeds for ruminants 

on Irish farms. Journal of Farm Management 14, 95-116. 

 

Finneran, E., Crossan, P., O’Kiely, P., Shalloo, L., Forristal, D. and Wallace, M. 

(2011). Stochastic simulation of the cost of home-produced feeds for ruminant livestock 

systems. The Journal of Agricultural Science (In Press). 

 

French, P., O' Riordan, E. G., Monahan, F. J., Caffrey, P. J., Mooney, M. T., Troy, 

D. J. and Moloney, A. P. (2001). The eating quality of meat of steers fed grass and/or 

concentrates. Meat Science 57, 379-386. 

 

Fuller, C. W., Middendorf, L. R., Benner, S. A., Church, G. M., Harris, T., Huang, 

X., Jovanovich, S. B., Nelson, J. R., Schloss, J. A., Schwartz, D. C. and Vezenov, D. 

V. (2009). The challenges of sequencing by synthesis. Nature Biotechnology 27, 1013-

1023. 

 

Fürbass, R., Kalbe, C. and Vanselow, J. (1997). Tissue-specific expression of the 

bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative 

first exons. Endocrinolgy 138, 2813-2819. 

 

Gauthier, G. F. (1969). On the relationship of ultrastructural and cytochemical features 

to colour in mammalian skeletal muscle. Zeitschrift fur Zellforschung und 

mikroskopische Anatomie 95, 462-482. 

 



 

 240 
 

Gavin, J. R., Lowry, M. D. and Cann, J. P. (1991). Growth hormone binding protein 

is absent in rumiannts. Program of the 73rd Annual Meeting of the Endocrine Society. 

Washington, DC, pp. 416.   

 

Geary, T. W., McFadin, E. L., MacNeil, M. D., Grings, E. E., Short, R. E., Funston, 

R. N. and Keisler, D. H. (2003). Leptin as a predictor of carcass composition in beef 

cattle. Journal of Animal Science 81, 1-8. 

 

Greathead, H. M. R., Dawson, J. M., Scollan, N, D. and Buttery, P. J. (2001). In 

vivo measurements of lipogenesis in ruminants using [1-14C]acetate. British Journal of 

Nutrition 86, 37-44. 

 

Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V. and Wheeler, T. L. 

(2003). The relationship between ultrasound measurements and carcass fat thickness 

and longissimus muscle area in beef cattle. Journal of Animal Science 81, 676-682. 

 

Grobet, L., Martin, L. J. R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, F., 

Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R 

and Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-

muscled phenotype in cattle. Nature Genetics 17, 71-74. 

 

Guler, H-P., Zapf, J., Schmid, C. and Rudolf Froesch, E. (1989). Insulin-like growth 

factors I and II in healthy man. Acta Endocrinologica 121, 753–758. 

 

Guo, Y., Xiao, P., Lei S., Deng F., Xiao G. G., Liu Y., Chen X., Li L., Wu S., Chen 

Y., Jiang H., Tan, L., Xie, J., Zhu, X., Liang S. and Deng H. (2008). How is mRNA 



 

 241 
 

expression predictive for protein expression? A correlation study on human circulating 

monocytes. Acta Biochimica et Biophysica Sinica 40, 426-436. 

 

Hamelin, M., Sayd, T., Chambon, C., Bouix, J., Bibé, B., Milenkovic, D., Leveziel, 

H., Georges, M., Clop, A., Marinova, P. and Laville, E. (2006). Proteomic analysis of 

ovine muscle hypertrophy. Journal of Animal Science 84, 3266-3276. 

 

Hammond, J. (1955). Progress in the Physiology of Farm Animals. Butterworths 

Scientific Publications, London. 

 

Hampson, R. K. and Rottman, F. M. (1987). Alternative processing of bovine growth 

hormone mRNA: Nonsplicing of the final introns predicts a high molecular weight 

variant of bovine growth hormone. Proceedings of the National Academy of Sciences of 

the United States of America 84, 2673-2677. 

 

Hannula, T. and Puolanne, E. (2004). The effect of cooling rate on beef tenderness: 

The significance of pH at 7 °C. Meat Science 67, 403-408. 

 

Hansen, S., Therkildsen, M. and Byrne, D. V. (2006). Effects of a compensatory 

growth strategy and physical properties of meat from young bulls. Meat Science 74, 

628-643. 

 

Harmon, D. L. and McLeod, K. R. (2001). Glucose uptake and regulation by 

intestinal tissues: Implications and whole body energetics. Journal of Animal Science 

79, E59-E72. 

 



 

 242 
 

Hegarty, R. S., Goopy, J. P., Herd, R. M. and McCorkell, B. (2007). Cattle selected 

for lower residual feed intake have reduced daily methane production. Journal of 

Animal Science 85, 1479-1486.  

 

Herring, W. and Kemp, D. (2001). The use of ultrasound technology in genetic 

selection decisions. Proceedings, the Range Beef Cow Symposium XVII Casper, 

Wyoming. 

 

Heyer, A., and Lebret, B. (2007). Compensatory growth response in pigs: Effects on 

growth performance, composition of weight gain at carcass and muscle levels, and meat 

quality. Journal of Animal Science 85, 769-778. 

 

Hickey, J. M., Keane, M. G., Kenny, D. A., Cromie, A. R. and Veerkamp, R. F. 

(2007). Genetic parameters for EUROP carcass traits within different groups of cattle in 

Ireland. Journal of Animal Science 85, 314-321.  

 

Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. 

M. and Qiu, Y. (2002). The Myostatin Propeptide and the Follistatin-related Gene Are 

Inhibitory Binding Proteins of Myostatin in Normal Serum. Journal of Biological 

Chemistry 277, 40735-40741. 

 

Hill, J. J., Qiu, Y., Hewick, R. M. and Wolfman, N. M. and (2002). Regulation of 

myostatin in vivo by growth and differentiation factor-associated serum protein-1: A 

novel protein with protease inhibitor and follistatin domains. Molecular Endocrinology 

17, 1144-1154. 

 



 

 243 
 

Hocquette, J. F., and Abe, H. (2000). Facilitative glucose transporters in livestock 

species. Reproduction Nutrition Development 40, 517-533. 

 

Hocquette, J. F., Bornes, M., Ferre, P., Grizard, J. and Vermorel, M. (1995). 

Glucose-transporters (GLUT 4) protein content in oxidative and glycolytic skeletal 

muscles from calf and goat. Biochemical Journal 305, 465-470. 

 

Hocquette, J. F., Gondret, F., Baéza, E., Médale, F., Jurie, C. and Pethick, D. W. 

(2010). Intramuscular fat content in meat-producing animals: development, genetic and 

nutritional control, and identification of putative markers. Animal 4, 303-319.  

 

Hocquette, J. F., Meurice, P., Brun, J. P., Jurie, C., Denoyelle, C., Bauchart, D., 

Renand, G., Nute, G. R. and Picard, B. (2011). The challenge and limitations of 

combining data: a case study examining the relationship between intramuscular fat 

content and flavour intensity based on the BIF-BEEF database. Animal Production 

Science 51, 975-981. 

 

Hocquette, J. F., Ortigues-Marty, I., Damon, M., Herpin, P. and Geay, Y. (2000). 

Métabolisme énergétique des muscles squelettiques chez les animaux producteurs de 

viande. INRA Production Animales 13, 185-200. 

 

Hocquette J. F., Ortigues-Marty I., Pethick, D., Herpin, P. and Fernandez, X. 

(1998). Nutritional and hormonal regulation of energy metabolism in skeletal muscles 

of meat-producing animals. Livestock Production Science 56, 115-143. 

 



 

 244 
 

Hogeweg, P. (2011). The roots of bioinformatics in theoretical biology. PLoS 

Computational Biology 7, 1-5. 

 

Holmes J. H. G., Ashmore C. R. and Robinson, D. W. (1973). Effects of stress on 

cattle with hereditary muscular hypertrophy. Journal of Animal Science 36, 684-694. 

 

Honikel, K. O. (1998). Reference methods for the assessment of physical 

characteristics of meat. Meat Science 49, 447−457.  

 

Honkavaara, M., Rintasalo, E., Ylönen, J. and Pudas, T. (2003). Meat quality and 

transport stress of cattle. Dtsch Tierarztl Wochenschr 110, 125-128. 

 

Hooper, S. L., Hobbs, K. H. and Thuma, J. B. (2008) Invertebrate muscles: thin and 

thick filament structures; molecular basis of contraction and its regulation, catch and 

asynchronous. Progress in Neurobiology 86, 27-127. 

 

Hopkins, P. M. (2006). Skeletal muscle physiology. Continuing Education in 

Anaesthesia, Critical care and Pain 6, pp. 1-6. 

 

Hornick, J. L., Van Eenaeme, C., Clinquart, A., Diez, M. and Istasse, L. (1998). 

Different periods of feed restriction before compensatory growth in Belgian Blue bulls: 

I. animal performance, nitrogen balance, meat characteristics, and fat composition. 

Journal of Animal Science 76, 249-259. 

 



 

 245 
 

Hornick, J. L., Van Eenaeme, C., Diez, M., Minet, V. and Istasse, L. (1998b). 

Different periods of feed restriction before compensatory growth in Belgian Blue bulls: 

II. plasma metabolites and hormones. Journal of Animal Science 76, 260-271.  

 

Hornick, J. L., Van Eenaeme, C., Gérard, O., Dufrasne, I. and Istasse, L. (2000). 

Mechanisms of reduced and compensatory growth. Domestic Animal Endocrinology 19, 

121-132. 

 

Hwa, V., Oh, Y. and Rosenfeld, R. G. (1999). The insulin-like growth factor-binding 

protein (IGFBP) superfamily. Endocrine Reviews 20, 761–787. 

 

Hwang, D. and Rhee, S. H. (1999). Receptor-mediated signaling pathways: potential 

targets modulation by dietary fatty acids. The American Journal of Clinical Nutrition 

70, 545-556. 

 

Ingle, D. L., Bauman, D. E. and Garrigus, U. S. (1972). Lipogenesis in the ruminant: 

in vitro study of tissue sites, carbon source and reducing equivalent generation for fatty 

acid synthesis. The Journal of Nutrition 102, 609-616. 

 

Irish Aberdeen Angus Association, (2011). http://irishaberdeenangus.com/html/abo 

ut.html. (accessed 23rd January 2011) 

 

Isaksson, O. G. P., Edén, S. and Jansson, J-O. (1985). Mode of action of pituitary 

growth hormone on target cells. Annual Review of Physiology 47, 483–499. 

 



 

 246 
 

Isgaard, J. (1992). Expression and regulation of IGF-I in cartilage and skeletal muscle. 

Growth Regulation 2, 16–22. 

 

Istasse, L., Van Eenaeme, C., Evrard, P., Gabriel, A., Baldwin, P., Maghuin-

Rogister, G. and Bienfait, J. M. (1990). Animal performance, plasma hormones and 

metabolites in Holstein and Belgian Blue growing-fattening bulls. Journal of Animal 

Science 68, 2666-2673. 

 

Itoh, F., Komatsu, T., Kushibiki, S. and Hodate, K. (2006). Effects of ghrelin 

injection on plasma concentrations of glucose, pancreatic hormones and cortisol in 

Holstein dairy cattle. Comparative Biochemistry and Physiology, Part A 143, 97-102. 

 

Janssen, P. H. (2010). Influence of hydrogen on rumen methane formation and 

fermentation balances through microbial growth kinase and fermentation 

thermodynamics. Animal Feed Science and Technology 160, 1-22. 

 

Jia X, Veiseth-Kent, E., Grove, H., Kuziora, P., Aass, L., Hildrum, K. I. and 

Hollung, K. (2009). Peroxiredoxin-6 A potential protein marker for meat tenderness in 

bovine longissimus thoracis muscle. Journal of Animal Science 87, 2391-2399. 

 

Jiang, G. and Zhang, B. B. (2003). Glucagon and regulation of glucose metabolism. 

American Journal of Physiology - Endocrinology and Metabolism 284, E671-E678. 

 

Jiang, H., Wang, Y., Wu, M., Gu, Z., Frank, S. J. and Torres-Diaz, R. (2007). 

Growth hormone stimulates hepatic expression of bovine growth hormone receptor 

messenger ribonucleic acid through signal transducer and activator of transcription 5 



 

 247 
 

activation of a major growth hormone receptor gene promoter. Endocrinology 148, 

3307-3315. 

 

Jiang, J., Lee, E. J., Gusev, Y. and Schmittgen, T. (2005). Real time expression 

profiling of microRNA precursors in human cancer. Nucleic Acids Research 33, 5394-

5403. 

 

Jobling, M. (2010). Are compensatory growth and catch-up growth two sides of the 

same coin? Aquaculture International 18, 501-510. 

 

Johansen, K. A. and Overturf, K. (2006). Alterations in expression of genes 

associated with muscle metabolism and growth during nutritional restriction and 

refeeding in rainbow trout. Comparative Biochemistry and Physiology - Part B 144, 

119-127.  

 

Johnson, D. E., Johnson, K. A. and Lee Baldwin, R. (1990). Changes in liver and 

gastrointestinal tract energy demands in response to physiological workload in 

ruminants. Journal of Nutrition 120, 649-655.  

 

Jones, J. I., and Clemmons, D. R. (1995). Insulin-like growth factors and their binding 

proteins: Biological actions. Endocrine Reviews 16, 3–34. 

 

Kamalzadeh, A., Koops, W. J., van Bruchem, J. and Bangma, G. A. (1998). Effect 

of duration of feed quality restriction on body dimensions in 3ambs. Journal of Animal 

Science 76, 735-742. 

 



 

 248 
 

Kamanga-Sollo, E., Pampusch, M. S., White, M. E. and Dayton, W. R. (2003). Role 

of insulin-like growth factor binding protein (IGFBP)-3 in TGF-β- and GDF-8 

(myostatin)-induced suppression of proliferation in porcine embryonic myogenic cell 

cultures. Journal of Cellular Physiology 197, 225–231. 

 

Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. 

Nucleic Acids Research 28, 27-30. 

 

Katsumata, M., Cattaneo, D., White, P., Burton, K. A. and Dauncey, M. J. (2000). 

Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is 

selectively regulated by postnatal undernutrition. Journal of Nutrition 130, 2482–2488. 

 

Keane, M. G. (2010). A comparison of finishing strategies to fixed slaughter weights 

for Holstein-Friesian and Belgian Blue × Holstein-Friesian steers. Irish Journal of 

Agricultural and Food Research 49, 41-54.  

 

Keane, M. G. and Allen, P. (1998). Effects of production system intensity on 

performance, carcass composition and meat quality of beef cattle. Livestock Production 

Science 56, 203-214.  

 

Keane, M. G. and Allen, P. (2009). A note on muscle composition and colour of 

Holstein-Friesian, Piedmontese × Holstein-Friesian and Romagnola × Holstein-Friesian 

steers. Irish Journal of Agricultural and Food Research 48, 103-108. 

 



 

 249 
 

Keane, M. G. and Diskin, M. G. (2007). Performance and carcass traits of progeny of 

Limousin differing in genetic merit. Irish Journal of Agricultural and Food Research 

46, 63-76. 

 

Keane, M. G. and Drennan, M. J. (1994). Effects of winter supplementary concentrate 

level of the performance of steers slaughtered immediately or following a period at 

pasture. Irish Journal of Agricultural and Food Research 33, 111-119. 

 

Keane, M. G. and Drennan, M. J. (2008). A comparison of Friesian, Aberdeen 

Angus × Friesian and Belgian Blue × Friesian steers finished at pasture or indoors. 

Livestock Science 115, 268–278. 

 

Keane, M. G., Drennan, M. J. and Moloney, A. P. (2006). Comparison of 

supplementary concentrate levels with grass silage, separate or total mixed ration 

feeding, and duration of finishing in beef steers. Livestock Science 103, 169-180. 

 

Keane, M. G., Dunne, P. G., Kenny, D. A., and Berry, D. P. (2011). Effects of 

genetic merit for carcass weight, breed type and slaughter weight on performance and 

carcass traits of beef × dairy steers. Animal 5, 182-194. 

 

Keane, M. G. and Moloney, A. P. (2010). Comparison of pasture and concentrate 

finishing of Holstein-Friesian, Aberdeen Angus × Holstein-Friesian and Belgian Blue × 

Holstein-Friesian steers. Irish Journal of Agricultural and Food Research 49, 11-26.  

 

Kelly, A. K., S. M. Waters, M. McGee, R. G. Fonseca, C. Carberry, and D. A. 

Kenny. (2011). mRNA expression of genes regulating oxidative phosphorylation in the 



 

 250 
 

muscle of beef cattle divergently ranked on residual feed intake. Physiological 

Genomics  43, 12–23. 

 

Kersten, S., Lichtenstein, L., Steenbergen, E., Mudde, K., Hendriks, H. F. J., 

Hesselink, M. K., Schrauwen, P. and Müller M. (2009). Caloric restriction and 

exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. 

Arteriosclerosis, Thrombosis, and Vascular Biology 29, 969-974. 

 

Kieffer, N. M. and Cartwright, T. C. (1980). Double muscling in cattle. The Texas 

Agricultural Experiment Station B-1325. 

 

Kim, H-K, Youn, B-S., Shin, M-S., Namkoong, C., Park, K. H., Baik, J. H., Park, J. 

Y., Lee, K-U., Kim, Y-B. and Kim, M-S., (2010). Hypothalamic Angptl4/Fiaf is a 

novel regulator of food intake and body weight. Diabetes 59, 2772-2780. 

 

Kim, N-K., Joh, J-H., Park, H-R., Kim, O-H., Park, B-Y. and Lee, C-S. (2004). 

Differential expression profiling of the proteomes and their mRNAs in porcine white 

and red skeletal muscles. Proteomics 4, 3422-3428. 

 

Kim, N-K., S-H. Lee, Cho, Y. M., Son, E. S., Kim, K. Y., Lee, C-S., Yoon, D., Im, S. 

K., Oh, S. J. and Park, E. W. (2009). Proteome analysis of the m. longissimus dorsi 

between fattening stages in Hanwoo steers. BMB reports 42, 433-438. 

 

Kolath, W. H., Kerley, M. S., Golden, J. W. and Keisler, D. H. (2006). The 

relationship between mitochondrial function and residual feed intake in Angus steers. 

Journal of Animal Science 84, 861-865. 



 

 251 
 

Kopchick, J. J. and Andry, J. M. (2000). Growth hormone (GH), GH receptor, and 

signal transduction. Molecular Genetics and Metabolism 71, 293-314. 

 

Kopchick, J. J., Parkinson, C. C., Stevens, E. C. and Trainer, P. J. (2002). Growth 

hormone receptor antagonists: Discovery, development, and use in patients with 

acromegaly. Endocrine Reviews 23, 623-646.  

 

Kuber, P. S., Busboom, J. R., Duckett, S. K., Mir, P. S., Mir, Z., McCormick, R. J., 

Gaskins, C. T., Cronrath, J. D., Marks, D. J. and Reeves, J. J. (2004). Effects of 

biological type and dietary fat treatment on factors associated with tenderness: II. 

Measurements on beef semitendinosus muscle. Journal of Animal Science 82, 779-784.  

 

Kudla, A., John, M., Bowen-Pope, D., Rainish, B. and Olwin, B. (1995). A 

requirement for fibroblast growth factor in regulation of skeletal muscle growth and 

differentiation cannot be replaced by activation of platelet-derived growth factor 

signaling pathways. Molecular and Cellular Biology 15, 3238-3246. 

 

Krause, M. P. Liu, Y., Vu, V., Chan, L., Xu, A., Riddell, M. C., Sweeney, G. and 

Hawke, T. J. (2008). Adiponectin is expressed by skeletal muscle fibers and influences 

muscle phenotype and function. The American Journal of Physiology 295, C203-C212. 

 

Kristensen, L., Therkildsen, M., Aaslyng, M. D., Oksbjerg, N. and Ertbjerg, P. 

(2004). Compensatory growth improved meat tenderness in gilts but not in barrows. 

Journal of Animal Science 82, 3617-3624. 

 



 

 252 
 

Lahucky, R., Palanska, O., Mojto, J., Zaujec, K. and Huba, J. (1998). Effect of 

preslaughter handling on muscle glycogen level and selected meat quality traits in beef. 

Meat Science 50, 389-393. 

 

Laliotas, G. P., Bizelis, I. and Rogdakis, E. (2010). Comparative approach of the de 

novo fatty avis synthesis (lipogenesis) between ruminant and non ruminant species: 

From bio-chemical to the main regulatory lipogenic genes. Current Genomics 11, 168-

183. 

 

Lametsch, R., Kristensen, L., Larsen, M. R., Therkildsen, M., Oksbjerg, N. and 

Ertbjerg, P. (2006) Changes in the muscle proteome after compensatory growth in 

pigs. Journal of Animal Science 84, 918-924.  

 

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. (2009). Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biology 10, 

R25. 

 

Lawrence, T. L. L. and Fowler, V. R. (1997). Growth of farm animals. Cab 

international, Oxon UK.  

 

LeBreton, M. H., Beck-Henzelin, A., Richoz-Payot, J., Rochereau-Roulet, S., Pinel, 

G., Delatour, T. and Le Bizec. (2010). Detection of recombinant bovine somatotropin 

in milk and effect of industrial processes on its stability. Analytica Chimica Acta 672, 

45-49. 

 



 

 253 
 

Lee, S-H., Park, E-W., Cho, Y-M., Kim, S-K., Lee, J-H., Jeon, J-T., Lee, C-S., Im, 

S-K., Oh, S-J., Thompson, J. M. and Yoon, D. (2007). Identification of differentially 

expressed genes relating to intramuscular fat development in the early and late fattening 

stages of hanwoo steers. Journal of Biochemistry and Molecular Biology 40, 757-764. 

 

Lee, S-J. and McPherron, A. C. (2001). Regulation of myostatin activity and muscle 

growth. Proceedings of the National Academy of Sciences 98, 9306-9311. 

 

Leeson, S. and Zubair, A. K. (1997). Nutrition of the broiler chicken around the period 

of compensatory growth. Poultry Science 76, 992-999.  

 

Lehnert, S. A., Byrne, K. A., Reverter, A., Nattrass, G. S., Greenwood, P. L., 

Wang, Y. H., Hudson, N. J. and Harper, G. S. (2006). Gene expression profiling of 

bovine skeletal muscle in response to and during recovery from chronic and severe 

undernutrition. Journal of Animal Science 84, 3239-3250. 

 

Lehnert, S. A., Reverter, A., Byrne, K. A., Wang, Y., Nattrass, G. S., Hudson, N. J. 

and Greenwood, P. L. (2007). Gene expression studies of developing bovine 

longissimus muscle from two different beef cattle breeds. BMC Developmental Biology 

7, 95. 

 

Lin, X., Duan, X., Liang, Y-Y, Su, Y., Wrighton, K. H., Long, J., Hu, M., Davis, C. 

M., Wang, J., Brunicardi, F. C., Shi, Y., Chen, Y-G., Meng, A. and Feng, X-H. 

(2006). PPM1A functions as a smad phosphatase to terminate TGF signalling. Cell 125, 

915-928. 

 



 

 254 
 

Liu, J., Damon, M., Guitton, N., Guisle, I., Ecolan, P., Vincent, A., Cherel, P. and 

Gondret, F. (2009). Differentially-expressed genes in pig longissimus muscles with 

contrasting levels of fat, as identified by combined transcriptomic, reverse transcription 

PCR, and proteomic analyses. Journal of Agricultural and Food Chemistry 57, 3808-

3817. 

 

Liu, Q., Scheller, K. K., Arp, S. C., Schaefer, D. M. and Frigg, M. (1996). Color 

coordinates for assessment of dietary vitamin E effects on beef color stability. Journal 

of Animal Science, 74, 106-116. 

 

Liu, Y. F. and Steinacker, J. M. (2001). Changes in muscle heat shock proteins: 

Pathological significance. Front. Biosci 6, D12 – D25. 

 

Lobley, G. E., Sinclair, K. D., Grant, C. M., Miller, L., Mantle, D., Calder, A. G., 

Warkup, C. C. and Maltin, C. A. (2000). The effects of breed and level of nutrition on 

whole-body and muscle protein metabolism in pure-bred Aberdeen Angus and 

Charolais beef steers. British Journal of Nutrition 84, 275-284. 

 

Lochner, J. V., Kauffman, R. G. and Marsh, B. B. (1980). Early-postmortem cooling 

rate and beef tenderness. Meat Science 4, 227-241. 

 

Lyford, C., Thompson, J., Polkinghorne, P., Miller, M., Nishimura, T., Neath, K., 

Allen, P. and Belasco, E. (2010). Is willingness to pay (WTP) for beef quality grades 

affected by consumer demographics and meat consumption preferences? Australasian 

Agribusiness Review 18, 1-17. 

 

http://www.sciencedirect.com.jproxy.nuim.ie/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLochner,%2520J.V.%26authorID%3D24426221700%26md5%3D03614cdac5f20e9292d8e5cf6eb0f463&_acct=C000008338&_version=1&_userid=107385&md5=04a6061a07c0a938b74b27bec5a88139
http://www.sciencedirect.com.jproxy.nuim.ie/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DKauffman,%2520R.G.%26authorID%3D7102905523%26md5%3D8b980d4704f6c73504a5cfe23d7aed3c&_acct=C000008338&_version=1&_userid=107385&md5=8b8267a54b9afa7c35c0c98b79eedd02
http://www.sciencedirect.com.jproxy.nuim.ie/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DMarsh,%2520B.B.%26authorID%3D7102169764%26md5%3D54e57c3ba0b3f7bb6b39c158f7a517eb&_acct=C000008338&_version=1&_userid=107385&md5=f42e5cb774dcb5338c58681411622d3c


 

 255 
 

Lynn, D., Winsor, G., Chan, C., Richard, N., Laird, M., Barsky, A., Gardy, J., 

Roche, F., Chan, T., Shah, N., Lo, R., Naseer, M., Que, J., Yau, M., Acab, M., 

Tulpan, D., Whiteside, M., Chikatamarla, A., Mah, B., Munzner, T., Hokamp, K., 

Hancock, R. and Brinkman, F. (2008) InnateDB: facilitating systems-level analyses 

of the mammalian innate immune response. Molecular Systems Biology, 4. 

 

Maltin, C., Balcerzak, D., Tilley, R. and Delday, M. (2003). Determinants of meat 

quality: tenderness. Proceedings of the Nutrition Society 62, 337-347. 

 

Mamanova, L., Andrews, R. M., James, K. D., Sheridan, E. M., Ellis, P. D., 

Langford, C. F., Ost, T. W. B., Collins, J. E. and Turner, D. J. (2010) Frt-seq: 

amplification-free, strand-specific transcriptome sequencing. Nature Methods 7, 130-

132. 

 

Mamedova, L. K., Robbins, K., Johnson, B. J. and Bradford, B. J. (2010). Tissue 

expression of angiopoietin-like protein 4 in cattle. Journal of Animal Science 88, 124-

130. 

 

Mann, M. and Jensen, O. N. (2003). Proteomic analysis of post-translational 

modifications. Nature Biotechnology 21, 255-261. 

 

Manner, D. A., Winer, Shaw, M. A. and Baumann, G. (1991). Plasma growth 

hormone (GH)-binding proteins: effect on GH binding to receptors and GH action. 

Journal of Clinical Endocrinology and Metabolism 73, 30-34. 

 



 

 256 
 

Margetic, S., Gazzola, C., Pegg, G. C. and Hill, R. A. (2002). Leptin: a review of its 

peripheral actions and interactions. International Journal of Obesity 26, 1407-1433. 

 

Martinez-Ramirez, H. R., Jeaurond, E. A. and de Lange, C. F. M. (2009). Nutrition-

induced differences in body composition, compensatory growth and endocrine status in 

growing pigs. Animal 3, 228-236. 

 

Massagué, J. (2000). How cells read TGF-β signals. Nature Reviews Molecular Cell 

Biology 1, 169-178. 

 

Matsuzaki, M., Takizawa, S. and Ogawa, M. (1997). Plasma insulin, metabolite 

concentrations, and carcass characteristics of Japanese Black, Japanese Brown, and 

Holstein steers. Journal of Animal Science 75, 3287-3293. 

 

McCarthy, S. D., Butler, S. T., Patton, J., Daly, M., Morris, D. G., Kenny, D. A. 

and Waters, S. M. (2009). Differences in the expression of genes involved in the 

somatotropic axis in divergent strains of Holstein-Friesian dairy cows during early and 

mid lactation. Journal of Dairy Science 92, 5229–5238. 

 

McGuirk, B. J., Going, I. and Gilmour, A. R. (1998). The genetic evaluation of beef 

sires used for crossing with dairy cows in the UK 2. Genetic parameters and sire merit 

predictions for calving survey traits. Animal Science 66, 47-54. 

 

McMurry, J., and Begley, T. (2005). The organic chemistry of biological pathways. 

Roberts and Company Publishers, Colorado, USA. 

 



 

 257 
 

McPherron, A. C., Lawler, A. M. and Lee, S-J. (1997). Regulation of skeletal muscle 

mass in mice by a new TGF-p superfamily member. Nature 387, 83-90. 

 

McPherron, A. C. and Lee, S.-J. (1997). Double muscling in cattle due to mutations in 

the myostatin gene. Proceedings of the National Academy of Sciences USA 94, 12457-

12461.  

 

Michaux, C., van Sichem-Raynaert, R., Beckers, J. F., de Fonseca, M. and Hanset, 

R. (1982). Endocrinolgy studies on double muscled catle: LH, GH, testosterone and 

insulin plasma levels during the first year of life. In “Muscle hypertrophy of genetic 

origin and its use to improve beef production”. Editors J. W. B King and Menissier, F., 

Publishers Martinus Nijhoff for the Commission of the European Communities, 1982, 

pp. 350-384.  

 

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S. and Perry, V. E. A. 

(2011). Protein intake during gestation affects postnatal bovine skeletal muscle growth 

and relative expression of IGF1, IGF1R, IGF2 and IGF2R. Molecular and Cellular 

Endocrinology 332, 234–241. 

 

Moloney, A. P., Keane, M. G., Mooney, M. T., Rezek, K., Smulders, F. J. M. and 

Troy, D. J. (2008). Energy supply patterns for finishing steers: Feed conversion 

efficiency, components of bodyweight gain and meat quality. Meat Science 79, 86-97. 

 

Moloney, A. P., Mooney, M. T., Kerry, J. P. and Troy, D. J. (2001). Producing 

tender and flavoursome beef with enhanced nutritional characteristics. Proceedings of 

the Nutrition Society 60, 221-229. 



 

 258 
 

Monsόn, F., Sanudo, C. and Sierra, I. (2004) Influence of cattle breed and ageing 

time on textural meat quality. Meat Science 68, 595-602. 

 

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008). 

Mapping and quantifying mammalian transcriptomes by Rna-Seq. Natural Methods 5, 

621-628. 

 

Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., 

Parker, H. G and Ostrander, E. A. (2007). A mutation in the myostatin gene 

increases muscle mass and enhances racing performance in heterozygote dogs. PLoS 

Genetics 3, 779-786. 

 

Mukherjee, A., Wilson, E. M. and Rotwein, P. (2008). Insulin-like growth factor 

(IGF) binding protein-5 blocks skeletal muscle differentiation by inhibiting IGF actions. 

Molecular Endocrinology 22, 206–215. 

 

Mullen, M. P., Berry, D. P., Howard, D. J., Diskin, M. G., Lynch, C. O., Giblin, L., 

Kenny, D. A., Magee, D. A., Meade, K. G. and Waters, S. M. (2011). Single 

nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are 

associated with performance in Holstein-Friesian dairy cattle. Frontiers in Genetics 2, 

3. 

 

Murgiano, L., D’Alessandro, A., Egidi, M. G., Crisà, A., Prosperini, G., Timperio, 

A. M., Valentini, A. and Zolla, L. (2010). Proteomics and transcriptomics 

investigation on longissimus muscles in Large White and Casertana pig breeds. Journal 

of Proteome Research 9, 6450-6466. 



 

 259 
 

Nafikov RA, and Beitz DC. (2007). Carbohydrate and lipid metabolism in farm 

animals. Journal of  Nutrition 137, 702-705. 

 

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and 

Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA 

sequencing. Science 320, 1344-1349. 

 

Nemeth, P. and Pette, D. (1981). Succinate dehydrogenase activity in fibres classified 

by myosin ATPase in three hind limb muscles of rat. Journal of Physiology 320, 73-80. 

 

Ndlovu, T., Chimonyo, M., Okoh, A. I., Muchenje, V., Dzama, K. and Raats, J. G. 

(2007). Asessing the nutritional status of beef cattle: current practices and future 

prospects. African Journal of Biotechnology 6 2727-2734. 

 

Neel, J. P. S., Fontenot, J. P., Clapham, W. M., Duckett, S. K., Felton, E. E. D., 

Scaglia, G. and Bryan, W. B. (2007). Effects of winter stocker growth rate and 

finishing system on: I. Animal performance and carcass characteristics. Journal of 

Animal Science 85, 2012-2018. 

 

Ning, Y., Hoang, B., Schuller, A. G. P., Cominski, T. P., Hsu, M-S., Wood, T. L. 

and Pintar J. E. (2007). Delayed mammary gland involution in mice with mutation of 

the insulin-like growth factor binding protein 5 gene. Endocrinology 148, 2138–2147. 

 

Nishimura, T., Hattori, A. and Takahashi, K. (1999). Structural changes in 

intramuscular connective tissue during the fattening of Japanese black cattle: effect of 

marbling on beef tenderization. Journal of Animal Science 77, 93-104. 



 

 260 
 

Nkrumah, J. D., Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., 

Price, M. A., Wang, Z. and Moore, S. S. (2006). Relationships of feedlot feed 

efficiency, performance, and feeding behavior with metabolic rate, methane production, 

and energy portioning in beef cattle. Journal of Animal Science 84, 145-153. 

 

Oddy, V. H., Harper, G. S., Greenwood, P. L. and McDonagh, M. B. (2001). 

Nutritional and development effects on the intrinsic properties of muscles as they relate 

to the eating quality of beef. Australian Journal of Experimental Agriculture 41, 921-

942. 

 

Ohlendieck, K. (2010). Proteomics of skeletal muscle glycolysis. Biochimica et 

Biophysica Acta 1804, 2089-2101. 

 

Oillic, S., Lemoine, E, Gros, J-B. and Kondjoyan, A. (2011). Kinetic analysis of 

cooking loss from beef and other animal muscles heated in a water bath - Effect of 

sample dimensions and prior freezing and aging. Meat Science 88, 338-346. 

 

Oksbjerg, N., Gondret, F. and Vestergaard, M. (2004). Basic principles of muscle 

development and growth in meat-producing mammals as affected by the insulin-like 

growth factor (IGF) system. Domestic Animal Endocrinology 27, 219-240. 

 

Ong, S. E. and Mann, M. (2005).  Mass spectrometry-based proteomics turns 

quantitative. Nature Chemical Biology 1, 252-262. 

 

Oshlack, A. and Wakefield, M. (2009). Transcript length bias In RNA-seq data 

confounds systems biology. Biology Direct 4, 14. 



 

 261 
 

Otto, A., and Patel, K. (2010). Signalling and the control of skeletal muscle size. 

Experimental Cell Research 316, 3059–3066. 

 

Otto, G., Roehe, R., Looft, H., Thoelking, L., Henning, M., Plastow, G. S. and 

Kalm, E. (2006). Drip loss of case-ready meat and of premium cuts and their 

associations with earlier measured sample drip loss, meat quality and carcass traits in 

pigs. Meat Science 72, 680-687. 

 

Oury, M-P., Dumont, R., Jurie, C., Hocquette, J. F. and Picard, B. (2010). Specific 

fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais 

cattle. BMC Biochemistry 11, 12. 

 

Page, J. K., Wulf, D. M. and Schwotzer, T. R. (2001). A survey of beef muscle and 

pH. Journal of Animal Science 79, 678-687. 

 

Pambu-Gollah, R., Cronje, P. B. and Casey, N. H. (2000). An evaluation of the use 

of blood metabolite concentrations as indicators of nutritional status in free-ranging 

indigenous goats. South African Journal of Animal Science 30, 115-120. 

 

Pang, W. Y., Earley, B., Sweeney, T., Pirani, S., Gath, V. and Crowe, M. A. (2009). 

Effects of banding or burdizzo castration of bulls on neutrophil phagocytosis and 

respiratory burst, CD62-L expression, and serum interleukin-8 concentration. Journal of 

Animal Science 87, 3187-3195. 

 



 

 262 
 

Patterson, D. C., Moore, C. A. and Steen, R. W. J. (1994). The effects of plane of 

nutrition and slaughter weight on the performance and carcass composition of 

continental beef bulls given high forage diets. Animal Science 58, 41-47. 

 

Peachey, B. M., Purchas, R. W. and Duizer, L. M. (2002). Relationships between 

sensory and objective measures of meat tenderness of beef m. longissimus thoracis from 

bulls and steers. Meat Science 60, 211-218. 

 

Pearce, K. L., Rosenvold, K., Andersen, H. J. and Hopkins, D. L. (2011). Water 

distribution and mobility in meat during the conversion of muscle to meat and ageing 

and the impacts on fresh meat quality attributes - A review. Meat Science 89, 111-124. 

 

Perez, R., Tupac-Yupanqui, I. and Dunner, S. (2008). Evaluation of suitable 

reference genes for gene expression studies in bovine muscular tissue. BMC Molecular 

Biology 9, 79. 

 

Pertea, M. and Salzberg, S. L. (2010). Between a chicken and a grape: estimating the 

number of human genes. Genome Biology 11, 206. 

 

Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. and Stempel, K. E. 

(1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and 

rabbits. Biochemistry 11, 2627-2633. 

 

Philippou, A., Halapas, A., Maridaki, M. and Koutsilieris, M. (2007). Type I 

insulin-like growth factor receptor signaling in skeletal muscle regeneration and 

hypertrophy. Journal of Musculoskeletal and Neuronal Interactions 7, 208–218. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Koutsilieris%20M%22%5BAuthor%5D


 

 263 
 

Picard, B., Cassar-Malek, I., Kammoun, M., Jurie, C., Micol, D. and Hocquette, J. 

F. (2011). Protein markers of beef tenderness in young bulls from different breeds. 62nd 

Annual Meeting of EAAP, Stavanger, Norway. 17, pp. 311. 

 

Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S.,  

Dalton, D., Gillett, N. and Stewart, T. A. (1993). IGF-1 is required for normal 

embryonic growth in mice. Genes and Development 7, 2609–2617. 

 

Purich, D. L. and Allison, R. D. (2000). The enzyme reference. Academic Press 

London, UK. 

 

Rebbapragada, A. Benchabane, H., Wrana, J. L., Celeste, A. J. and Attisano, L. 

(2003). Myostatin signals through a transforming growth factor -like signaling pathway 

to block adipogeneis. Molecular and Cellular Biology 23, 7230-7242. 

 

Renaville, R., Hammadi, M. and Portetelle, D. (2002). Role of the somatotropic axis 

in the mammalian metabolism. Domestic Animal Endocrinology 23, 351-360. 

 

Rescan, P-Y., Montfort, J., Ralliere, C., LeCam, A., Esquerre, D. and Hugot, K. 

(2007). Dynamic gene expression in fish muscle during recovery growth induced by a 

fasting-refeeding schedule. BMC Genomics 8, 438. 

 

Resurreccion, A. V. A. (2003). Sensory aspects of consumer choices for meat and meat 

products. Meat Science 66, 11-20. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Powell-Braxton%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hollingshead%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Warburton%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dowd%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pitts-Meek%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dalton%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gillett%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stewart%20TA%22%5BAuthor%5D


 

 264 
 

Rı́os, R., Carneiro, I., Arce, V. M. and Devesa, J. (2002). Myostatin is an inhibitor of 

myogenic differentiation. American Journal of Physiology - Cell Physiology 282, C993-

C999. 

 

Ritacco, G., Radecki, S. V. and Schoknecht, P. A. (1997). Compensatory growth in 

runt pigs is not mediated by insulin-like growth factor I. Journal of Animal Science 75, 

1237-1243. 

 

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010). Edger: A bioconductor 

package for differential expression analysis of digital gene expression data. 

Bioinformatics 26, 139-140. 

 

Rose, A. J. and Richter, E. A. (2005). Skeletal muscle glucose uptake during exercise: 

how is it regulated? Physiology 20, 260-270. 

 

Rozen, S., and Skaletsky, H. J. (2000). Primer3 on the WWW for general users and 

for biologist programmers. In: Krawetz, S., Misener, S. (eds) Bioinformatics Methods 

and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365–386 

Source code available at http://fokker.wi.mit.edu/primer3/. 

 

Rule, D. C., Beitz, D. C., de Boer, G., Lyle, R. R., Trenkle, A. H. and Young, J. W. 

(1985). Changes in hormone and metabolite concentrations in plasma of steers during a 

prolonged fast. Journal of Animal Science 61, 868-875. 

 

Ryan, W. J. (1990). Compensatory growth in sheep and cattle. Nutrition Abstracts and 

Reviews 44, 1609-1621. 

http://jura.wi.mit.edu/rozen/
http://jura.wi.mit.edu/rozen/papers/rozen-and-skaletsky-2000-primer3.pdf
http://jura.wi.mit.edu/rozen/papers/rozen-and-skaletsky-2000-primer3.pdf
http://fokker.wi.mit.edu/primer3/primer3_code.html


 

 265 
 

Ryan, W. J., Williams, I. H. and Moir, R. J. (1993). Compensatory growth in sheep 

and cattle. I. Growth pattern and feed intake. Australian Journal of Agricultural 

Research 44, 1609-1621. 

 

Sadkowski, T., Jank, M., Zwierzchowski, L., Oprządek, J. and Motyl, T. (2009). 

Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls. 

Journal of Applied Genetics 50, 109–123. 

 

Saghatelian, A. and Cravett, B. F. (2005). Assignment of protein function in the 

postgenomic era. Nature Chemical Biology 1, 130-134. 

 

Sainz, R. D. and Hasting, H. (2000). Simulation of the development of adipose tissue 

in beef cattle. In Modeling Nutrient Utilization in Farm Animals. CABI publishing, 

New York, NY. pp. 175-182. 

 

Sainz, R. D., De la Torre, F. and Oltjen, J. W. (1995). Compensatory growth and 

carcass quality in growth-restricted and refed beef steers. Journal of Animal Science 73, 

2971-2979. 

 

Sanger, F. and Thompson, E. O. P. (1953a). The amino-acid sequence in the glycl 

chain of insulin. 1. The investigation of lower peptides from partial hydrolysates. 

Biochemistry Journal 53, 353-366. 

 

Sanger, F. and Thompson, E. O. P. (1953b). The amino-acid sequence in the glycl 

chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. 

Biochemistry Journal 53, 353-374. 



 

 266 
 

Sanger, F. and Tubby, H. (1951). The amino-acid sequence in the phenylalanyl chain 

of insulin. 1. The identification of lower peptides from partial hydrolysates. 

Biochemistry Journal 49, 481-490. 

 

Sasaki, S., (1990). Mechanism of insulin resistance in glucose transport system in 

sheep: 3-0-methylglucose transport in ovine adipocytes. Hormone and Metabolic 

Research 22, 457-461. 

 

Sasaki, S., (2002). Mechanism of insulin action on glucose metabolism in ruminants. 

Animal Science Journal 73, 423-433. 

 

Schiavon, S., Tagliapietra, F., Dal Maso, M., Bailoni, L. and Bittante, G. (2010). 

Effects of low-protein diets and rumen-protected conjugated linoleic acid on production 

and carcass traits of growing double-muscled Piemontese bulls. Journal of Animal 

Science 88, 3372-3383. 

 

Schneider, M. R., Wolf, E., Hoeflich, A. and Lahm H. (2002). IGF-binding protein-5: 

flexible player in the IGF system and effector on its own. Journal of Endocrinology 

172, 423–440. 

 

Schoonmaker, J. P., Cecava, M. J., Fluharty, F. L., Zerby, H. N. and Loerch, S. C. 

(2004). Effect of source and amount of energy and rate of growth in the growing phase 

on performance and carcass characteristics of early- and normal-weaned steers. Journal 

of Animal Science 82, 273-282. 

 



 

 267 
 

Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., 

Lightfoot, S., Menzel, W., Granzow, M. and Ragg, T. (2006). The RIN: an RNA 

integrity number for assigning integrity values to RNA measurements. BMC Molecular 

Biology 7, 3. 

 

Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., 

Braun, T., Tobin, J. F. and Lee, S-J. (2004). Myostatin mutation associated with gross 

muscle hypertrophy in a child. The New England Journal of Medicine 350, 2682-2688. 

 

Seger, R. and Krebs, E. G. (1995). The MAPK signalling cascade. FASEB Journal. 9, 

726-735 

 

Seideman, S. C., Cross, H. R. and Crouse, J. D. (1989). Variations in the sensory 

properties of beef as affected by sex condition, muscle and postmortem aging. Journal 

of Food Quality 12, 39–58. 

 

Shackelford, S. D., Koohmaraie, M. and Savell, J. W. (1994). Evaluation of 

longissimus dorsi muscle pH at three hours post mortem as predictor of beef tenderness. 

Meat Science 37, 195-204. 

 

Sherwood, L. (2006). The fundamentals of physiology: A human perspective. 

Thompson Learning, London, UK. 

 

Shi, Y. and Massagué, J. (2003). Mechanisms of TGF-β signalling from cell 

membrane to the nucleus. Cell Press 113, 685-700. 

 



 

 268 
 

Shibata, M., Matsumoto, K., Oe, M., Ohnishi-Kameyama, M., Ojima, K., 

Nakajima, I., Muroya, S. and Chikuni, K. (2009). Differential expression of the 

skeletal muscle proteome in grazed cattle. Journal of Animal Science 87, 2700-2708. 

 

Short, R. E., MacNeil, M. D., Grosz, M. D., Gerrard D. E. and Grings, E. E. (2002). 

Pleiotropic effects in Hereford, Limousin, and Piedmontese F2 crossbred calves of 

genes controlling muscularity including the Piedmontese myostatin allele. Journal of 

Animal Science 80, 1-11. 

 

Sieczkowska H, Zybert A, Krzęcio E, Antosik, K., Kocwin-Podsiadla, M., 

Pierzchala, M. and Urbanski, P. (2010). The expression of genes PKM2 and CAST in 

the muscle tissue of pigs differentiated by glycolytic potential and drip loss, with 

reference to the genetic group. Meat Science 84, 137-142. 

 

Sinclair, K. D., Lobley, G. E., Horgan, G. W., Kyle, D. J., Porter, A. D., Matthews, 

K. R., Warkup, C. C. and Maltin, C. A. (2001). Factors influencing beef eating 

quality 1. Effects of nutritional regimen and genotype on organoleptic properties and 

instrumental texture. Animal Science 72, 269-277.  

 

Sjögren, K., Liu, J-L, Blad, K., Skrtic, S., Vidal, O., Wallenius, V., LeRoith, D., 

Törnell, J., Isaksson, O. G. P., Jansson, J-O. and Ohlsson, C. (1999). Liver-derived 

insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not 

required for postnatal body growth in mice. Proceedings of the National Academy of 

Science USA 96, 7088–7092. 

 



 

 269 
 

Smith, S. B. and Crouse, J. D. (1984). Relative contributions of acetate, lactate and 

glucose to lipogenesis intramuscular and subcutaneous adipose tissue. Journal of 

Nutrition 114, 792-800. 

 

Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G. and Sawyer, J. E. 

(2009). Cellular regulation of bovine intramuscular adipose tissue development and 

composition. Journal of Animal Science 87, E72-82. 

 

Spicer, L. J., Echternkamp, S. E., Canning, S. F. and Hammond, J. M. (1988). 

Relationship between concentrations of immunoreactive insulin-like growth factor-I in 

follicular fluid and various biochemical markers of differentiation in bovine antral 

follicles. Biology of Reproduction 39, 573–580. 

 

Spurlock, D. M., McDaneld, T. G. and McIntyre, L. M. (2006). Changes in skeletal 

muscle gene expression following clenbuterol administration. BMC Genomics 7, 320. 

 

Sreekumar, R., Unnikrishnan, J., Fu, A., Nygren, J., Short, K. R., Schimke, J., 

Barazzoni, R. and Sreekumaran Nair, K. (2002). Effects of caloric restriction on 

mitochondrial function and gene transcript in rat muscle. American Journal of 

Physiology - Endocrinology and Metabolism 283, E38-E43. 

 

Statistical Analysis Software Institute (SAS). (2008). SAS/STAT. SAS Systems for 

windows. Release 9.1.3. SAS Institute Inc., Cary, N.C., USA.  

 



 

 270 
 

Steen, R. W. J. and Kilpatrick, D. J. (2000). The effects of the ratio of grass silage to 

concentrates in the diet and restricted dry matter intake on the performance and carcass 

composition of beef cattle. Livestock production Science 62, 181-192. 

 

Stolzenbach, S., Therkildsen, M., Oksbjerg, N., Lazarotti, R., Ertbjerg, P., 

Lametsch, R. and Byrne, D. V. (2009). Compensatory growth response as a strategy to 

enhance tenderness in entire male and female pork M. longissimus thoracis. Meat 

Science 81, 163-170. 

 

Subramaniam, N., Cairns, W. and Okret, S. (1997). Studies on the mechanism of 

glucocorticoid-mediated repression from a negative glucocorticoid response element 

from the bovine prolactin gene. DNA Cell Biology 16, 153-163. 

 

Teltathum, T. and Metchay, S. (2009). Proteome changes in Thai indigenous chicken 

muscle during growth period. International Journal of Biological Sciences 5, 679-685. 

 

The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification of 

biology. Nature Genetics 25, 25-29. 

 

Therkildsen, M. (2005). Muscle protein degradation in bull calves with compensatory 

growth. Livestock Production Science 98, 205-218. 

 

Therkildsen, M., Houbak, M. B. and Bryne, D. V. (2008). Feeding strategy for 

improving tenderness has opposite effects in two different muscles. Meat Science 80, 

1037-1045. 

 



 

 271 
 

Therkildsen, M., Stolzenbach, S. and Byrne, D. V. (2011). Sensory profiling of 

textural properties of meat from dairy cows exposed to a compensatory finishing 

strategy. Meat Science 87, 73-80. 

 

Thorp, C. L., Wylie, A. R. G., Steen, R. W. J., Shaw, C. and McEvoy, J. D. (1999). 

Effect of dietary forage: concentrate ratio on the behaviour, rumen fermentation and 

circulating concentrations of IGF-1, insulin, glucagon, and metabolites of beef steers 

and their potential effects on carcass composition. Animal Science 68, 533-546. 

 

Tilley, J. M. A. and Terry, R. A. (1963). A two-stage technique for the in vitro 

digestion of forage crops. Grass and Forage Science 18, 104-111. 

 

Tilley, R. E., McNeil, C. J., Ashworth, C. J., Page, K. R. and McArdle, H. J. (2007). 

Altered muscle development and expression of the insulin-like growth factor system in 

growth retarded fetal pigs. Domestic Animal Endocrinology 32, 167–177. 

 

Ting, S. T. L., Earley, B. and Crowe, M. A. (2004). Effect of cortisol infusion patterns 

and castration on metabolic and immunological indices of stress response in cattle. 

Domestic Animal Endocrinology 26, 329–349. 

 

Tolla, N., Mirkena, T. and Yimegnuhal, A. (2003). Effect of feed restriction on 

compensatory growth of Arsi (Bos indicus) bulls. Animal Feed Science and Technology 

103, 29-39. 

 

Tomkins, N. W., Harper, G. S., Bruce, H. L. and Hunter, R. A. (2006). Effect of 

different post-weaning growth paths on long-term weight gain, carcass characteristics 



 

 272 
 

and eating quality of beef cattle. Australian Journal of Experimental Agriculture 46, 

1571-1578. 

 

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. 

J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and 

quantification by Rna-Seq reveals unannotated transcripts and isoform switching during 

cell differentiation. Nature Biotechnology 28, 511-515. 

 

Tsintzas, K., Jewell, K., Kamran, M., Laithwaite, D., Boonsong, T., Littlewood, J., 

Macdonald, I. and Bennett, A. (2006). Differential regulation of metabolic genes in 

skeletal muscle during starvation and refeeding in humans. Journal of Physiology 575, 

291-303. 

 

Tulloh, N. M. (1961). Variations in the skin and skin-fold thickness of beef cattle. 

Australian Journal Agricultural Research 12, 992-1004. 

 

Turyn, D., Dominici, F. P., Sotelo, A. I. and Bartke, A. (1997). Growth hormone-

binding protein enhances growth hormone activity in vivo. American Journal of 

Physiology 273, E549-556. 

 

Untergasser, G., Gander, R., Lilg, C., Lepperdinger, G., Plas, E. and Berger, P. 

(2005). Profiling molecular targets of TGF-β1 in prostate fibroblast-to-myofibroblast 

transdifferentiation. Mechanisms of Ageing and Development 126, 59-69. 

 



 

 273 
 

USDA: Livestock and Poultry: World Markets and Trade. 

http://www.fas.usda.gov/dlp/circular/2011/livestock_poultry.pdf. (accessed 23rd May 

2011). 

 

Van Groningen, C, Devitt, C. J. B., Wilton, J. W. and Cranfield, J. A. L. (2006). 

Economic evaluations of beef bulls in an integrated supply chain. Journal of Animal 

Science 84, 3219-3227. 

 

Van Knegsel, A. T. M., van den Brand, H., Graat, E. A. M., Dijkstra, J., Jorritsma, 

R., Decuypere, E., Tamminga, S. and Kemp, B. (2007). Dietary energy source in 

dairy cows in early lactation: Metabolites and Metabolic Hormones. Journal of Dairy 

Science 90, 1477-1485. 

 

Van Laack, R. L. J. M., Stevens, S. G. and Stalder, K. J. (2001). The influence of 

ultimate pH and intramuscular fat content on pork tenderness and tenderization. Journal 

of Animal Science 79, 392-397. 

  

Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods of dietary fibre, 

neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition In 

Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. 

Journal of Dairy Science 74, 3583-3597. 

 

VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008). Twenty-five years of 

quantitative PCR for gene expression analysis. BioTechniques 25th Anniversary 44, pp. 

619-626. 

 

http://www.fas.usda.gov/dlp/circular/2011/livestock_poultry.pdf


 

 274 
 

Vasconcelos, J. T., Sawyer, J. E., Tedeschi, L. O., McCollum, F. T. and Greene L. 

W. (2009). Effects of different growing diets on performance, carcass characteristics, 

insulin sensitivity, and accretion of intramuscular and subcutaneous adipose tissue of 

feedlot cattle. Journal of Animal Science 87, 1540-1547. 

 

Vernon RG. (1981). Lipid metabolism in the adipose tissue of ruminant animals. In: 

Christie W. W., ed. Lipid metabolism in ruminant animals. Pergamon Press, Oxford, 

New York, pp. 279-362. 

 

Vestergaard,  M., Henckel, P., Oksbjerg, N. and Sejrsen, K. (1994). The effect of 

cimaterol on muscle fiber characteristics, capillary supply, and metabolic potentials of 

longissimus and semitendinous muscles from young Friesian bulls. Journal of Animal 

Science 72, 2298-2306. 

 

Villarroel, M., María, G. A., Sanudo, C., Olleta, J. L. and Gebresenbet, G. (2003). 

Effect of transport time on sensorial aspects of beef meat quality. Meat Science 63, 353-

357. 

 

Vissac, B. (1992). Research activities on hereditary muscular hypertrophy. In “Muscle 

Hypertrophy of genetic origin and its use to improve beef production”. Editors King, J. 

W. B and Menissier, F. Publishers Martinus Nijhoff for the commission of the European 

Communities. pp. 3-20. 

 

Walsh, C. T., Garneau-Tsodikova, S. and Gatto, G. J. (2005). Protein 

posttranslational modifications: The chemistry of proteome diversifications. 

Angewandte Chemie International Edition 44, 7342-7372.  



 

 275 
 

Wang, X., Krupczak-Hollis, K., Tan, Y., Dennewitz, M. B., Adami, G. R. and 

Costa, R. H. (2002). Increased Hepatic Forkhead Box M1B (FoxM1B) levels in old-

aged mice stimulated liver regeneration through diminished p27kip1 protein levels and 

increased Cdc25B expression. The Journal of Biological Chemistry 277, 44310-44316. 

 

Warner, R. D., Greenwood, P. L., Pethick, D. W. and Ferguson, D. M. (2010). 

Genetic and environment effects on meat quality. Meat Science 86, 171-183. 

 

Warren, H. E., Scollan, N. D., Nute, G. R., Hughes, S. I., Wood, J. D. and 

Richardson, R. I. (2008). Effects of breed and a concentrate or grass silage diet on beef 

quality in cattle of 3 ages. II: Meat stability and flavour. Meat Science 78, 270-278. 

 

Warriss, P. D. (1990). The handling of cattle pre-slaughter and its effects on carcass 

and meat quality. Applied Animal Behaviour Science 28, 171-186. 

 

West, R. L. (1974). Red to white fiber ratios as an index of double muscling in beef 

cattle. Journal of Animal Science 38, 1165-1175. 

 

WHFF. (2011). http://www.whff.info/info/conferences/whc2008/Irish%20Holsteins. 

%20Mr%20K%20Dillon.pdf . (accessed 3rd January 2011). 

 

Wilkinson, J. M. and Prescott, J. H. D. (1970). Beef production from grass and silage 

with autumn-born calves. 2. The effects on the performance of cattle fed on silage of 

barley supplementation and of previous grazing intensity. Animal Production 12, 443-

450. 

 



 

 276 
 

Witten, J. T. and Ule, J. (2011). Understanding splicing regulation through RNA 

splicing maps. Trends in Genetics 27, 89-97. 

 

Wolf, A., Agnihotri, S. and Guhu, A. (2010). Targeting metabolic remodeling in 

Glioblastoma Multiforme. Oncotarget 1, 552-557. 

 

Wood, J. D., Nute, G. R., Richardson, R. I., Whittington, F. M., Southwood, O., 

Plastow, G., Mansbridge, R., da Costa, N. and Chang, K. C. (2004). Effects of 

breed, diet, and muscle on fat deposition and eating quality in pigs. Meat Science 67, 

651-667. 

 

Wylie, A. R. G. (2011). Leptin in farm animals: where are we and where can we go? 

Animal 5, 246-267. 

 

Wylie, A. R. G., Woods S., Carson A. F. and McCoy, M. (2008). Periprandial 

changes in metabolite and metabolic hormone concentrations in high-genetic-merit 

dairy heifers and their relationship to energy balance in early lactation. Journal of Dairy 

Science 91, 577-586. 

 

Yagoub, Y. M. and Babiker, S. A. (2008). Effect of compensatory growth on the 

performance and carcass characteristics of the broiler chicks. Pakistan Journal of 

Nutrition 7, 497-499. 

 

Yakubu, A., Salako, A. E., Ladokun, A. O., Adua, M. M. and Bature, T. U. K. 

(2007). Effects of feed restriction on performance, carcass yield, relative organ weights 



 

 277 
 

and some linear body measurements of weaner rabbits. Pakistan Journal of Nutrition 6, 

391-396. 

 

Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, 

S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., 

Ferre, P., Carling, D., Kimura, S., Hahn, B. B. and Kadowaki, T. (2002). 

Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-

activated protein kinase. Nature Medicine 8, 1288-1295. 

 

Yambayamba, E. S. and Price, M. A. (1991). Growth performance and carcass 

composition in beef heifers undergoing catch-up (compensatory) growth. Canadian 

Journal of Animal Science 71, 1020-1029. 

 

Yambayamba, E. S., Price, M. A. and Foxcroft, G. R. (1996b). Hormonal status, 

metabolic changes, and resting metabolic rate in beef heifers undergoing compensatory 

growth. Journal of Animal Science 74, 57-69. 

 

Yambayamba, E. S., Price, M. A. and Jones, S. D. M. (1996a). Compensatory growth 

of carcass tissues and visceral orgasm in beef heifers. Livestock Production Science 46, 

19-32. 

 

Yoon, J. C., Chickering, T. W., Rosen, E. D., Dussault, B., Qin, Y., Soukas, A., 

Friedman, J. M., Holmes, W. E. and Spiegelman, B. M. (2000). Peroxisome 

proliferation-activated receptor target gene encoding a novel angiopoietin-related 

protein associated with adipose differentiation. Molecular and Cellular Biology 20, 

5345-5349. 



 

 278 
 

Yoshizaki, T., Maegawa, H., Egawa, K., Ugi, S., Nishio, Y., Imamura, T., 

Kobayashi, T., Tamura, S., Olefsky, J. M. and Kashiwagi, A. (2004). Protein 

Phosphatase-2Cα as a Positive Regulator of Insulin Sensitivity through Direct 

Activation of Phosphatidylinositol 3-Kinase in 3T3-L1 Adipocytes. Journal of 

Biological Chemistry 279, 22715-22726. 

 

Young, M. D., Wakefield, M. J., Smyth, G.  K. and Oshlack, A. (2010). Gene 

ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 11, 

R14. 

 

Zgur, S., Cepon, M. and Cepin, S. (2003). Influence of growth rate in two growth 

periods on intramuscular connective tissue and palatability traits of beef. Czech Journal 

of Animal Science 48, 113-119. 

 

Zhou, M., Hernandez-Sanabria, E. and Luo Guan, L. (2009). Assessment of 

microbial ecology of ruminal methanogens in cattle with differential feed efficiency. 

Applied and Environment Microbiology 75, 6524-6533. 

 

Zhou, X. and Su, Z. (2007). EasyGO: Gene Ontology-based annotation and functional 

enrichment analysis tool for agronomical species. BMC Genomics 8, 246. 

 

Zhu, L. G. and Brewer, M. S. (1999). Relationship between instrumental and visual 

colour in a raw, fresh beef and chicken model system Journal of Muscle Foods 10, 131-

146. 

 



 

 279 
 

Zhu, X., Topouzis, S., Liang, L.-f. and Stotish, R. L. (2004). Myostatin signaling 

through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative 

feedback mechanism. Cytokine 26, 262-272. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 280 
 

 
 
 
 
 

Chapter 10 
 
 
 
 
 
 

Appendix 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 281 
 

Table A.1 List of sensory terms1 with definitions derived for sensory profiling of 
beef samples 
 

 1Warner et al. (2008); Eight point scale or one hundred point scale.  

Term and scale2 Definition  
Tenderness (1-8) Easiness with which the meat is divided into fine particles 

(ranging from very tough to very tender) 
Juiciness (1-8) Amount of juice released from the meat during mastication 

(ranging from very dry to very juicy) 
Beef (1-8) Amount of cooked beef flavour (ranging from little beef flavour 

to a lot of beef flavour) 
Abnormal (1-8) Amount of abnormal flavour (ranging from little abnormal to 

very abnormal) 
On cutting (1-100)  

Ease of cutting Ease with which sample is cut through by knife 
Cleanness of cut Appearance of sample on cutting with knife (jagged fibres to 

very clean cutting) 
Initial eating (1-100)  

Toughness Amount of resistance to teeth on initial chewing  
Juiciness Amount of moisture in the sample on initial chewing 
Sponginess Amount of springiness in the sample, bounce back to bite 
Crunchy Amount of perceived crispness in the sample on initial chewing 

On eating (1-100)  
Toughness Toughness on eating 
Moisture The perceived moisture content in the sample during eating 
Pulpy Pulpiness in the sample on eating 
Chewiness The total perceived effort required to prepare the sample to a 

state ready for swallowing 
Gristle Amount of gristle in the sample 
Fibres Amount of perceived fibres in the sample on eating 
Greasiness Amount of perceived oil or fatty matter in the sample on eating 
Dissoluble Degree to which it melts or disintegrates in mouth 

Residue (1-100)  
Greasy Amount of greasy coating in the mouth 
Swallow   Degree to which the residue is easy to swallow 
Particles Fine particles in residue 
Pulpy Pulpiness in the residue 
Mouthfeel  Sensation in the mouth after chewing (dry or wet) 

Flavour (1-100)  
Greasy The taste associated with fresh fat 
Bloody  The taste associated with raw undercooked meat 
Livery  The taste associated with liver flavour 
Metallic Tangy metal taste 
Bitter The taste on the tongue associated with caffeine/quinine 
Sweet The taste on the tongue associated with sugars 
Rancid The taste associated with “off” oil and fat 
Fishy The taste associated with fresh fish 
Acidic  The taste associated with acids 
Cardboard  The taste associated with smell of damp cardboard 
Vegetable Flavour of green vegetables and grass 
Dairy The taste associated with milk products 

Overall Preference rating for the sample 
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Table A.2 Individual flowcell information relating to reads per lane aligning to the bovine genome 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Flowcell Lane Sample ID Feeding treatment Time point Direction Raw reads Aligned Failed to align 
1 2 553RT1 RES T1 Left 33251052 19311977 (58.08%) 9299795 (27.97%) 
     Right 33152759 18766924 (56.61%) 9848453 (29.71%) 
1 4 23HT1 CON T1 Left 34472465 14837739 (43.04%) 16519875 (47.92%) 
     Right 34253480 13848629 (40.43%) 17537037 (51.20%) 
1 7 30HT2 CON T2 Left 36206791 20141309 (55.63%) 11694719 (32.30%) 
     Right 36125384 19617376 (54.30%) 12316535 (34.09%) 
2 1 553RT2 RES T2 Left 30570978 13219866 (43.24%) 15397092 (50.37%) 
     Right 30430813 15696491 (44.61%) 12127620 (39.85%) 
2 2 30HT1 CON T1 Left 30541405 17254687 (57.60%) 10225017 (33.48%) 
     Right 30397183 17526308 (57.60%) 9097225 (29.33%) 
2 3 465RT1 RES T1 Left 27944600 13326501 (47.69%) 12749119 (45.62%) 
     Right 27810958 27810958 (51.65%) 10605465 (38.13%) 
2 4 414HT2 CON T2 Left 32157077 15326129 (47.66%) 14622949 (45.47%) 
     Right 32003199 16410540 (51.28%) 12274302 (38.35%) 
2 6 587RT2 RES T2 Left 33507209 11614085 (34.66%) 19924386 (59.46%) 
     Right 33350519 11257807 (33.76%) 19748364 (59.21%) 
2 7 468HT1 CON T1 Left 38017734 18273944 (48.07%) 16631118 (43.75%) 
     Right 37626210 21544539 (57.27%) 11157729 (29.66%) 
2 8 926RT1 RES T1 Left 30646248 17881385 (58.35%) 8593096 (28.04%) 
     Right 30489637 18317376 (60.08%) 7314151 (23.99%) 
3 1 23HT2 CON T2 Left 30336084 13084666 (43.13%) 14814783 (48.84%) 
     Right 30239170 12982531 (42.93%) 14811870 (48.98%) 
3 2 921RT2 RES T2 Left 36565578 1.6E+08 (43.73%) 17177979 (46.98%) 
     Right 36449125 15798284 (43.34%) 17294619 (47.45%) 
3 3 414HT1 CON T1 Left 37321183 22039250 (59.05%) 9549763 (25.59%) 
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     Right 37198408 21788077 (58.57%) 9747608 (26.20%) 
3 4 587RT1 RES T1 Left 38287817 22779727 (59.50%) 9774334 (25.53%) 
     Right 38164056 22562220 (59.10%) 9962943 (26.11%) 
3 6 584HT2 CON T2 Left 34420285 17492886 (50.82%) 13054082 (37.93%) 
     Right 34305151 17332214 (50.52%) 13162062 (38.37%) 
3 7 976RT2 RES T2 Left 29167189 18128566 (62.15%) 7108090 (24.37%) 
     Right 29073554 17950304 (61.74%) 7254690 (24.95%) 
3 8 521HT1 CON T1 Left 35312124 20616842 (58.37%) 10009481 (28.35%) 
     Right 35187614 26276430 (57.62%) 10339098 (29.38%) 
4 1 921RT1 RES T1 Left 39400798 20211102 (51.30%) 15191911 (38.50%) 
     Right 39321575 19950576 (50.74%) 15360955 (39.06%) 
4 2 521HT2 CON T2 Left 32412306 19513385 (60.20%) 7455460 (23.00%) 
     Right 32352403 19331603 (59.75%) 7668908 (23.70%) 
4 3 465RT2 RES T2 Left 34471150 17551615 (50.92%) 13324830 (38.66%) 
     Right 34400196 17256958 (50.17%) 13636961 (39.69%) 
4 4 584HT1 CON T1 Left 26623369 12950913 (48.64%) 10950095 (41.13%) 
     Right 26567654 12805454 (48.20%) 11098714 (41.78%) 
4 6 976RT1 RES T1 Left 33724753 21590698 (64.02%) 8010793 (23.75%) 
     Right 33657044 21349076 (63.43%) 8256466 (24.53%) 
4 7 468HT2 CON T2 Left 33484756 16571197 (49.49%) 13321183 (39.78%) 
     Right 33410853 16330858 (48.88%) 13575157 (40.63%) 
4 8 926RT2 RES T2 Left 29652762 18684824 (63.01%) 6846096 (23.07%) 
     Right 29585770 18488188 (62.49%) 7054396 (23.84%) 
           
     Average 33209342 20479312  (52.57%) 11947861 (36.00%) 
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Table A.3 All significantly over-enriched pathways generated from InnateDB between L-H and H-H steers at the end of the differential 
feeding period (d 97) 
 
 

Pathway Name 
Pathway 
Id 

Pathway  
uploaded gene 
count 

Genes in 
InnateDB 
for this 
entity 

Genes 
Ratio 

Pathway 
P-value 

Pathway 
P-value 

(corrected) 
Gene 

Symbols 

Genes 
(Symbol|IDBG-ID|Ensembl|Entrez|Fold Change|P-

Value) 
PPAR signaling pathway 
 
 
 
 
 

566 
 
 
 
 
 

6 
 
 
 
 
 

70 
 
 
 
 
 

9% 
 
 
 
 
 

5.76E-07 
 
 
 
 
 

3.11E-05 
 
 
 
 
 

ADIPOQ ; 
ANGPTL4 ; 
FABP4 ; 
PCK1 ; PCK2 
; PLIN1 ;  

ADIPOQ|IDBG-69167|ENSG00000181092|9370|-2.6|0.00002 ;  
ANGPTL4|IDBG-24662|ENSG00000167772|51129|1.8|0.01591 ; 
 FABP4|IDBG-26715|ENSG00000170323|2167|-3.1|<1.0E-5 ; 
 PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  
PLIN1|IDBG-29477|ENSG00000166819|5346|-2|0.00343 ;  

GTP + Oxaloacetic acid = GDP + 
Phosphoenol-pyruvic acid + CO2 ( 
Citrate cycle )  

9570 
 
 

2 
 
 

2 
 
 

100% 
 
 

1.99E-05 
 
 

0.000536626 
 
 

PCK1 ; PCK2 
;  
 

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  
 

Amino Acid conjugation 1578 2 3 67% 5.95E-05 0.000642123 
ACSM1 ; 
GLYAT ;  

ACSM1|IDBG-18511|ENSG00000166743|116285|-3.9|<1.0E-5 ; 
GLYAT|IDBG-47902|ENSG00000149124|10249|-26.8|0.09522| ;  

Conjugation of benzoate with 
glycine 1781 2 3 67% 5.95E-05 0.000642123 

ACSM1 ; 
GLYAT ;  

ACSM1|IDBG-18511|ENSG00000166743|116285|-3.9|<1.0E-5 ; 
 GLYAT|IDBG-47902|ENSG00000149124|10249|-26.8|0.09522| ;  

Conjugation of carboxylic acids 1266 2 3 67% 5.95E-05 0.000642123 
ACSM1 ; 
GLYAT ;  

ACSM1|IDBG-18511|ENSG00000166743|116285|-3.9|<1.0E-5 ; 
 GLYAT|IDBG-47902|ENSG00000149124|10249|-26.8|0.09522| ;  

Adipocytokine signaling pathway 590 4 68 6% 0.0002319 0.002087102 

ADIPOQ ; 
LEP ; PCK1 ; 
PCK2 ;  

ADIPOQ|IDBG-69167|ENSG00000181092|9370|-2.6|0.00002 ;  
LEP|IDBG-39587|ENSG00000174697|3952|-4.7|<1.0E-5 ; 
 PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Biological oxidations 3694 4 87 5% 0.0005965 0.004601652 

ACSM1 ; 
CYP2B6 ; 
CYP4F2 ; 
GLYAT ;  

ACSM1|IDBG-18511|ENSG00000166743|116285|-3.9|<1.0E-5 ;  
CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
CYP4F2|IDBG-35066|ENSG00000186115|8529|3.6|<1.0E-5 ;  
GLYAT|IDBG-47902|ENSG00000149124|10249|-26.8|0.09522| ;  

Hormone-sensitive lipase (HSL)-
mediated triacylglycerol hydrolysis 1754 2 12 17% 0.001275 0.008606354 

FABP4 ; 
PLIN1 ;  

FABP4|IDBG-26715|ENSG00000170323|2167|-3.1|<1.0E-5 ;  
PLIN1|IDBG-29477|ENSG00000166819|5346|-2|0.00343 ;  

Fatty Acyl-CoA Biosynthesis 1307 2 16 13% 0.0022921 0.013752393 
ELOVL6 ; 
FASN ;  

ELOVL6|IDBG-34174|ENSG00000170522|79071|-2.8|0.03419 ; 
 FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ;  

Insulin signalling pathway 531 4 135 3% 0.0030427 0.016430576 

FASN ; 
PCK1 ; PCK2 
; SOCS2 ;  

FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ; 
 PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ; 
 SOCS2|IDBG-51299|ENSG00000120833|8835|1.5|0.09522| ;  

Gluconeogenesis 1370 2 20 10% 0.0035882 0.017614887 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ; 
 PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  
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Proximal tubule bicarbonate 
reclamation 10353 2 22 9% 0.0043379 0.019520518 

PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Citrate cycle ( Citrate cycle )  10239 2 23 9% 0.0047376 0.019679275 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ; 
 PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Triglyceride Biosynthesis 1811 2 26 8% 0.0060344 0.023275721 
ELOVL6 ; 
FASN ;  

ELOVL6|IDBG-34174|ENSG00000170522|79071|-2.8|0.03419 ; 
 FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ;  

Citrate cycle (TCA cycle) 464 2 30 7% 0.0079861 0.028750027 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Phase II conjugation 1394 2 32 6% 0.0090547 0.030559775 
ACSM1 ; 
GLYAT ;  

ACSM1|IDBG-18511|ENSG00000166743|116285|-3.9|<1.0E-5 ; 
 GLYAT|IDBG-47902|ENSG00000149124|10249|-26.8|0.09522| ;  

Glucose metabolism 1341 2 33 6% 0.0096118 0.030531494 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Neuroactive ligand-receptor 
interaction 416 5 316 2% 0.0130049 0.03901479 

CHRNA6 ; 
CRHR2 ; 
GHRH ; LEP 
; PRSS1 ;  

CHRNA6|IDBG-20385|ENSG00000147434|8973|4.5|0.08194| ;  
CRHR2|IDBG-11186|ENSG00000106113|1395|-2.1|0.01235 ;  
GHRH|IDBG-74024|ENSG00000118702|2691|28.3|0.00002 ;  
LEP|IDBG-39587|ENSG00000174697|3952|-4.7|<1.0E-5 ;  
PRSS1|IDBG-45037|ENSG00000204983|5644,5645|-1.7|0.05464| ;  

Pyruvate metabolism 450 2 40 5% 0.0139218 0.039567212 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Lipid digestion, mobilization, and 
transport 1651 2 41 5% 0.0145946 0.039405383 

FABP4 ; 
PLIN1 ;  

FABP4|IDBG-26715|ENSG00000170323|2167|-3.1|<1.0E-5 ;  
PLIN1|IDBG-29477|ENSG00000166819|5346|-2|0.00343 ;  

Cytochrome P450 - arranged by 
substrate type 3441 2 45 4% 0.0174231 0.044802259 

CYP2B6 ; 
CYP4F2 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ; 
 CYP4F2|IDBG-35066|ENSG00000186115|8529|3.6|<1.0E-5 ;  

Class B/2 (Secretin family 
receptors) 4776 2 46 4% 0.0181639 0.04458416 

CRHR2 ; 
GHRH ;  

CRHR2|IDBG-11186|ENSG00000106113|1395|-2.1|0.01235 ;  
GHRH|IDBG-74024|ENSG00000118702|2691|28.3|0.00002 ;  

Metabolism of lipids and 
lipoproteins 8971 4 231 2% 0.0195852 0.04598255 

ELOVL6 ; 
FABP4 ; 
FASN ; 
PLIN1 ;  

ELOVL6|IDBG-34174|ENSG00000170522|79071|-2.8|0.03419 ;  
FABP4|IDBG-26715|ENSG00000170323|2167|-3.1|<1.0E-5 ;  
FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ;  
PLIN1|IDBG-29477|ENSG00000166819|5346|-2|0.00343 ;  

Type II diabetes mellitus 577 2 48 4% 0.0196851 0.044291421 
ADIPOQ ; 
SOCS2 ;  

ADIPOQ|IDBG-69167|ENSG00000181092|9370|-2.6|0.00002 ; 
 SOCS2|IDBG-51299|ENSG00000120833|8835|1.5|0.09522| ;  

Phase 1 - Functionalization of 
compounds 3606 2 56 4% 0.0262783 0.056761167 

CYP2B6 ; 
CYP4F2 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
CYP4F2|IDBG-35066|ENSG00000186115|8529|3.6|<1.0E-5 ;  

Arachidonic acid metabolism 418 2 57 4% 0.0271577 0.056404373 
CYP2B6 ; 
CYP4F2 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
CYP4F2|IDBG-35066|ENSG00000186115|8529|3.6|<1.0E-5 ;  

NOD-like receptor signaling 
pathway 8112 2 61 3% 0.0307925 0.061584936 

CASP5 ; 
NOD2 ;  

CASP5|IDBG-69591|ENSG00000137757|838|-2.1|0.02913 ;  
NOD2|IDBG-30654|ENSG00000167207|64127|-1.8|0.09471| ;  

Jak-STAT signaling pathway 568 3 155 2% 0.0322982 0.062289303 
CNTF ; LEP ; 
SOCS2 ;  

CNTF|IDBG-409278|ENSG00000242689|1270|3|0.0001 ; 
 LEP|IDBG-39587|ENSG00000174697|3952|-4.7|<1.0E-5 ;  
SOCS2|IDBG-51299|ENSG00000120833|8835|1.5|0.09522| ;  

Tryptophan degradation ( 
Tryptophan degradation )  10017 2 63 3% 0.0326787 0.060849979 

CYP2B6 ; 
IDO1 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
IDO1|IDBG-18750|ENSG00000131203|3620|-1.7|0.07553| ;  

Glycolysis / Gluconeogenesis 414 2 64 3% 0.0336386 0.060549489 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ; 
 PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Metabolism of xenobiotics by 
cytochrome P450 599 2 69 3% 0.0386016 0.067241562 

CYP2B6 ; 
MGST1 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
MGST1|IDBG-21764|ENSG00000008394|4257|-1.8|0.04879 ;  
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Drug metabolism - cytochrome 
P450 2806 2 70 3% 0.0396262 0.066869138 

CYP2B6 ; 
MGST1 ;  

CYP2B6|IDBG-52438|ENSG00000197408|1555|-6.1|<1.0E-5 ;  
MGST1|IDBG-21764|ENSG00000008394|4257|-1.8|0.04879 ;  

Cell junction organization 6970 2 75 3% 0.0449023 0.073476467 
CDH11 ; 
LAMA3 ;  

CDH11|IDBG-34793|ENSG00000140937|1009|-3.8|0.09522| ;  
LAMA3|IDBG-1631|ENSG00000053747|3909|-1.9|0.02913 ;  

Integration of energy metabolism 1360 2 77 3% 0.0470824 0.074777909 FASN ; LEP ;  
FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ; 
 LEP|IDBG-39587|ENSG00000174697|3952|-4.7|<1.0E-5 ;  

Protein digestion and absorption 10383 2 79 3% 0.049301 0.076064437 
PRSS1 ; 
XPNPEP2 ;  

PRSS1|IDBG-45037|ENSG00000204983|5644,5645|-1.7|0.05464| ; 
 XPNPEP2|IDBG-85631|ENSG00000122121|7512|-2.1|0.01722 ;  

Fatty acid, triacylglycerol, and 
ketone body metabolism 9255 2 80 3% 0.0504245 0.075636801 

ELOVL6 ; 
FASN ;  

ELOVL6|IDBG-34174|ENSG00000170522|79071|-2.8|0.03419 ;  
FASN|IDBG-73235|ENSG00000169710|2194|-2|0.0021 ;  

Mammalian Wnt signaling 
pathway ( Mammalian Wnt 
signaling pathway Diagram )  9534 2 81 2% 0.0515574 0.075245888 

DKK2 ; 
SFRP4 ;  

DKK2|IDBG-33265|ENSG00000155011|27123|-1.7|0.08135| ;  
SFRP4|IDBG-12815|ENSG00000106483|6424|-1.8|0.0326 ;  

Metabolism of carbohydrates 1815 2 83 2% 0.0538506 0.076524541 
PCK1 ; PCK2 
;  

PCK1|IDBG-82362|ENSG00000124253|5105|-2.4|0.00214 ;  
PCK2|IDBG-3497|ENSG00000100889|5106|-4|<1.0E-5 ;  

Canonical Wnt signaling pathway ( 
Canonical Wnt signaling pathway 
Diagram )  9882 2 88 2% 0.0597398 0.080648762 

DKK2 ; 
SFRP4 ;  

DKK2|IDBG-33265|ENSG00000155011|27123|-1.7|0.08135| ;  
SFRP4|IDBG-12815|ENSG00000106483|6424|-1.8|0.0326 ;  

Canonical Wnt signaling pathway ( 
Mammalian Wnt signaling 
pathway Diagram )  10351 2 88 2% 0.0597398 0.080648762 

DKK2 ; 
SFRP4 ;  

DKK2|IDBG-33265|ENSG00000155011|27123|-1.7|0.08135| ;  
SFRP4|IDBG-12815|ENSG00000106483|6424|-1.8|0.0326 ;  
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Table A.4 All significantly over-enriched GO terms identified between L-H and H-
H steers at the end of the differential feeding period (d 97) 
 

GO ID Term 
GOID: GO:0044421 extracellular region part 
GOID: GO:0006641 triglyceride metabolic process 
GOID: GO:0006638 neutral lipid metabolic process 
GOID: GO:0006639 acylglycerol metabolic process 
GOID: GO:0019216 regulation of lipid metabolic process 
GOID: GO:0005578 proteinaceous extracellular matrix 
GOID: GO:0006662 glycerol ether metabolic process 
GOID: GO:0018904 organic ether metabolic process 
GOID: GO:0032502 developmental process 
GOID: GO:0005576 extracellular region 
GOID: GO:0031012 extracellular matrix 
GOID: GO:0030154 cell differentiation 
GOID: GO:0004611 phosphoenolpyruvate carboxykinase activity 
GOID: GO:0004613 phosphoenolpyruvate carboxykinase (GTP) activity 
GOID: GO:0006629 lipid metabolic process 
GOID: GO:0048878 chemical homeostasis 
GOID: GO:0048869 cellular developmental process 
GOID: GO:0042221 response to chemical stimulus 
GOID: GO:0042180 cellular ketone metabolic process 
GOID: GO:0006094 gluconeogenesis 
GOID: GO:0032720 negative regulation of tumor necrosis factor production 
GOID: GO:0048585 negative regulation of response to stimulus 
GOID: GO:0010646 regulation of cell communication 
GOID: GO:0043408 regulation of MAPKKK cascade 
GOID: GO:0019319 hexose biosynthetic process 
GOID: GO:0032501 multicellular organismal process 
GOID: GO:0050873 brown fat cell differentiation 
GOID: GO:0046486 glycerolipid metabolic process 
GOID: GO:0009968 negative regulation of signal transduction 
GOID: GO:0046890 regulation of lipid biosynthetic process 
GOID: GO:0051046 regulation of secretion 
GOID: GO:0060341 regulation of cellular localization 
GOID: GO:0042592 homeostatic process 
GOID: GO:0010033 response to organic substance 
GOID: GO:0000036 acyl carrier activity 
GOID: GO:0019752 carboxylic acid metabolic process 
GOID: GO:0043436 oxoacid metabolic process 
GOID: GO:0044283 small molecule biosynthetic process 
GOID: GO:0046364 monosaccharide biosynthetic process 
GOID: GO:0006082 organic acid metabolic process 
GOID: GO:0023057 negative regulation of signaling 
GOID: GO:0010648 negative regulation of cell communication 
GOID: GO:0044255 cellular lipid metabolic process 
GOID: GO:0007275 multicellular organismal development 
GOID: GO:0051259 protein oligomerization 
GOID: GO:0050810 regulation of steroid biosynthetic process 
GOID: GO:0006637 acyl-CoA metabolic process 
GOID: GO:0035383 thioester metabolic process 
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GOID: GO:0048731 system development 
GOID: GO:0048513 organ development 
GOID: GO:0043392 negative regulation of DNA binding 
GOID: GO:0042981 regulation of apoptosis 
GOID: GO:0001890 placenta development 
GOID: GO:0044421 extracellular region part 
GOID: GO:0006641 triglyceride metabolic process 
GOID: GO:0006638 neutral lipid metabolic process 
GOID: GO:0006639 acylglycerol metabolic process 
GOID: GO:0019216 regulation of lipid metabolic process 
GOID: GO:0005578 proteinaceous extracellular matrix 
GOID: GO:0006662 glycerol ether metabolic process 
GOID: GO:0018904 organic ether metabolic process 
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Table A.5 All significantly over-enriched pathways between L-H and H-H steers during the realimentation period (d 131) when L-H animals 
were exhibiting compensatory growth. 
 

Pathway Name 
Pathway 

Id 

Pathway  
uploaded gene 

count 

Genes in 
InnateDB 

for this 
entity 

Gene 
Ratio 

Pathwa
y P-

value 

Pathway 
P-value 

(correcte
d) 

Gene 
Symbols 

Genes 
(Symbol|IDBG-ID|Ensembl|Entrez|Fold Change|P-

Value) 

TGF-beta signaling 
pathway 465 4 84 5% 3.10E-05 0.000743 

COMP ; 
PPP2CB ; 
PPP2R1B ; 
TGFBR1 ;  

COMP|IDBG-38816|ENSG00000105664|1311|2.5|0.05655| ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

Chagas disease 
(American 
trypanosomiasis) 10366 4 103 4% 6.91E-05 0.000829 

FOS ; 
PPP2CB ; 
PPP2R1B ; 
TGFBR1 ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

IL6 3910 3 66 5% 
0.0004031

03 0.003225 

FOS ; 
PPP2CB ; 
PPP2R1B ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

Oocyte meiosis 8113 3 109 3% 
0.0017412

65 0.010448 

CDC20 ; 
PPP2CB ; 
PPP2R1B ;  

CDC20|IDBG-97410|ENSG00000117399|991|1.8|0.08823| ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

Tight junction 522 3 132 2% 
0.0030090

53 0.014443 

MYH3 ; 
PPP2CB ; 
PPP2R1B ;  

MYH3|IDBG-30560|ENSG00000109063|4621|2.8|<1.0E-5 ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

Hepatitis C 10404 3 134 2% 
0.0031401

84 0.012561 

IFIT1 ; 
PPP2CB ; 
PPP2R1B ;  

IFIT1|IDBG-81960|ENSG00000185745|3434|-3.3|0.01127 ; 
PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

FOXM1 transcription 
factor network 9456 2 39 5% 

0.0033987
84 0.011653 

FOS ; 
FOXM1 ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
FOXM1|IDBG-12457|ENSG00000111206|2305|2.7|0.00136 ;  

TGF-beta receptor 
signaling 9443 2 51 4% 

0.0057556
41 0.017267 

PPP2CB ; 
TGFBR1 ;  

PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

Colorectal cancer 442 2 62 3% 
0.0084126

97 0.022434 
FOS ; 
TGFBR1 ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

Long-term depression 555 2 69 3% 
0.0103404

62 0.024817 
PPP2CB ; 
PPP2R1B ;  

PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

MRNA surveillance 
pathway 10376 2 78 3% 

0.0130793
65 0.028537 

PPP2CB ; 
PPP2R1B ;  

PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

Mitotic Prometaphase 1932 2 79 3% 
0.0134013

22 0.026803 
CDC20 ; 
CDCA8 ;  

CDC20|IDBG-97410|ENSG00000117399|991|1.8|0.08823| ; 
CDCA8|IDBG-96468|ENSG00000134690|55143|2.3|0.02546 ;  

M Phase 1554 2 83 2% 
0.0147236

91 0.027182 
CDC20 ; 
CDCA8 ;  

CDC20|IDBG-97410|ENSG00000117399|991|1.8|0.08823| ; 
CDCA8|IDBG-96468|ENSG00000134690|55143|2.3|0.02546 ;  

MAPK signaling 
pathway 487 3 268 1% 

0.0210583
99 0.0361 

FOS ; 
PPM1A ; 

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
PPM1A|IDBG-8210|ENSG00000100614|5494|-1.7|0.09419| ; 
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TGFBR1 ;  TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  
Osteoclast 
differentiation 10367 2 128 2% 

0.0331359
09 0.053017 

FOS ; 
TGFBR1 ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

Wnt signaling 
pathway 445 2 150 1% 

0.0442551
53 0.066383 

PPP2CB ; 
PPP2R1B ;  

PPP2CB|IDBG-15988|ENSG00000104695|5516|2.2|0.05655| ; 
PPP2R1B|IDBG-70936|ENSG00000137713|5519|-2|0.05955| ;  

TGFBR 3930 2 152 1% 
0.0453275

9 0.063992 
FOS ; 
TGFBR1 ;  

FOS|IDBG-12957|ENSG00000170345|2353|-1.9|0.0054 ; 
TGFBR1|IDBG-78488|ENSG00000106799|7046|-2.9|0.08293| ;  

Mitotic M-M/G1 
phases 9071 2 157 1% 

0.0480514
65 0.064069 

CDC20 ; 
CDCA8 ;  

CDC20|IDBG-97410|ENSG00000117399|991|1.8|0.08823| ; 
CDCA8|IDBG-96468|ENSG00000134690|55143|2.3|0.02546 ;  

DNA Replication 1964 2 177 1% 
0.0595307

82 0.075197 
CDC20 ; 
CDCA8 ;  

CDC20|IDBG-97410|ENSG00000117399|991|1.8|0.08823| ; 
CDCA8|IDBG-96468|ENSG00000134690|55143|2.3|0.02546 ;  
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