
National University of Ireland, Maynooth
MAYNOOTH, Co. KILDARE, IRELAND.

DEPARTMENT OF COMPUTER SCIENCE,
TECHNICAL REPORT SERIES

Software Specification,
Implementation and Execution

with Perfect

Gareth Carter and Rosemary Monahan

NUIM-CS-TR-2005-07

http://www.cs.nuim.ie Tel. +353 1 7083847 Fax. +353 1 7083848



Software Specification, Implementation and

Execution with Perfect

Gareth Carter
Department of Computer Science

National University of Ireland Maynooth

Ireland

gcarter@cs.nuim.ie

Rosemary Monahan
Department of Computer Science

National University of Ireland Maynooth

Ireland

rosemary.monahan@nuim.ie

June 17, 2005

1 Abstract

Perfect is an Object Oriented programming language that is supported by the
Perfect Developer software development tool. The paper presents the techniques
that Perfect supports for the specification and implementation of software. The
executable code produced by Perfect is also discussed. A guideline to the tech-
niques of software development is provided by the paper, illustrating the many
software development mechanisms that are supported by Perfect and the Perfect
Developer tool.

2 Introduction

Perfect Developer is a formal methods tool for developing specifications and
refining them to code[8]. The tool comprises of the programming language,
Perfect[13] and a theorem prover for verifying software systems. Perfect aims
to support Object Oriented implementation features[8]. Object oriented pro-
gram is concerned with the description of runtime objects. Objects that exhibit
similar behaviour are described by classes. Perfect must be rich enough to sup-
port the development of specifications, the refinement process and the resulting
implementation language. Code written in Perfect may be compiled into other

2



higher level languages. This translation will have an impact on the runtime uses
of the software. These issues are explored in this paper.

3 The Specification Language

The specification language of Perfect defines basic data types and provides de-
velopers strategies to specify abstract data types. Design by Contract is the
primary specification strategy in Perfect. Other strategies supported include
aspects of Algebraic Specification, Model Oriented Specification, Functional
Specification and Graphical Representation. This section details elements of
the specification language of Perfect and the specification strategies that it sup-
ports.

3.1 Data types

Perfect has the following basic data types through which it can construct more
complex data types.

bool Boolean values of true and false
int Integers
nat Natural numbers, (integers greater than 0)
real Real numbers
char Characters
void The null value

The data types obey the standard mathematical definitions. There exists
no limit on some of the data types (e.g. integers are infinite). Perfect is also an
implementation language with implementation concerns[3]. Overflow is not in
the specification. The developer must consider it. Software that breaks rules of
this type may be verified by the theorem prover but behave incorrectly.

Collection types are supported by Perfect. The mathematical types of sets,
bags, maps and sequences are represented. The specification of these types is
incomplete in the library. Some features are informally defined. The specifica-
tions of the data types obeys no common style. Properties of data types exist
within the system that are not documented. The collection types are part of the
implementation language of Perfect and specifications on their implementation
costs should be formally present.

3.2 Assertions

An assertion is a boolean expression that when evaluated in the system, should
always be equal to true. Assertions may involve quantification over types and
pure function calls. Existential quantification is constructed with the exists
keyword. Universal quantification with the forall keyword. Quantification
can be over types for specifications. An assertion cannot change the state of

3



the system. The assertions may refer to any of the variables of the system. The
assertions may relate a previous state of a variable to a current state.

Each assertion encoded in the system generates a proof obligation by the
Perfect Developer tool. It must be verified for the system to be verified correct.

3.3 Design by contract

Design by Contract uses contracts in specifying the input-output relationship of
features of a class. The contract has two distinct sections, the pre-condition and
the post-condition (known in Perfect as the post-assertion). The pre-condition
specifies what must be true at the outset of a call to the feature. The post-
assertion specifies what is guaranteed to be true at termination of a success-
ful execution of the feature. This strategy was first employed in the Eiffel
language[10]. JML[9] offers a richer specification language.

Both pre-condition and post-assertion are assertions. The pre-condition fol-
lows the keyword pre. The post-assertion is stated as an assertion that follows
the feature. Confusion may arise in Perfect as the post keyword is used to
describe what Perfect term a post-condition. The post-condition is not an as-
sertion. The post condition is used to change state.

Another aspect of the Design by Contract strategy is the invariant of the
system. An invariant is an assertion that is true upon any call and at termination
of a call to a feature of the system. The invariant may be broken during the
execution of a call to a feature. The ability to break the invariant is an ongoing
research area known as ownership types[7]. Perfect permits the breaking of the
invariant, generating proof obligations if required.

3.4 Algebraic Properties

An algebraic specification is defined by < Σ, E >[16]. The Σ element describes
the model of the software and the features that are present. E describe con-
straints of the model and its behaviour. It permits abstraction of the features
of the model. Perfect capture E as algebraic properties. A property is an asser-
tion that accepts parameters. Parameters may be constrained in a pre-condition.
The parameters may change state. The result of the change is described in the
assertion. Properties may relate to an object of the class or be quantified over
the class.

In Algebraic specification languages such as CafeOBJ[12], the algebraic spec-
ification is used to construct the executable system. This is not supported by
Perfect. Algebraic properties generate proof obligations. Properties are most
useful for test case analysis of the system being developed.

3.5 Model Oriented

Model Oriented specifications defines a mathematical model of the system and
the operations that act upon that model. The model of the system is treated
as functions or relations between the data types of the model. The operations

4



over-ride these functions, changing its state. The specification language Z[15] is
a model oriented specification style.

Perfect contains some of the mathematic structures for a model oriented ap-
proach. By developing a model of the software as a set of mapping functions, the
developer can specify the meaning of the model clearly and precisely. Perfect
does not contain a rich set of mathematic structures. Pure mathematical struc-
tures are not easily defined. A model oriented approach becomes cumbersome
without a mathematical language.

3.6 Functional Specification

Functional Programming languages[5] enjoy mathematical properties. This
allows them to be used for both specification and implementation such as
Haskell[14]. Some functional language techniques are very useful for specifi-
cation. One technique for specification is Higher Order Functions.

Higher Order Functions permit functions to be passed as parameters to other
functions, or be returned as results from functions. Higher Order functions can
be re-used with different low level functions that exhibit similar patterns but
achieve different results. Some higher order functions have repeatedly shown
to be useful (e.g.fold,map,filter). They exist in Perfect as the over, the
transform and the those expressions respectively. These higher order functions
are apply to the data types of the language. Perfect does not provide the means
of constructing other higher order functions or using these with other data types.
This restricts the richness of higher order functions for specification.

3.7 Graphical Notation

A graphical notation uses images to represents the behaviour or structure of a
system. This enables developers to get an overview of the system. Graphical
Representations are often informal. They are useful for the maintaining and
understanding large software systems. The UML[1] is one of the most common
graphical representation for object oriented software systems.

Perfect Developer does not employ any graphical representation as standard
within its environment. All development is undertaken through source files
of text. Perfect supports object oriented concepts and lends itself to the UML
quite naturally. Currently there exists a UML importer for class diagrams. This
allows developers to construct a class diagram for their software system outside
of Perfect Developer and generate files for each class with the inheritances and
aggregations. The system does not support reverse engineering of the code to
the UML. The addition of formal specifications need not be represented in this
UML model.

3.8 Conclusions

Perfect supports a variety of styles of specification. The specification language
is used to describe an abstract model of the system. This model may be ani-

5



mated and developers can validate the specification matches the requirements.
A software system constructed using this specification language will usually be
inefficient.

4 The Refinement Step

Refinement is a formal process that constructs a concrete description of a soft-
ware system from an abstract description[2]. This process assumes the correct-
ness of the specification has been validated. Perfect supports a single refinement
step[6]. There are several categories of refinement permitted by Perfect.

4.1 Abstract Model

The abstract model of a class is the simplest model of the system which illus-
trates its semantics. It should not concern the efficiency of the system. Data
derivable from other parts of the model should not be included. A full specifica-
tion of the model is given in the abstract section of a class. All access routines
should be written in the interface section of the Perfect class.

The abstract section of the class can contain pure functions. These func-
tions serve as helper functions to the specification. Functions declared in the
interface section cannot be used in specifying invariants of the class. Elements
of the abstract model may be non-deterministic. Is is captured by stating that
a function satisfy some boolean expression. This expression must involve the
result value. Non deterministic functions must be refined.

4.2 Internal Model

The internal model of a class describes how the class is implemented. It is
optional if the specification is deterministic. A retrieve function is declared
describing how to construct the abstract model from the internal model. The
retrieve function is in this direction. The retrieve function shows the correctness
of the refinement. Additional invariants may be needed to aid verification of
the refinement. If the data model is refined, all interfaces must be refined. The
refinement is a via expression. Statements in the refinement may only reference
the internal model or the methods of the class.

4.3 Refinement Categories

Three forms of refinement are supported. They are Algorithm Refinement, Re-
finement by Parts and Data Refinement. Algorithm Refinement translates a
specification into an implementation removing non-determinism and inefficien-
cies. Refinement by Parts permits iterative refinements while augmenting a
specification supporting the specification development process. Data Refine-
ment modifies the data structure used in the specification retaining correctness.

6



4.4 Loop Refinements

When refinement occurs, it is common to introduce loops. Loops are one of
the most complex program fragments to prove correct. A loop in Perfect is
structured as follows.

loop
var // local loop variables
change // variables changed by the loop
keep // loop invariant
until // end condition
decrease // loop variant

// the loop body
end;

The var expression is where all local variables are declared. Variables are
not permitted to be declared as part of the loop body. A let statement may
occur within the loop body, permitting values to be stored. These values may
not change within a single iteration of the loop. The change expression declares
those variables outside the loop body that may be modified by the loop. This
removes the risk of accidentally overwriting data stored outside the loop. The
keep expression is the loop invariant. A loop invariant is an assertion that
defines what is true at entry to the loop, at exit from the loop and at each
iteration through the loop. It is permitted to be broken in the loop body, but
not after an iteration. The until expression is the terminating condition of the
loop. The decrease expression is the loop variant. The loop variant is a integer
value. This value must decrease each iteration of the loop and it must never be
below zero.

4.5 Conclusion

The Refinement step takes a specification of the software to an implementation.
Applying some set of the refinement categories should increase the efficiency of
the system without introducing errors. This implementation should be provably
correct with respect to the specification. It should also be error free and robust.

5 The Implementation Language

To be theoretically sound, Perfect must restrict elements of the object oriented
paradigm. Issues like difference between type and class, encapsulation, inheri-
tance, polymorphism and dynamic binding need to be addressed. Perfect also
treats equality of objects differently. There are other notational differences with
traditional object oriented languages. These topics will be explored in this sec-
tion.

7



5.1 Type and Class

A value in a software system may be given a type. This defines the set of values
that the value belongs to. In object oriented programming languages, values are
objects. Each object belongs to a class, which defines it’s behaviour. Type and
class are often used synonymously even if this is not justified[11]. In Perfect,
type and class are synonymous and this rule is enforced by the language.

5.2 Encapsulation

Encapsulation permits data hiding within a class. Encapsulation is supported
strongly in Perfect by refinement, permitting an internal model that differs from
the abstract model. Perfect also permits the standard notion of data hiding by
making abstract data inaccessible from outside the class. To allow abstract data
be read from, it may be defined as a function as part of the classes interface. To
allow abstract data be read from and written to, it may be defined as a selector.

5.3 Inheritance

Inheritance is the mechanism in object oriented programming languages for re-
use of code. The re-used code comes from the superclass and re-used by the
subclass. The subclass receives all the behaviour of the superclass but may be
tailored to additional needs.

Design by Contract specifications decreases the flexibility of inheritance.
Consider two classes in an inheritance relationship as follows:

class SuperClass ^=
function someMethod

pre P
^= A1
assert Q

end;

class SubClass inherits SuperClass ^=
redefine function someMethod

pre P’
^= A2
assert Q’

end;

For correct use of this inheritance relationship, it must be the case that:

P ⇒ P ′&Q′ ⇒ Q

This restriction forces developers to have foresight about future use of a class.
Functional preconditions may be used to get around this restriction. A func-

tion call is used in the preconditions to a method rather than declaring it explic-
itly. This function can be redefined in subclasses permitting the strengthening

8



of preconditions. If a functional precondition is defined as false the method
cannot ever execute. The method is then defined as absurd. This is known as
descendant hiding.

5.4 Polymorphism

Polymorphism is the ability for objects of one type to masquerade as another
type. In Perfect inheritance promotes polymorphism. An object of one class
may masquerade its type as an ancestors type. Any absurd feature may break
this ability because it won’t have all the features of the superclass. Binary
methods also break this ability. A binary method accepts a parameter of the
same type as the current objects type. This parameter should vary depending
on the type of the object. With polymorphism, the absolute type cannot be
known. As inheritance cannot guarantee correct usage of polymorphism there-
fore inheritance is not permitted by default. To achieve polymorphism, Perfect
uses the from keyword. This declares a type as polymorphic. The true type of
the object will not be known.

5.5 Dynamic Binding

Dynamic Binding permits the execution code of a system to be determined
at runtime rather than at compile time. Dynamic Binding suffers from lack of
theoretical soundness. Errors may go unchecked at compile time resulting in less
safe operation. Covariance, Contravariance and Invariance properties need to
be determined for an object oriented language to guarantee correct behaviour.
A test method for object oriented languages was developed[4]. This procedure
leads to the late binding signature of the software.

Beugnard’s test defines three classes called Top, Middle and Bottom. These
inherit along the hierarchy that Top is the parent of Middle and Bottom and
Middle is the parent of Bottom. These objects have no functionality but will
be used as parameters to two other classes methods.

class Top ^= end;
class Middle ^= inherits Top end;
class Bottom ^= inherits Middle end;

The class Up contains three methods:

class Up ^=
function cv(t: from Top) : string
pre t within from Top
^= "up";

function ctv(b:from Top):string
pre b within from Bottom
^= "up";

function inv(m:from Top):string

9



pre m within from Middle
^= "up";

end;

And below this in the hierarchy is the class Down, which redefines these
methods as follows:

class Down ^=
inherits Up
redefine function cv(m:from Top):string
pre m within from Middle
^= "down";

redefine function ctv(m:from Top):string
pre m within from Middle
^= "down";

redefine function inv(m:from Top):string
pre m within from Middle
^= "down";

When tested, Perfect generated the following results.

calls u d ud
cv(t) up error error
cv(m) up down down
cv(b) up down down
ctv(t) error error error
ctv(m) error down down
ctv(b) up down down
inv(t) error error error
inv(m) up down down
inv(b) up down down

These results describe the signature of Perfect’s dynamic bindings.

5.6 Equality

Equality between two objects is defined over equality of the type of the objects
and equality of all the features of the objects. This differs from common object
oriented programming languages where equality is based on the physical memory
address of the objects. Perfects treatment of equality gives a truer measure of
equality in a software system but may mislead programmers.

5.7 Method Segmentation

Methods in a Perfect class are divided into two categories, functions and schema.
A function is a pure function. It has no side effects. Functions are useful for

10



returning information about the state of an object. Schema are operations
that have side effects. They may change the state of the object the method
is called upon, or they may change the the state of an annotated parameter
to the schema. Schema may not return values except through this parameter
passing mechanism. Annotations are required to show which parameters may
be modified. A schema must make a state change.

5.8 Conclusion

The implementation language of Perfect has altered certain features of the object
oriented paradigm to be theoretically sound. These restrictions give an added
overhead, but may be beneficial.

6 The Executable Code

Perfect should be capable of producing efficient code. The language compiles
into Java, C++ and Ada95. Some of key issues regarding this executable code
include code generation, wrapper classes, value semantics, the file and exception
handling mechanisms.

6.1 Code Generation

When the automatic code generation occurs, a name mangling may occur. This
may involve renaming functions, or data members; changing the signature of
a function; or renaming the abstract class names. Variables may be declared,
given values and not referenced again, serving no viewable purpose. This hap-
pens in certain loops and concern the loop termination condition. Maintenance
of the executable code is not possible. All code changes must be made at the
Perfect front end to ensure correctness of the code.

6.2 Wrapper Classes

Programs require some interface to their users to execute. Usually this inter-
face will take the form of a graphical user interface. Perfect does not support
any mechanism for describing them. The interface must be constructed in the
language the system is compiled to. This interface will have to pass values to
and read values from the generated code. This interface has no verification or
constraints on it.

In order to use this unverified interface an outer layer of the Perfect code must
be constructed. This outer layer can have no pre-conditions. It must accept all
inputs. It is called the wrapper class of the system. It is the obligation of the
wrapper class to ensure pre-conditions are met for classes it instantiates and
for methods called. This can entail a large overhead of checks depending on
the interface to the user of the system. All communication to the user interface
must be performed through the wrapper class.

11



6.3 File Handling

Most programming languages provide a simple and intuitive file handling mech-
anism. File Handling consist of providing an abstract data type of the file
structure, providing an interface to the operating system, and handling errors
when reading or writing to memory. These are tasks that Perfect is ideally
suited for but the default mechanism is primitive. All messages associated with
file handling are passed through an Environment object. This is not a global
object and must be passed as a parameter to any object wishing to perform file
handling operations.

The Environment object contains a few primitive schema that control file
handling. Each schema has associated with it an out variable that provides
some form of result. These result types are not uniform across the range of
schema in the system. and may be united with other types. Post-conditions are
written in terms of these result types leading to complex post-assertions. The
File data structure is defined as a seq of byte. Reading and writing to a file
will require significant casting. Even if the developer reads the data from a file
correctly, there are not guarantees that the data will be used correctly.

6.4 Exception Handling

Exception handling is a programming language mechanism designed to handle
runtime errors that are unforeseeable. The exception handling mechanism in-
creases robustness of software systems with respect to events outside the systems
knowledge. Perfect contains no exception handling language. Developers may
use the design by contract strategy to generate software exceptions by includ-
ing tests on the conditions of the contract. These checks will be performed at
runtime to guarantee the contract is fulfilled. If a failure is encountered, the
program should be immediately halted and the error printed to the screen. This
mechanism sometimes fail to terminate the program, putting the system in an
inconsistence state.

6.5 Value Semantics

Value semantics treats the contents of all variables as distinct objects even if
equal. Most object oriented languages use reference semantics, where variables
are holders of addresses of objects. Reference semantics makes reasoning about
software difficult. This difficult is because of aliasing. In Perfect, aliasing cannot
occur with most variables. Developers may create a heap object. Variables
placed on the heap store addresses of the objects they point to. This leads to a
redefinition of equality based on the absolute addresses and not the contents of
the object.

Value semantics is easier to reason about. This ease comes at an execution
cost. When passing variables as parameters or overwriting data, clones of the
objects must be made. This ensures that the object is not referenced elsewhere.

12



This cloning is a deep clone as the attributes of the object must be cloned.
This has huge implications for efficiency of execution and efficiency of memory
management.

6.6 Conclusions

The executable code generated by Perfect is difficult to maintain and read. This
is a problem as wrapper classes need to be constructed around this code. The
efficiency of the code is questionable owing to value semantics. The mechanisms
for file and exception handling are poor. Further to this code written in Perfect
is single threaded and requires termination. This is part of the correctness of
Perfect systems, but is not realistic in general purpose industrial applications.

7 Conclusions

The Perfect language is rich encompassing specification and implementation
language details. The specification styles supported by Perfect provide devel-
opers with many options for defining the semantics of the system. Some of the
strategies guide development of an implementation. Others are useful for testing
software in a formal setting. Implementing systems in Perfect differs in several
ways from traditional object oriented languages, but most of the key concepts
can be found in some form. The refinement step in Perfect offers developers a
good opportunity to develop code in one environment, retaining the abstract
model and the internal model as separate aspects. Once code is generated from
Perfect, systems may suffer owing to lack of efficiency and lack of support.
Software constructed in Perfect will be more formal than most programming
languages, but at a cost of flexibility and efficiency.

References

[1] Sinan Si Alhir. UML in a Nutshell. O’Reilly, Sebastapol, CA, 1998.

[2] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science. Springer-
Verlag, 1998.

[3] Bernhard Beckert and Steffen Schlager. Software verification with inte-
grated data type refinement for integer arithmetic. In Proceedings, Interna-
tional Conference on Integrated Formal Methods, Canterbury, UK, LNCS.
Springer, 2004. To appear.

[4] Antoine Beugnard. OO languages late-binding signature. In Martin Oder-
sky, editor, proceedings of the 9th workshop on Foundations of Object-
Oriented Languages. ACM Press, January 2002.

13



[5] Richard J. Bird and Philip Wadler. Introduction to Functional Program-
ming. International Series in Computer Science. Prentice-Hall, New York,
NY, 1988.

[6] Gareth Carter and Rosemary Monahan. Refinement in perfect developer.
Technical report, National Universtiy of Ireland Maynooth, Department of
Computer Science, 2004.

[7] D. Clarke. Object ownership and containment, 2001.

[8] David Crocker. Perfect developer: A tool for object-oriented formal spec-
ification and refinement. as part of the Tools Edition notes at Formal
Methods Europe 2003, 2003.

[9] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06q, Iowa State University, Department of Computer Science,
December 2001. See www.jmlspecs.org.

[10] B. Meyer. Eiffel: The Language & Environment. Prentice-Hall, 1991.

[11] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2
edition, 1997.

[12] Ataru T. Nakagawa, Kokichi Futatsugi, and Toshimi Sawada. CafeOBJ
User’s Manual - ver.1.4, ‘1.4 edition, April 08 2000.

[13] Escher Technologies. The Perfect Developer Language Reference Manual,
2.10 edition, September 2003.

[14] Simon Thompson. Haskell: The Craft of Functional Programming (2nd
edition). Addison Wesley, 1999. ISBN 0-273-03151-1.

[15] Jim Woodcock and Jim Davies. Using Z, Specification, Refinement, and
Proof. Prentice Hall International Series in Computer Science. Prentice
Hall, 1996.

[16] xxxx. Software Engineers Referece Book (ask Rosemary). xxxx, xxxx.

14


