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ABSTRACT 
 

Retinol or vitamin A is crucial for many biological processes in the body such as 

proliferation, differentiation and reproduction. It is mainly stored in the liver and can be 

broken down to retinoic acid inside the cell. It travels in the circulatory system attached to 

Retinol Binding Protein (RBP) and its transport into the cell is mediated by the RBP receptor 

STRA6. Inside the cell, retinol binds to cellular Retinol Binding Protein (CRBP) and can be 

converted to retinoic acid, which can then act as a regulator of transcription. High levels of 

RBP have been implicated in type 2 diabetes. Looking for possible interacting partners for 

proteins such as RBP, can further elucidate the function of the protein and its possible role in 

type 2 diabetes. The Membrane Yeast Two Hybrid (MYTH) system allows for the study of 

possible interacting partners for membrane proteins. Previous studies using (MYTH) looked 

at possible interacting partners for RBP and CRBP. Two hits for RBP were G-protein 

coupled receptors (GPCRs) RAIG2 and RAIG3. One hit for CRBP was the TRPC4 ion 

channel. Retinoic acid inducible gene (RAIG) is a recently discovered family C GPCR and 

the TRPC4 channel is a membrane ion channel responsible for calcium and sodium ion 

influxes into the cell. An RBP-RAIG interaction could implicate the RAIG receptor in type 2 

diabetes. A CRBP-TRPC4 interaction could activate the ion channel causing a calcium influx 

and a possible mechanism of insulin resistance in the cell, the genesis of which is still very 

controversial. This thesis involves performing a series of pull down assays using a novel oil-

based assay to determine if the proteins in the yeast two hybrid system are indeed interacting. 
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List of Abbreviations 

ATRA  All-trans-Retinoic Acid 

BSA   Bovine Serum Albumin 

BCA                Bicinchoninic Acid 

bp                   Base Pair 

CAPS  N-cyclohexyl-3-aminopropanesulfonic acid 

CHAPS  3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate 

CMV               Cytomegalovirus 

 

CRBP   Cellular Retinol-Binding Protein 

DDK-tag 8 Amino Acid Affinity Tag, Sequence DYKDDDDK 

DDM   Dodecylmaltoside 

DNA                Deoxyribonucleic acid 

 

DTT                Dithiothreitol 

ECL  Enhanced Chemiluminescent 

FCS  Foetal Calf Serum 

FLAG®-tag  (registered trademark of Sigma Aldrich, see DDK-tag) 

GPCR  G Protein-Coupled Receptor 

GST                 Gluthathion-S-transferase 

 

HA                  Haemagglutinin 

 

HEK293  Human Embryonic Kidney Cells 

His-tag  6 Amino Acid Affinity Tag, Sequence HHHHHH 

HRP  Horseradish Peroxidase 

IgG  Immunoglobulin G 
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IPTG  Isopropyl β-D-1-thiogalactopyranoside 

LB   Luria-Bertani Medium 

MW  Molecular Weight 

Myc-tag  10 Amino Acid Affinity Tag, Sequence EQKLISEEDL 

NFDM  Non-Fat Dry Milk 

Ni-NTA  Nickel-Nitrilotriacetic Acid 

ORF  Open Reading Frame 

O/N                 Overnight  

 

PAGE              Polyacrylamide gel electrophoresis 

 

PCR                 Polymerase chain reaction 

 

PBS  Phosphate Buffered Saline 

PBS-t  Phosphate Buffered Saline (0.05 % (v/v) Tween-20) 

PVDF  Polvinylidene Fluoride 

RAR  Retinoic Acid Receptor 

RAIG                Retinoic Acid Inducible Gene 

RBP   Retinol-Binding Protein 

R/T                    Room Temperature 

RXR  Retinoid X Receptor 

SDS  Sodium Dodecyl Sulphate 

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

STRA6  Stimulated by Retinoic Acid Gene 6  

TAE   Tris-Acetate-EDTA 

TEMED          N,N,N’,N – Tetramethylenediamine 

TM   Transmembrane 
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TRP  Transient Receptor Potential 

TTR   Transthyretin 

 

Units 

 

µg          Micrograms 

µl           Microlitres 

g             Gram 

kDa        Kilodalton 

M           Molar concentration 

mg         Milligram 

ml          Millilitre 

mM        Millimolar concentration 

ng           Nanogram 

nm          Nano Meter 

rpm        Revolutions per minute 

U            Units 

v             Volts 
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1.1   Vitamin A 

Retinol or vitamin A is important for many processes in the body, such as differentiation, 

proliferation, vision and reproduction (Olsen, 1996). Retinol is stored mainly in the liver as 

retinyl esters but transported round the body as retinol (Quadro et al., 1999). When it reaches 

its target tissue, it is usually converted into all-trans-retinoic acid (ATRA), except in certain 

eye cells where the aldehyde retinal is produced for the visual pigment rhodopsin (Quadro et 

al., 1999). ATRA acts as a transcription regulator controlling the transcription of hundreds of 

genes responsible for mammalian reproduction and development (Quadro et al., 1999). 

ATRA travels to the nucleus where it binds heterodimeric nuclear receptors such as retinoic 

acid receptors (RARs) and retinoid X receptors (RXRs) (Giguere et al., 1987; Petkovich et 

al., 1987; Chambon, 1996). These receptors are ligand dependent transcription factors and 

can now control the expression of over 300 genes, mainly responsible for reproduction, 

proliferation and differentiation (Quadro et al., 1999).  

An important metabolite of retinol is 11-cis-retinal which is the chromophore responsible for 

photon absorption in GPCR rhodopsin (Palczewski, 2006). A conformational change occurs 

in the protein, following absorption of a photon of light by 11-cis-retinal, causing 

isomerisation to the all-trans form (Stryer, 1991). This conformational change initiates the 

visual transduction pathway (Stryer, 1991). 

Vitamin A importance to the body is manifested by a series of pathological conditions that 

occur through deficient or excessive exposure to retinoids (Underwood, 1994; Mark et al., 

2006). Blindness and night blindness in children is caused by Vitamin A deficiency (VAD) 

(Dowling, 1966), while osteoporosis has had links with high concentrations of vitamin A 

(Zile, 1998). Due to these diseases, it is important that the correct concentration of retinol is 
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delivered to target tissue in the body (Redondo et al., 2006). Retinol binding protein (RBP) 

facilitates the transport of retinol from the liver to target tissue, thus maintaining the 

homeostasis of retinol in the body (Redondo et al., 2006). RBP also prevents retinol 

partitioning into the membrane due to retinols hydrophobic nature (Naylor and Newcomer, 

1999).  

 

1.2   Retinol Binding Protein 

Retinol Binding Protein (RBP) is a lipocalin and has a molecular weight of 21kDa (Redondo 

et al., 2006). Predominately synthesised in the liver, it has also been synthesised in the 

gonads, kidneys, adipocytes and retinal pigment epithelium (Redondo et al., 2006). RBP 

delivers retinol to almost all tissues (Kawaguchi et al., 2008) and secretion of RBP from the 

liver only occurs upon retinol binding (Ronne et al., 1983). Holo-RBP binds to the tetrameric 

thyroxine carrier protein, transthyretin (TTR), forming a macromolecular complex (Navab et 

al., 1977) which is then secreted from the liver (Melhus et al., 1991; Episkopou et al., 1993). 

There is one molecule of retinol bound to the RBP protein in the TTR tetramer complex 

secreted from the liver (Gottesman et al., 2001). Holo-RBP circulates in the bloodstream as a 

monomer mostly bound to the tetramer of TTR, the combined complex having a molecular 

weight of 77kDa (Redondo et al., 2008). The Holo-RBP-TTR complex is important as it 

prevents RBP-retinol being eliminated by glomerular filtration in the kidneys, thereby 

allowing RBP to deliver retinol to the target cells (Goodman, 1984; Monaco, 2000). It also 

encapsulates retinol in the complex preventing the hydrophobic molecule being partitioned in 

the membrane (Redondo et al., 2008). TTR is not known to effect RBP delivering retinol to 

the cell, but does prevent renal filtration of RBP in the kidneys (Gottesman et al., 2001). 

After retinol is delivered to the target cells, the apo-RBP-TTR complex is unstable and RBP 

is excreted by the kidneys (Redondo et al., 2006).  
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1.3   STRA6 

            Kawaguchi et al., 2007, identified STRA6 as a widely expressed high-affinity, RBP specific 

receptor. The receptor has a molecular weight of 74kDa and is the retinoic acid-stimulated 

gene (Kawaguchi et al., 2008), previously found in P19 carcinoma cell line (Bouillet et al., 

1997). The receptor is a multi-transmembrane, hydrophobic protein, which binds to retinol-

RBP (holo-RBP) with high affinity, resulting in the transport of retinol into the cell 

(Sivaprasadarao and Findlay, 1988, Kawaguchi et al, 2007). STRA6 binds to the monomer 

RBP, encapsulating the retinol, meaning holo-RBP dissociates from the TTR complex before 

binding to STRA6 (Sivaprasadarao and Findlay, 1988). Due to the importance of retinoids in 

the developmental process, STRA6 is highly expressed during embryonic development but 

expression is also high in adult organ systems particularly cells comprising blood-organ 

barriers (MacDonald et al., 1990; Smeland et al., 1995). The membrane topology of STRA6 

contains nine putative transmembrane domains interrupted by a large intracellular loop, a 

larger intracellular loop, an extracellular N-terminus and an intracellular C-terminal tail 

(Redondo et al., 2008). Due to the large size of the intracellular tail it seems reasonable to 

suggest that this region interacts with possible intracellular binding partners (Redondo et al., 

2008). How retinol gets into the cell is unknown after it is taken up from RBP (Redondo et 

al., 2008). When RBP binds to STRA6, it is likely that STRA6 binds to cellular retinol 

binding protein (CRBP), which is the only known molecule that binds retinol in the cell 

(Redondo et al., 2008). 
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Figure 1.1: The Membrane Topology of STRA6.  

Protein contains 9 transmembrane regions, with an extracellular N-terminus and a large intracellular 

C-terminal tail. The protein contains a large extracellular loop between helix 6 and 7 and also 2 

intracellular loops which could be involved with binding to RBP and CRBP respectively. The diagram 

also shows the structure of holo-RBP with the one molecule of retinol attached. (Kawaguchi et al., 

2008). 
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1.4  CRBP 

            The hydrophobicity of retinol means that it is bound to one of several cellular retinol binding 

proteins (CRBP) in the cell (Piantedosi et al., 2005). CRBP protects retinol from becoming 

partitioned into the membrane and disrupting normal cellular activity (Piantedosi et al., 

2005). The main role of cRBP in retinol uptake from STRA6 is to facilitate the transport of 

retinol to specific enzymes which convert it to the stored esterified form ( LRAT) or oxidise 

it to retinoic acid (Piantedosi et al., 2005). An enzyme called retinol dehydrogenase converts 

retinol attached to CRBP into retinal (Gottesman et al., 2001). The retinal can then get broken 

down by retinal dehydrogenase into retinoic acid, which acts as a regulator of transcription 

factors in the nucleus (Gottesman et al., 2001). Some doubt has been cast on this process 

because newborn mice lacking CRBP-I still show expression of retinoic acid responsive gene 

RARβ2 in the liver (Gottesman et al., 2001). There are three known CRBP molecules, I, II 

and III (Piantedosi et al., 2005). CRBP-I is highly expressed in the liver where it is needed 

for the storage of retinoid as retinyl esters (Piantedosi et al., 2005). Mice lacking CRBP-I are 

unable to store retinoids in the liver and develop symptoms of retinoid deficiency (Piantedosi 

et al., 2005). CRBP-II is expressed solely in the intestines but at a high level and is mainly 

involved with uptake and storage of retinol as retinyl esters, mice lacking CRBP-II showing a 

decrease in retinoid absorption (Piantedosi et al., 2005). CRBP-III facilitates retinyl esters 

storage in milk, with retinyl esters being reduced in milk in mice lacking CRBP-III 

(Piantedosi et al., 2005). Lecithin: retinol acyltransferase (LRAT) and acyl CoA: retinol 

acyltranferase (ARAT) are the two enzymes that catalyse retinyl ester synthesis (Gottesman 

et al., 2001). These findings suggest that CRBP is critically important for storing retinol as 

retinyl esters but may not be involved with the production of retinoic acid and it’s 

translocation into the nucleus (Gottesman et al., 2001). 

 

http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Roseann+Piantedosi&sortspec=date&submit=Submit
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Figure 1.2: Retinoid Metabolism 

This diagram shows the progress of holo-RBP after it is excreted from the liver bound to TTR. Holo-

RBP binds STRA6 in the plasma membrane. STRA6 facilitates the transport of retinol into the cell. 

The retinol bound to CRBP inside the cell is either broken down to retinoic acid or stored in the cell 

as retinyl esters. Retinol can get broken down to retinal by retinol dehydrogenases (RDH). The retinal 

can get broken down to retinoic acid by retinal dehydrogenases (RalDH). Retinoic acid travels into 

the nucleus and binds to Retinoic Acid Receptors (RARs). These receptors are ligand dependent 

transcription factors and can now control the transcription of many genes (Blaner 2007). 

  

 

 

 

 

 

1.5  Type 2 Diabetes 

            Type 2 diabetes is a debilitating, chronic condition caused by multiple tissues becoming 

resistant to insulin, which results in elevated glucose levels in the blood plasma called 
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hyperglycaemia (Zimmet et al., 2001). Insulin resistance is a strong and early indicator of the 

subsequent development of type 2 diabetes (Graham et al., 2006). A major cause of type 2 

diabetes is impaired insulin action in adipose tissue, skeletal muscle and liver (Yang et al., 

2005). Cells become resistant to the action of insulin and the pancreatic beta cells cannot 

compensate for this resistance by producing enough insulin (Graham et al., 2006). In time, 

the pancreatic beta-cells become exhausted and the supply of insulin drops, producing type 2 

diabetes (Graham et al., 2006). 

            The RBP-STRA6 interaction has recently been implicated in insulin resistance (Yang et al., 

2005), with serum RBP4 levels elevated in type 2 diabetes patients (Klöting et al., 2007). A 

landmark paper by Yang et al., 2005 chronicled the first evidence for a direct role for RBP in 

obesity, insulin resistance and type 2 diabetes as follows: 

 RBP is elevated in insulin resistance mice and in humans with obesity and type 2 

diabetes. 

 Fenretinide (an anti-cancer synthetic retinoid), which accelerates RBP urinary 

excretion (and hence reduces serum levels), reduced insulin resistance. 

 Rosiglitazone (antidiabetic drug) reduced serum RBP levels and increased insulin 

sensetivity in obese mice. 

 Insulin sensitivity was enhanced in RP knock-out mice. 

 RBP over-expression in transgenics or RBP injection in normal mice caused insulin 

resistance. 

 There were no differences in glucose, free fatty acids, leptin, adiponectin or resistin 

levels in RBP over-expressing mice, indicating that RBP was not acting through any 

of these factors.  

 In RBP over-expressing-mice, skeletal muscle insulin-induced PI(3)Kinase was 

reduced. 

http://en.wikipedia.org/wiki/Antidiabetic_drug
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 RBP injection into normal mice reduced both insulin-stimulated PI(3)Kinase (PI3K) 

activity and the phosphorylation of insulin receptor substrate (IRS1) at the tyrosine 

(612) associated with the docking of the p85 subunit of PI3K. 

 Fenretinide restored IRS1 phosphorylation levels in skeletal muscle cells. 

 The source of additional RBP, which otherwise is under tight control via the liver, is 

thought to be adipose tissue meaning obesity is presumed to result in elevated levels 

of RBP through secretion from adipose tissue.  

 This elevated RBP in turn acts on peripheral tissues such as skeletal muscle to 

attenuate insulin sensitivity as indicated by reduced IRS1 phosphorylation and PI3K 

activity. 

Since TTR prevents the renal clearance of RBP, it was no surprise to see TTR levels also 

elevated in Type 2 diabetes patients (Klöting et al., 2007).  

An interesting recent paper by Berry and Noy (2011), claims that holo-RBP and STRA6 

could have a role in the STAT-JAK signaling pathway. The paper showed:                                                       

 Holo-RBP binding to STRA6 induces the phosphorylation of a tyrosine residue in the 

receptors C-terminus, thereby activating a JAK/STAT signaling cascade. 

 In STRA6 expressing cells such as adipocytes, holo-RBP induced the expression of 

STAT target genes, such as SOCS3 and PPARy. 

 SOCS3 is known to supress insulin signalling and PPARy enhances adipose lipid 

storage 

 Holo-RBP binding to STRA6 regulates gene expression to inhibit insulin signalling 

and enhance lipid accumulation.  

                                                                                                                                                             

            Glucose-transport 4 (GLUT4) is the main insulin stimulated glucose transporter (Graham et 

al., 2006). GLUT4 removes glucose from the circulatory system and is a key regulator in 
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whole body glucose homeostasis (Huang and Czeach., 2007). GLUT4 is predominantly 

intracellular in the unstimulated state, with translocation to the plasma membrane induced by 

certain stimuli such as insulin (Huang and Czeach., 2007). The expression of GLUT4 in 

adipose tissue is reduced in the insulin resistance state and it is now believed that the 

reduction in expression and translocation of GLUT4 is caused by RBP (Yang et al., 2005). 

Elevated levels of RBP are found in adipocyte-specific GLUT4 knockout mice (Yang et al., 

2005). This has led to the claim that elevated levels of serum RBP could be responsible for 

insulin resistance (Yang et al., 2005). It is also considered that there is a direct link between 

elevated levels of RBP and downregulation of the GLUT4 transporter in adipocytes (Yang et 

al., 2005).  

 

1.6   RAIG (Retinoic acid-inducible gene) 

 

Retinoic acid-inducible gene 1 (RAIG1) was first identified by Cheng and Lotan (1998) using 

differential display, with RNA isolates from untreated and all-trans-retinoic acid (ATRA) 

treated human oral squamous carcinoma cell lines. The receptor’s name came from the fact 

that these receptors were upregulated in vitro by retinoic acid (Cheng and Lotan, 1998).  

Subsequently Osborne and Larsen (2000) revealed sequence and expression information on 

GPRC5B (RAIG2) by homology searching of additional subtypes to family C G-protein 

coupled receptors (GPCRs) such as the human metabotropic glutamate receptor subtype 2. 

RAIG2 mRNA expression levels were high in kidney, pancreas and testis (Osborne and 

Larsen, 2000) while RAIG1 mRNA expression levels were high in the lung (Cheng and 

Lotan, 1998). Both transcripts show high sequence similarity but are expressed in different 

levels in different cell lines (Osborne and Larsen, 2000). High levels of RAIG2 mRNA were 

discovered in rat brain and spinal column which is in general agreement with human 
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distribution (Robbins et al., 2002). Western blot analysis of RAIG2 showed a band at 68kDa 

suggesting post translational modification as RAIG2 has a predicted protein molecular mass 

of 50kDa (Robbins et al., 2002).  

Robbins et al., 2000, discovered GPRC5C (RAIG3), using homology searching against the 

Genbank sequence database using the caenorhabditis elegans metabrotropic receptor as the 

search sequence. The sequence for RAIG1, RAIG2 and RAIG3 showed high sequence 

similarity to other family C GPCRs, especially in their transmembrane regions (Robbins et 

al., 2000). Family C GPCRs are a sub-family of the GPCRs, defined by transmembrane 

sequence similarity, which largely contains receptors for neurotransmitters, glutamate and c-

aminobutyric acid (GABA), receptors for calcium, some taste and pheromone molecules, as 

well as some orphan receptors (RAIGs) (Pin et al., 2004). The N-terminus is usually very 

large (over 600 amino acids) and is the part of the protein mostly responsible for ligand 

binding (Pin et al., 2004). The N-terminal domains of the RAIGs differ to the other family C 

GPCRs as they are significantly smaller (Robbins et al., 2000). This may mean a possible 

ligand binding region for the receptors may lie in the transmembrane region as opposed to the 

N-terminal region (Robbins et al., 2000). The RAIGs also lack certain residues that are 

conserved among all family C GPCRs (Pin et al., 2003). These residues include 2 cysteines 

that link the top of TM3 and the second extracellular loop, the highly conserved Trp in TM6, 

and the conserved FNEAK motif at the bottom of TM6 (Pin et al., 2003). Similar to RAIG1 

and RAIG2, expression of RAIG3 mRNA increased in cells treated with ATRA suggesting 

an ability of retinoic acid to regulate GPCR signalling (Robbins et al., 2000). RAIG3 mRNA 

expression levels were high in selective brain areas such as the cerebellum and also both 

mesoderm and epithelial derived tissues (Robbins et al., 2000). The discovery of an agonist 

would give great insight into the function of these novel receptors, but the difference in 
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structure and a possible binding site (small N-terminal), to other family C GPCRs 

complicates the picture (Osborne and Larsen, 2000). 

 

 

 

Figure 1.3: Phylogenetic Tree of Family C GPCRs.  

The tree shows the recently identified RA (Retinoic acid) induced receptors which include the RAIGs. 

Other groups include the metabotropic glutamate receptors, putative pheromone receptors, sweet and 

amino acid taste receptors, GABA receptors and the Fish olfactory receptors. (Pin et al., 2003) 

 

 

 

1.7   TRP (Transient Receptor Potential) Ion Channels 

The TRP (“transient receptor potential”) ion channel consists of a huge superfamily that 

comprises more than 30 channels (Pedersen et al., 2005). There are 7 main subfamilies: the 

TRPC (‘Canonical’) family, the TRPV (‘Vanilloid’) family, the TRPM (‘Melastatin’) family, 

the TRPP (‘Polycystin’) family, the TRPML (‘Mucolipin’) family, the TRPA (‘Ankyrin’) 
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family, and the TRPN (‘NOMPC’) family (Pedersen et al., 2005). All TRP channels are 

cation channels and contain 6 transmembrane domains, with their N and C-terminus on the 

intracellular side (Pedersen et al., 2005). Its pore which is highly selective for sodium and/or 

calcium ions is located between transmembrane 5 and 6 (Clapham et al., 2003). They are 

thought to possess a similar architecture to voltage –gated K channels (Clapham et al., 2003).   

This characteristic 6 transmembrane architecture is the only common/homologous feature 

contained in all the TRP subfamilies (Clapham et al., 2003). TRPC channels contain a 25 

amino acid motif called the TRP box on the C-terminus, which is not a feature of any other 

TRP subfamily (Clapham et al., 2003). TRPC and TRPV channels contain ankyrin repeats on 

their N-terminal domain, while proline rich regions are observed on the C-terminal region of 

TRPC and TRPM channels (Clapham et al., 2003). The C-terminus of TRPC4 and TRPC5 

contain a PDZ binding motif which is not seen in any other TRP channel (Clapham et al., 

20023). The PDZ region of TRPC4 and TRPC5 can interact with PDZ domain containing 

proteins such as the sodium-hydrogen exchanger regulatory factor as well as phospholipase 

Cβ (Pedersen et al., 2005). 
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Figure 1.4: The Phylogenetic Tree of the TRP Superfamily.  

The diagram shows how big the TRP family is and also its expression in many different animal types 

(Pederson et al., 2005). 
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Figure 1.5: Membrane Topology of TRP channels. 

TRP channels comprise a 6 transmembrane region with the pore contained between helix 5 and 6 (S5 

and S6). The diagram shows that both lanthanum (La
3+

) and 2-aminodiethyldiphenyl (2-APB) can 

block these channels. The channel pore is selective for calcium (Ca
2+

) and sodium (Na
+
) ions.  The N 

and C-terminus are both intracellular and both interact with many different intracellular proteins 

(Clapham et al., 2001). 
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Activation mechanisms for TRP channels are numerous, ranging from intra- and extracellular 

messengers, osmotic stress and intracellular calcium stores (Pedersen et al., 2005). The TRPC 

subfamily has been shown to interact with cadmodulin, the IP3 receptor and the metabrotropic 

glutamate receptor in neurons (Pedersen et al., 2005). TRP channels contain many possible 

regions for protein-protein interactions and among the many subfamilies, their binding 

partners and binding regions vary greatly (Pedersen et al., 2005). The interaction sites in 

TRPC channels for protein-protein interactions are contained mostly in their intracellular N 

and C-terminal regions (Pedersen et al., 2005).  TRPC channels can be activated by a 

decrease in intracellular calcium store concentration (Yao et al., 2005) and have been linked 

to the influx of calcium ions into the cell to replenish intracellular calcium stores depleted of 

calcium (Clapham et al., 2002) by some stimulus. The release of calcium from intracellular 

calcium stores is modulated by G-protein coupled receptors through the activation of 

phospholipase C (PLC) (Clapham et al., 2002). PLC is known to generate inositol 1,4,5-

trisphosphate (IP3) which can activate IP3 receptor-mediated calcium release from 

intracellular stores (Yao et al., 2005). PLCβ is known to bind TRPC4 and TRPC5 and is also 

one of the products resulting from the enzymatic actions of PLC (Clapham et al., 2002) This 

could link TRPC channels with calcium efflux from intracellular stores and possible 

replenishment of these stores through TRPC channel activation (Clapham et al., 2002). TRPC 

channel’s ability to interact with the IP3 receptor further backs up this theory (Pedersen et al., 

2005). PLC can also activate diacylglycerol DAG, which is known to bind and activate either 

TRPC3, 6 or 7, which is independent of calcium store depletion (Yao et al., 2005). 

Calmodulin has been shown to bind to the C-terminus of TRPV6 in a calcium-dependent 

mechanism (den Dekker et al., 2003). TRPC channels are highly expressed in the brain, 

endothelium, smooth and cardiac muscle cells and the lung which is in agreement with the 
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other TRP subfamilies as they are widely expressed in many different cell lines (Pedersen et 

al., 2005).  

An example of TRP channel regulation is its role in calcium reabsorption in epithelial cells 

surrounding kidney or the duodenum (Nijenhuis et al., 2005). TRPV5 and TRPV6 seem to be 

able to induce an influx of calcium ions (calcium reabsorption) into epithelial cells, 

surrounding the kidney and duodenum, which can regulate extracellular calcium 

concentration (Nijenhuis et al., 2005). Activated TRPV channels in the epithelial cells open 

and allow calcium into the cell, where it binds to calcium binding proteins (calbindins) 

(Nijenhuis et al., 2005). The calbindins can channel the calcium to either calcium ATPases or 

the Na
+
/Ca

2+
 exchanger (NCX1) which aid in the extrusion of calcium across the basolateral 

membrane (Nijenhuis et al., 2005).  The reabsorbed calcium in the epithelial cell does not 

seem to effect intracellular signalling which allows for transcellular calcium fluxes 

(Nijenhuis et al., 2005). This evidence seems to show that TRPV channels have a role in the 

regulation of extracellular calcium concentration (Nijenhuis et al., 2005). Interestingly, from 

the viewpoint of the work described here, regulation of calcium concentration is linked to 

exocytosis which in turn is associated with the incorporation of proteins into the plasma 

membrane. 
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Figure 1.6: Transmembrane Domains and Protein Interaction Sites of TRP Channels  

This diagram shows the pore region of the TRP channel and also the different protein binding sites 

contained on their C and N terminus. The pore region is formed by the fifth and sixth transmembrane 

regions (S5 and S6). A kink in S6 forms the gate with its cytoplasmic ends. The selectivity filter is 

formed by extracellular facing loops of the S5 and S6 transmembrane regions. Binding of a cation to 

the loops could cause a kink in S6 forcing the channel to open and the influx of cations. All TRP 

channel are selective for either calcium or sodium ions, except TRPV5 and TRPV6 which are 

Calcium selective. The intracellular regions are very diverse among the different subfamilies. Ankyrin 

repeats are very common on the N-terminus of TRPV, TRPC and TRPM. These 3 subfamilies also 

contain a TRP box sequence on their C-terminus. The C-terminus contains many binding regions for 

calmodulin, IP3 receptors, PDZ domain containing proteins, PLC interacting kinases and calcium 

binding domains (Clapham, 2003). 
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1.8   Membrane Yeast Two Hybrid System 

The biological functions of many proteins may be determined by the identification of their 

interacting partners (Snider et al., 2010). Determining possible interactors for membrane 

proteins has proved difficult because of their hydrophobicity and location (Snider et al., 

2010). The membrane yeast two hybrid system provides an effective method for determining 

interacting components for membrane proteins, using Saccharomyces cerevisiae as a host 

(Snider et al., 2010). The system allows full length membrane proteins to be studied in the 

context of the membrane and not just their soluble domains (Snider et al., 2010).   This is 

unlike other yeast two hybrid systems which require the interaction to occur in the nucleus 

between two soluble proteins (Snider et al., 2010).  

The bait and prey proteins are tagged with ubiquitin domains at their C or N terminus, which 

can reassociate in the cell to form pseudoubiquitin if brought into close proximity (Snider et 

al., 2010). The membrane protein’s (bait) N or C terminus contains the C-terminal fragment 

of ubiquitin (Cub) fused to a transcription factor containing a LexA Escherichia coli DNA-

binding domain LexA and the herpes simplex virus VP16 transcriptional activation domain 

(Snider et al., 2010). The possible interacting proteins (prey) N or C terminal contains an N-

terminal fragment of ubiquitin (Nub), which has an isoleucine13 to glycine mutation, which 

prevents spontaneous association of Nub and Cub (Snider et al., 2010). If there is an interaction 

between the bait and prey proteins, Nub and Cub come together and form a fully folded 

ubiquitin (Snider et al., 2010). This fully folded pseudoubiquitin is recognised and cleaved by 

cytosolic deubiquitinating enzymes (DUBs), which cleave the pseudoubiquitin freeing the 

transcription factor (Snider et al., 2010). The transcripition factor travels to the nucleus and 

activates expression of a reporter gene under the control of promoters containing LexA 

binding sites (Snider et al., 2010). The bait and prey proteins are co-expressed in 
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Saccharomyces cerevisiae and expression of the reporter gene allows for their growth on 

selective media (Snider et al., 2010). This makes the selection of prey-bait interactions highly 

specific and convenient (Snider et al., 2010).  Retinol binding protein (RBP) and cellular 

retinol binding protein (CRBP) were used as the baits in a screen of cDNA libraries (preys) 

from brain and muscle. In this screen, RAIG2, RAIG3 and TRPC4 Zeta were revealed as hits 

for possible binding partners (for RBP (RAIGs) and CRBP respectively. 

 

 

 

 

 

(Diagram taken from the Dualsystem kit 3 user manual). 

 

 

Figure 1.7: Membrane Yeast Two Hybrid System. 

Diagram explaining the membrane yeast two hybrid system. (A) The integral membrane bait 

protein fused to Cub ubiquitin which is fused to a transcription factor containing a LexA 
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DNA binding domain. Transcription of the reporter gene in the nucleus is turned off. (B) The 

integral membrane prey protein fused to the mutated NubG ubiquitin. Transcription of the 

reporter gene in the nucleus is turned off. (C) An interaction between the two proteins brings 

NubG and Cub together forming a fully folded ubiquitin, which is cleaved by dubiquitinating 

enzymes (DUBS), releasing the transcription factor. The transcription factor travels into the 

nucleus and uses its LexA binding domain to bind to promoters containing the LexA binding 

domain. The VP16 transcriptional activation domain induces expression of reporter genes, 

which will allow for growth of the yeast on selective media and also tell you that there is an 

interaction between the bait and prey protein (Snider et al., 2010) 

 

 1.9   MembraneMax™  Cell –Free Expression  

The MembraneMax
TM 

Protein Expression Kit is designed for in vitro expression of soluble 

membrane proteins from template DNA in a single scalable reaction. The system contains all 

the components for the production of recombinant membrane protein. The system only 

requires a construct with a T7 RNA polymerase promoter, the prokaryotic Shine-Dalgarno 

ribosome binding site (RBS), the ATG initiation codon, the stop codon, and the T7 

terminator. The E. coli based MembraneMax™ expression system is designed to produce 

high yields of membrane proteins embedded in a planar phospholipid bilayer, surrounded by 

a scaffold protein (based on Apo AI) of 10 nm in diameter and referred to as nanolipoprotein 

particles or NLPs, (Figure 1.9). The system has many advantages over other expression 

systems:  

 Production of recombinant membrane protein of interest from an expression construct 

in less than 4 hours 

 Production of soluble and monodispersed membrane protein population 

 Microgram to milligram quantities of membrane protein 

 Easy, scalable membrane protein synthesis reactions that are amendable to high-

throughput for a wide range of expression needs 

 Many options for optimizing the reaction if problems arise 
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Taken from the MembraneMax™ Protein Expression Manual (Invitrogen). 

 

 

             

 

 

 

Figure 1.8: MembraneMax™ Nanolipoprotein Particles   

Membrane proteins expressed in MembraneMax™ are embedded in a planar 

phospholipid bilayer, surrounded by a scaffold protein (based on Apo AI) of 10 nm 

in diameter and referred to as nanolipoprotein particles (NLPs).  Shown are NLPs 

both with and without a membrane protein embedded.  Once inserted into the lipid 

bilayer, the membrane protein of interest is accessible from both sides. Taken from 

the MembraneMax™ Protein Expression Manual (Invitrogen). 
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1.10   Aims and Objectives 

The aim of this project was to follow up on these screens to determine if there were protein 

interactions between (i) RBP and RAIG2 (ii) RBP and RAIG3 and (iii) CRBP and TRPC4 

Zeta ion channel. The project involved: 

(i) Preparing molecular biology construction of these proteins which contained “tags” for 

identification and isolation, 

(ii) Obtaining the expression of these three proteins in suitable amounts and cell systems 

which allowed immunopurification. And 

(iii) Performing a series of pull down assays using a novel oil-based assay to determine if the 

proteins were indeed interacting 

The possible binding of RAIG2 and RAIG3 to RBP could have serious implications in type 2 

diabetes. High levels of RBP have been shown to effect insulin sensitivity (Klöting et al., 

2007). The only receptor identified for RBP is STRA6 which is why this receptor (without 

proof) is implicated in the disease. If the oil pull-downs revealed an interaction with either 

RAIG2 or RAIG3 with RBP, this could implicate one or both of these GPCRs in the disease. 

It would also identify a ligand for one or both RAIG proteins thereby de-orphanise them and 

open up a whole to line of investigation into the role and mechanism of action of RBP.  

If CRBP does bind to TRPC4, this could have important implications in the cell as TRPC4 

channels have a big impact on calcium levels. The CRBP-TRPC4 interaction could activate 

the TRPC4 channel causing an influx of calcium into the cell. Calcium has been shown to 

cause GLUT4 translocation to the plasma membrane (Youn et al., 1991). One of the causes 

of type 2 diabetes is the lack of GLUT4 translocation to the plasma membrane. This possible 

interaction could provide a possible mechanism of insulin resistance in the cell, the genesis of 

which is still very controversial. It would also reveal a completely new mechanism of action 

of CRBP. 
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Chapter 2 
 

Materials and Methods 
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2.1  Chemicals and Reagents 

All chemicals, reagents, and proteins were purchased from Sigma unless otherwise stated.  

Enzymes and buffers were purchased from New England Biolabs, Promega, and Stratagene.  

All oligonucleotides used were purchased from Sigma Genosys.  

Size markers for DNA gels were purchased from both Promega and Bioline.  Plasmid DNA 

isolation and purification kits were purchased from Qiagen. 

For protein expression; MembraneMax™ was bought from Invitrogen and E. coli strains 

from Stratagene, unless otherwise stated.  Cell culture media and associated products were 

purchased from Gibco (Invitrogen) with the exception of FuGENE® 6 transfection reagent, 

obtained from Roche.   

Protein purification was performed using Glutathione Sepharose™ 4 Fast Flow from GE 

Healthcare and/or Ni-NTA agarose, purchased from Qiagen.  In the detection of proteins; 

ECL Western blotting substrate and 20 X BupH tank buffer were all purchased from Pierce.  

Molecular weight markers for protein gels were purchased from Bio-Rad. Blotting paper 

(3MM Chr.) was supplied by Whatman, purchased from GE Healthcare.   

Antibodies were purchased from Sigma (α-myc-HRP and α-FLAG®), GE Healthcare (α-

GST-HRP and α-rabbit-HRP), Roche (α-His-HRP), Dako (α -RBP) and Santa Cruz 

Biotechnology Inc. (α –CRBP) 

 

2.2 Vectors, Host Strains and Cell Lines 

The coding sequence for human RAIG3 was obtained in the pCMV6-Entry vector (OriGene), 

incorporating a C-terminal Myc and DDK-tag (shown in Figure 2.3).  This vector was used in 

attempts to express the full length receptor in HEK293 cells and cell-free systems as 
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described in Chapter 3 and 4. The coding sequence of RAIG2 was subcloned into Pet-30a (+) 

(Novagen) (shown in Figure 2.2) for expression as a His-fusion protein for cell free 

expression. The coding sequence of RAIG2 was also subcloned into the pCMV6-Entry vector 

to express the full length receptor in HEK cells. The coding sequence for human TRPC4 

transcript variant Zeta was obtained in the pTriEx-1.1 vector (mrgene) incorporating a C-

terminal HA and His tag (shown in Figure 2.4). The CRBP-GST construct (in pGEX-4T-3,h 

Figure 2.5) was already available in the lab. For cloning and plasmid amplification, 

supercompetent E. coli strain XL1-Blue was used.  Expression of full length human RAIG2, 

RAIG3 and TRPC4 were carried out in mammalian HEK293 cells (Invitrogen) and in the cell 

free systems MembraneMax™. The CRBP-GST fusion protein was expressed in the E. coli 

strain BL21-CodonPlus (DE3)-RP. 

 

 

 

 

 

 

2.3     Construction of the RAIG2/pET-30a (+) vector 

The RAIG2 coding sequence was obtained in Origene’s pCMV6-XL4 vector shown in figure 

1. This vector contained no epitope tags for purification and detection of the protein once 

expressed. The RAIG2 sequence was subcloned into pET-30a (+) (Novagen) for expression 

as a His-fusion protein. This vector was used because it contained a C-terminal His Tag and 

also a T7 promoter for cell free expression. 
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Figure 2.1:    The pCMV6-XL4 Vector (Origene).  

The coding sequence for RAIG2 was obtained in the untagged expression vector pCMV6-

XL4 (OriGene). A Cytomegalovirus promoter drives gene expression while the T7 promoter 

allows for cell free expression. The vector contains no tags for detection and purification of 

the expressed protein. The ORF is 1212 in length. (Taken from the OriGene TrueORF
TM

 

manual). 
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Figure 2.2: The pET-30a(+) Vector (Novagen). 

                                                                                                                                                                                       

The coding sequence for RAIG2 was cloned into the E-coli expression vector pET-30a(+).  A 

T7 promoter drives gene expression. The vector contains His and S-tags for detection and 

purification of the expressed protein. The vector is 5422bp and through its T7 promoter 

allows for cell free expression. The RAIG2 sequence was ligated into the vector containing 

the Nde1 and Xho1 restriction sites on its N and C-terminal, to express the RAIG2 protein 

with a C-terminal His tag. (Taken from the Novagen pET system manual) 
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2.3.1 Transfecting E-coli cells with pCMV-XL4 vector 

For cloning and plasmid amplification, supercompetent E.coli strains XL1-Blue were 

transformed. Approximately 25µl of competent XL-1 Blue cells (Stratagene) were 

transformed with 100ng of the RAIG2/pCMV construct. The transformation was incubated 

on ice for 30 minutes. Transformed cells were then heat shocked for 30 seconds at 42 
0
C and 

left on ice to recover for 2 minutes. Approximately 500µl of LB broth (10g/L tryptone, 5g/L 

yeast extract, 10g/L NaCl) was added prior to incubation for 1 hour at 37
0
C, shaking under 

200rpm. Following the incubation period, resuspended cells (100µl) were plated on agar 

plates (10g/L tryptone, 5g/L yeast extract, 10g/L NaCl, 15g/L agar) with appropriate 

antibiotic (Ampicillin 50µg/ml) and allowed to incubate overnight at 37 
0
C, shaking at 

200rpm. 4 colonies were then picked and allowed to incubate overnight at 37 
0
C, shaking at 

200rpm, in 3mls LB ampicillin (50µg/ml). After the overnight incubation period, the plasmid 

DNA was extracted from the cells using Qiagen miniprep kits. DNA concentration values 

were obtained, taken at a 260/280 wavelength, using nanodrop spectrometry. 
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2.3.2 Plasmid DNA Purification 

Plasmid DNA amplified in XL-1 Blue competent cells was purified using QIAprep Spin 

HiSpeed Miniprep and Plasmid Midi kits (Invitrogen) according to the manufacturer’s 

instructions. Briefly, following alkaline lysis of bacterial cells denatured proteins, genomic 

DNA, and cell debris were cleared from the lysate by centrifugation (Miniprep) or filtration 

for larger volumes. To allow purification of plasmid DNA from small bacterial cell cultures, 

lysates were prepared under alkaline conditions, neutralised, and cleared of genomic DNA, 

denatured proteins, and cell debris by centrifugation. DNA was then adsorbed onto a silica 

membrane in high-salt buffer, washed, and subsequently eluted in a low salt buffer. 

Concentration and purity of final DNA preparation was estimated by agarose gel 

electrophoresis (2 (C)) and verified by spectroscopy. Successful constructs were 

independently sequenced (Eurofins) to verify the coding sequence was correct, in frame, and 

free of replication errors. 

 

 

2.3.3  Agarose Gel Electrophoresis of DNA 

Agarose gel electrophoresis was used to determine the correct size of PCR products, estimate 

concentration of DNA, confirm restriction digestion, and for verification of successful 

ligation of inserts into destination vectors. Dependent upon the size(s) of DNA to be 

visualised, 1-1.5% (w/v) agarose was dissolved in 1X TAE (40Mm Tris-acetate, Ph 8.0, 1 

mM EDTA) by heating. The solution was allowed to cool prior to the addition of SYBR
® 

Safe DNA gel stain (Invitrogen, 10,000X concentration in DMSO) to facilitate visualisation 

of DNA. Gels were subsequently poured and allowed to set at room temperature for one hour 

before use. Samples were prepared in a 5X DNA loading buffer supplied with the markers. 
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Agarose gels were electrophoresed in 1X TAE buffer at ca. 5 volts/cm and DNA visualised 

under UV light once sufficient migration and separation had occurred. Size markers (100bp 

and 1 Kbp DNA ladder, Promega) in addition to the quantitative marker HyperLadder
TM 

I 

(Bioline), were used for estimation of fragment length and DNA concentration, respectively. 

 

2.3.4 The Polymerase Chain Reaction (PCR) 

Subcloning of the coding sequence of RAIG2 was by amplification from the pCMV/RAIG2 

vector by PCR. The coding sequence was amplified using the following primers:  

Forward primer: 
5’

-CATATGTTCGTGGCATCAGAGAAAGATG-
3’

 

Reverse primer: 
5’

-CTCGAGCCAAAGGTGTCTTCCTGTG-
3’

 

The primers included recognition sequences for the restriction enzymes Nde1 

(
5’

….CATATG….3’) AND Xho1 (
5’

….CTCGAG….3’) and the relevant part of the sequence. 

A 50µl PCR reaction was set up. DNA template (50ng) was combined with each of the 

primers (at a final concentration of 20µm), dNTPs (0.2mM each), and MgSO4 (1.5mM), in a 

Pfu 10x reaction buffer (Agilent) to a final volume of 49µl. After thorough mixing, 1µl of Pfu 

Hot Start Polymerase (Stratagene) was added. Following polymerase activation at 95 
0
C for 5 

minutes, PCR was performed for 30 cycles of denaturation at 95 
0
C for 30 seconds, annealing 

at 62 
0
C for 30 seconds, and extension at 72 

0
C for 1 minute and 30 seconds. Total reaction 

mixture was analysed on a 0.7 % (w/v) agarose gel. The gel was run at 100v for 35 minutes. 

Where a single PCR product of expected size was observed, the band was excised under U/V 

light and purified using the QIAquick gel extraction kit (Qiagen) according to the 

manufacturer’s instructions. Briefly, the excised band was dissolved in buffer containing a 

high concentration of chaotropic salts allowing adsorption to a silica-gel membrane, 

impurities removed by washing with an ethanol based buffer, and DNA eluted in a double 
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distilled MilliQ water. DNA concentration values were obtained, taken at a 260/280 

wavelengths. 

 

2.3.5  TOPO ligation 

The PCR product was then ligated into Invitrogen’s Zero Blunt TOPO PCR Cloning Kit. 

Approximately 250ng of purified PCR product was added to 1µl PCR blunt II TOPO vector 

and 1µl salt solution, followed by an incubation period of 5 minutes at R/T. After the 

incubation period, 2µl of the TOPO reaction was added to a vial containing 250µl of One 

Shot TOP10 chemically competent E. coli cells (Invitrogen). The cells were transfected and 

mixed and incubated on ice for 30 minutes. The cells were then heat shocked at 42 
0
C for 30 

seconds and placed on ice for 2 minutes to recover. Approximately 250ul of SOC medium 

was added to the cells prior to incubation at 37 
0
C for 1 hour, shaking at 200rpm. After the 

incubation period, 100ul of the  resuspended cells were plated on 50µg/ml Kanamycin agar 

plate and left to incubate O/N at 37 
0
C. After the incubation period, 7 colonies were observed 

on the plate. These colonies were picked and each was placed in falcons containing 3mls LB 

media and kanamycin (50µg/ml). They were then left at 37 
0
C O/N, shaking at 200rpm. Cell 

growth was observed in only 1 of the falcons. Mini preps were performed on these cells to 

extract the TOPO vector from the cells. DNA concentration was calculated and a restriction 

digest was performed with the restriction enzymes Nde1 and Xho1. Approximately 52ng of 

TOPO vector was incubated with both enzymes at 10U/µl and BSA (100ng/ml) in a 1X 

reaction buffer (Promega buffer D, 6mM Tris-HCl, 6mM MgCL2, 150mM NaCl2, 1mM 

DTT, pH 7.9), for 3 hours at 37
0
C. A 0.7% agarose gel was made up and 15µl of the digest 

was pipetted into the 2
nd

 well. The 1
st
 well contained 10µl of Fermentas 1kb DNA ladder. 
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The gel was run for 35 minutes at 100v. Larger quantities of DNA were extracted using 

Invitrogen Midi prep kits. 

                  

2.3.6  Ligation of RAIG2 into the pET vector 

Both the TOPO vector and destination vector (pET) were linearised by double restriction 

digest, followed by ligation of the coding sequence into the pET vector. A double restriction 

digest was performed on the pET vector and the TOPO/RAIG2 vector using the enzymes 

Nde1 and Xho1 (Promega). Both digests were incubated with both enzymes at 10U/µl and 

BSA (100ng/ml) in a 1X reaction buffer (Promega buffer D, 6mM Tris-HCl, 6mM MgCL2, 

150mM NaCl2, 1mM DTT, pH 7.9), for 3 hours at 37
0
C. Total reaction volumes were then 

run in a 0.7% agarose gel at 100v for 35 minutes. The digested Pet vector and RAIG2 insert 

were gel purified and their DNA concentrations obtained. Approximately 100ng of pET 

vector and a 1-fold, 2-fold and 3-fold excess of insert were mixed in a 1X ligation buffer 

(NEB, 50mM Tris-HCl, 10mM MgCl2, 10mM DTT, 1mM ATP, pH 7.5), to which 1µl 

(2000U) Quick T4 DNA Ligase (NEB) was added to a final volume of 20µl. Total reaction 

volume mix was incubated at 16
0
C O/N. Competent XL-1 Blue cells (stratagene) were 

transformed with 25ng of the ligation products. The transformed cells were then allowed to 

incubate for 30 minutes on ice. Cells were then heat shocked at 42 
O
C for 45 second before 

being returned to ice for a further 2 minutes. Pre-heated SOC media (900µl) was added prior 

to incubation at 37 
0
C, with shaking (200rpm), for 1 hour. Following the incubation period, 

100µl of the transformation mixture were spread onto Kanamycin plates (100µg/ml), 

followed by an incubation period O/N AT 37 
0
C, shaking at 200rpm. After the incubation 

period colonies were observed on each of the plates. 

 

1:1 Plate                            2:1 Plate                                 3:1 Plate 
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10 colonies                  7 colonies                         8 colonies 

 

5 colonies were scraped from each plate and placed into 3mls of LB/Kanamycin (50µg/ml). 

They were allowed to incubate at 37
o
C, with shaking at 200rpm, O/N. After the incubation 

period, all the colonies grew in the media. Mini preps were performed on each colony and the 

DNA concentration was obtained. 20µl restriction digests were set up on each colony, using 

Nde1 and Xho1, to cut the double stranded DNA. A 0.7% agarose gel was made and each 

digest was loaded into the wells. The gel was run at 100v for 35 minutes. 

 

2.4  RAIG3/pCMV6-Entry vector 

Origene’s RAIG3/pCMV6-Entry vector was used to express the RAIG3 protein. This vector 

contained a T7 promoter for cell free expression and also a CMV promoter for HEK cell 

expression. It also contained a C-terminal Myc and Flag Tag for protein detection and 

purification. The vector map is shown in figure 2. The vector was digested with BamH1 and 

Xho1 to confirm the RAIG3 insert. 
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Figure 2.3: The pCMV6-Entry Vector (Origene). 

The coding sequence for human RAIG3 was obtained in functional mammalian expression 

vector pCMV6-entry (Origene). The vector incorporates a C-terminal Myc and DDK-tag and 

a kozak consensus sequence. A Cytomegalovirus promoter drives gene expression while the 

T7 promoter allows for in vitro transcription/translation. The ORF is 1461 bp in length. 

(Taken from the Origene TrueORF
TM

 manual). 

 

 

2.5 Cell Free Expression of RAIG2 and RAIG3 

 

Invitrogen’s MembraneMax™ Cell-Free Expression Systems was used to try and express 

RAIG2 and RAIG3. This expression system only requires 1µg of template DNA and 

promises microgram to milligram quantities of protein. The cell free reaction consisted of: 

 E.coli slyD
- 
Extract  20µl  

 2.5X IVPS Reaction Buffer (-amino acids)  20µl 

 50mM Amino Acids (-Met)  1.25µl 

 75mM Methionine  1µl 
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 MembraneMax Reagent  2µl 

 T7 Enzyme  1µl 

 DNA Template (RAIG2/3)  1µg 

 DNase/RNase-Free Water  To a final volume of 50µl      

The 1.5ml microcentifuge tube was closed and allowed to incubate at 37 
0
C, shaking at 

200rpm, for 30 minutes. The reaction also consisted of a feed buffer which consisted of: 

 2X IVPS Feed Buffer  25µl 

 50mM Amino Acids (-Met)  1.25µl 

 75mM Methionine  1µl 

 DNase/RNase-free Water  to a final volume of 50µl 

After the 30 minute incubation period, 50µl of this feed buffer was added to the reaction. The 

reaction was incubated at 37 
0
C, under 200rpm shaking, for 2 hours. The reaction was then 

stored at -20 
0
C. 

 

 

 

 

 

2.5.1  SDS-PAGE 

Separation of proteins according to molecular weight was achieved by SDS-PAGE to allow 

detection of expression. Approximately 50µl of each of the RAIG2 and RAG3 cell free 
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expression reaction were electrophoresed in 10% polyacrylamide gel. Samples were first 

prepared in loading buffer [50mm Tris-HCl, pH 6.8, 10% (v/v) glycerol, 2 % (w/v) SDS, 

100mM β-mercaptoethanol, Bromophenol blue] and incubated at 60 
0
C for 10 minutes prior 

to loading onto gels. Electrophoresis was carried out in 1X Tris-HEPES tank buffer (0.1 M 

Tris, 0.1 M HEPES, 3 mM SDS, pH 8) for 1 hour 30 minutes at 100v. 

 

2.5.2 Western Blotting to detect expression of RAIG2 and    

RAIG3 

The 2 SDS-PAGE gels, containing the proteins of interest, were transferred onto a PDVF 

membrane in transfer buffer [10mM CAPS, pH11, 10% (v/v) methanol] for 2 hours at 

140mA, using a semi-dry transfer unit. Membranes were then blocked in 10 % (w/v) non-fat 

dry milk (NFDM) in PBS-t [10mM NaH2PO4, PH 7.4, 0.14M NaCl, 3mM KCl. 0.05 % (v/v) 

Tween-20], 0/N at 4 
0
C. Membranes were then washed in PBS-t (5 x 5 minutes). 

For detection of the proteins, the membrane containing the RAIG2 sample was incubated 

with a 1:10,000 dilution of the His-HRP conjugated antibody [in PBS-t, 1 % (w/v) NFDM] 

for 2 hours at R/T, then washed in PBS-t (5 x 5 minutes). The membrane containing the 

RAIG3 sample was incubated with a 1:1000 dilution of the Flag antibody (Origene) for 2 

hours at R/T, washed in PBS-t (3 x 5 minutes), then incubated with a 1:5000 dilution of the 

anti-mouse IgG HRP-Conjugated secondary antibody [in PBS-t] for 1 hour and finally 

washed in PBS-t (5 x 5 minutes). After the washing steps, the membranes were developed by 

incubation for 2 minutes in ECL Western blotting substrate (Pierce), and signal detected by 

X-ray film exposure using G.R.I Blue sensitive film (Kodak) and a Xograph Compact X4 

film processor.   
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2.6 Protein expression in HEK293T
TM

 cells 

For the purpose of protein expression, HEK293T™ Cell Lines were to be transfected. The 

RAIG3 and TRPC4 coding sequences were in vectors that allowed for mammalian 

expression. The RAIG3 sequence was in the pcmv-Entry vector with a CMV promoter which 

allowed for gene expression in HEK293 cells. The TRPC4 sequence was in the pTriEx1.1 

vector, with a CMV immediate early enhancer fused to the chicken β-actin promoter, which 

allowed for gene expression in HEK293 cells. The RAIG2 sequence needed to be subcloned 

into a mammalian expression vector, as it was in a vector that did not allow mammalian 

expression (pET vector).     

 

2.6.1 Subcloning RAIG2 into the pCMV-Entry vector. 

In order to express RAIG2 in HEK cells, the sequence had to be subcloned into a mammalian 

expression vector. The mammalian vector chosen was the pCMV-Entry vector.  The coding 

sequence of RAIG2 was amplified from the pet vector by PCR, using the primers, 
5’

-

GCGATCGCCATGTTCGTG-3’ and 
5’

-CTCGAGCCAAAGGTGTCTTCCTGTG-3’. Primers 

included recognition sequences for the restriction enzymes Sgf1 (
5’

….GCGATCGC….3’) and 

Xho1 (
5’

….CTCGAG….3’) respectively, and the relevant part of the RAIG2 coding sequence.  

DNA template (50ng) was combined with each of the primers (at a final concentration of 

20µm), dNTPs (0.2mM each), and MgSO4 (1.5mM), in a Pfu 10x reaction buffer (Agilent) to 

a final volume of 49µl. After thorough mixing, 1µl of Pfu Hot Start Polymerase (Stratagene) 

was added. Following polymerase activation at 95 
0
C for 5 minutes, PCR was performed for 

30 cycles of denaturation at 95 
0
C for 30 seconds, annealing at 64 

0
C for 30 seconds, and 
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extension at 72 
0
C for 2 minutes. Total reaction mixture was analysed on a 0.7 % (w/v) 

agarose gel. The gel was run at 100v for 35 minutes. Where a single PCR product of expected 

size was observed, the band was excised under U/V light and purified using the QIAquick gel 

extraction kit (Qiagen), according to the manufacturer’s instructions. 

 

 

2.6.2 Ligation of RAIG2 into the pCMV-entry vector   

The purified PCR product was digested with the restriction enzymes Sgf1 and Xho1. Total 

PCR product and destination vector (pCMV-Entry) were incubated with both enzymes at 

10U/µl and BSA (100ng/ml) in a 1x reaction buffer (Promega buffer C, 10mM Tris-HCl, 

10mM MgCL2, 50mM NaCl2, 1mM DTT, pH 7.9) for 3 hours at 37
0
C. After the incubation 

period, total volume of digested vector and insert were run on a 0.7 % agarose gel and 

purified as described before. After the purification, DNA concentration was quantified using 

nanodrop spectrometry. Approximately 32ng of vector and a 3-fold molar excess of insert 

were mixed in a 1x ligation buffer (NEB, 50mM Tris-HCl, 10mM MgCl2, 10mM DTT, 1mM 

ATP, pH 7.5), to which 1µl (2000U) Quick T4 DNA Ligase (NEB) was added to a final 

volume of 20µl. The total reaction mixture was incubated at 16 
0
C O/N. Competent XL-1 

Blue cells (Stratagene) were then transformed with 20ng of the ligation product. The 

transformed cells were allowed to incubate for 30 minutes on ice. Cells were then heat 

shocked at 42 
O
C for 45 second before being returned to ice for a further 2 minutes. Pre-

heated SOC media (900µl) was added prior to incubation at 37 
0
C, with shaking (200rpm), 

for 1 hour. Following the incubation period, 100µl of the transformation mixture were spread 

onto Kanamycin plates (100µg/ml), followed by an incubation period O/N at 37 
0
C. After the 

incubation period colonies were observed on the plate. 
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2.6.3 HEK Cell Transfection   

 

FuGENE® HD (Roche) was the transfection reagent used to transfect HEK293T cells with 

my RAIG3/pCMV DNA template. To 60µl OPTI-MEM® I media, 9µl of Fugene was added, 

followed by an incubation of 5 minutes. Following the incubation period, approximately 

8.4µg of template was added, followed by a 20 minute incubation period after which, 

approximately 5.6 x 10
5
 HEK cells were pelleted by centrifugation (5,000g) at 4

0
C for 10 

minutes. The supernatant was discarded and the resultant pellet resuspended in 1ml of OPTI-

MEM® I media. Suspended cells were added to 4 wells of a 6 well flat bottom plate 

(Sarstedt). The transfection mix was then added drop wise to the cells and incubated for 48 

hours at 37
0
C. Following the incubation period, cells were washed in ice cold 10x PBS (2 X 

1ml). The cells that adhered to the surface were then scraped off, using a cell scraper 

(Sarstedt), into 1ml of ice cold 1x PBS and pelleted by centrifugation (5000g) at 4
0
C for 10 

minutes. The resultant pellet was lysed in 300ul lysis buffer (PBS, 1 % DDM) with rolling at 

4
0
C and the debris pelleted by centrifugation (13,000g) for 15 minutes at 4

0
C. Approximately 

30µl of the supernatant was analysed SDS-PAGE and Western blotting. The RAIG2/pCMV 

vector was used for expression and analysis using this same protocol. 
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2.6.4    Membrane Preparation of RAIG3 

FuGENE® HD (Roche) was the transfection reagent used to transfect HEK293T cells with 

my RAIG3/pCMV DNA template for the membrane prep. To 600µl OPTI-MEM® I media, 

90µl of Fugene was added, followed by an incubation of 5 minutes. Following the incubation 

period, approximately 84µg of template DNA was added, followed by a 20 minute incubation 

period after which, approximately 5.6 x 10
6
 HEK cells were pelleted by centrifugation 

(5,000g) at 4
0
C for 10 minutes. The supernatant was discarded and the resultant pellet 

resuspended in 10ml of OPTI-MEM® I media and added to a 175cm
3
 flask. The transfection 

mix was then added drop wise to the cells and incubated for 48 hours at 37
0
C. Following the 

incubation period, cells were  washed in ice cold 10x PBS (2 X 10ml), the adherent cells 

scraped off  using a cell scraper (Sarstedt), into 10ml of ice cold 1x PBS and pelleted by 

centrifugation (1000g) at 4
0
C for 10 minutes. The supernatant was discarded and the cell 

pellet was resuspended in 2ml hypotonic buffer (10mM HEPES, pH 7.9, 1.5mM MgCl
2
, 

10mM KCl, 0.5mM DTT, Protease inhibitors (Sigma) and ruptured by freeze/thawing, 5 

times in a dry ice/EtOH bath and in a 37
0
C water bath. The cells were then sonicated for 1 

minute at 10 % on ice and the cell debris  pelleted using centrifugation (3000g) for 15 

minutes at 4
0
C. The supernatant was retained and made up to 5ml in hypotonic buffer. To this 

18µl of CaCl2
 
was added, followed by vortexing for 5 minutes. The sample was then loaded 

into 5ml pollyallomer Optiseal tubes (Beckman), and the membranes pelleted using 

centrifugation (100,000g) for 1 hour at 4
0
C. The supernatant was discarded and the 

membranes were resuspended in 50µl MES buffer (1 % triton (v/v), 25mm Mes, 0.15m NaCl, 

protease inhibitors, pH 6.5), using a 25G needle and a syringe. The sample was left on ice 

and at 15 minute intervals, the membrane granules were resuspended. Protein was quantified 

using a BSA protein assay, followed by analyses by SDS-PAGE and Western blotting. 
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2.6.5   TRPC4 Zeta/pTriEx-1.1 Construct 

The TRPC4 Zeta construct was obtained from mrgene.com (Figure 3). The coding sequence 

for TPRC4 Zeta was constructed to incorporate a C-terminal HA and His tag. This vector was 

used to express the full length ion channel in HEK293 cells. Transient expression is mediated 

by a hybrid promoter composed of the CMV immediate early enhancer fused to the chicken 

β-actin promoter. 

 

Figure 2.4: The pTriEx-1.1 Vector (mrgene). 

 

 The coding sequence for TPRC4 Zeta was obtained in the mammalian expression vector 

pTriEx-1.1 (mrgene). A hybrid promoter composed of the CMV immediate early enhancer 

fused to the chicken β-actin promoter drives gene expression while the T7 promoter allows 

for in vitro transcription/translation. The vector contains C-terminal HA and His tags for 

detection and purification of the expressed fusion protein. The ORF is 1212 in length. (Taken 

from mrgene.com website). 
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2.6.6  TRPC4 Expression in HEK293T Cells 

HEK293T cells were used to express the TRPC4 fusion protein. Approximately 2 x 10
5 

cells 

in Hyclone DMEM media (1 % L-glutamine, 1 % Penicillin Streptomycin, 10 % Foetal Calf 

Serum), were plated in a well of a 6 well plate, and incubated at 37
0
C for 24 hours.  Template 

(TRPC4, 2ug ) was diluted in 250µl of OPTI-MEM® 1 media and incubated for 5 minutes at 

R/T.  Lipofectamine® 2000 reagent (Invitrogen,5µl) was diluted in 245µl of OPI-MEM® 1 

media and incubated at 37
0
C for 5 minutes at R/T. Following the incubation period, both 

samples were mixed and left to incubate for 20 minutes at R/T after which, the transfection 

mix was added drop wise to the cells in the 6 well plate. The cells were left to incubate for 24 

hours at 37
0
C, cells  then washed in ice cold 10x PBS (2 X 1ml) and the adherent layer 

scraped off using a cell scraper (Sarstedt), into 1ml of ice cold 1x PBS. The cells were then 

pelleted by centrifugation (5000g) at 4
0
C for 10 minutes. The supernatant was discarded and 

the resultant pellet was lysed in 300ul lysis buffer (50mM HEPES pH 7.5, 1mM EDTA, 10% 

glycerol, 0.05% Chaps, 1% Triton X, 150mM NaCl) with rolling at 4
0
C, for 2 hours. 

Following the incubation period, the mixture was  pelleted by centrifugation (13,000g) for 15 

minutes at 4
0
C and 30µl of the supernatant was analysed SDS-PAGE and Western blotting. 

 

2.7         CRBP Expression in E.coli 

The coding sequence of CRBP incorporating a C-terminal GST tag was obtained in the vector 

pGEX-4T-3 (Invitrogen),. The vector was used to express a CRBP-GST fusion protein in 

bacteria driven by the T7 promoter. For the purpose of protein expression, competent cells 

from the E. coli host strain BL21 Gold (Invitrogen) were transformed. The cells were spread 

on LB-Ampicillin (50µg/ml) plates and incubated O/N at 37
0
C. After the incubation period, 

50mls of LB-Ampicillin (50µg/ml) media was inoculated with a colony from the O/N plates 
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and incubated O/N, shaking at 37
0
C. 10ml of this pre-culture was inoculated in 1l of 2YT 

(Trytone 16g/L, Yeast extract 10g/L, NaCl 5g/L) with Ampicillin (50µg/ml) and incubated 

for 3 hours, shaking at 37
0
C, until the optical density at 600nm (OD600) of the culture was  

0.4-0.6. The remaining 40ml was discarded. Protein expression was then induced by the 

addition of IPTG to a final concentration of 1mM and growth continued for a further 4 hours 

prior to harvesting the cells by centrifugation (5000rpm) at 4
0
C for 15 minutes. The 

supernatant was discarded and resultant pellet resuspended in an appropriate volume of ice-

cold PBS (3ml PBS per gram of pellet) supplemented with protease inhibitors (Complete, 

EDTA-free Protease Inhibitor Cocktail, Roche). The cells were lysed by the addition of 10mg 

of lysozyme and incubated for 30 minutes, at 37
0
C with shaking. Cells were sonicated over 

ice in short bursts until the lysate cleared. DNase was then added to a final concentration of 

4µg/ml, while incubation continued at 37
0
C for 20 minutes, before centrifugation 

(12,000rpm) at 4
0
C for 20 minutes to remove the insoluble fraction. The supernatant was 

retained and the pellet discarded.  

Glutathione-Sepharose beads were washed in PBS (500µl beads per 25ml of bacterial lysate) 

and added to bacterial supernatant in a 50ml falcon tube on 4
0
C rotator O/N. Following the 

incubation period, the resin was packed in a disposable 5ml column (Thermo scientific), 

retained and stored at 4
0
C. The resin was washed (3 x 2ml) with 1X PBS. Elution buffer 

(50mM Tris-HCl, 10mM glutathione, pH8) was added (500µl resin: 1ml elution buffer) and 

sample was eluted (3 x 1ml) from beads into 15ml falcon tubes. Spectra/Por® Mini dialysis 

units (SpectrumLabs.com) were used to remove reduced glutathione into PBS at 4
0
C O/N 

with stirring. Samples were run on a 12 % SDS-PAGE gel and visualised by staining in 

Coomassie brilliant blue [0.1 % (w/v) Coomassie brilliant Blue, 40 % (v/v) methanol, 10 % 

(v/v) acetic acid] for a minimum of 2 hours, prior to destaining with water. 
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Figure 2.5:    The GST Gene Fusion System Vector (pGEX-4T-3). 
 

The pGEX-4T-3 vector containing the coding sequence for CRBP. The open reading frame also 

includes a sequence for a GST tag. E. coli expression of inserts cloned into pGEX-4T-3 yields N-

terminally tagged GST fusion proteins. Gene expression is under the control of a tac promoter, 

inducible by the addition of IPTG. (Taken from the GST Gene Fusion System Handbook, Amersham 

Biosciences). 
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2.8   Protein interaction Studies 

Protein: protein interactions were probed using a pull-down assay adapted to accommodate 

the possible low affinity of RBP for RAIG2 or RAIG3. A traditional wash step would 

potentially disrupt the receptor: ligand complex, and was therefore eliminated and substituted 

with centrifugation through a non-aqueous oil layer to minimize loss of any observable 

receptor: ligand complex through dissociation. Variations of this method have been used 

successfully in previous receptor:ligand binding assays (Segal & Hurwitz, 1977; 

Sivaprasadarao et al., 1988; Kita et al., 2009).  

 

2.8.1    Oil Pull-down with RAIG2 and RBP 

 

To 1µg of RBP, 0.95µg of retinol was added and allowed to incubate for 15 minutes at R/T. 

Approximately 50µl of soluble RAIG2 was immobilised on an anti c-myc agarose affinity gel 

(50µl) O/N at 4
0
C. After the incubation period, 100ng of RBP/retinol was added and 

incubated for 2 hours, rolling at 4
0
C. Components were resuspended and carefully layered on 

top of an oil mix (3:2 mix dibutyl phthalate: dinonyl phthalate, both Sigma, pre-warmed to 37 

0
C). Centrifugation was carried out at 15,000 rpm in a bench top centrifuge at R/T for 20 

minutes until 3 distinct layers were visible. Aqueous and oil layers were then carefully 

removed and the oil layer discarded. The sedimented layer containing anti c-myc agarose 

affinity gel, bound domain and any interacting partners, was incubated with 2X SDS sample 

buffer for 10 minutes at 60
0
C. The aqueous layer was also saved, and incubated in 2X SDS 

sample buffer for 10 minutes at 60
0
C. The resin was then sedimented by centrifugation 

(13,000 rpm, 1 minute) and the supernatant removed and analysed by SDS-PAGE and 

Western blotting. The aqueous layer was also analysed by SDS-PAGE and Western blotting. 
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2.8.2 Stripping and Reprobing PVDF Membranes. 

In order to visualise two bands on the same membrane, PVDF membranes were stripped 

using Restore
TM

 Plus Western Blot Stripping Buffer, and reprobed. Membranes were washed 

in PBS-t to remove ECL, prior to incubation with Restore
TM

 Plus Western Blot Stripping 

Buffer for 8 minutes at room temperture. Following incubation membranes were washed in 

PBS-t and subsequently blocked [10 % (w/v) NFDM] for one hour at room temperature or 

overnight at 4 
0
C. In order to ascertain complete removal of any secondary antibody used for 

initial detection, membranes were washed (3 x 5 minutes PBS-t) and developed as described 

previously. The stripping proccess was crucial as each of the pull down blots were stripped 

and reprobed. Generally the least efficient antibody was used first followed by stripping and 

reprobing with the highly efficient antibody. 

  

 

 

 

 

 

2.8.3 Oil Pull-down with RAIG3 and RBP 

To 1µg of RBP, 0.95µg of retinol was added and allowed to incubate for 15 minutes at R/T. 

Approximately 5µg of soluble RAIG3 membranes was immobilised on an anti c-myc agarose 

affinity gel (50µl) O/N at 4 
0
C. After the incubation period, 100ng of RBP/retinol was added 

and incubated for 2 hours, rolling at 4 
0
C. Following incubation components were 
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resuspended and carefully layered on top of an oil mix (3:2 mix dibutyl phthalate: dinonyl 

phthalate, both Sigma, pre-warmed to 37 
0
C). Centrifugation was carried out at 15,000 rpm in 

a bench top centrifuge at R/T for 20 minutes until 3 distinct layers were visible. Aqueous and 

oil layers were then carefully removed and the oil layer discarded. The sedimented layer 

containing anti c-myc agarose affinity gel, bound domain and any interacting partners, was 

incubated with 2X SDS sample buffer for 10 minutes at 60 
0
C. The aqueous layer was also 

saved, and incubated in 2X SDS sample buffer for 10 minutes at 60 
0
C. Following the 

incubation period the resin was sedimented by centrifugation (13,000 rpm, 1 minute) and the 

supernatant removed and analysed by SDS-PAGE and Western blot, as described previously. 

The aqueous layer was also analysed by SDS-PAGE and Western blot. 

 

 

2.8.4   Standard Pull-down with CRBP and TRPC4  

Protein: protein interactions were probed using a traditional wash step followed by elution of 

a possible receptor: ligand complex. Approximately 0.95µg of retinol was added to 1µg of 

CRBP-GST and incubated at R/T for 15 minutes. After the incubation period, 100ng of 

CRBP-GST/retinol was added to 30µl of Glutathione-Sepharose beads (GE Healthcare) and 

incubated, rolling at 4 
0
C, O/N. The Beads were then washed with PBS (1 X 500µl). 

Solublilised TRPC4 Zeta (100µl) was added to CRBP-treated-resin. In conjunction with this, 

100µl of soluble TRPC4 Zeta was added to 30µl of untreated Glutathione-Sepharose beads as 

a negative control. Both reactions were allowed to incubate at 4
0
C for 3 hours. The resin 

beads were then spun down by centrifugation (13,000g) at 4
0
C for 1 minute. The supernatants 

were collected, the resins washed (3 x 100µl) with 1x PBS (+ protease inhibitors) and spun 

down by centrifugation (13,000g), after each wash, at 4
0
C for 1 minute. After each wash, the 

supernatants were collected. After washing, the resins, were eluted (3 x 60ul) with elution 
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buffer (50mm Tris-HCl, 10mm glutathione, pH8), followed by an incubation period after 

each elution of 10 minutes at R/T. Following each incubation period, the resins were spun 

down through centrifugation (13,000g) for 1 minute at 4
0
C and the supernatants collected. 

Each wash and elution was heated in 2X SDS-PAGE sample buffer at 60
0
C for 10 minutes. 

The sedimented layer which contained the GST resin, bound domains and any interacting 

partners was also heated in sample buffer. The samples were analysed by SDS-PAGE and 

Western blotting, as described previously.  

 

 

2.8.5     Oil pull-down with CRBP and TRPC4 

To 1µg of cRBP, 0.95µg of retinol was added and incubated for 15 minutes at R/T. 

Approximately 100µl of soluble TRPC4 Zeta was immobilised on an Monoclonal Anti-HA- 

agarose (Sigma) (30µl) resin O/N at 4 
0
C. After the incubation period, 100ng of CRBP/retinol 

was added and incubated for 2 hours, rolling at 4 
0
C. CRBP was added to 30µl of Anti-HA 

agarose and incubated for 2 hours at 4
0
C, as a negative control. Following incubation, 

components were resuspended and carefully layered on top of an oil mix (3:2 mix dibutyl 

phthalate: dinonyl phthalate, both Sigma, pre-warmed to 37 
0
C). Centrifugation was carried 

out at 15,000 rpm in a bench top centrifuge at R/T for 20 minutes until 3 distinct layers were 

visible. Aqueous and oil layers were then carefully removed and the oil layer discarded. The 

sedimented layer containing the Anti-HA agarose, bound domain and any interacting 

partners, was incubated with 2X SDS sample buffer for 10 minutes at 60 
0
C. The aqueous 

layer was also saved, and incubated in 2X SDS sample buffer for 10 minutes at 60 
0
C. 

Following the incubation period the resins were sedimented by centrifugation (13,000 rpm, 1 
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minute), the supernatants removed and analysed by SDS-PAGE and Western blotting. The 

aqueous layer was also analysed by SDS-PAGE and Western blotting. 

 

 

 

Chapter 3 

 

Cell Free Expression of RAIG2 

and RAIG3 
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3.1    Introduction 

This section describes the preparation, sub-cloning and expression of the RAIG2 and RAIG3 

gene constructs. The section describes how the RAIG2 sequence was amplified by PCR and 

subcloned into the pET-30a vector, which contains a T7 promoter for Cell free expression. 

The RAIG3 sequence did not require subcloning, as the sequence was already in an 

expression vector with a T7 promoter (pCMV vector). This section also describes the 

expression of these gene constructs using the MembraneMax
TM

 cell free expression system. 

 

3.1.1   Polymerase Chain Reaction                            

 

RAIG2 was successfully amplified containing Nde1 and Xho1 restriction enzyme recognition 

sequences. Total PCR product (50µl) was run on the gel. Strong bands appeared next to the 

DNA molecular marker for 1200bp. The RAIG2 coding sequence is 1212bp so this indicated 

that the PCR was successful and the desired RAIG2 sequence was amplified. This was 

verified by sequencing result. The primers used were as follows:                                               

Forward primer: 
5’

-CATATGTTCGTGGCATCAGAGAAAGATG-
3’

 

Reverse primer: 
5’

-CTCGAGCCAAAGGTGTCTTCCTGTG-
3’
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                     bp                          1     2       3      4        RAIG2       

                               

 

Figure 3.1: PCR Amplification of RAIG2 Sequence  

PCR bands (lanes1-4) appear on the same line as 1200bp DNA marker. Lanes 1-4 contain 5, 10, 15, 

20µl respectively of the PCR product. 

 

3.1.2   TOPO Ligation 

RAIG2 was successfully ligated into the TOPO vector. The resultant plasmid was cut with 

the restriction enzymes Nde1 and Xho1 and 200ng of the TOPO ligation product was run on 

a 0.7 % agarose gel. One band appeared above the 1000bp molecular marker corresponding 

to the insert (RAIG2 1212bp), which was successfully cut out of the TOPO vector. The other 

band appeared just under the 4000bp molecular marker which indicates the TOPO vector 

(3956bp) linearized. 
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                               RAIG2                                                             TOPO Vector 

               bp                    1          2   

                                                                                                                                                 

 

Figure 3.2: Ligation of RAIG2 Sequence into the TOPO Vector 

TOPO/RAIG2 vector digested with Nde1 and Xho1 and run on a 0.7 % agarose gel. Correct bands are 

observed, one at 1200bp (RAIG2) and one at 3956bp (linearized TOPO vector). 200ng of DNA 

loaded into lane 1.  

 

 

 

3.1.3   Ligation of RAIG2 into the pET vector. 

Of the 15 colonies that grew on selective agar plates, the DNA was extracted, digested with 

Nde1 and Xho1 and run on a 0.7 % gel. Only one of the colonies contained the RAIG2 insert 
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which was correctly observed at 1212bp. The pET vector was observed at just over the 

5000bp molecular marker (pET vector 5422bp) meaning it was linearized. This indicates that 

the RAIG2 coding sequence was successfully ligated into the pet vector using the restriction 

sites Nde1 and Xho1. This was verified by sequencing results. The vector was now ready for 

cell free expression of the RAIG2 protein. 
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Figure 3.3: Ligation of RAIG2 into pET Vector. 

Plasmid characterisation from colonies. Lane 1 contains the only bacterial colony that contained the 

ligated RAIG2/pET vector. The RAIG2 insert was observed correctly at 1212bp as was the linearized 

pet vector at 5422bp. 50ng of DNA was loaded into each well. 

 

 

3.2   RAIG3/pCMV-Entry Vector 

 

Origene’s RAIG3/pCMV-Entry vector was digested with Sgf1 and Xho1. Bands were 

observed in lanes 1-3 just below 1500bp (RAIG3 1461bp) and just below 5000bp (pCMV 

vector 4900bp). This confirms that the RAIG3 coding sequence is in the pCMV vector 

flanked with the restriction sites, Sgf1 and Xho1. The vector was also successfully linearized 

using the restriction enzyme Xho1, indicated by a band above 6000bp in lanes 4-6 (Vector 

with insert 6361bp). 
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                           bp                1      2      3      4        5       6       

                                          

pCMV vector                 RAIG2                                                          Linearised 

pCMV/RAIG2 

   

Figure 3.4: RAIG3/pCMV Restriction Digest. 

RAIG3/pCMV Digested with Sgf1 and Xho1 (Lanes 1-3). RAIG3 Coding sequence (1461bp) and 

pCMV vector (4900bp) observed at the right size. RAIG3/pCMV vector successfully digested with 

Xho1 with a band observed at 6361bp (Lanes 4-6). 200ng of DNA loaded into each well. 

 

 

 

 

3.3    Cell free expression of RAIG2 and RAIG3 

The E. coli based MembraneMax™ expression system was used to express the RAIG2 and 

RAIG3 gene constructs. The system contains a T7 promoter which drives transcription of the 
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protein. It allows for quick and easy expression of proteins with the total reaction time lasting 

less than 4 hours. This is a great advantage over other cell free systems which take days to 

express proteins. It also produces micrograms of soluble membrane protein, which eliminates 

the difficult process of solubilising proteins. 

      

3.3.1   Western blot of RAIG2 

To look for RAIG2 protein expression in the cell-free assay, the His antibody (1:10,000 

dilution) was used to detect the RAIG2-His fusion product. As a positive control, 100ng of 

the RBP-His fusion protein was loaded into lane 3 of the SDS-PAGE gel. 50µl (half of the 

cell free reaction product) was loaded into Lane 1. The blot indicates that there was no cell 

free expression of RAIG2. The blot picked up RBP at 21kDa in lane 3, while Lane 1 

containing the cell free expression, was blank. This indicates that the cell free expression 

system was not able to express full length RAIG2.  
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             kDa        1      2      3        

                                 

 

                                                                  RBP 21kDa 

Figure 3.5: Western Blotting of Cell Free Expression of RAIG2.  

50µl of cell free reaction product (Lane 1). 100ng His-RBP (Lane 3). All other lanes are 

blank. His antibody did not pick up any RAIG2 expression. His-RBP was detected as a 

positive control at 21kDa. 

 

 

3.3.2   Western blot of RAIG3 

To look for RAIG3 protein expression from the cell free assay, the c-Myc antibody (1:5000 

dilution) was used in order to detect the RAIG3-c-Myc-DDK fusion product. As a positive 

control 100ng of Perforin (c-Myc tagged) was loaded into lane 1 of the SDS-PAGE gel. 50µl 

(half of the cell free reaction product) was loaded into Lane 3. The blot indicates that there 

was no cell free expression of RAIG3. The blot picked up Perforin at 42kDa in lane 1, while 

Lane 3 containing the cell free expression product, was blank. This indicates that the cell free 

expression system was not able to express RAIG3. 
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                                                 Perforin 42kDa 

Figure 3.6: Western Blotting of Cell Free Expression of RAIG3. 
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100ng of Perforin-c-Myc (Lane 1). 50µl of cell free reaction product (Lane 3). All other lanes 

are blank. No RAIG3 expression was detected with c-Myc antibody. Perforin was detected at 

42kd as a positive control in lane 1. 
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4.1   Introduction 

This section describes the preparation, sub-cloning and mammalian expression of RAIG2, 

RAIG3 and TRPC4. The section describes how the RAIG2 sequence was amplified by PCR 

and subcloned into the pCMV vector, containing a CMV promoter for mammalian 

expression. The RAIG3 and TRPC4 sequences did not require subcloning, as the sequences 

were already in an expression vector with a CMV promoter. This section also describes the 

expression of these gene constructs in HEK cells. 

  

4.1.1    Polymerase Chain Reaction 

 

RAIG2 was successfully amplified containing Sgf1 and Xho1 restriction enzyme recognition 

sequences. Total PCR product (100µl) was run on the gel. Strong bands appeared above the 

DNA molecular marker for 1000bp. The RAIG2 coding sequence is 1212bp so this indicated 

that the PCR was successful and the desired RAIG2 sequence was amplified. This was 

verified by sequencing results. 
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     bp                   1      2       3       4        5      6      7      8       9     10 

                 

                         RAIG2                                                                                     

Figure 4.1: Amplification of RAIG2 by PCR. 

10µl of PCR product was loaded into each lane. Band appears below 1500bp. RAIG2 coding 

sequence is 1212bp. 

  

4.1.2   Ligation of RAIG2 into pCMV-Entry vector 

 

The plasmid DNA extracted from the 3 colonies that grew on selective agar plates was 

digested with Sgf1 and Xho1 and run on a 0.7 % gel. All of the colonies contained the 

RAIG2 insert which was correctly observed at 1212bp. The pCMV vector was observed just 

under the 5000bp molecular maker (pCMV vector 4900bp) meaning it was linearized. This 

indicates that the RAIG2 coding sequence was successfully ligated into the pCMV vector 

containing the restriction enzyme recognition sites Sgf1 and Xho1. This was verified by 

sequencing results. 
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                               pCMV vector                                                            RAIG2 

                     bp                            1            2         3    

                                 

                                                                      

Figure 4.2: Ligation of RAIG2 into the pCMV Vector. 

RAIG2/pCMV digested with Sgf1 and Xho1 (Lanes 1-3). 200ng of DNA in each well. Bands 

observed above 1000bp (RAIG2 1212bp), which indicate the RAIG2 sequence. Bands observed 

below 5000bp (pCMV vector 4900bp), which indicates the linearized pCMV vector.  

 

 

 

4.2   Protein Expression in HEK293 Cells 

For the purpose of protein expression, HEK293 Cells were used to express RAIG2, RAIG3 

and TPRC4. Following the failure of the cell free expression system to express the RAIGs, 

mammalian expression using HEK293 cells was undertaken. The sequences of RAIG2, 

RAIG3 and TPRC4 were all in vectors for mammalian expression, which all promised high 

quantities of expressed protein. 
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4.2.1    RAIG2 Expression in HEK293 Cells 

To detect RAIG2 expression in HEK293 cells, the FLAG antibody (1:1000 dilution) was 

used to blot for the presence of full length RAIG2. Different volumes of cells were run on the 

gel and also untransfected HEK cells were run as a control. The blot contained a strong band 

just above the protein marker of 36kDa. This confirmed RAIG2 expression as the molecular 

weight of RAIG2 is 42kDa. Untransfected and transfected HEK cells in PBS were boiled in 

sample buffer (60 
0
C) prior to loading in the gel. 
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               kDa     1        2      3       4        5        6 

                                   

                                                                                 RAIG2  42kDA 

Figure 4.3: Expression of RAIG2 in HEK Cells. 

RAIG2 was detected with the FLAG antibody (1:1000). Untransfected HEK cells in PBS (Lane 1), 

10µl transfected HEK cells in PBS (Lane 2), 20µl transfected HEK cells in PBS (Lane 4), 30µL 

transfected HEK cells in PBS (Lane 6). All other lanes are empty. Strong Bands were observed above 

the 36kda molecular marker (RAIG2 42kda). 

 

 

4.2.2   RAIG3 Expression in HEK293 Cells 

 

To detect RAIG3 expression in HEK cells, the FLAG antibody (1:1000 dilution) was used to 

blot for the presence of full length RAIG3. Solubilized transfected HEK293 cells in PBS 

were applied to the gel and untransfected HEK293 cells in PBS served as the control. The 

Western blot contained a strong band just below the protein marker of 55kDa. This confirmed 

RAIG3 expression as the molecular weight of RAIG3 is 52kDa. Untransfected and 
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transfected HEK293 cells in PBS were boiled in sample buffer (60 
0
C) prior to loading in the 

gel. 
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              kDa    1    2      3      4       5       6       

                                   

                                                    RAIG3  52kDa   

Figure 4.4: Expression of RAIG3 in HEK293 Cells.  

Protein was detected with the FLAG antibody (1:1000). Untransfected HEK cells (Lane 1 and 2), 

30µl Transfected HEK cells in PBS (boiled in SDS sample buffer) (Lanes 3,4,5,6). Strong Bands were 

observed below the 55kda molecular marker (RAIG3 52kda). 

 

 

 

4.2.3 Analysis of RAIG3-Containing Membranes 

Membranes from HEK293 cells, transfected with the RAIG3/pCMV-Entry vector, were 

blotted with the FLAG antibody (1:1000) to confirm that RAIG3 was expressed in the 

membrane. As a positive control 30µl of HEK cells in PBS, which previously expressed 

RAIG3 (see figure 10), was run in lane 1. The FLAG antibody detected many non-specific 

proteins in the membrane preparation but a strong band did appear below the 55kDa 
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molecular marker indicating successful RAIG3 membrane localisation (RAIG3 52kDa). 

Approximately 5µg of the membrane prep was run in lane 2.  

 

 

                                    

 

 

 

       

                   kDa          1        2 

                                                            

RAIG3 Control                          RAIG3 MEMBRANE PREPARATION  52Kda 

 

Figure 4.5: Expression of RAIG3 in Isolated HEK293 Membrane Fraction.  

FLAG antibody (1:1000) used to detect RAIG3. RAIG3 positive control from previous 

transfection in HEK cells (Lane 1). 5µg of soluble membranes from membrane prep (Lane 2). 

Strong band similar to the control appears just below 55KDa in lane 2 (RAIG3 52Kda) 
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4.2.4  TRPC4 expression in HEK293 cells 

 

To examine TRPC4 Zeta expression in HEK cells, the HA antibody (1:1000 dilution) was 

used in a Western Blotting experiment to detect the presence of “tagged”-TRPC5. The blot 

revealed a strong band just below the protein marker of 95kDa in lanes 1 and 3. This 

confirmed TPRC4 expression as the molecular weight of TPRC4 is 92kDa. 

 

                             kDa       1           2           3       TRPC4  

                                         

Figure 4.6: Expression of TRPC4 Zeta in HEK Cells. 

The HA antibody (1:1000) was used to detect expression of TRPC4. Lane 1 40µl of transfected HEK 

cells in PBS, boiled in SDS sample buffer. Lane 3 30µl of transfected HEK cells in PBS, boiled in 

SDS sample buffer. There was no untransfected control used.   
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4.3   CRBP expression in E. coli 

 

The expression of CRBP in bacteria was confirmed by staining the SDS-PAGE gel with page 

blue. Large quantities of pure CRBP were detected in the 2 elution fractions in lane 5 and 6. 

The CRBP-GST fusion protein has a molecular weight of 42kDa. Strong bands were 

visualised with Coomassie Blue above the molecular weight marker of 36kDa. The eluted 

fractions contained 1.7mg/ml of pure CRBP-GST fusion protein. 

 

   kDa       F          W1      W2      W3       E1         E2    

                 

                                                                                    CRBP-GST  42kDA 

Figure 4.7: Expression and Purification of CRBP. 

SDS-PAGE of the flow-through(F), wash (W) and eluted(E) fractions of a soluble E.coli extract 

applied to Glutathione-Sepharose. Eluted fraction (E) show strong bands above the 35Kda protein 

marker (CRBP-GST 42kda). CRBP expression and purificartion was a success. 
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Chapter 5 
 

Protein: protein Interaction 

Studies 
 

 

 

 

 

 

 

 

 

 

 

5.1    Introduction 

This section describes the series of pull down assays using a novel oil-based assay to 

determine if the proteins were indeed interacting. Protein: protein interactions were probed 

using a pull-down assay adapted to accommodate the possible low affinity of RBP for RAIG2 

or RAIG3 and CRBP for TPRC4. A traditional wash step would potentially disrupt the 

receptor: ligand complex, and was therefore eliminated and substituted with centrifugation 

through a non-aqueous oil layer to minimize loss of any observable receptor: ligand complex 

through dissociation.  
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5.1.1   Oil Pull-downs with RAIG2 

This aspect of the study involved a pull down assay using a c-Myc antibody immobilised on 

an agarose resin. The RAIG2 protein contained a C-Myc tag. An RBP antibody (1:1000 

dilution) was used to detect any RBP which co-sediments with the RAIG2-bound resin. C-

Myc resin (50µl) was run on the first lane of the gel as the RBP antibody appeared non-

specifically cross-reacting with the c-Myc antibody. The third lane contained the c-Myc resin 

(with RAIG2 attached) pulled down through the oil. There was no band at the appropriate 

size for RBP (21kDa). In this lane similar bands appeared as in the first lane containing just 

the c-Myc resin. The fifth lane contained the aqueous layer of the oil pull down, containing 

proteins that did not bind to the c-Myc resin which contained RAIG2. This lane showed a 

significant band at 21kDa corresponding to RBP. This shows that RBP did not bind to the c-

Myc resin or RAIG2. A negative control to see if RBP bound to the c-Myc resin was also run. 

Lane 7 shows that RBP did not pull down through the oil with the c-Myc resin in the negative 

control, with RBP only detected in the aqueous layer in lane 9.  
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   kDa       1        2       3       4       5     6     7     8      9 

                    

                                                                  RBP   21 kDa                         RBP   21kDa 

Figure 5.1: Analysis of RBP in Pull-downs with RAIG2. 

RBP antibody (1:1000) was used to detect RBP in a pull-down interaction study. C-Myc resin (Lane 

1), c-Myc resin, incubated with RAIG2 pulled down through oil (Lane 3), aqueous layer after oil pull 

down (Lane 5), c-Myc resin alone pulled down through oil of negative control (Lane 7), aqueous layer 

after oil pull down of negative control, all other lanes are blank. Blot shows that RBP (21kda) was 

only detected in the aqueous layer of pull down and did not pull-down with RAIG2.  

 

 

5.1.2    Analysis of RAIG2 in Pull-downs with RBP 

In order to confirm the presence of RAIG2, the same membrane as above was stripped and 

reprobed with the FLAG antibody (1:1000 dilution). As expected a band for RAIG2 was 

detected at 42kDa only in in lane 3. This lane contained RAIG2 which was pulled down 

through the oil by the c-Myc resin. These two blots prove that there is no interaction between 

RAIG2 and RBP. The c-Myc antibody pulled down RAIG2 with no RBP attached. 
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  kDa       1        2       3       4       5       6       7         8        9     

                  

                     RAIG2  42kDa 

Figure 5.2: Analysis of RAIG2 in Pull-downs with RBP. 

Western Blot for RAIG2 using FLAG antibody (1:1000). C-Myc resin (Lane 1),  c-Myc-resin in the 

presence of RAIG2 pulled down through oil (Lane 3), aqueous layer after oil pull down (Lane 5), 

resin alone pulled down through oil (Lane 7). All lanes except 3 which contains the RAIG2, are blank.  

 

 

5.1.3   Oil Pull-downs with RAIG3 

 

This aspect of the study involved a pull down assay using a c-Myc antibody immobilised on 

an agarose resin. The RAIG3 protein contained a c-Myc tag. An RBP antibody (1:1000 

dilution) was used to detect any RBP which co-sediments with the RAIG3-bound resin. The 

antibody detected a band at 21kDa (RBP) in Lanes 2 and 8. Lane 2 contained 100ng of RBP 

as a positive control. Lane 5 contained the c-Myc-resin-RAIG3 complex which was pulled 

down through the oil in the assay. Lane 8 contained the aqueous layer of the pull down 
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containing the proteins which did not bind to the RAIG3-c-Myc-resin complex. A strong 

band for RBP was detected in the aqueous layer. These results prove that no RBP is binding 

to RAIG3 or the c-Myc resin. A negative control to see if RBP was binding to the c-Myc 

resin, in the absence of RAIG3, was not necessary. The RBP antibody did not bind to the c-

Myc resin as it did with the RBP-RAIG2 pull-down. 
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Figure 5.3: Analysis of RBP in Pull-downs with RAIG3. 

Western Blot (1:1000) to detect  RBP in a RAIG3 Pull-down assay . RAIG3 control (Lane 1), RBP 

control (Lane 2), c-Myc  resin pulled down through oil (Lane 5), aqueous layer after oil pull down 

(Lane 8), all other lanes are blank. Blot shows that RBP (21kda) was only detected in the aqueous 

layer of pull down. This means that no RBP is binding to the RAIG3 in the resin which should be in 

lane 5. 

 

 

 

 

 

 

5.1.4.  Analysis of RAIG3 in Pull-downs with RBP  

In order to confirm the presence of RAIG3 in the pull-down experiment, the same membrane 

as above was stripped and reprobed with the FLAG antibody (1:1000 diluton). As expected a 

band for RAIG3 was detected at 52kDa in lane 5. This lane contained RAIG3 which was 

pulled down through the oil by the c-Myc resin. These two blots prove that there is no 

interaction between RAIG3 and RBP. The c-Myc resin pulled down RAIG3 with no RBP 

attached. 
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  kDa      1       2       3       4      5         6         7          8 

                

       RAIG3 Control                        RAIG3  52kDa 

Figure 5.4: Analysis of RAIG3 in Pull-downs with RBP. 

Western Blot for the presence of RAIG3. RAIG3 control (Lane 1), RBP control (Lane 2), c-Myc resin 

pulled down through oil (Lane 5), aqueous layer after oil pull down (Lane 8), all other lanes are blank. 

RAIG3 (52kda) in lane 5 was pulled down through the oil with the c-Myc resin. 
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5.1.5   CRBP Binding Capacity of TRPC4 Zeta 

The HA antibody (1:1000 dilution) was used to detect TRPC4 Zeta in a standard pull down 

interaction assay between CRBP and TRPC4. The antibody detected a band at 92kDa 

(TRPC4) in only the first lane of the blot. This lane contained the supernatant (S) after the 

first centrifugation step, before the resin was washed. This means that TRPC4 did not bind to 

the GST resin containing CRBP. The other lanes contain wash and elution steps from the pull 

down and the blot shows that there is no TRPC4 in these lanes. This shows that there is not a 

strong interaction between CRBP and TRPC4. 

     

 

 kDa           S    W1    W2   W3     E1       E2      E3     R        

                  

                  TRPC4         

Figure 5.5: Analysis of TRPC4 in Pull-downs with CRBP 

Blot for TRPC4 Zeta using the HA antibody (1:1000). TRPC4 protein band observed in the 

supernatant (S) which shows that the TRPC4 protein did not bind to the GST resin containing the 

CRBP protein in any of the eluted fractions (E). The TRPC4 protein was in the supernatant after the 

first centrifugation step with no TRPC4 in any of the washes and elutions. 
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The standard pull-down was done to see if there was a possible strong interaction between 

TRPC4 and CRBP. The blots show that TRPC4 did not cum through in the elution step and 

was in the supernatant (S) after the first centrifugation step before the resin was washed 3 

times with PBS. 

 

 

 

 

5.1.6   Analysis of CRBP in Pull-downs with TRPC4 

In order to visualise the CRBP protein, the same membrane as above was stripped and 

reprobed with the CRBP antibody (1:500 diluton). Bands were detected just over the 36kDa 

molecular marker in all the lanes on the blot. The CRBP-GST fusion protein has a molecular 

weight of 42kDa. The blot also proved that CRBP-GST bound to the glutathione resin and 

was eluted off in each elution step (E). During each wash step (W), CRBP was detected but 

there was still sufficient CRBP in the elution steps to bind TRPC4. This proves that there is 

no strong interaction between CRBP and TRPC4. 
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        kDa      S      W1    W2    W3   E1     E2     E3      R      

                   

                                                             cRBP-GST  42kDa 

Figure 5.6: Analysis of CRBP in Pull-downs with TRPC4. 

Blot for CRBP using the CRBP antibody (1:500). Bands observed above 35kda (CRBP 42kda). 

Combining the previous blot for TRPC4, it shows that TRPC4 Zeta is not binding to CRBP. CRBP is 

in the eluted fractions, with TRPC4 only seen in the first centrifugation step before the resin was 

washed with PBS. 
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5.1.7  Oil pull down involving TRPC4 and CRBP 

To see if there was a weak interaction between TRPC4 and CRBP, the oil-based pull-down 

was used to determine if the two proteins were interacting. This aspect of the study involved 

a pull down assay using a HA antibody immobilised on an agarose resin. The TRPC4 protein 

contained a HA tag. A CRBP antibody (1:500 dilution) was used to detect any CRBP which 

co-sediments with the TRPC4-bound resin. The CRBP-GST fusion protein has a molecular 

weight of 42kDa. Bands were detected just over the 36kDa in lane 5 and lane 11. Lane 5 

indicates the aqueous layer of the pull down. This is the layer that contains material that did 

not bind to the TRPC4 protein and HA resin, which was run in lane 2. A negative control to 

see if CRBP bound to the HA resin was also run. Lane 8 shows that CRBP did not pull down 

through the oil with the HA resin in the negative control. Lane 11 shows the aqueous layer of 

the negative control, with a band for CRBP.  
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kDa      1    2     3     4      5     6     7      8     9    10   11        

                 

                                 cRBP-GST  42kDa                             cRBP-GST   42kDa 

 

Figure 5.7: Analysis of CRBP in Oil Pull-downs with TRPC4. 

Western Blot of Fractions from an Oil Pull-down Assay. Membrane was probed with the CRBP 

antibody to detect CRBP. CRBP-GST (42kDa) was detected in lanes 5 and 11. Both these lanes 

contain the aqueous layer of the pull down assay. HA resin, incubated with TRPC4 pulled down 

through oil (Lane 2), aqueous layer after oil pull down (Lane 5), negative control containing c-Myc 

resin alone pulled down through oil (Lane 8), aqueous layer after oil pull down of negative control 

(Lane 11), all other lanes are blank. 

 

 

 

 

 

           

 

 

 

 

55- 

          

36- 



 

89 

 

5.1.8   Analysis of TRPC4 in Pull-downs with CRBP 

 

In order to visualise the TRPC4 band, the membrane was stripped and reprobed with the HA 

antibody (1:1000 diluton). The second lane contained the HA resin (with TRPC4 attached) 

pulled down through the oil, which shows a band below 95kDa (TRPC4 92Kda). The fifth 

lane contained the aqueous layer of the oil pull down, containing proteins that did not bind to 

the HA resin. There is a slight band in lane 5 below 95kDa indicative of excess TRP. The 

negative control (HA resin and CRBP) does not pick up a band for TRP as expected. The HA 

antibody appeared non-specifically cross-reacting with the HA resin similar to the RBP 

antibody and the c-Myc resin (see figure 5.1). This produces two additional bands in lane 2 

and 8. These two blots together show there is no weak interaction between CRBP and 

TRPC4. The HA resin pulled down TRPC4 with no CRBP attached. 
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 kDa       1     2      3     4     5     6     7     8     9     10     11            

              

               TRPC4 Zeta  92kDa 

Figure 5.8: Analysis of TRPC4 in Pull-downs with CRBP. 

  

Western Blot of a Pull-down assay using TRPC4 immobilised on a HA Resin. Membrane blotted with 

HA antibody to detect TRPC4 Zeta. Western Blot of Fractions from an Oil Pull-down Assay. HA 

resin, incubated with TRPC4 pulled down through oil (Lane 2), aqueous layer after oil pull down 

(Lane 5), negative control containing c-Myc resin alone pulled down through oil (Lane 8), aqueous 

layer after oil pull down of negative control (Lane 11), all other lanes are blank. 
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Chapter 6 
 

Discussion 
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DISCUSSION 
 

The aim of this project was to follow up on possible hits from yeast two hybrid work to 

determine if there were protein interactions between (i) RBP and RAIG2 (ii) RBP and RAIG3 

and (iii) CRBP and TRPC4 Zeta ion channel. Interaction between these proteins could have a 

serious role in insulin resistance and type 2 diabetes.  

The original strategy focused on expressing RAIG2 and RAIG3 in the MembraneMax
TM

 cell 

-free system. Molecular biology work centred on creating expression vectors suitable for this 

system. This involved PCR, restriction digests and subcloning. Expression of RAIG2, RAIG3 

and TPRC4 was also attempted in HEK293 cells. This involved more molecular work to get 

the RAIG2 sequence subcloned into a mammalian expression vector. The RAIG3 and TRPC4 

sequences were already in mammalian expression vectors so no molecular work was 

required. Also, bacterial expression and purification of CRBP-GST fusion protein was 

undertaken with 1.7mg/ml of pure protein produced. The final section focused on performing 

a series of pull down assays using a novel oil-based assay to determine if the proteins were 

indeed interacting.  

Even though the results were negative and the proteins didn’t interact, these results have 

eradicated these bait proteins from being involved in insulin resistance and type 2 diabetes. 

These results have primarily put the focus back on RBP and STRA6 in elucidating the 

mechanism for this disease. The membrane yeast two hybrid system is known to throw up 
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many false positives which often leads to negative results when determining molecular 

interactions.  

The TRP channel is a highly studied protein and a lot is already known about its function and 

role in the cell. As for the RAIG protein, little is still known about this novel GPCR. 

Discovery of a ligand or a particular associated G-protein will help in elucidating the function 

of this GPCR. These results have helped further deorphanise the RAIG receptor and eliminate 

RBP as a possible ligand. It expressed in high amounts and solubilized quite well which can 

often be a problem with GPCRs. The TRPC4 protein also expressed very well and solubilized 

in appropriate buffer.  

Cell free expression of the RAIGs did not occur but the system will be optimized for future 

work. The reason why the expression did not occur is still very puzzling. The vectors for each 

protein contained all the necessary machinery for gene expression in this system. There has 

been mixed results in the past for this system with some constructs expressing well and others 

not expressing at all. Cell-free expression of membrane proteins is not however, without its 

difficulties and it is thought that in both methods, requirement of insertion into the lipid 

bilayer to ensure correct folding and function may be the stumbling point (Cappuccio et al., 

2008).  
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Appendix 1 Nucleotide and Amino Acid Sequences  
1.1 Full-Length Human RAIG2 UniProt Entry Q9NZHO 

(GPC5B_HUMAN) 

Nucleotide Sequence 
ATGTTCGTGGCATCAGAGAGAAAGATGAGAGCTCACCAGGTGCTCACCTTCCTCCTGCTCTTCGTGATCACCTCG

GTGGCCTCTGAAAACGCCAGCACATCCCGAGGCTGTGGGCTGGACCTCCTCCCTCAGTACGTGTCCCTGTGCGAC

CTGGACGCCATCTGGGGCATTGTGGTGGAGGCGGTGGCCGGGGCGGGCGCCCTGATCACACTGCTCCTGATGCTC

ATCCTCCTGGTGCGGCTGCCCTTCATCAAGGAGAAGGAGAAGAAGAGCCCTGTGGGCCTCCACTTTCTGTTCCTC

CTGGGGACCCTGGGCCTCTTTGGGCTGACGTTTGCCTTCATCATCCAGGAGGACGAGACCATCTGCTCTGTCCGC

CGCTTCCTCTGGGGCGTCCTCTTTGCGCTCTGCTTCTCCTGCCTGCTGAGCCAGGCATGGCGCGTGCGGAGGCTG

GTGCGGCATGGCACGGGCCCCGCGGGCTGGCAGCTGGTGGGCCTGGCGCTGTGCCTGATGCTGGTGCAAGTCATC

ATCGCTGTGGAGTGGCTGGTGCTCACCGTGCTGCGTGACACAAGGCCAGCCTGCGCCTACGAGCCCATGGACTTT

GTGATGGCCCTCATCTACGACATGGTACTGCTTGTGGTCACCCTGGGGCTGGCCCTCTTCACTCTGTGCGGCAAG

TTCAAGAGGTGGAAGCTGAACGGGGCCTTCCTCCTCATCACAGCCTTCCTCTCTGTGCTCATCTGGGTGGCCTGG

ATGACCATGTACCTCTTCGGCAATGTCAAGCTGCAGCAGGGGGATGCCTGGAACGACCCCACCTTGGCCATCACG

CTGGCGGCCAGCGGCTGGGTCTTCGTCATCTTCCACGCCATCCCTGAGATCCACTGCACCCTTCTGCCAGCCCTG

CAGGAGAACACGCCCAACTACTTCGACACGTCGCAGCCCAGGATGCGGGAGACGGCCTTCGAGGAGGACGTGCAG

CTGCCGCGGGCCTATATGGAGAACAAGGCCTTCTCCATGGATGAACACAATGCAGCTCTCCGAACAGCAGGATTT

CCCAACGGCAGCTTGGGAAAAAGACCCAGTGGCAGCTTGGGGAAAAGACCCAGCGCTCCGTTTAGAAGCAACGTG

TATCAGCCAACTGAGATGGCCGTCGTGCTCAACGGTGGGACCATCCCAACTGCTCCGCCAAGTCACACAGGAAGA

CACCTTTGG 

-Stop codon not included. 

Amino Acid Sequence 

 
MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVEAVAGAGALITLLLML

ILLVRLPFIKEKEKKSPVGLHFLFLLGTLGLFGLTFAFIIQEDETICSVRRFLWGVLFALCFSCLLSQAWRVRRL

VRHGTGPAGWQLVGLALCLMLVQVIIAVEWLVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLCGK

FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVFVIFHAIPEIHCTLLPAL

QENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHNAALRTAGFPNGSLGKRPSGSLGKRPSAPFRSNV

YQPTEMAVVLNGGTIPTAPPSHTGRHLW 

 

 

1.2 Full-Length Human RAIG3 UniProt Entry Q9NQ84 

(GPC5C_HUMAN) 

Nucleotide Sequence 

ATGCGGGGGCGTGGCAGTCAACAGCAACAACCCACACGCCGGCAGGGCCAGAAACTCCCATCTCCCTCACCAGCC

GGAAAGTACGAGTCGGCTCAGCCTGGAGGGACCCAACCAGAGCCTGGCCTGGGAGCCAGGATGGCCATCCACAAA

GCCTTGGTGATGTGCCTGGGACTGCCTCTCTTCCTGTTCCCAGGGGCCTGGGCCCAGGGCCATGTCCCACCCGGC

TGCAGCCAAGGCCTCAACCCCCTGTACTACAACCTGTGTGACCGCTCTGGGGCGTGGGGCATCGTCCTGGAGGCC

GTGGCTGGGGCGGGCATTGTCACCACGTTTGTGCTCACCATCATCCTGGTGGCCAGCCTCCCCTTTGTGCAGGAC

ACCAAGAAACGGAGCCTGCTGGGGACCCAGGTATTCTTCCTTCTGGGGACCCTGGGCCTCTTCTGCCTCGTGTTT

GCCTGTGTGGTGAAGCCCGACTTCTCCACCTGTGCCTCTCGGCGCTTCCTCTTTGGGGTTCTGTTCGCCATCTGC

TTCTCTTGTCTGGCGGCTCACGTCTTTGCCCTCAACTTCCTGGCCCGGAAGAACCACGGGCCCCGGGGCTGGGTG

ATCTTCACTGTGGCTCTGCTGCTGACCCTGGTAGAGGTCATCATCAATACAGAGTGGCTGATCATCACCCTGGTT

CGGGGCAGTGGCGAGGGCGGCCCTCAGGGCAACAGCAGCGCAGGCTGGGCCGTGGCCTCCCCCTGTGCCATCGCC

AACATGGACTTTGTCATGGCACTCATCTACGTCATGCTGCTGCTGCTGGGTGCCTTCCTGGGGGCCTGGCCCGCC

CTGTGTGGCCGCTACAAGCGCTGGCGTAAGCATGGGGTCTTTGTGCTCCTCACCACAGCCACCTCCGTTGCCATA
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TGGGTGGTGTGGATCGTCATGTATACTTACGGCAACAAGCAGCACAACAGTCCCACCTGGGATGACCCCACGCTG

GCCATCGCCCTCGCCGCCAATGCCTGGGCCTTCGTCCTCTTCTACGTCATCCCCGAGGTCTCCCAGGTGACCAAG

TCCAGCCCAGAGCAAAGCTACCAGGGGGACATGTACCCCACCCGGGGCGTGGGCTATGAGACCATCCTGAAAGAG

CAGAAGGGTCAGAGCATGTTCGTGGAGAACAAGGCCTTTTCCATGGATGAGCCGGTTGCAGCTAAGAGGCCGGTG

TCACCATACAGCGGGTACAATGGGCAGCTGCTGACCAGTGTGTACCAGCCCACTGAGATGGCCCTGATGCACAAA

GTTCCGTCCGAAGGAGCTTACGACATCATCCTCCCACGGGCCACCGCCAACAGCCAGGTGATGGGCAGTGCCAAC

TCGACCCTGCGGGCTGAAGACATGTACTCGGCCCAGAGCCACCAGGCGGCCACACCGCCGAAAGACGGCAAGAAC

TCTCAGGTCTTTAGAAACCCCTACGTGTGGGAC 

 

-Stop codon not included. 

 

Amino Acid Sequence 
MRGRGSQQQQPTRRQGQKLPSPSPAGKYESAQPGGTQPEPGLGARMAIHKALVMCLGLPLFLFPGAWAQGHVPPG

CSQGLNPLYYNLCDRSGAWGIVLEAVAGAGIVTTFVLTIILVASLPFVQDTKKRSLLGTQVFFLLGTLGLFCLVF

ACVVKPDFSTCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINTEWLIITLV

RGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALCGRYKRWRKHGVFVLLTTATSVAI

WVVWIVMYTYGNKQHNSPTWDDPTLAIALAANAWAFVLFYVIPEVSQVTKSSPEQSYQGDMYPTRGVGYETILKE

QKGQSMFVENKAFSMDEPVAAKRPVSPYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSAN

STLRAEDMYSAQSHQAATPPKDGKNSQVFRNPYVWD 

 

 

 

 

 

1.3 Full-Length Human TRPC4 UniProt Entry Q9UBN4      

(TRPC4_HUMAN) 
 

 

atggctcagttctattacaaaagaaatgttaatgctccctatagagaccgcatccctctaaggatagtaagagca

gaatcagaactctcgccatcagaaaaagcctacttgaatgctgtggaaaagggagattatgccagtgtcaagaaa

tccctagaggaagctgaaatttattttaaaatcaatattaattgcattgatcctctcggaagaactgctctcctc

attgcaattgaaaatgagaacttggagctcatcgaactactcttaagctttaatgtctatgttggagatgctcta

ttacatgctatcagaaaagaagtcgtcggagctgttgagctgttattgaaccacaaaaaacctagtggagaaaaa

cagtttgttgcccagcccaattgtcaacagctgctggcatctcgctggtacgatgagtttccaggctggaggaga

agacactgggcagtgaagatggtgacatgtttcataataggacttctttttcctgtcttctctgtgtgctacctg

atagctcccaaaagcccacttggactgttcatcaggaagccatttatcaagtttatctgccacacagcctcctat

ttgacttttttgttcctgctgctgcttgcctctcagcacatcgacaggtcagacttgaacaggcaaggtccacca

ccaaccatcgtcgagtggatgatattaccgtgggtcctgggcttcatatggggagaaattaaacagatgtgggat

ggcggacttcaggactacatccatgattggtggaatctaatggactttgtaatgaactccttatatttagcaaca

atctccttgaaaattgttgcatttgtaaagtacagtgcccttaatccacgagaatcatgggacatgtggcatccc
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actctggtggcagaggctttatttgctattgcaaacatcttcagttctctgcgtctgatctcactgtttactgca

aattctcacctgggacctctgcaaatatctctgggaagaatgctcctggacattttgaagtttctattcatatac

tgccttgtgttgctagcatttgcaaatggcctaaatcaattgtacttctattatgaagaaacgaaagggttaacc

tgcaaaggcataagatgtgaaaagcagaataatgcattttcaacgttatttgagacactgcagtccctgttttgg

tcaatatttgggctcatcaatttatatgtgaccaatgtcaaagcacagcatgaatttactgagtttgttggtgcc

accatgtttgggacatacaatgtcatctctctggttgttctactcaacatgttaatagctatgatgaataattct

taccaactgattgctgaccatgcagatatagaatggaaatttgcacgaacaaagctttggatgagttattttgaa

gaaggaggtactctgcctactcccttcaatgtcatcccgagccccaagtctctctggtacctgatcaaatggatc

tggacacacttgtgcaagaaaaagatgagaagaaagccagaaagttttggaacaatagggaggcgagctgctgat

aacttgagaagacatcaccaataccaagaagttatgaggaacctggtgaagcgatacgttgctgcaatgattaga

gatgctaaaactgaagaaggcctgaccgaagagaactttaaggaactaaagcaagacatttctagtttccgcttt

gaagtcctgggattactaagaggaagcaaactttccacaatacaatctgcgaatgcctcgaaggagtcttcaaat

tcggcagactcagatgaaaagagtgatagcgaaggtaatagcaaggacaagaaaaagaatttcagcctttttgat

ttaaccaccctgattcatccgagatcagcagcaattgcctctgaaagacataacataagcaatggctctgccctg

gtggttcaggagccgcccagggagaagcagagaaaagtgaattttgtgaccgatatcaaaaactttgggttattt

catagacgatcaaaacaaaatgctgctgagcaaaatgcaaaccaaatcttctctgtttcagaagaagttgctcgt

caacaggctgcaggaccacttgagagaaatattcaactggaatctcgaggattagcttcacggggtgacctgagc

attcccggtctcagtgaacaatgtgtgttagtagaccatagagaaaggaatacggacacactggggttacaggta

ggaaagagagtgtgtccattcaagtcagagaaggtggtggtggaggacacggttcctataataccaaaggagaaa

catgcaaaagaagaggactctagtatagactatgatctaaacctcccagacacagtcacccacgaagattacgtg

accacaagattg 

 

-Stop codon not included. 

 Amino Acid Sequence 
 

MAQFYYKRNVNAPYRDRIPLRIVRAESELSPSEKAYLNAVEKGDYASVKKSLEEAEIYFKININCIDPLGRTALL

IAIENENLELIELLLSFNVYVGDALLHAIRKEVVGAVELLLNHKKPSGEKQFVAQPNCQQLLASRWYDEFPGWRR

RHWAVKMVTCFIIGLLFPVFSVCYLIAPKSPLGLFIRKPFIKFICHTASYLTFLFLLLLASQHIDRSDLNRQGPP

PTIVEWMILPWVLGFIWGEIKQMWDGGLQDYIHDWWNLMDFVMNSLYLATISLKIVAFVKYSALNPRESWDMWHP

TLVAEALFAIANIFSSLRLISLFTANSHLGPLQISLGRMLLDILKFLFIYCLVLLAFANGLNQLYFYYEETKGLT

CKGIRCEKQNNAFSTLFETLQSLFWSIFGLINLYVTNVKAQHEFTEFVGATMFGTYNVISLVVLLNMLIAMMNNS

YQLIADHADIEWKFARTKLWMSYFEEGGTLPTPFNVIPSPKSLWYLIKWIWTHLCKKKMRRKPESFGTIGRRAAD

NLRRHHQYQEVMRNLVKRYVAAMIRDAKTEEGLTEENFKELKQDISSFRFEVLGLLRGSKLSTIQSANASKESSN

SADSDEKSDSEGNSKDKKKNFSLFDLTTLIHPRSAAIASERHNISNGSALVVQEPPREKQRKVNFVTDIKNFGLF

HRRSKQNAAEQNANQIFSVSEEVARQQAAGPLERNIQLESRGLASRGDLSIPGLSEQCVLVDHRERNTDTLGLQV

GKRVCPFKSEKVVVEDTVPIIPKEKHAKEEDSSIDYDLNLPDTVTHEDYVTTRL 
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