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1 Abstract

Perfect Developer is an environment that supports software development by pro-
viding a verification of the softwares correctness. Software is constructed with
the Perfect language, an Object Oriented programming language that encom-
passes both specification and implementation features. This paper provides a
general overview of the syntax of Perfect, describing a class template for Perfect.
The novel features of the language are highlighted to document the uniqueness of
Perfect. A small example is developed toward the end of the paper, to illustrate
the process of software development on a small scale.

2 Introduction

The Perfect Developer environment supports development of correct software
in the Perfect Language[2]. This language acts as both specification and imple-
mentation language. The specification of programs is primarily through design
by contract. It supports object oriented features such as classes, data encapsu-
lation, and inheritance. The language also supports single step refinement and
the environment permits this refinement to be verified correctly.

The language is introduced demonstrating several of its key features. A gen-
eral purpose class template is provided and used to document how to construct
a class and perform a refinement in Perfect. Additional key components of the
language are documented separately. A simple class is developed to illustrate
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how the language is used to create a class. The example shows a representa-
tion of numbers with strings. A simple data refinement process is performed.
The documentation and illustration should provide an overview of the Perfect
Language.

3 Background

3.1 Primitive Datatypes

Identifiers in Perfect consist of letters, underscores or digits. The first character
of an identifier cannot be a digit. An identifier is case sensitive and can be of
any length.

Perfect has the following basic data types through which it can construct
more complex data types.

bool Boolean values of true and false
int Integers
nat Natural numbers, (integers greater than or equal to 0)
real Real numbers
char Characters
void The null type
set of X An unordered collection of unique items of type X
bag of X An unordered collection of items of type X
seq of X An ordered collection of items of type X
map of (X,Y) A map of items of type X to items of type Y
string A seq of char
byte A seq of bool of length 8

3.2 Design by Contract

Design by Contract uses contracts to specify the input-output relationship of
features of a class. The contract has two distinct sections, the pre-condition and
the post-condition (known in Perfect as the post-assertion). The pre-condition
specifies what must be true at the outset of a call to the feature. The post-
assertion specifies what is guaranteed to be true at termination of a successful
execution of the feature. This strategy was developed by Bertrand Meyer[1].

3.3 Inheritance

Inheritance is the mechanism in object oriented programming languages for re-
use of code. The re-used code comes from the superclass and re-used by the
subclass. The subclass receives all the behaviour of the superclass but may be
tailored to additional needs.

Design by Contract specifications decreases the flexibility of inheritance.
Consider two classes in an inheritance relationship as follows:
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class SuperClass ^=
function someMethod

pre P
^= A1
assert Q

end;

class SubClass inherits SuperClass ^=
redefine function someMethod

pre P’
^= A2
assert Q’

end;

For correct use of this inheritance relationship, it must be the case that:

P ⇒ P ′&Q′ ⇒ Q

This restriction forces developers to have foresight about future use of a class

3.4 Refinement

Refinement[3] is a formal process that transforms specifications preserving cor-
rectness. A refinement process consists of a series of refinement steps that
translate an abstract specification into a more concrete one. The abstract speci-
fication is the simplest representation of the system that defines the interface to
the external world. The concrete implementation is the program that realizes
this specification. In Perfect only a single refinement step is supported.

4 Class Structure

The class is the building block for development in object oriented languages. It
defines the set of possible runtime objects that may be instantiated of that type.
It defines the data model and the message passing capabilities of objects of this
type. For this section keywords are lowercase and expressions are uppercase.

class CLASS_NAME1 ^= inherits CLASS_NAME2
abstract
// Specification of data

internal
// Concretization of data

confined
// Private methods of class

interface
// Public Methods of class

end;
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The CLASS_NAME1 is an Identifier that describes the class. The class may op-
tionally inherit features from another class.

There are two levels of data model in Perfect, the abstract and the internal.
The abstract model is the simplest possible data model of the software. The
internal model is the concrete implementation of the model. Message passing
in Perfect is performed through method invocation. Methods are defined in
the confined and interface sections. The confined methods are private. The
interface methods are public.

An abstract section solely can be written with the other sections optional.
A confined section may be written solely with the interface section optional. An
interface section may be written solely.

4.1 Abstract Section

The abstract section defines the variables and invariants of the model of the
class.

abstract // Specification of data
var DATA1:DATA_TYPE1; // variables
invariant BOOLEAN_EXPRESSION1; // restrictions

The variables are declared with a var expression. The term DATA1 is an Identifier
that states the name of the variable. The DATA_TYPE1 is an Identifier that states
the type of the variable. Types can belong to the data types in Perfect or user
defined data types of the system. The invariants are expressions that relate
the abstract variables to each other. They define theBOOLEAN_EXPRESION1 that
always evaluates to true when an interface method is called or returned. The
invariant may be false when a confined method is called or during the interface
method execution.

4.2 Internal Section

The internal section defines the variables and invariants of the implementation
of the class and the retrieve function. The retrieve function constructs the
abstract data model from the internal data model.

internal // Concretization of data
var DATA2:DATA_TYPE2; // variables
invariant BOOLEAN_EXPRESSION2; // restrictions

// retrieve function
function DATA1
^= RETRIEVE_FUNCTION

The variable and invariant declarations are equivalent to those found in the
abstract section. Variables may be declared in the internal model that aug-
ment the model rather than change the model. The retrieve function is only

5



necessary when data refinement occurs. The retrieve function header is the
variable name of the abstract model that has been refined. No parameters are
passed to the function. The RETRIEVE_FUNCTION must evaluate to a value of
type DATA_TYPE1.

4.3 Confined Section

The confined section defines the methods of the class accessible locally to the
runtime object associated to them. These methods are accessible to objects of
the current class or its descendants. There are three categories of methods, con-
structors, functions and schemas. Constructors define how a runtime object is
built. Functions return evaluations on a runtime object and have no side-effects.
Schemas change the state of the system. Functions come in two varieties, deter-
ministic and non-deterministic. A deterministic function must always evaluate
to the same value. A non-deterministic function may permit multiple correct
evaluations.

confined // Private methods of class
// constructor
build{PARAM_LIST1}
pre BOOLEAN_EXPRESSION3 // pre-condition
inherits CLASS_NAME2{VALUE_LIST1}
post CONSTRUCTOR_BODY1;

// deterministic function
function FUNCT_NAME1(PARAM_LIST2):RETURN_TYPE1
pre BOOLEAN_EXPRESSION4 // pre-condition
^= FUNCTION_BODY // specification
via IMPLEMENTATION_BODY1 // implementation

assert BOOLEAN_EXPRESSION5; // post-assertion

// non-deterministic function
function FUNCT_NAME2(PARAM_LIST3):RETURN_TYPE2
satisfy FUNCTION_SPECIFICATION
via IMPLEMENTATION_BODY2

// static function
nonmember function FUNCT_NAME3(PARAM_LIST4):RETURN_TYPE3

FUNCTION1; // Some function

operator XX (PARAM_LIST6):RETURN_TYPE4
OPERATOR_BODY;

// variable access
function DATA1;
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// variable overwrite
selector DATA1;

// schema
schema SCHEMA_NAME1(PARAM_LIST5)
post SCHEMA_BODY1;

Constructors are written using the keyword build. They may accept a parame-
ter list. A parameter list states the identifiers of input variables and their type.
Constraints on the input parameters may be encoded in the pre-condition of the
build. If the class explicitly inherits from a superclass a call to the construc-
tor of that class is performed with the inherits expression. The superclass
constructor is passed a set of values matching its signature. Constructors must
always establish the invariants of the system.

All functions consists of the FUNCT_NAME1 identifier, the input parameter
list PARAM_LIST2 and the RETURN_TYPE1 of the function. The RETURN_TYPE1 is
a type. Functions may be written with the design by contract strategy. The
pre-condition is a boolean expression written with the pre keyword. The post-
assertion is a boolean expression written with the assert keyword at the end
of the function. The post-assertion may reference the value of variables at the
point of call of a function. To differentiate between the current and initial
values, an apostrophe ’ follows the variable name for the current value.

Specification of a deterministic function is written with the ^= (read “is de-
fined as”) expression. This specification alone must be executable. Specification
of a non-deterministic function is written with the satisfy expression. This
may determine a single result but is not immediately executable. Both functions
may be refined to an implementation with the via expression. To generate an
implementation non-deterministic functions must be refined.

Functions may be defined in two other formats. Functions may be static
(i.e. be associated with the class and not any particular runtime object) or be
defined as operators. A static function is declared nonmember and follows the
same format as any function but may only reference data passed as a parameter.
An operator allows infix, prefix or postfix formatting of the function. They may
be unary or binary. Perfect has a restricted set of XX operator symbols.

A notational convenience of Perfect permits direct access to the data mem-
bers of a class. Data members may be read only by declaring a function with
the data member as its header. Data members may be read from and written
to by declaring a selector with the data member as its header.

A schema must change the state of the runtime object that it is called
on or the value of some parameters passed to it. If the schema changes the
runtime object a ! precedes the schema name. Within the post-condition of the
schema some variables of the object must be changed. If the schema changes
parameters passed to it, each parameter identifier must be followed by the !
symbol. A schema cannot return values accept through this parameter updating
mechanism.
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4.4 Interface Section

The interface section defines the methods that are accessible to other runtime
objects. As in the confined section, these can be constructors, functions and
schemas. All methods can be constructed as found above. The schemas in the
interface section must establish the invariant.

interface // Public Methods of class
// constructor
build{PARAM_LIST6}
pre BOOLEAN_EXPRESSION4 // pre-condition
inherits CLASS_NAME2{VALUE_LIST2}
post CONSTRUCTOR_BODY2;

build{PARAM_LIST7}
^= CLASS_NAME1{VALUE_LIST3};

// pure function
function FUNCT_NAME4(PARAM_LIST8):RETURN_TYPE5

FUNCTION2; // Some function

// schema
schema SCHEMA_NAME3(PARAM_LIST9)
SCHEMA; // Some Schema

end;

An alternate form of a constructor can be written in the interface section
that defines the build in terms of another constructor call. This permits one all
purpose constructor to be defined in the confined section and more case-specific
constructors to be written in the interface.

4.5 Generics

One may construct template or generic classes in Perfect. Generics allow classes
to be developed with different types. When constructing instances of these
classes, a type is passed to the constructor.

Perfect allows developers to construct their own Generic classes through the
following template:

class CLASS_NAME3 of GENERIC_TYPE ^= RESTRICTIONS

The class may enforce some set of restrictions on the generic types that can
be used. The restrictions may specify: a constrained or absolute type; a class
hierarchy to belong in; a set of functions implemented (with possible associated
contracts); that equality is defined; that total ordering be defined.
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4.6 Axioms

An axiom is a boolean expression that denotes some absolute truth. The theo-
rem prover associated with the Perfect Developer environment is not complete
(i.e. there exist truths that it cannot prove). To aid theorem proving, devel-
opers may add explicit truth statements to the theorem prover. They will be
assumed true and used for verification of the system.

4.7 Properties

Properties are similar to sigma-axioms in algebraic specification languages. A
property is an assertion that accepts parameters. Parameters may be con-
strained in a pre-condition. The parameters may change state. The result of
the change is described in the assertion. Properties may relate to an object of
the class or be quantified over the class.

4.8 Recursion and Looping

A loop in Perfect is structured as follows:

loop
var // local loop variables
change // other variables changed by loop
keep // loop invariant
until // end condition
decrease // loop variant

// the loop body
end;

The var expression is where all local variables are declared. Variables are not
permitted to be declared as part of the loop body. The change expression
declares those variables outside the loop body that may be modified by the
loop. The keep expression is the loop invariant. The until expression is the
terminating condition of the loop. The decrease expression is the loop variant.
The loop variant is a integer value that decreases each iteration of the loop and
must always be non-negative.

4.9 Conditionals

There are two forms of conditionals in Perfect, one is associated with spec-
ifications and the other with implementations. The standard template for a
specification is:

[BOOLEAN_EXPRESSION_1]:
STATEMENT_1;
...

[BOOLEAN_EXPRESSION_N]:
STATEMENT_N;
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[]:
DEFAULT_STATEMENT;

There can be many disjoint boolean expressions in the conditional. The []
denotes all other cases not covered by the union of the boolean expressions that
precede. There must be at least two branches of a conditional.

The implementation form of conditionals is similar to above with two addi-
tions:

if
... // as above
fi;

5 Numbers Example

An example of development with Perfect is now illustrated with use of a Number
representation problem. It is a toy problem for the purposes of illustrating the
concepts previously discussed in as clear a manner as possible. The example is
not be a feasible solution to the problem and would not be used in a software
system.

5.1 Problem Description

A software system is required that performs operations on numbers. A Number
is any data model that can be returned as a non-negative number through a
digit function. The software system should illustrate other common numeric
operations (i.e. addition). It is recommended that the data be modelled as
strings as data input-output will be performed with strings.

5.2 Requirements

The first requirement that we want to capture is modelling the Number class.
The only requirement of this class is that it has a digit function. We can use
inheritance to define our string numbers based on a super class of Number.

deferred class Number ^=
interface

build{};
deferred function digit:nat;

end;

The class is deferred1. It can be used as a template for descendant classes.
Another requirement is to define what it means to be a string modelling a

number. For the sake of this example, we consider it to be a non-empty string
where all the characters are digits and there are no leading zeros, unless the
number is zero. We may define a test for this as:

1see Appendix A.3
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// Determines if an input string is a valid number;
function isNumberString(input:string):bool
^= (~input.empty) &

(forall x::input :- x.isDigit) &
(#input=1 | input.head~=‘0‘)

assert result ==> (forall x::input :-x.isDigit);

This is a global function that takes an input string and returns if it is a valid
string, according to our definition. This function can be immediately animated
and data tested to ensure that we are capturing the meaning of a string being
a number string.

This function allows us to create a constrained type2 representing strings
that are numbers.

class NumericString ^= those a:string :- isNumberString(a);

To guide verification, it must be stated that all numbers converted to strings
are number strings. This is accomplished with an axiom:

axiom assert forall n:nat :- isNumberString(n.toString);

An abstract model of the actual StringNumber class can now be constructed.
It will have the general form:

class StringNumber ^= inherits Number
abstract
// The Numeric String data model

internal
// Our data refinement...

confined
// Helper functions of the class

interface
// functions schemas & their refinement

end;

The StringNumber class is a subclass of Number. It is not deferred and must
provide specifications of all functions.

5.3 Abstract Model

The requirements suggest the data be stored as a string that represents a num-
ber. The variable number is declared of type NumericString.

abstract
var number:NumericString;

2see Appendix A.6
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5.4 Interface Section

Now that the abstract model is decided upon, the methods of the class are
constructed. The first step is to decide the constructors of the class. The first
constructor accepts a string input, the second a nat and the third is a default
parameterless constructor.

interface
// constructor that accepts a string representing an nat
build{input:string}
pre isNumberString(input)
inherits Number{}
post number!=input;

// constructor that accepts a natural number
build{input:nat}
inherits Number{}
post number!=input.toString;

// default constructor for the zero String Number
build{}
^= StringNumber{0};

By accepting all string inputs for the the first constructor, incorrect typing
may occur in the abstract model. We must encode a pre-condition stating
the input is a number string. The pre-condition will be statically verified if
this constructor is used. The constructor contains a call to the super-class
constructor of Number. Finally the abstract data variable number is assigned
to with the value of input. Perfect uses value semantics so the assignment is
equivalent to a clone.

The second constructor accepts a nat. By our earlier axiom, it is known
that all natural numbers generate NumberStrings through application of the
toString function. No pre-conditions are included. The final constructor is a
default constructor for the class. It is defined in terms of the second constructor
of the class.

Now the access functions of the class are declared:

function number;

define function digit:nat
^= toDigit(number,0);

redefine function toString:string
^= number;

The first function allows read only access to the data member of the class. No
typing information is needed as it is implicitly typed by the abstract model. The
second function is the specification of the deferred function digit. To perform
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this calculation we rely on some internal function toDigit that will be defined
later. The third function will redefine the toString function. This function
is defined in the anything class that is inherited by all classes in Perfect. This
is analogous to Object in Java.

Readability of our system may be improved by using the + symbol for addi-
tion. It is defined as follows:

operator +(d:StringNumber):StringNumber
^= StringNumber{digit + d.digit};

Addition of two StringNumber objects is defined as addition on the digit rep-
resentations.

A schema is declared to update the data model of an object.

schema !update(input:string)
pre isNumberString(input)
post number!=input;

Like the constructor, the input must represent a number string and this is
encoded as a pre-condition. The assignment is then permitted.

5.5 Confined Section

Earlier we introduced a toDigit function that converts a string to a natural
number. This function should not be accessible outside the class and is therefore
defined privately in the confined section of code. The function will not make use
of the abstract data model of the class so it is declared a nonmember function.
It is defined recursively as:

confined
nonmember function toDigit(input:string,num:nat):nat
pre forall x::input :- x.isDigit
decrease #input
^= ([input.empty]: num,

[]: (let tail^=input.tail;
assert forall y::tail :- y.isDigit;
toDigit(tail,((num*10)+input.head.digit))

)
);

The function reads each digit of the input string from left to right as a decimal
number, and converting it into a natural number. This function only requires all
the characters of the input represent digits. Each iteration of the recursion the
size of the input sequence will decrease. When the input has been reduced to
an empty string, the value of num is returned. Otherwise, the head is removed
from the input. It follows naturally that all the characters of the tail are digits,
but we assert this fact to aid theorem proving. A recursive call to toDigit is
performed.
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5.6 The Refinement

By storing a Number as a string value, there will be large costs. Firstly a string
representation will consume more memory space internally. There are also com-
putation costs associated with converting the string to a digit. it was required
that numbers be represented as strings to the external world, but internally the
string could be represented as a nat. This would be a valid and advantageous
refinement.

5.7 Internal Model

The internal model of the class will consist of a variable num that represents the
number variable. The retrieve function shows how this reconstruction can be
performed.

internal
var num:nat;
// retrieve function
function number
^= num.toString;

5.8 Refinement of Interface Model

With the internal model refined, all the class methods must be refined. The
nonmember functions do not need to be refined. Before we may refine the im-
plementations though, equality must be defined on the class. This is through a
simple declaration of:

interface
operator =(arg); // defined to implement refinement

The first two constructors defined previously need to be refined.

build{input:string}
pre isNumberString(input)
inherits Number{}
post number!=input
via num!=toDigit(input,0)
end;

build{input:nat}
inherits Number{}
post number!=input.toString
via num!=input
end;

To construct the new internal model from a string, it must be converted to
a nat using the toDigit function of our class. Construction of the internal
model from a nat is performed by assignment.
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The digit and toString functions must also be given concrete implemen-
tations.

define function digit:nat
^= toDigit(number,0)
via value num
end;

redefine function toString:string
^= number
via value num.toString
end
assert isNumberString(result);

A refinement returns a result through the value expression. With the function
digit the value returned is the num variable.

The + operator is also refined.

operator +(d:StringNumber):StringNumber
^= StringNumber{digit + d.digit}
via value StringNumber{num+d.digit}
end;

The update schema must convert the input to a nat before assignment takes
place.

schema !update(input:string)
pre isNumberString(input)
post number!=input
via num!=toDigit(input,0)
end;

All methods must be refined before the code can be validated.

6 Conclusions

In providing the reader with a high-level overview of the Perfect language, a
template was developed for constructing classes. This template documented
most of the basic and some of the advanced features in Perfect. Additional
language features were also documented. The reader is directed to the appen-
dix for some other interesting language features and to the Perfect Reference
Manual[2] for an exhaustive description.

A concrete example of program development with Perfect was also given.
This demonstrated many of the language features discussed in this paper. It has
illustrated how to construct a real program from a requirements stage through
the specification of the program and concluded with a refinement step. The
example illustrated concepts at a cost of being practical. It did not aim to be a
“real-world” solution, but was intended as a first interesting class in the Perfect
language.
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A Appendix

A.1 Ghost

A ghost expression in Perfect is an expression for which code will not be gen-
erated.

A.2 Opaque

An opaque function is one that is non-deterministic.

A.3 Deferred

A deferred function, is one that is not yet fully defined. It may be defined
(with the define keyword) in a descendant classes. If a class has any deferred
functions, the class cannot be instantiated.

A.4 Constants

A const expression denotes constants in Perfect.

A.5 Enumerations

Enumerations provide a means of listing explicitly a set of values. They are
declared as part of an enum expression.

A.6 Constrained Types

Constrained Types provides a means of defining a class by restriction of an
already defined class. A constrained type cannot add new functionality or take
advantage of helper functions in its definition.

A.7 Let Expression

A let expression creates a read only variable. A value declared in this fashion
may be re-evaluated through each iteration of a loop.

A.8 Rank

Perfect enforces an automatic ranking policy on all objects. This is declared as
the objects rank. The rank may be same@rank, below@rank or above@rank.
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