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ABSTRACT

A closed form method for Exponential Plus Constant (EPC)
curve fitting is introduced. The method, referred to as Fourier-
based Exponential Plus Constant Fitting (FEPCF), returns
estimates of the EPC coefficients for user-input sets of
equidistant time values and corresponding data points. An
analytical expression for the exponent’s coefficient is found
through algebraic manipulation of the Fourier series of the
EPC, taken over a finite time interval. The unknown is the-
refore approximated through the Discrete Fourier Trans-
form (DFT) of the input sequence, itself used as an ap-
proximation of Fourier series. The discrepancy between
Fourier series and DFT, byproduct of aliasing, is reduced
with sine windowing. This is the essential contribution
of the paper – the exponent coefficient found, what re-
mains of the problem can be approached with standard li-
near least squares. FEPCF was motivated by the need for a
measuring tool for the time-modeling of fundamental fre-
quency and inharmonicity coefficient of tension-modulated
strings. Care is however taken in the mathematical formu-
lation of the method to facilitate its transportation to other
fields of science. MATLAB function implementation and
a demonstration of FEPCF can be downloaded from the
address http://www.cs.nuim.ie/~matthewh/.

1. INTRODUCTION

On the occasion of the 13th International Conference
on Digital Audio Effects (DAFx - 10), the author proposed
mathematical time-dependent models for the Fundamen-
tal Frequency (FF) and Inharmonicity Coefficient (IC) of
freely vibrating string tones undergoing tension modula-
tion [4]. These models account for the phenomenon of
pitch-glide, taking place when the transverse vibrational
amplitude is such that changes in length (and thus tension)
of the string cause an audible and measurable downwards
glide in the fundamental frequency. It was found that the
inharmonicity coefficient too underwent change of a defi-
nite trend, affecting significantly the trajectory of higher
partials.

On the basis of the model for tension modulation for-
mulated by Legge and Fletcher in [7] and the physical
expression of the IC found in Fletcher et al. [1], it was
argued in [4] that both the FF and the inverse of the IC
could be generalised to Exponential-Plus-Constant (EPC)

functions, of the form

x(t) = x∆e
σt + x∞, (1)

where : σ is the growth rate ; x∞ is the value x(t) converges
to as t approaches −∞ (positive σ) or ∞ (negative σ) ;
and x∆ is the difference between x(0) and x∞, or x(0) =
x∆ + x∞. Positive values of σ correspond to exponential
growth, and negative values of σ, to exponential decay.

This paper deals with the problem of estimating the co-
efficients σ, x∆ and x∞, which is non-linear essentially
because of the presence of an unknown in the exponent.
Linearisation is possible through differentiation and loga-
rithmic transformation, but this approach is sensitive to
noise in rather ordinary cases. When such EPC models
appear in other areas of science (e.g. molecular physics
[2], visual sciences [8], applied physiology [6]), generic
non-linear least-squares techniques are generally used. A
algorithmic approach specifically designed for EPC fitting
was attempted instead in [4]. However, the proposed me-
thod suffered several inconveniences, mainly complexity
of implementation and substantial computational cost.

In contrast, the method presented here can be imple-
mented in about a page of MATLAB code, and is compu-
ted almost instantly. A rigorous and knowing frequency-
domain approach, using the similarities of and minimi-
sing the differences between Discrete Fourier Transform
(DFT) and Fourier series, is presented in section 2. This
frequency-domain detour provides an estimate of the ex-
ponent coefficient, which reduces the finding of the other
two unknowns to a least-squares problem, formulated in
section 3. Finally, in section 4, the performance of the me-
thod is tested and compared with a standard Non-Linear
Regression algorithm, in terms of fit quality and compu-
tation time. The paper closes on a demonstration of the
method with the fitting of FF and IC in string tones of
contrasting characteristics.

2. FOURIER-BASED EXPONENT COEFFICIENT
ESTIMATE

This section encapsulates the essence of the method,
resorting to Fourier analysis to approximate the exponent
coefficient σ, and thus reduce the non-linear problem to
linearity.



2.1. Rectangle-windowed EPC spectrum

Consider a sequence x of N samples of (1)

x = [x0, x1, x2, ..., xN−1]T . (2)

The following development requires the samples to be time-
equidistant, i.e. xn = x(nTs+t0), where n ∈ [0, N−1]∩
Z, where Ts is the time interval (in seconds per sample)
between each sample taken, and t0 is the time correspon-
ding to the first sample x0. The Fast Fourier Transform
(FFT) of sequence (2) is

X̄[k] =

N−1∑
n=0

xne
−jωkn, (3)

where ωk = 2πk/N . In the symbol X̄ , the bar above X
symbolises the equivalence with the Z transform of the
product of the sampled function with a rectangle window,
i.e.

X(ωk) = X̄[k] =

∞∑
n=−∞

xnr(n)e−jωkn, (4)

with

r(n) =

{
1, n ∈ [0, N − 1]

0, n /∈ [0, N − 1]
. (5)

This added specification shall be found relevant when the
issue of aliasing is approached.

The Fourier series of the continuous-time function (1)
needs now be expressed. In computing environments such
as MATLAB, the FFT is implemented as in (3). To allow
the use of this efficient algorithm in the implementation
of FEPCF, it is necessary to adapt the Fourier series’ ex-
pression to match that of the FFT. Hence, in contrast with
the conventional formulation of the Fourier series found in
such textbooks as [3] and [9], a complex exponential form
is used here, and the integration interval is set to [0, N ].
Thus,

X̄ [k] =

∫ N

0

x(nTs + t0)e−jωkndn. (6)

Substitution of (1) into (6) and development yields

X̄ [k] = x∆e
σt0

eσTsN − 1

σ2T 2
s + ω2

k

(σTs + jωk), (7)

for any k 6= 0. From (7), σ can easily be obtained as

σ =
2πk

NTs

X̄R[k]

X̄I[k]
, (8)

whereXR denotes the real part of the complex numberX ,
and XI, its imaginary part.

In practice, only samples of x(t) are given, and there-
fore the DFT – or its efficient FFT implementation – is
the only frequency-domain expression available for use.
X̄ only being an approximation of X̄ ,

σ̄k =
2πk

NTs

X̄R[k]

X̄I[k]
(9)
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Figure 1. EPC function (solid line) and inverse transform
of the rectangle- (dash-dotted line) and sine- (dashed line)
windowed EPC function’s Fourier series.

results, in turn, in being an approximation of σ. Notice
that, while the equality in (8) holds for any k other than
0, the approximation σ̄k is different for each k, hence the
use of the subscript. This index-dependent approximation
error can be looked upon as the effect of aliasing, which
is considered and handled in the following section.

2.2. Aliasing bias

It must be realised that the output of the Inverse Fourier
Series (IFS),

x̄(n) =

∞∑
k=−∞

X̄ [k]ejωkn (10)

= x(mod(n,N)Ts + t0),

is periodic in N . This is basically the function x(t) in in-
terval t ∈ [t0, t0 + NTs], repeated over and over. The
phenomenon is illustrated in Figure 1, where the output of
the IFS is denoted by the dashed line. The sharp corners
everyN samples are indicative of strong partials in higher
frequency regions. In fact, x̄(n) visibly lies in between a
sawtooth wave, whose spectral peaks are inversely pro-
portional to their partial number, and a pulse train, whose
spectrum does not decay but remains constant in magni-
tude.

On the other hand, the properties of DFT spectra of real
signals are such that harmonics of frequency 2πl/N , for
any l ∈ Z, are folded over in the interval [0, N − 1] and
found in the spectrum at indices k = mod(±l, N), a phe-
nomenon known as aliasing. Thus, continuous-waveform
harmonics of index outside [0, N/2], when discretised, are
susceptible to interfering with harmonics originally within
this interval. For the purpose of this paper, this effect is
problematic, as it is responsible for the bias between X̄
and X̄ , and therefore of the approximation in σ̄k.



2.3. Reduction of aliasing with sinusoidal windowing

In a nutshell, the strength of aliasing depends on both
the "brightness" of the analysed waveform and the low
number of data points N . Increasing the number of data
points might be an option, even for data sets of fixed size,
wjere cubic interpolation can be used to create more points.
However, this type of interpolation is sensitive to noise,
when present in the measurements.

Instead, reducing the brightness of the waveform is cho-
sen here. The Fourier series is fed with the product of x
and a smoothing window, yielding the spectrum

X̃ [k] =

∫ N

0

x(nTs + t0)w(n)e−jωkndn, (11)

approximated with the FFT

X̃[k] =

N−1∑
n=0

xnw(n)e−jωkn. (12)

A window w was needed that made the IFS output x̃
smoother than x̄, while at the same time exhibiting spec-
tral properties simple enough not to make X̃ much more
complicate than X̄ . The Hanning window was first thought
of, but then it was realised that a yet simpler sine window,

sN (n) = sin
2πn

N
, (13)

satisfied both requirements. The IFS output x̃ thus obtai-
ned is represented with the dash-dotted line in Figure 1.
The reader can appreciate the contrast in smoothness bet-
ween x̃ and x̄, promising of a dramatic reduction of alia-
sing. Supportingly of this statement, Figure 2 shows the
real (left) and imaginary (right) parts of the Fourier se-
ries (circles) and DFT (crosses), without (upper plots) and
with (lower plots) sinusoidal windowing. The number of
points was purposely made low (N = 10) to emphasize
the effect of aliasing. The discrepancy between the real
parts of the Fourier series and DFT in the case of rectan-
gular windowing is considerable for data sets of so few
entries, but many times smaller, if not absent, when sinu-
soidal windowing is used.

Also, the simplistic, dual impulse spectrum of the sine
window,

SN [k] = j
N

2
(δ(k + 1)− δ(k − 1)), (14)

keeps the Fourier series X̃ [k] simple enough to yield, after
algebraic manipulation,

σ =
2π

NTs

X̃R[k]

X̃I[k]

(
k ±

√
k2 +

X̃I[k]2

X̃R[k]2
(k2 − 1)

)
(15)

for any |k| > 1.

2.4. On the benefit of an extra sample

It should be noted from substitution of (13) into (12)
that the sine window brings to zero the first sample of the
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Figure 2. EPC Fourier series (circles) and DFT approxi-
mation (crosses) in the rectangle- and sine-windowed
cases.

sequence, x0, which might be seen as a waste of a sample.
For lengthy x this has mostly negligible effect, but for se-
quences of very small length, one sample more or less
does make a difference. In this regard the theory should
be modified slightly. The FFT size can be augmented by
one sample, i.e. N ′ = N + 1, and an extra zero sample be
added to the head of x to produce

x′ = [0, x0, x1, ..., xN−1]T

= [x′0, x
′
1, x
′
2, ..., x

′
N ′−1]T . (16)

The continuous-time transform is accordingly modified,
and becomes

X̃ ′[k] =

∫ N ′

0

x((n− 1)Ts + t0)sN ′(n)e−jωkndn, (17)

which, in discrete time, translates to

X̃ ′[k] =

N ′−1∑
n=0

x′nsN ′(n)e−jωkn. (18)

Use of X̃ ′ in place of X̃ to derive σ estimates yields

σ̃k =
2π

N ′Ts

X̃ ′R[k]

X̃ ′I [k]

(
k ±

√
k2 +

X̃ ′I [k]2

X̃ ′R[k]2
(k2 − 1)

)
,

(19)
which is the final result of this section’s development.

3. ESTIMATION OF THE REMAINING TWO
UNKNOWNS

The obtention of σ̃k greatly facilitates the estimation of
x∆ and x∞. In fact, (1) becomes a first-order polynomial
in eσ̃kt, and thus linear least-squares can be used.



3.1. Standard least-squares approach

The system

e−σ̃kt0x∆ + x∞ = x0

eσ̃kTse−σ̃kt0x∆ + x∞ = x1

eσ̃k2Tse−σ̃kt0x∆ + x∞ = x2

...
eσ̃k(N−1)Tse−σ̃kt0x∆ + x∞ = xN−1

can be written in matrix form,

Σ̃kũk = x, (20)

where

Σ̃k =


e−σ̃kt0 1

eσ̃kTse−σ̃kt0 1
eσ̃k2Tse−σ̃kt0 1

...
...

eσ̃k(N−1)Tse−σ̃kt0 1

 ,

and

ũk =

[
x̃∆,k

x̃∞,k

]
is the vector of unknowns. ũk can be found in the least-
squares sense as

ũk =
(
Σ̃T
k Σ̃k

)−1

Σ̃T
k x, (21)

and from there,

x̃k(t) = x̃∆,ke
σ̃kt + x̃∞,k. (22)

Notice the pervasiveness of the subscript k, reminis-
cent of the fact that this whole system and its solution are
dependent on the k-index estimate σ̃k. The next question
to approach is what estimate index to use.

3.2. Selection of the estimate index

Figure 2 illustrates the fact that the discrepancy bet-
ween Fourier series and DFT coefficients increases along
with index number k. Hence, without the presence of noise,
i.e. when the entries in x are samples of a pure mathema-
tical function the type of (1), the best available σ estimate
is σ̃2, which corresponds to the lowest positive index for
which (15), and by extension, (19), hold.

However, noise inherent to the data affects the spec-
trum. For instance, consider a sequence xε, sum of x and
a corrupting error signal ε = [ε0, ε1, ε2, ..., εN−1]T , i.e.
xε = x + ε. Distributivity of the operation of windowing
allows us writing

x̃ε = xε · sN
= x · sN + ε · sN
= x̃ + ε̃, (23)

where sN = [sN (0), sN (1), ..., sN (N − 1)]T . This, com-
bined with distributivity of the DFT over addition, leads
to the conclusion that

X̃ε[k] = X̃[k] + Ẽ[k], (24)

where Ẽ is the transform of ε̃. It follows from (24) that
X̃ε

R[k] = X̃R[k] + ẼR[k] and that X̃ε
I [k] = X̃I[k] + ẼI[k].

To summarise, we say that the noise corrupts both time-
and frequency-domain data in addition.

This fact suggests that there may be an index k for
which Ẽ[k] is the least, and hence the estimate σ̃k, the
best. However, the frequency distribution of Ẽ seems hardly
predictable. To minimise the problem of noise corruption,
frequency-domain fitting of a noise-free Fourier series X̃ [k]
into X̃e[k] was thought of. This, however, might not be
easier than the time-domain fitting problem itself. Also,
because of aliasing, k-estimates where Ẽ[k] is the least
may not be the best candidates, especially for values of k
nearing N/2, where aliasing is strongest.

All those reasons led to the simplistic idea of estima-
ting σ̃k for all indices up to K = b(N − 1)/2c, for each k
evaluating

ε̃k =

N−1∑
n=0

|xn − x̃k(nTs + t0)|, (25)

and keeping the final estimate σ̃ = σ̃k, for whose index ε̃k
is the least.

The drawback of this idea is its relative computational
cost, especially as it requires (19) and (21) to be compu-
ted K − 2 times instead of once. Also, fitting real data
using this algorithm showed to bring no significant im-
provement in comparison with using σ̃2 as a reference es-
timate. The extra computational cost is measured and ex-
pressed in section 4.

4. PERFORMANCE AND RESULTS

This section shows tests of the Fourier-based method
introduced in this paper, both in terms of computation time
and quality of fit, onto synthetic and real signals. Also, the
performance of the fepcf and fepcfk functions was
compared with that of the MATLAB non-linear regres-
sion fitting function nlinfit. It is understood that, when
confronted to the problem of fitting non-linear models into
data, researchers may consider using Non-Linear Regres-
sion (NLR) before anything else, the method having the
major advantage of being applicable to the ensemble of
non-linear functions, and hence of sparing the search for
a model-specific solution. However, NLR has drawbacks
and limitations of its own, that will arise during the course
of this section. But first, for clarity, a brief recapitulation
of the FEPCF scheme is deemed desirable.

4.1. The FEPCF method in its essential steps

The method presented in this paper was implemented
in the MATLAB functions fepcf(t,x) (taking σ̃2 as



a final estimate) and fepcfk(t,x) (using the index to
the least absolute value error ε̃k, as explained previously).
Both return the three estimates σ̃, x̃∆ and x̃∞. The fepcf
scheme, grossly, is as follows :

1. Generate the window sN ′

2. Evaluate X̃ ′[2]

3. Evaluate σ̃2 after (19)

4. Construct the matrix Σ̃ and find the vector of unk-
nowns ũ after (21).

This list reveals the simplicity of the method and suggests
its computational efficiency.

4.2. Tests onto synthetic signals

The synthetic signals used for the purpose of this sec-
tion were noise-free EPC functions the type of (1).

4.2.1. Quality of the fits

In relation to aliasing, the quality of the fits depends
on the number of samples N . Yet it was also realised that,
for functions sampled over a period of time T , high ratios
σ/T , translative of more angulated curves (Figure 3), im-
paired the faithfulness of the estimates. The fit quality was
therefore tested in terms of both N and σ/T ; the result is
shown in the surface plot in Figure 3. The surface ma-
trix of values was obtained by integrating, for each fit, the
absolute value of the difference between the function x(t)
(solid line in the upper plots) and its estimate x̃(t) (dashed
line) over the interval [0, T ]. To standardise these measu-
rements, normalisation was sought both horizontally, by
scaling the result by 1/T , and vertically, adjusting x∆ and
x∞ so that x(0) = 0 and x(T ) = 1. Mathematically for-
mulated, the error surface in Figure 3 reflects

ε =
1

T

∫ T

0

|x(t)− x̃(t)|dt, (26)

approximated numerically with a hundredth-order Riemann
sum.

So as to help the reader to associate the error ε to the
quality of fit, four points on the surface were chosen for
which the corresponding fits are shown in the upper sub-
plots. These points are located on the surface with the dia-
mond, triangle, square and circle shapes. The square and,
especially, the circle fits, are visibly poor. This is due to
the extremely small DFT sizes (ten or less), as well as to
great ratios σ/T . Consequently, the discretised signals are
similar to impulse shapes, immune to the anti-aliasing ef-
fect of windowing. It must be realised that, in the case of
the square fit, where σ = 40/T and the sampling per-
iod is T/10, the time-varying part increases by a factor of
e4 ≈ 55 from one sample to the next, and in the cases of
the circle fit, where σ/T = 100 and the sampling period
is T/5, by a factor of e20, i.e. about half a billion.

It was tested whether NLR performed better in such ex-
treme cases. This iterative method needs be given initial,
rough estimates for the unknowns. In a first attempt, σ,

0

1
 ε = 0.1117

 N = 5

 σ/T = 100

t0 T
0

1
 ε = 0.0363

 N = 10

 σ/T = 40

t0 T

x
(t

)

0

1
 ε = 0.0107

 N = 15

 σ/T = 10

0

1
 ε = 0.0008

 N = 20

 σ/T = 1x
(t

)

x(t)

x
~
(t)

5
10

15
20 10

0
10

1
10

2

0

0.05

0.1

σ/TN

ε

Figure 3. Pushing the method to its limits. Upper plots :
x(t) (solid line) and fits (dashed line) across various DFT
lengths and growth rates. Lower plot : fit error in function
of DFT length and growth rate.

Algorithm Computation time (s)
fepcf 0.0008
fepcfk 0.0099
nlinfit 0.0113

nlinfit (fepcf-aided) 0.0029

Table 1. FEPCF and NLR computation time, averaged
over 1,600 iterations. Only converging cases in NLR were
considered.

x∆ and x∞ were all initialised to 0. In a second attempt,
the estimates returned by the Fourier-based method were
used instead. In neither case did the recursion converge.

4.2.2. Computation time

In this section the computation time of the Fourier-
based fitting method is measured, and compared with that
of NLR as implemented in MATLAB’s nlinfit func-
tion. The fitting was done on sampled EPC functions – as
per section 4.2.1, for combinations of growth rate σ/T =
1, 2, 3, ..., 10, and sequence length N = 4, 5, 6, ..., 196
(for an average length of 100). 1,930 sequences were thus
fitted.The test was run on a MacBook Pro portable compu-
ter, equipped with a 2.16 GHz Intel Core 2 Duo processor.
The computation time results, averaged, and are shown in
(Table 1).

In this test FEPCF proves to run over 10 times faster
than NLR. It is also seen that the performance of the lat-
ter is substantially improved when the Fourier-based es-
timates are used as initial estimates in the recursion, as
the added performance times of fepcf and fecpf-aided
nlinfit is only 33% of that of nlinfit alone. Also,
it must be noted that the computation time of the Fourier-
based method is more predictable, due to its closed form,
while the non-linear regression computation time depends
essentially on the number of iterations. In this regard, not



to give an easy advantage to the Fourier-based method,
care was taken to exclude from the measurements signals
for which the nlinfit function had been found not to
converge.

On another matter, the question was raised in section
3.2 as to how much more computation it required to es-
timate σ̃k for all indices k ∈ [2, b(N − 1)/2c (approach
used in fepcfk), instead of k = 2 alone (fepcf). In
terms of computation time, and for a sequence length ave-
rage of 100 samples, this a tenfold increase.

4.3. Examples of real-signal fits

The motivation for the design of the FEPCF method
stems in the finding of a discernible trend in the time-
sampled measurements of the inharmonicity coefficient of
tension-modulated, steel string guitar tones [4]. An EPC
model for the tension-modulated fundamental frequency,
simplification of the expression found in [7], proves to en-
able satisfactory fits, as exemplified shortly. The funda-
mental frequency model may be formulated as

f0(t) = (f0,0 − f0,∞)e−t/τFF + f0,∞, (27)

where f0(t) is the time-varying, down-gliding fundamen-
tal frequency, f0,0, its value at time 0, f0,∞, its value as
t → ∞, and τFF, its decay time, i.e. the time interval over
which the time-varying part of the signal decays by a fac-
tor of e.

The stiffness of certain strings brings an additional res-
toring force in the transverse vibrations. This has the effect
of "stretching" the upper partials in the harmonic series,
such that the frequency of the kth harmonic obeys

fk = kf0(t)
√

1 + β(t)k2, (28)

where β is the well-known inharmonicity coefficient [1],
here made time-dependent. The model suggested for β(t)
in [4] is the inverse of an EPC function, i.e.

β(t) =
β0β∞

(β∞ − β0)e−t/τIC + β∞
, (29)

where, in analogy to the fundamental frequency model,
β0 is the inharmonicity coefficient valuevalue at time 0,
β∞, its value as t → ∞, and τIC, the decay time of the
time-varying part of the denominator.

When relating these models to EPC functions, it is found
that

x∆ = f0,0 − f0,∞,
x∞ = f∞,
σ = −1/τFF,

and
x∆ = 1/β0 − 1/β∞,
x∞ = 1/β∞,
σ = −1/τIC.

Figure 4 shows examples of fundamental frequency and
inharmonicity coefficient fits for three contrasting notes,
instruments and recording quality. Fundamental frequency
and inharmonicity coefficient estimates were obtained with

Median-Adjustive Trajectories (MAT), method introduced
in [5]. In the upper left-hand side plot, an acoustic gui-
tar E3 (open bass string) sample was produced using Yel-
low Tools’ Independence Free sampler 1 . Here the recor-
ding quality is optimal, and noise interfering in the mea-
surements can be assumed to be negligible. Also, the lo-
wer, open string of the acoustic guitar is most susceptible
among instrumental tones of undergoing tension modu-
lation. As a result, both the fundamental frequency and
inharmonicity coefficient show well-behaved trends, very
successfully fit by the above-described models.

In the upper right-hand side plot of Figure 4, the treble
E of a Martin acoustic guitar was recorded by the author in
the Music Technology Laboratory in the National Univer-
sity of Ireland, Maynooth. Care was taken to produce the
best recording possible, yet the recording featured a back-
ground, broadband noise situated approximately at -60 de-
cibels full-scale, which might have impaired the quality of
the fundamental frequency and inharmonicity coefficient
measurements. Also, the treble E string in an acoustic gui-
tar is considerably more flexible than the bass E, and as a
result is less subject to inharmonicity coefficient modu-
lation. The data seen in in this plot still shows an EPC
trend in the fundamental frequency, if more noisy than in
the Ovation open bass E case, but the inharmonicity coef-
ficient samples are extremely noisy and show little trend.
Logically, the parameters returned by the Fourier-based fit
may hence not be taken as meaningful.

Finally, the bottom left-hand side plot shows the ana-
lysis of a Steinway grand piano middle C tone, downloa-
ded from the University of Iowa Electronic Music Studios
website 2 . The fundamental frequency trend is here very
noisy, with a burst of noise around t = 0.5 caused by
an impulse originally in the file, whose broadband, short-
term energy is visible in the tone’s spectrogram (bottom
right-hand side plot). To the credit of FECPF, this unex-
pected impulse and the disruption it causes in the data did
not loose the general trend to the fit. Yet, in the inhar-
monicity coefficient’s case, the method returns a trend in
contradiction with the expected stabilising trend. The rea-
der can appreciate, however, that this trend is not obvious
from the data points either. In the context of inharmonicity
coefficient parameter fitting, it can in this regard be consi-
dered to force the growth rate estimate σ̃ to a maximum
of 0, which corresponds constant inharmonicity.

5. CONCLUSION

The Fourier-based Exponential Plus Constant Fitting
method (FEPCF) was exposed largely in its conception
and mathematical grounds. A brief recapitulation in sec-
tion 4.1 of its implementation yet reveals that the method
essentially reduces to four steps, and its writing in MAT-
LAB holds in less than one page of code. The method

1 . http://www.yellowtools.com/ (latest access : February
13th, 2011)

2 . http://theremin.music.uiowa.edu/MIS.piano.
html (latest access : March 14th, 2011)
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Figure 4. Fundamental Frequency (FF) and Inharmoncity Coefficient (IC) fits for : (top left) an Ovation acoustic guitar
bass E ; (top right) a Martin acoustic guitar treble E ; (bottom left) a Steinway grand piano middle C. Spectrogram of the
Steinway middle C (bottom right).

has several advantages over generic Non-Linear Regres-
sion (NLR) algorithms, such as : being faster by a fac-
tor of ten (or more for cases where NLR has difficulties
converging) ; featuring a runtime dependent on the length
of the analysed sequence only, otherwise constant ; and
not requiring initial coefficient estimates. On noise-free,
synthetic signals, NLR fitting either returns perfect esti-
mates, in which cases it beats FEPCF in terms of accu-
racy, or does not converge at all, in which case FEPCF is
preferable, as at least it tends towards the ideal solution.
This however applies for sequences of very short length
and extreme exponent coefficient values only ; elsewhere,
FEPCF proves entirely satisfactory. In regard of its perfor-
mance aspect, the FEPCF method seems especially inter-
esting in the context of real-time applications. Where mi-
nimising the square of the error is a priority, results from
Table 1 show that FEPCF offers a computationally effi-
cient solution to initialising NLR. To the author, FEPCF
stands as a reliable measurement tool for the modeling of
modulated fundamental frequency and inharmonicity co-
efficient.

6. ACKNOWLEDGMENTS

I would like to express my gratitude to Victor Lazzarini
for his support, to my Ph.D. supervisor Joseph Timoney
for his advice on the writing of this contribution, and to
Sylvain Marchand for his constructive feedback.

7. REFERENCES

[1] Fletcher, H., Blackham, E. D. and Stratton, R. ”Qua-
lity of Piano Tones”, Journal of the Acoustical Society
of America, 34 (6), 749-761, 1962.

[2] Hagen, S. J. ”Exponential Decay Kinetics in "Down-
hill" Protein Folding", Proteins : Structure, Function
and Bioinformatics, 50, 1-4, 2003.

[3] Hartman, W. M. Signals, Sound, and Sensation.
Springer Science+Business Media, New-York, 1998.

[4] Hodgkinson, M., Timoney, J. and Lazzarini, V. ”A
Model of Partial Tracks for Tension-Modulated Steel-
String Guitar Tones”, Proc. of the 13th Int. Conference



on Digital Audio Effects (DAFx-10), Graz, Austria,
September 6-10, 2010.

[5] Hodgkinson, M., Wang, J., Timoney, J. and Lazza-
rini, V. ”Handling Inharmonic Series with Median-
Adjustive Trajectories”, Proc. of the 12th Int. Confe-
rence on Digital Audio Effects (DAFx-0), Como, Italy,
September 1-4, 2009.

[6] Hughson, R. L., Weisiger, K. H. and Swanson, G.D.
”Blood lactate concentration increases as a conti-
nuous function in progressive exercise", Journal of
Applied Physiology, 62 (5), 1975-1981, 1987.

[7] Legge, K.A. and Fletcher, N. H. ”Nonlinear genera-
tion of missing modes on a vibrating string”, Jour-
nal of the Acoustical Society of America, 76 (1), 5-12,
1984.

[8] Nichols, J. J. and King-Smith, P. E. ”The Impact of
Hydrogel Lens Settling on the Thickness of the Tears
and Contact Lens”, Investigative Ophthalmology and
Visual Science, 45 (8), 2549-2554, 2004.

[9] Raichel, D. R. The Science and Applications of Acous-
tics. Springer-Verlag, New-York, 2000.


