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Abstract 

 

Toll-like receptors (TLRs) are germline-encoded pattern-recognition receptors that initiate 

innate immune responses by recognising molecular structures shared by a wide range of 

pathogens, known as pathogen-associated molecular patterns (PAMPs). TIR domain-

containing adaptor inducing IFN-β (TRIF) is an important adaptor protein in TLR3 and 

TLR4 signalling pathways that mediate proinflammatory cytokine and IFN responses 

following their activation by doubled-stranded RNA and LPS, respectively.  

 

In the present study, we sought to investigate the novel proteins and pathways that serve to 

modulate the functionality of TRIF. To this end, immunoprecipitation and LC-MS analyses 

of the overexpressed and endogenous TRIF immunocomplexes were performed. A 

disintegrin and metalloproteinase domain-containing protein 15 (ADAM15), Segment 

polarity protein dishevelled homolog DVL3 (DVL3) and Optineurin (OPTN) were 

identified as TRIF-interacting partners. Their interactions with TRIF were also confirmed 

by direct immunoprecipitation experiments of overexpressed and endogenous TRIF. 

 

More specifically, ADAM15 was found to interact with TRIF at 60 and 20 min. upon 

poly(I:C) and LPS stimulation, respectively. Overexpression of ADAM15 in HEKT293, 

HEK293-TLR3 and HEK293-TLR4 inhibited TRIF, TLR3 and TLR4-dependent activation 

of NF-κB, IFNβ and Rantes promoter activation, respectively. Moreover, downregulation 

of ADAM15 by esiRNA enhanced poly(I:C) and LPS-induced cytokine/chemokine 

secretion in the U373-CD14 cell line.    

 

This study also demonstrated that all of the three DVLs isoforms (DVL1, DVL2 and DVL3) 

interacted constitutively with TRIF when overexpressed in HEK293-TLR4. However, 

immunoprecipitation of endogenous TRIF in U373-CD14 cell line showed that DVL3 

associated with TRIF at 20-40 min upon LPS, but not poly(I:C) stimulation. 

Overexpression of all DVLs isoforms in HEKT293 and HEK293-TLR3 decreased TRIF 

and TLR3-induced NF-κB, IFNβ and Rantes, respectively. Nevertheless, DVLs inhibition 

using a chemical inhibitor attenuated poly(I:C) and LPS-dependent upregulation of TNFα, 



xii 

 

IFNβ and Rantes mRNA, as well as LPS-induced phosphorylation of IRF3 in wild-type 

murine BMDMs. 

 

Furthermore, the study also showed that OPTN interacted constitutively with TRIF when 

overexpressed in HEK293-TLR3. Immunoprecipitation of endogenous TRIF revealed that 

OPTN interacted with TRIF in a ligand-dependent manner only. Poly(I:C) and LPS 

stimulation in U373-CD14 increased OPTN protein expression levels after 24 h. 

Overexpression of OPTN negatively regulates TRIF and TLR3-dependent reporter gene 

activation. In addition, suppression of OPTN expression using esiRNA increased poly(I:C)-

induced IFNβ mRNA expression as well as TNFα, and Rantes secretion in U373-CD14. 

However, suppression of OPTN decreased/increased LPS-induced TNFα/Rantes, 

respectively. 

 

In conclusion, this study analysed, for the first time, TRIF immunocomplex and identified 

ADAM15, DVL3 and OPTN as novel TRIF interacting proteins and showed their role in 

TRIF-mediated TLR signalling. This study has advanced our understanding of the 

complexities of TRIF signalling in the context of TLR and we proposed that TRIF could be 

a key modulator of alternate signalling pathways. 
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1.1    The Innate immune system 

 

The immune system is the host defence against invading microbial pathogens. It eliminates 

microorganisms by discriminating between self and non-self. In mammals the immune 

system can be divided into two branches: innate immunity, and adaptive immunity (Takeda 

et al., 2005; Kanzler et al., 2007). The innate immune system is responsible for the early 

detection and destruction of invading pathogens and relies on a set of germ line-encoded 

pattern recognition receptors (PRRs) for detection (Lee and Kim, 2007). In contrast, the 

adaptive immune response detects non-self through recognition of peptide antigens using 

antigen receptors expressed on the surface of B and T cells and provides the host with 

immunological memory (Tauszig-Delamasure et al., 2002). To initiate immune responses, 

PRRs recognize pathogen associated molecular pattern (PAMPs) and induce activation of 

various intracellular signalling pathways leading to inflammation. Once invading pathogens 

cross the epithelial barrier they are recognized by resident tissue macrophages. Activated 

macrophages release a host of cytokines and chemokines, which promote the recruitment of 

neutrophils to site of infection and initially invading microorganisms. Mediators of the 

innate immune system also induce upregulation of co-stimulatory molecules on dendritic 

cells (DCs), resulting in recruitment of cells of the adaptive immune system (Janeway and 

Medzhitov, 2002; Lee and Kim, 2007; Mogensen, 2009). 

 

1.2    Pathogen Recognition Receptors  

The innate immune system utilizes PRRs in three different compartments including cell 

membranes, body fluids and cytoplasm (Lee and Kim, 2007). PRRs are expressed as the 

first line of defense against infection by macrophages, monocytes, dendritic cells, 

neutrophils and epithelial cells, as well as, cells of the adaptive immune system (Mogenson, 

2009; Takeuchi and Akira, 2010). Several classes of PRRs have been identified: Toll-like 

receptors (TLRs), retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like 

receptors (NLRs), C-type lectins receptors (CLRs) and DNA sensors (Keating et al., 2011, 

Marsili et al., 2012) (Figure 1.1). Upon recognition of the microbial components, PRRs 

activates a cascade of signalling pathways leading to the induction of a range of specific 

inflammatory and antiviral genes and cytokines that orchestrate innate immunity and 

chemokines and co-stimulatory molecules that promote T cell activation and specific 



2 

 

 

 

Figure 1.1: Cellular PRRs. TLRs are membrane-bound receptors localized at the cellular 

or endosomal membranes, recognizing PAMPs via the LRR domain and transducing 

signals to the intracellular environment through the TIR domain. RLRs with a C-terminal 

helicase domain bind RNA and become activated to transduce CARD-dependent signalling. 

DNA-dependent activator of IFN-regulatory factors (DAI) and absent in melanoma 2 

(AIM2), RNA polymerase III, Leucine-rich repeat (LRR) flightless-interacting protein 1 is  

(LRRFIP1), interferon, gamma-inducible protein 16 (IFI16), and Ku70 are DNA sensors. 

Most PRR signalling pathways converge on activation of NF-κB, which results in the 

transcription of proinflammatory cytokines. Activation of the RLRs, endosomal TLRs, 

TLR4, IFI16 and Ku70 also leads to activation of interferon regulatory factor 3 (IRF3) and 

IRF7, resulting in the production of type I interferons.  LRRFIP1 activation leads to nuclear 

translocation of β-catenin where it interacts with IRF3 and IRF7. (MDDCs: monocytes-

derived dendritic cells). (Adapted from Marsili et al., 2012). 
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immunity (Marsili et al., 2012) (Figure 1.1). TLRs are the best characterised signalling 

receptors among the PRRs (Iwasaki and Medzhitov, 2004) and will be discussed in more 

detail below. The cytosolic receptors RIG-I and melanoma-differentiation-associated gene 

5 (MDA5) are RNA-sensing helicases. They detect dsRNA of many replicating viruses 

(Kato et al., 2008). Recent reports show that RIG-I can also trigger IL-1β and/or IL-18 

production typically induced by inflammasome (poeck et al., 2010). NLRs are a further set 

of intracellular PRRs distinct from RLRs that have emerged as central regulators of 

immunity and inflammation with demonstrated relevance to human diseases. NLRs 

recognize PAMPs, as well as, host-derived danger signals or DAMPs (danger associated 

molecular patterns) and much attention has been focused on the ability of several NLRs to 

activate the inflammasome complex and drive proteolytic processing of inflammatory 

cytokines (Schroder et al., 2010). The C-type lectin family of proteins encompasses 

upwards of 1000 members with diverse functions including cell adhesion, regulation of 

natural killer function, complement activation, tissue remodeling, platelet activation, 

endocytosis, phagocytosis and innate immunity. Many C-type lectins recognize 

carbohydrate structures on viruses, bacteria, parasites and fungi and have been shown to 

play a role in host defense, exerting functions independent of other PRRs (Osorio et al., 

2011). Cytosolic dsDNA produced during DNA-virus infection is also a potent activator of 

innate immune responses. Several cytosolic DNA sensors have recently been described, all 

of which contribute to recognition of infecting viral DNA. These DNA sensors include DAI 

(DNA-dependent activator of IRF) IFN-inducible IFI16 protein (IFI16), Stimulator of 

interferon genes, STING RNA polymerase-III (Pol-III), absent in melanoma 2 (AIM2) 

extra chromsomal histone H2B, leucine rich repeat (in FLII) interacting protein (LRRFIP1) 

Ku70 ( Keating et al., 2011; Marsili et al., 2012). 

 

1.3    Toll-like Receptors  

It was initially thought that the innate immune system largely functioned in a non- specific 

manner. However, in 1989, Janeway found that the innate immune system specifically 

detect pathogens via germ line-encoded receptors termed pattern recognition receptors 

(PRR). PRRs recognize highly conserved microbial structure and thereby initiate an 

immune response (Janeway, 1989). The first proof of specificity in innate immunity came 
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with the discovery of the Drosophila protein Toll (dToll), which was critical for effective 

immune response to fungus Aspergillus fumigatus in the adult fly (Lemaitre et al., 1996). 

Soon after that a human homologue of Toll (hToll, later called Toll-like receptor 4) was 

discovered (Medzhitov et al., 1997). At least 13 TLRs have been identified in mammals so 

far (Brikos  and O'Neill, 2008). Both humans and mice express TLR1-9 (Figure 1.2). In 

addition humans, but not mice, express TLR10. However, mice, but not humans, express 

TLR11, 12, and 13 (Lee and Kim, 2007; Carpentier et al., 2008). The TLRs are type I 

transmembrane receptors, consisting of an N-terminal leucine-rich repeats (LRR) in the 

extracellular domain, a Toll-interleukin (IL)-1R (TIR) homologous region in the cyto-

plasmic domain and a transmembrane domain (O’Neill et al., 2000, Takeda et al., 2005). 

The TLRs differ from one another in terms of the cell types in which they are expressed, 

their ligand specificity, the signalling adaptors that they utilise and the cellular responses 

they induce (Iwasaki and Medzhitov, 2004). The most characterised TLRs are TLRs 1-9, 

which can be broadly divided into two groups on the basis of their PAMP specificity. The 

first group are expressed on the cell surface and recognise PAMPs in cell wall components 

and flagellin from both Gram-positive and Gram-negative bacteria, yeast, and fungi. This 

group includes TLR2 that forms a heterodimer with TLR1 or TLR6 and recognises 

bacterial lipoproteins and lipopeptides, TLR4 which recognises lipopoly-saccharides (LPS) 

and TLR5 which recognises flagellin (Mogensen 2009; Boo et al., 2010).  The second 

group of TLRs, which reside in intracellular compartments, detects PAMPs in nucleic acids 

derived from bacterial and viral pathogens. This includes TLR3 which recognises double-

stranded RNA, a product of viral replication in host cells, TLR7 and TLR8, which 

recognises single-stranded RNA derived from RNA viruses and small interfering RNA 

(siRNA), and TLR9 which recognises unmethylated CpG-containing DNA of bacterial and 

viral origin origin (Chaturvedi et al., 2008; Mogensen 2009; Boo et al., 2010).  

 

1.3.1    TLR1, TLR2 and TLR6  

TLR2 is located on the cell surface and recognises extracellular ligands. It forms 

heterodimers with either TLR1 or TLR6 and recognises many different microbial and 

synthetic components. These include lipoproteins/lipopeptides from various pathogens, 

peptidoglycan and lipoteichoic acid from Gram-positive bacteria. TLR1/2 heterodimers  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brikos%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22O'Neill%20LA%22%5BAuthor%5D
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Figure 1.2: An overview of human Toll-like receptors and their ligands. TLR2 is 

essential in the recognition of microbial lipopeptides. TLR2 heterodimerises with TLR1 to 

facilitate recognition of triacyl lipopeptides and with TLR6 to facilitate recognition of 

diacyl lipopeptides. TLR3 is implicated in the recognition of viral dsRNA. TLR4 is the 

receptor for LPS. TLR5 recognises flagellin, whereas TLR7 is implicated in viral-derived 

ssRNA recognition. TLR9 is essential in CpG DNA recognition. TLR signalling may 

originate from either the cytoplasmic TIR domain of plasma membrane localised TLRs 

(TLR1/2, TLR2/6, TLR4, TLR5) or from the endosomally localised intracellular TLRs 

(TLR3, TLR7, TLR8, TLR9). (Adapted from Muccioli, et al., 2012). 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Muccioli%20M%5Bauth%5D
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recognize triacyl lipopeptides such as Pam3CSK4 (a synthetic bacterial lipopeptide), and 

TLR2/6 heterodimers recognize diacyl lipopeptides such as the Mycoplasma-derived 

macrophage-activating lipopeptide 2 (MALP2) (Janeway and Medzhitov, 2002). Moreover 

several viruses, such as Herpes simplex virus (HSV), Cytomegalovirus (CMV), Hepatitis C 

virus (HCV) and Measles virus induce type I IFNs and proinflammatory cytokines via 

TLR2 signalling (Boo and Yang, 2010). In support of these findings is the fact that 

macrophages from TLR6-deficient mice do not show any production of inflammatory 

cytokines in response to mycoplasma-derived diacyl lipopeptides. However, these cells 

showed normal production of inflammatory cytokines in response to triacyl lipopeptides 

derived from Gram-negative bacteria (Takeuchi et al., 2001). In contrast, macrophages 

from TLR1-deficient mice showed a normal response to mycoplasma-derived diacyl 

lipopeptides, but an impaired response to triacyl lipopeptides (Takeuchi et al., 2002). Thus, 

TLR1 and TLR6 functionally associate with TLR2 and discriminate between diacyl or 

triacyl lipopeptides. TLR2 has been shown to functionally collaborate with distinct types of 

receptors such as dectin-1, a lectin family receptor for the fungal cell wall component β-

glucan recognition (Gantner et al., 2003). Thus, TLR2 recognises a wide range of microbial 

product through functional cooperation with several proteins that are either structurally 

related or unrelated and this facilitates the emanation of various signalling cascades 

(Takeda and Akira, 2005). 

 

1.3.2    TLR 3 

Double-stranded RNA (dsRNA), is a replication intermediate of several viruses, is detected 

by the innate immune system through TLR3. TLR3 expression is predominantly observed 

in the intracellular compartments of dendritic cells (DCs) and macrophages, while some 

fibroblasts also express TLR3 on their cell surface (Yoneyama and Fujita, 2010). Notably, 

dsRNA is produced during the replication of most RNA viruses, including the enveloped 

Respiratory Syncytial virus (RSV), Influenza A virus and the West Nile virus (WNV) 

(Groskreutz et al., 2006; Le Goffic et al., 2006; Kong et al., 2008; Boo and Yang 2010). 

TLR3 also plays an important role in the detection of DNA viruses including mouse CMV 

and HSV (Tabeta et al., 2004; Zhang et al 2007).  
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The role of TLR3 in antiviral immune responses was experimentally proved using an 

artificial dsRNA ligand and TLR3 knockout mice (Alexopoulou et al., 2001). The synthetic 

dsRNA ligand, polyinosinic:polycytidylic acid (poly(I:C) has immunostimulatory activity 

similar to dsRNA and TLR3-deficient mice have been found to have their response to 

dsRNA impaired (Alexopoulou et al., 2001). However, the function of TLR3 in antiviral 

immunity is controversial. It has been shown that the expression of Type 1 interferon (IFN) 

and inflammatory cytokines were reduced but not abolished in cells such myeloid DCs 

derived from TLR3 deficient mice in response to dsRNA and poly(I:C) (Takeda et al., 

2003; Alexopoulou et al., 2001). Moreover, reports have suggested that TLR3 is involved 

in the support of viral growth or pathogenesis rather than protection (Wang et al., 2004; Le 

Goffic et al., 2006). TLR3-independent mechanisms of dsRNA recognition have been 

reported. Studies have shown that the Retinoic acid-inducible gene I-like helicases such as 

RIG-I and MDA-5 can also sense viral RNA in the cytoplasm of infected cells (Andrejeva 

et al., 2004; Yoneyama et al., 2004). Although TLR3 was reported to play a key role in 

sensing poly(I:C) by epithelial cells (Guillot et al., 2005; Rudd et al., 2006; Matsukura et 

al., 2007), it played only a moderate or minor role in sensing poly(I:C) in macrophages or 

conventional DCs (Alexopoulou et al., 2001; Yamamoto et al., 2003). In contrast, RIG-I 

and MDA5 were found to play a more important role than TLR3 in sensing poly(I:C) in 

fibroblasts and DCs (Kato et al., 2005, Kato et al., 2006). 

 

1.3.3    TLR4 

TLR4 was the first cloned mammalian TLR and has been the most extensively studied. It 

has been identified in many cell types, such as endothelial cells, monocytes, thyroid cells, 

endometrial cells, mesangial cells, adipocytes and human β-cells (Garay-Malpartida et al., 

2011). TLR4, together with the co-receptors MD2 and CD14, form a signalling complex 

that responds to lipopolysaccharide (LPS), the endotoxin component of Gram-negative 

bacteria outer membrane (Janeway and Medzhitov, 2002; Lee and Kim, 2007). It has been 

suggested that the co-receptor CD14 may facilitate diversification of the TLR4 ligand 

repertoire and also aids towards the full activation of the downstream signalling pathways 

(Godowski, 2005) 
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 In addition to LPS, TLR4 recognizes other ligands such as taxol, heat shock proteins 60 

and 70, oligosaccharides of hyaluronic acid, heparan sulfate and fibrinogen (Takeda and 

Akira, 2005). However, all these endogenous ligands require very high concentrations to 

activate TLR4 which is in contrast to the low concentrations of LPS that are required to 

mediate TLR4 activation (Takeda and Akira, 2005). TLR4-deficient mice generated by 

gene targeting are hypo-responsive to LPS, confirming that TLR4 is the essential receptor 

for LPS recognition (Hoshino
 
et al., 1999). It has been reported that TLR4 was also 

involved in the recognition of certain group of viruses including mouse mammary tumor 

virus, molony murine leukemia virus and RSV (Takeda and Akira, 2003). TLR4 has been 

established as an essential component in the recognition of LPS. However, several reports 

indicated that LPS can also be recognized independently of TLR4. The NOD family, 

NOD1 and NOD2 confer intracellular recognition to LPS and mutant NOD2 protein was 

defective in LPS-induce-NF-κB activation (Inohara et al., 2001; Ogura et al., 2001). 

 

1.3.4    TLR5 

TLR5 recognizes an evolutionarily conserved site on bacterial flagellin that is required for 

flagellar filament assembly and motility (Andersen-Nissenet et al., 2005). It is responsible 

for flagellin-induced responses in epithelial cells, endothelial cells, macrophages, DCs and 

T cells (Steiner, 2007). In addition, flagellin activates TLR5 on CD4 and CD25 T-

regulatory cells, leading to increased suppressive activity, suggesting that flagellin has a 

complex role in bridging innate immunity and adaptive immunity (Crellin et al., 2005). 

Flagellin was shown to have TLR5-independent proinflammatory activity that depends on 

two related intracellular pattern recognition receptors, Neuronal apoptosis inhibitory protein 

5 (Naip5) and  Ice protease-activating factor (Ipaf), which are members of the NACHT-

leucine-rich repeat-containing receptor (NLR) family (Steiner, 2007). Flagellin acts as a 

PAMP in plants as well, whereby flagellin is sensed through the Flagellin-sensing 2 gene 

(FLS2). This gene encodes a LRR transmembrane receptor-like kinase with similarities to 

TLRs in mammals (Akira and Hemmi, 2003). Evidence indicates that the LRR domain of 

FLS physically interacts with flagellin. However, there is no significant homology between 

the LRR domains of TLR5 and FLS2 (Akira and Hemmi 2003; Takeda and Akira 2003). 
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1.3.4    TLR7 and TLR8  

TLR7 and TLR8, which are localised to endolysosomal compartments, are structurally 

highly conserved proteins that recognise the same ligand in some cases (Akira and Hemmi 

2003; Larange´ et al., 2009). More specifically, they recognize viral infections in the form 

of foreign nucleic acids. TLR7 can recognize synthetic RNA homologs such as resiquimod 

(R848) and ssRNA derived from ssRNA viruses such as vesicular stomatitis virus (VSV) 

(Gorden et al., 2006). However, studies have demonstrated that non-rodent (human, bovine, 

and porcine) TLR8 signalling can be activated by synthetic ligands such as imiquimod 

(R837), resiquimod and some guanine nucleotide analogs. In contrast, rodent (mouse and 

rat) TLR8s, whose primary sequences and structures are identical to non-rodent TLR8s, 

were not activated by non-rodent ligands (Akira and Hemmi 2003; Govindaraj et al., 2011). 

TLR7 is expressed in plasmacytoid DCs (pDCs) and in response to TLR7 stimulation, 

pDCs produce large amounts of IFNα. TLR7 activation also leads to DC maturation and 

expression of CD40, CD80, and CD86 (Gorden et al., 2006). TLR8 is expressed in myeloid 

DCs (mDCs), and monocytes. It’s activation in mDCs leads to IL-12 and TNFα production 

as well as upregulation of CD8, CD40 and CD80 (Larange et al., 2009). 

 

1.3.5    TLR9  

TLR9 is essential for recognition of synthetic CpG oligonucleotides and unmethylated CpG 

motifs in bacterial and viral DNA. It is highly expressed in pDCs and, most likely, 

recognises its ligand intracellularily, perhaps in the endosome or lysosomes (Ahmad-Nejad 

et al., 2002). The critical involvement of TLR9 in the recognition of bacterial DNA was 

demonstrated using TLR9-deficient mice. Hemmi and colleagues showed that TLR9 

deficient mice do not show any response to CpG DNA, in terms of splenocyte proliferation, 

inflammatory cytokine production from macrophages and maturation of DCs (Hemmi et 

al., 2000; Akira and Hemmi, 2003). Recently, it has been reported that Hepatitis B virus 

(HBV) impaired TLR9 expression and function in pDCs and B lymphocytes, which may in 

turn contribute to the establishment and/or persistence of chronic infection (Vincent et al., 

2011). Activation of the TLR9 pathway by CpG motifs is also impaired severely in human 

keratinocytes expressing human papilloma virus (HPV) or E6 and E7 the major on-

coproteins from this dsDNA virus (Hasan et al., 2007). It has been discovered that the full-

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ahmad-Nejad%20P%22%5BAuthor%5D
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length TLR9 has to be cleaved from the N-terminal to generate a functional (processed) 

TLR9 C-terminal. Interestingly, though both the full-length and cleaved forms of TLR9 are 

capable of binding ligand, only the processed form recruits MyD88 upon activation, 

arguing that this truncated receptor, rather than the full-length form, is functional (Ewald et 

al., 2008, Balashov  et al., 2010). 

 

1.3.6     TLR10  

Like other TLRs, TLR10 has multiple leucine-rich repeats and TIR domain. It shares the 

highest homology with TLR1 and TLR6.  TLR10 can form either a homodimer or a 

heterodimer with TLR1 or TLR2. TLR10 expression has been detected in pDCs, 

monocytes and B cells (Lazarus et al., 2004). The ligand for TLR10 has not yet been 

identified. However, a study investigating TLR10 polymorphisms in asthmatic patients 

suggested that TLR10 may be involved in the recognition of airborne pathogens or airborne 

allergens (Lazarus et al., 2004; Nyman et al., 2008). It has been reported that hypoxia or 

reactive oxygen species (ROS) increased TLR10 expression in human monocytes (Kim et 

al., 2010).  

 

1.3.7    TLR11, TLR12 and TLR13 

TLR11, TLR12 and TLR13 are present in mice but not in human. Protozoan profilin-like 

protein from Toxoplasma has been reported to activate DCs through TLR11 and is the first 

defined ligand for this TLR. Moreover, TLR11 is required for in vivo parasite-induced IL-

12 production and optimal resistance to infection, thereby establishing a role for TLR11 

receptor in host recognition of protozoan pathogens (Lauw et al., 2005; Yarovinsky et al., 

2005). Little is known about ligand recognition by TLR12 and TLR13. However, Mishra et 

al. (2008) studied the expression and distribution of TLR11-13 in the murine brain. It was 

found that parasite infection caused an increase of both mRNAs and protein levels of all 

three TLRs. All three TLR proteins were present in both CNS and immune cell types. 

Among them TLR13 was expressed the most, followed by TLR11 then TLR12 (Mishra et 

al., 2008). Recently TLR13 has been shown to be involved in the recognition of the 

vesicular stomatitis virus and bacteria RNA (Shi et al., 2010, Oldenburg et al., 2012, 

Hidmarket al., 2012). In addition, small interfering RNA against TLR13 reduced cytokine 

http://www.ncbi.nlm.nih.gov/pubmed?term=Balashov%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=21061396
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induction by bacteria RNA in DCs. Moreover, Chinese hamster ovary cells transfected with 

TLR13, but not with TLR7 or 8, could activate NF-κB in response to bacteria RNA or 

Streptococcus pyogenes in an RNA-specific manner (Hidmarket al., 2012). 

 

1.4    TLRs signalling pathway 

Stimulation of TLRs by microbial components triggers the expression of several genes that 

are involved in immune responses. Microbial recognition of TLRs facilitates dimerization 

of TLRs. Whilst TLR2 has been shown to form a heterodimer with TLR1 or TLR6, in other 

cases, TLRs are believed to form homodimers (Akira and Takeda, 2004). Ligand 

engagement with their respective TLRs leads to a conformational change within the TLR 

which facilitates the interaction of their cytoplasmic TIR domains with downstream TIR 

domain-containing adaptor molecules. Upon recognition of their cognate ligand, TLRs 

induce the expression of a variety of host defense genes. These include inflammatory 

cytokines, chemokine and upregulation of the immune cells (Janeway and Medzhitov, 

2002). TLR signalling is mediated by adaptor proteins and protein kinases, ultimately 

leading to the activation of IFN regulatory factors (IRF), IRF3, 5 and 7, or nuclear factor- 

κB (NF-κB) family and release of pro-inflammatory cytokine including tumor necrosis 

factor α (TNF-α), IL-1β, IL-6 , IL-12 and IL-18 (Sirén  et al., 2005; Häcker et al., 2006). As 

a major transcription factor for anti-viral activity, NF-κB is thought to play an important 

role in the induction of pro-inflammatory molecules, such as IL-1β and TNF-α, upon 

cellular responses against viral infections (Schoenemeyer et al., 2005). Moreover, 

activation of the IRF pathway leads to the secretion of type I IFNs such as IFN-α and IFN-

β. Whilst IRF5 is a strong transcription activator for IFN-α production, IRF7 can induce 

both IFN-α and IFN-β (Romieu-Mourez et al., 2006; Yang and Seki, 2012). The TLRs 

signalling pathways are illustrated in Figure 1.3. 

 

 1.5    TLR adaptors 

All TLRs have a TIR domain that initiates the signalling cascade through TIR adaptors. 

The TLR adaptors serve as platforms that organise downstream signalling cascades leading 

to a specific cellular response. To date, five adaptor proteins have been discovered, 

Myeloid differentiation protein-88 (MyD88), MyD88 adaptor-like (Mal, also referred to as  
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Figure 1.3: Overview of TLR signalling. All TLRs recruit either MyD88 and/or TRIF and 

these in turn, recruit IRAKs to the receptor upon ligand binding. IRAK then activates 

TRAF6, leading to the activation of the IκB kinase (IKK) complex consisting of IKKα, 

IKKβ and NEMO/IKKγ. The IKK complex phosphorylates IκB, result in nuclear 

translocation of NF-κB which induces expression of inflammatory cytokines. TIRAP, a 

second TIR domain-containing adaptor, is involved in the MyD88-dependent signalling 

pathway via TLR2 and TLR4. In TLR3 and TLR4-mediated signalling pathways, activation 

of IRF3 and induction of IFN-β are observed in a MyD88-independent manner. A third TIR 

domain-containing adaptor, TRIF, is essential for the MyD88-independent pathway. TRIF 

mediates IRF-3 activation through IKKε and TANK-binding kinase 1 (TBK1). A fourth 

TIR domain-containing adaptor, TRAM, is specific to the TLR4-mediated MyD88-

independent/TRIF-dependent pathway (Adapted from Yang and Seki, 2012).  

 

 

 

 

 

 

 

 



13 

 

TIR-domain containing adaptor protein (TIRAP)), TIR-domain-containing adaptor 

inducing interferon (TRIF also known as TIR-containing adaptor molecule (TICAM-1)), 

TRIF-related adaptor molecule (TRAM also called TIR-containing adaptor molecule-2 

(TICAM-2)) and Sterile alpha and Armadillo repeat protein (SARM) (Takeda et al., 2004;  

O'Neill and Bowie, 2007) (Figure 1.4). MyD88, which was the first adaptor molecule to be 

identified, is involved in signalling triggered by all TLRs, with the exception of TLR3, and 

plays a major role in TLR-induced signal transduction. Despite the prominent role of 

MyD88 in TLR signalling, studies using MyD88-deficient mice revealed the existence of 

both MyD88-dependent and -independent pathways. (Takeda and Akira, 2005; Mogenson, 

2009). 

 

1.5.1    MyD88  

Whilst MyD88 was discovered in 1990 (Lord et al., 1990), its role in TLR signalling was 

not known until 1998 (Medzhitov et al., 1998). Prior to being implicated in TLR signalling, 

MyD88 was found to be an adaptor molecule that functions to recruit the Interleukin-1 

receptor (IL-1R) associated protein kinase (IRAK-1) to the Interleukin-1 receptor complex 

following IL-1 stimulation resulting in the activation of NF-κB (Wesche et al., 1997).  

MyD88 is 296 amino acids and contains three domains, a N-terminal death domain which 

enables interactions with the IRAKs, an interdomain and a C-terminal TIR domain which 

facilitates homotypic interaction with other TIR-containing proteins (Medzhitov et al., 1998; 

O'Neill and Bowie, 2007). MyD88 functions as a universal adaptor and is shared by all 

TLRs, except TLR3 which exclusively recruits TRIF. MyD88 deficient mice and 

macrophages failed to secrete the proinflammatory cytokines IL-6 and TNF-α in response 

to LPS stimulation. Furthermore, MyD88 deficient mice were found to be more resistant to 

LPS-induced death than wild type mice (Kawai et al., 1999). However, mitogen activated 

protein kinases (MAPK) and NF-κB activation was still present, albeit delayed in the 

MyD88 deficient mice in response to LPS. This was the first indication of the presence of a 

MyD88-independent pathway in LPS signalling (Kawai et al., 1999). Further studies using 

MyD88-deficient macrophages found that they were completely unresponsive to TLR2, 

TLR7 and TLR9 ligands (Takeuchi et al. 2000; Alexopoulou et al., 2000). In terms of 

signalling upon stimulation, MyD88 recruits members of the IRAK family through  
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Figure 1.4: Domain structure of the TIR-domain-containing adaptor proteins. MyD88 

contains a C-terminal death domain (DD), intermediate domain (ID) and an N-terminal TIR 

domain. MAL contains at the N-terminus a PIP2 binding domain followed by the TIR 

domain and TRAF6 binding motif (T6BM). It also contains two phosphorylation sites for 

Bruton’s tyrosine kinase at positions 86 and 187. Located at position 180 is 

theserine/leucine site linked to the genetic susceptibility to several diseases including 

tuberculosis (TB) and malaria. At position 198 is the aspartic acid indicating the presence 

of the caspase-1 cleavage site. TRIF is 712 amino acid long. It consists of a TRAF6 binding 

motif (T6BM), the TIR domain and a receptor-interacting protein (RIP) homotypic 

interaction motif (RHIM). TRAM consists of 235 amino acid. It contains a myristoylation 

site at the N terminus, followed by serine at position 16 which is phosphorylated by protein 

kinase C-ε and the TIR domain between amino acid 75 and 235. SARM consist of two 

sterile α-motif (SAM) domains followed by the TIR domain. (Adapted from O’Neill and 

Bowie, 2007). 
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homotypic interaction of the death domain of both molecules. IRAK-1 was the first IRAK 

shown to be important in the ability of LPS to induce NF-κB activation. Other studies 

demonstrated that IRAK-4 is crucial in NF-κB activation in response to TLR ligands and is 

responsible for both the recruitment and phosphorylation of IRAK-1 (Wesche et al., 1997; 

Li et al., 2002; Swantek et al., 2000). Data suggested that IRAK-2 may play a prominent 

role in NF-κB activation, particularly during the late phase of TLR signalling (Chen, 2005; 

Mogenson, 2009). The phosphorylation of IRAK-1 leads to the recruitment TNF-receptor 

associated factor 6 (TRAF6) which is an ubiquitin E3 ligase that works in conjunction with 

a ubiquitin conjugating enzyme complex to polyubiquitinate target proteins, including itself 

(Chen, 2005). IRAK-1 and TRAF 6 association lead to the activation of two distinct 

signalling pathways. One pathway leads to activation of transcription factor activator 

protein 1 (AP-1) through activation MAPK (Change and Karin, 2001). Another pathway 

activates the transforming growth factor activated kinase1 TAK1 and TAK1 binding 

protein 2 (TAB2) complex, which enhances activity of the IκB kinase (IKK) complex 

(Takeda and Akira, 2004; Jenkins and Mansell, 2010). Once activated, the IKK complex 

induces phosphorylation and subsequent degradation of IκB, which leads to nuclear 

translocation of the transcription factor NF-κB and subsequent activation of NF-κB 

dependent genes, including the pro-inflammatory cytokines IL-1, IL-6 and TNFα (Feng and 

Chao et al., 2011) (Figure 1.4). 

In 2010 Lin et al., showed the crystal structure of the MyD88: IRAK4: IRAK2 

death domain (DD) complex, which reveals a left-handed helical oligomer that consists of 6 

MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is 

hierarchical, in which MyD88 recruits IRAK4 and the MyD88: IRAK4 complex recruits 

the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome 

complexes brings the kinase domains of IRAKs into proximity for phosphorylation and 

activation (Lin et al., 2010). In addition to the MyD88 pathway, which results in NF-κB 

translocation, there is a cell specific pathway which activated by TLR7, TLR8 and TLR9. 

In pDCs, the activation of these TLRs results in IFNα production. This pathway is MyD88 

dependent and involves the nuclear translocation of IRF-7 (Honda et al., 2004). In pDCs it 

has been shown that the DEAD/H-box helicases DHX9 and DHX36 directly bound to the  
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Figure 1.4: MyD88-dependent pathway. (1) Stimulation of TLR, by TLR ligand MyD88-

dependent activation of NFκB and MAPK. IRAK4 interacts with MyD88 through death 

domain interactions. (2) IRAK-4 is thought to phosphorylate both IRAK-1 and IRAK-2 

which induces their autophosphorylation activity. (3) Phosphorylated IRAK-1 is released 

from the receptor complex and subsequently associate with TRAF6. (4) IRAK-1 

phosphorylates Pellino which can ubiquitinate IRAK-1. IRAK-1 and Pellino form a 

complex with TRAF6. (5) NEMO binds to ubquitinated IRAK-1. (6) IRAK-2 induces the 

poly-ubiquitination of TRAF6. The polyubiquitination of TRAF6 results in the recruitment 

of the TAK-1/TAB2 complex and activation of TAK-1. (7) TAK-1 activates the IKK 

complex. (8) The IKK complex phosphorylates IκBα which allows p65/p50 to translocate 

in the nucleus. (9) For MAP kinase activation, TAK-1 activates MKK3/6 and MKK4/7 for 

p38 and JNK activation, respectively. (10) The IKK complex phosphorylates the inhibitory 

protein p105. Upon phosphorylation and degradation of p105, tpl2 is activated and 

subsequently activates MKK1/MKK2. MKK1/MKK2 activates ERK1 and ERK2. (Adapted 

from Flannery and Bowie, 2010). 
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TIR domain of MyD88, showing a TLR9-independent, MyD88 depending DNA sensing in 

pCDs (Kim et al., 2010). Moreover, the DHX36 governs a pathway specific for IRF7 

activation and IFN-α induction whilst the DHX9 triggers nuclear translocation of the NFκB 

subunit p50 and subsequent upregulation of genes such as TNFα and IL-6 (Kim et al., 

2010, Keating et al., 2011). Furthermore, recently new MyD88-dependent signalling 

mechanism has been identified. This signalling pathway proceeds via IFNγ receptor/C-C 

chemokine receptor type 2 and governs the mobilization and activation of monocytes in 

response to challenge with a systemic intracellular bacterium (Pietras et al., 2011). 

  The MyD88 pathway is negatively regulated by three proteins, MyD88 short 

(MyD88s), transforming growth factor-β (TGF-β) and IRAK-M (Janssens et al., 2002; 

Kobayashi et al., 2002; Naiki et al 2005). MyD88s is a splice variant of MyD88 and 

missing the interdomain located between the DD and TIR (amino acids 110-157) and its 

expression is induced in response to continuous stimulation with bacterial products or pro-

inflammatory cytokines (Janssens et al., 2002). Naiki et al. (2005) showed that TGF-β 

blocked NF-κB activation and cytokine production in response to TLR2, TLR4 and TLR5 

ligands by decreasing MyD88 protein but not mRNA levels. Another negative regulator of 

MyD88 signalling is IRAK-M. IRAK-M prevents the dissociation of IRAK-1 and IRAK-4, 

which results in IRAK-1 being unable to interact with TRAF6 and is therefore unable to 

induce a signalling cascade (Kobayashi et al., 2002). 

 

1.5.2    Mal 

Mal was the second TLR adaptor protein to be described (Fitzgerald et al., 2001; Horng et al., 

2001). Mal is 235 amino acids in size and contains an N-terminal phosphatidyl-inositol-4,5-

bisphosphate (PIP2) binding domain and a C-terminal TIR domain (Nunez Miguel et al., 2007; 

O'Neill and Bowie, 2007). Initially, Mal was characterised as a protein that specifically 

associates with TLR4 and found to interact with MyD88 in co-immunoprecipitation assays as 

well as in a yeast two-hybrid screen. Overexpression of Mal was found to activate NF-κB and 

JNK (Fitzgerald et al., 2001; Horng et al., 2001) and Mal-deficient mice were found to respond 

normally to the ligands for TLR5, TLR7 and TLR9 (Horng et al., 2002). However, as well as 

having defects in cytokine production and activation of NF-κB and MAP kinases in response to 

the TLR4 ligand, they were shown to have impaired response to TLR2 ligands (Yamamoto et 
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al., 2002). Similar to MyD88-deficient mice, Mal-deficient mice were found to be completely 

resistant to LPS-induced shock and were shown to have delayed activation of NF-κB and MAP 

kinases in response to LPS (Horng et al., 2002). The ability of Mal to act as a bridging adaptor 

for MyD88 is dependent on its localisation to the plasma membrane. The localisation of Mal to 

the plasma membrane is facilitated by its PIP2 binding domain (Nunez Miguel et al., 2007). At 

the plasma membrane, Mal acts as a bridging adaptor for MyD88, bringing it to the activated 

TLR4, to initiate signal transduction. A role of Mal distinct from that of MyD88 was identified 

when a putative TRAF6 binding motif was identified in Mal but not in MyD88. Mal was found 

to co-immunoprecipitate with TRAF6 and a mutation within the TRAF6 binding motif of Mal 

abolishes NF-κB activation by TLR2 and TLR4 (Mansell et al., 2004). Mal like many 

components of the TLR signalling pathway is subject to negative regulation. It has been shown 

that suppression of cytokine signalling 1 (SOCS1) mediates polyubiquitination of Mal on two 

N-terminal lysine residues, thereby mediating Mal degradation via the 26S proteasome 

(Mansell et al., 2006). 

 

1.5.3.1    TRIF  

TRIF was identified following the analysis of databases for TIR domain containing proteins 

and following a two hybrid screen (Yamamoto et al., 2002; Oshiumi et al., 2003). TRIF, 

712 amino acids in length, is much larger than the other TLR adaptors. It contains three 

TRAF6-binding sites in its N terminal domain, a TIR domain and a receptor-interacting 

protein (RIP) homotypic interaction motif (RHIM) in its C-terminal domain (Oshiumi et al., 

2003). Although TRIF contains a TIR domain, its amino acid sequence is very divergent 

from other TIR domain-containing adapter protein sequences (Han et al., 2004). Oshiumi 

and his colleagues showed that TRIF interacted with TLR3 in both co-immunoprecipitation 

assays and yeast two-hybrid screen. No interaction was found with either TLR2 or TLR4.  

In contrast to MyD88 and Mal, TRIF dramatically induce IFN-β promoter activity. 

Overexpression of TRIF also induced activation of NF-κB promoter but at low level 

compared with MyD88 or Mal. A dominant negative version of TRIF, but not MyD88 or 

Mal, inhibited TLR3 activation of NF-κB and IFN-β indicating a unique role for TRIF in 

TLR3 signalling (Yamamoto et al., 2002; Oshiumi et al, 2003). Moreover, TRIF deficient 

mice were impaired in TLR3 and TLR4-induced IFN-β production and activation of IRF3. 
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Furthermore, inflammatory cytokine production in response to TLR4 ligands was severely 

impaired, whilst responses to TLR2, TLR7 and TLR9 ligands in TRIF-deficient 

macrophages were not impaired (Yamamoto et al., 2003). Mice deficient in both MyD88 

and TRIF showed complete loss of NF-κB activation in response to TLR4 stimulation. 

These findings demonstrate that TRIF is essential for TLR3 and TLR4-mediated signalling 

pathways (Yamamoto et al., 2003). In contrast to MyD88 and Mal-deficient mice, TRIF-

deficient mice displayed normal LPS-induced MyD88-dependent activation of IRAK-1, 

NF-κB and MAPK indicating that TRIF is not involved in LPS-induced activation of the 

MyD88-dependent pathway. However, the production of pro-inflammatory cytokines in 

response to LPS, but not other TLR ligands was impaired in these mice. This led to the 

suggestion that in the case of TLR4, both the MyD88-dependent and MyD88- independent 

pathways need to be intact to enable the production of pro-inflammatory cytokines 

(Yamamoto et al., 2003). When the response to LPS was examined in embryonic 

fibroblasts from MyD88 and TRIF double knockout mice, activation of NF-κB and JNK 

was completely abolished, confirming that TRIF was responsible for the delayed activation 

of NF-κB previously found in MyD88-deficient mice (Yamamoto et al., 2003).  

During TLR3 and TLR4 signalling, TRIF (associated with TRAM in the case of 

TLR4) (Fitzgerald et al., 2003) is responsible for initiating a signalling pathway through 

TRAF3, TBK1 and IKKε (Hacker et al., 2006; Guo et al., 2007) which mediate direct 

phosphorylation of IRF3 and IRF7. As a consequence of phosphorylation, IRF3 and IRF7 

form hetero- or homodimers, translocate to the nucleus, in association with transcriptional 

coactivators such as CBP and p300 and bind to target sequences in DNA, such as IFN-

stimulated response elements (Fitzgerald et al., 2003). IRFs, together with NF-κB and AP1, 

can form a multiprotein complex termed the ‘enhanceosome’, which induces transcription 

of the IFN-β gene (Sharma et al., 2003). TRIF-dependent activation of NF-κB occurs 

through binding of TRAF6 to TRIF and subsequent ubiquitination-dependent recruitment 

and activation of TAK1 (Sato et al., 2003). In order to obtain robust NF-κB activation, a 

second molecule, receptor interacting protein 1 (RIP1), involved in TNF-receptor mediated 

NF-κB activation, is also recruited to TRIF (Meylan et al., 2004). RIP1 is polyubiquitinated 

to form a complex with TRAF6, and these two molecules appear to cooperate in facilitating 

TAK1 activation, resulting in IKK-mediated activation of NF-κB as well as activation of 
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the MAPK pathway (Cusson-Hermance et al., 2005). Recently, using yeast two-hybrid 

screening, it was found that three TRAF proteins TRAF1, 2 and 6, interacted with the N-

terminal region of TRIF. Further, it was suggested that the binding of TRAF2 and TRAF6 

to TRIF cooperatively activates the IFN-inducing pathway through ubiquitination of TRIF, 

a modification which occurs unrelated to TRAF3 recruitment in the TRIF signalling 

complex (Sasai et al., 2010). A simplified TRIF signalling pathway is predicted in figure 

1.5. In addition to NF-κB and IRF3 activation, TRIF is the only TLRs adaptor that induces 

apoptosis upon overexpression in human embryonic kidney (HEK) 293 cells. Domain 

mapping experiments indicate that the N-terminal and middle TIR domains did not induce 

apoptosis, whereas the C-terminal 181 amino acids (positions 532-712) were sufficient to 

induce apoptosis (Han et al., 2004). Moreover, TRIF-induced apoptosis was not inhibited 

by IκBα, a dominant negative of IRF3, or IRF7 or by various combinations of these 

molecules. TRIF-induced apoptosis was also not inhibited by kinase inactive mutants of 

TBK1, IKKβ, and IKKε. It was found that TRIF induced apoptosis through a RIP/Fas-

associated death domain (FADD)/caspase-8-dependent pathway (Han et al., 2004).  

Han et al. (2010) reported the identification of a splice variant of TRIF lacking the TIR 

domain and is therefore designated as TRIS. TRIS form heterocomplex with TRIF through 

their C-terminal RHIM motifs. Overexpression of TRIS activates NF-κB and IRF3, while 

knockdown of TRIS inhibited TLR3-mediated NF-κB and IRF3 activation (Han et al., 

2010). 

The TRIF pathway is negatively regulated by a number of molecules, however in 

most cases they do not target TRIF specifically, but affect downstream components of the 

TRIF pathway such as TBK1 or IRF (O’Neill and Bowie, 2007). It has been reported that 

SRC homology 2 (SH2) domain containing protein tyrosine phosphatase2 (SHP2) 

negatively regulates TRIF signalling by binding to the kinase domain of TBK1 thereby 

preventing its activation (An et al., 2006). SHP2 was found to negative regulate TLR3 and 

TLR4 activated IFN-β production as well as pro-inflammatory cytokine production in 

response to TLR3 but not TLR2, TLR7 or TLR9 ligands. Knockdown of SHP2 was found 

to increase TLR3 and TLR4 induced IFN-β production (An et al., 2006). SARM, the fifth 

TLR adaptor has also been shown to negatively regulate the TRIF but not the MyD88 

pathway (Carty et al., 2006) and will be discussed below. A splice variant of TRAM called 
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TRAM adaptor with GOLD domain (TAG) was also shown to inhibit IRF3 activation upon 

LPS stimulation probably by displacing TRIF from TRAM (Palsson-McDermott et al., 

2009). Knockdown of TAG was shown to enhance induction of the chemokine CCL5 

(RANTES), but not IL-8 upon LPS stimulation in human peripheral blood mononuclear 

cells (Palsson-McDermott et al., 2009).  

Su et al. (2006) showed that overexpression of TRAF1 inhibited TRIF and TLR3-

mediated activation of NF-κB, IFN-stimulated response element and the IFN-β promoter. 

Overexpression of TRIF caused caspase-dependent cleavage of TRAF1 and the cleaved N-

terminal, but not C-terminal, fragment of TRAF1 was responsible for inhibiting TRIF 

signalling. Further, mutation of the caspase cleavage site of TRAF1, or addition of the 

caspase inhibitor cram, inhibited TRAF1 cleavage and abolished the ability of TRAF1 to 

inhibit TRIF signalling (Su et al., 2006).  

In some cases, virally encoded proteases directly target components of the innate 

immune system to abolish anti-viral signalling. Targeted proteolysis of adaptor molecules 

serves as a powerful means to eliminate anti-viral signalling by suppressing common 

downstream targets of key innate immune signalling pathways (Mukherjee et al., 2011). 

Hepatitis C virus contains a serine protease NS3- 4A that causes the proteolysis of TRIF (Li 

et al., 2005). The cleavage of TRIF by NS3-4A inhibits TLR3 mediated activation of NF-

κB and IRF3, thus inhibiting the innate immune response to the virus (Li et al., 2005). 

Moreover the vaccina virus protein A46R contains a TIR domain which facilitates its 

interaction with all the TLR adaptors, except SARM. The interaction of A46R with TRIF 

leads to the inhibition of IRF3 activation and concomitant gene induction (Stack et al., 

2005). Also, Coxsackievirus B3 (CVB3) mediates TRIF cleavage through the virally-

encoded protein, termed 3C
pro

. Mukherjee et al. (2010) demonstrated that 3C
pro

 cleaves 

both the N and C-terminal domains of TRIF, localises with TRIF in the cytoplasm and 

inhibits TRIF mediated type I IFN and apoptotic signalling. Recently, Qu and colleagues 

showed that a 3CD protease-polymerase from Hepatitis A Virus (HAV), disrupted TLR3 

signalling by targeting TRIF for degradation, thus inhibiting poly(I:C)-mediated 

dimerization of IRF3, IRF3 translocation to the nucleus and IFN-β promoter activation (Qu 

et al., 2011). 
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1.5.3.2    TLR3-indepndent TRIF-dependent pathways 

Recently, it was demonstrated the presence of a TLR3-independent, TRIF-dependent 

poly(I:C) sensor in dendritic cells. It was shown that three new members of the DExD/H-

box helicase family, DDX1, DDX21, and DDX36 use TRIF to activate the NF-κB pathway 

and type I IFN responses (Zhang et al., 2011). Moreover, it was shown that TRIF also 

mediates TLR5 signalling in intestinal epithelial cells (Choi et al., 2010). Choi et al. (2010) 

demonstrated that stimulation of cells with flagellin induces a physical interaction between 

TLR5 and TRIF in a time dependent manner. In fact, suppressed TRIF expression reduces 

TLR5-induced NF-κB and MAPK activation in response to flagellin, and TRIF deficiency 

inhibited flagellin-induced cytokine expression (Choi et al., 2010). However, the same 

group reported that TRIF plays an inhibitory role in TLR5-elicited responses by inducing 

proteolytic degradation of TLR5 (Choi et al., 2010). TRIF overexpression in human 

HEKT293 and human colonic epithelial (NCM460) cells abolishes the cellular protein level 

of TLR5, whereas it does not alter TLR5 mRNA level. Also, TRIF overexpression 

dramatically suppresses flagellin-TLR5-driven NF-κB activation in normal human colon 

mucosal epithelium NCM460 cells. Also, TRIF-induced TLR5 protein degradation is 

completely inhibited in the presence of a caspase inhibitor, indicating that TRIF induced 

caspase activity mediates TLR5 protein degradation (Choi et al., 2010). In addition, it was 

shown that the C-terminus of TRIF and the extracellular domain of TLR5 are required for 

TRIF-induced TLR5 degradation. Furthermore, TRIF-induced proteolytic degradation is 

extended to TLR3, TLR6, TLR7, TLR8, TLR9, and TLR10, whereas the cellular level of 

TLR1, TLR2, and TLR4 was not affected by TRIF overexpression. These results suggest 

that, in addition to mediating TLR3- or TLR4-induced signalling as an adaptor molecule, 

TRIF can participate in proteolytic modification of certain members of TLRs to modulate 

the functionality of TLRs at the post-translational level (Choi et al., 2010). 

 

1.5.4    TRAM 

TRAM was identified following a database screening in 2003 (Oshiumi et al., 2003). It 

consists of 235 amino acids and is the smallest TLR adaptor protein. It contains a putative 

myristoylation site at the N-terminus and undergoes phosphorylation by protein kinase Cε 

(PKCε) at the serine residue at position 16 and a TIR domain in its C-terminus (Rowe et al.,  
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Figure 1.5: TRIF signalling pathway: DsRNA binds to TLR3 in the endosome activating 

TRIF. TLR4 can also activate TRIF via TRAM adaptor protein. TRIF interacts with TBK1 

via NAP1 and TRAF3 and the signal transduced to the IKKi leading to the phosphorylation 

of IRF3. PI3K is also required to complete IRF activation. IRFs dimerise then translocate to 

the nucleus where they bind to the DNA and transactivate type 1 IFN genes expression in 

conjunction with the co-activator CBP/p300. TLR3 also activates NFκB by a TRAF-6 

mediated interaction with TRIF involving the TAK1/TAB1/TAB2/TAB3 complex which 

activate TAK1 causing it to phosphorylate and activate IKK. This phosphorylate IκB and 

targets it for degradation causing NFκB nuclear translocation. Signalling via RIP1 is 

required for full activation of NFκB and transcriptional of target genes. (Adapted from 

Dunlevy et al., 2010)  
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2006; O’Neill and Bowie, 2007). TRAM physically interacts with TLR4, TRIF and Mal, 

but not with TLR3, and acts as bridging adaptor between TLR4 and TRIF in the MyD88-

independent pathway (Fitzgerald et al., 2003; Oshiumi et al., 2003; Yamamoto et al., 2003). 

Using RNAi knockdown, both TRIF and TRAM were shown to be required for LPS 

induced IFN-β production (Oshiumi et al., 2003). Overexpression of TRAM barely 

activates AP-1 and only weakly activates NF-κB and the IFN-β promoter. Unlike the other 

TIR-containing adaptors, TRAM has been implicated in the TLR4 signalling pathway. 

Originally, TRAM was thought to be localised to the plasma membrane which facilitated its 

ability to signal (Rowe et al., 2006). However, it has been shown that TRAM contains a 

sorting signal that controls its trafficking between the plasma membrane and endosomes 

and that TRAM does not induce TRIF-dependent signalling from the plasma membrane. It 

has been demonstrated that TLR4 and TRAM must be delivered to the endosomes to 

facilitate the activation of IRF3 signalling (Kagan et al., 2008). Another modification of 

TRAM, which has been shown to be essential for its signalling ability, is the 

phosphorylation of the serine at position 16 by PKCε. Mutation of this phosphorylation site 

(Serine16Alanine) results in loss of phosphorylation and the ability of TRAM to signal in 

response to LPS (McGettrick et al., 2006). TRAM-deficient cells were found to have 

impaired TLR4 mediated cytokine production and B cell activation, while other TLR were 

not affected (Yamamoto et al., 2003). 

 

1.5.5    SARM 

SARM was the last TIR-containing adaptor protein to be characterised. It was originally 

identified as an orthologue of Drosophila protein CG7915 (Mink et al, 2001). SARM is a 

690 amino acid long and contains two sterile α motifs (SAMs) domains, a C-terminal TIR 

domain and N-terminal heat Armadillo repeat motif (ARM) (O’Neill et al., 2003). It was 

found that overexpression of SARM did not activate NF-κB or IRF3 (Liberati et al., 2004). 

In contrast to the other TLR adaptors, SARM was found to act as a negative regulator of 

TRIF-dependent TLR signalling. It blocked gene induction downstream of TRIF, but not 

MyD88, and suppression of endogenous SARM expression led to enhanced TRIF-

dependent cytokine production (Liberati et al., 2004; Carty et al., 2006). Carty et al. (2006) 

showed that association between TRIF and SARM was strongly enhanced following LPS 
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or poly(I:C) treatment. It was hypothesised that SARM mediated its inhibitory effects by 

preventing the interaction of TRIF with upstream or downstream signalling molecules. 

However, Peng et al. (2010) demonstrated that human SARM is capable of blocking the 

LPS-induced MyD88- and TRIF-mediated AP-1 activation. Suppression of endogenous 

SARM with siRNA increased AP-1 basal level. In addition, Belinda et al. (2008) showed 

that the horseshoe crab orthologue SARM (CrSARM) downregulated TRIF dependent TLR 

signalling in response to infection. The CrSARM expression was upregulated within 3 h 

and strongly repressed at 6 h of infection. This suggested that SARM negatively regulating 

TRIF signalling is evolutionary conserved from horseshoe crab to human (Belinda et al., 

2008). Surprisingly in contrast to its role in human cells, murine SARM in the CNS appears 

to positively regulate TNF-α induction, which affects microglia activation and 

accumulation and protects critical neuron subsets from virus-induced pathology. Mice 

lacking SARM were reported to be more susceptible to lethal West Nile virus (WNV) 

disease. This phenotype was also associated with region-specific differences in WNV 

replication, with higher levels of viral RNA observed in the brainstem of SARM knockout 

mice (Szretter et al., 2009). Recently, Ddrosophila SARM has been shown to be involved 

in axonal degradation. SARM knockout neurons in slice cultures exhibit reduced cell death 

in response to oxygen/glucose deprivation (Osterloh et al., 2012).  

 

1.6    Negative regulation of TLR signalling 

Defects in TLR signalling make the host susceptible to various pathogens. However, 

stimulation of TLRs by microbial components can triggers excess production of 

inflammatory cytokines such as TNF-α, IL-6 and IL-12, which may lead to systemic 

disorders with a high mortality rate in the host (Takeda and Akira, 2005). To control TLR 

signalling, a number of negative regulators are upregulated and serve to modulate the TLR 

immune response through negative feedback mechanisms (Figure 1.6). Others negative 

modulators of TLR signalling are constitutively expressed and control primary TLR 

signalling events. Together these molecules serve to prevent potentially harmful immune 

responses (Janssens et al., 2002). In addition, anti-inflammatory factors produced indirectly 

during immune responses can also negatively regulate TLR signalling. Such potent anti-
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inflammatory factors include TGFβ, IL-10 and steroid hormones (Janssens et al., 2002; Lee 

and Kim, 2007).  

 Negishi et al. (2005) showed that IRF4 inhibited the expression of MyD88-

dependent and IRF5-dependent genes following TLR stimulation. Moreover, it was found 

that TLR activation induced IRF4 mRNA, which competes with IRF5, for interaction with 

MyD88. In addition, TLR-dependent induction of proinflammatory cytokines is markedly 

enhanced in peritoneal macrophages derived from IRF4-deficient mice, whereas the pro-

inflammatory cytokine induction is inhibited by ectopic expression of IRF4 in a 

macrophage cell line (Negishi et al., 2005).  Dok1 and Dok2, downstream adaptors of 

protein tyrosine kinases, are constitutively expressed and activated within minutes 

following TLR4 stimulation (Shinohara et al., 2005). These proteins specifically inhibit the 

extracellular-signal-regulated kinases (ERK) pathway, but not the pathways involving p38, 

JNK, and NF-κB. The inhibition seems to be specific for TLR4 (Shinohara et al., 2005). 

Other TLRs regulators include β-arrestin 1 and β-arrestin 2. It has been demonstrated that 

β-arrestin 1 and β-arrestin 2 interact with TRAF6 after TLR activation in macrophages. 

This interaction inhibits TRAF6 autoubiquitination and concomitant NF-κB and AP-1 

activation. Endotoxin treated β-arrestin 2 deficient mice had higher expression of pro-

inflammatory cytokines and were more susceptible to endotoxic shock (Wang et al., 2006). 

Recently, Xia et al. (2011) showed that Nucleotide-binding oligomerization domain protein 

26 (NLRX1), a NOD-like receptor family member, negatively regulates TLR-mediated NF-

κB activation. NLRX1 interacts with TRAF6 or IκB kinase (IKK) upon LPS stimulation 

resulting in inhibition of IKKα and IKKβ phosphorylation and NF-κB activation. In 

addition, knockdown of NLRX1 in various cell types enhances IKK phosphorylation and 

production of NF-κB-responsive cytokines after LPS stimulation. Knockdown of NLRX1 

in mice markedly enhanced their susceptibility to LPS-induced septic shock and levels of 

plasma IL-6 (Xia et al., 2011). In addition to the negative regulators of the MyD88 and 

TRIF pathways that have been mentioned described herein, TLRs can be negatively 

regulated by nuclear receptors, including the glucocorticoid receptor (GR), liver X 

receptors (LXRs) and peroxisome proliferator-activated receptor γ (PPARγ) (lee and Kim, 

2007). 
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Figure 1.6: The negative regulators of TLR signalling pathways. The negative 

regulators were marked in brown near to their targets proteins. Triad3A, acts as an E3 

ubiquitin-protein ligase and enhances ubiquitination and proteolytic degradation of certain 

TLRs. Suppressor of cytokine signalling (SOCS)-1 interacts with Mal and induces its 

polyubiquitination and subsequent proteasomal degradation and their by act as negative 

regulator of TLR2 and TLR4 signalling. The Tripartite-motif protein (Trim) 30α act as a 

negative regulator of TLR-mediated NF-κB activation by targeting TAB2 and TAB3 for 

degradation. Radioprotective 105 (RP 105) and its helper molecule, MD-1, have a physical 

association with TLR4/MD2, and this association inhibits LPS-TLR4/MD2 complex 

formation. Other negative regulators such as IRF4, MyD88s, IRAKM, SARM and SHP2 

were discussed in more details in the text (Adapted from Wang et al., 2009). 
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1.7    Role of TLRs in human disease 

Different mutation of the TLRs and many experimental models have revealed the 

significance of TLRs in susceptibility to infection and their involvement in the patho-

genesis of a number of non-infective inflammatory disorders such as cancer, allergy, 

autoimmunity, inflammatory bowel disease and atherosclerosis (Montero and Martin, 

2009). For example, a clear role for TLR4 in sepsis, rheumatoid arthritis (RA) and allergy 

is documented (O’Neill et al., 2009; Shotorbaniet al., 2011). TLR2 has been implicated in 

similar pathologic conditions and also in systemic lupus erythematosus (SLE) and tumor 

metastasis. Also, TLR7 has also been implicated in SLE (O’Neill et al., 2009; Shotorbaniet 

al., 2011). 

Atherosclerosis is considered as a disease whereby excessive inflammation of endothelium 

and smooth muscle cells of the artery wall is evident. The TLRs have been reported to 

participate in the initiation and development of atherosclerosis (Schoneveld et al., 2008). 

Specifically, increased TLR2 and TLR4 mRNA expression in atherosclerotic plaques and 

on circulating blood cells during atherosclerotic lesion development was reported (Curtiss 

and Tobias, 2009; Schoneveld et al., 2008). Moreover, other reports have suggested that 

polymorphisms in the human TLR4 gene are associated with the development and 

progression of atherosclerosis (Kiechl et al., 2002).TLR dysregulation has been reported in 

patients with inflammatory bowel disease (IBD). Pathophysiological features of IBD 

include uncontrolled excessive inflammation in the gastrointestinal mucosa and the 

upregulation of proinflammatory and T cell cytokines. While TLR3 expression was 

reported to be downregulated, TLR4 expression was upregulated during the IBD (Cario and 

Podolsky, 2006). Results have also suggested that TLR2 and its co-receptors TLR1 and 

TLR6 are involved in the initial immune response to bacteria in the pathogenesis of IBD 

(Pierik et al., 2006). 

 Functional TLRs are expressed in a wide variety of tumours and evidence suggests 

that TLR signalling pathways in tumours may be associated with subversion of host 

defense in favour of the neoplastic process (Huang et al., 2008). It is suggested that 

activation of tumoral TLRs induces the synthesis of proinflammatory factors and 

immunosuppressive molecules. These enhance the resistance of tumour cells to cytotoxic 

lymphocyte attack and facilitate their evasion or, may promote proliferation and survival of 
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tumour cells by inducing the release of cytokines such as IL-6, IL-13,TNF-α and other 

growth factors (Huang et al,. 2005). Moreover, it has been reported that TLRs induce 

resistance to apoptosis, increase angiogenesis and vascular permeability, and enhance 

tumour cell invasion by regulating metalloproteases and integrins. (Huang et al., 2008; 

Wang et al., 2003). Other studies have directly demonstrated that NF-κB plays a pivotal 

role in TLRs-induced tumourgenesis when TLRs are activated by their ligand, as 

constitutively active NF-κB is often found in a number of human malignancies ((Palayoor 

et al., 1999; Pikarsky et al., 2004). However, there are studies suggesting that TLR3 

triggers apoptosis of human prostate cells and breast cancer cells. Because apoptosis may 

be a potent mechanism of eliminating tumor cells, these results suggest that TLR3 or TLR3 

ligands may be very useful tool for cancer therapy (Salaun et al., 2006;  Paone et al., 2008). 

SLE is a complex chronic inflammatory disease that arises spontaneously and can affect the 

skin, joints, kidneys, lungs, nervous system, and other organs (Marshak-Rothstein, 2006). 

Nucleic acid-sensing TLRs (TLR3, 7, 8 and 9), particularly TLR7, have been implicated in 

SLE and are thought to exacerbate the disease pathology. Single nucleotide polymorphism 

analyses as well as experimental mouse models have shown that TLRs are involved in SLE. 

Regarding the role of TLRs in SLE, it has been proposed that TLRs may be stimulated by 

exogenous antigens, like viral ssRNA, which then stimulate resident immune cells, or the 

TLRs may recognise endogenous self-antigens, thus initiating and propagating 

inflammation and autoimmunity (Montero and Martin, 2009; Horton et al., 2010). The 

involvement of the TLRs in such disease makes them important targets for the development 

of new vaccines and innovative therapies to prevent and treat human diseases. 

 RA is a chronic autoimmune disease that is characterised by inflammation of the 

synovial joints, which leads to joint destruction (McCormack et al., 2009; Shotorbaniet al., 

2011). Roelofs et al. (2005) showed that TLR2, TLR3, TLR4 and TLR7 expression was 

markedly increased in synovial tissue from RA patients, compared with synovial tissue 

from healthy controls. Moreover, DCs from RA patients have been shown to produce 

increased levels of the pro-inflammatory cytokines TNF-α and IL-6 upon engagement of 

TLR2 or TLR4, but not TLR3 and TLR7 (Roelofs et al., 2005). Other studies have shown 

that inhibition of TLR4 suppresses the severity of experimental arthritis and results in lower 

IL-1 expression in arthritic joints (Abdollahi-Roodsaz et al., 2007). In addition, clinical and 
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histopathological evaluation of IL-1/TLR2 deficient mice revealed that they presented with 

a more severe arthritis when compared to wild-type counterparts. In contrast, IL-1/TLR4 

deficient mice were protected against severe arthritis and had markedly lower numbers of 

Th17 cells and a reduced capacity (Abdollahi-Roodsaz et al., 2008). 

 

1.8    Project Aims 

The present available knowledge regarding how TRIF activate and transmit TLR signalling 

pathways is much less compared to MyD88-dependent signalling pathways. As mention 

earlier, TLRs activation has been linked to the pathogenesis of infectious disease, tumor 

growth and rheumatoid arthritis. Specifically the TRIF pathways have been shown to have 

a close tie with these diseases (Ouyang et al., 2007, Shotorbaniet al., 2011). Nevertheless, 

better understanding of the TRIF signalling pathways would be therapeutically useful for 

the development of vaccines and treatments that could control disease associated 

inflammations and anti-viral responses. Therefore, the main objectives of this project were: 

1. To characterise the time dependent association of known/unidentified proteins with 

TRIF.  

2. To identify possible differential association of proteins with TRIF following TLR3 

versus TLR4 ligand engagement.  

3. To functionally characterise selected novel TRIF interacting molecules towards a 

greater understanding of TRIF signalling following TLR3/4 ligand engagement.

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ouyang%20X%22%5BAuthor%5D
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2.1    General Materials 

See Appendix 2. 

 2.2    Methods 

2.2.1    Cell culture techniques 

All mammalian cells were grown at 37 
o
C in a humid environment with 5 % CO2 in the 

appropriate complete growth culture medium, DMEM or RPMI supplemented with 10 % 

(v/v) FBS 1 % (v/v) penicillin/streptomycin, 1 % (v/v) fungzone, and 1 % (v/v) Sodium 

Pyruvate. Specifically HEK293-TLR3 cells were cultured in complete DMEM containing 

10 mg/ml blasticidin. HEK293-TLR4 cells were cultured in complete DMEM containing 

10 mg/ml blasticidin and 100 mg/ml hygrogold. Human Astrocytoma U373-CD14 cell line 

was cultured in complete RPMI containing 250 μg/ml G418. Adherent cell monolayers 

were detached from tissue culture flasks using trypsin/EDTA, and split every 3-4 days at a 

ratio 1:5 or 1:10 depending on cell growth. 

 

2.2.2    Cell stock freezing and resuscitation 

Adherent cells were trypsinised, re-suspended in full growth medium, and centrifuged at 

380 g for 5 min. Pelleted cells were re-suspended in freezing medium (90 % (v/v) FBS, 10 

%  (v/v) DMSO) and aliquoted into cryovials. Cell stocks were frozen at -80 
o
C for 4 hours 

before long-term storage in liquid nitrogen. For resuscitation of the cells, cryovials were 

thawed at 37 
o
C, and cells were re-suspended in full growth medium before centrifugation 

at 380 g for 5 min. Medium was removed and cell pellet was then re-suspended and grown 

in complete growth medium (DMEM, 10 % (v/v) FBS, 1 % (v/v) penicillin/streptomycin, 1 

% (v/v) fungzone and 1 % (v/v) Sodium pyruvate) at 37 
o
C in a humidified atmosphere of 5 

% CO2. Cells were selected after becoming confluent in appropriate selection medium as 

mentioned earlier.  

 

2.2.3    Transfection of cells with plasmid and esiRNA 

Transfection of cells with plasmid DNA was carried out using Lipofectamine 2000 

transfection reagent (Invitrogen) according to the manufacturer’s instructions. Transfection 
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of esiRNA was performed using DreamFect
™

 Gold (OZ Bioscience) according to the 

manufacturer’s instructions. 

 

2.2.4    Transformation of competent cells 

Plasmid DNA (5 μl; ~100 ng) was added directly to 100 μl of thawed, E. coli DH5α 

competent cells (Invitrogen) and incubated on ice for 30 min. Thereafter, cells were 

transferred to a 40 
o
C heat block for 30 s before being immediately returned to ice for a 

further 2 min. Cells were re-suspended in 0.5 ml LB broth and incubated at 37 
o
C with 

gentle shaking for 1 hour. The microfuge tube was briefly centrifuged and the upper 

medium was removed. Approximately 100 μl of the transformed bacteria were plated out 

onto LB-agar plates supplemented with 100 μg/ml ampicillin. Plates were inverted and 

incubated at 37 
o
C overnight. 

 

2.2.5   Preparation of plasmid DNA 

Single colonies were inoculated into 5 ml of LB broth containing 100 μg/ml ampicillin at 

37 
o
C with gentle shaking for 4-5 h. Thereafter, the inoculum was transferred to a conical 

flask containing 95 ml of LB broth and 100 μg/ml ampicillin and incubated overnight at 37 

o
C with gentle shaking. Bacterial cells were pelleted by centrifugation (380 g, 30 min at 4 

o
C). DNA was extracted from the cells using the High Speed Midi Kit as described by the 

manufacturer (QIAGEN). The DNA concentration determined using the NanoDrop ND-

1000 spectro-photometer (Thermo Scientific).  

 

2.2.6    Glycerol stocks 

The transformed cells (600 μl) were mixed with 800 μl of 50 % glycerol in a cryovial and 

stored at -80 
o
C. The stocks were used to inoculate 100 ml liquid cultures as necessary. 

 

2.2.7   Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed based on Laemmli method and carried out using the mini-gel 

system (Biorad). Plates were first arranged in the relevant casting rig and the system was 

checked for leaks. 10 % acrylamide resolving gels were prepared based on the recipe given 

(Table 2.2.1) and topped with dH2O to ensure a flat surface, prevent drying and air bubbles 
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forming. The resolving gel was poured such that adequate provision was made to allow for 

the stacking gel to be poured. The resolving gel was let set for between 5-30 minutes. The 

5 % stacking gel was prepared as described (Table 2.2.2). The dH2O was decanted from the 

gel. The stacking gel was then poured followed by placing the appropriate spacer comb in 

the gel to form the loading well and the stacking gel was allowed to polymerise for between 

5-30 minutes. The comb was then removed from the gel and the gel was transferred from 

the casting rig to the electrophoresis chamber (Biorad). The chamber was then filled with 

1x running buffer (Table 2.2.4). The samples to be analysed were then mixed with 5x 

loading buffer (Table 2.2.5), followed by boiling at 100 
o
C for 5 min prior to the loading in 

the wells. Routinely, precision plus dual colour standards protein marker (Bio-Rad) was 

loaded and served as molecular weight reference. Electrophoresis was performed at 100 V 

for 2-3 h. Gels were then carefully removed from electrophoresis chamber and casting rig 

and the 5 % stacking gel was cut away and discarded. The gels were then stained or 

subjected to western blot.  

 

2.2.8    Western blot 

Proteins were transferred to polyvinylidene difluoride membrane (PVDF; Millipore), using 

a wet transfer apparatus. Briefly, PVDF membranes were first activated by soaking them in 

methanol for 1 min followed by washing in 1x transfer buffer (Table 2.2.7). The gels and 

the membranes were sandwiched between wet sponge and papers, (sponge, papers, gel, 

membrane, papers, sponge). All sandwiches were clamped tightly after ensuring that there 

is no air bubbles between the gel and the membrane. The sandwiches were then placed in 

the transfer chamber (Fisher Scientific), and the chamber was filled with 1x transfer buffer 

(Table 2.2.7). Transfer was carried out at 200 mA for 1.5 h or overnight at 30 mA. The 

PVDF membrane were then blocked in 5 % (w/v) fat free dry milk in TBST for at least 1 h 

at RT, and then washed with TBST (Table 2.2.9). Primary antibodies were diluted in 5 % 

(w/v) fat free dry milk in TBST or 5 % (w/v) BSA in TBST. Membranes were then 

incubated overnight at 4 
o
C with primary antibody at an appropriate dilution on a roller. 

After multiple washes with TBST, the membrane was incubating with a horseradish 

peroxidase (HRP)-conjugated secondary antibody raised against the appropriate species, 

diluted (1:2000) in 5% (w/v) fat free dry milk in TBST for 1 h. Unbound antibody was 
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washed  away with TBST and specific polypeptide bands were visualized using supersignal 

westdura (Fisher) and then images were captured using the GeneSnap acquisition and 

GeneTools analysis software, (GeneGenius Gel Documentation and Analysis System; 

Syngene). 

 

2.2.9    Immunoprecipitation of HA-TRIF 

HEK293-TLR3 and HEK293-TLR4 were plated into 6 well plates. After 24 h, cells were 

co-transfected with the indicated plasmid using Lipofectamine 2000 (Invitrogen) according 

to the manufacturer’s instructions. The total amount of DNA (3 µg/well) was kept constant 

by the addition of empty vector. After 20 h, the transfected cells were stimulated with the 

TLR ligands (20 μg/ml poly(I:C) HEK293-TLR3 or 1 μg/ml LPS HEK293-TLR4) for the 

indicated time. The cells were lysed in 600 µl of lysis buffer  (50 mM HEPES, pH 7.5, 150 

mM NaCl, 2 mM EDTA, pH 8.0, 1 % NP-40, 0.5 % sodium deoxycholate supplemented 

with 1 mM PMSF, 1 mM DDT, 1 mM NaVO3, (5mM EGTA for co-IP TRIF and 

ADAM15) and protease inhibitor cocktail) and left on ice for 20 min. The lysates were 

subjected to centrifugation for 5 min (15620 g at 4 
o
C) to remove cell debris. Next, 1 μg of 

mouse monoclonal anti-HA antibody (Covance) was incubated with 50 μl A/G Plus-

agarose beads (Santa Cruz) overnight at 4 °C with gentle shaking. Cleared cell lysates were 

mixed with the beads and incubated for 2 h at 4 
o
C with gentle shaking. 

Immunoprecipitated complexes were washed at least 4 times with lysis buffer followed by 

centrifugation for 2 min at 220 g.  Proteins were resolved from the beads by the addition of 

40 μl of loading buffer, followed by boiling for 5 min. Thereafter, samples were separated 

by SDS-PAGE gel electrophoresis followed by staining or immunoblot analysis.   

 

2.2.10    Immunoprecipitation of endogenous TRIF 

Human astrocytoma U373-CD14 cells were plated onto T175 flasks. When the cells 

become confluent (90-95 %), cells were stimulated with 20 µg/ml poly(I: C) or 1 µg/ml 

LPS for different time points as indicated. After that the medium was removed from the 

cells and cells were scraped in 10 ml of ice-cold PBS and centrifuged for 10 minutes (220 g 

at 4
o 
C). Cells were lysed in 600 μl of lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 

2 mM EDTA, pH8.0, 1 % NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM 
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PMSF, 1 mM DDT, 1 mM NaVO3, (5 mM EGTA for co-IP TRIF and ADAM15) and 

protease inhibitor cocktail) and left on ice for 20 min. The lysates were subjected to 

centrifugation for 5 min at 15620 g at 4 
o
C to remove cell debris. Next, precoupling of the 

antibody to beads was performed by incubating 2 μg of anti-TRIF polyclonal antibody 

(Exalpha) with 50 μl slurry of Protein A/G Plus–agarose (Santa Cruz) overnight at 4 
o
C 

with gentle shaking. Next, 500 μl of the cleared cell lysates was added to the precoupled 

beads and incubated at 4 
o
C for 2 h with gentle shaking. The beads were washed 4 times 

with lysis buffer. Immunoprecipitated complexes were separated by SDS-PAGE and 

subjected to immunoblotting.  

 

2.2.11    Silver staining 

After electrophoresis, gels were placed into fixing solution (30 % (v/v) ethanol, 10 % (v/v) 

acetic acid) for a minimum of 30 min. The gels were then rinsed in 20 % (v/v) ethanol 

twice for 10 min, which was followed by washing twice in milliQ dH2O (10 min per wash). 

The water was removed and sensitising solution (0.8 mM sodium thiosulfate) was poured 

onto the gels for one min after which the gels were once again washed twice in milliQ 

dH2O (2 min per wash). The gels were then stained with staining solution (12 mM silver 

nitrate) for 20 min to 1 h. After the staining solution was removed, the gels were washed in 

milliQ dH2O for 10 s. Next, the developing solution (0.04 % (v/v) formaldehyde in 3 % 

(w/v) sodium potassium carbonate) was added to the gel. Once the protein bands were 

visualised, the gels were placed in stop solution (2 % (v/v) acetic acid in 0.3 M TRIS) for 

storing. 

 

2.2.12    Gel de-staining and sample preparation for Mass Spectrometry (MS) 

Bands from a 1D gel protein gel were excised from the control and experimental lanes and 

placed into siliconised 1.5 ml Eppendorf tubes (Sigma-Aldrich). Silver-stained proteins 

were destained with chemical reducers to remove the silver. The reactive substances of the 

chemical reducers were potassium ferricyanide and sodium thiosulfate. These chemical 

agents were prepared prior to digestion as two stock solutions of 30 mM potassium 

ferricyanide and 100 mM sodium thiosulfate, both dissolved in water. A working solution 

was prepared by mixing a 1:1 ratio of the above stock solutions. This working solution was 
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unstable, and therefore had to be prepared fresh for each reaction. Working solution (50 μl) 

was added to cover the gel plugs and occasionally vortexed. The stain intensity was 

monitored until the brownish colour disappeared, then the gel plugs were rinsed a few times 

with water to stop the reaction. Cysteine residues were reduced and alkylated using DTT 

and Iodoacetamide (IAA) as follows. Briefly, 50 μl 10 mM DTT (in 100 mM NH4HCO3) 

was added to each tube followed by shaking at 56 
o
C for 1 h. The tubes were centrifuged 

briefly and the solution was removed and 50 μl of 50 mM IAA (in 100 mM NH4HCO3) was 

added and incubated for 30 min in the dark at RT with gentle agitation. After brief spinning 

the solution was removed and gel plugs were washed with sequential additions of 

ammonium bicarbonate (NH4HCO3) and acetonitrile (ACN). First, 300 μl of 100 mM 

NH4HCO3 was added to each tube and incubated for 15 minutes at 37 
o
C with gentle 

agitation, followed by addition 1:1 of 20 mM NH4HCO3/ACN for 15 min at 37 
o
C with 

gentle agitation. Finally, the gel pieces were dehydrated in 100 % ACN for 10 min at 37 
o
C 

with gentle agitation. Samples were digested with 4 ng/μl trypsin (Promega) at 37 
o
C 

overnight. Peptide were extracted using 2:1 ACN: 5 %  (v/v) trifluotoacetic acid (TFA) for 

15 min at 37 
o
C with gentle agitation, dried by vacuum centrifugation overnight at RT and 

stored -20 
o
C for subsequent MS analysis. On the day of MS analysis, samples were re-

suspended in 20 μl of 0.1 % TFA and centrifuged at 13680 g at 4 
o
C for 15 min, then 

filtered and centrifuged at 13680 g for 5 min at 4 
o
C. From each sample, 10 μl was pipetted 

into MS vials (Agilent) for subsequent protein identification. 

 

2.2.13    Ion Trap Mass Spectrometry 

The mass spectrometric analysis of peptides was performed at the Proteomics Suite of the 

Department of Biology, National University of Ireland Maynooth, using a Model 6340 Ion 

Trap LC/MS apparatus (Agilent Technologies). Peptides were separated using a nanoflow 

Agilent 1200 series system, equipped with a Zorbax 300SB C18 5 μm, 4 mm 40 nl pre-

column and an Zorbax 300SB C18 5 μm, 43 mm x 75 μm analytical reversed phase column 

using HPLC-Chip technology. The mobile phases utilised were A: 0.1 % formic acid, B: 

50 % acetonitrile and 0.1 % formic acid. Samples (5 μl) were loaded into the enrichment 

column at a capillary flow rate set to 4 ml/min with a mix of A and B at a ratio 19:1 (v/v). 

Tryptic peptides were eluted with a linear gradient of 10-90 % solvent B over 15 min with a 
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constant nano pump flow rate of 0.60 ml/min. The capillary voltage was set to 1900 V and 

the flow and the temperature of the drying gas were 4 l/min and 300 ˚C, respectively. A 1 

min post time of solvent (A) was used to remove sample carry over. For protein 

identification, database searches were performed using the Mascot MS/MS Ion search 

(Matrix Science, London, UK). All searches used Homo sapiens (human) as taxonomic 

category and the following parameters: (i) two missed cleavages by trypsin, (ii) mass 

tolerance of precursor ion 1.2 Da and product ions 1 Da, (iii) carboxymethylated cysteine 

fixed modification, and (iv) oxidation of methionine as variable modification. Pathway 

studio software (Ariadne genomics) was used to visualize the interconnectivity between the 

identified protein hits and to make network interaction maps.  

 

2.2.14    RNA isolation using TRIZOL reagent 

Cells were seeded into 6 well plates and treated/transfected as required for the experiments. 

Thereafter, the medium were removed and cells were lysed in 1 ml of TRIZOL (Invitrogen) 

then 0.2 ml of chloroform (5:1 v/v chloroform) was added followed by mixing and incubation 

for 10 min at RT. The mixture was subjected to centrifugation at 15620 g for 15 min at 4 oC. 

After centrifugation, the mixture was separated into lower phenol-chloroform phase (red) and 

upper aqueous phase (colourless). RNA remained exclusively in the aqueous phase. Next, 500 

μl of the upper aqueous phase was transfered into fresh tube, and RNA was precipitated by 

addition of 500 μl isopropyl alcohol. The mixture was incubated for 10 min at RT, followed by 

centrifugation at 15620 g for 15 min at 4 oC. The supernatant was removed and the RNA pellet 

was washed once with 500 μl 75 % ethanol and centrifuged at 13680 g for 5 min at 4 oC. The 

ethanol was removed and the pellet was air drieded for 5 min at RT. The RNA was dissolved in 

30 μl RNAase free water (Sigma), and the RNA concentration was measured using a 

NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Samples were stored at -20 
o
C 

until required for first strand cDNA synthesis. 

 

2.2.15    First-strand cDNA synthesis 
 

Total cellular RNA (1 μg) was mixed with 1 μl of random hexamers primers (500 μg/ml)  

(Fisher scientific) and water to make a final volume of 17 μl. The mixture was incubated at 

70 
o
C for 5 min. The mixture was then briefly centrifuged and chilled on ice for 2 min. 
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Next, 5 l of 5x reaction buffer, 1.3 l deoxynucleotides (10 mM dNTP), 0.7 μl Rnase 

inhibitor and 1 l MMLV reverse transcriptase were then added to give a final reaction mix 

of 25 μl. The cDNA synthesis was performed by incubation the reaction mixture in a 

thermocycler at 37 
o
C for 40 min followed by incubation at 42 

o
C for 40 min. Reactions 

were heat inactivated at 80 
o
C for 10 min then held at 4 

o
C. The samples were stored at -20 

o
C until required for PCR.

 

 

2.2.16    PCR 

The first strand cDNA samples were diluted 1:5, then 3.5 μl was used per PCR reaction. 

Next, 5 l of 5x reaction buffer, 2 l of 2.5 mM dNTP, 2 l of 25 mM MgCl2, 2.1 l H2O, 

1.5 l of 20 M forward and reverse primers, 7.5 l of 50 % glycerol and 0.4 l of Taq 

DNA polymerase  were then added to give a final reaction mixture of 25 µl. The samples 

were placed in a Thermocycler (Eppendorf) and the samples were subjected to the 

following cycling conditions: (1) 95 
o
C, 3 min, (2) 94 

o
C, 1 min, (3) 60 

o
C, 30 s (4) 72 

o
C, 1 

min (5) repeat 2 to 4 for 35 cycles, (6) 72 
o
C, 7 min (8) 80 

o
C, 10 min (9) hold at 4 

o
C. 

Samples were subjected to agarose gel electrophoresis. 

 

2.2.17    Real time PCR 

The cDNA samples were used as template and diluted 1:25, then 2.5 μl was used per each 

reaction. Next, 2.5 l of 4 M of both forward and reverse primers, 2.5 l H2O and 10 l of 

Sybr green mater mix (2x) were added to give a final reaction mixture of 20 μl. The 

reactions were performed in duplicate using an Opticon 2 Thermocycler (MJ Research), 

and the samples were subjected to the following cycling conditions: 15 min at 95 
o
C to 

denature the cDNA, followed by 37 cycles of (1 min at 94 
o
C, 15 s at 60 

o
C to permit 

primer annealing, followed by 30 s at 72 
o
C for elongation). The melting curve from 65 

o
C 

to 95 
o
C was recorded every 1 

o
C. 

 

2.2.18    Agarose gel electrophoreses 

Agarose gels were prepared by adding appropriate amount of agarose (depending on the 

required concentration) to TAE (0.04 M Tris-acetate, 1 mM EDTA, pH 8.0) and 

microwaving until the agarose melted. The molten agarose was allowed to cool down, then 
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mixed with 1:10000 dilution of Sybr safe DNA gel Stain (Invitrogen). The agarose was 

poured into a casting tray and a plastic comb was inserted to create the wells and then 

allowed to solidify. The plastic comb was removed and the agarose gel was placed into the 

electrophoresis unit (Hoefer Scientific Instruments). The gel was then covered with TAE 

running buffer. Next, 15 µl of the RT-PCR product was loaded into the well. A voltage of 

100 V was applied to the gel apparatus until sufficient separation was obtained. The DNA 

gel bands were visualized and photographed using the G:box documentation system 

(Syngene). 

 

2.2.19    Reporter assays 

 HEK293-TLR3 and HEK293-TLR4 cells were seeded into 96 well plates (5 x 10
4 

cells/well). After 24 h, cells were co-transfected with vectors encoding either a reporter 

gene for the IFN promoter (p125), IFNβ PRDII, IFNβ PRDIII, NF-κB, or Rantes promoter 

(80 ng/well) and either empty vector or increasing amounts of an expression vector 

encoding full length V5-ADAM15, Myc-DVL1 Myc-DVL2, Myc-DVL3, and Optineurin 

as indicated using lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions. A total of 40 ng/well Renilla-luciferase reporter gene was transfected 

simultaneously as an internal control. After 24 h, HEK293-TLR3 were stimulated with 20 

µg/ml poly(I:C)  and HEK293-TLR4 were stimulated with 1 µg/ml LPS for additional 24 h. 

Thereafter, cell lysates were prepared and reporter gene activity was measured using the 

Dual-Luciferase Assay system (Promega). Data were expressed as the mean fold induction 

relative to the control. HEK-293T cells were seeded into 96 well plates (5 x 10
4 

cells/well). 

After 24 h, cells were co-transfected with vectors encoding either a reporter gene for the 

IFN-β promoter (p125), IFNβ PRDII, IFNβ PRDIII, NF-κB, or Rantes (80 ng/well) and 

either empty vector or vector encoding full length HA-TRIF or, vector encoding full length 

Myc-MyD88 (20 ng/well) and increasing amounts of an expression vector encoding V5-

ADAM15, Myc-DVL1, Myc-DVL2, Myc-DVL3, and  Optineurin as indicated using 

lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. A total of 40 

ng/well Renilla-luciferase reporter gene was transfected simultaneously as internal control. 

After 24 h, cells were harvested and cell lysates were prepared followed by assessment of 
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reporter gene activity using the Dual-Luciferase Assay system. (Promega) Data were 

expressed as the mean fold induction relative to the control. 

 

2.2.20    Enzyme-Linked Immunosorbent Assay (ELISA) 

Microtitre plates (Fisher Scientific) were coated with appropriate capture antibody (1 μg/ml 

for TNFα and Rantes, 2 μg/ml for IL-6) overnight at RT. The following day, the plates 

were washed three times with wash buffer (PBS containing 0.05 % (v/v) Tween-20) 

followed by blocking with blocking buffer (PBS containing 1 % BSA) for at least 2 h. The 

plates were then washed three times with wash buffer. Next, serial dilutions of the 

standards (ranging from 0 to 4000 pg/ml; 100 l/well) and the samples were added (100 

μl/well) followed by incubation at 4 
o
C overnight. Next day, the plates were washed three 

times with the wash buffer followed by the addition of the appropriate detection antibody 

(0.2 μg/ml for IL-6, 0.25 μg/ml for Rantes and 0.5 μg/ml for TNFα) for 2 h at RT. The 

plates were washed three times with the wash buffer followed by the addition of the 

streptavidin-HRP conjugate antibody (1:2000 for Rantes and TNFα; 1:200 for human IL-6) 

for 30 min. Thereafter, the plates were washed three times with the wash buffer followed 

by the addition of the substrate. Plates were incubated at RT for 5 min with gentle shaking. 

The absorbance was measured at 450 nm using a BioTek plate reader. 

 

2.2.21    Meso Scale Human 7-Plex / MMP 3-Plex / IFN-β / RANTES Assay 

Levels of IFN-γ, IL-10, IL-12 p70, IL-1β, IL-6, IL-8, and TNFα in cell free supernatants 

were measured using a Meso Scale 96-Well plate Human 7-Plex ultra-sensitive assay kit or 

a Meso Scale MMP 1, MMP 3, and MMP 9 96-Well MMP 3-plex ultra-sensitive assay kit 

(Meso Scale Discovery (MSD)). Levels of IFN-β and RANTES were measured using a 

Single Plex assay kit (Meso Scale Discovery). The human single/multiplex assay detected 

the respective cytokine/chemokines/MMPs in a sandwich immunoassay format. MSD 

supplied a 96 well ultra-sensitive plate precoated with the respective cytokine 

/chemokine/MMP capture antibodies on spatially distinct spots on the plate.  First, the pre-

coated single/multiplex plate was incubated for 30 min at RT with 25 µl/well of Diluent 2 

with vigorous shaking. Next, the cell free supernatants or appropriate dilution of the 

calibrator (highest calibrator point was obtained by diluting the stock calibrator 10-fold in 
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Diluent 2 and from this an 8 point standard curve with a 4-fold serial dilution was prepared-

assay range 500,000 to 0 pg/ml (MMP3-multiplex), 2500 to 0 pg/ml (7 multi plex and 

Rantes), 25000 to 1.5 pg/ml for IFNβ) were added to the appropriate wells of the MSD 

plate in duplicate. The plate was sealed with an adhesive seal and incubated for 2 h with 

vigorous shaking at RT. Next, the plate was washed three times with wash buffer (PBS, 

0.05 % Tween 20 (PBST)) and was pat dry. Next, the working concentration of Sulfo-tag 

detection antibody was prepared as followed. Briefly, the 50x stock sulfo-tag was diluted to 

a final working concentration of 1x by adding 60 µl of the stock to 2.94 ml of Diluent 3 

supplied with the kit.  Next, 25 µl of the 1x working concentration of Sulfo-tag detection 

antibody was added to each well of the MSD plates followed by sealing of the plates and 

incubation for 2 h at RT with vigorous shaking. Next, the plates were washed three times 

with PBST followed by the addition of 150 µl/well of 2x Read Buffer T to each well of the 

MSD plates. Analysis of the plates was performed using a SECTOR Imager and data 

analysis was performed using the MSD Discovery Workbench analysis software. 

 

2.2.22    Immunofluorescence 

Cells were cultured on Collagen precotaed glass coverslip into 6-well plates. After 24 h, 

cells were transfected with the indicated plasmids. After 24 h, cells were stimulated as 

indicated or left untreated (control). Therafter, cells were washed with PBS and fixed in 4 

% para- formaldehyde for 10 min. Cells were permeabilised using 0.5 % Triton X-100 in 

PBS for 5 min followed by blocking for at least 1 h in blocking  buffer (1 % BSA in PBS 

with 0.05 % (v/v) Tween-20). Next, primary antibodies were diluted (1:50) in the blocking 

buffer and vortexed well followed by centrifugation for 3 min at 15620 g. Next, 200 μl of 

the primary antibody was added to each coverslip followed by incubation for 2 h at RT. 

Thereafter, cells were washed three times (10 min/wash) with wash buffer (PBS containing 

0.05 % (v/v) Tween 20). The Alexa fluor secondary antibodies were diluted 1:200 in the 

blocking buffer, vortexed and centrifuged for 3 min at 15620 g. Then, 200 μl of the diluted 

secondary antibody mix was added to the coverslip followed by incubation for 1 h at RT in 

the dark. Unbound antibodies were removed by washing the coverslips with wash buffer. 

Next, the nuclei was stained with DAPI dye (10 μg/ml) in PBS for 5 min at RT in the dark. 

Coverslips were then washed with PBS, mounted on glass slides using Vectashield 
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mounting solution (Vector laboratories) and stored in the fridge until analysed. Images 

were captured using an Olympus 1000 confocal microscope and analysed using fluoview 

software. 

 

2.2.23   Statistics 

Statistical analyses were performed using Graphpad Prism 4 software. Differences were 

analysed using one-way and two-way ANOVAs and t-test. 
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3.1    Introduction 

Proteins interact with each other in a highly specific manner, and protein interactions 

play a key role in many cellular processes. Identifying and characterising protein-

protein interactions and their networks is essential for understanding the mechanisms of 

biological processes on a molecular level and is also a useful tool for identifying novel 

disease markers (Schoemaker et al., 2007). There are many approaches that allow the 

identification of interacting partners including, the yeast two hybrid system, immuno-

precipitation pull down assay (IP), chromatin immunoprecipitation (ChIP), in vivo  

fluorescence resonance energy transfer (FRET) and antibody arrays or protein chips 

(Yan and Chen, 2005; Byrum et al., 2011; Bailey et al; 2012).  

Proteomics has emerged as a field for studying global gene expression profiles 

at the protein level. In general, proteomics involves the identification of protein 

components and the measurement of protein abundance in biological systems such as 

cultured cells or tissue samples. The most popular use of the proteomic technology is 

the identification of protein complexes (Zhou and Veenstra, 2007). Currently, mass 

spectrometry (MS) has been overwhelmingly applied as the technology base for 

proteomics analysis. Proteins have been identified and quantified by characterisation of 

their derived peptides using either electrospray ionisation (ESI) or matrix assisted laser 

desorption/ionisation (MALDI)-based MS (Yan and Chen, 2005; Chakravarti et al., 

2002). 

Isolating the protein complex is the most critical step in determining the success 

of the downstream proteomic analysis. While advances in technology have had a huge 

impact, sample preparation issues related to isolation of protein complexes remain a 

critical factor in determining the success of these studies (Zhou and Veenstra, 2007). IP 

of protein complexes followed by liquid chromatography and mass spectrometry (LC-

MS) is a widely used method in proteomics research to identify proteins and to study 

protein-protein interactions. IP techniques allow purification of proteins of interest and 

reduce sample complexity before introduction to the mass spectrometer (lin et al., 2003; 

Zhou and Veenstra, 2007). The effectiveness of IP experiments is an important factor 

for identification of proteins and protein-protein interactions (Yang et al., 2009; Li et 

al., 2011).  
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As mentioned in Section 1.5.3, TRIF plays an important role in TLR3 and TLR4 

signalling pathways. Recent studies revealed that TRIF also involved in TLR2 and 

TLR5. However, the knowledge about how TRIF mediated TLR signalling and whether 

TRIF play another role in other signalling pathways is not fully understood. Analysis of 

TRIF intercome could lead to identification of novel TRIF interacting partners which 

will improve our knowledge about TRIF signalling. Therefore, it is of interest in this 

Chapter to use different strategies (Figure 3.1) to (1) characterise time dependent 

association of known-unknown proteins with TRIF and to (2) identify possible 

differential association of proteins following TLR3 and TLR4 ligand engagement.  
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Figure 3.1: Strategy adopted to identify TRIF binding partners. HEK293-TLR3 and 

HEK293-TLR4 cells were transfected with TRIF-HA for 20 h. Next, cells were 

stimulated with 20 μg/ml poly(I:C) (HEK293-TLR3) or  1 μg/ml LPS (HEK293-TLR4). 

Thereafter, cells were collected and immunoprecipitation of HA-TRIF was performed 

using 1 μg/ml of anti-HA antibody. Proteins were separated by SDS-PAGE and then the 

gels were silver stained. Visualized proteins band were cut in small pieces, destained 

and tryptic digested followed by protein identification using LC-MS analysis. 
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3.2    Results 

3.2.1    Immunoprecipitation of HA-TRIF  

To identify the proteins that interact with TRIF in a ligand and time dependent manner, 

HEK293-TLR3 and HEK293-TLR4 cells were transfected with HA-TRIF. After 20 h, 

cells were stimulated with the indicated ligand for the appropriate time followed by 

immunoprecipitation of HA-tagged TRIF. Correlating with previous report (Han et al., 

2004), TRIF overexpression caused cell death therefore experimental optimisation was 

required to achieve optimal TRIF expression with minimal cell death. It was found that 

transfection of cells in a 10 cm dish with 1-3 μg of TRIF resulted in minimal cell death, 

but TRIF expression was barely detectable. In contrast, transfection of cells with 5-10 

μg of TRIF resulted in massive cell death. It was consistently found that the optimal 

expression of TRIF with minimal cell death was achieved by overexpressing 3 μg of 

HA-TRIF into one well of a 6-well plate followed by cell harvesting 20 h after 

transfection. Thus, HEK293-TLR3 and HEK293-TLR4 were transfected with 3 μg of 

HA-TRIF or empty vector (EV) as negative control into one well of a 6-well plate. After 

20 h, cells were left untreated or stimulated with 20 μg/ml poly(I:C) (HEK293-TLR3) 

or 1 μg/ml LPS (HEK293-TLR4) for 20, 40 and 60 min, in duplicate to ensure adequate 

protein recovery. Thereafter, the cells were collected and TRIF IP was performed as 

described (Materials and methods, Section 2.2.9). It was evident that HA-TRIF 

expression was achieved in both cell types (Figure 3.2, panels A and C) at all-time 

points. It must be noted that whilst the predicted molecular weight of TRIF is 76-78 

kDa, routinely, in the current study, HA-TRIF was detected at approximately 100 kDa. 

This finding concurs with Dansako et al. (2009) who showed that overexpressed TRIF 

was detected at 102 kDa. Alterations in electrophoretic mobility may be attributed to 

post translational modification of TRIF, such as phosphorylation. An aliquot of the 

protein sample was subjected to SDS-PAGE followed by silver staining to visualise the 

protein bands (Figure 3.2, panels B and D). Each gel lane was cut into 24 gel pieces, 

followed by in-gel tryptic digestion and LC-MS analysis as described (Materials and 

methods, section 2.2.12). It is clear that many of the proteins detected were nonspecific 

since they also appeared in the control (EV). Further optimisation of the experimental 

procedure may be required to reduce nonspecific binding. However, this was beyond the 

scope of the current project. Herein, we opted to exclude any proteins that were 

identified by LC-MS in the EV lane. 
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Figure 3.2: Immunoprecipitation of HA-TRIF in HEK293-TLR3 and HEK293-

TLR4. (A, B) HEK293-TLR3 (C, D) HEK293-TLR4 were seeded into 6-well plates. 

When the cells were 80 % confluent, cells were transfected with 3 μg/well of EV or 3 

μg/well of HA-TRIF. After 20 h, cells were left untreated or stimulated with 20 μg/ml 

poly(I:C) (HEK293-TLR3) or 1 μg/ml (HEK293-TLR4) for the times indicated. 

Thereafter, cells were collected and lysed in  lysis buffer (50 mM HEPES, pH 7.5, 150 

mM NaCl, 2 mM EDTA, pH 8.0, 1 % NP-40, 0.5 % sodium deoxycholate, 

supplemented with 1 mM PMSF, 1 mM DDT, 1 mM NaVO3, and protease inhibitor 

cocktail). Cleared cells lysates were incubated with 1 μg of anti-HA monoclonal 

antibody precoupled with 50 μl A/G Plus-Agarose beads for 2 h at 4 
o
C with gentle 

shaking. Immunoprecipitated complexes were washed 4 times with lysis buffer, and 

proteins were released from the beads with the addition of 40 μl Laemmli loading 

buffer. Immunoprecipitated proteins and whole cell lysates (WCL) were separated by 

SDS-PAGE and subjected to immunoblot analysis using an anti-HA antibody panel (A 

and C). To visualize protein bands for tryptic digestion and LC-MS analysis, gels were 

silver stained (B and D). Images were captured using a G:Box system (Syngene). 
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3.2.2  Identification of HA-TRIF interactors 

Gel plugs were destained followed by tryptic digestion as described (Materials and 

methods, section 2.2.12) and analysed using Agilent 6340 Ion trap LC-MS machine. 

The MS spectra of the peptide ions were identified using the Mascot software 

programme (www.matrixscience.com) to search against the publicly available NCBI 

nonredundant protein database (www.ncbi.nlm.nih.gov). The results generated at each 

time point for each cell line was compared to the control (EV). Proteins which were 

similar to that identified in the control were excluded from further analysis and 

considered as unspecific binding. Proteins that interact with TRIF in a ligand 

independent manner and those that interact with TRIF in a poly(I:C) and LPS dependent 

manner are listed in the Appendix 1, Tables 3.1- 3.4 (HEK293-TLR3 cells) and Tables 

3.5- 3.8 (HEK293-TLR4 cells), respectively. In general, it was found that many 

interactors were unique to either TRIF-dependent TLR3 or TLR4 signalling. Many 

other proteins were identified as being present in the TRIF immunocomplex, regardless 

of the ligand used to stimulate the cell or the time of stimulation, e.g., Prohibitin, 

Prohibitin2, Transgelin and Menin. The proteins that interact with TRIF following time 

dependent poly(I:C) and LPS stimulation will be described in more detail. 

 

3.2.3  TRIF protein interaction networks  

A significant number of proteins were identified as TRIF interactors. To facilitate 

experimental data interpretation, a software package known as Pathway Studio 9.0 was 

utilised (www.ariadnegenomics.com). The software package contextualises proteins in 

terms of signalling pathways, gene regulation networks and protein interaction maps, 

and also permits the filtration of proteins that may involve in regulating TLR signalling 

and innate immunity. The software comes with a built-in resource termed ResNet which 

includes over 800,000 unique relationships derived from over 19 million PubMed 

abstracts as well as 61 full-text journals. The ResNet database also contains a collection 

of reference pathways comprise a large number of receptor signalling pathways and 

cellular process pathways. The proteins that were identified as TRIF interactors were 

selected and details (Swissprot number) of the selected proteins were uploaded to the 

Pathway Studio programme. Next, the relationships between the various proteins were 

defined using various parameters including direct interactions, common targets and cell 

http://www.matrixscience.com/
http://www.ncbi.nlm.nih.gov/
http://www.ariadnegenomics.com/


49 

 

process menus. In all cases, TRIF (termed TICAM-1 within the Pathway Studio 

Software) was included in each list as it was not identified by MS. 

3.2.3.1    poly(I:C)-independent TRIF interactors 

Following the identification of proteins that interact with TRIF in a ligand independent 

manner, the protein identities were uploaded to the Pathway Studio software program. 

A direct interaction network of the proteins that co-immunoprecipitated with TRIF 

independent of poly(I:C) stimulation in HEK293-TLR3 was generated (Figure 3.3). A 

direct regulation between phosphatidylinositol-3-kinase regulatory subunit beta 

(PIK3CB) and Nibrin (NBN) was found. However, the other identified proteins were 

not found to interact directly with each other. With regard to the identified proteins, the 

common targets network indicated that both TRIF and the newly identified proteins 

were involved in the regulation of mitogen activated protein kinases (MAPKs), inhibitor 

of nuclear factor kappa-B kinase subunit beta (IKBKB), NF-kappa-B inhibitor alpha 

(NFKBIA), caspase-3, (CASP3), caspase-1, (CASP1), transforming growth factor beta 

(TGFB1), the estrogen receptor 1 (ESR1) and apoptosis regulator BCL-2 (Figure 3.4). 

These data showed that both TRIF and PIK3CB are involved in regulation of anti-

apoptotic BCL-2 protein. This finding correlates with a previous study showing that 

BCL-2 interacts with Beclin1, a key component of the PI3 kinase complex that initiates 

autophagosome and leads to autophagy inhibition (Pattingre et al., 2005). Interestingly, 

it has been reported that TLR signalling enhances the interaction of TRIF and MyD88 

with Beclin 1, and reduces the binding of Beclin 1 to BCL-2. These findings indicate 

that TLR signalling via its adaptor proteins reduces the binding of Beclin 1 to BCL-2 by 

recruiting Beclin 1 to the TLR-signalling complex leading to autophagy (Shi and Kehrl, 

2008). Moreover, it was suggested that PI3K p110-beta stimulates tumour growth by 

regulating BCL-2 expression, as knockdown of PI3K p110-beta by siRNA decreased 

BCL-2 protein expression (An et al., 2007). Furthermore, it was found that TRIF and 

the newly identified proteins serve to modulate various cellular processes such as the 

inflammatory response, immunity, innate immune response, phagocytosis, autophagy, 

viral reproduction and cytokine production (Figure 3.5). Notably, many of the newly 

identified proteins are strongly linked with the modulation of apoptosis and this is 

supported by previous studies showing that TRIF is critically involved in mediating 

apoptosis through caspase-8 (Han et al., 2004). Interestingly, caspase-8 has been shown  
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Figure 3.3: Direct interactions network of poly(I:C)-independent TRIF interacting 

proteins. HEK293-TLR3 cells were transfected with HA-TRIF. After 20 h, the cells 

were collected and IP of HA-TRIF was performed. Next, the TRIF IP-complex was 

analysed using the LC-MS. The newly identified protein interactors were uploaded to 

the Pathway Studio software analysis program and direct interaction network was made. 

Red entities indicate proteins that were identified following IP of HA-TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. The grey solid line indicates the 

direct regulation of NBN by PIK3CB. 
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Figure 3.4: Common targets network of poly(I:C)-independent TRIF interacting 

proteins. HEK293-TLR3 cells were transfected with HA-TRIF. After 20 h, the cells 

were collected and IP of HA-TRIF was performed. Next, the TRIF IP-complex was 

analysed using the LC-MS. The newly identified protein interactors were uploaded to 

Pathway Studio software analysis program and common targets network was 

constructed. Red entities are the proteins identified following IP and LC-MS of HA-

TRIF. Yellow entities indicate the proteins that are co-regulated by the newly identified 

proteins and TRIF. The red entity with yellow surround indicates TRIF (Ticam-1). Grey 

solid lines indicate direct regulation. Grey dotted lines indicate and regulation. 
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Figure 3.5: Cell processes of poly(I:C)-independent TRIF interacting proteins. 

HEK293-TLR3 cells were transfected with HA-TRIF. After 20 h, the cells were 

collected and IP of HA-TRIF was performed. Next, the TRIF IP-complex was analysed 

using the LC-MS.  The newly identified protein interactors were uploaded to Pathway 

Studio software analysis program and the cellular processes network was constructed. 

Red entities are the proteins identified following IP and LC-MS of HA-TRIF. Yellow 

entities indicate the cellular processes that are co-regulated by the identified proteins 

and TRIF. The red entity with yellow surround indicates TRIF (Ticam-1). Dotted grey 

lines indicate regulation. 
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to activate caspase-3, a protein identified as being commonly modulated by TRIF and 

the newly identified protein, NLRP-1 (Figure 3.4). 

3.2.3.2    TRIF interactors following 20 min poly(I:C) stimulation 

Following transfection of HEK293-TLR3 cells with HA-TRIF, cells were stimulated 

with poly(I:C) for 20 min followed by IP of HA-TRIF and LC-MS  analysis of the 

TRIF-immunocomplex. A number of proteins were identified as being present in the 

HA-TRIF immunoprecipitated complex. Interestingly, it was found that a number of 

these proteins have previously been shown to interact directly with one another (Figure 

3.6, purple lines). For example, the newly identified protein Calreticulin (CALR) was 

shown to bind directly Calnexin (CANX). CALR and CANX serve as molecular 

chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells 

(McDonnell et al, 1996). Importantly, Molinari et al. (2004) showed that CALR 

depletion specifically accelerates the maturation of cellular and viral glycoproteins with 

a modest decrease in folding efficiency. CALX depletion prevents proper maturation of 

some proteins such as influenza hemagglutinin but does not interfere appreciably with 

the maturation of several others. Another example is the direct binding of the tumor 

suppressor protein Prohibitin (PHB) to the Minichromosome maintenance complex 

(MCM2). Rizwani et al. (2009) demonstrated that PHB physically interacted with 

MCM2, MCM5 and MCM7 and that PHB can function as a potent inhibitor of DNA 

replication by interacting with members of MCM complex.  

 Interestingly the common targets network showed that both TRIF and the newly 

identified protein Caspase recruitment domain (CARD11) are involved in the regulation 

of TRAF6 (Figure 3.7). CARD11 is a multidomain adapter that is required for NF-κB 

activation during T cell receptor signalling (TCR) (Gaide et al., 2002; Egawa et al., 

2003). It has been demonstrated that during the TCR signalling, upon CARD11 

activation, CARD11 recruits namely, TRAF6, Caspase 8, TAK1, and IKKγ  to induce 

NF-κB activity that is required for T-cell activation and proliferation in the adaptive 

immune response (McCully and Pomerantz, 2008). Accordingly, interaction between 

TRIF and TRAF6 was reported. Disruption of TRAF6-binding motifs of TRIF disabled 

it from associating with TRAF6, and resulted in a reduction in the TRIF-induced 

activation of the NF-κB-dependent but not IFN-β promoter (Sato et al., 2003). These 

indicate involvement of TRIF and the newly identified CARD11 in NF-κB activation 

through binding to TRAF6. 
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Figure 3.6: Direct interactions network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 20 μg/ml poly(I:C) for 20 min. Then, IP of HA-TRIF was performed 

and the IP-complex was analysed by LC-MS. The newly identified protein interactors 

were uploaded to Pathway Studio software analysis program and direct interaction 

network was constructed. Red entities indicate proteins that were identified in HA-TRIF 

IP-complex. TRIF (Ticam-1) is indicated in red with yellow surround. Purple line 

indicates direct binding. 
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Figure 3.7: Common targets network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 20 μg/ml poly(I:C) for 20 min. Then, IP of HA-TRIF was performed 

and the IP-complex was analysed by LC-MS. The newly identified protein interactors 

were uploaded to Pathway Studio software analysis program and common targets 

network was constructed. Red entities indicate proteins that were identified in HA-TRIF 

IP-complex. Yellow entities indicate the proteins that are co-regulated by the newly 

identified proteins and TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. 

Grey solid line indicates direct regulation. 
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Remarkably, most of newly identified proteins, concomitantly with TRIF, serve to 

regulate many cellular processes including immune response, apoptosis, viral 

replication and phagocytosis (Figure 3.8). For example, the newly identified CALR has 

been shown to function as pro-phagocytic and is highly expressed on the surface of 

several human cancers (Chao et al., 2010). Blockade or knockdown of CALR 

suppressed the phagocytosis of tumor cells by dendritic cells (Obeid et al., 2007). 

Moreover, the CALR homologue CANX plays important role in phagocytosis (Muller-

Taubenberger et al., 2002) and viral reproduction. Pieren et al. (2005) showed that 

inactivation of the CANX affects viral replication and infectivity but not viability of 

mammalian cells. Notably, TRIF is also involves in phagocytosis regulation. It has been 

reported that MyD88-mediated phagocytosis of the Gram-negatvie bacteria Borrelia 

burgdorferi can be initiated by TRIF and is dependent on activation of PI3K (Shin et al., 

2009). Another interesting newly identified protein is the nuclear factor 90, also known 

as interleukin enhancer binding factor 3 (IL3). The IL3 is a ds-RNA binding protein that 

has been shown to inhibit human immunodeficiency virus type 1 (HIV-1) replication in 

stably transfected cell line (Urcuqui-Inchima et al., 2006). Moreover, it was 

demonstrated that IL3 co-IPs with H5N1 viral nucleoprotein (NP) and that suppression 

of IL3 in Hela and A549 cell lines significantly increased viral polymerase complex 

activity and virus replication (Wang et al., 2009). Accordingly, TRIF is known to 

induce IRF3 activation and mediates induction of IFN-β by TLR3 and TLR4 and 

thereby suppresses vaccine virus replication in macrophages (Stack et al., 2005). 

Despite the fact that these proteins have not previously shown to interact with TRIF, 

they share with TRIF, the ability to regulate various cellular processes which may 

indicate that they could regulate TRIF activity during these processes.   

 

3.2.3.3    TRIF interactors following 40 min poly(I:C) stimulation 

Following transfection of HEK293-TLR3 cells with HA-TRIF, cells were stimulated 

with poly(I:C) for 40 min followed by IP of HA-TRIF and LC-MS analysis of the 

TRIF-IP-complex. A number of proteins were specifically identified as being present in 

the HA-TRIF-IP-complex. Direct interaction network showed that phosphoglycerate 

kinase 1 (PGK1) bound to glyceraldehyde 3 phosphate dehydrogenase (GAPDH) 

(Figure 3.9). PGK1 is an ATP-generating glycolytic enzyme that forms part of the 

glycolytic pathway and is directly involved in CXCL12 CXCR4 signalling. Moreover it  
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Figure 3.8: Cell processes of poly(I:C)-dependent TRIF interacting proteins. 

HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

20 μg/ml poly(I:C) for 20 min. Then, IP of HA-TRIF was performed and the IP-

complex was analysed by LC-MS. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and cell processes network was 

constructed. Red entities indicate proteins that were identified in HA-TRIF-IP-complex. 

Yellow entities indicate cellular processes that are co-regulated by the identified 

proteins and TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. Grey 

dotted lines indicate regulation. 
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Figure 3.9: Direct interactions network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 20 μg/ml poly(I:C) for 40 min. Then, IP of HA-TRIF was performed 

and IP-complex was analysed by LC-MS. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and direct interaction network 

was constructed. Red entities indicate proteins that were identified in HA-TRIF IP-

complex. TRIF (Ticam-1) is indicated in red with yellow surround. Purple line indicates 

direct binding. Grey dotted lines indicate regulation. 
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 was found that fibroblasts that overexpress PGK1 displayed a higher proliferative index 

and contributed to the invasion of prostate cancer cells, possibly through expression of 

MMP2, MMP3 and activation of the AKT and ERK pathways (Wang et al., 2010). 

Also, the interaction network showed that both TRIF and Caspase 12 (CASP12) 

regulated Mitogen-activated protein kinase 8 (MAPK8) which in turn regulated Caspase 

12 (Figure 3.9). These data are in agreement with a previous study that showed TLR3 

activation, which exclusively uses TRIF, results in activation of NF-κB, IRF-3 and 

MAP kinase (p38 and JNK) signalling (Johnson et al., 2008). CASP12 is also known to 

be essential for endoplasmic reticulum (ER) stress-induced apoptosis (Nakagawa et al., 

2000) and studies reported activation of CASP12 and JNK during ER stress-induced 

apoptosis (Yoneda et al., 2001) 

 Interestingly, the common targets network showed that the newly identified 

proteins are involved in regulation of many different proteins including, IRF3, TBK1, 

IRF7, MAPK1, and 9 Caspase1, 2, 3 and 8 and NOTCH (Figure 3.10). For example, the 

newly identified DEAD-box helicase (DDX3X) was reported to bind TBK1 and that 

TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter. 

RNAi-mediated reduction of DDX3X expression led to an impairment of IFN 

production in macrophages (Soulat et al., 2008). Schröder et al. (2008) also showed that 

DDX3X is involved in TBK1/IKKε-mediated IRF activation and IFN-β promoter 

induction. The identification of the DDX3X in the TRIF immunocomplex support the 

recent finding that DDX1, DDX21, and DHX36 utilise the TRIF pathway independent 

of TLR3 to activate type I IFN responses in dendritic cells (Zhang et al., 2011). 

Importantly, two newly identified proteins namely polypyrimidine tract binding protein 

1 (PTBP1) and triple functional domain (TRIO) were shown to be involved in Notch 

regulation (Figure 3.10). Notch signalling is an ancient process that regulates cell fate, 

stem cell maintenance and initiation of differentiation in embryonic and postnatal 

tissues (Grego-Bessa et al., 2004). PTBP1 is a multi-functional RNA-binding protein 

and different functions have been identified for vertebrate PTBP1, including 

translational control, mRNA stability, mRNA localization and may also act as a 

transcriptional activator (Dansereau et al., 2002; Cheung et al., 2006). It has been shown 

that in developing Drosophila, the absence of the PTBP1 homolog, hephaestus, resulted 

in increased Notch activity (Dansereau et al., 2002). The present of these two proteins 

that they involved in Notch regulation in the TRIF IP complex may suggest a functional  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schr%C3%B6der%20M%22%5BAuthor%5D
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Figure 3.10: Common targets network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 20 μg/ml poly(I:C) for 40 min. Then, IP of HA-TRIF was performed 

and the IP-complex was analysed by LC-MS. The newly identified protein interactors 

were uploaded to Pathway Studio software analysis program and common targets 

network was constructed. Red entities indicate proteins that were identified in HA-TRIF 

IP-complex. Yellow entities indicate the proteins that are co-regulated by the newly 

identified proteins and TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. 

Grey sold and dotted lines indicate direct regulation and regulation respectively. 
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role for TRIF in Notch signalling. Interestingly, links between TLR and Notch 

signalling have been previously reported whereby TLR agonists such as bacterial 

lipopeptide, poly(I:C), lipopolysaccharide and unmethylated CpG DNA serve to up-

regulate Notch1 in primary and macrophage-like cell lines (Amsen et al. 2004; Palaga et 

al., 2008). Moreover, stimulation of macrophages with TLRs ligands triggered 

activation of Notch signalling, which in turn regulated gene expression patterns 

involved in pro-inflammatory responses, through activation of NF-κB (Palaga et al., 

2008). Furthermore, most of these identified proteins and TRIF are involved in 

apoptosis inflammatory response, innate immune response, phagocytosis, autophagy, 

viral transcription and viral reproduction regulation (Figure 3.11). This correlates with a 

previous study showing that CASP12 blocks the inflammatory response initiated by NF-

κB and Caspase-1 (Scott and Saleh, 2007). The PTBP1 protein, as discussed earlier, has 

been previously shown to modulate Notch signalling, apoptosis, viral replication and 

viral transcription (Figure 3.11). Li et al. (1999) demonstrated that PTBP1 binds to the 

leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. As 

TRIF known to be involves in viral recognition and typ1 IFN activation (Riad et al., 

2011), it may be of interest to investigate the role of PTBP1in TRIF-mediated 

signalling. 

 

3.2.3.4    TRIF interactors following 60 min poly(I:C) stimulation  

Following transfection of HEK293-TLR3 cells with HA-TRIF, cells were stimulated 

with poly(I:C) for 60 min followed by IP of HA-TRIF and LC-MS of the TRIF 

immunocomplex. Proteins including ADAM metallopeptidase domain 15 (ADAM15), 

multiple endocrine neoplasia I (MEN) adenomatous polyposis coli (APC), IQ motif -

containing GTPase activating protein1 (IQGAP1), phosphoinositide-3-kinase, 

regulatory subunit 2 beta (PIK3R2), CREB regulated transcription coactivator 

1(CRTC1) and Probable ATP-dependent RNA helicase DDX28 were specifically 

identified as TRIF interactors (Figure 3.12). Some of these proteins have been 

previously shown to interact with one another as illustrated in the direct interaction 

network (Figure 3.12). IQGAP1 binds directly to APC, CLIP and Menin (MEN1).  
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Figure 3.11: Cell processes of poly(I:C)-dependent TRIF interacting proteins. 

HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

20 μg/ml poly(I:C) for 40 min. Then, IP of HA-TRIF was performed and the IP-

complex was analysed by LC-MS. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and cell processes network was 

constructed. Red entities indicate proteins that were identified in TRIF IP-complex. 

Yellow entities indicate cellular processes that are co-regulated by the identified 

proteins and TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. Grey 

dotted lines indicate regulation. 
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Figure 3.12: Direct interactions network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cell were 

stimulated with 20 μg/ml poly(I:C) for 60 min. Then, IP of HA-TRIF was performed 

and IP-complex was analysed by LC-MS. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and direct interaction network 

was constructed. Red entities indicate proteins that were identified in TRIF IP-complex. 

TRIF (Ticam-1) is indicated in red with yellow surround. Purple line indicates direct 

binding. Grey solid lines indicate direct regulation. Grey dotted lines indicate 

regulation. 
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IQGAP1 is a scaffolding protein composed of multiple protein recognition motifs 

through which it interacts with a wide spectrum of binding partners, including CLIP-

170, epidermal cadherin (E-cadherin), β-Catenin, APC, components of the mitogen-

activated protein kinase pathway and RAP1 (Jeong et al., 2007). Interestingly, both β-

Catenin and APC are key components of the canonical wnt signalling pathway, and Wnt 

signalling and TLRs have been shown to intersect in Drosophila. Also, growing 

evidence supports the notion that Wnt signalling may be involved in orchestrating the 

immune response in response to microbial stimulation of innate immune cells of 

vertebrate origin (Neumann
 
et al., 2009; Schaale et al., 2011). Importantly, E-cadherin 

which was reported to bind IQGAP1 is known to be cleaved by the newly identified 

protein ADAM15 (Najy et al., 2008). E-cadherin is involved in cell-cell interaction, 

embryonic development, organ morphogenesis, tissue integrity, and wound healing, and 

disruption of E-cadherin has been observed in multiple pathophysiological conditions, 

including inflammation and cancer (Yasmeen et al., 2006; Wever et al., 2007). Notably, 

ADAM15, which belongs to the disintegrin and metalloprotease family, was also shown 

to be involved in different inflammation diseases such as atherosclerosis, rheumatoid 

arthritis (RA) and intestinal inflammation (Charrier-Hisamuddin et al. 2008).  

 Moreover, common targets network showed that the newly identified proteins 

are involved in regulation of different MAPKs, JUN, Nuclear factor NF-kappa-B p100 

subunit (NFKB2), epidermal growth factor (EGF) and EGF receptor (EGFR) (Figure 

3.13). More specifically, the newly identified MEN1 was shown to be involved in 

MAPK1, 3 and 8 and NFKB2 regulation (Figure 3.13). MEN1 is a tumor suppressor 

protein and was identified as the gene responsible for the disease multiple endocrine 

neoplasia type 1 (Yazgan and Pfarr, 2002). Heperen et al. (2001) also showed that the 

NF-κB proteins p50, p52 and p65 interact specifically and directly with Menin in vitro 

and in vivo. Overexpression of Menin repressed p65-mediated transcriptional activation 

on NF-κB sites and MAPK-induced phosphorylation of nuclear factors such, as c-JUN 

without altering ERK2 or JNK1 activity (Gallo et al., 2002). Importantly, it was found 

that TRIF and the newly identified proteins serve to modulate various cellular processes 

such as inflammatory response, immune response, immune invasion phagocytosis, T-

cell activation, cell differentiation and cell proliferation (Figure 3.14). Notably, many of 

the newly identified proteins are strongly linked with the modulation of apoptosis, cell  
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Figure 3.13: Common targets network of poly(I:C)-dependent TRIF interacting 

proteins. HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 20 μg/ml poly(I:C) for 60 min. Then, IP of HA-TRIF was performed 

and IP-complex was analysed by LC-MS. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and common targets network 

was constructed. Red entities indicate proteins that were identified in HA-TRIF IP-

complex. Yellow entities indicate the proteins that are co-regulated by the newly 

identified proteins and TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. 

Grey solid and dotted lines indicate direct regulation and regulation, respectively. 
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Figure 3.14: Cell processes of poly(I:C)-dependent TRIF interacting proteins. 

HEK293-TLR3 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

20 μg/ml poly(I:C) for 60 min. Then, IP of HA-TRIF was performed and IP-complex 

was analysed by LC-MS. The newly identified protein interactors were uploaded to 

Pathway Studio software analysis program and cell processes network was constructed. 

Red entities indicate proteins that were identified in TRIF IP-complex. Yellow entities 

indicate cellular processes that are co-regulated by the identified proteins and TRIF. 

TRIF (Ticam-1) is indicated in red with yellow surround. Grey dotted lines indicate 

regulation. 
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differentiation and cell proliferation. It should be noted that TLRs are also linked to 

cancer. Recently, Umemura et al. (2011) investigated the role of TLR3 in metastatic 

progression. It was found that metastatic tumor cells were highly sensitive to TLR3-

mediated apoptosis after double-stranded RNA treatment when compared to primary 

tumor cells. Enhanced apoptosis in metastatic cells was dependent on double-stranded 

RNA, TLR3 and also TRIF. Thus, interaction of these proteins with TRIF may affect 

TRIF activity during apoptosis or other processes regulated by TRIF (Umemura et al. 

2011). Moreover, Galli et al. (2010) showed that TLR3 and TLR5 stimulation of human 

prostate cancer cells triggers the production of chemokines, which, in turn, favor the 

attraction of immune effectors, thereby representing a tool to enhance the efficacy of 

conventional therapies by stimulating anticancer immune responses. 

 

3.2.3.5    LPS-independent TRIF interactors 

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were collected and IP 

of HA-TRIF was performed followed by LC-MS analysis of the TRIF IP-complex. A 

significant numbers of proteins were identified as TRIF interacting partners. As 

predicted following analysis of the TRIF interaction network (Figure 3.15), there is no 

previous report of direct binding between these identified proteins and TRIF or between 

each other. However, the DBF4 homolog A (DB4) protein is directly regulated by 

MEN1. Interestingly, MEN1 was also identified in HEK-TLR3 upon poly(I:C) 

stimulation for 60 min. Thus, MEN1 is associated with TRIF in HEK-TLR3 and 

HEK293-TLR4 cells. The DBF4 is a kinase subunit that is essential for regulating the 

initiation of DNA replication in Saccharomyces cerevisiae. The human homologue of 

DBF4 (HsDBF4) was shown to be directly involved in regulating the initiation of DNA 

replication by targeting minichromosome maintenance (MCM2) protein in mammalian 

cells (Jiang et al., 1999). Importantly MCM2 was also identified in HEK293-TLR3 

upon poly(I:C) stimulation for 20 min. This may suggest an involvement of these 

proteins in TRIF-mediated apoptosis. Moreover, the common targets network for the 

newly identified proteins and TRIF include MAPKs, IRF3, TGFB1, EGFR, NFKB2, 

ESR1 and Tyrosine kinase-type cell surface receptor HER2 (ERBB2), SMAD3 and 

SMAD4 (Figure 3.16). Interestingly, TRIF, MEN1 and ADAM15 have been linked with 

MAPK1 regulation (Figure 3.16). This correlates with a study which showed that 

ADAM15 expression decreased the phosphorylation of ERK1/2 (Chen et al., 2008). 
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Figure 3.15: Direct interaction network of LPS-independent TRIF interacting 

proteins. HEK293-TLR4 cells were transfected with HA-TRIF. After 20 h, cells were 

collected and IP of HA-TRIF was performed and TRIF IP-complex was analysed by 

LC-MS. The newly identified protein interactors were uploaded to the Pathway Studio 

software analysis program and direct interaction network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. TRIF (Ticam-1) is indicated 

in red with yellow surround. Grey solid line indicates direct regulation. 
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Figure 3.16: Common targets network of LPS-independent TRIF interacting 

proteins. HEK293-TLR4 cells were transfected with HA-TRIF. After 20 h, cells were 

collected and IP of HA-TRIF was performed followed by IP-complex analysis by LC-

MS. The newly identified protein interactors were uploaded to the Pathway Studio 

software analysis program and common targets network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. Yellow entities indicate the 

proteins that are co-regulated by the newly identified proteins and TRIF. TRIF (Ticam-

1) is indicated in red with yellow surround. Grey solid and dotted lines indicate direct 

regulation and regulation, respectively. 
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Interestingly, whereas MEN1 was shown also to suppress ERK phosphorylation (Gallo 

et al., 2002), activation of the TRIF pathway resulted in activation of p38 and ERK 

MAPK pathways (Qi and Shelhamer., 2005). This suggests that ADAM15 and MEN1 

may regulate TRIF-mediated MAPK activation.  Furthermore, the identified proteins 

were strongly associated with the regulation of cell differentiation, cell migration, cell 

proliferation, cell adhesion, apoptosis and immunity (Figure 3.17). Some of these 

processes were also modulated by TRIF (Figure 3.17) indicating that these proteins may 

cooperate with each other to modulate the cellular processes. 

3.2.3.6    TRIF interactors 20 min following LPS stimulation 

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

LPS for 20 min and IP of HA-TRIF was performed followed by LC-MS analysis of the 

TRIF IP-complex. A significant numbers of proteins were identified as TRIF interacting 

partner. Interestingly, a number of the newly identified hits previously have been 

reported to bind or regulate one another as illustrated in the interaction network (Figure 

3.18). For example importin-β1 (KPNB1) binds directly to proliferating cell nuclear 

antigen (PCNA) and GAPDH regulates both KPNB1 and PCNA (Figure 3.18). PCNA 

was first identified as an autoantigen that reacts with autoantibodies in patients with 

systemic lupus erythematosus (SLE) (Miyachi et al., 1978). PCNA plays an essential 

role in DNA replication, repair and methylation, chromatin assembly, cell cycle 

regulation, and ribosomal DNA transcription (Kaneda et al., 2004). These findings are 

supported by studies showing TLR involvement, particularly the nucleic acid-sensing 

TLR3, 7, 8 and 9 in SLE (Montero and Martin, 2009; Horton et al., 2010).    

 Moreover, the common target network showed that both TRIF and the newly 

identified protein macrophage migration inhibitory factor (MIF) were involved in the 

regulation of Caspase-3 and 8, macrophage colony stimulating factor 1 (CSF1) and 

interleukin 18 (IL-18) (Figure 3.19). Macrophage migration inhibitory factor (MIF) is a 

pro-inflammatory cytokine produced by human pulmonary artery endothelial cells 

(HPAECs). Its expression increases in response to various death-inducing stimuli, 

including LPS (Damico et al., 2008; Zhang et al., 2012). Studies have showed that MIF 

functions as an endogenous pro-survival factor in HPAECs through regulation of the 

FLICE-like inhibitory protein (FLIP). FLIP modulates or blocks death receptor- 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shelhamer%20JH%22%5BAuthor%5D
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Figure 3.17: Cell processes network of LPS-independent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

collected and IP of HA-TRIF was performed followed by analysis of the IP-complex by 

LC-MS. The newly identified protein interactors were uploaded to Pathway Studio 

software analysis program and cell processes network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. Yellow entities indicate 

cellular processes that are co-regulated by the identified proteins and TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. Grey dotted lines indicate 

regulation. 
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Figure 3.18: Direct interaction network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were  

stimulated with 1 μg/ml LPS for 20 min followed by IP of HA-TRIF and LC-MS  

analysis of the TRIF-IP-complex. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and cell processes network was 

constructed. Red entities indicate proteins that were identified in TRIF IP-complex.  

TRIF (Ticam-1) is indicated in red with yellow surround. Purple line indicates binding 

Grey dotted lines indicate regulation. Grey solid line indicates direct regulation. 
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Figure 3.19: Common targets network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 1 μg/ml LPS for 20 min followed by IP of HA-TRIF and LC-MS 

analysis of the TRIF-IP-complex. The newly identified protein interactors were 

uploaded to Pathway Studio software analysis program and common targets network 

was constructed. Red entities indicate proteins that were identified in TRIF IP-complex. 

Yellow entities indicate proteins that are co-regulated by the identified proteins and 

TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. Grey dotted lines 

indicate regulation. 
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stimulated cell death by competing with Caspase-8 for binding to FADD (Damico et al., 

2008). Importantly, TRIF is known to mediate apoptosis through activation of caspase-8 

(Han et al., 2004). This suggests that MIF may affect TRIF-mediated Caspase-8 

activation and thereby affect TRIF-mediates apoptosis. Another interesting protein 

identified as a TRIF interactor is Segment polarity protein dishevelled homolog 

(DVL3), which was shown to be involved in MAPK8 and MAPK14 regulation (Figure 

3.19). DVL3 play important role in both the canonical wnt-β-catenin pathway and the 

planar cell polarity (PCP) pathway (Lee et al., 2008). Bikkavilli et al. (2008) 

demonstrated that in the canonical Wnt-β-catenin signalling pathway, DVL3 is critical 

for Wnt3A-induced p38 MAPK activation. As mention earlier, the TRIF pathway 

induces MAPK activation, thus linking the TLR and wnt signalling pathways 

(Bikkavilli et al., 2008; Neumann
 
et al., 2009). Furthermore, the cellular processes 

network showed that MIF was involved in the regulation of many of the cellular 

processes that were also regulated by TRIF including apoptosis, autophagy, immune 

response, phagocytosis, cytokine production, inflammatory responses and viral 

reproduction (Figure 3.20). It was reported that MIF acts as an important mediator of 

the inflammatory response in alcoholic liver disease. Moreover, it has been reported that 

the plasma from HIV-1-infected patients contains elevated levels of MIF and that 

peripheral blood mononuclear cells (PBMCs) from HIV-infected patients release a 

greater amount of MIF. Furthermore, HIV-1 replication in PBMCs declines when these 

cells were treated with anti-MIF antibodies (Regis et al., 2010). Thus, MIF may be an 

interesting protein to characterise in the context of TRIF signalling. 

3.2.3.7   TRIF interactors 40 min following LPS stimulation  

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

LPS for 40 min and IP of HA-TRIF was performed followed by LC-MS analysis of the 

TRIF IP-complex. A numbers of proteins were identified as TRIF interacting partners. 

A direct interaction network showed that PHB bound to apoptosis inducing factor 1 

(AIFM1) and this protein directly regulates PHB2 expression (Figure 3.21).  It should 

be mentioned that PHB was also identified in HEK-TLR3 upon poly(I:C) stimulation 

for 20 min. PHB is present in various cellular compartments, including mitochondria, 

nucleus, and plasma membrane. It function as a potential tumor suppressor, an anti-  

 

http://jcs.biologists.org/content/121/21/3598.long#ref-17
http://jcs.biologists.org/content/121/21/3598.long#ref-4
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Figure 3.20: Cell processes network of LPS-dependent TRIF interacting proteins. 

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

1 μg/ml LPS for 20 min followed by IP of HA-TRIF and LC-MS analysis of the TRIF-

IP-complex. The newly identified protein interactors were uploaded to Pathway Studio 

software analysis program and cell processes network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. Yellow entities indicate 

cellular processes that are co-regulated by the identified proteins and TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. Grey dotted lines indicate 

regulation. 
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proliferative protein and a regulator of cell-cycle progression and apoptosis (Theiss et 

al., 2007). PHB in the gastrointestinal tract has been implicated in protection against 

infection and inflammation and the induction of apoptosis in other tissues (Mishra et al., 

2005). Furthermore, it was found that PHB overexpression decreased the accumulation 

of reactive oxygen metabolites, as well as increasing the permeability induced by 

oxidative stress in intestinal epithelial cells, suggested that PHB plays a role in the 

cellular defense against oxidant injury (Theiss et al., 2007). Importantly, deregulation of 

TLRs has been reported during intestinal inflammation and an essential role for TLR 

signalling in the pathogenesis of inflammatory bowel diseases (IBD) has been 

established through many studies (Harris, et al,. 2006; Cario, 2010). Together, these 

data suggest that the counterregulation of PHB via TRIF (or vica versa) may modulate 

inflammatory condition in the bowel. 

 Moreover, many of the newly identified proteins and TRIF have previously been 

reported to be involved in the regulation of proteins such as MAPK1 and 8, BCL2, 

ESR1, Glycogen synthase kinase-3 beta (GSK3B) and JUN as shown in the common 

targets network (Figure 3.22). It should be mentioned that two of the newly identified 

proteins namely, PHB and AIFM1 regulates GSK3B. GSK3 is a component of many 

diverse signalling pathways, including insulin/insulin-like growth factor (IGF-1) 

signalling and the Wnt signalling pathways (Gould and Manji, 2005). Regarding the 

Wnt/β-catenin pathway, active GSK-3 phosphorylates β-catenin leading to its ubiquitin-

dependent degradation. However, when GSK-3 is inhibited, β-catenin is not degraded, 

and this permits the interaction of β-catenin with T-cell-specific transcription factor 

(TCF) leading to transcriptional activation of target gene (Cadigan and Peifer, 2009). 

The link between TLRs and Wnt signalling was mentioned earlier. Another interesting 

finding is that both TRIF and the newly identified protein Scribbled (SCRIB) regulate 

MAPK1 and 8 and JUN. The cell polarity regulator, human Scribble (hSCRIB), is a 

potential tumour suppressor whose loss is a frequent event in late stage cancer 

development. In mammals, SCRIB regulates cell migration and wound healing in vivo 

(Dow et al., 2008). Moreover the suppression of MAPK signalling reported to be a 

highly conserved function of Scribble and that hSCRIB interacts with ERK and loss of 

hSCRIB results in elevated phospho-ERK levels (Nagasaka et al., 2010).  
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Figure 3.21: Direct interaction network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 1 μg/ml LPS for 40 min followed by IP of HA-TRIF and LC-MS 

analysis of the IP-complex. The newly identified protein interactors were uploaded to 

Pathway Studio software and direct interaction network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. TRIF (Ticam-1) is indicated 

in red with yellow surround. Purple line indicates binding, grey solid and dotted lines 

indicate direct regulation and regulation respectively. 
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Figure 3.22: Common targets network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 1 μg/ml LPS for 40 min followed by IP of HA-TRIF and LC-MS 

analysis of the TRIF-IP complex. The newly identified protein interactors were 

uploaded to Pathway Studio software and common targets network was constructed. 

Red entities indicate proteins that were identified in TRIF IP-complex. Yellow entities 

indicate proteins that are co-regulated by the identified proteins and TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. Grey solid and dotted lines indicate 

direct regulation and regulation respectively. 
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Furthermore, cellular processes such as apoptosis, endocytosis, complement activation, 

immune responses, cytokinesis and cytokine production were all regulated by TRIF and 

the and the newly identified proteins (Figure 3.23). Most of the identified protein hits 

are strongly involved in apoptosis regulation. An important protein identified is Low-

density lipoprotein receptor-related protein 2 (LRP2), which showed to be involved in 

endocytosis, and cytokine production (figure 3.23). LRP2 is an endocytic receptor 

expressed on the apical surface of several epithelial cells that internalizes a variety of 

ligands including nutrients, hormones and their carrier proteins, signalling molecules 

and extracellular matrix proteins (Marzolo and Farfán, 2011). A GSK3 site was 

described in the intracellular cytoplasmic tail of LRP2. This site appears constitutively 

to be phosphorylated by GSK3 and regulates the cell membrane location of LRP2 

(Bolós et al., 2010). Interestingly, as mentioned earlier GSK3 is involved in wnt/β-

catenin pathway and was reported to be regulated by the two identified proteins namely, 

PHB and AIFM1.  

 

3.2.3.8   TRIF interactors 60 min following LPS stimulation  

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

LPS for 60 min and IP of HA-TRIF was performed followed by LC-MS analysis of 

TRIF IP-complex. A significant numbers of proteins were identified as TRIF interacting 

proteins. Directed interaction network showed only one regulation between GAPDH 

and triosephosphate isomerase 1 (TPI1) (Figure 3.24). TPI and GAPDH are glycolytic 

enzymes essential for efficient energy production. Importantly, anti-TPI and GAPDH 

antibodies were found in the cerebrospinal fluid and in lesions of patients with the 

autoimmune disease multiple sclerosis (MS) suggested that TPI and GAPDH may be 

recruited into the immune cascade at different stages of the disease. (Kölln et al., 2010). 

Moreover, IgM antibodies against TPI were detected in the patient's serum from the 

acute phase of the Hepatitis A virus infection (Ritter et al., 1994). Furthermore the 

newly identified proteins and TRIF share regulation of proteins such as Caspase-1, 3 

and 8, MAPK1 eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK), 

IKBKB, IFN-β and BCL2  as illustrated in the common targets network (Figure 3.25). 

For example, Absent in melanoma 2 (AIM2) share with TRIF the regulation of caspase-

1 and 3 and also involved in IFN-β regulation (Figure 3.25). AIM2 also known as 

Interferon-inducible protein is a member of the interferon (IFN)- inducible p200-protein  



80 

 

 

 

 

Figure 3.23: Cell processes network of LPS-dependent TRIF interacting proteins. 

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

1 μg/ml LPS for 40 min followed by IP of HA-TRIF and LC-MS analysis of the TRIF-

IP complex. The newly identified protein interactors were uploaded to Pathway Studio 

software analysis program and cell processes network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. Yellow entities indicate 

cellular processes that are co-regulated by the identified proteins and TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. Grey dotted lines indicate 

regulation. 
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Figure 3.24: Direct interaction network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 1 μg/ml LPS for 60 min followed by IP of HA-TRIF and LC-MS 

analysis of the TRIF-IP complex. The newly identified protein interactors were 

uploaded to Pathway Studio software programme and direct interaction network was 

constructed. Red entities indicate proteins that were identified in TRIF IP-complex. 

TRIF (Ticam-1) is indicated in red with yellow surround. Grey dotted line indicates 

regulation. 
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Figure 3.25: Common targets network of LPS-dependent TRIF interacting 

proteins. HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were 

stimulated with 1 μg/ml LPS for 60 min followed by IP of HA-TRIF and LC-MS 

analysis of the TRIF-IP complex. The newly identified protein interactors were 

uploaded to Pathway Studio software programme and common targets network was 

constructed. Red entities indicate proteins that were identified in HA-TRIF IP-complex. 

Yellow entities indicate proteins that are co-regulated by the identified proteins and 

TRIF. TRIF (Ticam-1) is indicated in red with yellow surround. Grey dotted lines 

indicate regulation. 
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family. It can sense double-stranded DNA (dsDNA) in the cytoplasm and through its 

pyrin domain (PYD) can form an inflammasome to activate caspase-1 and induce cell 

death (Hornung et al., 2009; Jones et al., 2010; Panchanathan et al., 2010). Moreover, 

knockdown of AIM2 abrogates caspase-1 activation in response to cytoplasmic double-

stranded DNA and the double-stranded DNA vaccinia virus (Hornung et al., 2009). 

Interestingly, different studies showed that TRIF is involved in caspase-1 activation and 

the processing of IL-1β (Harder et al., 2009; Lamkanifi et al., 2009). AIM2 is the 

second inflammasome component to be identified in TRIF IP-complex. As mentioned 

earlier, NLRP1 was also identified in HEK-TLR3 independent of poly(I:C) stimulation. 

Collectively, these data suggest a potential role for TRIF in inflammasome activation. 

Importantly, cell processes network analysis showed that most of the newly identified 

proteins and TRIF were involved in regulation of apoptosis, innate immune response, 

cytokine production, inflammatory response, virulence, immunity and autophagy 

(Figure 3.26). The newly identified protein α-Enolase shared with TRIF the regulation 

of inflammatory response, virulence, apoptosis cellular immune response (Figure 3.26). 

Interestingly, α-Enolase and TRIF was also showed to be involved in regulation of 

MAPK1 and Caspase-3 (Figure 3.25). α-Enolase is an abundantly expressed glycolytic 

enzyme that is expressed in most tissues. High level α-Enolase expression has been 

demonstrated in the plasma of patients with lung, breast and prostate carcinomas 

(Georges et al., 2011). Moreover, an anti-α-Enolase antibody were found in in various 

systemic autoimmune diseases such as SLE, mixed and cryoglobulinemia (MC) and 

RA, suggesting that the alpha-Enolase autoantigen may drive these chronic 

inflammatory diseases (Andrew et al., 2005; Prastesi et al., 2000). Interestingly, it has 

been reported that the TLRs signalling pathways intensively contribute to the 

pathogenesis of RA and SLE (Montero and Martin, 2009; Roelofs et al., 2005; 

Wähämaa  et al., 2011). In addition, immune reactivity of TLR2, TLR3, TLR4 and 

TLR7 was demonstrated in RA synovial lining (Takagi et al., 2011). Moreover, TLR 

ligands, such as PGN, CpG DNA, heat shock proteins and RNA from both infectious 

organisms and endogenous necrotic cells, have been identified in the joints of RA 

patients (Van der heijden et al., 2000; Brentano et al., 2005).  

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22W%C3%A4h%C3%A4maa%20H%22%5BAuthor%5D
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Figure 3.26: Cell processes network of LPS-dependent TRIF interacting proteins. 

HEK293-TLR4 were transfected with HA-TRIF. After 20 h, cells were stimulated with 

1 μg/ml LPS for 60 min followed by IP of HA-TRIF and LC-MS analysis of the TRIF-

IP complex. The newly identified protein interactors were uploaded to Pathway Studio 

software analysis program and cell processes network was constructed. Red entities 

indicate proteins that were identified in TRIF IP-complex. Yellow entities indicate 

cellular processes that are co-regulated by the identified proteins and TRIF. TRIF 

(Ticam-1) is indicated in red with yellow surround. Grey dotted lines indicate 

regulation. 
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Collectively, these data showed that both TRIF and the newly identified proteins share 

the regulation and modulation of many proteins and cellular processes respectively and 

that these proteins may positively or negatively modulate TRIF activity during these 

cellular processes.  

3.2.4    Co-immunoprecipitation of TRIF and novel interactors 

Using proteomics, it is clear that a number of potentially interesting proteins and 

signalling pathways that may modulate TRIF functionality were identified. To validate 

whether TRIF and the newly identified protein interact, co-immunoprecipitation 

experiments were performed. Interactions were confirmed by co-immunoprecipitation 

of epitope-tagged TRIF and the selected protein of interest in HEK293-TLR3 or 

HEK293-TLR4 cells. Thereafter, endogenous co-immunoprecipitation experiments 

were performed in the human astrocytoma cell line U373-CD14. The proteins selected 

for further study were disintegrin and metalloproteinase domain-containing protein 15 

(ADAM15) and segment polarity protein dishevelled homolog (DVL) 3. The 

interactions between TRIF and these two proteins were confirmed by overexpression 

and endogenously. ADAM15 was selected for further study as is well known as 

inflammatory mediator and reported to play important role in RA, Osteoarthritis (OA) 

and cancer (Charrier-Hisamuddin et al., 2008; Böhm et al., 2010). The link between 

TLRs, RA and cancer was already mentioned. Moreover, our group are interested in 

investigating the role of TLRs in RA and OA. Thus, it was of interest to us to further 

examine the role of ADAM15 in TRIF-mediated TLR signalling. As already discussed, 

DVL3 is important activator of Wnt signalling pathways and intersections between TLR 

and Wnt signalling pathways have been reported. (Blumenthal et al., 2005; Staal et al., 

2008; Neumann
 
et al., 2009). Therefore, the regulatory role of DVL3 in TLR signalling 

was investigated. Also, as already indicated, proteomic analysis showed that AIM2 was 

present in the TRIF immunocomplex following stimulation of HEK293-TLR4 cells 

with LPS for 60 min. Thus, co-immunoprecipitation experiments were performed to 

further explore whether TRIF and AIM2 interact. However, for some reason 

overexpression of AIM2 was not possible. Different concentrations of AIM2 were used 

in combination with TRIF. Also, expression of AIM2 alone did not result in its 

expression. Thus, further validation of the interaction between TRIF and AIM2 will be 

needed to establish whether they interact. Also, the ability of many of the other proteins 

identified using the proteomics approach, to interact with TRIF and to modulate TLR3 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Charrier-Hisamuddin%20L%22%5BAuthor%5D
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and TLR4 signalling requires further research. Regarding ADAM15 and DVL3, it was 

found that both of these proteins co-immunoprecipitate with TRIF and modulate TLR3 

and TLR4 signalling. Their functional involvement in TRIF dependent signalling will 

be discussed in Chapters 4 and 5. 
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3.3   Discussion  

In this study immunoprecipitation of overexpressed human HA-TRIF in HEK293-TLR3 

and HEK293-TLR4 was performed and a multi-TRIF protein complex was analysed 

using LC-MS. Many novel protein hits have been identified, but unfortunately, TRIF 

and its known binding partners e.g. TLR3, TBK1, TRAF6, and IRFs, were not 

identified. However, these proteins maybe present in the IP complex but their 

concentrations were less than the detectable level. Another issue regarding the use of 

LC-MS technique is the reproducibility of sample analysis. Additionally, the 

complexity of this technique leads to variation in the peptides and proteins identified. 

Nevertheless, these variations could be due to different factors including the biological 

nature of the samples and minor differences in liquid- chromatography (Pelikan et al., 

2007; Tabb et al., 2010). These heighlight the limitations of the LC-MS technique. It 

must be emphasised that whilst HA-TRIF was not detected by LC-MS, it was detected 

by immunoblot analysis. Regarding the detection of HA-TRIF by LC-MS, further 

optimisation may be required. For example, different IP conditions or digestion of the 

proteins using enzymes other than trypsin. Additionally, more sensitive proteomics 

approaches may be utilised e.g. using an OrbiTRAP mass analyser. It is possible that 

TRIF itself may not be suitable for in-gel proteomics analysis for various reasons such 

as an inability to migrate through the gel at sufficient levels to permit detection by LC-

MS. Thus, gel-free proteomics approaches may be used in the future. Concerning the 

above mentioned issues regarding the use of this approach all of the protein interactors 

identified in this study require additional validation by more direct experiments.   

Though many of the proteins identified in the current study did not show a direct 

interaction with TRIF (as per Pathway Studio networks), they are commonly regulated 

by many proteins and many cellular processes. Recently, Zhang et al. (2011) identified 

DDX1, DDX21 and DHX36 as dsRNA sensors that use the TRIF pathways to activate 

type I IFN responses independently of TLR3 in myeloid dendritic cells (mDCs). Using 

a proteomics approach, DDX3X and DDX28 were identified in the current study 

following poly(I:C) stimulation of cells for 40 and 60 min, respectively. 

Phosphoinositide-3-kinase catalytic beta polypeptide (p85β), a subunit of 

Phosphoinositide 3-kinases (PI3K), was identified in HEK293-TLR3 at time point zero 

and 60 min following poly(I:C) stimulation. PI3K has been shown to physically interact 

with TRIF.  Interestingly, pharmacological inhibition of PI3K in monocyte-derived 
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dendritic cells (DCs) was found to enhance IFN-β expression upon TLR3 or TLR4 

engagement (Aksoy et al., 2005). However, in the same models of DCs activation, PI3K 

inhibition increased DNA-binding activity of NF-κB, but not IRF (Aksoy et al., 2005). 

Another interesting protein identified is the NF-κB repression factor (NRF), which was 

identified in HEK293-TLR3 independent of poly(I:C) stimulation. NRF is a nuclear 

inhibitor of NF-κB protein that can silence the IFN-β promoter via binding to negative 

regulatory element (NRE) (Nourbakhsh et al., 1999). This provides a link between NRF 

and the NF-κB pathway. Identification of NLRP1 and AIM2, the core components of 

caspase-1-activating inflammasomes (Faustin et al., 2009), in this screening suggest that 

TRIF may play a role in inflammasomes activation and so, further investigation of 

NLRP1and AIM2 in the context of TRIF signalling is essential.  

 Interestingly, in HEK293-TLR4 at time point zero, the adapter TBK1-binding 

protein 1 (TBKBP1) was identified in the TRIF IP-complex. TBKBP1 is an adapter 

protein which constitutively binds TBK1 and the inhibitor of nuclear factor kappa-B 

kinase subunit epsilon (IKBKE). TBKBP1 was thought to play a role in antiviral innate 

immunity but it is exact functions are still not well known (Bouwmeester et al., 2004). 

Another interesting hit to look at is the Macrophage migration inhibitory factor (MIF) 

which was identified in HEK293-TLR4 cells following LPS stimulation for 20 min. 

MIF was originally identified as a T-cell-derived cytokine that inhibits the random 

migration of macrophages. MIF is proved to be an important pro-inflammatory cytokine 

secreted by most of the cells including T cells, macrophages, endothelial cells and 

smooth muscle cells. It induces the production of a large number of inflammatory 

mediators such as TNF-α, IL-1β, IL-6, and IL-8 (Calandra et al., 1994; Onodera et al., 

2004). MIF was found to be involved in regulation of many and diverse immunological 

cellular processes as shown in Figure 3.20. 

 Nibrin which was identified in the TRIF immunocomplex in HEK293-TLR3 

independent of poly (I:C) plays a critical role in the cellular response to DNA damage 

and the maintenance of chromosome integrity. Mutations in Nibrin cause the Nijmegen 

breakage syndrome (NBS), which is an autosomal recessive syndrome characterized by 

chromosomal instability, radiation sensitivity, immunodeficiency and predisposition to 

cancer, particularly to lymphoid malignancies (Varon et al., 1998; Kondratenko et al., 

2007). This may link TRIF to diseases such as cancer. 

 Menin is another interesting protein to explore in the context of TRIF signalling. 

It is a tumour suppressor gene that its mutation causes the familial cancer syndrome 
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multiple endocrine neoplasia type 1 (MEN1) (Poisson et al., 2003). Heppner et al. 

(2001) found that NF-κB proteins p50, p52 and p65 were capable of directly interacting 

with Menin in vitro and in vivo. They suggested that Menin repressed p65-mediated 

transcriptional activation on NF-κB sites in a dose-dependent and specific manner.  

In conclusion, this study has provided an insight into the TRIF interactome and 

to the best of my knowledge this is the first study performed to investigate the TRIF 

protein complex. Many of the proteins identified in the study are involved in the 

regulation of immunity, apoptosis, cell differentiation, viral reproduction, and cytokine 

production. However, more validatory experiments are needed to confirm their 

interaction with TRIF and the role that these proteins may play in regulating TLR 

signalling. 



Chapter 4 

 

 

Investigating the novel role of human ADAM15 

in TLR3 and TLR4 signalling 
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4.1    Introduction  

 

4.1.1    Background 

Metalloproteases are a large family of important proteases that include matrix 

metalloproteases (MMPs) and proteins with a disintegrin and metalloproteinase domain 

(ADAM). They
 
are also referred to as MDC (Metallo-protease, Disintegrin, Cysteine-

rich) proteins (Rosenberg, 2009). ADAMs are members of the zinc protease 

superfamily and may be subdivided according to the primary structure of their catalytic 

sites. ADAMs belong to the metzincin subgroup which may be further divided into 

serralysins, astacins, matrixins, and adamalysins (Seals and Contrtneidge, 2003). Thus, 

ADAMs are MMPs which belong to the the matrixin subgroup of metzincin proteins. 

These enzymes are responsible for extracellular matrix degradation and remodelling and 

play important roles in development, wound healing, and in the pathology of diseases 

such as Rheumatoid arthritis (RA) and cancer (Visse and Nagase, 2003). ADAMs are 

found in vertebrates, as well as in Caenorhabditis elegans, Drosophila, and Xenopus. In 

contrast, ADAMs are not expressed in Escherichia coli, Saccharomyces cerevisiae, or 

plants (Seals and Contrtneidge, 2003). Several ADAMs are expressed as multiple splice 

variants e.g., ADAM22, ADAM29 and ADAM30 exist as two to three splice variants 

that vary in terms of the length of their cytoplasmic tails, although no functional 

differences in these isoforms have been reported. In other cases, alternative splicing 

produces proteins with markedly different activity (Sagane et al., 1998; Cerretti et al., 

1999). 

 

4.1.2    ADAM Domain structure and function 

To date, about 40 members of the ADAMs family have been described in many 

different species (Paulissen et al., 2009). The domain structure of the ADAMs consists 

of a prodomain, a metalloprotease domain, a disintegrin domain, a cysteine-rich 

domain, an EGF-like domain, a transmembrane domain and a cytoplasmic tail (Figure 

4.1). 

 

4.1.2.1    The Prodomain  

The signal sequence at the N-terminus directs ADAMs to the secretory pathway and the 

prodomain functions to facilitate the maturation of ADAMs. The prodomain keeps the 

metalloprotease site of ADAMs inactive through a cysteine switch. Several ADAMs are  
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Figure 4.1: Domain structure of ADAMs and MMPs. The figure shows general 

domain structure of ADAMs compared to snake venom metalloproteases (SVMP), 

ADAMs with thrombospondin-like motif (ADMTS) and MMP. The MMP shown is of 

the gelatinase class. Other subclasses of MMPs lack hemopexin-like sequences and/or 

fibronectin type II-like sequences. It should be noted that alternative splicing results in 

some ADAMs lacking one or more domain. (Adapted from Seals and Contrtneidge, 

2003). 
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kept inactive state through the interaction of a cysteine residue at the prodomain with 

the zinc in the metalloprotease domain. During maturation which takes place in the 

endoplasmic reticulum, the prodomain is cleaved by furin or furin-like proprotein 

convertases, and the resulting protein constitutes the mature form with an active 

metalloprotease domain. However, maturation of some ADAMs such as ADAM8 and 

ADAM28 occurs as an autocatalytic process (Primakoff and Myles, 2000; Paulissen et 

al., 2009). The prodomain appears to be necessary for the correct folding of the ADAMs 

metalloprotease domain and to facilitate the transport of ADAMs through the secretory 

pathway (Blobel, 2005).  

 

4.1.2.2    The metalloprotease domain 

The metalloprotease domain contains zinc and water atoms that are necessary for the 

hydrolytic processing of protein substrates, and which are coordinated by three 

conserved histidine residues and a downstream methionine. Whilst all ADAMs possess 

a metalloprotease domain, only about 50 % exhibit protease activity. ADAMs which 

display protease activity include ADAM 8, 9, 10, 12, 15, 17, 19, 28, and 33 (Duffy et 

al., 2011). Once activated, ADAMs regulate many biological functions, including 

proteolysis, cell adhesion, cell fusion, inflammation, angiogenesis and intracellular 

signalling. Several ADAM family members have been found to mediate the release of 

cytokines, growth factors, receptors, adhesion molecules and other membrane bound 

proteins from the cell surface, a process termed ectodomain shedding (Nath et al., 1999; 

Zhong et al., 2008). Examples of cell surface proteins shed by ADAMs include the IL-6 

receptor, FAS-ligand, transforming growth factor α (TGFα) and TNFα, (Zigrino et al., 

2007). Inhibitors of ADAMs metalloprotease activity fall into four broad classes: those 

that inhibit by denaturation, those that inhibit by Zn-chelation, small molecule inhibitors 

and tissue inhibitors of metalloproteases (TIMPs). The first two categories represent 

non-selective inhibitors such as reducing agents or zinc chelating agents. The third class 

arose from efforts to develop inhibitors of both MMPs and ADAMs, and include 

hydroxamate-based inhibitors that bind competitively to the active site. Tissue inhibitors 

of metalloproteases, or TIMPs, are endogenous regulators of MMPs and ADAMs. Four 

TIMPs are now known and they cause inactivation by binding to the catalytic site of 

MMPs. However, the TIMPs are not totally selective for MMPs, TIMP3 also inhibits 

ADAM17 and ADAM12. ADAM10 is inhibited by both TIMP1 and TIMP3 but not all 
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ADAMs are sensitive to TIMP3. ADAM8 and ADAM9 processing of myelin basic 

protein is not inhibited by any TIMP (Amour et al., 2000; Loechel et al., 2000). 

 

4.1.2.3    The disintegrin domain  

The disintegrin domain within ADAMs is approximately 90 amino acids in length and 

displays sequence similarity to the disintegrin domain in snake venom metalloproteases 

(SVMPs).
 
Disintegrins have an arginine-glycine-aspartic acid (RGD) integrin-binding 

site, bind to the platelet integrin GPIIb-IIIa (αIIbß3) and inhibit platelet aggregation 

(Primakoff and Myle, 2000; Seal and Contrtneidge, 2003). Human ADAM15 is the only 

known ADAM to contain a RGD binding site in the disintegrin domain. (Chen et al., 

2008; Zhong et al., 2008).  

 

4.1.2.4    The cysteine-rich and EGF-like domains 

The function of the cysteine-rich and EGF-like domains is not fully understood. 

Structurally, the cysteine-rich and EGF-like domains are approximately 160 amino 

acids in length. The two domains may be important for interaction or cell fusion of 

ADAMs with other proteins such as chaperons. In some cases, the cysteine-rich region 

has been implicated in regulating protease activity and controlling substrate specificity 

(Reiss et al., 2006). It is also believed that the cysteine-rich domain complements the 

binding capacity of the disintegrin domain (Serrano et al., 2005). Surprisingly, 

ADAM10 and ADAM17, the only known ADAMs lacking the EGF-like domain, are 

the most effective at ectodomain shedding. This suggests that the EGF-like-domain may 

hinder the ectodomain shedding (Page-McCaw et al., 2007).  

 

4.1.2.5    The cytoplasmic tail 

The cytoplasmic tail of the ADAMs family is highly variable both in length and in 

sequence and serves to transduce signals between the interior and exterior of cells. 

Phosphorylation dependent and independent protein interactions with the cytosolic tail 

of ADAMs have been shown to regulate their maturation, subcellular localization and 

metalloprotease activation (Seal and Contrtneidge, 2003). The domain contains 

specialized motifs. The most common motifs are PxxP binding sites for SH3 domain-

containing proteins. These SH3-binding sites are present in human ADAMs 7, 8, 9, 10, 

12, 15, 17, 19, 22, 29, and 33. Several ADAMs also have potential phosphorylation sites 

for serine-threonine and/or tyrosine kinases. Consequently, ADAMs may serve as 
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adaptors to facilitate the assembly of protein complexes at critical functional locations 

(Yong et al., 2001; Seal and Contrtneidge, 2003). 

 

4.1.3    Subcellular localisation of ADAM 

Data indicate that ADAMs are probably synthesized in the rough endoplasmic reticulum 

and mature in the late Golgi compartment. Maturation involves the removal of the 

prodomain from the ADAM precursor protein, which facilitates the activation of the 

metalloprotease domain of ADAMs (Roghani et al., 1999; Hougaard et al., 1999). Some 

studies have showed that certain ADAMs reside in a region near the nucleus. However, 

ADAMs can also be detected on the cell surface. For example, ADAMs 9, 10, 15 and 

17 are expressed on the cell surface in a processed catalytically active form (Black et 

al., 1997; Hougaard et al., 1999; Lammich et al., 1999). Thus, the subcellular 

localization and activity of ADAMs depends on the specific ADAM, the cell type and 

the substrate involved. 

 

4.1.4    ADAM-mediated shedding 

ADAMs facilitate the shedding of cytokines, cytokine receptors and growth factors 

(Herren et al., 2002). One of the most well-studied members of the ADAMs family, 

TNF converting enzyme (TACE) also called ADAM17 (Black et al., 2002). It has been 

implicated in the release of multiple transmembrane molecules including TNFα, 

TNFRII (p75) and L-selectin. It was shown that TNFα processing was significantly 

inhibited in ADAM17 knockout mice, though limited processing of TNFα can still 

occur in cells derived from ADAM17-deficient mice. This residual sheddase activity is 

inhibited by the metalloprotease inhibitor IC-3, suggesting that other ADAMs family 

members may also process TNFα (Reddy et al., 2000). A dominant negative form of 

ADAM17, which lacks a metalloprotease domain, blocked the proteolysis of the TNF 

receptor (Solomon et al., 1999). Also, IL-1 receptor-II shedding does not occur in 

ADAM17-deficient fibroblasts. In fact, reconstitution of these cells with ADAM17, but 

not ADAM10 was capable of restoring shedding (Reddy et al., 2000). Other molecules 

that have been reported to be cleaved by ADAMs are the extracellular matrix proteins, 

type IV collagen, gelatine and fibronectin (Millichip et al., 1998; Alfandari et al., 2001; 

Martin et al., 2002). It is speculated that such activity may assist in cell migration.  
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4.1.5    ADAMs and human diseases  

ADAMs have been implicated in a variety of human disease processes, such as cancer, 

neuroinflammation, Alzheimers’s disease and RA. Studies from cell lines grown in 

culture, animal models and human malignancies suggest that a number of ADAMs are 

involved in cancer formation and/or progression, for example, ADAM9, 10, 12, 15 and 

17 (Duffey et al., 2009). ADAMs could potentially promote cancer formation/ 

progression through several different mechanisms e.g., release or activation of growth 

factors. Many growth factors are initially synthesised as inactive transmembrane 

precursor proteins that require conversion and the best-studied of these are the 

EGFR/HER family of ligands. All of these receptors, apart from HER2, can be directly 

activated following ligand binding leading to activation of several different signalling 

pathways including the MAPK, the PI3K and the janus kinase/signal transducer and 

activator of transcriptional (JAK/STAT) pathways. Activation of these signalling events 

results in activation of the classical hall markers of malignancy such as enhanced cell 

proliferation and increased cell survival (Bublil et al., 2007). 

 

4.1.6 The ADAM15 gene 

ADAM15 is a type I transmembrane glycoprotein belonging to the ADAMs proteins 

family and is widely expressed in different tissues and cell types with high level in 

vascular cells, the endocardium bone and some region in the brain (Zhong et al., 2008; 

Klino et al., 2009). Human ADAM 15 is located at 1q21.3 of chromosome 1, and was 

cloned in 1996 from MDA-MB-468 adenocarcinoma cells (Krätzschmar et al., 1996). 

The chromosomal region 1q21.3 has been reported to contain genes amplified in breast 

cancer and sarcomas, thus suggesting an association between ADAM15 and cancer 

(Kuefer et al., 2006). Human ADAM15 gene contains 23 exons varying in length from 

63 to 316 bp, and 22 introns (from 79 to 1283 bp). Exons 19-21 are used alternatively in 

human tissues (Kleino et al., 2007; Lu et al., 2010). Alternative mRNA splicing 

generates several ADAM15 isoforms which contain different combinations of putative 

Src homology-3 (SH3) domain binding sites in their cytosolic tails. A total of 6 

isoforms of ADAM15 have been described, and an alternative use of ADAM15 exons 

was found to profoundly influence selection of SH3-containing cellular partner proteins. 

Also, the amino acid sequence of the cytoplasmic tail of ADAM15 contains potential 

tyrosine phosphorylation sites, suggesting that ADAM15 could interact with SH2 

domain-containing proteins via phosphotyrosines, as well as potential serine and 
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threonine phosphorylation sites. Indeed, interaction of ADAM15 with Src, growth 

factor receptor binding protein2 (Grb2), endophilin, p85 (the regulatory subunit of 

Phosphatidylinositol-3 kinases) and mitotic arrest deficient2 (MAD2) has been reported 

(Howard et al., 1999; Poghosyan et al., 2002; Zhong et al., 2008). Thus, ADAM15 is 

involved in regulating many cellular signalling pathways. Also, alternative mRNA 

splicing provides a useful mechanism through which ADAM15 may regulate 

intracellular protein interactions which may help explain the association of some, but 

not all, ADAM15 isoforms with cancer (Yasui et al., 2004; Kleino et al 2009). 

The human ADAM15 has also been termed metargidin (for metalloprotease-

RGD disintegrin) as it is the only ADAM which contains an RGD sequence in a similar 

position to that in snake venom disintegrins. Interestingly, the mouse and rat 

orthologues of ADAM15 lack an RGD sequence. The presence of the RGD sequence 

suggests a specific role for ADAM15 in integrin binding and therefore, in cell-cell 

interactions (Lum et al., 1998; Horiuchi et al, 2003). Although human ADAM15 can 

indeed interact with RGD-binding integrins αvβ3 and α5β1, the mouse ADAM15 does 

not. Instead, the mouse ADAM15 has been implicated as a ligand for integrin α9β1. 

Both the human and mouse ADAM15 contain a catalytic site consensus sequence for 

zinc-dependent metalloproteases and purified recombinant ADAM15 is catalytically 

active. Known ADAM15 substrates include FGFR2iiib and N- and E-cadherin, the 

shedding of which has been implicated in prostate and breast cancer pathogenesis 

(Klino et al., 2009).   

Atherosclerosis is a chronic inflammatory disorder that is the underlying cause 

of most cardiovascular diseases. Interestingly, ADAM15 expression was detected in the 

macrophage-rich regions of atherosclerotic lesions (Herren et al., 1997). This work 

demonstrated that ADAM15 was upregulated during atherosclerosis suggesting a 

potential involvement of ADAM15 in this pathology. Also, upregulation of α5β1 and 

αvβ3 integrins was detected in atherosclerosis (Al-Fakhri, et al., 2003). These integrins 

bind to ADAM15 and have been shown to be involved in the development and 

progression of atherosclerosis. These findings suggest that ADAM15 expressed on 

endothelial cells could act as a receptor for platelets or as a receptor involved in the 

recruitment of immune cells during inflammation (Al-Fakhri et al., 2003; Nath et al., 

1999). Also, upregulation of ADAM15 mRNA and protein levels during inflammatory 

bowel disease (IBD) was detected, suggesting a role of ADAM15 in intestinal 

inflammation (Mosnier et al., 2006). ADAM15 has been also shown to be involved in 
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RA, an inflammatory degenerative joint disease, whereby ADAM15 may be involved in 

cleaving extracellular matrix (ECM) components such as gelatin and IV collagen 

(Martin et al., 2002).  

Herein, following the immunoprecipitation of TRIF and analysis of interacting 

partners using LC-MS techniques, ADAM15 was identified as a novel TRIF interacting 

partner following stimulation of HEK293-TLR3 cells with poly(I:C) for 60 min. 

Interestingly, TRIF and ADAM15 coimmunoprecipitated in a ligand-independent 

manner in HEK293-TLR4 cells. The aim of this chapter was to investigate the role 

played by ADAM15 in TRIF mediated TLR3 and TLR4 signalling. 
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4.2    Results 

 

4.2.1 ADAM15 interacts with TRIF 

Analysis of TRIF interacting partners using a proteomics approach revealed that TRIF 

interacted with ADAM15. Thus, to confirm the interaction, co-immunoprecipitation of 

epitope-tagged TRIF (HA-TRIF) with epitope tagged ADAM15 (V5-ADAM15) was 

performed in HEKT293-TLR3. Cells were transfected with HA-TRIF and EV, or HA-

TRIF and V5-ADAM15 and treated as indicated. Thereafter, immunoprecipitation of 

HA-TRIF was performed as described (Materials and methods, section 2.2.9). As shown 

in Figure 4.2 panel A, ADAM15 co-immunoprecipitated with TRIF following 

stimulation of cells with poly(I:C) for 60 min and there is no association in the absence 

of poly(I:C). It should be mentioned that downregulation of TRIF expression was 

observed when co-expressed with ADAM15 and that ADAM15 probably causing TRIF 

processing (discussed in more details in section 4.2.9).  Interestingly, in HEK293-TLR4 

cells, proteomics analysis showed that ADAM15 interacted with TRIF in a ligand 

independent manner and suggests that TLR4 or another auxiliary molecule may 

facilitate ligand-independent interaction of ADAM15 with TRIF when TLR4 is 

overexpressed in the cell. Many different anti-human TRIF antibodies were tested for 

their ability to detect TRIF, especially at the endogenous level. It was found that an anti-

TRIF polyclonal antibody obtained from Exalpha detected endogenous TRIF and was 

chosen for IP and western blot (discussed further in chapter 6). Thereafter, IP of 

endogenous TRIF from human astrocytoma cell line U373-CD14 was performed as 

described (Materials and methods, section 2.2.10). These cells were used as a model 

since they express TLR3 and TLR4 mRNA and respond well to poly(I:C) and LPS. As 

illustrated in Figure 4.2, panel B, endogenous ADAM15 interacted with endogenous 

TRIF following stimulation of U373-CD14 cells with poly(I:C) and LPS for 60 and 20 

min, respectively. The interaction of TRIF with ADAM15 upon LPS stimulation for 20 

min was also confirmed by LC-MS analysis of the endogenous TRIF immunocomplex 

(discussed further in chapter 6). 

 

4.2.2 ADAM15 inhibited TRIF-dependent reporter gene assays  

Initially, the ability of ADAM15 to modulate TRIF-mediated luciferase reporter gene 

activity was investigated. Thus, HEK T293 cells were transiently transfected with the 

NF-κB, IFN-β and CCL5 (Rantes) reporter gene constructs and increasing amounts of  
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Figure 4.2: Co-immunoprecipitation of human TRIF and human ADAM15.  (A). 

HEK293-TLR3 were seeded into 6 well plates. When the cells become confluent (80 

%), cells were co-transfected with 2 μg of HA-TRIF and 1 μg of EV or co-transfected 

with 2 μg of HA-TRIF and 1 μg of V5-ADAM15. 20 h after transfection, cells were left 

unstimulated or stimulated with 20 μg/ml poly(I:C) for 60 min. Thereafter cells were 

lysed in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA, pH 8.0, 1 % 

NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM PMSF, 1 mM DDT, 1 

mM NaVO3, 5 mM EGTA and protease inhibitor cocktail). Cleared cell lysates were 

incubated with 1 μg of anti-HA monoclonal antibody precoupled to 50 μl of Protein 

A/G Plus-Agarose beads for 2 h at 4 
o
C with gentle shaking. Immunoprecipitation 

complexes were washed 4 times with lysis buffer and then released from the beads by 

addition of 40 μl of Laemmli loading buffer, followed by boiling for 5 min. Proteins 

were separated by SDS-PAGE gel electrophoresis and subjected to immuno-blotting 

using anti-HA and anti-V5 monoclonal antibodies. (B) U373-CD14 cells were cultured 

into T175 flasks. When the cells were 90-95 % confluent, they were stimulated with 

either 20 μg/ml poly(I:C) or 1 μg/ml LPS for time indicated. Thereafter cells were 

scrapped into 10 ml ice cold PBS and spun down for 10 min at 4
 o

C at 220 g. Cell 

pellets were lysed as per panel A and cleared cell lysates were incubated with 2 μg of 

anti-hTRIF polyclonal antibody precoupled to 50 μl of Protein A/G Plus-Agarose beads 

for 2 h at 4 
o
C with gentle shaking. Proteins were separated by SDS-PAGE gel 

electrophoresis and immunoblot analysis was performed using anti-hTRIF (Exalpha) 

and anti-hADAM15 (R&D) antibodies. Rabbit IgG (Sigma) was used as negative 

control. Images were captured using the G: box system (Syngene). Results represent at 

least three independent experiments. 
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ADAM15 in the presence of a constant concentration of TRIF or MyD88.  

Overexpression of ADAM15 significantly inhibited TRIF-dependent activation of the 

NF- κB, IFN-β (p125-luc) and Rantes reporter genes (Figure 4.3 panels A, B and C). 

Moreover, overexpression of ADAM15 also significantly inhibited TRIF-dependent 

activation of the NF-B-driven PRDII and IRF3/IRF7-dependent PRDIII-I reporter 

genes (Figure 4.3 panels D and E). As a control, the effect of ADAM15 on MyD88 

driven NF-B, IFN-β and Rantes promoter activity was also tested. Overexpression of 

ADAM15 significantly inhibited MyD88-dependent activation of the NF-B and Rantes 

promoter (Figure 4.3 panels F and H). However, overexpression of low levels of 

ADAM15 (5-20 ng) increased MyD88 dependent activation of the IFN-β (p125-luc) 

reporter gene (Figure 4.3 panel G).  

 

4.2.3 ADAM15 inhibited TLR3 and TLR4-mediated reporter gene activity 

 

AS TRIF mediates TLR3 and TLR4 signalling, the effect of ADAM15 on TLR3 and 

TLR4-dependent NF-κB, IFN-β and Rantes activation was investigated using HEK293 

cells stably expressing either TLR3 or TLR4. In HEK293-TLR3 cells, overexpression 

of ADAM15 significantly inhibited TLR3-dependent activation of NF-κB, IFN-β and 

Rantes reporter genes (Figure 4.4). Interestingly, the inhibition effect on the reporter 

gene activation of NF-κB and Rantes was stronger than the effect on IFN-β reporter 

gene activity (Figure 4.4 panels A-C). Furthermore, in HEK293-TLR4 cells, 

overexpression of ADAM15 significantly reduced TLR4-dependent NF-κB, IFN-β 

reporter gene activation (Figure 4.4 panels D and E). In our hands, HEK293-TLR4 cells 

did not induce LPS mediated activation of the Rantes reporter gene. Also, there was 

difficulty using HEK293-TLR4 for reporter gene assays as the fold induction of NF-κB, 

IFN-β relative luciferase activity (RLA) was always low when compared to HEK293-

TLR3.  

 

4.2.4    Poly(I:C) increased ADAM15 transcription     

Some MMPs including MMP9 and MMP3 contain an NF-κB binding site in their 

promoter region that regulates their expression (Mishra et al., 2011). Moreover, it has 

been demonstrated that poly(I:C) induces MMP9 expression in HaCat keratinocytes 

through NF-κB, p38 MAPK and PI-3K signal transduction pathways (Voss et al., 2011).   

Therefore, the effect of poly(I:C) and LPS on ADAM15 transcription was investigated. 



101 

 

 

0

2

4

6

8

10

RLA N
FKB

0

3

6

9

12

15

18

RLA 
IFN



+  +  +    + +  +     +

+     - - - - - -

- +     +    +     +     +       +

- - 5   10   20    30    40

+     +      +     +    +     +      +

+     - - - - - -

- +      +    +     +      +     +

- - 5    10   20    30   40

NFĸB-luc

EV             

MyD88

ADAM15 (ng)

p125-luc

EV             

MyD88

ADAM15 (ng)

0

2

4

6

8

10

RLA
 Ran

tes

Rantes promoter-luc

EV             

MyD88

ADAM15 (ng)

GF H

+  + +   +      + +  +

+  - - - - - -

- +      +     +      +  +   +

- - 5  10    20   30    40

NFĸB-luc

EV             

TRIF

ADAM15 (ng)

+  + + +  +       +

+     - - - - -

- +     +       +      +  +

- - 5       20    30    40

0

1

2

3

4

5

6

RLA
 NFK

B

A

0

50

100

150

200

250

RLA
 IFN



p125-luc

EV             

TRIF

ADAM15 (ng)

+ +     +  +       +   +

+ - - - - -

- +     +      +      + +

- - 5     20  30    40

0

8

16

24

32

40

RLA
 Ran

tes

Rantes promoter-luc

EV             

TRIF

ADAM15 (ng)

+     +   +       +  +        +

+   - - - - -

- +      +        +      +       +

- - 5      20     30      40

B C

0

8

16

24

32

40

48

RL
A P

RD
II

PRDII-luc

EV             

TRIF

ADAM15 (ng)

0

10

20

30

40

RL
A P

RD
III

+    +       +  +       +       +

+   - - - - -

- +   +  +   +      +

- - 5     20    30 40

+   +       +      +  +       +

+       - - - - -

- +       +      + + +

- - 5    20      30       40

PRDIII-luc

EV             

TRIF

ADAM15 (ng)

D E

*

**
***

***

***

***
*

**

*
**

**

***

 

Figure 4.3: ADAM15 inhibited TRIF-dependent reporter gene activity. (A-E) 

HEKT293 cells were plated into 96 well plates at a density of 5 x 10
4
 cells/well. After 

24 h, cells were transfected with expression vectors encoding either the reporter genes 

NF-B (A), IFN-β promoter p125 (B), Rantes (C), IFN-β PRDII (D) or IFN-β PRDIII-I 

(E) and co-transfected with either EV or expression vectors encoding the full length 

human HA-TRIF (20 ng) and increasing amounts of expression vectors encoding full 

length human V5-ADAM15 (5, 20, 30 and 40 ng) as indicated. After 24 h, cells were 

harvested and lysed. The cell lysates were stored at -80 
o
C for at least 24 h, followed by 

assessment of luciferase reporter gene activity. (F-H) HEKT293 cells were plated into 

96 well plates at density of 5 x 10
4
 cells/well. After 24 h, cells were transfected with 

expression vectors encoding either reporter genes for the NF-B (F), full-length IFN-β 

promoter (p125) (G) and Rantes (H) as indicated, and co-transfected with either EV or 

an expression vector encoding full length human Myc-MyD88 (20 ng) and increasing 

amounts of an expression vector encoding full length human V5-ADAM15 as indicated. 

After 24 h, cells were lysed and the cell lysates were stored at -80 
o
C for at least 24 h. 

Thereafter, luciferase reporter gene activity was assessed using the dual luciferase 

system (Promega). The results presented are representative of at least three independent 

experiments, each experiment was done in triplicate. * P < 0.05, ** P < 0.01 and *** P 

< 0.001. 
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Figure 4.4: Overexpression of ADAM15 inhibited TLR3 and TLR4 mediated 

reporter gene activity. (A-C) HEK293-TLR3 cells were plated into 96 well plates at 

density of 5 x 10
4
 cells/well. After 24 h, cells were transfected with expression vectors 

encoding either the NF-B (A), full-length IFN-β promoter (p125) (B), or Rantes 

promoter (C) reporter gene plasmids, and co-transfected with either an EV or and 

increasing amounts of V5-ADAM15. After 24 h, cells were left untreated (control) or 

stimulated with 20 μg/ml poly (I:C) for an additional 24 h, followed by harvesting of 

cell lysates.  Cell lysates were left at -80 
o
C for at least 24 h and assessment of 

luciferase reporter gene activity was performed. (D and E) HEK293-TLR4 were 

transfected with reporter genes for the NF-B (D) or full-length IFN-β promoter (p125) 

(E), and co-transfected with either an EV or increasing amount of expression vector 

encoding full length human V5-ADAM15 as indicated. After 24 h, cells were left 

untreated (control) or stimulated with 1 μg/ml LPS for 24 h, followed by harvesting and 

cell lysis. Cell lysates were left at -80 
o
C for at least 24 h, followed by assessment of 

luciferase reporter gene activity using dual luciferase system (Promega). The results 

presented are representative of at least three independent experiments each experiment 

was done in triplicate.  *** P < 0.001. 
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using the human astrocytoma cell line U373-CD14 as a model. Cells were stimulated 

with either poly(I:C) or LPS for different time points followed by RNA isolation, cDNA 

synthesis and Q-RT-PCR. Poly(I:C) stimulation modestly increased ADAM15 mRNA 

compared to the control, while LPS did not have an effect on ADAM15 mRNA 

expression (Figure 4.5  panel A and B). 

 

4.2.5    Downregulation of ADAM15 by esiRNA. 

To investigate the role played by ADAM15 in TLR3 and TLR4 signalling, knockdown 

of ADAM15 was performed using MISSION esiRNA technology in U373-CD14 cells. 

MISSION esiRNA are end-ribonuclease prepared siRNA. They are a heterogeneous 

mixture of siRNAs that all target the same mRNA sequence. These multiple silencing 

triggers lead to highly specific and effective gene silencing. To monitor the knockdown, 

U373-CD14 cells were transfected with esiRNA-control or esiRNA against human 

ADAM15, then ADAM mRNA and protein levels were measured by using RT-PCR 

and immunoblotting, respectively. It was found that esiRNA significantly decreased 

ADAM15 mRNA compare to the control (Figure 4.6, panel A and B). In addition, the 

ADAM15 protein expression was also downregulated by the ADAM15 esiRNA 

compared to the control as measured by western blot (Figure 4.6, panel C). 

 

4.2.6    Suppression of ADAM15 expression enhanced IFN-β, TNF-α and Rantes 

mRNA expression.  

To investigate the potential role of ADAM15 in TLR3 and TLR4 signalling, levels of 

IFN-β, TNF-α and Rantes mRNAs were measured in U373-CD14 cells transfected with 

esiRNA control or esiRNA against ADAM15. After 48 h, cells were stimulated with 

either poly(I:C) or LPS for 3 h. Downregulation of ADAM15 significantly increased 

poly(I:C) and LPS induce IFN-β, TNF-α and Rantes transcription compared to the 

control (Figure 4.7, panels A, B, C and F, G, H). Also knockdown of ADAM15 

increased slightly the basal level of IFN β mRNA compared to the control (Figure 4.7 

panel A and F). It has been reported that MMP9 secretion and activity was abolished in 

PC-3 cell line in response to ADAM15 reduction by short hairpin RNA technology 

(Najy et al., 2008). Furthermore ADAM15 has been shown to cleave the ectodomain of 

MMP10 (Tousseyn et al., 2009; Friedrichet et al., 2011). Therefore, the effect of 

ADAM15 knockdown on the transcription of these two MMPs was studied. 

Surprisingly, reduction of ADAM15 significantly increased poly(I:C) induced MMP9  
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Figure 4.5: poly (I:C) increased ADAM15 mRNA. U373-CD14 cells were plated into 

6-well plates. When cells were 80 % confluent, they were left un-stimulated (control) or 

stimulated with either 20 μg/ml poly(I:C) (A) or 1 μg/ml LPS (B) for the time indicated. 

Thereafter, total RNA was isolated, and reverse transcribed into cDNA. The cDNA 

were used as a template whereby it was diluted 25 times and ADAM15 mRNA was 

measured by Q-RT-PCR using primer specific to human ADAM15. GAPDH was used 

as housekeeping gene. The results presented are representative of at least three 

independent experiments each experiment was done in duplicate.  * P < 0.05. 
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Figure 4.6: Suppression of ADAM15 in human astrocytoma U373-CD14 cells. (A) 

Cells were seeded into 6-well plate. When cells were 80 % confluent, they were 

transfected with 20 nM esiRNA control or 20 nM esiRNA against human ADAM15.  

Cells were harvested 24 h after transfection and total RNA was isolated and reverse 

transcribed into cDNA. The cDNA template was diluted 25 times and ADAM15 mRNA 

was measured by Q-RT-PCR using primer specific to human ADAM15. GAPDH was 

used as housekeeping gene. (B) The cDNAs were diluted 100 times and RT-PCR was 

performed using specific primer for human ADAM15. GAPDH was used as 

housekeeping gene. RT-PCR products were separated by agarose gel electrophoresis for 

1 h at 100 V. Images were captured using the G:box documentation system (Syngene). 

(C) Cells were plated into 6-well plates. After 24 h, cells were transfected with 20 nM 

esiRNA control or esiRNA against human ADAM15. Cells were collected 48 h after 

transfection in 1 ml cold ice PBS and centrifuged for 10 min at 380 g at 4 
o
C. Cells were 

lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-40, 1 % sodium 

deoxycholate, 0.1 % SDS, supplemented with protease inhibitor cocktail, 1 mM PMSF 

1 mM Na3VO4 , and 1 mM DDT). Proteins were separated by SDS-PAGE gel 

electrophoresis and subject to immunoblotting. ADAM15 was detected using anti-

human ADAM15 monoclonal antibody (R&D). β-Actin was used as loading control. 

Images were captured using the G:box documentation system (Syngene). **P < 0.01. 
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Figure 4.7: Suppression of ADAM15 expression enhanced IFN-β, TNF-α and 

Rantes mRNA transcripts (A and C) U373-CD14 cells were seeded into 6 well plates. 

When the cells were 80 % confluent, they were transfected with 20 nM esiRNA control 

or esiRNA directed against ADAM15. After 48 h, cells were stimulated with either 20 

μg/ml poly(I:C) (panel A) or 1 μg/ml LPS (panel C) for 3 h. Thereafter, cells were 

harvested and total RNA was isolated and reverse transcribed into cDNA.  The cDNA 

was used as template and then diluted 25 times. Next, levels of IFN-β, TNF-α and 

Rantes mRNAs were measured by Q-RT-PCR using specific human IFN-β, TNF-α and 

Rantes primers. (Panels, B and D) Cells were seeded into a 6-well plate and when cells 

become 80 % confluent, cells were transfected with 20 nM esiRNA control or esiRNA 

against ADAM15. After 24 h, cells were stimulated with either 20 μg/ml poly(I:C) 

(panel B) or 1 μg/ml  LPS (panel D) for an additional 24 h. Thereafter cells were 

collected, total RNA was isolated and reverse transcribed into cDNA.  cDNA was used 

as template and then diluted 25 times. Levels of mRNA for MMP9 and MMP10 were 

measured by Q-RT-PCR using specific human MMP9 and MMP10 primers. GAPDH 

was used as housekeeping gene. Data are representative of two independent experiments 

each experiment was done in duplicates. * P < 0.05 and ** P < 0.01. 
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and MMP10 mRNA compared to the control (Figure 4.7 panels D and E). However, 

reduction of ADAM15 slightly decreased LPS induced MMP9 and MMP10 mRNA 

Compared to the control (Figure 4.7, panels I and J). Suppression of ADAM15 had no 

effect on basal MMP9 transcription however it decreased slightly the MMP 10 mRNA 

compared to the control (Figure4.7, panels I and J).  

 

4.2.7    Downregulation of ADAM15 increased cytokine and chemokine secretion  

Next, the effect of ADAM15 on TLR3 and TLR4 mediated cytokine and chemokine 

induction was assessed. To this end, U373-CD14 cells were transfected with esiRNA 

control or esiRNA against ADAM15 for 24 h, followed by stimulation with either 

poly(I:C) or LPS for additional 24 h. Thereafter, cell free supernatants were collected 

and cyto/chemokine secretion was measured using the human Meso ELISA system as 

described (Materials and methods section 2.2.21). Suppression of ADAM15 expression 

significantly increased poly(I:C) induced IFN-β, IFN-γ, IL- 12p70, Rantes and TNF-α 

(Figure 4.8 panels A-E) secretion compared to the control.  Furthermore, down-

regulation of ADAM15 enhanced LPS induced IFN-β and IFN-γ, IL-12p70 and Rantes 

(Figure 4.8, panel E), secretion compared to the control (Figure 4.8, panels I-L). TNF-α 

is slightly increased but the difference is not significant (Figure 4.8, panel M). 

The transcription of many MMPs is promoted by inflammatory cytokines and 

chemokines (Yong et al et al., 2001). Also Voss et al. (2011) reported that  poly(I:C) 

stimulation in chondrocytes leads to TRIF-dependent induction of MMP1 and MMP13 , 

thus the levels of MMP 1, 3 and 9 in cell free supernatants was also measured using the 

human Meso ELISA system. Reduction of ADAM15 significantly enhanced poly(I:C) 

induced MMP1 MMP3 and MMP9 compared to the control (Figure 4.8, panels F-H). 

Alternatively, knockdown of ADAM15 significantly decreased/increased LPS induced 

MMP9/MMP3 secretion compared to the control, MMP1 was not affected (Figure 4.8, 

panels N-P). It should be mentioned that knockdown of ADAM15 had negligible effect 

on cytokines/chemokine and MMPs basal levels.   
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Figure 4.8: Suppression of ADAM15 enhanced TLR3 and TLR4 mediated cytokine 

and chemokine induction. U373-CD14 cells were plated into 6-well plates. When the 

cells were 80 % confluent, cells were transfected with 20 nM esiRNA control or 

esiRNA against ADAM15. After 24 h, cells were stimulated with either 20 μg/ml 

poly(I:C) (panels A, B, C, D) or 1 μg/ml  LPS (panels E, F, G, H) for an additional 24 h. 

Thereafter, cell free supernatants were collected and ELISA was performed using the 

Meso system. IFN-γ, IL-12p70, IL-6, TNF-α were measured in the cell free 

supernatants using human Pro-Inflammatory 7-plex Meso kit. Rantes and IFN-β were 

measured using the human single plex Meso kit. MMP 1, 3 and 9 were measured using 

the human 3 plex Meso kit.  * P < 0.05, ** P < 0.01 and *** P < 0.001.   
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4.2.8    Knockdown of ADAM15 increased the phosphorylation of p65 

As TRIF mediates NF-κB activation and phosphorylation of both p65 and IRF3, it was 

of interest to investigate whether ADAM15 reduction affected IκBα degradation, 

phosphorylation of p65 and IRF3. To this end, U373-CD14 cells were transfected with 

esiRNA control or esiRNA against ADAM15 for 48 h followed by stimulation with 

either poly(I:C) or LPS at the indicated time points. Then, IκBα degradation, phospho-  

rylation of p65 and IRF3 was investigated in whole cell lysates. Suppression of 

ADAM15 expression increased delayed IB degradation and phosphorylation of p65 

(120 min) upon LPS stimulation (Figure 4.9) compared to the control. However, 

suppression of ADAM15 expression had no effect on IB degradation and 

phosphorylation of p65 upon poly(I:C) (data not shown). Additionally, phosphorylation 

of IRF3 was not detected in this cell line.  

 

4.2.9    ADAM15 mediates TRIF degradation 

In an effort to define the mechanism that underlying ADAM15 negatively regulates 

TRIF mediated TLR3 and TLR4 signalling and as ADAM15 exhibits protease activity 

(Martin et al., 2002; Duffey et al., 2011), the ability of ADAM15 to mediate the 

degradation of TRIF was investigated. To this end, HEK293-TLR3 were transfected 

with HA-TRIF and EV or HA-TRIF and V5-ADAM15. Thereafter, cells were left 

untreated (control) or stimulated with poly(I:C) as indicated. It should be mentioned that 

during co-immunoprecipitation of TRIF and ADAM15 in HEK293-TLR3, degradation 

of TRIF was observed. To inhibit the catalytic activity of ADAM15, ethylene glycol 

tetraacetic acid (EGTA) and EDTA were used. Chen et al. (2007) reported that ADAM 

and MMP family members are Zn-dependent proteinases. Thus, their activities were 

reported to be inhibited by the metal ion chelators such as EDTA and EGTA. Results 

showed that ADAM10 and ADAM17 sheddase activity was inhibited by both EDTA 

and EGTA (Chen et al., 2007). For this reason EGTA and EDTA were not used in this 

experiment to keep ADAM15 in its catalytic active form. As shown in Figure 4.10 

panel A, overexpression of 1 μg ADAM15 caused TRIF degradation in HEK293-TLR3 

even in the absent of poly(I:C) stimulation. As a control and to eliminate the possibility 

that the degradation effect could be caused by overexpression of two proteins within a 

cell at the same time, the modulatory effect of ADAM15 on MyD88 was tested. 
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Figure 4.9: Attenuation of ADAM15 increased phosphorylation of p65. U373-

CD14 cells were seeded into 6-well plates. When the cells were 80 % confluent, they 

were transfected with 20 nM esiRNA control or esiRNA against ADAM15. After 48 h, 

cells were stimulated with 1 μg/ml LPS for the indicated time points. Thereafter, cells 

were collected in 1 ml PBS and centrifuged for 10 min at 4 
o
C at 380 g. Cell pellets 

were lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-40, 1 % 

sodium deoxycholate, 0.1 % SDS, supplemented with protease inhibitor cocktail, 1 

mM PMFS 1 mM Na3VO4 and 1 mM DDT). Next, cell lysates were mixed with 

Laemmli loading buffer and boiled for 5 min. Proteins were separated by SDS-PAGE 

and subjected to immunoblot analysis using mouse anti-IκBα and rabbit anti pp65 

monoclonal antibodies. β-actin was used as loading control. Images were captured 

using the G:Box system (Syngene). Results represent three independent experiments. 
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Figure 4.10 : ADAM15 mediates TRIF degradation.  (Panel A), HEK293-TLR3, 

(Panel B), HEK293-TLR4 were seeded into 6-well plates. When the cells were 80 % 

confluent, HEK293-TLR3 were co-transfected with either 2 μg of HA-TRIF and 1 μg 

of EV or with 2 μg of HA-TRIF and 1μg of V5-ADAM15. HEK293-TLR4 were co-

transfected with 2 μg of Myc-MyD88 and 1 μg of EV or with 2 μg of Myc-MyD88 and 

1 μg of V5-ADAM15. After 20 h, cells were left unstimulated or treated with 20 μg/ml 

poly(I:C) (HEK293-TLR3) or 1 μg/ml LPS (HEK293TLR4) for the indicated times. 

Thereafter, cells were harvested and lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 

150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 0.1 % SDS, supplemented with 

protease inhibitor cocktail, 1 mM PMSF, 1 mM Na3VO4 and 1 mM DDT). Proteins 

were separated by SDS-PAGE and immunoblotting was performed using anti-HA, 

anti-Myc and anti-V5 monoclonal antibodies whereby β-actin was used as loading 

control.  (Panel C) U373-CD14 cells were seeded into 6 well plates. When the cells 

were 80 % confluent, they were transfected with 20 nM esiRNA control or 20 nM 

esiRNA against ADAM15. After 24 h, cells were stimulated with either 20 μg/ml 

poly(I:C) or 1 μg/ml LPS for  3 or 24 h as indicated. Thereafter, total RNA was isolated 

and reverse transcribed into cDNA which was diluted 25 times and then used as a 

template for Q-RT-PCR. TRIF mRNA was measured by Q-RT-PCR using specific 

primer to human TRIF.  (Panel D) U373-CD14 cells were seeded into 6-well plates. 

When cells were 80 % confluent, they were transfected with 20 nM esiRNA control or 

20 nM esiRNA against ADAM15. After 24 h, cells were stimulated with either 20 

μg/ml poly(I:C) or 1 μg/ml LPS for additional 24 h. Thereafter, cells were collected in 

1 ml PBS and centrifuged for 10 min at 4 
o
C at 380 g. Cell pellets were lysed in RIPA 

buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 

0.1 % SDS, supplemented with protease inhibitor cocktail, 1 mM PMSF, 1 mM 

Na3VO4 and 1 mM DDT). Cell lysates were mixed with Laemmli loading buffer and 

boiled for 5 min. Proteins were separated by SDS-PAGE and subjected to 

immunoblotting using a rabbit anti-TRIF polyclonal antibody (Exalpha). β-actin was 

used as loading control. Images were captured using the G:Box system (Syngene). 

Results represent two independent experiments. 
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It was found that ADAM15 overexpression in HEK293-TLR4 had no effect on MyD88 

expression (Figure 4.10 panel B). To support these findings, levels of endogenous TRIF 

mRNA and protein level were measured following suppression of endogenous 

ADAM15 by esiRNA. Suppression of ADAM15 resulted in a significant increase of 

TRIF mRNA 24 h upon poly(I:C) stimulation compared to the control. However, 

suppression of ADAM15 only slightly increased LPS induces TRIF transcription upon 

LPS stimulation at 3 h compared to the control (Figure 4.10 panel C). Next, TRIF 

protein expression was detected by western blot using a specific anti human-TRIF 

antibody. Suppression of ADAM15 resulted in the upregulation of TRIF protein 

expression upon poly(I:C) and LPS stimulation (Figure 4.10 panel and D). 

 

4.2.10     Cellular localization of ADAM15 

It has been reported that some ADAMs may be cleaved and subsequently translocate to 

the nucleus (Friedrich et al., 2011; Mishra et al., 2011). For that reason, the subcellular 

distribution of ADAM15 was investigated following stimulation of cells with poly(I:C). 

To this end, ADAM15 was overexpressed in HEK293-TLR3. Thereafter, cells were 

stimulated with poly(I:C) and subcellular localisation was investigated by confocal 

microscopy. To avoid potential artifacts due to high levels of overexpression, the 

amount of plasmid DNA transfected into the cells was maintained at low levels (200 

ng). As illustrated in Figure 4.11, ADAM15 showed perinuclear distribution and poly 

(I:C) stimulation had no effect on it cellular location. 

 

4.2.11    Interaction network 

To investigate whether ADAM15 and TRIF are involved in the co-regulation of similar 

proteins or share some common targets, ADAM15 and TRIF were inputted into the 

Pathway Studio Software and a search was performed to identify common targets and 

common regulator networks. As illustrated in Figure 4.12, TRIF regulates IFN-γ 

expression which is indirectly regulated by ADAM15. TNFα is directly regulated by 

TRIF and its expression is also regulated by ADAM15. Also, it was found that 

ADAM15 and TRIF indirectly regulate MAPK1 and MMP9 and MAPK3 is regulated 

by ADAM15. Interestingly, ADAM15 expression was previously reported to be 

upregulated in cells treated with pro-inflammatory cytokines and in tissues of 

inflammatory diseases (Charrier-Hisamuddin et al., 2008). Also, overexpression of 

ADAM15 causes increased ERK1/2 activation in endothelial (Sun et al., 2010). It is 
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known that TRIF induces proinflammatory cytokine which is dependent on NF-κB and 

MAPK activation (Qi et al., 2005). This indicates that both ADAM15 and TRIF are 

involve in MAPK activation and is possible they may counterregulate each other. Ras 

GTPase-activating-like protein (IQGAP1) was another protein that was identified by 

LC-MS in HEK293-TLR3 together with ADAM15 upon poly(I:C) stimulation for 60 

min. IQGAP1 is also involved in MAPK activation and has been reported to play a 

positive role in viral replication (Leung et al., 2006). Research has shown that IQGAP1 

binds to and modulates the activity of multiple proteins that participate in bacterial 

invasion (Hugh et al., 2012). Interestingly, this protein has been reported to be involved 

in invadopodial matrix degradation (Sakurai-Yageta et al., 2008). Invadopodial are 

actin-based membrane protrusions with a matrix degradation activity and represent sites 

where cell signalling, proteolytic, adhesive, cytoskeletal, and membrane trafficking 

pathways physically converge (Weaver, 2006). Actin regulatory proteins participate in 

invadopodia formation whereas the matrix degradation activity requires MMPs.  

Stimulation of invadopodial activity by constitutively active IQGAP1 requires the 

CLIP170 and adenomatous polyposis coli (APC) (Sakurai-Yageta et al., 2008). These 

two proteins were also identified in the TRIF protein complex upon stimulation of 

HEK293-TLR3 with poly(I:C) for 60 min. Both CLIP170 and APC bind to IQGAP1 as 

shown in chapter 3 Figure 3.12. This may indicate that ADAM15 could causes TRIF 

degradation through IQGAP and their binding partners CLIP170 and APC. To 

investigate whether TRIF, ADAM15 and IQGAP share similar regulation of cellular 

processes, TRIF, ADAM15 and IQGAP were uploaded to the Pathway Studio Software 

and a cellular processes network was created. TRIF and IQGAP1 share the regulation of 

viral reproduction, phagocytosis and endothelial cell proliferation. Interestingly 

IQGAP1 regulates almost all cellular processes regulated by ADAM15. These include 

leukocyte migration, cell proliferation, cell migration, cell differentiation, 

vascularization, cell motility and cell invasion (Figure 4.13). Thus, there is a strong 

association between ADAM15 and IQGAP1. Therefore, IQGAP1 could be a target of 

choice in investigating the mechanism by which ADAM15 causes TRIF degradation 

and thereby negatively regulates TLR3 and TLR4 signalling.   
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Figure 4.11: Cellular distribution of ADAM15 upon TLR engagement. HEK293-

TLR3 were seeded on pre-collagen coated coverslip in 6-well plates. When the cells 

become 80 % confluent, they were transfected with 200 ng of V5-ADAM15. After 24 h, 

cells were left untreated or treated with 20 μg/ml poly(I:C) for 40 or 90 min as 

indicated. Thereafter, cells were fixed in 4 % parafomaldehyde in PBS, permeabilized 

in 0.5 % triton X-100 in PBS and blocked for 1 h in 1 % BSA in PBS. Next, cells were 

incubated with 200 μl of anti-V5 monoclonal primary antibody (diluted 1:50 in blocking 

buffer) for 2 h at RT with gentle shaking. Thereafter, cells were washed for 10 min with 

0.05 % Tween 20 in PBS three times. Then, cells were incubated with Alexa fluro 568 

secondary antibody (diluted 1:200 in blocking buffer) for 1 h at RT in the dark, 

followed by three washes with 0.05 % Tween 20 in PBS.  The nucleus was stained with 

DAPI (10 μg/ml in PBS). Then, cells were washed twice in PBS and the coverslips were 

mounted on glass slide using mounting medium and kept in the fridge until analysed. 

Images were captured using Olympus 1000 confocal microscopy and Flouview 

Software.   
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Membrane

 
 

Figure 4.12: Common targets/regulator network of ADAM15 and TRIF as 

constructed using Pathway Studio Software. In HEK293-TLR3 cells, following 

immunoprecipitation of HA-TRIF and LC-MS analysis of TRIF interactors, ADAM15 

was identified upon stimulation of cells with poly(I:C) for 60 min. TRIF (Ticam-1) is 

indicated in red with yellow surround. ADAM15 is indicated in red with green 

surround. Yellow entities indicate the proteins that are co-regulated by TRIF and 

ADAM15, as derived from the software programme. Grey dotted line indicates 

regulation, grey solid line indicates direct regulation and purple solid line indicates 

expression.  
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Figure 4.13: Cell processes regulated by TRIF, ADAM15 and IQGAP1. In 

HEK293-TLR3 cells, following IP and LC-MS of HA-TRIF immunocomplexes, 

ADAM15 and IQGAP1 were identified upon stimulation of cells with poly(I:C) for 60 

min. Newly identified protein interactors were uploaded to Pathway Studio software 

analysis program. Next, cell processes that were commonly modulated by TRIF and the 

newly identified proteins were identified by Software analysis. Yellow entities indicate 

the cellular processes that are co-regulated by the identified proteins and TRIF. The red 

entity with yellow surround indicates TRIF (Ticam-1), red entity with green surround 

indicates ADAM15 and red entity with blue surround indicates IQGAP1. Grey dotted 

lines indicate regulation.  
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4.3    Discussion  

This study has shown for the first time that TRIF interacts with the disintegrin 

metalloprotease ADAM15 upon stimulation of the cells with poly(I:C) and LPS. 

ADAM15 was found to function as a negative regulator of TRIF mediated activation of 

NFκB, IFN-β and Rantes promoter activity. Also, efficient suppression of ADAM15 

expression was achieved by using esiRNA technology. Knockdown of ADAM15 

resulted in enhanced TLR3 and TLR4 signalling leading to the enhanced production of 

pro-inflammatory cytokines and chemokines and increased TRIF mRNA and protein 

levels compared to the control. Several MMPs including MMP3 and 9 contain NF-κB 

binding site within their promoter region that regulate their expression (Overall et al., 

2002). In this study, it was found that reduction of ADAM15 significantly enhanced 

poly(I:C) induced MMP1, 3 and 9 secretion. In agreement with this finding Zhang et al. 

(2008) reported TRIF-dependent induction of MMP1 and MMP13 in chondrocytes 

upon poly(I:C) stimulation. This induction was dependent on the NF-κB pathway, but 

was differentially inhibited by various mitogen-activated protein kinase inhibitors. 

Moreover, MMP9 has been shown to be upregulated upon poly(I:C) stimulation in 

HaCaT keratinocytes (Voss et al., 2011). It has previously been reported that LPS 

induces MMP9 expression in macrophages through a ROS-p38 kinase dependent 

pathway (Woo et al., 2004). Interestingly, we show that whilst LPS induced MMP9 

induction, suppression of ADAM15 expression significantly decreased LPS induced 

MMP9 secretion. MMP9 expression appears to be regulated by a number of different 

signalling pathways in different cell types. For example, protein kinases, MAPKs, 

transcription factors such as NF-κB, and AP-1 have all been reported to involve in the 

induction of MMP9 (Gum et al., 1996). Thus, the differences in terms of the role played 

by ADAM15 may be due to differences in signalling pathway that are instigated.  

Despite the potentially important role that ADAM15 may play in cancer, little is 

known about the regulation of ADAM15 activity, though many studies suggest that 

ADAM15 could play a role in cell signalling events. The intracellular domain of 

ADAM15 contains proline-rich sequences, suggesting possible interaction with Src 

homology (SH) 3 domain-containing proteins. Poghosyan and colleagues showed that 

the cytoplasmic domain of ADAM15 can form specific, phosphorylation-dependent 

interactions with Src family protein-tyrosine kinases and with the Grb2 adaptor protein 

in hematopoietic cell lines (Poghosyan et al., 2002).  
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ADAM15 expression has also been detected in atherosclerotic lesions, indicating its 

involvement in this pathology (Herren et al., 1997). In RA, an inflammatory 

degenerative joint disease involving tissue remodeling, increased ADAM15 expression 

was found in rheumatoid synovial tissue compared with normal synovial tissue or even 

osteoarthritic synovial tissue. The expression of ADAM15 in endothelial cells and 

immune cell infiltrates in RA synovium implies a role for ADAM15 in RA via immune 

cell recruitment (Komiya et al., 2005 and Böhm et al., 2001). It was also speculated that 

in RA ADAM15 could degrade the extracellular matrix (ECM) directly through it 

metalloprotease activity or indirectly through proteolytic activation of MMPs (Charrier-

Hisamuddin et al., 2008). Upregulation of ADAM15 was also reported during intestine 

bowl disease, suggested its involvement in intestinal inflammation.  

Whilst most of the published data suggest that ADAM15 is a mediator of 

inflammation, the possibility that ADAM15 could present both pro-and anti-

inflammatory activities cannot be precluded (Charrier-Hisamuddin et al., 2008; kleino et 

al., 2008). Wound healing experiments showed that overexpression of ADAM15 inhibit 

the mechanisms of wound repair in Caco2-BBE cells (Charrier et al., 2005; Charrier et 

al., 2007). That is supported by Herren and colleagues showing that ADAM15 inhibits 

wound healing mechanisms in the fibroblastic cell line NIH3T3 (Herren et al., 2001). 

Recently Friedrich et al. (2011) reported that knockdown of ADAM15 significantly 

reduced HIV-1 replication in U373-MAGI-CCR5 cells, through a mechanism involving 

cleavage of ADAM10 by ADAM15. This indicates that ADAM15 is involved in viral 

replication. 

Notably, a total of 6 isoforms of ADAM15 have been described, thus different 

expression of ADAM15 could result in different cells events (Yasui et al., 2004). 

Herein, we have shown that full length ADAM15 binds to TRIF, however, the ability of 

the other ADAM15 splice variants to bind TRIF and to modulate TLR signalling remain 

to be investigated. Also, the availability of a specific ADAM15 inhibitor will greatly 

enhance the capability to study the effect of ADAM15 on other TLRs in various cell 

types. 

 In conclusion, this study shows for the first time that ADAM15 interacts with 

TRIF upon poly (I:C) and LPS stimulation, and that ADAM15 functions as a negative 

regulator of  TLR3 and TLR4 signalling by a mechanisms involve TRIF degradation.  
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5.1    Introduction 

 

5.1.1    Wnt signalling pathway 

The Wnt signalling pathway is a well conserved signalling pathway necessary for 

embryonic development, tissue self-renewal, cellular proliferation and homeostasis. 

Dysregulation of Wnt signalling has been linked to cancer (Wang et al., 2010; Bernatik 

et al., 2011). Wnts are secreted glycoproteins that can activate several downstream 

signalling pathways including the canonical Wnt/β-catenin pathway and other non-

canonical pathways. These non-canonical pathways include the planar cell polarity 

(Rho/c-Jun N-terminal kinase), the Wnt/Ca
2+

 pathway, and other less-known signalling 

cascades (Uemastsu et al., 2007; Gao et al., 2010). The canonical Wnt signalling 

pathway is the most well studied of the pathways and is involved in regulating diverse 

cellular processes, such as cell embryonic development, tissue homeostasis, stem cell 

maintenance, tumor suppression and oncogenesis (Logan et al., 2004). Many genes such 

as cyclin D1, c-myc, fibronectin, matrix metalloproteases (MMPs) and vascular 

endothelial growth factor (VEGF) have been identified as Wnt target genes (Staal et al., 

2004; Ziegler et al., 2005). 

 

5.1.2    Canonical Wnt Signalling  

In the absence of a Wnt signal, cytoplasmic β-catenin is recruited into a destruction 

complex that contains adenomatous polyposis coli (APC) and Axin which facilitates the 

phosphorylation of β-catenin by Casein kinase I (CKI) and Glycogen synthase kinase 

(GSK3β). Phosphorylated β-catenin is then ubiquitinated and destroyed by the 

proteasome (Figure 5.1, panel A). When a Wnt ligand binds to a Frizzled (Fzd) family 

of receptors and a low density lipoprotein (LRP) co-receptor of the LRP-5/6, the 

destruction complex is inhibited and the signalling cascade is initiated. LRP is 

phosphorylated by CKI and GSK3β, and Axin is then recruited to the plasma 

membrane. The kinases in the β‑catenin destruction complex are then inactivated and β-

catenin translocates to the nucleus. In the nucleus, β-catenin interacts with the T cell 

factor (TCF)/lymphoid enhancer factor (LEF) family transcription factors and activates 

the transcription of various target genes (Eisenmann et al., 2005; Choi et al., 2007; Zhou 

et al., 2009) (Figure 5.1, panel B).  
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Figure 5.1: Schematic representation of the canonical Wnt/β-catenin pathway. (A) 

In the absence of the Wnt protein ligands, the destruction complex (Axin, APC and 

GSK3β) facilitates β-catenin phosphorylation and its ubiquitination and degradation by 

the proteasome. (B) Binding of the Wnt ligand to a Frizzled/LRP-5/6 receptor complex 

activates the downstream signalling components including the G-proteins, Gαo and 

Gαq, and the phosphoprotein, DVL. DVL reduces GSK3β kinase activity, which lead to 

β-catenin stabilisation and its translocation to the nucleus, where it interacts with 

TCF/LEF proteins in the nucleus to activate transcription. (Adapted from Bikkavilli and 

Malbon, 2009). 
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To date, 19 different Wnt ligands have been identified in humans and all are lipid-

modified glycoproteins (Liang et al., 2007; Muralidharan et al., 2011). The -catenin 

pathway is mainly activated by the ligands Wnt1, Wnt3A and Wnt8. 

 

5.1.3    Non-canonical WNT signalling. 

There are many non-canonical Wnt signalling pathways, but the two best-studied 

pathways are the Planar Cell Polarity (PCP) and Wnt/Calcium pathways Staal et al., 

2008) (Figure 5.2, panel A and B). Activation of the non-canonical Wnt signalling 

pathway is initiated by the ligands Wnt4, Wnt5A and Wnt11 which interact with 

Frizzled and DVL (Grumolato et al., 2010). In the PCP pathway, which does not 

involve β-catenin, LRP or TCF molecules, ligand binding to the receptor recruits 

Dishevelled (DVL), which forms a complex with Daam1. Daam1 then activates the 

small G-protein Ras homologue gene-family member A (Rho A) through a guanine 

exchange factor. Rho A then activates Rho-associated kinase (ROCK), a cytoskeletal 

regulator. DVL also forms a complex with Ras-related C3 botulinum toxin substrate 1 

(Rac 1) and mediates profilin binding to actin. Rac1 activates JNK and can also lead to 

actin polymerization. Profilin binding to actin results in restructuring of the 

cytoskeleton and changes in cell adhesion and motility. Through largely unknown 

mechanisms, canonical β-catenin signalling can be inhibited by the PCP signalling 

pathway (Staal et al., 2008; Liang et al., 2007).  

 In the Wnt/Calcium pathway, Wnt5A and Fzd regulate intracellular calcium 

levels. Ligand binding initiates activation of the coupled G-protein to activate 

phospholipase C (PLC), leading to the generation of Diacyl glycerol (DAG) and Inositol 

1,4,5-trisphosphate (IP3). When IP3 binds to its receptor on the ER, levels of 

intracellular calcium increase. Ligand binding also activates cGMP-specific 

phosphodiesterase (PDE), which depletes cGMP and leads to further increases in 

intracellular calcium. The increased concentrations of calcium and DAG then activate 

cell division control protein 42 (cdc42) through PKC (Habas and Dawid, 2005; Staal et 

al., 2008). Cdc42 itself serves to regulate cell adhesion, migration, and tissue separation. 

Increased calcium also activates calcineurin (Calc) and CamKII (calcium/calmodulin-

dependent kinase). Whereas Calc induces activation of transcription factor NFAT, 

which regulates ventral patterning, CamKII activates TAK1 and Nemo-like kinase 

(NLK) which interferes with TCF/β-catenin signalling in the canonical pathway. Thus, 

http://genesdev.cshlp.org/search?author1=Luca+Grumolato&sortspec=date&submit=Submit
http://en.wikipedia.org/wiki/Diacyl_glycerol
http://en.wikipedia.org/wiki/Inositol_1,4,5-trisphosphate
http://en.wikipedia.org/wiki/Inositol_1,4,5-trisphosphate
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Figure 5.2: A schematic representation of the non-canonical Wnt signalling 

pathways. (A) For planar cell polarity (PCP) signalling, Wnt signalling is transduced 

through Frizzled independent of LPR5/6. Utilizing the PDZ and DEP domains of DVL, 

this pathway mediates cytoskeletal changes through activation of the small GTPases 

Rho and Rac. (B) The Wnt-Ca
2+ 

pathway, Wnt signalling via Frizzled mediates 

activation of heterotrimeric G-proteins, which engage DVL, calcium-calmodulin kinase 

2 (CamK2) and protein kinase C (PKC). This pathway also uses the PDZ and DEP 

domains of DVL to modulate cell adhesion and motility (Adapted from Habas and 

Dawid, 2005).  
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The Wnt/Calcium pathway can influence the activity of both the non-canonical and 

canonical Wnt signalling pathways (Habas and Dawid, 2005; Liang et al., 2007; staal et 

al., 2008).   

 

5.1.4    Wnt signalling in immune system 

In blood and immune cells, Wnt signalling controls the proliferation of progenitor cells. 

Wnt proteins also regulate effector T-cell development, regulatory T-cell activation and 

dendritic cell maturation (Staal et al., 2008). The Wnt/β-catenin signalling pathway 

plays an important role in thymocyte development and induces T cell production of 

MMPs which are required for T cell migration (Wu et al., 2007). However, 

Muralidharan and colleagues have since reported that activation of the Wnt/β-catenin 

signalling pathway inhibits human peripheral T cell differentiation (Muralidharan et al., 

2011). Interestingly, Wnt protein production by macrophages has been shown to depend 

on microbial stimulation. For example, stimulation of macrophages and monocytes with 

LPS or Pam3CSK4 (TLR2 ligand) induced the production of Wnt5A (George, 2011). It 

was noted that TLR ligand induced Wnt5A induction was restricted to macrophages, 

DCs and monocytes, as T cells, B cells and natural killer (NK) cells did not express 

Wnt5A after TLR stimulation. TLR-induced Wnt5A production was dependent on the 

NF-κB pathway and it was also reported that microbe-induced Fzd1 mRNA was TLR2, 

TLR4, MyD88 and NF-κB pathway dependent (Neumann et al., 2009). 

 

 

5.1.5   Dishevelled 

The segment polarity genes dishevelled (DVLs) are key components in the Wnt 

signalling pathways.  Mammalian cells express 3 isoforms of the phosphoprotein DVL, 

namely DVL1, DVL2 and DVL3. All three human DVL genes are expressed in foetal 

and adult tissues, including lung, kidney, heart, brain and skeletal muscle (Shan et al., 

2005). The DVLs are composed of three well known conserved domains (Figure 5.3), a 

N-terminal DIX (Dishevelled-Axin) domain, a central PDZ (post synaptic density-95, 

disc large and zonular occludens-1) domain and a C-terminal DEP (Dishevelled-

EGL10-Pleckstrin) domain (lee et al., 2008). The DIX domain is necessary for DVL-

DVL or DVL-Axin dimerization. The PDZ domain is essential for Wnt canonical and 

non-canonical signalling pathways. The DEP domain is essential for the PCP pathway. 
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Figure 5.3: Dishevelled domain structure. DVL proteins possess three conserved 

domains an amino terminal DIX domain of 80 amino acids, a central PDZ domain of 

about 90 amino acids, and a carboxyl-terminal DEP domain of 80 amino acids. In 

addition, another two conserved regions, the basic region and the proline-rich region, 

are also implicated to mediate protein-protein interaction and/or phosphorylation 

(Adapted from Gao and Chen, 2010). 
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Deletion of either the DIX or PDZ domain of DVL blocks the Wnt canonical pathway 

(Gao and Chen, 2010). Mammalian DVLs are approximately 70 % homologous and 

appear to function cooperatively as well as uniquely (lee et al., 2008; Śmietana et al., 

2011) DVLs act as scaffolding proteins which interact with many proteins and serve as 

key signalling intermediate between the Wnt receptor Fzd and downstream components 

in the Wnt/β-catenin and non-canonical Wnt signalling pathways (Bernatik et al., 2011). 

The current model of Wnt/β-catenin signal transduction proposes that DVLs are a core 

protein of dynamic protein assemblies called signalosomes. The signalosome hypothesis 

proposes that upon stimulation of the Wnt pathway, the DVL proteins multimerise via 

the DIX domains and form a platform which then recruits other proteins including Axin, 

which is required for the phosphorylation of LRP6 (Bilic et al., 2007; Romond et al., 

2007). When DVL is overexpressed in mammalian cells, it is present in dynamic protein 

aggregates and is visible as DVL punctuate structures, which most likely represent DVL 

multimers. Wnt induced activation of DVL is visible as a Wnt-induced shift in the 

electrophoretic mobility of all three DVL isoforms, forming the so called 

phosphorylated and shifted-(PS) DVL. It has been clearly demonstrated that both the 

activation of DVL in the Wnt/β-catenin pathway and Wnt-induced PS-DVL formation 

is dependent on CK1 (Jose´ et al 2004; Bryja et al., 2007). The fact that there are three 

DVLs in mammals and that they interact with a great variety of proteins suggest that 

DVLs may have other functions in addition to Wnt signalling. Recently, it was found 

that all three DVLs isoforms directly interact with NF-κB (p65) and overexpression of 

DVLs inhibit TNF-α-induce activation of the NF-κB transcriptional activity (Deng et 

al., 2010).  

As mentioned in Chapter 3, using proteomics, DVL3 was identified as a TRIF 

interacting partner upon stimulation of HEK-TLR4 with LPS for 20 min. Another Wnt 

pathway protein, APC, was also identified as a TRIF interacting partner following 

stimulation of HEK293-TLR3 with poly(I:C) for 60 min. As mention earlier (section, 

5.1.4) WNT signalling reported to play different roles in immune system. Interestingly 

recently TLR4 has been reported to negatively regulate WNT signalling in enterocytes 

in the ileum of new born mice and suppressed Wnt signalling in Muller glia by reducing 

phosphorylation and therefore activation of LRP6 (Yi et al., 2012, sodhi et al., 2010). 

As DVLs are essential proteins in the WNT signalling pathway and shown to bind 

NFκB it was of interest to study the role of DVLs in TLR3 and TLR4 signalling and the 

counterregulation of DVLs/Wnt-β-catenin signalling by TLR ligands in this Chapter. 
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5.2    Results 

 

5.2.1    DVLs interact with TRIF  

Using a proteomics approach, DVL3 was identified as a TRIF interacting partner upon 

stimulation of HEK-TLR4 with LPS for 20 min. To confirm the interaction between 

DVL3 and TRIF, HEK293-TLR4 were co-transfected with HA-TRIF and Myc-DVL3 

and IP of HA-TRIF was implemented as described (Materials and methods, section 

2.2.9). As shown in Figure 5.4 panel A, Myc-DVL3 co-immunoprecipitated with HA-

TRIF even in a ligand independent manner. Next, an IP of endogenous TRIF from 

U373-CD14 cells following stimulation with either poly(I:C) or LPS was performed as 

described (Materials and methods, section 2.2.10). Herein, we show that endogenous 

DVL3 interacts with endogenous TRIF following stimulation with LPS for 20-40 min. 

However, DVL3 did not interact with TRIF upon poly(I:C) stimulation (Figure 5.4 

panel B). Next, it was decided to examine whether DVL1 and DVL2 also interacted 

with TRIF. HEK293-TLR4 cells were co-transfected with either HA-TRIF and Myc-

DVL1 or HA-TRIF and Myc-DVL2 and IP of HA-TRIF was implemented as described 

(Materials and methods, section 2.2.9). As shown in Figure 5.5, panel A and B, Myc-

DVL1 and Myc-DVL2, respectively, both co-immunoprecipitated with HA-TRIF even 

in the absence of the ligand. These data indicate that co-overexpression of DVLs and 

TRIF facilitated their interaction in a ligand independent manner. It was previously 

reported that overexpression of TRIF resulted in its activation and concomitant 

induction of the IFN-β promoter in a receptor-independent manner (Funami et al., 2007; 

Funami et al., 2008). Thus, it may be implicated that activation of TRIF is required to 

facilitate its interaction with the DVLs.  

 

5.2.2 DVLs inhibited TRIF-dependent reporter gene activity  

The ability of the DVLs to modulate TRIF signalling cascades was investigated. 

Initially, luciferase reporter gene assays were performed using HEKT293 cells. 

Overexpression of all the DVLs isoforms significantly inhibited TRIF-dependent 

activation of NF-κB, IFN-β (p125-luc), Rantes, PRDII and PDRIII reporter gene 

activity (Figure 5.6). The results showed that DVL3 exhibited a strong inhibitory effect 

on TRIF mediated reporter activity when cells were transfected with as little as 1ng of 

DVL3 (Figure 5.6, panel A-E). Overexpression of DVL1 and DVL2 also strongly 

reduced  
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Figure 5.4: Co-immunoprecipitation of human TRIF and human DVL3.  (A), 

HEK293-TLR4 were seeded into 6 well plates. When the cells become confluent (80 %) 

they were transfected with 3 μg of EV (control) or co-transfected with 2 μg of HA-TRIF 

and 1 μg of Myc-DVL3. Next, 20 h after transfection cells were left un-stimulated or 

stimulated with 1 μg/ml LPS for 20 and 60 min as indicated. Thereafter, cells were 

lysed in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA, pH 8.0, 1 % 

NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM PMSF, 1 mM DDT, 1 

mM NaVO3 and protease inhibitor cocktail). Cleared cell lysates were incubated with 1 

μg of anti-HA monoclonal antibody precoupled to 50 μl of Protein A/G Plus-Agarose 

beads for 2 h at 4 
o
C with gentle shaking. Immuno-precipitation complexes were 

washed 4 times with lysis buffer and then released from the beads by addition of 

Laemmli loading buffer, followed by boiling for 5 min. Proteins were separated by 

SDS-PAGE gel electrophoresis and subjected to immunoblotting using anti-HA and 

anti-Myc monoclonal antibodies. (B) U373-CD14 cells were cultured into T175 flasks. 

When the cells were 90-95 % confluent, they were stimulated with either 20 μg/ml 

poly(I:C) or 1 μg/ml LPS for times indicated. Thereafter, cells were scrapped into 10 ml 

ice cold PBS and spun down for 10 min at 4
 o

C at 220 g. Cell pellets were lysed as 

described in panel A. Cleared cell lysates were incubated with 2 μg of anti-hTRIF 

polyclonal antibody precoupled to 50 μl of Protein A/G Plus-Agarose beads for 2 h at 4 
o
C with gentle shaking. Proteins were separated by SDS-PAGE and immunoblot 

analysis was performed using rabbit polyclonal anti-hTRIF and anti-hDVL3 antibodies. 

Rabbit IgG was used as negative control. Images were captured using the G: box system 

(Syngene). Results represent at least two independent experiments. 
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Figure 5.5: DVL1 and DVL2 interact with TRIF. HEK293-TLR4 cells were seeded 

into a 6 well plate. When the cells become confluent (80 %), they were transfected with 

either 3 μg of EV (control) or co-transfected with 2 μg of HA-TRIF and 1 μg of Myc-

DVL1 (A) or 2 μg of HA-TRIF and 1 μg of Myc-DVL2 (B). After 20 h, cells were left 

unstimulated or stimulated with 1 μg/ml LPS for 20 and 60 min as indicated. Thereafter, 

cells were lysed in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA, 

pH8.0, 1 % NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM PMSF, 1 mM 

DDT, 1 mM NaVO3 and protease inhibitor cocktail). Cleared cell lysates were 

incubated with 1 μg of anti-HA monoclonal antibody precoupled to 50 μl of Protein 

A/G Plus-Agarose beads for 2 h at 4 
o
C with gentle shaking. Immuno-precipitation 

complexes were washed 4 times with lysis buffer and then released from the beads by 

addition of Laemmli loading buffer, followed by boiling for 5 min. Proteins were 

separated by SDS-PAGE and subjected to immunoblot analysis using anti-HA and anti-

Myc monoclonal antibodies. Images were captured using the G: box system (Syngene). 
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Figure 5.6: DVL3 inhibited TRIF-dependent reporter gene activity. HEKT293 cells 

were plated into 96 well plates at a density of 5 x 10
4
 cells/well. After 24 h, cells were 

transfected with expression vectors encoding either NF-κB (A), full-length IFN-β 

promoter p125 (B), Rantes promoter (C), IFN-β PRDII (D) or IFN-β PRDIII-I (E) 

luciferase reporter gene plasmids and co-transfected with either EV or expression vector 

encoding full length human HA-TRIF (20 ng) and increasing amounts of expression 

vector encoding full length human Myc-DVL3 (1, 5, 20 and 40 ng) as indicated. After 

24 h, cells were harvested and lysed and the cell lysates were kept at -80 
o
C for at least 

24 h, followed by assessment of luciferase reporter gene activity using dual luciferase 

system (Promega). The results presented are representative of at least three independent 

experiments, each experiment was done in triplicate. * P < 0.05, and *** P < 0.001. 
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TRIF-mediated NF-κB and Rantes reporter gene activity (Figure 5.7, panel A, C, D and 

F). However, both DVL1 and DVL2 reduced TRIF mediated IFN-β (p125-luc) reporter 

gene activation at a higher concentration (20 ng) (Figure 5.7, panel B and E). In an 

agreement with these results, Deng et al. (2010) showed that overexpression of DVLs 

dramatically reduced TNF-α-induced NF-κB transcriptional activity.   

 

5.2.3    DVLs inhibited TLR3-dependent reporter gene activity 

To investigate the role of DVL3 in TLR3 signalling, HEK293-TLR3 were transfected 

with NF-κB, IFN-β and Rantes reporter gene constructs and increasing amount of full 

length human Myc-DVL3. Despite the fact that DVL3 did not co-immunoprecipitate 

with TRIF in U373-CD14 cells uopon poly(I:C) stimulation, surprisingly, its  over-

expression in HEK293-TLR3 resulted in a markedly decrease in TLR3-dependent 

transcription of NF-κB, IFN-β and Rantes (Figure 5.8, panel A-C). This could be due to 

cell lines used or the possibility that DVL3 may exert its effects on TLR3 signalling 

through another intermediate protein molecule involved in the pathway and not directly 

through TRIF. Thereafter, the effect of DVL1 and DVL2 on TLR3 signalling was 

studied. Results showed that DVL1 and DVL2 function as potent inhibitors of TLR3 

signalling pathway as they significantly reduced TLR3-dependent activation of NF-κB, 

IFN-β and Rantes promoter (Figure 5.8, panels D-I). Reporter gene assays in HEK293-

TLR4 were not possible as the cells that were available had lost their responsiveness to 

LPS.  

 

5.2.4    Effect of DVLs on MyD88-dependent reporter activity   

As both TRIF and MyD88 mediate TLR4 signalling the ability of DVLs to modulate 

MyD88 mediated reporter gene activity was investigated. Cells were co-transfected with 

either NF-κB, and IFN-β (p125) constructs and MyD88 and increasing amounts of 

DVL1, DVL2 and DVL3. Overexpression of DVL1 had a negligible effect on MyD88-

induced NF-κB reporter gene activity. However, DVL1 significantly decreased MyD88-

induced IFN-β reporter gene activity at concentrations of 20-40 ng (Figure 5.9, panel A 

and B). Interestingly, DVL2 overexpression significantly enhanced MyD88-dependent 

activation of NF-κB, and IFN-β reporter genes at a concentration of 1-20 ng (Figure 5.9, 

panel C and D). On the other hand, overexpression of DVL3 significantly inhibited 

MyD88-induced NF-κB transcriptional activity even at very low concentration (1 ng) 

(Figure 5.9, panel E). 

http://www.wordhippo.com/what-is/another-word-for/markedly.html
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Figure 5.7: DVL1 and DVL2 reduced TRIF-dependent reporter gene activity. 

HEKT293 cells were plated into a 96 well plate at a density of 5 x 10
4
 cells/well. After 

24 h, cells were transfected with expression vectors encoding either NF-κB (A and D), 

IFN-β promoter (p125) (B and E), Rantes promoter (C and F) luciferase reporter gene 

plasmids and co-transfected with either EV or expression vector encoding full length 

human HA-TRIF (20 ng) and increasing amounts of expression vector encoding full 

length human Myc-DVL1 (A-C) or DVL2 (D-F) as indicated. After 24 h, cells were 

harvested and lysed and the cell lysate were kept at -80 
o
C for at least 24 h, followed by 

assessment of luciferase reporter gene activity using dual luciferase system (Promega). 

The results presented are representative of at least two independent experiments, each 

experiment was done in triplicate. * P < 0.05, ** P < 0.01 and *** P < 0.001. 
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Figure 5.8: DVLs represses TLR3-dependent reporter gene activity. HEK293-

TLR3 cells were plated into a 96 well plate at a density of 5 x 10
4
 cells/well. After 24 h, 

cells were transfected with expression vectors encoding NF-κB (A, D, G), IFN-β (p125) 

(B, E, H) and Rantes promoter (C, F, I) reporter gene constructs and co-transfected with 

either EV or increasing amounts of expression vector encoding full length human Myc-

DVL3 (A-C) or expression vector encoding full length human Myc-DVL1 (D-F) 

expression vector encoding full length human or Myc-DVL2 (G-I) as indicated. After 

24 h, cells were stimulated with 20 μg/ml poly(I:C) for an additional 24 h. Thereafter, 

cells were harvested and lysed and cell lysate were kept at -80 
o
C for at least 24 h, 

followed by assessment of luciferase reporter gene activity using dual luciferase system 

(Promega). The results presented are representative of at least two independent 

experiments, each experiment was done in triplicate. * P < 0.05, ** P< 0.01 and *** P < 

0.001. 
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Figure 5.9: Effect of DVLs on MyD88-dependent reporter gene activity.  HEKT293 

cells were plated into 96 well plates at a density of 5 x 10
4
 cells/well. After 24 h, cells 

were transfected with expression vectors encoding either a reporter gene NF-κB (A, C 

and E), IFN-β promoter (p125) (B, D and F), and co-transfected with either EV or 

expression vector encoding full length human Myc-MyD88 (20 ng) and increasing 

amounts of expression vector encoding full length human Myc-DVL1 (A, and B) or 

expression vector encoding full length human Myc-DVL2 (C and D) or expression 

vector encoding full length human Myc-DVL3 (E and F) as indicated. After 24 h, cells 

were harvested and lysed and cell lysates were kept at -80 
o
C for at least 24 h, followed 

by assessment of luciferase reporter gene activity using dual luciferase system 

(Promega). The results presented are representative of at least two independent 

experiments, each experiment was done in triplicate. * P < 0.05, ** P < 0.01 and *** P 

< 0.001. 
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Nevertheless, its overexpression significantly decreased MyD88-induced IFN-β reporter 

gene activity at concentration of 20-40 ng (Figure 5.9, panel F). Collectively, these 

results indicate that DVLs are capable of regulating NF-κB and IFN-β transcription, and 

among all DVLs isoforms DVL3 strongly represses TRIF and MyD88-dependent 

activation of NF-κB and IFN-β. 

 

5.2.5    Inhibition of DVLs attenuates TLR3 and TLR4 signalling 

As mentioned in sections 5.2.2 and 5.2.4, DVLs were capable of regulating TRIF and 

MyD88-dependent reporter gene activity. Therefore, it was of interest to study the effect 

of DVLs inhibition on TLR3 and TLR4-dpendent signalling in wild-type murine bone-

derived macrophages (wt-BMDMs). The DVLs were inhibited by the cell permeable 

amidobenzanilide. This compound targets the DVLs PDZ domain which is essential for 

DVLs mediated canonical and non-canonical WNT pathways. In addition, this 

compound has been reported to block WNT signalling in different biological systems. It 

suppresses WNT pathway-dependent growth of prostate cancer PC-3 cells by 16 % in 

72 h at ≥50 µM, it also inhibit WNT-pathway-mediated apoptosis of the hyaloid 

endothelial cells in the mouse eyes (Grandy et al., 2009). Next, wt-BMDMs were 

treated with DMSO or 100 μM DVL inhibitor (in DMSO solvent) for 48 h and 

subsequently stimulated with either 20 μg/ml poly(I:C) or 100 ng/ml LPS for 3 h. 

Thereafter, total RNA was isolated as described (Materials and methods, section 2.2.14) 

and cytokine mRNA was measured using Q-RT-PCR. Surprisingly, results showed that 

inhibition of DVLs significantly reduced poly(I:C) and LPS-induce TNF-α and Rantes 

transcription compared to the control. However, basal transcriptions of TNF-α and 

Rantes were slightly increased due to the DVL inhibition (Figure 5.10, panels, B, D, G, 

and I). IFN-β mRNA was also reduced but not statistical significant (Figure 5.10, panels 

A and F). Interestingly, DVL inhibition significantly increased LPS-induce IFN-α 

transcription but slightly decreased poly(I:C)-induce IFN-α transcription compared to 

the control (Figure 5.10, panels C and D). Nevertheless, overexpression of all DVLs in 

HEK293-TLR3 reduced TLR3-dependent gene transcription. Here, DVLs inhibition did 

not increase poly(I:C) induces signalling. This could be due to the fact that poly(I:C) 

can be sensed by RLRs such as MDA-5 (Siednienko et al., 2011) which may suggest the 

involvement of DVLs in other signalling pathways induced by poly(I:C). These results 

showed that DVLs are needed for poly(I:C) and LPS induce signalling in  murine 

BMDMs. 

http://www.wordhippo.com/what-is/another-word-for/nevertheless.html
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Figure 5.10: Inhibition of DVLs attenuated TLR3 and TLR4 signalling. Wt-

BMDMs were plated into 6 well plates. When cells became confluent (60 %), they were 

treated with either DMSO or 100 μM DVLs inhibitor for 48 h. Thereafter, cells were 

stimulated with either 20 μg/ml poly(I:C)  (A -D) or 100 ng/ml LPS (F - I) for 3 h. Next, 

total RNA was isolated and reverse transcribed into cDNA. The cDNA was used as a 

template and samples were diluted 25 times and cytokines were measured by Q-RT-

PCR using specific primer to murine IFN-β, IFN-α, TNFα, and Rantes. Mouse GAPDH 

was used as a housekeeping gene. Results are representing two independent 

experiments each done in duplicates. * P< 0.05, ** P < 0.01. 
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5.2.6    Inhibition of DVLs decreased IκBα degradation and phosphorylation of 

IRF3.  

To understand the molecular mechanism by which DVLs inhibition reduced the 

cytokines mRNA, their ability to modulate IκBα degradation and phosphorylation of 

p65 and IRF3 was investigated. To this end, Wt-BMDMs were pretreated with either 

the DVL inhibitor or DMSO and subsequently stimulated with either poly(I:C) or LPS 

for different time points. Then, IκBα degradation and phosphorylation of p65 and IRF3 

in whole cell lysates were studied by western blot. As shown in Figure 5.11 panel A, 

inhibition of DVL decreased IκBα degradation 60-120 min upon poly(I:C) stimulation 

compared to the control. Phosphorylation of p65 and IRF3 was not detected. On the 

other hand, inhibition of DVLs decreased IκB degradation and phosphorylation of IRF3 

upon LPS stimulation for 60 min compared to the control (Figure 5.11, panel B). Here, 

phosphorylation of p65 was not detected. It has been reported that, in human 

macrophages, LPS induced a strong IFN-β mRNA response within a short time frame. 

These responses were associated with NF-κB and IRF3 activation. However, poly(I:C) 

induced a strong and long-lasting IFN-β mRNA and protein response in the absence of 

detectable IRF3 and NF-κB signalling (Reimer et al., 2008). These results confirmed 

that DVLs are needed for NF-κB and IRF3 activation upon poly(I:C) and LPS 

stimulation in murine BMDMs. Whether DVLs inhibition promote stabilization and 

resynthesis of IκB protein following poly(I:C) and LPS stimulation respectively is  need 

to be investigated. 

 

5.2.7    Effect of β-catenin activation on TLR3 and TLR4 signalling  

Physically interaction between β-catenin and NF-κB has been reported in human colon 

and breast cancer cells. This interaction resulted in a reduction of NF-κB DNA binding 

(Deng et al., 2002). Sun and colleagues also reported that Salmonella-induced IL-8 

secretion is completely abolished by the activity of β-catenin in human intestinal 

epithelia (Sun et al., 2005). Thus, it was of interest to study whether activation of β-

catenin affects TLR3 and TLR4 signalling. It has been previously demonstrated that 

epidermal growth factor (EGF) treatment inactivates GSK-3β and thereby, activates β-

catenin and caused its nuclear translocation (Lee et al., 2010; Hu et al., 2010). 

Therefore, herein, EGF was used as a β-catenin activator. Initially, wt-BMDMs were 

pretreated with 10 μg/ml EGF for 24 h, followed by stimulation with either poly(I:C)  
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Figure 5.11: DVLs inhibition reduced IκBα degradation and phosphorylation of 

IRF3. Wt-BMDMS were seeded into 6 well plates when cell become confluent (60 %) 

cells were treated with either DMSO or 100 μM DVLs inhibitor for 48 h. Thereafter 

cells were treated with either 20 μg/ml poly(I:C) or 100 ng/ml LPS for times indicated. 

Then cells were collected in 1 ml PBS and spun down for 10 min at 4 
o
C at 380 g. Cell 

pellets were lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-

40, 1 % sodium deoxycholate, 0.1 % SDS, supplemented with protease inhibitor 

cocktail, 1 mM PMFS 1 mM Na3VO4 and 1 mM DDT). Cell lysates were mixed with 

Laemmli loading buffer and boiled for 5 minutes. Proteins were separated by SDS-

PAGE gel electrophoresis and subjected to immunoblotting using anti-IκBα, and anti-

phospho-IRF3 monoclonal antibodies. β-Actin was used as loading control. Images 

were captured using the G: Box system (Syngene). Results are representing of three 

independent experiments.  
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and LPS for 3 h. Thereafter, RNA was isolated and cytokines mRNA was measured 

using Q-RT-PCR. EGF treatment was found to increase IFN-β and Rantes, but decrease 

IFNα transcriptions upon poly(I:C) stimulation compared to the control (Figure 5.12). 

In contrast, expression of TNF-α mRNA was not affected. Furthermore, EGF treatment 

significantly increased IFN-β and Rantes and decreased IFN-α and TNF-α upon LPS 

stimulation compared to the control (Figure 5.12). To confirm these results HEK293-

TLR3 were transfected with NF-κB, IFN-β (p125), IFN-α and Rantes promoter reporter 

gene constructs in the presence of EGF. Then, cells were left untreated or stimulated 

with 20 μg/ml poly (I:C) followed by assessment of reporter gene activity. In 

accordance with the Q-RT-PCR data, results showed that EGF treatment significantly 

decreased TLR3-dependent NF-κB and IFN-α reporter gene activation (Figure 5.13, 

panels A and B). However, EGF increased slightly TLR3-dependent IFN-β and Rantes 

reporter gene activity (Figure 5.13, panels C and D).   

 

5.2.8   EGF stimulation decreased IκBα degradation and increased phospho-

rylation of IRF3 and p38 

Wnts are capable of activating p38 MAPKs and this activation dependent on the DVLs 

(Bikkavilli and Malbon, 2009). Activation of p38 MAPK by Wnt inhibits GSK3β and 

leads to an increase in cytosolic β-catenin levels and Wnt-sensitive gene transcription. 

Therefore, the effects of EGF-induced β-catenin activation on TLR-mediated IκBα 

degradation and phosphorylation of IRF3 and p38 was investigated. Wt-BMDMs were 

pretreated with 10 μg/ml EGF for 24 h followed by stimulation with either poly(I:C) or 

LPS for different time points as indicated. Thereafter, cells were collected and IκBα, 

phospho IRF3 and phosph p38 were detected in whole cell lysates. Results showed that 

pretreatment of cells with EGF inhibited poly(I:C) mediated IκBα degradation (60-120 

min) compared to the control. Moreover, EGF increased basal levels of phosph p38 but 

has a negligible effect on p38 phosphorylation upon poly(I:C) stimulation compared to 

the control (Figure 5.14, panel A). Phosphorylation of IRF3 was not detected. However, 

EGF stimulation reduced early and late IκBα degradation (15-60 min), and increased 

phosphorylation of IRF3 and p38 (30-60 min) upon LPS stimulation compared to the 

control (Figure 5.14, panel B). This suggests that the increase in IFN-β and Rantes 

transcription was due to increase IRF3 phosphorylation. However, as EGF reported to 

activates an extensive network of signal transduction pathways that include activation of  
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Figure 5.12: Effect EGF on TLR3 and TLR4 signalling. Wt-BMDMs were plated 

into a 6 well plate. When cells become confluent (80 %), they were left untreated or 

treated with 10 μg/ml EGF for 24 h. Thereafter, cells were stimulated with either 20 

μg/ml poly(I:C) or 100 ng/ml LPS for 3 h. Next, total RNA was isolated and reverse 

transcribed in to cDNA. cDNA was used as templates and samples were diluted 25 

times and cytokines were measured by Q-RT-PCR using specific primer to murine IFN-

β, IFN-α, TNF-α, Rantes and IL-6. Mouse GAPDH was used as housekeeping gene.  

Results are representing two independent experiments each done in duplicates. * P< 

0.05. 
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Figure 5.13: Effect of EGF activation on TLR3-dependent signalling. HEK293-

TLR3 were plated in to 96 well plate at density of 5x 10
4
 cells/well. After 24 h, the 

medium on the cells was removed and replaced by fresh medium containing 10 μg/ml 

EGF. After 3 h, cells were transfected with (80 ng) of reporter gene constructs encoding 

either NF-κB (A), IFN-α (B), IFN-β (p125) (C) and Rantes promoter (D). 24 h after 

transfection cells were left untreated or treated with 20 μg/ml poly(I:C) for additional 24 

h. Thereafter, cells were harvested and lysed, cell lysates were kept at - 80 
o
C for at least 

24 h. Then, luciferase assay was performed using dual luciferase system (Promega). The 

results presented are representative of at least two independent experiments, each 

experiment was done in triplicate. * P < 0.05, ** P < 0.01. 
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Figure 5.14: EGF stimulation inhibited IκBα degradation and increased 

phosphorylation of IRF3 and p38. Wt-BMDMs were seeded into 6 well plates. When 

cells became confluent (80 %), they were either left untreated or treated with 10 μg/ml 

EFG for 24 h. Thereafter, cells were treated with either 20 μg/ml poly(I:C) or 100 

ng/ml LPS for times indicated. Then, cells were collected in 1 ml PBS and spun down 

for 10 min at 4 
o
C at 380 g. Cell pellets were lysed in RIPA buffer (25 mM Tris-HCl 

pH 7.6, 150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 0.1 % SDS, 

supplemented with protease inhibitor cocktail, 1 mM PMSF 1 mM Na3VO4 and 1 mM 

DDT). Cell lysates were mixed with Laemmli loading buffer and boiled for 5 min. 

Proteins were separated by SDS-PAGE and subjected to immunoblot analysis using 

anti-IκBα, anti phosph p38 and IRF3 monoclonal antibodies. β-Actin was used as 

loading control. Images were captured using the G:Box system (Syngene). Results 

represent two independent experiments.  
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the MAPK, PI3K/AKT, RAS/ERK and JAK/STAT pathways (Henson and Gibson, 

2006; Ji et al., 2009) more direct experiments are need to confirm the role of β-catenin 

in TLR signalling.  

 

5.2.9    Regulation of DVLs by the TLRs  

Autophagy is a newly recognised innate defence mechanism, acting as a cell-

autonomous system for the elimination of intracellular pathogens. TLRs have been 

shown to induce TRIF and MyD88-dependent autophagy in macrophages (Delgado et 

al., 2008; Shi et al., 2008). Interestingly, autophagy negatively regulates Wnt signalling 

by promoting the degradation of DVLs (Gao et al., 2010). Thus, we propose that TLR 

activation may lead to the degradation of DVL protein and concomitant inhibition of 

Wnt signalling. To test this hypothesis, the effect of poly(I:C), LPS and R848 (TLR7 

and 8 ligand) on DVLs mRNA expression levels was investigated. Wt-BMDMs were 

treated with either poly(I:C) or  LPS or R848 for different time points, followed by 

RNA isolation and measurement of DVL1, DVL2, and DVL3 mRNA by Q-RT-PCR. 

Results showed that poly(I:C) significantly increased all three DVLs mRNA at 3 and  

24 h compared to the control (Figure 5.15, panels A-C). LPS treatment significantly 

increased DVL1 and DVL3 mRNA at 90 min but significantly decreased DVL3 at 30 

min and at 24 h compared to the control (Figure 5.14, panels D and F). DVL2 mRNA 

significantly deceased at 90 min, at 3 and 24 h (Figure 5.15, panel E). On the other 

hand, R848 significantly induced DVL1 transcription at 30 and 90 min but decreased it 

at 3 h compared to the control (Figure 5.15, panel G). DVL2 mRNA was also 

significantly increased at 90 min and decreased at 24 h (Figure 5.15, panel H). DVL3 

transcription was significantly reduced at 24 h. This showed that TLRs differently 

regulated DVLs expression. 

 

5.2.10    TRIF and MyD88 inhibit β-catenin-induced Lef promoter activation 

It has been previously reported that downregulation of Wnt/β-catenin signalling 

occurred during Mycobacterium tuberculosis infection, characterised by TLR activation, 

in mice (Schaale et al., 2011). Therefore, the ability of TRIF and MyD88 to regulate β-

catenin induced Lef transcription was studied in HEKT293. Cells were co-transfected 

with Lef reporter construct, β-catenin and increasing amount of either TRIF or MyD88. 

It was found that TRIF significantly reduced β-catenin-induced Lef transcriptional 

activity even at a concentration of 1 ng (Figure 5.15, panel B).  
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Figure 5.15: Regulation of DVLs transcription by TLRs. Wt-BMDMs were plated 

into 6 well plates. When the cells were confluent, they were treated with either 20 μg/ml 

poly(I:C) (A, B and C) or 100 ng/ml LPS (D, E and F) or 1 μg/ml R848 (G, H and I) for 

times indicated. Thereafter, cells were collected and total RNA was isolated and reverse 

transcribed into cDNA. cDNA was used as templates and samples were diluted 25 times 

and DVLs mRNA were measured by Q-RT-PCR using specific primer to murine DVL1 

(A, D, G), DVL2 (B, E, H), and DVL3 (C, F, I). Mouse GAPDH was used as 

housekeeping gene.  Results are representing two independent experiments each done in 

duplicates. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure 5.16: TRIF and MyD88 inhibited β-catenin-induces Lef transcription 

HEKT293 were plated into a 96 well plate at a density of 5 x10
4
 cells/well. After 24 h, 

cells were transfected with expression vectors encoding a reporter gene contruct for Lef 

and co-transfected with either EV or expression vector encoding full length human HA- 

β-catenin (20 ng) and increasing amounts of expression vector encoding full length 

human HA-TRIF (A), or an expression vector encoding full length human Myc-MyD88 

(B). After 24 h, cells were harvested and lysed and cell lysates were kept at -80 
o
C for at 

least 24 h, followed by assessment of luciferase reporter gene activity using dual 

luciferase system (Promega). The results presented are representative of at least two 

independent experiments, each experiment was done in triplicate. * P < 0.05, ** P < 

0.01 and *** P < 0.001. 
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MyD88 inhibited Β-catenin-induced Lef promoter activation at a concentration of 20 ng 

(Figure 5.15, panel B). This may suggest reciprocal regulation of the TLRs and the 

Wnt/β-catenin pathway. 

 

5.2.11    poly(I:C) and LPS inhibited β-catenin expression 

Following the finding that TRIF and MyD88 negatively regulate β-catenin-induce lef 

promoter transcription, the effect of poly(I:C) and LPS on β-catenin expression and its 

nuclear translocation was investigated. Hela cells were transfected with either β-catenin 

or β-catenin and DVL3. Thereafter, cells were treated with poly(I:C) or LPS for 60 min 

followed by immunostaining of β-catenin  and analyses by confocal microscopy. The 

expressed β-catenin was found to mostly co-localize in the cytoplasm but partially in the 

nucleus (Figure 5.17 panel A). DVL3 expression caused β-catenin nuclear translocation 

(Figure 5.17, panel B). However, poly(I:C) and LPS stimulation decreased β-catenin 

expression and partially inhibited DVL3-dependent β-catenin translocation (Figure 

5.17, panels C and D).    
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Figure 5.17: Poly(I:C) and LPS inhibited β-catenin expression. Hela cells were 

seeded on precollagen coated glass coverslip into 6 wells plate. After 24 h, cells were 

transfected with either 200 ng of expression vector encoding full length human HA-β-

catenin (A) or co-transfected with either 200 ng of expression vector encoding full 

length human HA-β-catenin and 200 ng of EV or 200 ng of expression vector encoding 

full length human HA-β-catenin and full length human Myc-DVL3 (B-D). After 24 h 

cells were left untreated (A, B) or treated with either 20 μg/ml poly (I:C) (C) or 1 μg/ml  

LPS (D) for 60 min as indicated. Thereafter, cells were fixed in 4 % paraformaldehyde 

in PBS, permeabilised in 0.5 % triton X-100 in PBS and blocked for 1 h in 1 % BSA in 

PBS. Then, cells were incubated with 200 μl of anti-HA monoclonal primary antibody 

(diluted 1:50 in blocking buffer) for 2 h at RT with gentle shaking. Thereafter, cells 

were washed with 0.05 % Tween 20 in PBS three times each 10 min. Then, cells were 

incubated with Alexa fluro 488 secondary antibody (diluted 1:200 in blocking buffer) 

for 1 h at RT in the dark, followed by three washes with 0.05 % Tween 20 in PBS.  

Nucleus was stained with DAPI (10 μg/ml in PBS). Then cell were washed twice in 

PBS and coverslip were mounted on glass slide using mounting medium and kept in the 

fridge until analysed. Images were captured using Olympus 1000 confocal microscopy 

and Flouview Software.   
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5.3    Discussion  

The fact that there are three DVLs in mammals and that they are found to interact with a 

great variety of proteins including NF-κB suggests that DVLs may have other functions 

in addition to their vital role in Wnt signalling. In this study, role of DVLs in the 

regulation of TLR3 and TLR4 was investigated. It was found for the first time that all 

DVLs isoforms interacted with TRIF. Overexpression of all DVLs isoforms negatively 

regulated TRIF and TLR3-induce NF-κB, IFN-β and Rantes promoter activation. 

However, only DVL2 had a positive effect on MyD88-dependent activation of NF-κB 

and IFN-β promoter at low concentration. Recently, it has been reported that DVLs 

interact with NF-κB in the nucleus and their overexpression dramatically reduced TNF-

α-induced NF-κB transcriptional activity (Deng et al., 2010). However, the inhibition of 

NF-κB by the DVLs was not dependent on Wnt signalling or β-catenin (Deng et al., 

2010). 

 Inhibition of DVLs reduced TLR3 and TLR4-induce IFN-β, TNF-α and Rantes 

transcription. This reduction could be explained by the decreased in IκBα degradation 

and the phosphorylation of IRF3 observed after DVLs inhibition. In contrast, the DVLs 

negatively regulated TRIF and TLR3 signalling in reporter gene assays. These 

differential effects could be due to the cell lines used in the study. Several studies 

suggested that different cell types may use different receptors to sense poly(I:C) or viral 

dsRNA. Although TLR3 was reported to play a key role in sensing poly(I:C) by 

epithelial cells (Guillot et al., 2005; Rudd et al., 2006; Matsukura et al., 2007), it only 

played a moderate or minor role in sensing poly(I:C) in macrophages (Alexopoulou et 

al., 2001; Yamamoto et al., 2003; López et al., 2004). Upregulation of Wnt5A in human 

macrophages stimulated with different mycobacterial species and conserved bacterial 

structures has been reported and the expression was dependent upon TLRs and NF-κB 

activation. Functional studies showed that Wnt5A is necessary for the regulation IL-12 

and interferon γ in response to infectious agents (Blumenthal et al., 2006). A potential 

regulatory function of Wnt5A on cytokine expression is further supported by the 

observation that in patients with rheumatoid arthritis, Wnt5A modulates IL-6 and IL-15 

expression in synoviocytes (Sen et al., 2001). Collectively, these data indicate the 

involvement of Wnt signalling in regulation of TLR signalling cascades. Our data 

showed that DVLs were needed for poly(I:C) and LPS induce cytokines transcription 

and may suggest that DVLs and Wnt5A activate the noncanonical pathway via calcium/ 
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calmodulin dependent kinase II (CAMKII) which results in sustained upregulation of 

inflammatory cytokines (Figure 5.18).  

  Stimulation with EGF which was used here as of β-catenin activator increased 

IFN-β and Rantes and decreased IFNα and TNFα transcription upon poly(I:C) and LPS 

stimulation. Also, it increased phosphorylation of IRF3 and p38 after LPS stimulation. 

However, IκBα degradation was reduced upon poly(I:C) and LPS stimulation. This may 

suggest that that β-catenin may play a positive and a negative role in regulating TLR 

signalling. In agreement with this result, β-catenin has been shown to interact with NF-

κB and this interaction inhibited NF-κB activation in human colon and breast cancer 

cells (Deng et al., 2002). In another study, overexpression of β-catenin inhibited NF-κB 

reporter gene activity in a dose-dependent manner (Du et al., 2009). Also, Sun and 

colleagues reported that in cell lines expressing constitutively active β-catenin, IκBα 

protein was indirectly stabilised and NF-κB activity was repressed after wild-type 

Salmonella colonisation (Sun et al., 2005).  

This study showed that DVLs transcriptions are differentially regulated by the 

TLRs, and that TRIF and MyD88 inhibited β-catenin-induces Lef transcription. Also, 

poly(I:C) and LPS stimulation decreased β-catenin expression in Hela cells and partially 

inhibited DVL3-dependent β-catenin translocation. TLR4 activation has been shown to 

inhibits enterocyte proliferation in vitro and in vivo via impaired β-catenin signalling 

through activation of the GSK3β (Sodhi et al., 2010). In mice infected with M. 

tuberculosis, while inducible nitric oxide synthase (iNOS) and IFN-γ formation were 

increased, the transcription of β-catenin dependent target genes were significantly 

reduced (Neumann et al., 2009; Schaale et al., 2011). 

 In conclusion this study demonstrates for the first time, that an interaction occurs 

between TRIF and the DVLs isoforms and shows that DVLs were needed for poly(I:C) 

and LPS induced cytokines transcription in wt-BMDMs. Specific DVL inhibitors or 

esiRNA against individual DVL may be useful to define the role that each DVL play in 

regulating TLR signalling. This study also demonstrated a cross regulation between β-

catenin and TLR/NF-κB-mediated signalling. 
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Figure 5.18: Working hypothesis of the role of Wnt5A in the inflammatory 

response. Activation of TLRs in macrophages by pathogens leads to activation of NF-

κB and upregulation of Wnt5A and cytokines. Wnt5A independently of β-catenin 

activates the noncanonical pathway via calcium/calmodulin dependent kinase II 

(CAMKII) which results in sustained upregulation of inflammatory cytokines including 

IL-12, IL-6, IL-8, IL-1β, and macrophage inflammatory protein-1β (MIP-1β) either in a 

nuclear factor of activated T-cells (NFAT)-dependent or independent manner. 

Additionally, increased levels of Wnt5A and cytokines may affect other mononuclear 

cells including T-cells and surrounding resident tissue cells. (Adapted from George, 

2008). 

 

 

  



 

 

Chapter 6 

 

 

Proteomic analysis of endogenous TRIF 

interacome and the negative regulation of TRIF 

signalling by Optineurin 

 

 

 

 

 

 

 

 

 

 

 



150 

 

6.1   Introduction 

 

Mammalian cell lines provide several advantages over other cellular systems for the 

production of recombinant proteins, most notably the correct processing and modification 

of mammalian proteins (Mallory et al., 2007). However, still several problems such as 

protein yield, protein solubility and toxicity are associated with protein expression in 

mammalian cells. To date, most, if not all, studies concerning the subcellular localization of 

TRIF use over-expression models (Funami et al., 2008). These systems, though inherently 

useful, may not accurately reflect the true in vivo status of TRIF. For example, the correct 

subcellular localization of TRIF may not be apparent due to the large fluorescent tag which 

may impede cellular trafficking. An important problem associated with TRIF 

overexpression is the fact that induction of RIP/FADD/caspase8-dependent apoptosis is 

apparent (Han et al., 2004). Also, the expression of TRIF protein was always very low 

when compared to cells that were similarly transfected with MyD88 or other proteins that 

were utilised used during this project. This finding is supported by work undertaken by 

Funami and colleagues who reported lower expression level of wild-type TRIF when 

compared to mutated forms of TRIF (Funami et al., 2008). They suggested that wild-type 

TRIF may be rapidly degraded via some protein modifications.  

Given the issues surrounding the overexpression of TRIF, the aim of the current 

chapter was to identify an anti-TRIF antibody that is capable of detecting endogenous 

human TRIF. Subsequently, the antibody will be used for pull-down assays and western 

blot analysis towards defining the time-dependent association of TRIF interacting proteins. 

Likewise, we aim to find a mammalian cell line that responds to both TLR3 and TLR4 

ligands. The cell line would then be used to investigate the role played by TRIF and novel 

TRIF interacting proteins in TLR3 and TLR4 signalling.  
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6.2    Results 

 

6.2.1    Characterisation of commercially available TRIF antibodies  

To find an antibody that specifically recognises endogenous TRIF, a number of different 

commercial anti-TRIF antibodies were characterised. The antibodies were tested for their 

specificity towards the detection of TRIF by using different approaches namely western 

blotting, immunoprecipitation and immunohistochemistry. The antibodies that were tested 

are as follows: 

Rabbit polyclonal anti-human TRIF (Alexis, Cat. no. AL227 ). 

Rabbit polyclonal anti-human and anti-mouse TRIF (Abnova, Cat. no. PAB0317). 

Rabbit polyclonal anti-human TRIF antibody (Exalpha, Cat. no. X1827P). 

Following transfection of HEKT293 cells with a plasmid encoding HA-TRIF, it was found 

that the anti-TRIF antibody that was purchased from Exalpha was capable of detecting HA-

TRIF. In contrast, the anti-TRIF antibodies that were purchased from Alexis and Abnova 

did not detect HA-TRIF, despite confirmation of HA-TRIF expression following western 

blotting using an anti-HA antibody (data not shown). Regarding the anti-TRIF antibody 

from Exalpha, the antibody was examined for its ability to detect epitope-tagged full length 

human HA-TRIF using whole cell lysate (WCL) from HEKT293 cells transfected with 3 

µg of HA-TRIF. To detect endogenous TRIF, whole cell lysate from un-transfected Hela 

cells was used as these cells have been reported to express TRIF mRNA (Nishimura et al., 

2005). Proteins were separated by SDS-PAGE electrophoresis. Immunoblotting was 

performed using either the anti-HA antibody or the anti-TRIF antibody (Exalpha). A band 

close to the 100 kDa molecular weight marker was detected in Hela WCL (Figure 6.1 panel 

A, lane 1) and this band was also detected in HEKT293 WCL following HA-TRIF 

overexpression (Figure 6.1, panel A, lane 2). To confirm that the antibody was capable of 

immunoprecipitating TRIF, HEKT293 cells were transfected with 3 µg  EV or 3 µg HA-

TRIF and IP of HA-TRIF was performed as described (Materials and methods, section 

2.2.9) using either an anti-HA or an anti-TRIF antibody (Exalpha). Immunoprecipitation of 

HA-TRIF using both the anti-TRIF antibody (Exalpha) and the anti-HA antibody was 

confirmed (Figure 6.1, panel B). These data confirm that the anti-TRIF antibody (Exalpha) 

can detect TRIF and be used in western blot and IP studies. As mentioned in Chapter 4 and  
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Figure 6.1: Characterisation of Exalpha anti-hTRIF polyclonal antibody.  (A, lane 1) 

Hela were seeded into T175 flasks and when the cells were 90-95 % confluent, they were 

collected in 10 ml ice cold PBS and spun down 10 min at 4 
o
C at 2000 rpm. Thereafter, the 

cell pellet was lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-40, 

1 % sodium deoxycholate, 0.1 % SDS, supplemented with protease inhibitor cocktail, 1 

mM PMSF 1 mM Na3VO4 and 1 mM DDT). Cell lysates were mixed with Laemmli loading 

buffer and boiled for 5 min. Proteins were separated by SDS-PAGE and subjected to 

immunoblotting using anti-TRIF polyclonal antibody (Exalpha) and anti-HA antibodies. 

(A, lane 2) HEKT293 cell were seeded into 6 well plates. When cells were 80 % confluent, 

they were transfected with 3 µg of HA-TRIF. After 20 h, cells were lysed in RIPA buffer as 

mentioned in lane 1. Cell lysates were mixed with Laemmli loading buffer and boiled for 5 

min. Proteins were separated by SDS-PAGE and subjected to immunoblotting using anti-

HA and anti-TRIF(Exalpha) antibodies. (B) HEKT293 cells were seeded into 6 well plates. 

When the cells 80 % confluent, they were transfected with either 3 µg EV or 3 µg of HA-

TRIF. After 20 h, transfected cells were lysed in lysis buffer (50mM HEPES, pH 7.5, 150 

mM NaCl, 2 mM EDTA, pH8.0, 1 % NP-40, 0.5 % sodium deoxychloate supplemented 

with 1 mM PMFS, 1 mM DDT, 1 mM NaVO3, 5 and protease inhibitor cocktail). Cleared 

cell lysates were incubated with either 1 μg of anti-HA monoclonal or 2 μg  of anti-TRIF 

(Exalpha) antibodies precoupled to 50 μl of Protein A/G Plus-Agarose beads for 2 h at 4 
o
C 

with gentle shaking. IP complexes were washed 4 times with lysis buffer and then released 

from the beads by addition of 40 μl of Laemmli loading buffer, followed by boiling for 5 

min. Proteins were separated by SDS-PAGE and subjected to immunoblotting using anti-

HA monoclonal antibody. Images were captured G: box system (Snygene). Results 

represent at least two independent experiments. 
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5, the anti-TRIF antibody was used to confirm an interaction between ADAM15 and TRIF 

and DVL3 and TRIF, respectively.   

 

6.2.2   Examination of TLR3 and TLR4 responsiveness in U373-CD14 cells 

Having established that the TRIF antibody obtained from Exalpha can be used to detect 

endogenous TRIF, different cell lines were tested for their responsiveness to TLR3 and 

TLR4 ligands with the ultimate aim of the comparative characterisation of the endogenous 

TRIF immunocomplex following TLR3 and TLR4 engagement. Cells of relevance to innate 

immunity namely, human alveolar epithelial (A549) cells, bronchial epithelial (BEAS-2B) 

cells and human astrocytoma (U373-CD14) cells were tested. To test the cellular 

responsiveness, cells were stimulated with either poly(I:C) or LPS for different time points. 

Thereafter, cytokines were measured at both mRNA and protein level using by Q-RT PCR 

and ELISA, respectively. It was found that the U373-CD14 cell line was the only cell line 

that responded well to poly(I:C) and LPS as demonstrated by the upregulation of mRNA 

and secretion of cytokines and chemokines as measured by Q-RT-PCR and ELISA, 

respectively (Figure 6.2). Stimulation of U373 CD14 cells with poly(I:C) and LPS resulted 

in a significant upregulation of TNF-α, IFN-β, and Rantes mRNAs compared to the control 

(Figure 6.2, panels A-C). In agreement with the mRNA data, poly(I:C) and LPS stimulation 

significantly increased the TNF-α, IL-6, and Rantes secretion in the cell free supernatant 

when compared to the control (Figure 6.2, panels, D-F). These results indicate that U373-

CD14 respond to both TLR3 and TLR4 ligands, which make them suitable cell line for the 

proposed study. 

6.2.3    Immunoprecipitation of endogenous TRIF  

IP of endogenous TRIF using an anti-hTRIF antibody obtained from Exalpha was 

performed using U373-CD14 cells as a model. To ensure adequate protein recovery and to 

achieve optimal TRIF detection, the IP was performed using the protein obtained from 

T175 flasks which were 90-95 % confluent. To this end, U373-CD14 cells were treated 

with either poly(I:C) or LPS for different time points followed by IP of endogenous TRIF 

as described (Materials and methods, section 2.2.10). Proteins were separated by SDS- 

PAGE and subjected to immunoblotting. As shown in Figure 6.3, panel A, whilst immuno- 
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Figure 6.2: Examination of TLR3 and TLR4 responsiveness in U373-CD14 cells (A-C) 

U373-CD14 cells were seeded into 6 well plates. When the cells were 80 % confluent, they 

were stimulated with either 20 µg/ml poly(I:C) or 1µg/ml LPS for 3 h. Thereafter, cells 

were collected and total RNA was isolated and reverse transcribed into cDNA. The cDNA 

was then diluted 25 times and Q-RT-PCR was performed using primers specific for human 

TNF-α (A), IFN-β (B) and Rantes (C). Human GAPDH was used as housekeeping gene. 

(D-F) Cells were plated into 6 well plate. When the cells were 80 % confluent, they were 

stimulated with either 20 µg/ml poly(I:C) or 1µg/ml LPS for additional 24 h. Thereafter, 

cell free supernatants were collected and sandwich ELISA was performed to measure the 

protein level of TNF-α (D), IL-6 (E) and Rantes (F). Data are representative of three 

independent experiments.* P < 0.05, ** P < 0.01, and *** P < 0.001.    
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Figure 6.3: Immunoprecipitation of endogenous TRIF. (A) U373-CD14 cells were 

cultured into T175 flasks. When the cells were 90-95 % confluent, they were stimulated 

with either 20 μg/ml poly(I:C) or 1 μg/ml LPS for the times indicated. Thereafter, cells 

were scraped into 10 ml ice cold PBS and spun down for 10 min at 4
 o
C at 1200 rpm. Cell 

pellets were lysed in  of lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM EDTA, 

pH 8.0, 1 % NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM PMSF, 1 mM 

DDT, 1 mM NaVO3 and protease inhibitor cocktail). Cleared cell lysates were incubated 

with 2 μg of anti-hTRIF polyclonal antibody precoupled to 50 μl of Protein A/G Plus-

Agarose beads for 2 h at 4 
o
C with gentle shaking. Proteins were separated by SDS-PAGE 

and immunoblot analysis was performed using anti-hTRIF (Exalpha). Rabbit IgG (Sigma) 

was used as negative control. To visualize protein bands for tryptic digestion and LC-MS 

analysis, gels were stained in instant blue overnight (B) Images were captured using the 

G:box system (Syngene).  
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precipitated endogenous TRIF was detected at all-time points, a band was not detected in 

the control IP using a rabbit IgG. It must be noted that whilst the predicted molecular 

weight of TRIF is 76-78 kDa, routinely, in the current study, endogenous TRIF was 

detected at approximately 95 kDa. This finding is supported by Qu and colleagues whom 

showed that endogenous TRIF was detected at ~ 90 kDa (Qu et al., 2011). Further, an 

aliquot of the protein sample was subjected to SDS-PAGE followed by instant blue staining 

to visualise the protein bands (Figure 6.3, panel B). Here, to avoid the loss of protein, the 

gel was not destained, although, it is a less sensitive detection method when compared to 

the silver staining method. 

6.2.4  Identification of endogenous TRIF interactors 

The aim of this aspect of the study was to identify the binding partners for endogenous 

TRIF, without putting the cells under stress associated with transfection or TRIF 

overexpression. As the study investigated TRIF interactors at the endogenous level, 

receptor-independent TRIF activation associated with TRIF overexpression was avoided 

(Funami et al., 2007; Funami et al., 2008). We aimed here to identify ligand and receptor-

dependent TRIF interacting proteins. Each gel lane was cut into 24 gel pieces, followed by 

in-gel tryptic digestion and LC-MS analysis as described (Materials and methods, section 

2.2.12). Samples were analysed using Agilent 6340 Ion trap LC-MS machine. The MS 

spectra of the peptide ions were identified using the Mascot software programme 

(www.matrixscience.com) to search against the publicly available NCBI nonredundant 

protein database (www.ncbi.nlm.nih.gov). The results generated at each time point was 

compared to the controls (un-stimulated and the IgG). Proteins which were similar to that 

identified in the controls were excluded from further analysis and considered as unspecific 

binding. Poly(I:C)-dependent TRIF interacting proteins are listed in Table 6.1 and LPS-

dependent TRIF interacting proteins were listed in Table 6.2. Following analysis of the 

TRIF interactors, it was found that Menin, adenomatous polyposis coli (APC), CAP-Gly 

domain-containing linker protein 1 (CLIP), Prohibitin, ADAM15, IQ motif containing 

GTPase activating protein1 (IQGAP1), and 14-3-3 protein Zeta/delta proteins interacted 

with endogenous TRIF upon poly(I:C) and LPS stimulation. All of these proteins were also 

identified following LC-MS analysis of the overexpressed TRIF immunocomplex (Chapter 

3). Together, these data confirm the association of these proteins with TRIF, both at 

http://www.matrixscience.com/
http://www.ncbi.nlm.nih.gov/
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endogenous and at overexpressed level. Unfortunately, following analysis of the TRIF 

immunocomplex, TRIF itself was not identified, and as described in Chapter 3 (section 

3.3), this may be due to mobility issues relating to TRIF. It must be emphasised that whilst 

TRIF was not detected by LC-MS it was detected in the concomitant sample following 

immunoblot analysis.   

 A significant number of proteins were identified as TRIF interactors. Due to the 

time course of this project validation of these protein interactors by immunoprecipitation or 

other direct experiments was not possible. However, it was decided to establish the role of a 

novel TRIF interactor, Optineurin (OPTN), in TLR signalling. Optineurin was identified as 

being a TRIF interactor following stimulation of cells with poly(I:C) for 20 min and will be 

further discussed herein. In addition, another interesting TRIF interactor identified upon 

stimulation of cells with poly(I:C) and LPS for 60 min and 40-60 min, respectively, was 

Prolow-density lipoprotein receptor-related protein 1 (LRP1). The LRP1 is multifunctional 

cell surface receptor and member of the low density lipoprotein (LDL)-receptor family. 

LRP1 play and important role in endocytosis and phagocytosis of apoptotic cells and 

involves in the regulation of many signalling pathway including lipid metabolism, 

proliferation of vascular smooth muscle, neurodevelopment and cancer (Campana et al., 

2006; Francini et al., 2011). LRP1 induces the expression of matrix metalloproteinase 2 

(MMP2) and MMP9 and thereby promotes the migration and invasion of human 

glioblastoma U87 cells (Song, et al., 2009). Zurhove et al. (2008) showed that LRP1 

interacted with IRF3 in the nucleus and promotes its nuclear export and proteasomal 

degradation. Moreover, basal transcription of LPS target genes and LPS-induced secretion 

of proinflammatory cytokines are increased in the absence of LRP1. It has been reported 

that LRP1 sequesterd frizzled receptor and thereby disrupts the frizzled receptor-

LRP5/LRP6 complex and ultimately represses the canonical Wnt pathway (Lindner et al., 

2010). This may suggest that the LRP1 is involves in TLRs mediated negative regulation to 

the Wnt/β-catenin pathway.  

 

 

http://www.wordhippo.com/what-is/another-word-for/considerable.html


158 

 

 

 

 

 

Table 6.1    poly(I:C)-dependent TRIF interacting proteins. 

U373-CD14 cell line was stimulated with poly(I:C) for 20, 40 and 60 min, then TRIF immunoprecipitation was performed and 

proteins were separated by 1D SDS-PAGE gel electrophoresis followed by tryptic digestion and LC-MS analysis. 

 

Protein name NCBI 

accession no 

Mascot 

score 

PI MW Peptide 

Match 

Sequence 

Coverage 

% 

Time 

point 

Adenomatous polyposis coli protein 53759122 57 7.92 313659 3 1 20 min 

CAP-Gly domain-containing linker protein 1 109658674  51 5.29 162901 3 2 

 

20 min 

A disintegrin and metalloproteinase with thrombo-

spondin motifs 13  

21265034  51 6.96 158261 3 3 20 min 

Optineurin/FIP2  20149572 53 5.14 66286 2 3 20 min 

14-3-3 protein zeta/delta 4507953 134 4.73 26943 3 23 20 min 

Very low-density lipoprotein receptor 65301167 

 

249 

 

4.62 99856 

 

5 7 40, 60 

min 

NF-kappa-B-repressing factor  

 

63003897  

 

64 8.94 

 

78308 

 

2 3 40 min 

Pyruvate kinase isozymes M1/M2  

 

33286418  

 

127   3 5 40 min 

and 

60 min 

Prolow-density lipoprotein receptor-related protein 1 126012562  585 5.16 523476 

 

16 4 60 min 

Ras GTPase-activating-like protein IQGAP1 

 

4506787 78 6.08 189772 

 

2 1 60 min 

prohibitin  

 

4505773 

 

74 5.75 29843 

 

2 16 60 min 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20110606/FtteoxYSh.dat&hit=gi%7c21265034&db_idx=1&px=1&ave_thresh=46&_ignoreionsscorebelow=0&report=0&_sigthreshold=0.05&_msresflags=1025&_msresflags2=2&percolate=-1&percolate_rt=0
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Table 6.2    LPS-dependent TRIF interacting proteins. U373-CD14 cells were stimulated with LPS for 20, 40 and 60 min, then 

TRIF immunoprecipitation was performed and proteins was separated by 1D SDS-PAGE followed by tryptic digestion and LC-MS 

analysis.  

Protein name NCBI 

accession no 

Mascot 

score 

PI MW Peptides 

Match 

Sequence 

Coverage 

% 

Time 

point 

Desmoplakin 58530840   88 6.44 334021 2 1 20 min 

Vascular endothelial growth factor receptor 1 156104876   53 8.66 152554 2 1 20 min 

Junction plakoglobin 4504811  134 5.75 82434 4 6 20 min 

Disintegrin and metalloproteinase domain-containing 

protein 15 

15778976 52 6.3 95636 2 2 20 min 

Growth factor receptor-bound protein 10  48762679  51 8.07 68158 2 5 20 min 

Lysozyme C  4557894 132 9.38 16982 2 16 20 min 

Prolow-density lipoprotein receptor-related protein 1 

 

12667788 

 

378 5.16 523150 12 3 40 min 

and  

60 min 

Very low-density lipoprotein receptor 65301167 147 4.62 99856 3 6 40 min 

and  

60 min 

Menin 1945390 

 

53 6.14 68380 5 2 40 min 

Monocyte differentiation antigen CD14 

 

4557417 72 5.84 40689 2 5 40 min 

and  

60min 

Granulins 4504151 49 6.43 6815 2 3 60 min 
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Another interesting TRIF interactor that was identified upon LPS stimulation for 20 min 

was growth factor receptor-bound protein 10 (GRB10). GRB10 encodes an intracellular 

adaptor protein that can interact with several receptor tyrosine kinases and downstream 

signalling molecules (Garfield et al., 2011). GRB10 has been shown to interact with insulin 

receptor (IR), insulin-like growth factor 1 receptor (IGF1R), Raf1 kinase, and MEK1 

kinase and to be involved in cell growth regulation. It is also negatively regulate insulin and 

IGF1 signalling by mediating insulin receptor and IGF1R degradation through 

ubiquitination (Huang et al., 2010; Doiron et al., 2012). In this regard, it has been reported 

that activation of the innate immune system via TLRs is implicated in the pathogenesis of 

insulin resistance and diabetes (Shi et al., 2006; Grishman et al., 2012). In accordance with 

this, Dasu and colleagues reported a significant increase in TLR2 and TLR4 expression in 

monocytes isolated from type 2 diabetes patients. They also showed increased 

phosphorylation of MyD88. TRIF, IRF3, IRAK1 and p65 in type 2 diabetes monocytes 

(Dasu et al., 2010).    
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6.3    Optineurin negatively regulates TRIF signalling     

 

6.3.1    Introduction  

Following the immunoprecipitation of endogenous TRIF using  anti-TRIF antibody (from 

Exalpha) and analysis of interacting partners using LC-MS techniques, Optineurin (OPTN) 

was identified as a novel TRIF interacting partner following stimulation U373-CD14 cells 

with poly(I:C) for 20 min. Therefore the aim of this part was to investigate the role played 

by OPTN in TRIF mediated TLR3 and TLR4 signalling. OPTN is a Golgi complex-

associated ubiquitous protein with high expression in skeletal muscle, heart, brain and 

pancreas (Sippl et al., 2011). It was first discovered as a binding partner of the adenoviral 

protein E3-14.7K and was shown to protect infected cells from TNF-induced cytolysis (Li 

et al., 1998). OPTN is a conserved 67-kD protein with multiple leucine zipper domains and 

a putative zinc finger domain at the C-terminus. OPTN shows strong homology (53 % 

identity) with NF-κB essential modulator and was therefore also called NEMO-related 

protein (Schwamborn et al., 2000).  

Mutations in OPTN have been observed in rare hereditary cases of glaucoma 

(neurodegenerative eye diseases that cause blindness) and therefore named Optic 

neuropathy-inducing protein (Chalasani et al., 2007). Recently, mutations in OPTN were 

identified in patients with familial amyotrophic lateral sclerosis (ALS) (Maruyama et al., 

2010). ALS is an adult onset progressive neurodegenerative disorder whose hallmark is the 

selective death of motor neurons of primary motor cortex, brainstem, and spinal cord. The 

mechanisms by which mutant OPTN causes glaucoma or ALS have not been clarified yet. 

However, overexpression of glaucoma-causing mutant of OPTN in culture cells causes 

apoptotic and Golgi fragmentation leads to cell death and receptor mediated endocytosis 

(Sippl et al., 2011). OPTN also bind to Rab8, a member of small GTPase family known to 

be involve in vesicular transport (Hattula and Peränen, 2000) and  link myosin VI to the 

Golgi complex and is involved in Golgi organization and exocytosis (Sahlender et al., 

2005).  

OPTN plays an important role in NF-κB regulation. Suppression of OPTN 

expression increases basal as well as TNF-α-induced NF-κB activity whereas 

overexpressed OPTN inhibits it. This negative regulation of NF-κB activity is believed to 
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be the result of competition of OPTN with NEMO for binding to polyubiquitinated RIP 

(Zhu et al., 2007). However, in human T-lymphotropic virus type1 (HTLV-1) infected 

cells, OPTN interacts with TAX1BP1 and a viral protein TAX1 resulting in sustained 

activation of NF-κB and ubiquitination of TAX1 (Journo et al., 2009). Importantly, OPTN 

was identified as TBK1 binding partner (Morton et al., 2008). Overexpression of OPTN 

inhibited Sendai virus (SeV) and dsRNA triggered induction of IFN-β, whereas depletion 

of OPTN with siRNA promoted virus-induced IFN-β production and decreased RNA virus 

replication. This signalling involves interaction of OPTN with the antiviral protein kinase 

TBK1 and ubiquitin ligase TRAF3 (Mankouri et al., 2010). However, Gleason and 

colleagues reported a significant reduction in TBK1 activity and decreased phosphorylation 

of IRF3 in response to activation of TLR3 and TLR4 in BMDMs expressing a 

polyubiquitin-binding defective OPTN mutant. The production of IFN-β mRNA and IFN-β 

secretion was also impaired (Gleason et al., 2011). 
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6.3.2    Results 

 

 

6.3.2.1    OPTN interacts with TRIF 

Analysis of endogenous TRIF interacting partners using a proteomics approach revealed 

that TRIF interacts with OPTN. Thus, to confirm the interaction, co-immunoprecipitation 

of epitope-tagged TRIF (HA-TRIF) with epitope tagged OPTN (Myc-OPTN) was 

performed in HEK293-TLR3. Cells were transfected with either HA-TRIF and EV, or HA-

TRIF and Myc-OPTN and treated as indicated. Thereafter, immunoprecipitation of HA-

TRIF was performed as described (Materials and methods, section 2.2.9). As shown in 

Figure 6.4, panel A, OPTN constitutively co-immunoprecipitated with TRIF. Interestingly, 

Mankouri and colleagues reported a constitutive interaction between OPTN and TBK1 in 

HEKT293 infected with Sendai virus or HEK293-TLR3 treated with poly(I:C) (Mankouri 

et al., 2010). This finding was recently supported by Gleason and colleagues who showed 

constitutive interaction between endogenous OPTN and endogenous TBK1 in BMDMs 

(Gleason et al., 2011). To investigate whether endogenous TRIF and OPTN interact 

constitutively with each other, IP of TRIF was performed in U373-CD14. Cells were 

treated with either poly(I:C) or LPS for 20 and 60 min followed by IP of endogenous TRIF 

as described (Materials and methods, section 2.2.10). Results showed that TRIF and OPTN 

interact in ligand-dependent manner. However, OPTN proved difficult to detect in whole 

cell lysates (Figure 6.4, panel, B).  

 

6.3.2.2    Poly(I:C) and LPS induce OPTN expression 

It has been reported that expression of OPTN is induced in response to viral infection 

(Mankouri et al., 2010). TNF-α stimulation in Hela and A549 cells also activates OPTN 

promoter activity in a NF-κB dependent manner (Sudhakar et al., 2009). Therefore, the 

effect of poly(I:C) and LPS on OPTN expression was investigated in U373-CD14. Cells 

were stimulated with either poly(I:C) or LPS for different time points followed by RNA 

isolation, cDNA synthesis and Q-RT-PCR. Poly(I:C) significantly increased OPTN mRNA 

after 24 h  compared to the control, LPS also increased OPTN expression at 24 h but the 

difference was not statistically significant (Figure 6.5, panels, A and B). 
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Figure 6.4: Co-immunoprecipitation of TRIF and OPTN.  (A) HEK293-TLR3 were 

seeded into 6 well plates. When confluent (80 %), cells were co-transfected with 2 μg of 

HA-TRIF and 1 μg of EV or co-transfected with 2 μg of HA-TRIF and 1 μg of Myc-OPTN. 

After 20 h, cells were left unstimulated or stimulated with 20 μg/ml poly(I:C) for 20 min. 

Thereafter, cells were lysed in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM 

EDTA, pH 8.0, 1 % NP-40, 0.5 % sodium deoxycholate supplemented with 1 mM PMSF, 1 

mM DDT, 1 mM NaVO3, and protease inhibitor cocktail). Cleared cell lysates were 

incubated with 1 μg of anti-HA monoclonal antibody precoupled to 50 μl of Protein A/G 

Plus-Agarose beads for 2 h at 4 
o
C with gentle shaking. Immunoprecipitation complexes 

were washed 4 times with lysis buffer and then released from the beads by addition of 40 μl 

of Laemmli loading buffer, followed by boiling for 5 min. Proteins were separated by SDS-

PAGE and subjected to immunoblotting using anti-HA and anti-Myc monoclonal 

antibodies. (B) U373-CD14 cells were cultured into T175 flasks. When the cells were 90-

95 % confluent, they were stimulated with either 20 μg/ml poly(I:C) or 1 μg/ml LPS for 

time indicated. Thereafter cells were scrapped into 10 ml ice cold PBS and spun down for 

10 min at 4
 o
C at 1200 rpm. Cell pellets were lysed as per panel A and cleared cell lysates 

were incubated with 2 μg of anti-hTRIF polyclonal antibody precoupled to 50 μl of Protein 

A/G Plus-Agarose beads for 2 h at 4 
o
C with gentle shaking. Proteins were separated by 

SDS-PAGE and immunoblot analysis was performed using anti-hTRIF (Exalpha) and anti-

hOPTN (Santa cruz) antibodies. Rabbit IgG (Sigma) was used as negative control. Images 

were captured using the G:box system (Syngene). 
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Figure 6.5: poly(I:C) and LPS induce OPTN expression.  (A, B). U373-CD14 cells were 

plated into 6-well plates. When cells were 80 % confluent, they were left unstimulated 

(control) or stimulated with either 20 μg/ml poly(I:C)  (A) or 1 μg/ml LPS  (B) for the time 

indicated. Thereafter, total RNA was isolated, and reverse transcribed into cDNA. The 

cDNA were used as a template whereby it was diluted 25 times and OPTN mRNA was 

measured by Q-RT-PCR using primer specific to human OPTN. GAPDH was used as 

housekeeping gene. (C) U373-CD14 cells were plated in T175 flasks. When cells were 80 

% confluent, they were stimulated with either 20 μg/ml poly(I:C) or 1 μg/ml LPS for the 

time indicated. Thereafter, cells were collected in 10 ml ice cold PBS and spun down for 10 

min at 4
 o
C at 1200 rpm. Cell pellets were lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 

150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 0.1 % SDS, supplemented with 

protease inhibitor cocktail, 1 mM PMSF, 1 mM Na3VO4 and 1 mM DDT). Next, cell 

lysates were mixed with Laemmli loading buffer and boiled for 5 min. Proteins were 

separated by SDS-PAGE and subjected to immunoblot analysis using mouse anti-OPTN 

monoclonal antibody and β-actin was used as loading control. Images were captured using 

the G:Box system (Syngene). The results presented are representative of at least two 

independent experiments.  *** P < 0.001. 
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However, poly(I:C) and LPS both increased OPTN protein expression levels after 24 h 

(Figure 6.5, panel C). 

 

6.3.2.3    OPTN inhibits TRIF and TLR3-dependent reporter gene activity.  

The ability of OPTN to modulate TRIF-mediated luciferase reporter gene activity was 

investigated. Thus, HEKT293 cells were transiently transfected with the NF-κB, IFN-β and 

CCL5 (Rantes) reporter gene constructs and increasing amounts of OPTN in the presence 

of a constant concentration of TRIF. OPTN significantly inhibited TRIF-dependent 

activation of the NF-κB, IFN-β (p125-luc) and Rantes reporter genes (Figure 6.6, panels, 

A-C). Furthermore, overexpression of OPTN also significantly inhibited TRIF-dependent 

activation of the NF-κB-driven PRDII and IRF3/IRF7-dependent PRDIII-I reporter genes 

(Figure 6.6, panels D and E).  As TRIF mediates TLR3 signalling, the effect of OPTN on 

TLR3-dependent NF-κB, IFN-β and Rantes activation was investigated using HEK293 

cells stably expressing TLR3. In HEK293-TLR3 cells, overexpression of OPTN 

significantly inhibited TLR3-dependent activation of NF-κB, IFN-β and Rantes reporter 

genes (Figure 6.6 panels F-H).   

 

6.3.2.4    Suppression of OPTN by esiRNA. 

To investigate the role played by OPTN in TLR3 and TLR4 signalling, knockdown of 

OPTN was performed used esiRNA technology in U373-CD14 cells. To monitor the 

knockdown, U373-CD14 cells were transfected with esiRNA control or esiRNA against 

human OPTN, then OPTN mRNA and protein levels were measured by using Q-RT-PCR 

and immunoblotting, respectively. It was found that esiRNA successfully reduced OPTN 

mRNA by at least 70 % compared to the control (Figure 6.7 panel, A). In addition, the 

OPTN protein expression was also downregulated following suppression of OPTN 

expression by esiRNA compared to the control as measured by western blot (Figure 6.6 

panel C). 
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Figure 6.6: OPTN inhibited TRIF and TLR3-dependent reporter gene activity. (A-

E) HEKT293 cells were plated into 96 well plates at a density of 5 x 10
4
 cells/well. After 

24 h, cells were transfected with expression vectors encoding either the reporter genes 

NF-κB (A), IFN-β promoter p125 (B), Rantes promoter (C), IFN-β PRDII (D) or IFN-β 

PRDIII-I (E) and co-transfected with either EV or expression vectors encoding the full 

length human HA-TRIF (20 ng) and increasing amounts of expression vectors encoding 

full length human Myc-OPTN (5, 20, 30 and 40 ng) as indicated. After 24 h, cells were 

harvested and lysed. The cell lysates were stored at -80 
o
C for at least 24 h, followed by 

assessment of luciferase reporter gene activity. (F-H) HEK293-TLR3 cells were plated 

into 96 well plates at a density of 5 x 10
4
 cells/well. After 24 h, cells were transfected 

with expression vectors encoding either the NF-κB (F), IFN-β promoter p125 (G), or 

Rantes promoter (H) reporter gene plasmids, and co-transfected with either an EV or and 

increasing amounts of OPTN. After 24 h, cells were left untreated (control) or stimulated 

with 20 μg/ml poly(I:C) for an additional 24 h, followed by harvesting of cell lysates. 

Cell lysates were left at -80 
o
C for at least 24 h and assessment of luciferase reporter 

gene activity was performed using the dual luciferase system (Promega). The results 

presented are representative of at least three independent experiments, each experiment 

was done in triplicate. ** P < 0.01 and *** P < 0.001. 
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Figure 6.7: Suppression of OPTN in human astrocytoma U373-CD14 cells. (A) Cells 

were seeded into 6-well plate. When cells were 80 % confluent, they were transfected with 

20 nM esiRNA control or 20 nM esiRNA against human OPTN.  Cells were harvested 24 h 

after transfection and total RNA was isolated and reverse transcribed into cDNA. The 

cDNA template was diluted 25 times and OPTN mRNA was measured by Q-RT-PCR 

using primer specific to human OPTN. GAPDH was used as housekeeping gene. (B). Cells 

were plated into 6-well plates. After 24 h, cells were transfected with 20 nM esiRNA 

control or esiRNA against human OPTN. Cells were collected 48 h after transfection in 1 

ml cold ice PBS and centrifuged for 10 min at 2000 rpm at 4 
o
C. Cells were lysed in RIPA 

buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate, 0.1 

% SDS, supplemented with protease inhibitor cocktail, 1 mM PMSF, 1 mM Na3VO4 , and 1 

mM DDT). Proteins were separated by SDS-PAGE and subjected to immunoblot analysis 

using an anti-human OPTN mouse monoclonal antibody (Santa Cruz) and β-Actin was 

used as loading control. Images were captured using the G:box documentation system 

(Syngene). *P < 0.05. 
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6.3.2.5   Downregulation of OPTN expression enhanced IFN-β, and Rantes mRNA 

expression.  

To investigate the potential role of OPTN in TLR3 and TLR4 signalling, levels of IFN-β, 

TNF-α and Rantes mRNAs were measured in U373-CD14 cells following transfection with 

esiRNA control or esiRNA against OPTN. After 48 h post transfection, cells were 

stimulated with either poly(I:C) or LPS for 3 h, followed by RNA isolation, cDNA 

synthesis and Q-RT-PCR. It was found that suppression of OPTN expression significantly 

increased poly(I:C)-induces IFN-β transcription compared to the control (Figure 6.8, panel 

A) Rantes mRNA was also increased but the difference is not statistically significant. 

However, suppression of OPTN expression had a negligible effect on TNF-α. (Figure 6.8 

panels B and C). Suppression of OPTN had a negligible effect on LPS-induces IFN-β, 

TNF-α and Rantes transcription (Figure 6.8 panels D-F). In general knockdown of OPTN 

increased slightly the basal levels IFN-β, TNF-α and Rantes transcriptions 

 

6.3.2.6    Effect of OPTN suppression on cytokine and chemokine secretion  

Next, the effect of OPTN on TLR3 and TLR4-mediated cytokine and chemokine secretion 

were assessed. To this end, U373-CD14 cells were transfected with esiRNA control or 

esiRNA against OPTN for 24 h, followed by stimulation with either poly(I:C) or LPS for 

additional 24 h. Thereafter, cell free supernatants were collected and cyto/chemokine 

secretion was measured in cell free supernatants using the Sandwich ELISA as described 

(Materials and method, section 2.2.20). Suppression of OPTN expression significantly 

increased poly(I:C) induced TNF-α, and Rantes compared to the control, IL-6 was slightly 

increased but the difference was not statistically significant, Surprisingly reduction of 

OPTN significantly decreased/increased LPS-induces TNF-α/Rantes, respectively (Figure 

6.9, panels, A-C). Basal induction of TNF-α and Rantes was slightly increased when OPTN 

was suppressed. 
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Figure 6.8: Suppression of OPTN expression enhanced IFN-β mRNA transcription. 

U373-CD14 cells were seeded into 6 well plates. When the cells were 80 % confluent, they 

were transfected with 20 nM esiRNA control or esiRNA directed against OPTN. After 48 

h, cells were stimulated with either 20 μg/ml poly(I:C) (panels, A-C) or 1 μg/ml LPS 

(panels D-F) for 3 h. Thereafter, cells were harvested and total RNA was isolated and 

reverse transcribed into cDNA.  The cDNA was used as template and then diluted 25 times. 

Next, levels of IFN-β (A, D), TNF-α (B, E) and Rantes (C, F) mRNAs were measured by 

Q-RT-PCR using specific human IFN-β, TNF-α and Rantes primers. GAPDH was used as 

housekeeping gene. Data are representative of two independent experiments each 

experiment was done in duplicates. * P < 0.05. 
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Figure 6.9: Effect of OPTN suppression on cytokine and chemokine secretion U373-

CD14 cells were plated into 6-well plates. When the cells were 80 % confluent, cells were 

transfected with 20 nM esiRNA control or esiRNA against OPTN. After 24 h, cells were 

stimulated with either 20 μg/ml poly(I:C) or 1 μg/ml LPS for an additional 24 h. Thereafter, 

cell free supernatants were collected and ELISA was performed to detect human TNF-α 

(A), Rantes (B) and IL-6 (C). Data are representative of two independent experiments each 

experiment was done in triplicates. * P < 0.05, ** P < 0.01. 
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6.4    Discussion 

The aim of this chapter was to characterise the endogenous TRIF immunocomplex 

following TLR3 and TLR4 ligand stimulation. To this end, we characterised a suitable 

antibody and cell line that facilitated the activation of TLR3 and TLR4 signalling and 

subsequent immunoprecipitation of endogenous TRIF. This study has showed that an anti-

TRIF antibody obtained from Exalpha can be used to detect and immunoprecipitate 

endogenous TRIF. The anti-TRIF antibody was used to confirm an interaction between 

endogenous TRIF and some novel TRIF interacting proteins such as ADAM15, DVL3 and 

OPTN. The human astrocytoma cell line U373-CD14 was found to be a good cell model to 

study TRIF mediated TLR3 and TLR4 signalling as they showed good response to 

poly(I:C) and LPS. This is in contrast to A549 cells which showed upregulation of TNF-α 

and IFN-β mRNA upon poly(I:C) and LPS stimulation. However, secretion of TNF- 

Rantes and IL-6 was not detected in cell free supernatant following stimulation with these 

ligands, as measured by ELISA (data not shown). In BEAS-2B cells, poly(I:C) stimulation 

resulted in increased TNF-α and IFN-β mRNA and, in agreement with the mRNA data, the 

BEAS-2B cells showed significant increase in IL-6 and Rantes secretion in cell free 

supernatant. However, LPS stimulation increased TNF-α mRNA, but not cytokine/ 

chemokine secretion in cell free supernatant (data not shown). MacRedmond et al. (2005) 

reported that expression of TLR4 in A549 cells showed that the cells respond to LPS. Hou 

et al. (2006) also reported that Poly(I:C) upregulated TLR3 mRNA, stimulated IL-8 

secretion and enhanced phosphorylation of NF-κB in A549 cells. Regarding the BEAS-2B, 

it has been reported that these cells express functionally active TLR3 and TLR4 (Sha et al., 

2004). The difference here, may be due the cells passage that used in this study or the cells 

may secret other cytokine/chemokine than what we measured in response to poly(I:C) and 

LPS. 

  Following immunoprecipitation of endogenous TRIF and subsequent LC-MS 

analysis a potential number of poly(I:C) and LPS-dependent TRIF protein interactors were 

identified in this study. Proteins such ADAM15, CLIP, APC, Menin, IQGAP1 and 

prohibitin were identified in this screening and also identified in the proteomic analysis of 

overexpressed TRIF protein complex (Chapter 3). These data confirm an association 

between these proteins and TRIF at the endogenous level. However, further validation by 
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direct experiments is required to study their potential role in TRIF signalling. New 

interesting TRIF interactors such as LRP1 and GRB10 were also identified, thus linking 

TRIF to other signalling pathways such as endocytosis and phagocytosis and diseases such 

as diabetes. As mentioned earlier LRP1 play an important role in endocytosis and 

phagocytosis (Campana et al., 2005; Francini et al., 2011) and GRB10 negatively regulates 

insulin and IGF1 signalling by mediating insulin receptor and IGF1R degradation through 

ubiquitination (Huang et al., 2010; Doiron et al., 2012). 

Results showed that OPTN, a TBK1 binding protein also interacted with TRIF 

constitutively when overexpressed in HEK293-TLR3. It also binds to endogenous TRIF 

upon poly(I:C) and LPS stimulation for 20-60 min in U373-CD14. It was found that OPTN 

expression was increased following stimulation with poly(I:C) and LPS for 24 h. In 

agreement with this result, Mankouri and colleagues reported that increased OPTN 

expression was evident in HEKT293 infected with Sendai virus, an activator of the RIG-I 

pathway and following stimulation of HEK293-TLR3 with poly(I:C) (Mankouri et al., 

2010). Activation of OPTN promoter upon TNF-α stimulation in Hela and A549 cells has 

also been reported (Sudhakar et al., 2009). 

Overexpression of OPTN in HEKT293 or HEK-TLR3 strongly inhibited TRIF and 

TLR3-dependent activation of NF-κB, IFN-β and Rantes promoter activity respectively. 

Moreover, overexpression of OPTN in HEKT293 also significantly inhibited TRIF-

dependent activation of the NF-κB-driven PRDII and IRF3/IRF7-dependent PRDIII-I 

reporter genes. Furthermore knockdown of endogenous OPTN using esiRNA technology in 

U373-CD14 significantly increased IFN-β mRNA and secretion of TNF-α and Rantes upon 

poly(I:C) stimulation. However, suppression of OPTN significantly increased LPS-induces 

Rantes and decreased LPS-induces TNF-α secretion. In this regard, Gleason and colleagues 

reported that OPTN is required for optimal activation of TBK1 and production of IFN-β in 

BMDMs upon TLR3 and TLR4 activation (Gleason et al., 2011). This is in contrast with 

another study which reported that poly(I:C) and virus-induced activation of IFN-β reporter 

gene and IFN-β secretion was inhibited upon OPTN overexpression and enhanced by 

siRNA knockdown of OPTN in HEK293-TLR3 (Mankouri et al., 2010). However, another 

study showed that overexpression of OPTN inhibited TNF-α-induced NF-κB activation in 
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Hela cells (Nagabhushana et al. 2011). Collectively, these data suggest that the role of 

OPTN in regulating NF-κB and IFN-β depends on the cell type and the stimulus. 

In conclusion, this study demonstrates that an anti-TRIF antibody obtained from 

Exalpha can be used to detect and immunoprecipitate endogenous TRIF, and 

characterisation of the TRIF immunocomplex has identified a number of TRIF interacting 

partners. OPTN has been identified as a negative regulator of TRIF and TLR3-mediated 

reporter gene activation. However, further future work is need to determine the mechanisms 

by which OPTN inhibits TRIF and TLR3 signalling.  

 



 

 

Chapter 7 

 

 

General Discussion 
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7.1    General discussion 

While it is well appreciated that the TLRs are responsible for the recognition of 

pathogens and emanation of the appropriate responses, increasing evidence suggests 

that the family of five cytosolic TIR-adaptor proteins also play a crucial role in the 

specificity of the response (Jenkenis and Mansell, 2010). The TRIF adaptor protein is a 

key adaptor for TLR3 and TLR4-mediated signalling. It was first shown to serve as an 

adaptor for the TLR3-mediated signalling pathway with studies showing an association 

between TRIF and TLR3 and the ability of a mutant form of TRIF to inhibit the TLR3-

dependent activation of NF-κB (Hardy et al., 2004). Further, studies using TRIF-

deficient mice have demonstrated that TRIF plays a key role in both TLR3- and TLR4-

mediated signal transduction via both NF-κB and IRF3, with the induction of IFN-β and 

inflammatory cytokines being severely impaired (Yammato et al., 2003). Recently, it 

was shown that TRIF also mediates TLR5 signalling in intestinal epithelial cells and 

that DDX1, DDX21 and DHX36 use TRIF to activate the NF-κB pathway and type I 

IFN responses (Choi et al., 2010; Zhang et al., 2011). 

Herein, proteomic analysis of overexpressed and endogenous TRIF interactomes 

was performed with a view to identifying novel TRIF interacting proteins towards a 

better understanding of how TRIF-mediates TLRs signalling. Proteomic analysis of 

overexpressed TRIF in HEK293-TLR3 and HEK293-TLR4 cells led to the 

identification of many novel TRIF interacting proteins. Interestingly, many of the newly 

identified TRIF interacting proteins have been previously reported to be involved in 

modulation of proteins such as MAPKs (MAPK1, 2, 3, 8, and 9), Caspases (Caspase 1, 

3, and 8), BCL2, JUN, IKBKB and NFKBIA. Moreover, they were reported to 

modulate cellular processes such as apoptosis, immune response, inflammatory 

response, autophagy, phagocytosis, endocytosis, cytokine production, cell 

differentiation, cell proliferation and a lot of more. However, there was no previous 

report showing interaction between TRIF and these new identified proteins. 

Unfortunately, TRIF itself was not identified in the overexpression and endogenous IP 

complex in the LC-MS analysis. However, the expression of TRIF was always 

confirmed by immunoblot analysis. Recently, Li et al. (2011) performed proteomic 

analysis of the human innate immunity interacome for type I interferon. Proteins such as 

Optineurin (OPTN), NFκB repressing factor (NFRF), and Growth factor receptor-bound 
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protein 2 (GRB2) were among the identified hits. OPTN and NFRF, GRB2- associated-

binding protein 3 and GRB10 were identified herein in TRIF IP complex this may 

confirm association of these proteins with TRIF. This approach, although useful, it may 

result in identification of false positive interacting protein hits. As the cells already 

expressed endogenous TRIF, overexpression of TRIF could increase the TRIF 

expression level in the cells, which may lead to induction of some proteins that are not 

present in its physiological condition. The overexpression of TRIF was also associated 

with apoptosis and cell death. Thus, the output from this approach requires intensive 

validations by direct experiments to filter out nonspecific binding proteins. Another 

method used to identify protein-protein interaction is the tandem affinity purification 

(TAP)-tags technique (Li et al., 2011; Pichlmair et al., 2012). The TAP tag is a 

composite tag consisting of two different epitope domains and a protease cleavage site, 

and it facilitates the purification of the tagged protein in two consecutive, high-affinity 

chromatography steps (Gunzl and Schimanski, 2009). An important advantage of the 

TAP-technique is that the amount of nonspecific binding is reduced compared to 

approach used in this study. Although the TAP-tag method is highly sensitive and 

selective, a potential problem with the method is that the increased purity leads to the 

loss of transient nature protein-protein interaction during the series of purification steps. 

Another problem is that a relatively large amount of starting material is required, which 

makes purification and identification of low abundance binding partners a difficult task 

(Berggård et al., 2007; Gunzl and Schimanski, 2009). 

Proteins such ADAM15, Menin, Prohibitin, 14-3-3 protein Zeta/delta, IQ motif 

containing GTPase activating protein1, NFκB repressing factor (NFKRF) and 

adenomatous polyposis coli were identified following the proteomic analysis of the 

overexpressed  and endogenous TRIF protein complex (Chapter 3 and 6). These data 

confirm an association between these proteins and TRIF at the endogenous level. 

However, further validation by direct experiments is required to study their potential 

role in TRIF signalling. Due to the time course of this project, three identified proteins 

namely ADAM15 and DVL3 and OPTN were selected for further study. These were 

selected because they have been shown to have potential role in inflammation, Wnt 

signalling pathway and antiviral signalling, respectively (Charrier-Hisamuddin, 2008; 

Mankouri et al., 2010; Bernatik et al., 2011). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Charrier-Hisamuddin%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Charrier-Hisamuddin%20L%22%5BAuthor%5D
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In this study, it was found that ADAM15 interacted with TRIF upon poly(I:C) and LPS 

stimulation for 60 and 20 min, respectively. Moreover, ADAM15 acted as a negative 

regulator of TRIF, TLR3 and TLR4-mediated activation of the NF-κB, IFNβ (p125-luc) 

and Rantes reporter genes. In addition, overexpression of ADAM15 also significantly 

inhibited TRIF-dependent activation of the NF-κB-driven PRDII and IRF3/IRF7-

dependent PRDIII-I reporter genes. Importantly, downregulation of ADAM-15 by 

esiRNA significantly enhanced poly(I:C) and LPS-induced cytokine/chemokine 

secretion in cell free supernatant in U373-CD14. Furthermore, overexpression of 

ADAM15 in HEK293-TLR3 caused TRIF degradation and the use of EGTA in 

combination with EDTA partially inhibited this effect. ADAM and MMP family 

members are Zn-dependent proteinases. Thus, their activities were reported to be 

inhibited by the metal ion chelators such as EDTA and EGTA (Chen et al., 2007). In 

agreement with these results, knockdown of ADAM15 increased TRIF mRNA and 

protein levels upon poly(I:C) stimulation. This lead to the speculation that ADAM15 

inhibited TLR3 and TLR4 signalling by a mechanism involved TRIF degradation. In 

contrast to our finding, many of the published data consider ADAM15 as an 

inflammatory mediator (Herren et al., 1997; Al-Fakhri et al., 2003; Mosnier et al., 

2006). However, the possibility that ADAM15 could present both pro-and anti-

inflammatory activities cannot be precluded (Charrier et al., 2005; Charrier et al., 2007). 

 Furthermore, this study also investigated the role of DVL1, DVL2 and DVL3 in 

TRIF mediating TLRs signalling. It was found that all DVLs isoforms constitutively 

interacted with TRIF when overexpressed in HEK293-TLR4. However, immuno-

precipitation of endogenous TRIF showed that DVL3 interacted with TRIF only 

following stimulation with LPS for 20-40 min. Moreover, overexpression of all DVLs 

isoform inhibited TRIF and TLR3-mediated activation of the NF-κB, IFNβ (p125-luc) 

and Rantes reporter genes in HEK293 and HEK293-TLR3, respectively. In agreement 

with our results, Deng et al. (2010) showed that all three DVLs isoforms directly 

interact with NF-κB (p65), and overexpression of DVLs inhibited TNF-α induced 

activation of NF-κB transcriptional activity. Surprisingly, in wild-type murine BMDMs, 

the inhibition of DVLs reduced poly(I:C)-induced upregulation of TNF-α, IFN-β and 

Rantes mRNA as well as decreased IκB degradation. This could be due to the cells line 

used in this study. TLR3 was reported to play a key role in sensing poly(I:C) by 

epithelial cells (Guillot et al., 2005; Matsukura et al., 2007), but it played a moderate or 

minor role in sensing poly(I:C) in macrophages (Alexopoulou et al., 2001; Yamamoto 
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et al., 2003). Importantly, it was found that DVLs were also needed for LPS-induces 

upregulation of cytokine/chemokine transcription as well as phos-phorylation of IRF3. 

In agreement with our results, Blumenthal et al. (2006) showed that TLRs activation 

resulted in upregulation of Wnt5A in human macrophages and that Wnt5A is necessary 

for the regulation IL-12 and IFN-γ in response to infectious agents. In addition, our 

study showed that DVLs transcriptions differentially regulated by TLRs activation, and 

that both TRIF and MyD88 inhibited β-catenin-induces Lef transcription. Also, 

poly(I:C) and LPS stimulation decreased β-catenin expression in Hela cells and partially 

inhibited DVL3-dependent β-catenin nuclear translocation. Correlating with this data, it 

has been shown that TLR4 activation inhibits enterocyte proliferation in vitro and in 

vivo via the impairment of β-catenin signalling through activation of the GSK3β (Sodhi 

et al., 2010).  

Importantly, it has been demonstrated that that β-catenin-dependent Wnt 

signalling is also active in mature, peripheral blood T cells and that Wnts induce MMP 

expression and augment T cell transmigration (Wu et al., 2007) Masckauchán et al. 

(2006) showed that Wnt5A signalling induced proliferation and survival of endothelial 

cells in vitro and expression of MMP1. In addition, Blavier et al. (2006) reported that 

MMPs (MMP2, MMP3, MMP9, MMP13 and MMP14) play an active role in Wnt1-

induced tumorigenesis in mice. Interestingly, high expression of ADAM 15 has been 

reported in lung, gastric, ovarian breast and prostate carcinoma cell lines and tissues 

(Zhong et al., 2008). Moreover, ADAM15 expression was shown to be associated with 

aggressive prostate and breast cancer (Kuefer et al., 2006). Furthermore, both ADAM15 

and DVLs are involved in MAPK activation and in particular the extracellular signal 

regulated kinase 1/2 (ERK1/2) (Bikkavilli and Malbon, 2009; Sun et al., 2010). 

Schlange et al. (2007) showed that Wnt signalling activates the ERK1/2 pathway and 

suppression of the DVLs serves to decrease active β-catenin levels, lowering ERK1/2 

activity, blocking proliferation and inducing apoptosis in the human breast cancer cell 

line MCF-7. The effects of Wnt signalling are mediated partly by EGFR transactivation 

in human breast cancer cells in a metalloprotease- and Src-dependent manner (Schlange 

et al., 2007). Interestingly ADAMs, including ADAM15, have been reported to be 

involved in EGFR transactivation  (Seals and Courtneidge, 2003). Moreover in breast 

cancer cells, ADAM15 deletion decreases ERK1/2 phosphorylation impairing migration 
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and proliferation (Najy et al., 2008). Consistently, Sun et al. (2010) demonstrated that 

ADAM15 overexpression stimulates ERK1/2 phosphorylation in endothelial cells.  

As mentioned earlier, TRIF activation induces Caspase-8-dependent cell death 

and studies have shown that TLR3 activation can trigger apoptosis of human prostate 

cells and breast cancer cells  (Salaun et al., 2006; Paone et al., 2008). It plausible to 

speculate that ADAM15 and DVLs may inhibit TRIF-induced cell death and thereby 

promotes cell growth and tumor formation. As Wnts have been shown to induce MMPs 

expression (Blavier et al., 2006), it may be suggested that activation of Wnt signalling 

by DVLs may lead to ADAM15 expression which then can inhibit TLRs signalling in a 

negative feedback mechanism to prevent overproduction of pro-inflammatory cytokine 

and thereby, suppress the inflammation associated with bacterial and viral infections.  

 Herein, Optineurin (OPTN) was also identified as a TRIF interacting partner. 

OPTN constitutively interacted with TRIF when overexpressed in HEK293-TLR3. 

However, endogenously expressed OPTN and TRIF interacted in ligand dependent 

manner only (20 and 60 min upon poly(I:C) and LPS stimulation). OPTN is a 

multifunctional protein involved in several functions such as vesicular trafficking from 

the Golgi to the plasma membrane, NF-κB regulation, signal transduction, endocytosis 

and gene expression  (Nagabhushana et al., 2010). In this study, OPTN was found to act 

as negative regulator of TRIF and TLR3-mediated activation of the NF-κB, IFN-β 

(p125-luc) and Rantes reporter genes in HEK293 and HEK293-TLR3, respectively. 

Moreover, knockdown of endogenous OPTN using esiRNA technology in U373-CD14 

significantly increased IFN-β mRNA and secretion of TNF-α and Rantes upon poly(I:C) 

stimulation. However, suppression of OPTN significantly increased LPS-induces 

Rantes and decreased LPS-induces TNF-α secretion. The data regarding the role of 

OPTN in regulating NF-κB and IFN-β are controversial and seem to be dependent on 

the cell type and the stimulus. In agreement with our results, Mankouri et al. (2010) 

reported that poly(I:C) and virus-induced activation of IFN-β reporter gene and IFN-β 

secretion was inhibited upon OPTN overexpression and enhanced by siRNA 

knockdown of OPTN in HEK293-TLR3. However, Gleason et al. (2011) reported that 

OPTN is required for optimal activation of TBK1 and production of IFN-β in BMDMs 

upon TLR3 and TLR4 activation. Furthermore, Nagabhushana et al. (2010) 

demonstrated that OPTN is involved in endocytosis. It should be mentioned that 24 h 

poly(I:C) and LPS stimulation in U373-CD14 cell line resulted in increased OPTN 
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protein level, which may suggest that TLRs induced OPTN in a negative feedback 

mechanism to reduce the signal. Interestingly, Bryja et al. (2007) showed that 

endocytosis is important for DVL2 stability and blocking of endocytosis leads to rapid 

DVL2 degradation and prevents Wnt/β-catenin signalling. Importantly, the endocytosis 

receptor, low-density lipoprotein receptor-related protein 1 (LRP1) was also identified 

in the endogenous TRIF-IP complex following stimulation with poly(I:C) for 60 min 

and LPS for 40-60 min. Song et al. (2009) demonstrated that LRP1 induces the 

expression of MMP2 and MMP9 and thereby, promotes the migration and invasion of 

human glioblastoma U87 cells. Interestingly, it has been reported that LRP1 sequestered 

frizzled receptor and thereby, disrupts the frizzled receptor-LRP5/LRP6 complex and 

ultimately represses the canonical Wnt pathway (Lindner et al., 2010). Thus, it may be 

speculated that TLRs act through OPTN or LRP1 to regulate endocytosis and thereby, 

negatively or positively regulate Wnt signalling.   

 In conclusion, proteomic analysis of the overexpressed and endogenous TRIF 

immunocomplex led to the identification of many novel TRIF interacting proteins. 

These proteins indicate that TRIF may be linked to inflammasome activation, NOTCH 

signalling, Wnt signalling, cancer and diabetes. Overall, to our knowledge this is the 

first study performed to analyse whole TRIF-IP complex.   Future studies are needed to 

validate the potential role of many of the TRIF-interactor proteins in TRIF signalling 

and to investigate whether TRIF can be associated with signalling pathways that are 

distinct from its role as an activator of TLR signalling. 
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Table 3.1    Poly(I:C)-independent TRIF interacting proteins 

HEK293-TLR3 were transfected with HA-TRIF, after 20 h cells were collected and IP of HA-TRIF was performed, followed by LC-MS 

analysed of the IP-complex. The MS spectra of the peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot 

score 

PI MW Peptide Match Sequence 

Coverage % 

AF4/FMR2 family member 4 

 

7656879 

 

51 9.33 127788 

 

3 3 

Ran-binding protein 17 

 

12597633 55 

 

6.02 125977 

 

4 3 

NIK and IKK beta binding protein 

 

119612606 50 6.29 124293 

 

2 2 

EVH1 domain binding protein 7416993 33 6.48 90831 

 

1 2 

cAMP-specific 3',5'-cyclic phosphodiesteras 259906420 

 

55 4.84 85189 

 

1 1 

Semaphorin-3C 

 

5454048 58 8.96 86487 

 

3 4 

Nibrin 33356172 54 6.50 85602 

 

2 3 

Phosphatidylinositol-4,5-bis-phosphate 3-kinase 

catalytic subunit beta isoform 

4826908 46 6.03 81837 

 

1 2 

Leucine rich repeat neuronal 4 20381181 40 6.82 80395 1 2 

NF-kappa-B-repressing factor 

 

33860178 59 8.74 78320 

 

3 4 

E3 ubiquitin-protein ligase RNF6  5174653 55 9.16 

 

78451 

 

2 3 

Guanylate cyclase soluble subunit beta-2 14916977 42 8.84 70892 2 3 

Structure of The Nalp1 Pyrin Domain 17380146 52 6.68 50486 1 11 
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F-box/LRR-repeat protein 20 isoform 1 27734755 38 7.65 

 

50248 

 

1 4 

GA-binding protein subunit beta-1 isoform beta 1 8051593 50 4.77 44906 2 3 

ribosome biogenesis protein BRX1 homolog 55770900 

 

40 9.92 41990 

 

1 2 

cAMP-dependent protein kinase catalytic subunit 

alpha 

4506055 52 8.84 40678 

 

1 3 

Mis18-binding protein 1 (p243) 5101770 44 8.74 27686 

 

1 8 

T-box transcription factor  5689744 

 

37 9.23 23183 

 

1 8 

 

Table 3.2    TRIF interactors following 20 min poly(I:C) stimulation 

HEK293-TLR3 were transfected with HA-TRIF, after 20 h cells were stimulated with 20 μg/ml poly(I:C) for 20 min. Then IP of HA-TRIF was 

performed and IP-complex was analysed by LC-MS. The MS spectra of the peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot score PI MW Peptide 

Match 

Sequence 

Coverage % 

Cardiomyopathy-associated protein 5 62241003 

 

51 4.73 450792 4 1 

sacsin 6907042 51 6.81 441744 

 

3 1 

Ubiquitin carboxyl-terminal hydrolase 32 22550104 54 6.01 183861 

 

4 2 

Bifunctional aminoacyl-tRNA synthetase 62241042 110 7.02 172107 

 

4 4 

Erythroid differentiation-related factor 1 321117522 50 5.93 139833 4 4 

Cullin-associated NEDD8-dissociated protein 1 21361794  124 5.52 137999 3 3 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20120214/FtoeCecmO.dat&hit=gi%7c21361794&db_idx=2&px=1&ave_thresh=50&_ignoreionsscorebelow=0&report=0&_sigthreshold=0.05&_msresflags=1033&_msresflags2=2&percolate=-1&percolate_rt=0
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Caspase recruitment domain-containing protein 11 

 

157743265 

 

54 5.78 134512 

 

4 3 

Vinculin 

 

7669550   

 

72 5.5 134962 1 1 

Protein AF-17   215273929  

 

57 8.93 119643 3 6 

Exportin-2(cellular apoptosis susceptibility protein ) 371502112 

 

218 5.5 111145 4 6 

Transportin-1 

 

133925811  

 

73 4.83 103797 2 2 

Replication licensing factor MCM 33356547  49 5.34 102528 1 1 

Plasminogen 38051823 

 

51 6.89 93310 2 3 

RUN and TBC1 domain containing 3 119580785 

 

54 8.08 74953 3 2 

Far upstream element-binding protein 2 

 

154355000 

 

104 6.84 73443 3 6 

Plastin-3 

 

7549809  103 5.41 71288 2 6 

SUMO-activating enzyme subunit 2 4885649  

 

74 5.15 71759 1 2 

Calnexin 

 

10716563  

 

115 4.47 67990 3 5 

Numb-like protein 10863899 

 

47 9.1 65605 1 2 

Fragile X mental retardation syndrome-related protein 1 

isoform c 

61835172 

 

51 6.34 63280 3 4 

 

Alpha adrenergic receptor subtype alpha  7690135 58 9.35 61305 2 4 

T-complex protein 1 subunit theta  

 

9988062 

 

89 5.42 60153 3 6 
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Telomeric repeat-binding factor 2 

 

21542277 

 

53 9.22 55688 3 8 

Secretogranin-3 

 

19557645 

 

61 4.94 52973 2 3 

Serine/threonine-protein phosphatase 2A 

 

4758954 

 

58 5.82 52182 1 3 

Ribonuclease inhibitor 

 

62087972 

 

66 4.71 51766 2 7 

M-phase phosphoprotein 4 1770456 

 

62 6.01 49148 3 12 

Peptidase M20 domain-containing protein 2 58082085 51 5.56 48094 1 2 

Lupus La protein 

 

125985 

 

71 6.68 46979 3 10 

Phosphoglycerate kinase 1 

 

52788229 

 

146 8.30 44992 2 6 

inactive caspase-12 

 

300360580 

 

51 5.63 39130 

 

2 9 

Poly(rC)-binding protein 2 

 

14141168 

 

147 6.33 38962 

 

4 13 

SUMO-activating enzyme subunit 1 4885585 125 5.17 38890 3 13 

Serine/threonine-protein phosphatase PP1-alpha catalytic 

subunit 

4506003 76 5.94 38242 1 5 

Poly(rC)-binding protein 1 

 

6754994 

 

193 6.66 37987 

 

4 12 

TALDO1 protein 

 

48257056 

 

122 6.35 37556 4 12 

Annexin A5  4502107 153 4.94 35972 3 12 

Prohibitin-2 6005854 

 

91 9.83 33276 2 20 



226 

 

Hyaluronan-binding protein 1/Mitochondrial matrix protein 

p32 

4502491 

 

209 4.74 31749 4 26 

Myristoylated alanine-rich C-kinase substrate 

 

153070260 94 4.74 31710 

 

2 9 

Prohibitin  4505773 197 5.57 29844 

 

5 29 

Proteasome activator complex subunit 3 

 

47117724 90 5.69 29604 

 

2 9 

Replication protein A 32 kDa subunit 

 

4506585 102 5.75 29344 2 14 

Tropomyosin alpha-3 chain isoform 2 (TPMsk3) 

 

19072649 95 4.72 28906 2 9 

Acidic leucine-rich nuclear phosphoprotein 32  

 

5453880 71 3.99 28684 

 

2 10 

Triosephosphate isomerase 

 

4507645 258 6.45 26943 

 

5 28 

B-cell receptor associated protein 1673514 96 9.57 23621 

 

3 28 

Transgelin-2 4507357  124 8.41 22551 3 21 

Ubiquitin-conjugating enzyme E2 K 

 

4885417 64 5.33 22509 

 

1 14 

Peroxiredoxin-1 4505591 86 8.27 22328 3 16 

Peroxiredoxin-2 32189392  141 5.66 22052 3 29 

Ras-related protein Rap-1A 4506413  81 6.38 21322 1 6 

Peptidyl-prolyl cis-trans isomerase A 10863927 113 5.06 20018  2 19 

Macrophage myristoylated alanine-rich C kinase 13491174 47 4.68 19575 

 

1 6 

Nucleoside diphosphate kinase B 4505409  

 

51 8.52 17403 

 

3 23 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20110514/FttTorHth.dat&hit=gi%7c4505591&db_idx=2&px=1&ave_thresh=47&_ignoreionsscorebelow=0&report=0&_sigthreshold=0.05&_msresflags=1025&_msresflags2=2&percolate=-1&percolate_rt=0
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Table 3.3    TRIF interactors following 40 min poly(I:C) stimulation 

HEK293-TLR3 were transfected with HA-TRIF, after 20 h cells were stimulated with 20 μg/ml poly(I:C) for 40 min. Then IP of HA-TRIF was 

performed and IP-complex was analysed by LC-MS. The MS spectra of the peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot score PI MW Peptide 

Match 

Sequence 

Coverage % 

Trio  45439359  

 

48 5.96 349815 

 

3 1 

zinc finger protein 462 

 

114431236 62 7.53 289552 

 

3 1 

Ras GTPase-activating-like protein IQGAP1  4506787 

 

55 6.08 189772 

 

3 1 

Nucleolar transcription factor 1 

 

136652 46 5.63 89698 

 

1 2 

Serine/threonine-protein phosphatase 4 regulatory subunit 3B 39930397 

 

50 4.70 87960 

 

2 3 

Nuclear autoantigenic sperm protein 23503077 46 4.26 85476 1 1 

Glycyl-tRNA synthetase 

 

116805340  

 

51 6.61 83867 

 

3 5 

T-box transcription factor TBX3 28381401 54 8.30 79745 3 4 

SEC14-like protein 5 

 

150010661 56 6.08 79704 

 

2 3 

Mitogen-activated protein kinase 8 interacting protein 1 46249764 49 4.89  2 2 

R3H domain containing 2 

 

119617414  50 9.33 76607 

 

2 5 

DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3 variant 

 

62087546 

 

88 7.72 74939 

 

1 1 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20110511/FttTfeeaR.dat&hit=gi%7c114431236&db_idx=2&px=1&ave_thresh=51&_ignoreionsscorebelow=0&report=0&_sigthreshold=0.05&_msresflags=1025&_msresflags2=2&percolate=-1&percolate_rt=0
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vitamin D3 receptor interacting protein  4838129 

 

50 6.71 73527 

 

2 5 

poly(ADP-ribose) polymerase  178152 

 

113 8.34 64291 

 

2 4 

pyruvate kinase 

 

33286418 

 

188 7.69 58480 

 

3 11 

polypyrimidine tract-binding protein 1 14165466  

 

60 9.21 57360 

 

2 6 

Lysosomal acid phosphatase 

 

115502439 

 

47 6.28 48719 

 

1 2 

alpha-enolase 

 

119339 

 

531 7.01 47487 

 

8 26 

HIV-1 Nef interacting protein  1800303 

 

56 6.92 45611 

 

1 5 

phosphoglycerate kinase 1 

 

4505763 

 

72 8.03 44992 

 

3 11 

ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4  119627246 53 9.44 44798 

 

2 5 

Fructose-bisphosphate aldolase A 

 

4557305 

 

109 8.30 39859 

 

4 20 

Inactive caspase-12 

 

300360580 58 5.63 39130 

 

2 11 

Glyceraldehyde-3-phosphate dehydrogenase 

 

7669492 

 

68 8.57 36204 

 

3 12 

heterogeneous nuclear ribo-nucleoprotein C-like 1 61966711  

 

54 3.94 32181 

 

1 4 

 

Table 3.4   TRIF interactors following 60 min poly(I:C) stimulation 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20110511/FttTfeeaR.dat&hit=PTBP1_HUMAN&db_idx=1&px=1&ave_thresh=51&_ignoreionsscorebelow=0&report=0&_sigthreshold=0.05&_msresflags=1025&_msresflags2=2&percolate=-1&percolate_rt=0
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HEK293-TLR3 were transfected with HA-TRIF, after 20 h cells were stimulated with 20 μg/ml poly(I:C) for 60 min. Then IP of HA-TRIF was 

performed and IP-complex was analysed by LC-MS. The MS spectra of the peptide ions were identified using the Mascot software. programme 

Protein name 

 

NCBI 

accession no 

Mascot score PI MW Peptide 

Match 

Sequence 

Coverage % 

Nucleoprotein TPR 114155142  

 

87 4.97 267537 

 

3 1 

 

Ral GTPase-activating protein subunit alpha-2 118600961  

 

49 5.74 213130 

 

3 2 

Ras GTPase-activating-like protein IQGAP1 4506787 

 

50 6.08 189772 

 

3 1 

Kinesin-like protein KIF21B 59799772 

 

53 7.94 184346 

 

1 7 

CAP-Gly domain-containing linker protein 1 261260059  58 5.29 162901 4 3 

Microtubule-associated tumor suppressor candidate 2 259016371 48 6.23 150915 3 3 

DEAH (Asp-Glu-Ala-His) box polypeptide 8 127797813 35 8.32 140070 3 2 

AF4/FMR2 family member 4 7656879  

 

52 9.33 127788 

 

3 3 

POTE ankyrin domain family member E  134133226  

 

54 5.83 122910 

 

2 2 

Inositol 1,4,5-triphosphate receptor, type 1, isoform CRA 119584312 

 

52 6.18 118754 

 

2 2 

proteasome activator 200 kDa iii 62467428 

 

57 7.57 114882 

 

2 2 

Coatomer subunit beta 7705369 50 5.72 108234 2 2 

Scaffold attachment factor B2 7661936  

 

51 5.84 107930 

 

3 3 

GluR4  

 

790538 

 

58 8.43 101487 

 

2 3 
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ADAM15 metargidin precursor 

 

1235674 55 6.03 90367 

 

2 2 

Phosphatidylinositol 3-kinase regulatory subunit beta 

 

317373311  

 

55 6.03 81843 

 

2 3 

E3 ubiquitin-protein ligase RNF6  

 

5174653 

 

53 9.16 78451 

 

2 5 

Nucleophosmin-anaplastic lymphoma kinase fusion protein  

 

609342 

 

36 6.43 76136 

 

1 3 

Coagulation factor XII 

 

145275213 

 

50 8.04 70068 

 

2 2 

Menin 

 

317373574 

 

61 6.14 68387 

 

2 3 

CREB-regulated transcription coactivator 1 

 

68565585 

 

43 5.65 67374 

 

1 2 

Zinc finger with UFM1-specific peptidase domain protein 

 

292494919 50 6.05 67192 

 

2 2 

Probable ATP-dependent RNA helicase DDX28 

 

296434476 

 

38 10.43 59777 

 

2 3 

 

Lysosomal acid phosphatase  

 

4557010 

 

49 6.28 48719 

 

1 2 

Heterogeneous nuclear ribo-nucleoprotein A1 288558857 

 

84 9.17 38839 

 

2 11 

 

 

Table 3.5    LPS-independent TRIF interacting proteins 

HEK293-TLR4 were transfected with HA-TRIF, after 20 h cells were collected and IP of HA-TRIF was performed, followed by LC-MS 

analysed of the IP-complex. The MS spectra of the peptide ions were identified using the Mascot software programme. 
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Protein name NCBI 

acession no 

Mascot 

score 

PI MW Peptide Match Sequence 

Coverage % 

Human immunodeficiency virus type I enhancer binding 

protein 1 

55662194 

 

53 7.92 299186 

 

3 1 

Mitogen-activated protein kinase kinase kinase 1 218512139 

 

49 7.93 166455 

 

3 1 

Collagen alpha-6(IV) chain  158264217 

 

51 9.31 164922 

 

2 1 

Rho GTPase-activating protein SYDE2 149274655 58 8.83 143770 

 

3 3 

Transcriptional regulating factor 1 

 

119624498 

 

51 6.51 107114 

 

2 2 

protocadherin gamma subfamily A 62087936 51 4.94 103200 1 1 

G protein-regulated inducer of neurite outgrowth 1 31418165 

 

55 8.33 103148 

 

3 3 

26S proteasome non-ATPase regulatory subunit 2  6174930 44 5.08 100890 2 3 

Disintegrin and metalloproteinase domain-containing protein 

15 

55960135 56 6.03 95683 

 

2 2 

intraflagellar transport 88 homolog 119628677 

 

59 5.79 91852 

 

4 7 

Inactive carboxypeptidase-like protein X2 

 

37182252 

 

47 6.03 86454 

 

3 1 

Nexilin 148839339 

 

42 5.31 80841 

 

2 3 

Protein DBF4 homolog A 5729734 43 8.03 77564 1 1 

Zinc finger protein 37 homolog 

 

 

4507963 52 9.26 73136 

 

2 4 

TANK-binding kinase 1-binding protein 1  

 

171769798 

 

39 5.62 68588 

 

1 2 
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Menin 

 

1945390 

 

51 6.14 68387 

 

1 2 

Exoribonuclease 1 

 

23271401 

 

52 6.29 40502 

 

2 5 

 

Table 3.6   TRIF interactors following 20 min LPS stimulation. HEK293-TLR4 were transfected with HA-TRIF, after 20 h cells were 

stimulated with 1 μg/ml LPS for 20 min. Then IP of HA-TRIF was performed and IP-complex was analysed by LC-MS. The MS spectra of the 

peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot 

score 

PI MW Peptide 

Match 

Sequence 

Coverage % 

Serine/threonine-protein kinase ATR 157266317 

 

48 7.17 304826 

 

4 1 

Nuclear mitotic apparatus protein 1 145559510 56 5.63 239217 2 1 

Clathrin heavy chain 1  4758012 

 

89 5.48 193291 

 

2 2 

Collagen alpha-6(IV) 148536823 51 9.31 164922 

 

2 2 

Leucine-rich PPR motif-containing protein 

 

31621305 

 

158 5.81 159023 

 

5 6 

Exportin-5 

 

22748937  

 

62 5.56 138368 

 

1 1 

 

Full-Length Vinculin 83753119 135 5.77 116498 4 5 

Poly [ADP-ribose] polymerase 1 190167  

 

137 8.99 113824 

 

3 4 

Next to BRCA1 gene 1 protein 296439290 

 

55 5.03 108486 

 

2 3 

Tetrahydrofolate synthase, cytoplasmic  115206   85 6.89 102191 2 3 
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Polypeptide BM28 

 

468704 

 

53 7.72 100102 

 

3 5 

Importin subunit beta-1 19923142 176 4.68 98442 3 5 

Protein zer-1 homolog 33589814 

 

50 5.43 89505 

 

3 1 

Protein transport protein Sec23A  38202214 

 

50 6.64 87033 

 

2 3 

Inactive carboxypeptidase-like protein X2 223005864 

 

48 6.40 86484 

 

2 1 

Transmembrane protein 8A 157676334  

 

63 7.67 86388 

 

2 2 

TNF receptor-associated protein 1 23272132 79 8.30 80350 2 2 

Segment polarity protein dishevelled homolog DVL-3 2612833 

 

64 6.18 78384 

 

4 7 

GRB2-associated-binding protein 3  18079323 

 

57 6.79 66244 3 5 

 

T-complex protein 1 subunit zeta  4502643  

 

238 6.23 58452 

 

4 15 

Heterogeneous nuclear ribonucleoprotein  14110420  

 

54 7.62 38584 

 

2 9 

Glyceraldehyde-3-phosphate dehydrogenase 7669492 

 

231 8.57 36204 

 

4 20 

Myristoylated alanine-rich C-kinase substrate  153070260 119 4.47 31710 

 

2 10 

Prohibitin 4505773 

 

124 5.57 29844 

 

2 11 

Proliferating cell nuclear antigen 4505641 82 4.57 29098 

 

3 18 

Phosphoglycerate mutase 1 4505753  220 6.67 28902 5 27 
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14-3-3 protein zeta/delta 4507953 

 

293 4.73 27902 

 

7 27 

Triosephosphate isomerase 4507645 

 

133 6.45 26943 

 

3 15 

Transgelin-2 

 

586000 

 

149 8.41 22551 

 

2 18 

Peroxiredoxin-2 32189392   

 

161 5.66 22052 

 

3 25 

Ras-related protein Rap-1A 51338607 87 8.36 21316 

 

1 8 

Peptidyl-prolyl cis-trans isomerase  10863927 

 

87 7.68 18233 

 

3 19 

Recognition particle 14 kDa protein  149999611 

 

75 10.0

5 

14677 

 

1 10 

Macrophage migration inhibitory factor 4505185  

 

57 7.57 12647 

 

1 7 

 

 

 

Table 3.7   TRIF interactors following 40 min LPS stimulation. HEK293-TLR4 were transfected with HA-TRIF, after 20 h cells were 

stimulated with 1 μg/ml LPS for 40 min. Then IP of HA-TRIF was performed and IP-complex was analysed by LC-MS. The MS spectra of the 

peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot 

score 

PI MW PeptideMatch Sequence 

Coverage % 

Low-density lipoprotein receptor-related protein 2 126012573 55 4.89 540699 4 1 
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Nucleoprotein TPR 114155142 65 4.97 267537 

 

2 1 

Scribble 18032008 

 

53 5.02 175809 

 

3 1 

MYB-binding protein 1A 157694492 58 9.34 149744 

 

2 2 

Cohesin subunit SA-1  62243696 47 5.40 145322 

 

3 3 

Insulin receptor substrate 4 4504733 67 8.72 134729 

 

3 2 

 

Transcription termination factor 2 130784 

 

47 6.63 130784 

 

2 2 

Hypoxia up-regulated protein 1  5453832 118 5.16 111498 

 

4 7 

CAS cellular apoptosis susceptibility protein  62297557 

 

300 5.51 111056 

 

6 10 

AP-2 complex subunit beta  4557469 

 

59 5.22 105414 

 

1 2 

Adaptor-related protein complex 1 (AP1)  119580203 

 

64 4.98 105111 

 

1 2 

Amyloid-like protein 1  4885065  56 5.54 72827 3 5 

Apoptosis-inducing factor 1 13431764 76 9.04 67149 2 5 

Dihydropyrimidinase-related protein 1 4503051 

 

47 6.55 62493 3 5 

T-complex protein 1 subunit zeta  

 

4502643  

 

81 6.23 58452 

 

2 6 

Tat binding protein 7 

 

263099 

 

63 5.52 51635 

 

3 4 

Forkhead box protein 166988458 57 5.25 50795 3 8 
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26S protease regulatory subunit 7 4506209 50 5.71 49009 

 

1 3 

Putative zinc finger CCHC domain-containing protein 18 300681209 

 

52 7.02 45538 3 7 

Glyceraldehyde-3-phosphate dehydrogenase 7669492 

 

380 8.57 36204 

 

10 40 

Myristoylated alanine-rich C-kinase substrate 

 

153070260 

 

128 4.74 31710 

 

3 9 

 

Annexin A5 

 

4502107  

 

62 4.49 35972 

 

1 4 

Prohibitin2 

 

6005854 

 

53 9.83 33276 

 

1 4 

Prohibitin 4505773 

 

81 5.57 29844 

 

1 7 

S-phase kinase-associated protein 1  52783797 

 

43 4.40 18820 

 

1 9 

 

 

Table 3.8   TRIF interactors following 60 min LPS stimulation. HEK293-TLR4 were transfected with HA-TRIF, after 20 h cells were 

stimulated with 1 μg/ml LPS for 60 min. Then IP of HA-TRIF was performed and IP-complex was analysed by LC-MS. The MS spectra of the 

peptide ions were identified using the Mascot software programme. 

Protein name NCBI 

accession no 

Mascot 

score 

PI MW PeptideMatch Sequence 

Coverage % 

Apolipoprotein B-100  178730 56 6.58 516675 

 

3 1 

PI-3-kinase-related kinase SMG-1 14132744 52 6 343765 3 1 
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Histone-lysine N-methyltransferase ASH1L 7739725 

 

52 9.46 

 

336214 

 

3 1 

Cadherin EGF LAG seven-pass G-type receptor 1 7656967 

 

56 5.59 334440 

 

2 1 

Probable E3 ubiquitin-protein ligase TRIP12 10863903 55 8.76 

 

222268 

 

3 2 

Leucine-rich repeat-containing protein 53 212286191 38 11.8 142104 

 

2 3 

Nuclear protein SA-2  2204215 

 

53 5.19 135176 

 

4 6 

SWI/SNF related, matrix associated 119604571 

 

54 9.26 120442 

 

3 3 

POTE ankyrin domain family member F 215273934 

 

47 5.83 123049 

 

2 4 

Discoidin domain-containing receptor 2 215273969 

 

38 5.10 97602 

 

1 1 

Metabotropic glutamate receptor 6 protein  2231438 

 

53  96652 

 

4 5 

Rho guanine nucleotide exchange factor 19 40255149 54 7.31 90012 3 3 

Nucleolar transcription factor 1  136652 41 5.63 89698 1 2 

U4/U6-associated RNA splicing factor 2853287 

 

51 9.53 77530 

 

3 7 

HERV-K_3q12.3 provirus ancestral Gag polyprotein 50400656 

 

33 9.26 74412 

 

1 2 

Mediator of RNA polymerase II transcription subunit 17 296437366 42 7.05 73367 

 

2 5 

Otolin-1 122937273 

 

37 8.60 49971 

 

1 2 

Developmentally-regulated GTP-binding protein 1 6685390 35 9 45849 1 5 
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cul-3 3360457 

 

53 9.56 39482 

 

1 5 

Absent in melanoma 2 (AIM2) 5902751 

 

43 9.79 39045 

 

1 3 

alpha enolase  

 

2661039 

 

262 6.53 36634 

 

4 18 

Glyceraldehyde-3-phosphate dehydrogenase  31645 

 

107 8.26 36205 

 

4 14 

Triosephosphate isomerase  4507645 69 6.45 26943 

 

2 11 

Dermcidin 

 

148271059 

 

36 6.08 11393 

 

1 10 
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2.1    General Materials 

 

2.1.1    Chemicals 

Acetic acid glacial, 100 %. Cat.  # 27221. Sigma-Aldrich.  

Acetonitrile. Cat. # A/0620/PB17. Fisher Scientific. 

Agar. Cat. # 05039. Fluka. 

Ammonium bicarbonate. Cat. # 09830-500G. Sigma-Aldrich 

Ammonium persulfate. Cat. # A3678-100G. Sigma-Aldrich. 

Ammonium sulphate. Cat. # A/6440/65. Fisher Scientific. 

Ampicillin salt. Cat. #  A0166-5G. Sigma-Aldrich. 

Bacto yeast extract. Cat. # 212750. B.D. Medical supplies. 

Bacto Peptone. Cat. # 21677. B.D. Medical supplies. 

β-Mercaptoethanol. Cat. # M7522-100 ml. Sigma-Aldrich. 

Bromphenol blue. Cat. # 11439-1. Sigma-Aldrich. 

Albumin, from Bovine Serum (BSA) Cat.  # A7906-100G. Sigma-Aldrich. 

Dimethylsulfoxide (DMSO). Cat. # D2650. Sigma-Aldrich. 

DL-Dithiothreitol, BioUltra, 99.5 % (DTT). Cat. # D9163-25G. Sigma-Aldrich. 

Ethanol. Cat. # 02860-2.5L. Fluka. 

Ethylene-diamin-tetraacetic acid-disodium salt (EDTA). Cat. # EG758-500G. Sigma-

Aldrich. 

Ethylene glycol tetraacetic acid (EGTA). Cat. #  E3889-10G. Sigma-Aldrich. 

Formalin. Cat. # F 8775-500 ml. Sigma-Aldrich. 

Formic acid. Cat. #  1002640100. Merck. 

Geneticin sulphate (G418). Cat. # BPE673-1.  Fisher Scientific. 

Glycerol. Cat. # BPE229-1. Fisher scientific. 

Glycine. Cat. # G/0800/60. Fisher Scientific. 

HEPES. Cat. # 54457-50G-F. Sigma-Aldrich. 

Hydrochloric acid. Cat. # 30720-2.5L. Sigma-Aldrich. 

Iodoacetamide. Cat # I1149-25G. Sigma-Aldrich. 

Isopropanol. Cat. # 278475-1L. Sigma-Aldrich. 

Methanol. Cat. # M/3900/17. Fisher Scientific. 

NP-40. Cat. # I3021-100 ml. Sigma-Aldrich.  

OPD (o-Phenylenediamine dihydrochloride) tablets. Cat. #  P9187-50SET. Sigma-

Aldrich. 
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Paraformaldehyde. Cat. # 158127-500G. Sigma-Aldrich. 

PBS Tablets. Cat. # P4417-100TAB. Sigma-Aldrich. 

Potassium ferricyanide. Cat. # 702587-250G. Sigma-Aldrich. 

Precision Plus Dual Colour Standards. Cat. # 161-0374. Bio-Rad. 

Complete protease inhibitor tablets. Cat. # 11836153001. Roche. 

Protogel (30 % (w/v) Acrylamide: 0.8% (w/v) bis Acrylamide). Cat. # EC-890. National 

Diagnostic.  

Silver Nitrate. Cat . # S/1280/46. Fisher Scientific. 

Sodium chlorid. Cat. # S/3160/63. Fisher Scientific. 

Sodium-dodecylsulfate (SDS). Cat. # L4390-1KG. Sigma-Aldrich. 

Sodium deoxycholate. Cat. # D6750-25G. Sigma-Aldrich. 

Sodium hydroxide pellet. Cat. # S/4920/60. Fisher Scientific. 

Sodiumorthovanadate. Cat. #  450243-10G. Sigma-Aldrich. 

Sodium potassium carbonate. Cat. # 86352-500G. Sigma-Aldrich. 

Sodium thiosulfate. Cat. # 72049-250G. Sigma-Aldrich. 

SYBR Safe DNA gel stain. Cat. # MP 33100. Invitrogen. 

Tetramethylethylenediamine (TEMED). Cat. # T9281-25 ml. Sigma-Aldrich. 

Tris Base. Cat. #  BPE 152-1. Fisher Scientific. 

Triton X-100. Cat. # T8787-100 ml. Sigma-Aldrich. 

TRIZOL. Cat. # 15596026. Invitrogen. 

Trypsin. Cat. # V5111. Promega. 

West Dura Extended Duration Substrate. Cat. # 34075. Fisher Scientific. 

Tween-20. Cat. # 8221841000. Merck. 

Water (DNAse, RNase, Protease free). Cat. # 4502. Sigma-Aldrich. 

 

2.1.2    Kits 

Plasmid purification: 

High speed Midi purification kit. Cat. # 12643. QIAGEN. 

Transfection: 

Lipofectamine 2000. Cat. # 11668019. Invitrogen. 

DreamFect
™

 Gold Cat. # DG81000. OZ Bioscience. 

Luciferase reporter gene assay: 

Dual-Luciferase Reporter Assay System. Cat.  # E194A. Promega.  

Coelenterazine Native. Cat. # 10110-1. Biotim. 
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D-Luciferin. Cat. # L8200. Biosynth. 

ELISA: 

Human IL-6, ELISA Kit. Cat. # DY206. R&D systems. 

Human TNFα, ELISA Kit. Cat. # 900-K25. Peprotech. 

Human Rantes ELISA Kit. Cat. # 900-K33. Peprotech. 

Human Pro-Inflammatory (7-plex) ELISA kit. Cat. #  K11008B-1. Meso 

ScaleDiscovery. 

Human MMP (3-plex) ELISA kit. Cat. # K11034C-1. Meso ScaleDiscovery. 

Human Rantes (single-plex) ELISA kit. Cat. # K111BFB-1. Meso ScaleDiscovery. 

Human IFNβ (single-plex) ELISA kit. Cat. # K111ADB-1. Meso ScaleDiscovery. 

 

2.1.3    Antibodies 

Primary antibodies: 

Anti-HA tag Mouse monoclonal antibody. Cat. # MMS-101P. Covance. 

Anti-V5 tag mouse monoclonal. Cat. # R960-25.  Invitrogen. 

Anti Myc tag mouse monoclonal antibody. Cat. # 2276. Cell signalling Technology.  

Anti-DVL3 rabbit polyclonal antibody. Cat. #3218. Cell signalling Technology.  

Anti-IκBα mouse monoclonal antibody.Cat. # 4814s. Cell signalling Technology. 

Anti-phosph-IRF3 rabbit monoclonal antibody. Cat. # 4947s. Cell signalling 

Technology. 

Anti-phosph-p65 rabbit monoclonal antibody. Cat. # 3033. Cell signalling Technology. 

Anti-Phosph-P38 rabbit monoclonal antibody. Cat. # 9211s. Cell signalling Technology. 

Anti-human ADAM15 goat monoclonal antibody. Cat. # AF935. R&D Systems. 

Anti-β-Actin mouse monoclonal antibody. Cat. #A1978. Sigma-Aldrich. 

Anti-human TICAM-1 rabbit polyclonal antibody. Cat. # X1827P. Exalpha. 

Anti-human TICAM-1 rabbit polyclonal antibody. Cat. # AL227. Alexis. 

Anti-human TICAM-1 rabbit polyclonal antibody. Cat. # PAB0317. Abnova. 

Anti-human Optineurin mouse monoclonal antibody. Cat. # SC-271549. Santa Cruz. 

IgG from rabbit serum. Cat. #I5006. Sigma-Aldrich. 

 

Secondary antibodies: 

Anti-rabbit IgG HRP. Cat. # W401B. Promega. 

Anti-mouse IgG HRP. Cat. # W402B. Promega. 

Anti-goat IgG HRP. Cat. # V805A. Promega. 

http://www.mesoscale.com/CatalogSystemWeb/WebRoot/Products/ProductDetail.aspx?ItemNumber=K11008B-1
http://www.mesoscale.com/CatalogSystemWeb/WebRoot/Products/ProductDetail.aspx?ItemNumber=K11034C-1
http://www.mesoscale.com/CatalogSystemWeb/WebRoot/Products/ProductDetail.aspx?ItemNumber=K111BFB-1
http://www.mesoscale.com/CatalogSystemWeb/WebRoot/Products/ProductDetail.aspx?ItemNumber=K111ADB-1
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Goat anti-mouse IgG Alex fluor 488. Cat. # A-11001. Invitrogen. 

Goat anti-mouse Alex fluor 568. Cat. # A-11011. Invitrogen. 

 

2.1.4    cDNA synthesis 

dNTPS. Cat. # N0447S. Biolabs. 

M-MLV Reverse Transcriptase. Cat. # BPE3208-1. Fisher Scientific. 

Random Hexamer Primers. Cat. # C118A. Promega. 

Rnase Inhibitor. Cat. # FQ-EO0381. Fisher Scientific. 

 

2.1.5    Real-time RT-PCR 

Primers sequence  

All primers were designed online using the Integrated DNA Technology software. 

Access at: http://eu.idtdna.com/Scitools/Applications/Primerquest/.  

Primers were purchased from, Euro fins MWG. 

Human IFN-β, forward 5’-AACTGCAACCTTTCGAAGCC-3’.  

Human IFN-β, reverse 5’-TGTCGCCTACTACCTGTTGTGC-3’. 

Human TNF-α, forward 5’-CACCACTTCGAAACCTGGGA-3’. 

Human TNF-α, reverse 5’-CACTTCACTGTGCAGGCCAC-3’. 

Human CCL5, forward, 5’-TGCCTGTTTCTGCTTGCTCTTGTC-3’. 

Human CCL5, reverse, 5’-TGTGGTAGAATCTGGGCCCTTCAA-3’. 

Human TRIF, forward, 5’-ACGCCATAGACCACTCAGCTTTCA-3’. 

Human TRIF, reverse, 5’-AGGTTGCTCATCATGGCTTGGTTC-3’. 

Human ADAM15, forward, 5’-TTCGCGAATCCAAGATCTCCACCT-3’. 

Human ADAM15 reverse, 5’-TCACCAACTCCACAGTCTTGGTCT-3’. 

Human MMP9, forward, 5’-TACCACCTCGAACTTTGACAGCGA-3’. 

Human MMP9, reverse,   5’-GCCATTCACGTCGTCCTTATGCAA-3’. 

Human MMP10, forward, 5’-AATGGATTGTGGCTCATTGGTGGG-3’.   

Human MMP10, reverse, 5’-TGGAAGTGGTTTAGGAGGAGGCAA-3’. 

Human GAPDH, forward, 5’-TTCGACAGTCAGCCGCATCTTCTT-3’. 

Human GAPDH, reverse, 5’-GCCCAATACGACCAAATCCGTTGA-3’. 

Murine DVL1, forward, 5’-ACAAAGGCCTATGCAGTAGTGGGT-3’. 

Murine DVL1, reverse, 5’-GCAGCGCTGAAGACATTGGTTGAT-3’. 

Murine DVL2, forward, 5’-ATGTGGCTCAAGATCACCATCCCA-3’. 

Murine DVL2, reverse, 5’-TAATCTTGTTGACGGTGTGCCGGA-3’. 

http://eu.idtdna.com/Scitools/Applications/Primerquest/
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Murine DVL3, forward, 5’-ACCATTCCCAATGCTTTCATCGGC-3’ 

Murine DVL3, reverse, 5’-TGATCTTGTTGACGGTATGGCGGA-3’ 

Murine IFN-β, forward, 5’-CTGGATGGTGGTCCGAGCAG-3’.  

Murine IFN-β, reverse, 5’-CACTACCAGTCCCAGAGTCC-3’.   

Murine IFN-α, forward 5’-ACAGGATCACTGTGTACCTGAGA-3’. 

Murine IFN-α, reverse 5’-GGGCTCTCCAGACTTCTGCTCTG-3’.   

Murine TNF-α, forward, 5’-CATCTTCTCAAAATTCGAGTGACAA-3’.                  

  

Murine TNF-α, reverse, 5’-TGGGAGTAGACAAGGTACAACCC-3’.  

Murine Rantes, forward, 5’-GGAGATGAGCTAGGATAGAGGG-3’.   

Murine Rantes, reverse, 5’-TGCCCATTTTCCCAGGACCG-3’. 

Murine IL-6, forward, 5’-GACAACTTTGGCATTGTGG-3’. 

Murine IL-6, reverse, 5’-ATGCAGGGATGATGTTCTG-3’. 

Murine GAPDH, forward, 5’-GCACAGTCAAGGCCGAGAAT-3’. 

Murine GAPDH, reverse, 5’-GCCTTCTCCATGGTGGTGAA-3’. 

Syber green Mater Mix. Cat. # QT650-05. Bioline. 

Real time RT-PCR was performed using DNA Engine Opticon system; MJ Research. 

 

2.1.6    Cell culture  

2.1.6.1    Cell lines 

Human embryonic kidney (HEK)293, HEK293-TLR3 and HEK293-TLR4 were a 

generous gift from Professor Kate Fitzgerald (University of Massachusetts Medical 

School USA). Human Astrocytoma cells U373-CD14 cells were a generous gift from 

Professor Paul Moynagh (Institute of Immunology, NUIM, Ireland). Immortalized 

cervical carcinoma cells (Hela) were a gift from Dr Martina Schröder, (Institute of 

Immunology, NUIM, Ireland). Wild-type immortalized murine bone-derived 

macrophages were a gift from Professor Douglas Golenbock, (University of 

Massachusetts Medical School USA).  

 

2.1.6.2    Cell culture media and supplements 

HyClone DMEM. Cat. # HyC001113Q. Fisher Scientific. 

RPMI Medium. Cat. # 61870-044. Invitrogen. 

Sodium Pyruvate. Cat. # S8636. Sigma-Aldrich. 

Penicillin/Streptomycin. Cat. # P0781-100 ml. Sigma-Aldrich. 
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Fungizone. Cat. # 15290-026. Invitrogen. 

Blasticidin. Cat. # A11139-03. Invitrogen. 

HygroGold. Cat. # ant-hg. Invivogen. 

FBS (Heat Inactivated). Cat. # 50867051810/500. BioSera. 

Dulbecco's Phosphate-Buffered Saline (PBS). Cat. # 14190-169. Invitrogen. 

Trypsin EDTA. Cat. # T4174. Sigma-Aldrich. 

5 ml pipette. Cat. # tkv-670-051R. Fisher Scientific. 

10 ml pipette. Cat. # tkv-670-071L. Fisher Scientific. 

25 ml pipette. Cat. # tkv-670-091F. Fisher Scientific. 

T175 flasks. Cat. # 83.1812.302. SARSTED. 

T75 flasks. Cat. # 83.1813.302. SARSTED. 

6 well plates. Cat. # tkt-520-030t. Fisher Scientific. 

96 well tissue culture plates. Cat. # 831835. SARSTED. 

Collagen coated  Coverslip. Cat. # 354089. BD Biosciences. 

Cell Scrapers. Cat. # 83.1830. SARSTED. 

Cryotube Vials  Nunc. Cat. # CRY-960-090S. Fisher Scientific. 

Cryo Canes. Cat. # CC-302. Tocris Bioscience. 

 

2.1.7    Plasmids and bacteria 

The following plasmids were kindly provided by the following individuals. 

pCDNA3-HA-TRIF by Prof. Shizuo Akira, (Osaka University,  Japan ). 

pCDNA4-V5-ADAM15 by Prof. Edwards Dylan (University of East Angelia, United 

Kingdom). 

pCDNA3-Myc-MyD88 by Prof.  Luke O’Neill, (Trinity College Dublin, Ireland). 

pCDNA3-Myc-Optineurin by Prof. Swarup, (Centre for Cellular and Molecular 

Biology, India). 

pCDNA3- Myc DVL1, pCDNA3-Myc-DVL2, and pCDNA3-Myc-DVL3 by Prof. 

Hsien-Yu Wang, (Stony Brook University, NY, USA). 

pFOS-Flag-Aim2 by Dr. Kate Fitzgerald (University of Massachusetts, Medical School, 

USA). 

NFκB-Luc, p125-Luc, PRII-luc and PRDIII-luc by Prof. Luke O’Neill (Trinity College 

Dublin, Ireland). 

Rantes promoter-luc by Prof. Paul Moynagh (Institute of Immunology, NUIM, Ireland). 
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PCMV1-HA-Beta-catenin, and Lef-Luc by Prof. Li (Chinese Academy of Sciences, 

China). 

DH5α subcloning efficiency competent cells. Cat . #  18265-017. Invitrogen. 

LB broth (10 g tryptone, 10 g NaCl, 5 g yeast extract (with 20 g Agar for plates; 1L) 

was used for bacterial transformation of plasmid 

 

2.1.8    Equipment  

Analytical balance SI234. Denver Instrument.  

Centrifuge 5804. Eppendorf. 

CO2 Incubater. Fisher Scientific. 

Gryo Rocker SSL3. STUART. 

Heat-stir SB162. STUART. 

IKA Vortex. Genius. 

Luminoscan. Fisher Scientific. 

Magnetic stirrer. SM1 STUART. 

Mastercycler. Eppendorf. 

pH meter ultra-basic. Denver instrument. 

Plate shaker PMS-1000 Grant-Bio. 

Roller mixer SRT9. STUART. 

ROTANTA 460R centrifuge. Lennox. 

See saw rocker SSL4. STUART. 

Spectrafuge 16M. Labnet. 

Specrtometer ELX800. Bio-Tek. 

 

2.1.9    TLR ligands 

Lipopolysaccharides  (LPS) TLR grade. Cat. # 581-010-L002. Alexis. 

Polyinosinic:polycytidylic acid (poly(I:C). Cat. # tlrl-pic. Invivogen. 

R848. Cat. # tlrl-r848-5. Invivogen. 

 

2.1.10     esiRNAs,  DVLs inhibitor and EGF  

esiRNA human ADAM15. Cat. #. EHU076821. Sigma-Aldrich. 

esiRNA  human Optineurin. Cat. #. EHU077201. Sigma-Aldrich. 

esiRNA control. Cat. #. AM16106. Ambion. 

DVL-PDZ Domain Inhibitor. Cat. #. 322338. Calbiochem 
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Recombinant human epidermal growth factor. Cat. #. 236 EG. R&D  (generous gift 

from Dr Shirley O'Dea, Institute of Immunology, NUIM, Ireland). 

 

 

Table 2.2.1 10 % resolving gel 

Protogel (30 % (w/v) Acrylamide: 0.8 % (w/v) bis 

Acrylamide). 

5 ml 

1.5 M Tris-CL, pH 8.8 3.8 ml 

H2O 5.9 ml 

10 % SDS 150 µl 

10 % SDS 150 µl 

TEMED 6 µl 

 

 

Table 2.2.2 5 % staking gel 

Protogel (30 % (w/v) Acrylamide: 0.8 % (w/v) bis 

Acrylamide). 

1ml 

0.5 M Tris-CL, pH 6.8 1.5 ml 

H2O 3.35 ml 

10 % SDS 60 µl 

10 % SDS 60 µl 

TEMED 6 µl 

 

Table 2.2.3  10 x running buffer  

25 mM Tris Base  30.3 g 

192 mM glycine 144 g 

0.1 % SDS  10 g 

H2O Fill to 1L 

 

Table 2.2.4 1 x running buffer 

10 x running buffer 100 ml 

H2O 900 ml 
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Table 2.2.5 5 x loading buffer (50ml)  

Glycerol  15 ml 

10 % SDS 10 ml  

0.5 M Tris-CL, pH 6.8 12.5 ml 

Bromophenol blue  10 mg 

H2O 12.5 ml 

 

Table 2.2.6     10 x transfer buffer pH 8.5  

25 mM Tris Base  30.3 g 

192 mM glycine  144 g 

H2O Fill to 1L 

 

Table 2.2.7 1 x transfer buffer 

10 x Transfer buffer 100 ml 

Methanol 200 ml 

H2O 700 ml 

 

Table 2.2.8 10 x TBS, pH 8 

Tris Base 12.11g 

Sodium chloride  87.6 g   

H2O Fill to 1L 

 

Table 2.2.9 1 x TBST pH 8  

10 x TBST 100 ml 

H2O 900 ml  

Tween-20 1 ml 

 

 

 

 


