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Abstract: 

 

This research considers the mathematical performance of Irish second-level 

students. The author considers the ability of Irish students to utilise the 

mathematics learned in a classroom situation to solve authentic, real-life 

problems. It is a mixed methods study involving testing, structured 

observations and semi-structured interviews. The research participants are Irish 

second-year, second-level mathematics students and grade 8 students from a 

school in the state of Massachusetts (both groups share a mean age of 13.5 

years).  The students from Massachusetts were involved solely at the testing 

stage of the data collection process in order to consider Irish performance with 

regard to mathematical performance from students in a different education 

system. 

 

The observed mathematics lessons provide a valuable insight into the teaching 

and learning practices used at second-level. The quantitative analysis of the 

classroom observations highlight patterns and learning theories used in the 

mathematics lessons observed with interesting results. Two tests  were 

implemented: one traditional in format and based on the Irish Junior Certificate 

examination; the second consisting of an authentic scenario where students are 

asked to demonstrate their mathematical comprehension when faced with 

questions posed in an unfamiliar manner. Statistical analysis of both tests, 

using a two-sample t-test and a one-way ANOVA, provide the comparison 

techniques required to consider students performance and highlight various 

similarities and differences between the test results. The final stage in the data 

collection process involved semi-structured interviews with the mathematics 

teachers which provide qualitative data to enrich the findings from the 

quantitative aspects of the study. 

 

The findings provide an interesting insight into the ability of Irish students to 

solve mathematics when presented in a traditional, familiar context consisting 

of closed-ended questions compared with their ability to solve mathematical 
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questions that are unfamiliar in style and consist of realistic, open-ended, 

messy questions. This study suggests that an ability to perform well in a 

traditional examination does not necessarily illustrate an ability to utilise the 

mathematics learned for examination success when faced with unfamiliar 

scenarios. The Irish students involved in this research performed at a 

significantly higher standard in the traditional test given compared with a lack-

luster performance in the realistic test. The same pattern held true for the 

Massachusetts’ cohort; however the gap in performance between the two test 

types was considerably smaller for these students.  

 

An inability to utilise school-learned mathematics when solving real-life 

problems is a worrying phenomenon and the author hopes that this body of 

work will engage educators and policy makers in discussion, thus contributing 

to progress in this field.  
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1.0 Chapter 1: The Introduction 

 

 

1.1 Introduction 

 

Mathematics is a key component of the traditional curriculum taught in Irish 

schools at both primary and secondary level. It is a subject that is studied from 

the first week in Junior Infants to the last day in second level. Despite the time 

and effort afforded to mathematics in the Irish education system Irish education 

is regarded as mediocre at best in international assessments.  

 

This research considers the ability of second-year Irish, second level students 

to transfer the mathematics learned in the classroom to solve both traditional 

mathematics problems, and also realistic, authentic mathematics problems, 

asked in an unfamiliar style. For comparative purposes students from the state 

of Massachusetts in the United States of America were also involved in the 

research, and participated in the same tests. The author considers the 

hypothesis ‘that Irish students have the ability to transfer the mathematics 

learned in the classroom to unfamiliar, realistic, problem-solving situations’. 

The author gathered data through testing, interviews and classroom 

observation. From an analysis of this data gathered, the author considers the 

impact of the findings on the research hypothesis.  
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1.2 Ireland and International Assessment  

 

Ireland performs disappointingly in the area of mathematics in international 

studies such as TIMSS (Third International Mathematics and Science Study) 

1995 and PISA (Programme for International Student Assessment). This is in 

contrast to Irish literacy skills which are considered among the best in the 

world (Ireland placed sixth in literacy skills in PISA 2006). The current 

recession has had a significant impact on the Irish economy and it is essential 

that Irish mathematics graduates, and indeed all Irish citizens, have the 

necessary mathematical skills to compete with the best economies in the world 

in order to ensure economic recovery. To establish, promote and maintain a 

knowledge economy it is essential that Irish mathematical mediocrity is 

addressed as a matter of urgency. 

 

1.3 The Irish Assessment Process 

 

The Irish second level education system is sub-divided into the following 

levels:  

• Junior Cycle: covering the first three years of second level education 

and assessed by a terminal examination, the Junior Certificate; 

• Transition year: which is an optional year, directly after the Junior 

Certificate examination, offered by most schools. Transition year offers 

students the opportunity to engage in learning outside of the confines of 

assessment restrictions. There is no syllabus for transition year;  and 

• Senior Cycle: covering the final two years of second level education 

and assessed by a terminal examination. The Leaving Certificate 

(Established) is the mainstream assessment followed at the end of the 

primary senior cycle programme and involves the study of academic 

subjects. Some schools offer one of two alternatives to the mainstream 

programme; Leaving Certificate Vocational or Leaving Certificate 

Applied. The Leaving Certificate Vocational Programme combines the 

academic strengths of the Leaving Certificate (Established) programme 
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with vocational groupings of mainstream subjects and two link 

modules: ‘Preparation for the World of Work’ and ‘Enterprise 

Education’. The alternative Leaving Certificate Applied programme 

involves students in more practical and less academic subjects. The 

mathematics course followed in Leaving Certificate Applied is 

‘Mathematical Applications’ and involves course work in addition to 

assessment  by examination.  

Currently the ‘Mathematical Applications’ course offered in the Leaving 

Certificate Applied programme involves a significant amount of realistic, 

authentic mathematical problem-solving scenarios in the style of the questions 

posed in the international assessments such as TIMSS and PISA. Interestingly 

this course does not satisfy university entry requirements and the standard of 

the mathematics is certainly at a less difficult level than those required in the 

mainstream senior cycle examinations. This would indicate that the Irish 

education system values realistic, authentic mathematical problems for students 

who are deemed ‘less academic’, while abstraction appears to be the valued 

question style for the established Junior Certificate and Leaving Certificate 

programmes.  

 

In the Junior Certificate examinations in 2010 55,290 students sat the 

mathematics papers over three levels: higher, ordinary and foundation. Of 

these students, 8.31% sat the foundation level paper, 46.76% the ordinary level 

paper and 44.93% sat the higher level paper. Mathematics has a lower up-take 

at higher level than either of the other core subjects, Irish (48.6%) or English 

(68.43%). It also compares unfavourably with the up-take in Science (70%). Of 

the students who sat the Higher Level mathematics paper 47% scored either an 

A or a B, and 77.7% of students an A, B or C (www.examinations.ie). 

The following table displays the Junior Certificate examination results from the 

first year of examination of the current course, 2003, to the latest examination 

results, 2010.  
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Year and Level Total A % B % C % D % E % F % NG % 

2010(H) 24,840 15.5 31.5 30.7 18.2 3.5 0.6 0.1 

2010(O) 25,853 12 32.2 29.9 18.5 5.3 1.9 0.2 

2010(F) 4,597 18.2 35.1 28.6 15 2.5 0.5 0.0 

2009(H) 23,592 16.7 31.7 29.2 18.6 3.4 0.5 0.0 

2009(O) 25,930 11.7 33.4 29.6 17.9 5.4 1.8 0.1 

2009(F) 5,186 19.0 32.6 28.4 15.8 3.5 0.6 0.1 

2008(H) 23,634 16.6 31.6 31.6 17.4 2.3 0.4 0.0 

2008(O) 26,384 12.3 36 28.5 16.4 4.9 1.8 0.2 

2008(F) 5,140 18.4 37.5 27.7 12.9 2.9 0.6 0.0 

2007(H) 23,804 17.7 29.9 28.1 19.2 4.3 0.8 0.0 

2007(O) 27,094 9.3 32.5 31.4 20.2 5.1 1.4 0.1 

2007(F) 5,641 16.1 32.6 30.7 16.6 3.3 0.6 0.1 

2006(H) 24,205 18 32 28.7 17.2 3.3 0.6 0.0 

2006(O) 26,820 13.3 36.7 27.9 16.1 4.4 1.5 0.1 

2006(F) 5,941 17.1 37.8 29 13.7 2.1 0.4 0.0 

2005(H) 23,388 14.5 30.3 30.8 20 3.7 0.6 0.0 

2005(O) 26,518 11.8 32.5 28.7 18.8 5.9 2.1 0.2 

2005(F) 5,908 18.0 31.5 27.4 17.7 4.4 1.0 0.0 

2004(H) 23,006 16.1 28.4 28.9 20.3 5.2 1.1 0.1 

2004(O) 26,347 10.1 34.3 30.8 17.7 5.2 1.9 0.2 

2004(F) 6,584 16.4 40.4 29.1 12.0 1.8 0.3 0.0 

2003(H) 23,734 17.2 33.6 28.6 17.0 3.1 0.5 0.0 

2003(O) 27,383 9.2 31.0 31.3 20.8 5.8 1.8 0.1 

2003(F) 7,324 15.4 37.8 29.5 13.6 3.2 0.4 0.0 

 

Table 1:  Junior Certificate Results 2010-2003: H=higher level, O=ordinary level, 

F=foundation level (www.examinations.ie) 
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As table 1 illustrates, the numbers of Irish students sitting the higher level 

Junior Certificate mathematics examination trails behind those who opt for the 

ordinary level paper. This pattern hold true year on year. When the numbers of 

candidates sitting the ordinary level examination are combined with those 

sitting the foundation level paper it is apparent that studying mathematics at the 

highest available level is not attracting students as it should.  

 

1.4 Abstraction 

 

An over-emphasis on abstraction is a possible failing of the Irish education 

system. Abstraction is the process of solving mathematics questions that are 

heavily reliant on mathematical skills without particular relevance to real-life 

knowledge or abilities. Abstract mathematics questions rely heavily on 

symbols and mathematical notation, with little obvious relation to real-life 

mathematical situations. In contrast to this other countries, particularly those 

who are considered more mathematically able, focus on the process of 

mathematisation. The mathematisation process utilises mathematical skills to 

solve real-life, authentic mathematical problems. It appears that students who 

study a syllabus that emphasises mathematisation develop the necessary skills 

to engage with unfamiliar mathematical problems.  

 

A negative of the Irish mathematics syllabi is the over-emphasis on learning 

for the terminal examination, as opposed to learning mathematics for 

understanding and real-world implementation. As discovery and understanding 

in mathematics are difficult to examine and assess effectively in a terminal 

examination, these skills are often neglected completely in the teaching and 

learning that occurs on a daily basis. The Irish mathematics syllabi emphasises 

assessment techniques to the extent that discovery learning and the ability to 

apply mathematics effectively in work and life situations can be neglected in 

favour of examinable mathematical skills, such as procedural learning, which 

yield a high number of marks in the terminal assessment, the Leaving 

Certificate or the Junior Certificate. Irish educational achievement is 

determined by examination success. This is a situation that is not unique to 

mathematics, it also holds true in most other subjects on the curriculum. 
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In order to address the poor performance of Irish students in international 

mathematics assessments it is necessary to first consider factors that may be 

contributing to a less than stellar performance. It is possible that Irish students 

perform poorly in assessments such as PISA and TIMSS as they are 

unprepared for the style of questioning used by such tests.. PISA test questions 

emphasise real-life preparedness and focus on authentic, realistic questions 

(OECD, 2000; OECD, 2003; OECD, 2006; OECD,2009). TIMSS assessment 

questions are more traditional in style but still significantly different to those in 

the Junior Certificate mathematics examinations. TIMSS questions focus on 

the following performance areas: knowing; performing routine procedures; 

using complex procedures and solving problems (Beaton et al, 1996; Mullis et 

al, 2000; Mullis et al, 2005; Mullis et al, 2008). The author is particularly 

interested in the non-transfer of knowledge from the mathematics classroom to 

the real world. Is the poor performance of Irish students in international 

assessments due to a lack of ability to transfer abstract knowledge to real life 

problem solving, or a fundamental lack of mathematical knowledge or 

understanding to begin with? In the Irish examination system students can 

successfully answer a mathematics question in the examination with no 

understanding of the underlying concept. There is also the possibility that 

students may know and have some understanding of the concept but cannot 

apply this knowledge. If lack of ability to solve realistic, authentic 

mathematical problems is an issue that particularly affects Irish mathematics 

students then it is essential that it is addressed if Irish society is to truly engage 

in meaningful economic recovery by producing able graduates. 

 

Is it possible that the Irish assessment system is a negative contributing factor 

to students’ mathematical development? An over-emphasis on mathematical 

preparation for examination success can result in the neglect of components of 

the desired curriculum that are not easily examinable. This can be particularly 

true when assessment focuses solely on a terminal examination as is the case in 

the Irish situation.  The Leaving Certificate was introduced for the first time in 

1924 and it has not changed significantly since that time, despite adjustments 
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within the individual curricula. The Junior Certificate is a very similar 

examination process for the junior cycle. An assessment process that has only 

changed marginally in almost ninety years must be considered a factor in the 

underachievement of Irish mathematics students. The Irish mathematics syllabi 

rely on the behaviourist method of teaching which in international mathematics 

education is considered dated and not as forward thinking as constructivist, 

cognitive teaching and learning methods. The behaviourist model is widely 

used in mathematics teaching in Irish schools as a result of the Irish assessment 

model which values reproduction as a key skill. A combined lack of resources 

and emphasis on the training of teachers on mathematical pedagogy also 

continues this focus on behaviourism. This results in a situation where 

generations of Irish teachers are teaching, and learning, mathematics in the 

same (behaviourist) way – many teachers teach as they themselves were 

taught.  

 

If Ireland is to compete with other economies it is essential that Irish 

mathematical skills are of a high and comparable standard. There is much to be 

learned by considering the curriculum, teaching, learning and assessment 

methods in other societies, and by examining the success, and contributing 

factors, of high-achieving countries in international assessments. International 

comparative studies such as TIMSS (Third International Mathematical and 

Science Study) and PISA (Programme for International Student Assessment) 

are valuable in assessing Irish performance in an international context, and in 

comparing our methods of teaching and learning mathematics with other 

countries and other curricula. In considering other styles of teaching and 

learning in mathematics it may be valuable to consider the levels of abstraction 

versus realistic mathematics education (RME), or mathematisation, in 

countries that rank both higher and lower than Ireland in international 

assessments.  
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1.5 Real-life experience and the Irish Classroom 

 

Conway and Sloane (2005) describe mathematics as a high-yield school 

subject and one that is simultaneously seen as increasingly important in 

education and as particularly difficult. They pose the interesting question as to 

whether it is important that one understands the mathematical task to achieve 

mastery or can this be done through practicing routine procedures (Conway & 

Sloane, 2005:78). Conway and Sloane also ask why students do not consider 

their own experience or common sense when dealing with real-world word 

problems in a school setting. This raises an issue with regard to the possibility 

of utilising school mathematics in a meaningful and masterful way in real-life 

scenarios: be they general life or work situations. Is a student’s real-life 

experience of any value when it comes to mathematics education in the school 

setting? Is personal life-experience valued and relevant to an Irish student’s 

mathematical school experience? If the real-world is thought to be completely 

irrelevant to mathematics education in the school setting it should be no 

surprise that students struggle to apply mathematics learned in the classroom to 

unfamiliar situations. This raises a very real problem if one considers the ideal 

scenario of school preparing students for future life and work experiences. 

Greeno and Goldman (1998) propose that a student’s true abilities are under-

utilised by a lack of acknowledgment of their out of school experience, the 

dismissal of the valuable influence their peers may have, and an over reliance 

on compartmentalised learning and teaching activities in the classroom. It is 

possible that this is a shortcoming of the Irish education system: a regimented 

regime of teaching and learning in order to prepare students to succeed in the 

terminal examinations but with little value placed on life-experience, which in 

turn fails to prepare students for future work and life mathematical 

experiences.  
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1.6 Changes in the Irish Mathematics Curriculum 

 

In order to consider Irish mathematics education it is important to have an 

awareness of how the current mathematics curriculum has developed since the 

introduction of a syllabus in 1878. The following sections outline the main 

changes to the mathematics curriculum from the introduction of the 

Intermediate Education Act in 1878 up to the introduction of the most recent 

syllabus ‘Project Maths’ in 2010. The author considers Irish mathematics 

education with regard to the following periods: 

• Second level mathematics education 1878-1922; 

• Second level mathematics education 1922-1960; 

• Second level mathematics education 1969-1973; 

• Second level mathematics education 1973-1989; 

• Second level mathematics education 1989-2010; and 

• The introduction of the ‘Project Maths’ curriculum 2010. 

 

1.6.1. Second level mathematics education in Ireland 

(1878-1922) 

 

The Intermediate Education Act in 1878 introduced a formality to Irish second-

level education that had not previously existed. Prior to this, schools could 

decide what, and how, they wanted to teach on an independent basis. The 

Intermediate Education Board was set up in conjunction with this act and the 

board published the first formal syllabus in its ‘Rules and Programme for 

Examinations’. A key role of the Intermediate Education Board was to run a 

public examinations system. The mathematics syllabus outlined in the ‘Rules 

and Programme for Examinations’ followed the format and context of the 

Oxford and Cambridge examinations. This was the foundation for all 

mathematics syllabi prior to 1922 (MacDonald, 2007). 
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The 1880 Mathematics syllabus had 3 grades: 

• Junior Grade – students under 16 

• Middle Grade – students under 17 

• Senior Grade – students under 18. 

The components in the mathematics syllabus for the Junior Grade were:  

• Book-keeping 

• Arithmetic;  

• Algebra; and 

• Euclidean geometry. 

For the Middle Grade the mathematics syllabus comprised of the following 

content areas: 

• Arithmetic 

• Algebra; and 

• Euclidean geometry. 

For the Senior Grade the mathematical areas studied were:  

• Algebra & arithmetic; 

• Plane trigonometry; 

• Elementary mechanics; and 

• Euclidean geometry.                                                 (MacDonald, 2007). 

 

All mathematics courses could be studied at pass or honours level. To gain a 

pass in mathematics two mathematical subjects were required but for girls 

arithmetic was considered to be worth two mathematics subjects. This was a 

stable syllabus with no significant changes or curriculum development during 

this period (MacDonald, 2007). 

 

1.6.2. Second Level mathematics in Ireland 1922-

1960 

 

After the formation of the Free State and Northern Ireland the Intermediate 

Education Board was replaced by the Commission on Secondary Education. 
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This was formed in 1921. The Department of Education was set up in 1924. 

Second level education was non-compulsory during this period. The published 

mathematics syllabus (1924-1925) followed the syllabus format recommended 

by the Commission on Secondary Education and the earlier syllabi of the 

Intermediate Education Board. Recommendations made by the Commission on 

Secondary Education included: 

• Mathematics was compulsory for school-goers at junior level; 

• Practical mathematics was eliminated; 

• Mathematics was made easier for girls than for boys; 

• Junior, Middle and Senior Grades were replaced with the Junior 

Leaving Certificate and the Senior Leaving Certificate. 

                                                                                             (MacDonald, 2007). 

 

The new mathematics syllabus of the time had two options: 

- Programme A: To include arithmetic, algebra and geometry. This was 

presented as a unified subject and treated as one in class terms.  

- Programme B: To include geometry and trigonometry. Initially this was 

to be transitional with the aim that programme A would eventually 

become the core syllabus – in effect the opposite occurred.        

                                   (MacDonald, 2007). 

 

The two-programme syllabus (1924-1925) was replaced with a one-programme 

syllabus (1934-1935). This course was offered at two levels for the 

intermediate certificate: 

- - ‘Elementary Mathematics (for girls only)’; and 

- - ‘Mathematics’. 

 

Each of these syllabuses were divided into three sections: 

- Arithmetic; 

- Algebra; and 

- Geometry. 
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The introduction of ‘Elementary Mathematics (For girls only)’ led to a 

reduction in the number of female students following the more difficult 

‘mathematics’ course. Syllabus 1 (1942-1968 examinations) was considered a 

stable syllabus and no changes occurred in content during that time period.  

There were three, 2 hour examination papers: Arithmetic, Geometry and 

Algebra. 

 

1.6.3. Intermediate Certificate Mathematics 1969-

1973 

 

The second Intermediate Certificate mathematics syllabus was first introduced 

in 1966 and was sent to the main teaching organisations including the IMTA 

for perusal. It was first examined in 1969. It was last examined in 1975. Three 

major changes occurred according to Mac Donald (2007): 

- The new curriculum eliminated ‘Elementary Mathematics (For girls 

only). Instead there was a lower and higher course for both male and 

female students. For the first time there was to be no academic 

distinction between boys and girls in mathematics; 

- The new Intermediate Certificate mathematics syllabus was the first 

syllabus available for implementation in both secondary and vocational 

schools. Prior to this the Intermediate Certificate was available for 

secondary schools only; 

- The mathematics syllabus was available for the additional students that 

were entering second-level as a result of free education and free 

transport. Due to these changes there was a huge influx in students 

attending post-primary education during this period. 

 

In addition to the changes outlined above by MacDonald (2007) the ‘Report of 

the Irish National Committee’ (1976) also places emphasis on the major 

modernisation of mathematical content. These modernisations included the 

introduction of the popular, modern mathematics of the time: 
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• Sets and set algebra; 

• Relations; 

• Functions; 

• Linear programming, and; 

• Co-ordinate geometry.   

 

The ‘Report of the Irish National Committee’ (1976) also notes that for the first 

time it was not necessary to pass mathematics in order to achieve a pass in 

one’s Intermediate Certificate examination.  

 

The ‘Report of the Irish National Committee (1976) for SIMS (second 

international mathematics study)’ discusses the issues and trends that were an 

impetus in designing a new curriculum in the 1960s. These included: 

 

• The introduction of free education in 1967. This led to an increased 

demand for school places at second level. The numbers of students 

attending second level education doubled during the 1960s from 

100,000 to 200,000 students. As a result of the increased level of 

participation in post-primary education teachers were dealing with a 

situation where there were a greater number of less academic students 

than they were previously accustomed to. This led to a greater need for 

mixed-ability teaching which increased the strain on teachers who were 

unaccustomed to catering for a broad academic range. 

• A drop in the average age of students entering second-level led to a 

situation where teachers at this level were teaching much younger 

pupils for the first time. This, combined with the raising of the school-

leaving age to 15 in 1972, necessitated teachers to teach mathematics 

within a broader age range. 

• A wider range of subjects were introduced. Secondary schools were 

introducing technical, as well as academic subjects, for the first time. 

There was greater cohesion between secondary and vocational schools 
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in terms of subjects taught – this had not previously been the case. Prior 

to these changes there was a distinct difference in the ethos of 

secondary and vocational schools, and the subjects taught in both. 

Teachers in vocational schools were also not required to hold the same 

academic qualifications as those in secondary schools. Secondary 

school teachers were required to hold a higher diploma in education, in 

conjunction with their primary degree. 

• During this period the first comprehensive schools were also 

introduced. 

• In 1967 the Intermediate Certificate was introduced to vocational 

schools for the first time. Prior to this it was restricted to secondary 

school students. 

    (Report of the Irish National Committee, 1976). 

 

The above trends initiated a period of great change in Irish education and 

necessitated a change in the mathematics syllabus as a result. Initially post-

primary school teachers greeted the wave of ‘new mathematics’ with 

enthusiasm but for many reasons this enthusiasm was not sustained. A primary 

factor was possibly the fact that teachers were under considerable strain due to 

the increased participation in second level education. This had the knock-on 

effect of a broader range of subjects being taught in all second-level schools, a 

wider age range attending second-level and a greater ability range 

academically – all of these factors challenged teachers in a way they had 

previously not being subjected to (Report of the Irish National Committee, 

1976).  

 

There was a significant change in the assessment style also – a section of 

objective test questions was included in each paper. On the lower course 15 

questions (30% of the marks) on each paper and on the higher course 20 

questions (33.33% of the marks). Candidates were required to select one of 

four possible answers and write their selection of (a), (b), (c) or (d) in the box 
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opposite the question number. Not all of the ‘long’ questions were of equal 

marks and the first of the long questions was compulsory so candidates were 

required to answer one question with a choice of 3 out of 6 others. The mark 

distribution on the lower course was 25, 20, 20, 20, 25, 25, 30 and on the 

higher course: 40, 40, 40, 40, 50, 50, 60.  

 

The change in geometry was significant with Euclidean geometry gone and the 

entire geometry course restructured as a result. Set algebra was introduced in 

an effort to unify algebra and geometry. A problem resulted from the fact that 

teachers were unfamiliar with the ‘new’ geometry. This led to subsequent 

difficulties with geometry, and with the high level of choice in the long 

questions (3 out of 6) much of the geometry could be sidelined or avoided.  

 

1.6.4. Intermediate Certificate Mathematics 1973-

1989 

 

Revisions were made to the 1966 syllabus in 1973. This syllabus change was 

examined for the first time in 1976, and remained the mathematics syllabus 

until the Intermediate Certificate examinations in the summer of 1989. The 

‘Report of the Irish National Committee’ (1976) describe the revised 

curriculum of 1973 as merely consolidating the changes introduced in the 

previous curriculum and explain that no new mathematics were introduced 

except in geometry. The 1976 report also explains that: 

‘an attempt was also made to revive an emphasis on calculation and algebraic 

manipulation, which, as mentioned earlier, were felt to have suffered some 

neglect in the first rush of enthusiasm for the modern subjects’ (Report of the 

Irish National Committee,1976:14). 

 

MacDonald (2007) believes that this curriculum, introduced in 1973, was one 

of the most controversial curriculum moves in Irish mathematics due to the 

changes introduced in geometry. This further invoked a move from traditional 
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mathematics towards the modern mathematics of the time. The higher level 

course was very challenging and the examination papers consisted of 

mathematical content at a very high level.  

 

According to Oldham (2005) the changes implemented in 1973 strongly 

followed the modern mathematics of the 1960s. Teachers expressed 

dissatisfaction with the abstract nature of the ordinary level mathematics 

course and felt that the needs of weaker students were not adequately catered 

for by the lower-level intermediate syllabus. 

 

The objectives for the Intermediate Certificate Programme suggested that the 

following skills should be acquired by studying the Intermediate Certificate 

mathematics course: 

• Understanding, accuracy and efficiency; 

• An understanding of mathematical facts and concepts; 

• A logical understanding of the nature of proof; 

• An ability to utilise mathematical skills to discover generalisations and 

applications; 

• An understanding and association of mathematics and their role in 

everyday life; 

• The development of appreciation, confidence, initiative and 

independence; and 

• The development of skills that will lead to independent progress in 

mathematics. 

            (Report of the Irish National Committee,1976:18). 

 

The Curriculum and Education Board (CEB) identified the following issues 

with the mathematics curriculum in 1986: 

• A high failure rate among students studying the lower level 

mathematics course; 

• The length of the higher level mathematics course; 

• The high numbers of students opting for the lower level course, and a 

concern that many of the students taking the lower level course would 

be capable of succeeding in the higher-level course. 
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                                                                                    (Oldham, SMEC, 2005).  

 

1.6.5. The 1987 Revision to the Intermediate 

Certificate  

 

A major amendment to the Intermediate Certificate syllabus occurred as a 

result of the 1987 revision (first examined in the summer of 1990). This was 

the introduction of a third, lower level syllabus known as Syllabus C. This was 

introduced to facilitate the many students who were failing the ‘lower level’ 

course. The course names were changed from ‘higher level’ and ‘lower level’ to 

Syllabus A and Syllabus B respectively with the addition of a third, easier 

syllabus, Syllabus C. The need for Syllabus C was apparently justified when 

over 10,000 students sat the Syllabus C paper in the introductory Intermediate 

Certificate examinations in the summer of 1990. The ratio of the number of 

students sitting the three syllabi in the examination was in the ratio of 2:3:1 for 

Syllabus A, B and C respectively (Oldham, 2005). This suggests that the 

introduction of Syllabus C was a necessary amendment to the Intermediate 

Certificate mathematics course. 

 

1.6.6. Junior Certificate Mathematics 

 

The Intermediate Certificate syllabus was amended in 1989 and renamed the 

Junior Certificate programme. The 1987 syllabus changes were adopted for the 

Junior Certificate without any amendments other than a change in name. 

Syllabus A, B and C were renamed the higher, ordinary and foundation level 

syllabuses respectively. 

 

The aims of the Junior Certificate syllabus were to: 

• Contribute to the personal development of the students; and 

• Help to provide them with the mathematics knowledge, skills and 

understanding needed for continuing their education, life and work 

(Junior Certificate Mathematics Syllabus, 2000). 
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1.7 The Introduction of Project Maths 

 

‘Project Maths’ is the name given to the newest curriculum to be introduced in 

second-level schools in Ireland. It is described by the NCCA (National Council 

for the Curriculum and Assessment) as the most significant curriculum change 

in Irish mathematics education since the 1960s. ‘Project Maths’ will be 

implemented in phased increments, commencing in all Irish schools in 

September 2010, for Junior Certificate assessment in 2013 and for Leaving 

Certificate assessment in 2012. Prior to the whole school role out of ‘Project 

Maths’ in 2010, 24 schools in Ireland were involved in a pilot study which 

commenced in September 2008 (www.ncca.ie). 

 

The emphasis in ‘Project Maths’ is to increase the relevance of the mathematics 

studied in the Irish classroom to real-life scenarios. The Junior Certificate 

curriculum states that: 

‘In each strand, and at each syllabus level, emphasis should be placed on 

appropriate contexts and applications of mathematics so that learners can 

appreciate its relevance to current and future life’ (Department of Education 

and Skills, 2010:10). 

 

‘Project Maths’ was designed as a response to the following concerns: 

• Ireland’s relatively poor performance in PISA (Programme for 

International Student Assessment); 

• The relatively small number of students sitting the higher level 

mathematics examination in the Leaving Certificate; 

• The difficulty that students show in coping with mathematics at third 

level; 

http://www.ncca.ie/
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• Evidence that students could not apply mathematics learned in the 

classroom except in the most practiced and familiar ways; 

• Employer’s complaints that Irish students have good mathematical 

knowledge but poor understanding and problem solving skills; and 

• A need to produce more able graduates for the knowledge economy. 

(www.educationmatters.ie) 

 

The aims of ‘Project Maths’ include: 

• Enhancing the student learning experience; 

• Developing student problem-solving skills; 

• Greater levels of achievement in mathematics for students of all 

abilities; 

• Making mathematics more meaningful for students and relatable to 

their own life experience; 

• Allow students to appreciate how mathematics relates to real-life and 

work; 

• Develop student skills in logical reasoning and argument; and 

• Develop skills in applying mathematical knowledge to solve familiar 

and unfamiliar problems. 

                                                                                                (www.ncca.ie) 

 

The mathematics syllabus will change in phases, with the following topics 

introduced in sequential order: 

1. Statistics and Probability, 

2. Geometry and Trigonometry, 

3. Number, 
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4. Algebra, and 

5. Functions. 

The Department of Education and Skills (2010) defines a good mathematician 

as someone who: 

‘will be able to compute and then evaluate a calculation, follow logical 

arguments, generalise and justify conclusions, problem solve and apply 

mathematical concepts learned in a real life situation’ (Department of 

Education and Skills, 2010:6). 

 

It is anticipated that the ‘Project Maths’ curriculum will enable the development 

of skills as students’ progress through the curriculum. These skills will be 

linked continuously to skills developed at earlier stages in the students’ 

mathematical career. These skills include: 

• Application of mathematical skills; 

• Problem-solving abilities; 

• Integrating and connecting mathematical concepts; 

• Reasoning; 

• Implementing; and  

• Understanding and Recalling. 

                                     (Department of Education and Science, 2010:10) 

 

Differentiation is considered to be essential to the new ‘Project Maths’ 

curriculum. An appreciation of the fact that all students learn in different ways, 

and at different work rates, is key to its success. For Foundation Level students 

this involves studying large elements of the ordinary level course. Strands 1 

and 2 ‘Statistics and Probability’ and ‘Geometry and Trigonometry’ have the 
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same learning outcomes at both ordinary and foundation level. This will allow 

foundation level, Junior Certificate students to study ordinary Level in the 

Leaving Certificate if they wish (Department of Education and Science, 2010). 

This upward flow of movement is a new development in Irish mathematics and 

is facilitated by the introduction of the ‘Project Maths’ curriculum. The 

common introductory course followed in first year also ensures that all students 

have one year of covering the same strands at the same rate. This allows 

students to adjust to the vigour of secondary school and catch up on any 

mathematics they have missed in primary school, for whatever reason. It also 

allows for easier upward movement at a later stage if the student is 

demonstrating the necessary mathematical ability.  

 

There is a sense of apprehension among Irish mathematics teachers regarding 

the implementation of Project Maths. Teachers are hesitant to implement a new 

syllabus that they do not fully understand themselves and many feel that it is 

being rushed out without the necessary consultation with the mathematics 

teachers who will be implementing these changes in the classroom. Lubienski 

(2011) highlights the concern of Irish teachers she interviewed regarding the 

implementation of Project Maths and refers to the fact that Irish teachers care 

enough about their profession and the students under their care to engage in 

heated arguments regarding the syllabus changes.  Lubienski raises issues that 

may impede the effective implementation of Project Maths in Ireland 

including: 

 The examination system and the pervasiveness of exams in the 

classroom; 

 Textbooks: Irish teachers are used to using a textbook and are nervous 

about working without a textbook to refer to or rely on; 

 The challenge of teacher change: and the need for more teacher support 

as they begin their Project Maths journey.  

 

1.7.1. Project Maths and the Junior Certificate 
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‘Project Maths’ anticipates examining the new syllabus for the first time in all 

schools in Ireland in the Junior Certificate 2013. Strands one and two, 

‘Statistics and Probability’ and ‘Geometry and Trigonometry’ will be introduced 

in all Irish second level schools in September 2010 for examination in 2013. 

Strands 3 and 4, ‘Number’ and ‘Algebra’ will be introduced to first years in 

2011 for Junior Certificate examination in 2014. Strand 5 will be the final 

strand to be implemented and this will happen for all first years in September 

2012 for examination in the Junior Certificate in 2015 (www.ncca.ie).  

‘Project Maths’ promotes cumulative mathematical learning, with students 

developing a hierarchy of knowledge. The Junior Certificate will be firmly 

linked to mathematics previously studied by students in early childhood 

mathematics and in the mathematics studied at primary level. The new Junior 

Certificate and Leaving Certificate curricula are also being developed 

simultaneously, resulting in a strong relationship being created between the 

mathematics strands at both junior and senior cycle. In this way it is anticipated 

that students will develop an understanding of the connectivity between all 

levels of mathematics, from the most basic mathematical concepts in early 

childhood mathematics to the most complicated mathematics students will 

encounter at Leaving Certificate level. Problem solving is a key component of 

mathematical learning at all stages in the new curriculum. For the first time in 

Irish mathematics education at second level the ‘Project Maths’ curriculum will 

promote mathematics in relation to other subjects in the second-level 

curriculum. Connections to other subjects will foster an appreciation of 

mathematics as a subject not learned in isolation (Department of Education and 

Science, 2010). 

 

Connections with other subjects in the Junior Certificate include: 

• Science: linking quantitative learning methods in both subjects; 

• Technical Graphics: recognising the geometric principles linking 

mathematics with the 2D and 3D drawings in technical graphics; 
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• Geography: ratio is used in both subjects; 

• Home Economics: money judgments and budgeting in home 

economics necessitate the use of mathematical skills; 

• Business Studies: mathematics is used in budgeting, consumer 

education and reporting on accounts; 

• Music: recognising the historical links and practical relationship 

between mathematics and music. Pythagoras uncovered mathematical 

relationships in music as early as the 5
th
 century B.C.; and 

• Art: geometric skills are utilised in art. 

                                           (Department of Education and Science, 2010:7). 

 

Changes to teaching and learning of Junior Certificate mathematics as a result 

of the introduction of the ‘Project Maths’ curriculum include the following: 

• A more investigative approach to mathematics learning; 

• A bridging framework is currently being developed which aims to link 

primary school mathematics strands with the Junior Certificate 

syllabus; 

• A common introductory course for study in first year mathematics will 

be introduced. This will allow students to delay their choice of syllabus 

(subject level) until second year; 

• A targeted uptake of 60% of students sitting the higher level Junior 

Certificate paper, with an aim of this following through and increasing 

the uptake of higher level mathematics at Leaving Certificate; and 

• Initially the foundation level syllabus will be offered at both Junior and 

Leaving Certificate level, but it is anticipated that the new ‘Project 

Maths´ curriculum may negate the need for this level of study.  

foundation level will be kept under review.                  
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 (www.ncca.ie/overview)  

 

The aims of the new Junior Certificate mathematics course, as outlined in the 

‘Project Maths’ curriculum, include: 

• The development of mathematical knowledge, skills and education that 

are needed for future education and real-life experience: in both one’s 

personal life and in the world of work; 

• The development of the necessary mathematical skills to deal with 

context and applications in a competent manner. Problem-solving skills 

will also be developed; and 

• To foster a positive attitude to mathematics in all students. 

                                             (Department of Education and Skills, 2010) 

 

The objectives of the ‘Project Maths’ Junior Certificate course include: 

• To develop the ability to recall mathematical facts; 

• To foster the ability to ‘know how’ (instrumental understanding) and 

physical co-ordination skills that are necessary to mathematical 

learning; 

• To develop relational understanding in students so that they ‘know 

why’; 

• To develop students’ ability to apply their mathematical knowledge 

competently when faced with problems in familiar and unfamiliar 

situations;  

• To improve students analytical skills; 

• To encourage students to think creatively; and 
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• To foster an appreciation of mathematics in students of all abilities. 

                               (Department of Education and Skills, 2010) 

 

1.8 Conclusion 

 

In this chapter the following have been noted: 

• Mathematics is a key component of the second-level syllabus in Irish 

schools; 

• Irish students perform relatively poorly in international studies; 

• The percentage of Irish, second level students who study mathematics 

at higher level is low; 

• Abstraction is a key component of Irish mathematics education while 

mathematisation is not. This may be a possible failing of the Irish 

system; 

• Mathematics teaching and learning in Ireland is grounded in the theory 

of behaviourism and has not embraced real life experiences and 

situations; 

• The behaviourist style of teaching and learning has been a key feature 

of the various mathematics courses prescribed for junior cycle students 

in Ireland from the initial 1880 mathematics course, through the various 

syllabus changes from 1924, to the current 1987 revision still being 

taught in schools; 

• The introduction of the new ‘Project Maths’ syllabus which will be fully 

implemented by 2013, for the first full Junior Certificate examination in 

2015, is designed to address the perceived failing of the past and 

prepare the students of the future to assist, and participate fully, in the 

knowledge economy.  

 

The following chapters consider mathematics education, and the issues 

pertaining to it, both at a national and international level. 
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2.0 Chapter 2: Issues in Mathematics Education 

 

2.1 Introduction 

 

This chapter considers the major issues in mathematics education and the 

literature surrounding these issues. The author provides a review of the 

literature pertinent to the current issues in mathematics education. The topics 

considered include the learning theories supporting the teaching and learning 

of mathematics, realistic mathematics education, the impact of gender and 

ethnicity on mathematics education and social factors affecting mathematical 

performance. 

 

2.2 Learning Theories in Mathematics Education 

 

The philosophies and epistemologies supporting the teaching and learning of 

mathematics education focus on the concept of learning theories. The 

following section considers the major learning theories in mathematics, and the 

influences these theories have had, and continue to have, on Irish mathematics 

education.  

 

2.2.1. Absolutist versus Relativist Perspectives 

 

In the most general of divisions it can be said that there are two primary 

concepts underpinning mathematics education and the underlying theories. 

Lyons et al (2003) describe these two perspectives as the Absolutist and 

Relativist epistemological approaches to mathematics. The absolutist theory of 

learning draws on behaviourism, positivism and objectivism, and defines 

mathematics as an ‘objective, value-free, logical, consistent and powerful 

knowledge-based discipline which students must accept, understand and 

manipulate’ (Burton, 1994). 

 

Absolutism promotes a didactic style of teaching and relies on the principles of 

rote-learning, repetition and reinforcement. Teachers present the information to 
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the students and the students are taught how to produce the correct answers, 

without necessarily having to understand the underlying concepts. The 

relativist perspective draws on constructivism and the cognitive theories of 

learning.  Under the relativist perspective ‘all knowledge is regarded as 

culturally, historically and politically situated’ (Lyons et al, 2003:3).  

 

Irish mathematics education focuses on the absolutist perspective, with little 

social or cultural value traditionally given to mathematics, in the Irish 

classroom. Mathematics is seen as abstract and devoid of social context. Lyons 

et al (2003) describe the Irish mathematics curriculum as remaining relatively 

uninfluenced by international advances in mathematics, with little regard or 

interest in following current moves and advancements in mathematics 

education, and describe the Irish mathematics education system, prior to 2003, 

as being located in the absolutist tradition. This is currently being challenged 

by the introduction of the new ‘Project Maths’ curriculum, as outlined in the 

Introduction, which is introducing the concept of placing value on each 

student’s social experience in a way that has not been attempted previously in 

the Irish mathematics education system. 

 

Tims (1994) explains that the Objectivist theory traditionally associated with 

mathematics tends to favour male over female students. Society traditionally 

socialised females towards connectedness and focusing on others, whereas 

males are socialised towards independence. As objectivism in education is 

concerned with separating the learner from their social environment in a 

manner that tends towards the notion of separate knowledge, the focus is on the 

male notion of separated learning and independence. Whereas female learners 

perform at a higher level when knowledge is connected to what they already 

know and the social environment and context in which it is placed, male 

students perform successfully in a context-free scenario. Tims (1994) explains 

that when this concept is applied to assessment in mathematics, the 

socialisation of female learners leads to an attempt to connect with both the 

assessor and the assessment through the context, whereas male students 
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perform successfully in an abstract environment. The abstract nature of the 

current Junior and Leaving Certificate mathematics examinations would 

therefore suggest that male students are favoured by the context free questions. 

 

It is interesting to note that Irish female performance in the Junior Certificate 

mathematics examination follows a different pattern than the other two core 

subjects, Irish and English. In 2011, male students performed better than 

female students in higher level mathematics at the highest level – 17.8% of 

male students sitting the paper obtained an A grade compared to 17.0% of 

females. This is significantly different to the pattern in English where 13.8% of 

higher level females obtained an A compared to 7.4% of male students, and 

Irish where 12.4% of female higher level candidates obtained an A compared 

to 7.7% of male students (www.examinations.ie). This pattern hold true for all 

other years of the established Junior Certificate (male higher level mathematics 

students out-perform females at the A grade level in every year recorded). 

 

PISA mathematics results favour male students for most countries, including 

Ireland. This is interesting as the assessment type is authentic and realistic 

which the above research would suggest favours female students. In the PISA 

2009 mathematics assessment male students outperformed females in 35 

countries, with female students performing better than males in just 5 (OECD, 

2010). Male students report higher self-efficacy and lower anxiety about 

mathematics than female students which perhaps can provide a justification for 

their performance in an assessment that is unfamiliar in style – it stands to 

reason that students who are more confident in their mathematical ability will 

perform better under pressure. This may explain why female students are not 

reaping the benefit of contextual questions. Students who identify with having 

high self-efficacy in PISA mathematics achieve a significantly higher mean 

score than students with low self-efficacy (Close and Shiel, 2009). Female 

students reporting lower levels of self-efficacy would probably benefit from 

the opportunity to familiarise themselves with authentic problem solving 

before the stressful situation provided by an assessment such as PISA. The 

opportunity to study and practice predictable examination questions for the 
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Junior Certificate mathematics examination possibly goes a significant way 

towards narrowing the achievement gap between male and female students in 

terms of Junior Certificate performance while lack of practice of PISA style 

questions may impede female 15 years olds who tend to be more focused on 

their studies than their male colleagues.  

 

2.2.2. Behaviourist Learning Theory 

 

Ryan and Williams (2007) explain that a behaviourist defines learning as a 

change in a person’s behaviour, and for this reason behaviourist learning theory 

focuses on the extrinsic and the visible. Behaviourist theory was initially 

guided by empirical studies, first tested on animals and then on people. These 

empirical studies demonstrated that behavioural reinforcement can accelerate 

learning. In behaviourism the focus is on reinforcing behaviour to obtain the 

results you want. Positive reinforcement is considered to be very effective, 

with sporadic reinforcement also thought to have some value as long as 

behaviour is established. The focus on the extrinsic elements results in the 

neglect of intrinsic factors such as pride or personal enjoyment in solving a 

mathematical problem. If the learner is to be in control of his/her own learning 

then rewards must be intrinsic to the activity itself. The focus in behaviourism 

lies with the teacher being in full control of the learning rather than the student. 

The role of the student is to master the bite-size objectives fed to him/her by 

the teacher (Ryan and Williams, 2007:154-156). 

 

Behaviourists claim that education is an observable change in behavior 

(Eisenberg, 1975). The emphasis in behaviourism is on observable progress, 

which ideally is permanent. There are three basic concepts for learning in the 

behaviourist traditions:  

1. Tasks are broken down into small and manageable components, to 

their simplest possible form;  

2. The basics are taught first, with tasks forming hierarchical steps 

going from the basic to the most complex; 
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3.  Observable progress is reinforced and rewarded.  

 

Criticisms of behaviourism include the fact that it does not individualise 

instruction but may in fact hinder it; there is an assumption of a learning 

hierarchy that does not always exist in reality; and only observable changes in 

behaviour are measurable – intrinsic, heuristic changes do not exist (Eisenberg, 

1975). 

 

Lack of authenticity is also acknowledged as a downfall of the behaviourist 

movement as the focus is on teaching the basics by decomposing the task into 

parts; this negates its relativity to real-life, authentic tasks somewhat as 

students are not introduced to the problem as a whole. The student’s social and 

cultural background is not considered relevant in behaviourism and this was 

one of its appeals initially, as it was believed students would benefit from a 

consistent programme of learning for all students, regardless of their 

background (Conway & Sloane, 2005).  

 

Behaviourist teaching focuses on the teaching of basic tasks first and then 

moves on to considering their more complicated components, assuming that 

students can apply the basic skills to the most complicated tasks. Assessment is 

an important aspect of behaviourism. Each component is assessed individually, 

with the assumption being that once lower-order tasks are mastered the skills 

learned in these tasks can then be applied to more complicated, higher-order 

skills. Each skill is assessed prior to moving on to a more difficult task. 

Conway and Sloane (2005) also discuss how behaviourism emphasises the 

development of self-regulation and self-instruction. Self-regulation, as defined 

by behaviourist theory, is 

‘self-instruction with attention to identifying reinforcements that will 

strengthen desired behaviour’ (Conway & Sloane, 2005:85).  
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The underlying assumption in behaviourism is that once a student is familiar 

with the basic, underlying mathematics they will then have an innate ability to 

apply these fundamental skills to solve more complex, higher-order 

mathematical problems. There is an assumption of an innate ability to transfer 

knowledge from one mathematical context to another. The behaviourist 

movement promotes direct teaching, involving exposition, where the teacher 

conveys information in a hierarchical manner, focusing on the basics before 

moving onto higher-order tasks or skills. Self-regulation is promoted, with the 

standard to be met agreed with the teacher in advance, and reinforcement by 

the teacher throughout, particularly on completion of the task, to reinforce 

positive behaviour. Tasks are assessed before progressing to more complicated, 

related tasks. Mathematics problems are broken-down into component parts by 

the teacher which leaves little room for the analysis of the problem as a whole. 

This may lead to difficulty in transferring mathematical knowledge from the 

classroom to real-life situations as students may not have developed the 

necessary skills to recognise mathematical tasks in terms of complete, 

authentic problems which can exist in a non-classroom environment. This may 

also leave students ill-prepared for non-hierarchical type mathematical 

assessment.  

 

The Irish tradition of mathematics learning embraces many aspects of the 

behaviourist tradition, with a clear emphasis on observable progress as 

demonstrated by the complete reliance on the Junior Certificate and Leaving 

Certificate examinations as a means of determining and regulating educational 

progress in mathematics and other subjects. The tradition of terminal 

examinations in Ireland, and the associated points procedure for third-level 

entry, values ‘observable progress’ over all other. Societal factors are not 

considered, and little value, if any, is given to real-life experience in the 

mathematics examination. As a result Irish society encounters a culture where 

students learn for the examination rather than for understanding, and teachers 

teach to the examination rather than educating students in the true sense of the 

word.  
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2.2.3. Constructivism 

 

Constructivism is an assumption that ‘what we know is a direct reflection of 

what we can perceive in the physical world’ (Resnick et al, 1991). Leonard 

(2007) describes the constructivist movement as one in which it is assumed 

that to build new knowledge individuals must connect it to what they already 

know. Delaney as in Gates, 2001, describes constructivism as a process by 

which the learner must be active in their own learning, and construct meaning 

for oneself, rather than being a passive participant in the learning process. 

Nickson (2000) refers to a central theme of the constructivist approach being  

‘an acceptance of the fact that the reality of one individual is different from 

that of another and that individuals construct their own mental representations 

of situations, events, and conceptual structures’ (Nickson, 2000:4).  

 

Leonard (2007) describes the constructivist approach as one which benefits all 

students, regardless of societal variables, in acknowledging the importance of 

culture and life experience. Leonard believes this in turn leads to more 

successful problem solving efforts as students’ learn to incorporate their 

experience outside of the classroom in their mathematical activity and the 

development of problem solving skills. 

 

Constructivism is a theory of learning where the child is considered the agent 

for learning rather than the teacher (as proposed under behaviourism). The 

intrinsic process is considered as being important, in addition to valuing the 

extrinsic and visible characteristics of learning. The emphasis is on active 

participation rather than passive learning. Constructivist theory is based on the 

work of the Swiss psychologist Jean Piaget (1896-1980). Anghileri (2005) 

describes Piaget’s constructivist theory as follows: 
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• Children are actively involved in constructing knowledge from their 

own experience and learn through an active process of self-discovery; 

• Students make mental connections in an active manner; 

• The learning outcome for any one child can vary depending on the 

individual’s framework for understanding; and 

• Students create and observe situations for themselves rather than being 

told facts and figures. 

 

Jaworski (1994) explains that Piaget was of the opinion that introducing a 

mathematical concept before the learner was already in possession of some 

element of self-discovered knowledge regarding the new concept damages the 

student’s learning process. Piaget held the belief that each student should be 

given the opportunity to create the concept for themselves, and hence develop a 

greater understanding of the task at hand.  

 

2.2.4. Criticisms of Constructivism 

 

Ryan and Williams (2007) explain that Piaget’s constructivist theory was not 

without its critics. Criticisms include the fact that children can reason in more 

advanced ways than Piaget believed possible, as long as the context is 

meaningful for them. This underestimation of what children know and what 

they can do is believed to have arisen from difficulties adult researchers may 

have had in communicating with children in clinical interviews. It is also noted 

by Ryan and Williams (2007) that Piaget only considered cognitive learning 

theories in relation to children from socially privileged groups, and as a result 

he did not take into account varying social influences and the affect that they 

may have on learning. Anghileri (2005) also refers to criticisms regarding 

Piaget’s proposition that there is a close association between age and ‘logico-

mathematical thinking’ and this may lead to restrictions for students in terms of 

what it is believed that they are capable of. Jaworski (1994) expresses a belief 
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that Piaget’s theory of constructivism may in fact negate the value placed on 

the mathematics teacher as the emphasis is so firmly focused on the individual 

and the individual as agent for learning. Piaget very much focused on the 

individual as a learner rather than as a cultural participant and ignored the 

social and cultural implications the tasks may have on a learner’s thinking. 

 

2.2.5. Bruner’s Constructivist Theory (Cognitive 

Learning Theory) 

 

Jerome Bruner (1915-present) is an American psychologist who further 

developed Piaget’s constructivist theory. Bruner’s constructivist theory is 

commonly known as cognitive learning theory. Anghileri (2005) explains that 

Bruner also shared the view that children are active participants in the learning 

process, but he placed more emphasis on language, instruction and 

communication. This led to the introduction in constructivist theory that the 

teacher, and all adults, have an important role to play in prompting the correct 

actions and responses in order for children to turn their creative thoughts into 

meaningful, symbolic outcomes. 

 

2.2.6. Critical Mathematics Education 

 

Critical Mathematics Education is an educational philosophy that was 

developed by Skovsmose. Skovsmose expressed a belief that  

‘if educational practice and research are to be critical, they must address 

conflicts and crises in society’ (Skovsmose, 1994:22).  

Skovsmose promoted mathematics education as a means of developing ‘critical 

citizenship’ and believed that mathematical knowledge brought power to the 

individual in an increasingly technological society. In commenting on 
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Skovsmose’s Critical Mathematics Education, Nickson (2000), describes this 

philosophy as being similar to that of Realistic Mathematics Education (RME), 

but with a stronger emphasis on the reflective. Nickson (2000) describes how 

Critical Mathematics Education not only asks students to reflect on the 

mathematics involved, but also to spend time reflecting on the following:  

1. The social issues that arise in the situation which forms the context 

of the mathematics project;  

2. How the judgments they have made have been informed by the 

mathematics they have engaged in; and 

3. The consequences of their actions (Nickson, 2000:8). 

 

2.2.7. Apprenticeship and Situated Learning 

 

Cognitively Guided Instruction (CGI) is a program which encourages students 

to use informal or invented problem solving strategies (Leonard, 2007:24). 

CGI involves the use of methods such as modeling (the use of fingers, counters 

etc.), counting strategies and number facts to solve realistic word problems. 

Nickson (2000) defines Cognitively Guided Instruction as  

‘a project in which a particular approach is embedded that focuses on the 

identification of the strategies children use as opposed to an interpretation of 

how children learn’ (Nickson, 2000:5).  

Nickson explains that CGI values the importance of children’s informal 

knowledge, and utilises this knowledge to provide teachers with this 

knowledge as a framework for their teaching. Nickson describes the following 

four underlying assumptions of the Cognitively Guided Instruction program:  

1. Children construct their own mathematical knowledge;  

2. Mathematics teaching should facilitate children’s construction of 

knowledge;  
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3. The development of children’s mathematical ideas should provide 

the basis for sequencing topics of instruction, and;  

4. All mathematical concepts and skills should be taught in relation to, 

and with the prioritising of, understanding and problem-solving 

(Behr et al., 1992: 325). 

 

2.2.8. Cognitive Apprenticeship and Situated 

Learning 

 

The Cognitive Apprenticeship model, developed by Brown et al. (1989) 

considers knowledge as  

‘situated, being in part a product of the activity, the context, and culture in 

which it is developed and used’ (Brown, 1989:32).  

 

In the Cognitive Apprenticeship model it is the role of the teacher to facilitate 

and encourage students to make connections between what they are learning in 

class and their personal, informal, life-experience. Nickson explains that  

‘a major implication of this perspective for learning and teaching mathematics 

is that to be meaningful, new mathematical knowledge and skills are most 

effectively learned in situations where they are applied’ (Nickson, 2000:6). 

 

Situated Cognition considers one’s lack of ability to transfer knowledge from a 

particular situation to another. The basis of the theory behind Situated Learning 

is the difficulty an individual may have in performing a task, that they have 

mastered in one particular setting, in an unfamiliar situation. Research 

undertaken by Nunes, Schleimann and Carraher (1993) demonstrates the 

difficulty street children in Brazil, working as street vendors, had in 

transferring the skills they had developed in selling their goods, to the 
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mathematical concepts needed for problem-solving in the mathematics 

classroom. It was found that these children had developed complex algorithms 

in the process of their work as vendors but when presented with similar tasks in 

symbolic form in the classroom they were unable to perform at the same level 

(Conway & Sloane, 2005; Leonard, 2007).  

 

Conway and Sloane (2005) argue that the inability of these children to utilise 

their real-life skills in the mathematics classroom is due to several factors, 

including:  

1. Underutilisation of the students out-of-school mathematical 

knowledge by the school and teachers;  

2. The children had developed complicated algorithms to meet their 

needs as street vendors, independent of in-school direction; and  

3.  Basic computation was learned within more complex problem 

solving activities as it was needed.  

 

Leonard (2007) concedes that perhaps the students inability to transfer the 

skills in which they are proficient as street vendors to the classroom is due to 

the  

‘language, written text and symbols, or the abstract nature of the assessments’ 

(Leonard, 2007:24). 

 

Lave and Wenger (1991) propose that learning does not merely take place in an 

individual’s mind, but rather that the learning process takes place in a 

participation framework, and they consider the kind of social engagements 

necessary for learning to take place. The authors propose that learning could be 

viewed as a special type of social practice, with the participation frame 

designated Legitimate Peripheral Participation (LPP). LPP is the process under 

which one acquires the skill to perform by actually engaging in the process. 

Under Legitimate Peripheral Participation one participates in the practice of an 
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expert, but only to a limited degree, and with limited responsibility. Noyes 

(2007) explains that research on the use of mathematics by adults workers in 

the workplace determines that there can be significant mathematical content in 

real-life contexts: he determines this as situated mathematics. Resnick (1991) 

argues that  

‘the social context in which cognitive activity takes place is an integral part of 

that activity’.  

2.2.9. Cognitive Learning 

 

Conway and Sloane (2005) discuss the importance of cognitive learning in 

relation to current trends in mathematics education. They focus on four areas of 

cognitive learning that have a particular relevance to mathematics teaching and 

learning today:  

1. The idea of active learning;  

2. Cognitive challenge and its place in all forms of mathematics 

teaching and learning;  

3. The introduction of competent problem solving in mathematics; and 

4. The production of literature proposing the teaching of self-regulated 

learning.  

 

The focus of cognitive learning is on the students being active in their own 

learning process.  

‘Knowledge is made as learners engage with and experience the world’ 

(Conway & Sloane, 2005:87).  

 

Cognitive learning acknowledges that we are not asocial beings and that prior 

life experience can effect an individual’s learning within the classroom. 

Conway and Sloane (2005) believe that a large element of the appeal of 
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cognitive learning, at an international level, is a desire to move away from a 

didactic form of teaching. Cognitive learning also provides a model for 

competent problem solving in mathematics, and methods by which to teach 

problem solving. Cognitive methods also emphasise the use of ‘think-sheets’ 

and ‘think alouds’ as prompts for students in the process of problem solving. 

Conway and Sloane (2005) discuss the fact that previous research has shown 

that teachers rarely use such prompts in the mathematics classroom, a fact they 

refer to as troubling as such methods have been shown to assist lower-

achieving students. This leads to questions regarding the position of a lower-

achieving student in the typical mathematics classroom: is the mathematical 

progress of each individual student valued equally? Does an over-emphasis on 

examination success detract from educating and encouraging mathematical 

achievement at all levels? 

 

Dewey (1933), a proponent of active learning, states that ‘the complete 

domination of instruction by rehearsing second-hand information, by 

memorising for the sake of producing correct replies at the proper time’ 

(Dewey, 1933:201) is a negative aspect of didactic learning and leads to bad 

practice by students. Assessment in cognitive learning focuses mainly on 

authentic problem solving and the consideration of the mathematics problem at 

hand as a whole. Cognitive challenge is a significant focus of cognitive 

learning with Bloom’s Taxonomy of the Cognitive Domain (Bloom et al, 1956) 

recognising six levels of increasing cognitive demand. These cognitive levels, 

in increasing order, are:  

1. Knowledge;  

2. Comprehension;  

3. Application; 

4. Analysis;  

5. Synthesis; and 
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6. Evaluation.  

 

The revised Taxonomy (Anderson, 2002) has six levels of cognitive 

process, slightly altered from the original:  

1. Remember;   

2. Understand;  

3. Apply;  

4. Analyse;  

5. Evaluate; and  

6. Create.  

 

Leonard (2007) discusses how teachers with a cognitively based approach use 

word problems for introducing addition and subtraction. The author believes 

that this realistic approach, and the grounding of skills in realistic stories, 

benefits the students by making mathematics relevant to their lives. Teachers 

without a cognitively based approach place more emphasis on memorising 

facts and low-level skills, which require little effort or thinking, and do not 

encourage active learning. 

 

2.2.10. Self-Regulated Learning 

 

The role of educators should be to prepare students for success in life and in 

future academic endeavors. A key component of this success is the ability of 

students to regulate their own learning. Self-Regulated Learning is a response 

to this need and is positioned within the theory of Cognitive Learning which 

embraces students being active within their own learning process. Self-

regulated learners do not require a large amount of external regulation; they are 

self-motivated and internally regulate their performance and progress; and they 

appear to be confident regarding what they know and feel in relation to study 
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(Boekaerts, 1997). Zimmerman (1990) describes self-regulated learners as 

those who approach learning with confidence, diligence, and resourcefulness.  

It is essential that teachers and educators have a clear understanding of the 

value of self-regulated learning so that they can endeavor to promote this type 

of learning through their teaching. Zimmerman (1990) stresses the importance 

of students assuming personal responsibility for their own learning in order to 

achieve long-term success.  

 

2.2.11. Socio-Cultural Theories 

 

Socio-cultural theories are consistent with the constructivist view of education. 

Vygotsky (1978) defined socio-cultural theories as those that assert that the 

mind originates through the culture that the person inhabits. This 

acknowledgment of one’s culture as having influence is a move away from the 

behaviourist and cognitive views of an asocial learner. Socio-cultural theories 

focus on the notion of communities of learners  

‘which provide not only opportunities for cognitive development but also the 

development of students identities as numerate members of knowledge-building 

communities’ (Conway & Sloane, 2005).  

 

Brown (1994) outlines a set of principles that underlie this idea of a 

‘community of learners’:  

1. Learning is active, strategic, self-motivated and purposeful;  

2. The classroom can be a setting for many areas of development with 

structured support from the teacher, peer-group and technological 

assistance;  

3. Individual differences are acknowledged and legitimised;  

4. The development of communities of discourse and practice; and  
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5. The teaching of deep conceptual content that is aware of students 

knowledge and skills in particular subject areas (Conway & Sloane, 

2005).  

 

Brown (1997) used the five principles above to foster the emergence of 

communities of learners in classroom settings. This led to the construction 

of the concept of ‘Fostering a Community of Learners’ (FCL). Brown 

believed that:  

1. It was essential to encourage and develop the capacity of students to 

‘think about thinking’ or metacognition. Students, she believed, 

should be taught methods of self-monitoring; 

2. Brown believed in teaching students at the upper levels of their 

perceived competence;  

3. FLCs (Fostering a Community of Learners), according to Brown, 

should place value on the learners cultural perspective;  

4. Learners should be encouraged to engage in an active discourse 

around mathematics as Brown believed that higher-level thinking is 

an internalised dialogue; and 

5. Teaching deep conceptual content to students, without 

underestimating their mathematical ability (Conway & Sloane, 

2005). 

 

The socio-cultural perspective of teaching and learning in mathematics 

education, according to Conway and Sloane (2005), places emphasis on the 

importance of teaching basic skills, but only within the context of relevant, 

authentic, realistic problems. This is in complete opposition to the behaviourist 

method of teaching mathematics which was hierarchical in nature, with an 

insistence that the  basics are taught before anything more complicated can be 

considered. Behaviourist theory dictates that mathematics problems are broken 

down into their component parts resulting in it becoming very difficult for the 
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learner to see the mathematics problem as a whole, therefore losing relatability 

and authenticity. 

 

The socio-cultural perspective focuses on active learning, and a move away 

from passive learning and didactic teaching. The emphasis is on teaching and 

learning in authentic situations so that the students are learning skills which in 

turn will make them valuable members of society. There is a focus on 

communication and working together to find solutions: both essential skills for 

problem solving in the workforce, and in everyday life. This type of teaching 

and learning has most in common with the constructivist point of view, but 

moves away from the idea of the student working as an individual, and more 

towards the idea of a student working within, and as part of, a community.  

 

2.3 The Realistic Mathematics Education Movement 

 

The author believes that an understanding of the concept of ‘Realistic 

Mathematics Education’ is important if an honest critique of Irish mathematics 

education is to be undertaken. The following section considers techniques used 

to encourage relatability between mathematics in the classroom and 

mathematics as an essential human activity.  

 

2.3.1. Realistic Mathematics Education (RME) 

 

Hans Freudenthal was the promoter of the Realistic Mathematics Education 

(RME) movement. He developed RME in response to his strong opposition to 

mathematical advancement in education during the 1950s which strongly 

emphasised abstraction. Freudenthal felt that the abstract nature of problems 

used in mathematics education was a weakness as 

‘It is wasted on individuals who are not able to avail themselves of this 

flexibility’ (Freudenthal, 1968).  
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Freudenthal stressed the social and cultural role of mathematics and its 

valuable place in society. Nickson (2000) describes Freudenthal’s Realistic 

Mathematics Education as a process of ‘guided reinvention’. The Realistic 

Mathematics Education (RME) movement is described by Van den Heuvel-

Panhuizen (1996) as the design of assessment and learning opportunities that 

are genuine problems and open to mathematisation. Van den Heuvel-

Panhuizen encourages the use of practical application problems as part of the 

RME movement, as opposed to artificial word story problems which he felt 

were often boring and unappealing. He emphasises the notion that true 

problems rarely have only one solution and it is important that RME problems 

follow this pattern with multiple possibilities for correct answers. Van den 

Heuvel-Panhuizen (1996) also determines that in solving a realistic problem it 

is important that students place themselves in the context given and draw on 

their own life experience. Van den Heuvel-Panhuizen encouraged the use of 

real-life tools including graphical information, newspaper clippings etc. to 

solve the given problem. Conway and Sloane (2005) explain that a significant 

RME strategy is the presentation of mathematics problems, in a real world 

setting, necessitating skills that the students have not already been taught 

therefore enabling the students to work independently to develop the necessary 

techniques to solve the problem.  

 

Freudenthal emphasised the distinction between vertical and horizontal 

mathematisation. Freudenthal (1991) described vertical mathematisation as the 

process in which ‘symbols are shaped, reshaped, and manipulated, 

mechanically, comprehendingly, reflectingly’.  

 

Freudenthal placed curricular emphasis on horizontal and vertical 

understanding and provides a four-level framework for doing so: mechanistic 

mathematics, which focuses on routine mathematical drills; empiricist, which 
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emphasises horizontal mathematising, moving from real-life situations to 

working with symbols; structuralist, which is vertical mathematising and 

focuses on symbolic manipulation, and; realistic, which necessitates both 

horizontal and vertical learning (Conway & Sloane, 2005). This four-level 

framework emphasises the dual nature of mathematics. Conway and Sloane 

(2005) summarised Realistic Mathematics Education in relation to reality and 

the related notions of rich pedagogical context, the mathematising cycle, and 

the four-level framework, shown above, for classifying curricular emphasis in 

mathematics education. Conway and Sloane emphasise that RME focuses on 

mathematics for all, and does not determine that either horizontal or vertical 

learning are more suitable to particular students or types of learners. RME 

emphasises the dual nature of mathematics and encourages mathematics, and 

the study of mathematics, as a human activity for all.  

 

Streefland (1991) determines five educational principles implicit in Realistic 

Mathematics Education as follows:  

1. Reality is the source of concept formation;  

2. Pupils are given the opportunity to be actively involved in 

constructing the problem;  

3. The learning process is interactive with students discussing the 

inherent mathematics and collaborating with other students where 

necessary;  

4. Both vertical and horizontal mathematisation can take place; and  

5. The students use various mathematical tools to describe what they 

have discovered for themselves. 

 

2.3.2. Mathematics with Real World Connections 

 

Leonard (2007) found, in carrying out her own research in mathematics 

education, that using real-world connections to involve students in 

mathematics projects improved their interest and motivation for learning 

mathematics. This would indicate that there is significant value in increasing 
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the relatability of mathematical tasks for students. By including the everyday 

and students’ real-life experience in the mathematics classroom, one would 

expect that the converse is also true: that students would develop an awareness 

of how mathematics can influence their reality.  

 

Sethole et al (in Clarke et al, 2006) argue that the inclusion of the everyday in 

the teaching and learning of mathematics will assist in the promotion of 

mathematics as a discipline which is central to human activity and important 

for day-to-day life. The author explains that some tension can arise when 

considering what items to incorporate from the everyday in producing realistic 

mathematics problems. Dowling (1998) explains that there are two types of 

tasks when it comes to categorising everyday mathematics:  

1. Esoteric and Descriptive tasks which explain mathematics in purely 

conventional mathematical terms. The mathematical context can be 

from the mathematics itself or the everyday; and 

2. Expressive and Public tasks which use non-mathematical language.  

 

Clarke et al (2006) found that retaining authenticity in realistic mathematical 

problems may result in an overly complicated question. For this reason 

inauthentic data is often used as it may be easier to demonstrate the objective 

to the students. Clarke et al found that relatability for the learner increases 

when the data is ‘near’. ‘Near’ data is data that is considered to be familiar to 

the learner. ‘Far’ data is less relatable as the information is unfamiliar to the 

students, and bears little relation to their own personal, real-life situation. 

Information used for school activities can not merely be determined as ‘near’ or 

‘far’ by taking age and school experience into account; students of the same 

age, in the same class may differ in the topics that relate to their life 

experience. There can be many reasons for a differing appreciation of ‘near’ 
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and ‘far’ data to include, but not limited to, cultural references, gender and 

socio-economic background. 

 

Clarke et al (2006) also consider the value of tasks being authentic or 

inauthentic, and describe four contexts when modeling real-life mathematical 

problems:  

1. ‘Authentic, Near Context’: The context and the data are genuine. 

Learners can relate the context and data to their own real-life 

experience.  

2. ‘Authentic, Far Context: The context is genuine and the data used is 

real, but the information does not resonate with the learners 

immediate life-experience; 

3.  ‘Inauthentic, Near Context’: The data and context resonate with the 

learners experience, but the context and data are not genuine, and are 

made up.  

4. ‘Inauthentic, Far Context’: The data is made up and the context is 

not genuine. There is no resonation with the students’ real-life 

experience, and the data and context are unfamiliar to the learner. 

 

The examination of authentic versus inauthentic data, combined with the 

concept of near and far contexts used in Clarke et al (2006) would suggest that 

data that resonates with a student’s own life experience, be it authentic or 

inauthentic, is more successful in preparing students for real-life mathematical 

problems, and their ability to solve them.  

 

2.3.3. Freudenthal 
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The legacy of Freudenthal, as discussed in Conway & Sloane (2005), is the 

significant impact Realistic Mathematics Education has had on mathematics 

education in general, and in particular with respect to contemporary 

mathematics education. The Freudenthal Institute in the Netherlands is at the 

forefront of mathematics development and it is interesting to note the high 

scoring of the Netherlands in the 2003 PISA mathematics assessment with a 

ranking of 4th out of the 40 countries considered (there were 41 participating 

countries but the United Kingdom results are considered invalid as they did not 

meet the respondent rate required). The Netherlands was the highest ranking 

European country. In the Trends in International Mathematics and Science 

Study (TIMSS) 2003 the Netherlands had a mathematical ranking of 7th (out 

of 46 countries) in the eighth grade assessment, with a mean scale score of 536. 

The Netherlands was the second highest scoring European Union country in 

the assessment, at the eighth grade, with Belgium (Flemish) scoring marginally 

higher with an average scale score of 537. The TIMSS 2003 international 

average in this assessment was considerably lower at 467 (Mullis et al, 2004). 

The Netherland did not participate in TIMSS 2007. In the latest PISA results 

available, PISA 2009, the Netherlands scored significantly above the OECD 

average and ranked 12
th
 out of 68 participating countries (OECD, 2010). 

 

One has to consider the impact that Freudenthal, his progressive attitude to 

mathematics, and the work carried out by the Freudenthal institute has had on 

the comparative success of the Netherlands in terms of international 

mathematics success. The PISA (Programme for International Student 

Assessment) tests are very much in keeping with the aims of Realistic 

Mathematics Education, its hope to provide a mathematics education that will 

prepare students for participating in society, and a need for a more socially 

embedded mathematics education for all.  

 

2.3.4. Mathematisation 

 

Important to the development of mathematics education in Ireland is the 

mathematisation process. It is an essential aspect of Realistic Mathematics 
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Education. Mathematisation is the process of developing mathematical skills to 

solve real life problems. There are five steps in the mathematisation process: 

1. The first step involves considering the real-world problem; 

2. The problem is then organised according to mathematical contexts; 

3.  The problem is pared down to what the solver considers the most 

important aspects; 

4.  Using mathematical skills, the problem is solved; 

5.  The solution of the mathematical problem is then considered in 

terms of the real situation. 

Mathematisation provides a skill by which students can develop a process to 

address realistic mathematical problems.  

 

Nickson (2000) summarises the process of mathematisation by explaining that 

it can be carried out within mathematical or everyday situations, that the 

problems may be non-contextualised mathematics questions or everyday 

problems and that generalising and formalising play a significant role. 

Mathematisation, according to Nickson, involves searching for mathematical 

problems, organising subject matter and solving mathematical problems. 

Mason (1999) explains that the essence of learning mathematics is in the doing 

of the mathematics itself. 

 



68 

 

 

2.4 Issues in Mathematics Education 

 

The following section considers issues that influence mathematics education. 

These range from social factors to gender. The author considers it important to 

consider the various issues that arise when discussing mathematics education, 

and the influence they have on mathematics and mathematical success.  

 

The NCCA (National Council for Curriculum and Assessment) in conjunction 

with the ESRI (Economic and Social Research Institute) carried out a 

longitudinal study concerning students’ experiences in Irish schools at Junior 

Cycle. While this study does not relate directly to mathematics there are many 

interesting and relevant findings. Particularly of interest to the author is phase 2 

of the research which focused on the experiences of second year students 

(Smyth et al, 2006). There were particularly interesting findings with respect to 

the streaming of classes which is common place in Ireland: the authors found 

that streaming benefits more able students but sacrifices the needs of those who 

are less able. Streaming is particularly prevalent in mathematics classes in 

Ireland and there possibly needs to be serious debate around this. Smyth et al 

(2006) also found that didactic teaching is more common in lower ability 

classes, where students also tend to be male and working class. The following 

section considers various other factors that have a direct influence on 

mathematics education.  

 

 

2.4.1. Social Factors and Mathematics Education 

 

Zevenbergen (in Gates, 2001) speaks of the commonly held assumption, that 

mathematics is culturally and socially neutral. This would be considered true 

under the Behaviourist point of view as mathematics was seen as being 

distinctly asocial and therefore of equal advantage to students, regardless of 

socio and economic backgrounds. The constructivist point of view challenges 

this assumption and considers social factors as being important.  
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If one considers that there is an intrinsic value in considering an individual’s 

social and economic background then it is important that the evidence for this 

is considered. Shiel et al (2007) consider the mathematics results in PISA 2003 

in relation to socioeconomic background. Parental occupations were 

categorised according to the International Socioeconomic Index (ISEI) and 

given a high, medium or low status. It was noted that students with high status 

significantly outperformed those with medium and low socioeconomic status. 

Students who lived in lone-parent families performed at a significantly lower 

level (by 34 points) than the mean score of students living in two parent 

families. Students with low educational resources in the home (a desk, a quiet 

place to study, access to books) performed 24 points lower than the mean of 

students with median educational resources in the home, and 44 points lower 

than students with high resources. Those students who lived in a home with 

books also performed higher than those without, with those students who had 

10 or less books in the home scoring almost 100 points lower than those 

students with 500 books or more. Students with a full school attendance record 

in the two weeks prior to the PISA assessment outperformed students who 

were out of school for one or two days by almost 20 points, and students who 

were absent for 3 or more days by 50 points (Shiel et al, 2007). 

 

Shiel et al (2007) considered the number of Irish students who were entit led to 

the fee-waiver for the Junior Certificate examination due to a financial inability 

to pay the fees. They found that students who attended schools with a high 

proportion of students who were entitled to the fee-waiver performed at a 

lower level than students in schools with a higher proportion of students from 

financially affluent backgrounds. Leonard (2007) notes that NAEP (National 

Assessment of Educational Progress) results in the United States show that 

there is a significant difference in the mathematical and educational attainment 

between poor and affluent students, favouring the affluent. 
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Zevenbergen (in Gates, 2001) refers to the many studies that have been carried 

out that consistently show that a student’s social and cultural background is 

deeply influential in determining how successful he/she will be in 

mathematical assessments. The author refers to studies such as those carried 

out by Lamb (1997), Marjoribanks (1987) and Secada (1992), and remarks that 

results of studies that focus on the correlation between social background and 

success in mathematics have consistently shown a strong, positive co-relation, 

for the last thirty or forty years, between those from higher socio-economic 

backgrounds, and academic success in mathematics. Zevenbergen argues that it 

is the language used in the teaching and assessment of mathematics that 

marginalise some social and cultural groups of students, while favouring 

others. The argument put forward by the author is that despite students being 

native English speakers, they may still be alienated by the unfamiliar 

mathematical language and terminology used in mathematics in the classroom. 

This is particularly the case for students from lower socio-economic (or 

working class) backgrounds.  

 

‘The language used by some students positions them as marginal within the 

context of contemporary mathematics classrooms’ (Zevenbergen, in Gates, 

2001:40).  

Zevenbergen suggests that rather than particular social or cultural groups being 

deficient with regard to success in mathematics, it would appear that through 

the use of language mathematics education is acting as a type of social filter. 

 

Leonard quotes Gutierrez (2002) as saying  

‘We will know that equity has been achieved when demographic variables such 

as race, ethnicity, language, and socio-economic status can no longer be used 

to identify high and low achievers in mathematics’ (Leonard, 2002:5).  



71 

 

Leonard considers CRT (Critical Race Theory) and its acknowledgement that 

there is a relationship between skin colour and access to power, privilege, and 

status in society.  

‘As beliefs about race become entrenched in society over time, systems of 

privilege and marginalisation become institutionalised’ (Leonard, 2002:7). 

 

The influence of the home on schooling varies between working-class and 

middle-class homes (Zevenbergen, in Gates, 2001). In studies carried out by 

Zevenbergen it was observed that there was a stronger negative attitude to 

mathematics ability, and a sense that it was unlikely that the child could be 

good at mathematics as the parent never was, in working class families. It is 

also noted that there is a strong gender bias, favouring men, in relation to 

mathematical ability: this gendered attitude does not appear to exist to any 

significant extent in middle-class families. Zevenbergen notes that there is a 

strong ‘can do’ attitude in middle-class families, as opposed to an inherent 

sense of academic and mathematical inability in working-class families. This 

can often lead to a lack of support of a child’s education due to a sense of 

inadequacy on the part of the parent. Zevenbergen also notes that access to 

educational resources: books, stationary, computers, a study desk, a quiet place 

to study; vary between social groups with working-class families less likely to 

have access to these tools due to financial restrictions. As noted in the PISA 

2003 observations, a student’s access to educational tools and resources has a 

significant impact on their level of success in mathematical assessment. 

 

Leonard (2007) puts forward findings by Kitchen (2007) which show that 

teachers in schools in the United States where a high proportion of the students 

come from lower socio-economic backgrounds place more emphasis on low-

level skills in their mathematics lessons.  
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‘While there is a plethora of reasons for underachievement in mathematics, 

what happens in the teaching-learning context in mathematics classrooms 

influences students’ success or failure’ (Leonard, 2007:40). 

 

Leonard (2007) suggests that students who are viewed positively by the teacher 

will have educational advantages over those who are perceived negatively. 

Leonard explains Good and Brophy’s theory on self-fulfilling prophecy in the 

classroom:  

1. The teacher expects certain, specific academic achievements from 

particular students;   

2. The teacher then relates to those students according to those 

perceptions;  

3. The teacher behaves in such a way as to show students what is 

expected of them;  

4. Students, in turn, internalise the teachers expectations and behave 

accordingly. Students aspirations can be impeded;  

5. The student’s behaviour and attainment levels become more closely 

aligned to what is expected of them by the teacher over time;  

6. As a result students’ academic success, and possibly their economic 

success, is affected by the teachers’ initial perception, and perhaps 

the teachers’ small-mindedness. 

If society and culture are shown to affect a student’s mathematical success it 

would be unwise to follow mathematical theories such as behaviourism or 

cognitive methods (as discussed earlier) where the learner is assumed to be 

asocial. The refusal to consider cultural or social influences would suggest that 

these two theories of teaching and learning mathematics are inferior when 

compared to methods which incorporate a socio-cultural influence and place 
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value on a students’ real-life experience. This is particularly worrying in the 

Irish context as there is little or no acknowledgement of real-life, informal, 

personal experience in the current mathematics syllabus. This leads to a 

distinctly behaviourist leaning in the curriculum, and particularly in the 

teaching of mathematics.  

 

In the TIMSS 2003 assessment the eighth grade participants (those students 

who were most likely to have completed eight years of formal schooling) were 

also asked about their social background. It was discovered that students with 

parents who had completed high levels of education were more likely to 

achieve higher results in the TIMSS assessment. This held true for almost all 

participating countries. It was also noted that students who had an expectation 

of going to a third-level educational institute in the future were more likely to 

perform well in the TIMSS tests. At both eighth and fourth grades there was a 

strong positive relationship between the number of books in the home and 

student achievement. Students who also had computers in the home, and 

reported usage of these computers, scored higher in the eighth grade 

assessments than those without. Participants who spoke the same language at 

home as that used in the assessment always had a higher achievement than 

those who spoke the language used in the test less frequently outside of the 

school environment (Mullis et al, 2004). 

 

School principals were asked to determine the percentage of students in their 

schools that came from economically disadvantaged backgrounds as part of the 

TIMSS 2007 study. At eighth grade the international average of students 

attending schools with few economically disadvantaged students was 22 

percent. In Chinese Taipei, Japan, Kuwait, Malta, Singapore, the Ukraine, and 

the Basque Country in Spain, more than half the students assessed in these 

countries attended schools that had low numbers of students from 

disadvantaged backgrounds. Students in Algeria, Colombia, Egypt, El 

Salvador, Ghana, Indonesia, Lebanon, Morocco, the Palestinian Authority, 

Thailand, Tunisia, and Turkey, had a high percentage of students attending 
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schools with a large number of disadvantaged students. TIMSS 2007 saw a 

strong, positive relationship between schools with low numbers of 

disadvantaged students and strong mathematical performance in the 

assessments; conversely students attending schools with a large number of 

disadvantaged students scored significantly lower (Mullis et al, 2008). Mullis 

et al (2008) noted that, at both the fourth and the eighth grade, almost three-

quarters of students attended schools where the vast majority of the students 

had the test language as their native language.  

 

2.4.2. Culturally Relevant Learning 

 

Leonard (2007) puts forward a convincing argument for the incorporation, and 

acknowledgement of the importance, of culture and real-life experience in the 

teaching and learning of mathematics. Leonard considers the situation in 

mathematics education in the United States with respect to culture and 

mathematical thinking, learning and teaching. Leonard argues that there is a 

very real need for the teachers of  

‘diverse student populations to possess a pedagogy that will enable them to 

motivate, engage, and teach these students what they need to know in order to 

have access to higher education and economic success’ (Leonard, 2007:xiii).  

 

Leonard explains that culturally relevant teaching in mathematics classrooms 

can be defined as recognition that mathematics has been present in every 

culture for as long as that culture has existed, and an acknowledgement of 

mathematics on that culture and its people. 

Cooper, in Gates (2001), considers the link between mathematical success and 

social status in the English situation. Cooper argues that  

‘in England, the degree to which mathematics has been related to everyday 

tasks and anticipated working lives has been related to the social class of 
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pupils, with working class pupils typically being seen as those who would 

benefit most from this approach’ (Cooper, in Gates, 2001:245).  

 

Copper believes that studies carried out by his research team suggest that a 

student’s social class may affect how he/she responds to realistic mathematical 

problems. 

 

Arnot (1993), explains that ‘in the name of equality of opportunity, schools 

were encouraged to  

‘treat all alike’ in order to overcome social disadvantages – even though those 

disadvantages were built into the social fabric’ (Arnot, in Arnot and Weiner, 

1993:198). 
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2.4.3. Gender and Mathematics Education 

 

According to Shiel, Perkins, Close and Oldham (2007) males significantly 

outperformed females in mathematics literacy in 21 of the 29 OECD 

(Organisation for Economic Co-operation and Developments) countries, 

including Ireland, in PISA (Programme for International Student Assessment) 

2003. Male Irish students also outperformed females in the four content areas: 

Shape and Space, Change and Relationships, Quantity, and Uncertainty. In the 

PISA assessment more males than females also scored at the highest levels, 

level 5 and 6 (13.7% compared to 9%). Females also scored lower at the lowest 

levels with 18.7% of females scoring at Level 1 or below compared to 15% of 

males. Males reported higher self-efficacy levels than females in all countries, 

including Ireland. In all countries, except Poland and Serbia, tested in PISA 

2003 males reported having significantly lower levels of anxiety than females. 

 

In the English context, Paechter (in Gates, 2001) discusses the reasons behind 

the low uptake of mathematics after the GCSE (General Certificate of 

Secondary Education) examination by females. Paechter puts this down to a 

lack of emphasis on conceptual learning and collaborative working; both forms 

of learning that appear to benefit the female way of approaching learning and 

the female desire for context. This would indicate that authentic, realistic tasks 

benefit female students and encourage relatability between classroom 

mathematical tasks and real-life situations. In contrast, the teaching and 

learning methods underpinning the way in which mathematics is taught within 

the English system prioritise speed and individualised competition. The strong 

masculine association of mathematics also, Paechter asserts, discourages 

female participation after the compulsory level as this is a life stage for many 

females when they are seeking to assert their femininity, and therefore shy 

away from subjects that may negate from this. The poor uptake of mathematics 

by females at A-level (advanced level) is particularly disappointing as girls 

perform just as well as boys in GCSE mathematics: in 1999 48% of 15-year 

old boys achieved grades A*-C, compared with 49% of 15-year old girls 

(Paechter, in Gates, 2001). This is particularly significant as in 1980 the 
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average scores for boys of fifteen were higher than those for girls in all topics 

tested, and in the top 10% of pupils boys outnumbered girls by three to two 

(Askew and Wiliam, 1995:32). 

 

Arnot et al (1998) found evidence that girls are more attentive in class, more 

willing to learn, and perform better than boys on tasks that are ‘open-ended, 

process-based, related to realistic situations, and require pupils to think for 

themselves’ in their examination of the English education system’ (Arnot et al, 

p.28, 1998:28). Could the introduction of a more realistic style of mathematics 

education negate the current gender imbalance that was reported in PISA as 

existing in the Irish educational system? Boys are considered, by Arnot et al, to 

be more adaptable to traditional approaches, and to excel at memorising facts 

and rules. Boys appear to have less of a need to understand fully the task at 

hand, and are comfortable with solving questions in mathematics without full 

comprehension. The authors also recognise that boys’ contributions in 

mathematics classes, as in other subjects, are more prominent, both physically 

and verbally, than those of their female colleagues. This results in a situation 

where boys receive more feedback, both positively and negatively, than girls in 

their interaction in mathematics lessons from an early age. 

 

Lees (1993) discusses the fact that when girls are successful in their academic 

performance at school they are regarded by their teachers, and very often their 

parents, as ‘hard workers’, whereas successful males are regarded as naturally 

clever. 

 

In considering the Irish education system and mathematics performance in 

particular, Lyons et al (2003) determine that where gender differences do exist 

in mathematics achievement they are increasingly linked to economic and 

social status, rather than gender. This study also noted previous research 

performed by Harker (2000) which found that when academic ability and 
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social background is controlled there are few significant gender differences in 

mathematics performance. The male domination of mathematics lessons is 

explained by Lyons et al. (2003) by considering the pedagogical style of the 

teachers, and an acceptance of answers that are ‘called out’ which is something 

male students are more likely to do. Taber’s (1992) research, as considered by 

Lyons et al. (2003), notes that research on educational performance in physics 

classes found that boys received more attention than girls from the teacher 

because boys called out answers more frequently than girls. 

 

Arnot et al (1998) agree that English students do not perform particularly well 

in international comparisons and feel that gender-related patterns in England 

are similar to those in comparable countries. It is noted that performance 

differences in mathematics in England are non significant until the late teen 

years, at which stage there is a low uptake of mathematics by girls for A-levels 

and boys also begin to outperform girls. Arnot et al recognise that in the 

TIMSS study the performance differences between boys and girls in 

mathematics in Year 9 was negligible. 

In TIMSS 2003 there was no significant gender difference, with a similar 

number of countries where girls outperformed boys to those where boys 

outperformed girls (Mullis et al., 2004). At the eighth grade girls significantly 

outperformed boys in mathematics in Serbia, Macedonia, Armenia, Moldova, 

Singapore, the Philippines, Cyprus, Jordan and Bahrain. Boys were better 

performers at the eighth grade in the United States, Italy, Hungary, Levanon, 

Belgium (Flemish), Morocco, Chile, Ghana, and Tunisia (Mullis et al., 2004). 

Arnot (1993) considers the introduction of co-educational education in the 

United Kingdom. The author asks if  

‘the principle of ‘proximity equals equality’ really worked in the case of 

gender?’ (Arnot, as in Arnot and Weiler, 1993:199).  
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Arnot (1993) is concerned that co-educational schools may be a method of 

providing the correct conditions for introducing women into a sex segregated 

labour market rather than genuinely reducing the differentiation between the 

sexes. Are co-educational schools assimilating female students into a world of 

male educational values? 

 

2.4.3.1. Gender and assessment 

 

Tims (1994) discusses the relationship between assessment in mathematics 

education and gender based performance. She explains that females often 

struggle to perform effectively in abstract mathematical assessments as they 

have difficulty with context-free situations. This leads back to, Tims suggests, 

the objectivist nature of male learners versus the cognitive nature of female 

learning where female socialisation leads to a situation where females need 

context in order to connect with both the assessment questions and the 

assessor. Males perform more successfully in context-free situations as they 

have not developed a need for the same level of connectedness. Boys 

internationally have demonstrated an advantage in multiple-choice style 

questions, while girls struggled to perform as well in context-free assessment 

formats (Bolger and Kellaghan, 1990). 

 

2.4.3.2. Single-Sex Schooling and 

Performance 

 

Arnot et al (1998) consider the findings of a study carried out by Steedman 

(1985) on students who were born in 1958 and passed through English 

secondary schools in the mid-seventies. This research implied that the students 

that entered single-sex schools were already performing at higher than average 

levels across the board before they entered their single-sex secondary school. 

Steedman found that ‘very little in their examination results was explained by 

whether schools were mixed or single-sex, once allowance had been made for 
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differences in (their) intakes’ (Steedman, 1985:98). Arnot et al (1998) point out 

that in more recent English studies, such as Nuttall et al (1989), only small 

differences between co-educational and single-sex schooling have been found, 

but those that do exist favour single-sex schooling for girls. The authors also 

consider Daly (1996) who examined single-sex schooling in Northern Ireland 

and who found that there was not a significant difference in the standard of 

educational performance between co-educational and single-sex schools, but 

that the slight disadvantage that did exist was for co-educational schools. Arnot 

(1993) considers the introduction of co-educational education in the United 

Kingdom. The author asks if ‘the principle of ‘proximity equals equality’ really 

worked in the case of gender?’ (Arnot, as in Arnot and Weiler, 1993:199). 

Arnot (1993) is concerned that co-educational schools may be a method of 

providing the correct conditions for introducing women into a sex segregated 

labour market rather than genuinely reducing the differentiation between the 

sexes. Are co-educational schools assimilating females students into a world of 

male educational values? 

 

Hannan et al (1996) carried out a significant study in Ireland in the 1990’s 

which considered gender equality in education in relation to co-educational and 

single-sex schools. This study used large sample sizes, and single-sex schools 

made up almost half of the total schools examined leading to a very accurate 

study. Hannan et al (1996) found that more females than males sat the Leaving 

Certificate in Ireland, and also that female students performed better than male 

students in these terminal examinations. However ‘girls remain significantly 

under-represented in mathematical, scientific and technical subject areas’ 

(Hannan et al, 1996:4). Hannan et al found that differences in performance in 

the Junior Certificate Examinations were more likely to be due to social-class 

background than to any significant gender imbalance.  
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Arnot et al (1998) determine that studies carried out in the USA in relation to 

academic performance in single sex schools versus co-educational schools 

show that single-sex schooling is more effective for both males and females 

(Riordan, 1990). Single-sex schools in the USA tend to be private, therefore 

this performance difference could also be due to social-class and economic 

wealth. Research in Australia shows no significant benefit due to single-sex 

schooling: ‘research on achievement effect has established no clear superiority 

of either co-educational or single-sex schooling for girls, once other factors 

are controlled for’ (Yates, 1993:94). 

 

2.4.3.3. Gender and the Irish Situation 

 

Lyons et al (2003), in their ‘Inside Classrooms’ study, found little difference 

with regard to gender in the Irish mathematics classroom when gender is 

controlled. This contradicts the PISA assessment findings which found that 

boys performed at a higher level than girls in mathematics assessments. Lyons 

et al (2003) found the following situations to hold true in Irish schools:  

• An equal proportion of males and females took the higher level paper in 

state examinations in 1992 (30%); 

• The proportion of girls taking higher level mathematics in 1996 was 

slightly higher than boys, 37% versus 35% respectively;  

• Girls in single-sex schools are less likely than boys in similar schools to 

take higher level mathematics;  

• In co-educational schools girls are more likely than boys to take higher 

level mathematics; 

• Girls have a 30% lower uptake of mathematics at foundation level (the 

lowest level of mathematics in the Irish system) than boys; 

• Girls in single-sex schools are slightly more likely to take foundation 

level mathematics than boys in the same sector; 
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• Boys consistently achieve a slightly higher proportion of A grades in 

higher and foundation level mathematics; and 

• An equal number of A’s are achieved by both males and females at 

ordinary level (this holds true for the years 1992 to 1996). 

                     Lyons et al, 2003. 

 

The table shown in Appendix I displays the Junior Certificate mathematics 

examination results for both male and females students for the years 2003 to 

2009 (at the time of submission the 2010 gender results were not yet available). 

The percentage of male and female Junior Certificate candidates obtaining 

each grade is displayed.  

 

The most noticeable finding from an analysis of the Junior Certificate 

mathematics examination results in Appendix I is that a greater proportion of 

female than male students opted for the higher level, Junior Certificate paper in 

each of the years considered (2003 to 2009). As a result, a greater proportion of 

male than female students sat the Ordinary and Foundation level papers in each 

Junior Certificate examination (2003 to 2009). The fact that this situation holds 

true for every Junior Certificate year that data is available for suggests that this 

is a significant trend.  

 

There is no particular trend with regard to gender and Junior Certificate 

mathematics results within the three levels (higher, ordinary and foundation) 

but it is worth noting that in the four out of the seven years considered, male 

students outperformed female students in terms in the number of A-grades 

obtained at higher level. As the attainment of A-grades is so closely distributed 

between male and female students yet female students have a greater 

participation rate in higher level Junior Certificate mathematics for each of the 

seven years, one would imagine that female achievement in Junior Certificate 

mathematics at the highest levels is greater than that for males.  
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2.4.4. Ethnicity and Mathematics Education 

 

Kassem (in Gates, 2001) notes that pupils from ethnic minority groups have 

been of concern in matters relating to mathematical success in education for 

the last thirty years or more. Issues of racism in education are still a problem, 

Kassem believes, with African-Caribbean boys over-represented in exclusion 

figures from schools in England with black children being ‘nine to thirteen 

times more likely to be excluded than white pupils’(TES 9/7/99). Leonard 

(2007) remarks that NAEP (the National Assessment of Educational Progress) 

results in 2006 in the United States for 8th graders show ‘59% of Black and 

50% of Hispanic 8th grade students scored below basic levels in mathematics 

compared to 21% of whites’ (Leonard, 2007:3). 

 

Leonard (2007) remarks that in the United States statistics show that poor 

students are more likely to be from minority ethnic groups including 

American-Indian, Alaskan-Native, Black and Latin/o (information from the 

Child Poverty Sheet, 2001). Leonard explains that the majority of African-

American children still attend schools which remain segregated, both 

economically and racially. This is due to the fact that public schools are tied to 

the neighbourhoods in which they are located, therefore schools in wealthier 

neighbourhoods will have students that are economically better off, and the 

opposite also holds true. Leonard believes that culturally relevant teaching, and 

an acknowledgement of the value of that culture, is an effective way to meet 

the intellectual and social needs of students of colour. Leonard explains that ‘in 

order to help African-American children develop mathematics socialisation 

and identity, they must realise that mathematics may be found in many aspects 

of African-American life and culture’ (Leonard, 2007:162). In considering the 

work of Ladson-Billings (2006), Martin (2000), Taylor (2004) and others, 

Leonard (2007) comes to two conclusions regarding the connection between 

mathematical underachievement and students of colour:  
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1. A history of generational underachievement, due to past 

discrimination and economic restraints; and 

2. Institutional barriers.  

 

Leonard speaks of findings by Harmon (2002) that speak of the experiences of 

academically gifted African-American students who were bused to 

predominantly white schools in better areas. Harmon found that these African-

American students found that their teachers ‘did not attempt to teach concepts 

in a culturally responsive way nor did they use visual nor tactile methods of 

teaching during instruction’ (Leonard, 2007:152). 

 

Leonard believes it is essential that students of colour are exposed to strong 

academic and intellectual role-models of their own ethnicity in order to achieve 

academic success. It is through making mathematics relevant to the students 

lives, and to each student’s cultural references, that they too believe that they 

can succeed, both academically and economically.  

 

2.4.5. Self-Esteem and Anxiety 

 

In PISA 2003 students rated, on a 4 point scale, how they were feeling in 

regard to their mathematical ability with options ranging from ‘very confident’ 

to ‘not at all confident’. Based on these results students were then placed in 

low, medium and high ‘self-efficacy in mathematics’ categories. Higher 

assessment scores were achieved by students who had a high self-efficacy 

level. The mean score difference of students with high and low self-efficacy 

levels was 108 points. Irish self-efficacy levels were at a similar level to the 

OECD average and were higher than those in some higher-achieving countries 

such as Korea and Japan. Culturally it may be considered more appropriate to 

define oneself as confident in some countries than others. 
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Paulos (2001) is of the opinion that anxiety about mathematics plays a major 

part in underperformance in mathematics. He reasons that fear has a major part 

to play in the mathematical experience for many individuals, and describes 

how the most intelligent and academic of people often embrace innumeracy. 

Paulos states that ‘part of the reason for this perverse pride in mathematical 

ignorance is that its consequences are not usually as obvious as are those of 

other weaknesses’ (Paulos, 2001:4).  

 

People are unaware of the everyday importance of a high level of numeracy: in 

decision making, in understanding budgetary constraints, in estimating how 

many bricks you will need to build a wall etc. Paulos believes that ‘math 

anxiety’ can be counteracted using simple yet effective techniques:  

• The explanation of the mathematical concepts underlying the problem 

at hand; 

• The use of smaller numbers to illustrate the point;  

• Examining easier, but related problems;  

• Working backwards from the solution; 

• The comparison of the problem, or parts of the problem, to problems 

one already understands and are familiar with; and  

• The familiarisation of oneself with as many different, similar-type 

problems, and related examples, as possible.  
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2.4.6. Mathematical Equipment and Textbooks 

 

The use of a calculator is optional during the Programme for International 

Student Assessment (PISA). According to Shiel, Perkins, Close and Oldham 

(2007) those who reported using a calculator during the PISA 2003 assessment 

scored 20 points higher than those students who opted not to use same. Mullis 

et al (2004) noted that the use of calculators varied greatly from country to 

country. In TIMSS 2003 ‘at eight grade, in 10 countries nearly all the students 

(98% or more) were permitted to use calculators. In contrast, less than half 

were permitted to use calculators in seven countries’ (Mullis et al, 2004:10).  

 

In TIMSS 2007 most of the countries involved in the study had a policy about 

calculator use as part of their mathematics curriculum. Roughly half of the 

countries involved in the study permit widespread use, and almost all countries 

permit calculator use, to some extent, for the majority of their students. 

According to Mullis et al (2007) teachers asked students to use their calculators 

for the following purposes:  

• solving complex mathematical problems (31%); 

• checking answers (26%); 

• for routine computations (25%); and 

• to explore number concepts (16%).  

 

TIMSS 2007 posed questions on computer usage in the teacher questionnaire, 

and found that about one-third of the eighth-grade students, on average 

internationally, had computer access as part of their mathematics lessons. Use 

of computers as part of the regular mathematics lessons was rare, even in 

countries with high availability (Mullis et al, 2007). 
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The use of mathematical textbooks as a teaching tool is common in Irish 

mathematics teaching. Many teachers rely heavily on the prescribed textbook 

to establish not only the order in which topics are taught, but also the style in 

which each mathematics topic is addressed. Is this because of a fundamental 

lack of mathematical knowledge on the teacher’s part or merely teachers 

wishing to give responsibility for the content and order in which their class 

unfolds to some invisible, third-party? A reliance on the textbook may be 

problematic with the introduction of the ‘Project Maths’ curriculum. ‘Project 

Maths’ is designed for teaching and learning to occur without the reliance on a 

sole textbook but rather using many resources from various websites, real-life 

sources and indeed textbooks. The lack of a prescribed textbook may prove to 

be an issue for teachers who are used to the comfort of following one. 

Inevitably there will be some resistance to such a significant change to Irish 

teaching methods and it will be interesting to see how successful this proves. It 

remains to be seen if the lack of a prescribed textbook will prove a stumbling 

block too far. Will teachers demand and follow a textbook regardless? If so 

will this affect the success of the new ‘Project Maths’ curriculum? 

 

Hodgen and Wiliam (2006) suggest that some mathematics textbooks over 

emphasise the practicing of familiar procedures through completing predictable 

exercises, but they propose that with some adjustment textbooks could be used 

as a starting point for formative teaching. Currently the over-use of textbooks 

in Ireland over-promotes the skill of reproduction – with some adjustments the 

textbook may become a valuable tool for discovery learning. 

 

Conway and Sloane (2005) consider the significant study of textbooks carried 

out by TIMSS (the Third International Mathematics and Science Study) which 

considered the use of textbooks in and from 48 countries. Valverde et al (2002) 

found that textbooks could impede or create learning opportunities for students. 

In particular, Valverde et al. (2002) focus on the impact textbooks can have in 
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academic achievement in different countries. Conway and Sloane (2005) 

consider the TIMSS textbook analysis and the five measures of textbook 

characteristics that are considered:  

1. ‘The nature of the pedagogical situation posed by the textbook’;  

2. ’The nature of the subject matter in the textbooks – not in terms of 

mathematics but rather in terms of the topics included’;  

3. The ‘Sequencing of Topics’;  

4. ‘The physical characteristics of the textbooks’ and  

5. ‘The complexity of student behaviour textbook segments are intend 

to elicit’ (Conway and Sloane, 2002:25). 

 

Conway and Sloane (2002) found that there is a connection between the 

textbook size and success in the TIMSS assessment, with countries that had 

light and compact textbooks tending to score highly in TIMSS. Conversely the 

USA was noted for having very large mathematics textbooks, and it is a 

country with a relatively low performance ranking in TIMSS 1995. 

 

In TIMSS 1999 a mathematics textbook was reported by students, at both 

fourth and eighth grades, as the primary basis for their mathematics lessons. 

The three most common teaching methods used were teacher lecturing, 

teacher-guided students practice, and students working on mathematics 

problems on their own. Of the teachers of students at the eighth grade, 45% 

reported using lesson time, in at least half their lessons, to encouraging 

students to decide on problem-solving procedures (Mullis et al, 2004). 
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2.4.7. School Characteristics 

 

In an analysis of PISA 2003, carried out by Shiel, Perkins, Close and Oldham 

(2007), Irish schools were characterised as: 

• small (1-40, 15-year olds enrolled);  

• medium (41-80, 15-year olds enrolled); or  

• large (81 or more, 15-year olds enrolled).  

 

Students in large Irish schools significantly outscored students in medium sized 

schools with scores of 509.5 versus 491.5. The mean score for students in 

small Irish schools was 471.5 but this is not considered to be a statistically 

significant result as there is a large standard of error reported with small 

schools. Students attending Irish secondary schools scored 40 points higher 

than those students attending vocational schools, and 17 points higher than 

those attending community or comprehensive schools. This could be due to the 

fact that traditionally vocational, community and comprehensive schools were 

viewed as providing a more rounded educational experience with access to 

vocational subjects that would prepare students for trades, while secondary 

schools focused more on academic subjects, while offering some vocational 

subjects. In Ireland DEIS (Delivering Equality of Opportunity in Schools) 

status is accorded to schools which are designated as disadvantaged based on 

the socio-economic status of the parents of students attending. According to 

www.education.ie  

‘The DEIS initiative is designed to ensure that the most disadvantaged 

schools benefit from a comprehensive package of supports, while ensuring 

that others continue to get support in line with the level of disadvantage 

among their pupils’ 

 

Students in DEIS schools achieved a mean score that is 35-points lower than 

those students attending non-DEIS schools in PISA 2003. Shiel et al (2007) 

http://www.education.ie/
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report that the Irish educational system is relatively uniform with respect to 

mathematics achievement, with less variation in performance, at 17%, between 

schools than those in other countries such as the USA, which has a between 

schools variance value of 25.8% and Germany which has a variance value of 

52.4%. The OECD (Organisation for Economic Co-Operation and 

Development) average variance for between school performance was 33%. 

 

Zevenbergen (in Gates, 2001) remarks on the differences, in the English 

system, in educational resources due to a schools socio-economic status. 

Zevenbergen remarks that, more often than not, schools in middle-class areas 

have access to more resources and better technology. She puts this down to 

strong parent committees who are willing to fund-raise to obtain the necessary 

funds for such equipment. In middle-class neighbourhoods, Zevenberger notes, 

it is more likely that parents will have the confidence, ethos and skills to 

participate in this kind of fund-raising. As a result schools in less financially 

stable areas are more likely to be lacking in equipment that may benefit the 

learning and teaching experience for students and enhance their educational 

experience. 

2.4.8. The Culture of the School and Performance 

 

The TIMSS (Trends in Mathematics and Science Study) assessments also 

consider social factors, such as school culture, and ‘‘TIMSS collects a rich 

array of contextual information about how mathematics and science learning 

takes place in each country’ (Mullis et al, 2004). This is achieved by asking 

school principals, mathematics and science teachers of participating students, 

and those students themselves to complete questionnaires designed by the 

TIMSS organising committee. These questionnaires consider curriculum, the 

schools themselves, classrooms, and mathematics and science instruction. In 

considering TIMSS 2003 Mullis et al (2004) note that the average mathematics 

achievement at eighth grade was 57 points higher for students in schools where 

fewer of the students came from homes that are economically disadvantaged, 

than for those students where more than half the students are from 
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disadvantaged homes. TIMSS 2003 also noted a strong, positive relationship 

between schools with principals who viewed the school climate positively and 

student performance in the assessments. This held true at both fourth and 

eighth grades. Mullis et al (2004) remark that when school teachers are asked 

the same seven questions in the TIMSS assessments as the school principals 

their answers are not quite as positive. Nonetheless, the teachers impression of 

school climate still relates strongly, and positively, with student achievement in 

both mathematics and science assessment. There was also a noted relationship 

between the perceived safety of the school (based on questions asked of the 

teachers in each of the schools) and mathematics achievement (Mullis et al, 

2004). 

 

2.5 Teaching and Mathematics Education 

 

2.5.1. Mathematics Teaching in Ireland 

 

‘Inside Classrooms’ is an Irish video study of 20 different mathematics lessons 

in second year classrooms. This study is of particular interest to the author as 

not only is the investigation focused on teaching and learning in Irish 

mathematics classrooms, but it also investigates second year mathematics 

classes specifically which is also the focus of the author’s research. The ‘Inside 

Classrooms’ study found Irish teaching methods to be traditional in nature, 

with emphasis placed on preparation for the Junior Certificate examination. 

The lessons observed tend to be formal in nature with the following steps 

normally adhered to:  

1. The teacher explains a concept; 

2. Followed by the students having the opportunity to ask questions, and; 

3. Then some practice time in which the students repeat the format they 

have learned.  
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The ‘Inside Classrooms’ study determined that the mathematics classrooms that 

were observed in the course of their research are isolated from real-world 

contexts. 

 

Shiel et al (2007) examined Irish teaching methods in mathematics with respect 

to the PISA assessment, focusing on PISA 2003 in particular. They report that 

less than 5% of class time in a typical Irish mathematics classroom was spent 

on real-life mathematics and mathematisation. However, 60% of Irish 

mathematics teachers felt that an understanding of how mathematics is used in 

the real world is important. Almost all teachers reported assigning mathematics 

homework in most or all lessons, with homework given less frequently to 

Foundation level students than to those studying at Higher and Ordinary levels. 

In their examination of PISA 2003, Shiel et al (2007) considered how Irish 

mathematics teaching compared to the teaching methods outlined in the PISA 

framework. At ordinary and foundation level the majority of Irish teachers 

interviewed emphasised the recall of basic mathematical facts, with emphasis 

at higher level on applying this mathematical knowledge. Just 4% of class time 

was spent on transferring mathematical knowledge to solve realistic 

mathematical problems. The role of mathematics in culture and society, and the 

history of mathematics tended to be neglected. These topics are currently not 

examinable topics in Irish mathematics examinations. Worryingly, 40% of 

teachers felt that there was no correlation between understanding how 

mathematics works in the real world and performing well in mathematics at 

school. This may be due to the fact that Irish teachers prioritise examination 

success as it is considered the sole indicator of educational attainment.  

 

A particular characteristic of the current state examinations, the Junior 

Certificate and the Leaving Certificate, is the high level of predictability. The 

structure, format, content and actual question type in the examination papers 

are extremely similar year-on-year. If any element of this was changed it would 

have a serious impact on results. It is interesting to see how the new ‘Project 

Maths’ curriculum will cope with this tradition when it comes to assessment: 
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for the new syllabus to be effective this predictability must be broken as it is 

such an impacting factor on how mathematics is taught in the classroom, 

however there is bound to be resistance to this from both teachers and students.  

 

2.5.2.  PISA recommendations for Teaching and 

Learning in Ireland 

 

Shiel et al (2007) suggest the following recommendations for applying the 

PISA approach to the teaching and learning of mathematics in Irish schools:  

1. Emphasise a more interactive, hand-on approach in which students are 

fully engaged in actively participating in the solving and discussion of 

problems,  

2. Emphasise reproduction less and to ensure the development of greater 

conceptual understanding by encouraging the full range of cognitive 

processes,  

3. Implement a more balanced mix of context-free and real-world 

questions,  

4. Encourage discussion in mathematics lessons and encourage the use of 

correct mathematics language,  

5. Engage in the process of mathematisation, and  

6. Ensure that higher ability students are given full opportunity to reach 

their potential by providing them with challenging work. 

 

Despite the higher level course at both the Junior Certificate and Leaving 

Certificate level being considered very challenging, the over-emphasis on 

abstraction and preparation for examinations through reproduction possibly 

leads to the most able students not being fully challenged, especially with 

regard to higher-order thought processes. An over-emphasis on reproduction 

can lead to the development of rigor and careful copying of what has already 

been seen demonstrated by the teacher to the detriment of creativity. Students 

lacking in mathematical creatively are unlikely to succeed at the very highest 

level as mathematical innovation is both artistic and creative.  
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2.5.3. Teacher Qualifications and Experience 

 

The mathematics teachers of the students assessed in TIMSS 2003 tended to be 

very experienced mathematics teachers, with an average of 16 years 

experience. The majority of these teachers held a minimum of a university 

degree; 76 percent of the eighth-grade teachers and 65 percent of the fourth-

grade teachers. Most teachers involved in the TIMSS assessment had studied 

mathematics as a major subject at university (70% of those teaching eighth-

grade mathematics and 54% had a qualification in mathematics education). 

Morocco was unusual in that 72% of students involved in the TIMSS 2003 

study were taught mathematics by teachers whose education did not continue 

after secondary school. Schools participating in TIMSS 2003 reported a strong 

belief in the importance of continuing professional development for their staff 

members, and more than 80% of the eighth grade students involved in the 

study were taught by teachers who had completed some further professional 

training in either teaching skills or improving content area. 88% of the eighth 

grade students involved in TIMSS 2003 were taught mathematics by fully 

certified teachers, and 85% of the fourth grade teachers had full certification 

(Mullis et al, 2004). 

 

Mathematics teachers of students involved in the TIMSS 2003 study reported 

frequent discussion with their colleagues regarding instructional issues, with at 

least 80% of teachers reporting weekly or monthly interaction regarding 

mathematics education issues. Observing colleagues’ mathematics lessons, or 

having one’s own lessons observed by others, was not common practice in the 

countries participating in TIMSS 2003, with 60% of teachers reporting that 

observation never happened.  (Mullis et al, 2004). 

 

Shiel et al (2007) found that the vast majority of Irish mathematics teachers 

held a bachelor’s degree, with 88% holding a higher diploma in education. 

Other post-graduate qualifications, such as masters and Ph.D. qualifications 
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were less common. The majority of mathematics teachers who responded to 

the questionnaire provided had a mathematics component in their primary 

degree, with one-third having studied mathematics as part of their higher 

diploma. 

 

A report carried out by Ni Riordáin and Hannigan (2009) in conjunction with 

the National Centre for Excellence in Mathematics and Science Teaching and 

Learning (NCE-MSTL) in 2009 looked at a survey of mathematics teachers 

and principals in a representative sample of Irish schools. The report focused 

on out-of-field teaching and the following observations were among their 

findings: 

• 48% of second level mathematics teachers do not have an appropriate 

qualification in mathematics (most degrees held by these teachers are in 

business or science); 

• Younger and weaker students are more likely to be given unqualified 

teachers; 

• 65% of mathematics teachers over 35 years of age are appropriately 

qualified to teach mathematics, with only 40% of mathematics teachers 

under 35 years holding a qualification in mathematics; 

• Qualified mathematics teachers are more likely to be given higher level 

classes, classes in examination years and senior cycle class groups; 

• 76% of unqualified mathematics teachers would avail of continuing 

professional development if it was available; and  

• 88% of principals would encourage mathematics teachers to seek 

further training in mathematics.  

(Hannigan and Ni Riordáin, 2009). 

 

2.5.4. Mixed Ability Teaching 

 

Mixed-ability teaching, according to Sullivan and Clarke (1991), should 

provide equal and challenging learning opportunities for all students, without 
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disadvantaging anyone. They suggest that a selection of tasks, meeting the 

following criteria, should be chosen to suit all abilities:  

1. All students should be able to attempt the task;  

2. Students should be given the opportunity to discuss any fears they 

may have in a whole class discussion;  

3. Students should be actively involved with working out the problem, 

with minimum assistance from the teacher;  

4. Whole class explanation and review of tasks should be teacher led;  

5. Extensions should follow on for the most able students;  

6. There should be a minimum of direction from the teacher;  

7. Where possible there should be more than one correct solution, and 

several ways of attempting the problem. This is to encourage the 

learner to engage with mathematical tasks that are more authentic, 

and more relatable to skills he/she will need in the real world.  

 

In many countries the notion of mixed-ability teaching is the norm, with the 

underlying assumption being that all students have equal rights with regard to 

the curriculum. In France the constitution determines that all students have 

equal educational rights: Dunne (1996:50) explains that ‘it is not essential for a 

child to demonstrate a well-defined knowledge of a topic before moving onto 

the next’. In Hungary there is a commonly held view that all pupils will 

eventually understand the concept and that ‘grouping by ability within 

classrooms is discriminatory’ (Stevenson 1999: 117).  

 

The introduction of ‘Project Maths’ to the Irish mathematics curriculum will 

increase the provision of mixed-ability teaching within classrooms as for the 

first time it is determined by the curriculum guidelines that students in the first 

year of second level will follow a common course, and not be streamed into 
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classes decided on by their mathematical ability. This is being implemented for 

first years in Irish second level schools from September 2010 and will continue 

to be the case for the following first year groups under the ‘Project Maths’ 

curriculum. Classes may be streamed into ability groups for all other year 

groups at the discretion of the school.  

 

The implementation of mixed-ability teaching for first year groups will require 

further in-service and the up skilling of teachers. There is no mention of the 

availability of such in-service workshops from the ‘Project Maths’ team at the 

time of writing. A fundamental problem with mathematics’ in-service through 

the years has been a focus on mathematical content with little or no attention to 

pedagogy or different teaching methods and approaches. The ‘Project Maths’ 

in-service workshops to date are more innovative in this regard than the 

previous in-service available, however this must be expanded on to fully 

upskill teachers with all the necessary skills.  

 

2.5.5. Questioning and Mathematics Education 

 

Sullivan and Clarke (1991) propose that if mathematics is to benefit students, 

and provide them with the opportunity to become truly educated in 

mathematical terms, then it is essential that they engage in classroom activity 

that most resembles mathematical activity in the real world. Sullivan and 

Clarke believe that mathematical problem solving in the classroom is the 

activity that most resembles authentic, real-life mathematical situations. Rigid, 

conventional teaching leads to an inability by students to access the 

mathematical skills they already possess when faced with unconventional 

mathematical problems. There is, the authors believe, an over emphasis on the 

recall of facts, skill acquisition and the practicing of routine procedures to the 

detriment of the exploration of relationships between mathematical skills and 

concepts. The process of quality questioning is an important component of 

engaging students in realistic mathematical activity. 
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‘The quality of students’ responses is dependent on the quality of the 

questions asked’ (Sullivan and Clarke, 1991:45).  

Sullivan and Clarke (1991) consider whether the quality of mathematics 

education would be enhanced if questions were asked that required the learner 

to think and analyse at a deeper level. Sullivan and Clarke discuss a study 

carried out by Sullivan and Leder (1990) in which forty-six lessons were coded 

and analysed. The research found that 58% of all classroom events consisted of 

questions and instruction, but that over half of these questions required the 

recall of information only, a further 30% were closed questions with only one 

possible answer, and that only 5% of all questions posed required the learners 

to think independently. Sullivan and Clarke consider two types of questions:  

1. Fact questions which only require basic recall skills; and 

2. Higher-order questions where independent thinking is required. 

 

Gall (1984 as in Sullivan & Clarke, 1991) believed that fact questions were 

better suited for disadvantaged students, with higher-order questions more 

suitable for the more academic student. Sullivan and Clarke (1991) speak of 

research carried out by Tobin (1984) where the time available for a student 

response is considered. Tobin suggests that teacher-pupil communication is 

dramatically improved if there is more time provided for the student to give a 

response. This would suggest that a rapid series of questions puts students, 

particularly less confident students, in a disadvantageous situation. Clarke 

suggested that increasing the possible response time led to students giving 

longer responses and more appropriate answers with more explanation. 

Sullivan and Clarke (1991) also suggest that with fewer, but more varied 

questions asked by the teacher, weaker, less academic students could improve. 

 

Sullivan and Clarke (1991) promote the idea of quality teaching influenced by 

better quality, open ended questions. The authors suggest that both teaching 

and learning could be improved if questions are identified which require 
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higher-level thinking, and are accessible to the vast majority of students: both 

the very academic and those that are deemed to be academically weaker. It is 

suggested by Sullivan and Clarke that the use of fact questions can lead to a 

situation where students may have the ability to solve routine mathematical 

problems, but may not understand the topic at hand. Lack of understanding 

may lead to an inability to utilise the mathematical skills known in unfamiliar 

situations. 

 

Sullivan and Clarke (1991) identify good questions as follows: questions that 

require more than a basic recall of facts; active learning where the students 

learn by actually doing the task, and the teacher may learn from how the 

students attempt the problem; and open-ended questions where there may be 

several correct answers. This lends to Socrates’ belief that anything could be 

taught through the use of carefully selected questions. Sullivan and Clarke 

(1991) emphasise the importance of pre-planning with regard to higher-order 

questions and they state that for good questions, that require independent 

thinking, to work effectively it is important that the teacher plans such 

questions in advance, and furthermore that they are pitched at the appropriate 

difficultly level for the students in question. It is imperative, for a question to 

be considered a good question, that all students be able to attempt the question 

at the very least. 

 

Is this a possible downfall of the Irish education system as it currently stands? 

Mathematics, for both the Junior and Leaving Certificate, demands recall and 

practiced routines rather than questions that call for the students to think 

independently. There is a complete absence of open-ended questions in the 

Irish mathematics syllabus, which in turn leads to a situation where Irish 

students have no awareness that in mathematics there is not always only one 

correct solution, and that in fact it is more probable in the real-world, and in 

authentic situations, that there may be several correct answers. Is this type of 

syllabus and assessment impeding the students’ ability to learn in a realistic 
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fashion and in a method that may be of benefit to them in future work and life 

situations? 

2.5.6. Assessment 

 

Hodgen and Wiliam (2006) define assessment for learning as ‘any assessment 

for which the first priority in its design and practice is to serve the purpose of 

promoting pupils’ learning’. They explain that assessment can be used to 

improve learning if the information discovered is used in a productive manner 

to modify current teaching and learning methods. Hodgen and Wiliam define 

formative assessment as assessment where the information discovered is used 

to adapt teaching to meet the learning needs of students. A review, by Hodgen 

and Wiliam, of Black and Wiliam, 1998 (Assessment in Education: Principles, 

Policy and Practice) implies that formative assessment can be paramount in 

raising the standards of student achievement. They determine three types of 

feedback as being essential to formative assessment: from student to teacher; 

from teacher to student; and between students.  

 

Hodgen and Wiliam (2006) recognise five principles of learning as being 

essential to effective mathematics education. They determine the principles of 

learning as follows:  

1. The first principle of learning is a recognition that it is essential to 

‘start from where the learner is’;  

2. That learning is an active process in which students must be fully 

involved, doing the learning rather than it being done for them by 

the teacher or others;  

3. Students must use mathematical language to discuss and express 

their mathematical ideas,  

4. Students must understand the underlying ideas of the mathematical 

problem in order to fully learn from solving it; and  
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5. Feedback from teachers and assessment must suggest methods for 

improvement to students (Hodgen and Wiliam, 2006:4-5).  

 

Hodgen and Wiliam (2006) insist that students must be challenged by activities 

that encourage them to think mathematically, and to talk in mathematical terms 

about their ideas, if they are to truly learn and understand mathematical 

concepts. A focus on learning without understanding, and an overemphasis on 

mathematical procedure and learning by rote, leads to a curriculum where even 

the most able students struggle when faced with familiar mathematical 

problems in new or unusual contexts. Hodgen and Wiliam (2006) propose the 

use of mathematical problems with more than one solution and the continuous 

process of challenging students’ mathematical presumptions as a means of 

drawing on student understanding of mathematics and provoking discussion.  

 

Sullivan and Clarke (1991) promote ideas put forward, regarding assessment in 

mathematics, by the California Assessment Program, 1989. The California 

Assessment Program suggests the following: 

1. Students should be given the opportunity to think for themselves 

and thus they are espousing the notion of independent thinking;  

2. Students should be encouraged to construct their own response 

rather than selecting a single answer, from a closed question; and  

3. Students should be given ample opportunity to demonstrate the 

level of their understanding regarding the mathematical concepts at 

hand. 

 

It is essential that teachers ‘employ assessment strategies which recognise the 

multi-dimensional nature of mathematical activity’ (Sullivan and Clarke, 

1991:43). Sullivan and Clarke determine that assessment is concerned with the 

exchange of information, and therefore it should be a two-way path. 
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2.6 Conclusion 

 

In this chapter the author has summarised various learning theories in 

mathematics education and issues which arise in contemporary mathematics 

education. The author has placed the Irish mathematics situation within this 

context and considers the issues in mathematics education which influence and 

affect mathematics education in Ireland. Within this context, the author is 

firmly of the belief that Irish mathematics education follows the behaviourist 

learning model. 

 

The author is of the belief that this situation of teaching and learning based on 

the behaviourist model is brought about by the structure of the syllabus which 

is reinforced by a rigid, predictable, terminal examination at the end of each 

cycle. The author considers how this has influenced educational performance 

and achievement, and believes that as a consequence the problem-solving skills 

of students when faced with either an unfamiliar situation or a real-life problem 

are often not developed enough to adequately address the issue. The author 

investigates this issue in more detail in Chapter 7.   
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3.0 Chapter 3: International Comparative Studies 

 

3.1 Introduction 

 

It is not possible to consider Irish mathematics education without considering 

what is happening in other countries throughout the world. No education 

system stands in isolation and if Irish graduates are to compete on an 

international level it is imperative that education levels in Ireland are of a 

comparable standard to those elsewhere. In this section the author considers 

international mathematics education and the large-scale, comparative studies 

that have been implemented. 

 

3.2 International Comparisons in Mathematics 

 

International comparative studies are an important means of assessing the 

effectiveness of education within and between countries. This is done through 

the comparison of academic performance of students, at the same educational 

level, across different education systems. International comparisons provide 

opportunities for considering educational practice in other countries, and for 

developing an awareness of factors which may improve mathematics education 

through curriculum design and educational practice. Comparative studies 

inform practice, encourage debate, give rise to self-reflection and form a basis 

for future research. 

 

Postlethwaite (1988) defined comparative education in The Encyclopedia of 

Comparative Education and National Systems of Education by saying ‘to 

“compare” means to examine two or more entities by putting them side by side 

and looking for similarities and differences between or among them. In the 

field of education, this can apply both to comparisons between and 

comparisons within systems of education’ (Postlethwaite, 1988: xvii).  
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Postlethwaite (1988) determines the four aims of comparative education as 

follows:  

1. ‘Identifying what is happening elsewhere that might help improve our own 

system of education’ (p.xix), 

2. ‘Describing similarities and differences in educational phenomena between 

systems of education and interpreting why these exist’ (p. xix),  

3. ‘Estimating the relative effects of variables (thought to be determinants) on 

outcomes (both within and between systems of education)’ (p. xx), and  

4. ‘Identifying general principles concerning educational effects’ (p.xx).  

 

Kaiser (1999) summarises Postlethwaite (1988) by distinguishing two types of  

comparative studies: country studies; and studies on themes within and 

between countries. Kaiser defines country studies as studies on a particular 

country’s education system, while studies within and between countries are 

concerned with major educational themes such as the economics of education, 

education planning and policy, primary and secondary schooling, teacher and 

teacher education, curriculum etc.  

 

In an Irish context ‘Country Studies’ can be conducted in an analysis of the 

Irish educational system, and the mathematics curriculum, syllabus and 

application of same within the country. ‘Country Studies’ can also entail the 

consideration of Irish styles of teaching and learning, and attitudes to the 

teaching of mathematics in Ireland. Societal and cultural factors that affect the 

Irish student are also of value. A ‘Between Countries Analysis’ in the Irish 

instance can be completed in a comparison of the Irish curriculum to another 

curriculum. An analysis of mathematics assessment methods in other countries 
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is also a valuable comparative tool as there is evidence to suggest that the 

assessment style implemented can have a powerful influence on the teaching 

and learning conducted. The levels of abstraction and mathematisation in 

various syllabi are also interesting to note and may affect the success of 

students studying these syllabi. 

 

3.3 Problems Associated with International Comparative 

Studies 

 

Noah (1988) (as discussed in Kaiser, Luna and Huntley, 1999) outlines some 

of the problems involved with comparative studies as follows: the cost and 

difficulty associated with compiling data from foreign countries; difficulty in 

comparing data collected; the possibility that the data collected by national 

sources may contain some bias and may affect the validity of a cross-national 

comparison; problems with constructing valid scales for data; and the 

possibility that there may be an ethnocentric bias.  

 

Kaiser (1999) recognises that problems may arise from implementing 

educational methods used in first world countries to third world curricula and 

voices concern regarding the implementation of ‘reforms modeled on the 

experience of the industrialised nations as a means of maintaining their pre-

eminence’ (Kaiser, 1999:7). 

 

Possible problems that the author foresees in compiling information for an 

international comparative study relate to difficulties in interpreting and 

translating other languages, the financial costs associated with collecting 

information abroad, the comparison of data collected from students studying 

different curricula, and the difficulties associated with obtaining approval for 

collecting data within other countries. The author collected data solely from 

English speaking countries (Ireland and the U.S state of Massachusetts) as it 

was not possible, due to financial and practical constraints, to translate and 
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interpret data from non-English speaking countries. It is acknowledged that this 

gives a westernised, industrialised slant to the research collected. The author 

also found that English terminology, and the comprehension of same, varies 

from Irish-English to American-English, with some language changes 

necessitated for ease of comprehension by request from the school involved in 

the United States. 

 

3.4 International Commission on Mathematics 

Instruction (ICMI) 

 

Early international comparative work in mathematics was carried out by the 

International Commission on Mathematics Instruction (ICMI). Howson, in 

Kaiser et al (1999), discusses how the ICMI ran a study in the early 1970s 

which asked authors from various countries to describe the changes in 

curriculum and teaching methods that had taken place in their countries during 

the 1960s, the aims of these changes, and the outcomes that resulted from these 

changes. This study resulted in the publication of a paper, published in 1978: 

‘Educational Studies in Mathematics’. Howson determines that while this paper 

held much interesting information regarding mathematics education on an 

international level, it held little in the way of comparative assessment as there 

was little analysis or synthesisation. 

 

3.5 The IEA Assessments: FIMS, SIMS and the TIMSS 

Series 

 

The IEA (the International Association for the Evaluation of Education 

Achievement) is responsible for possibly the most established series of 

mathematical assessments at an international, comparative level. The following 

section considers the organisation itself, the IEA; the initial international 

mathematical assessments, FIMS and SIMS; and its well-established series of 

TIMSS assessments.  
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The International Association for the Evaluation of Educational Achievement 

(IEA) is the organisation responsible for a large number of international 

assessments in mathematics such as FIMS, SIMS and the TIMSS series. The 

IEA originated from a meeting of educational enthusiasts at the UNESCO 

Institution for Education in Hamburg in 1958. At this meeting problems in the 

evaluation of students and schools were discussed and ways forward in 

educational assessment were suggested.  The IEA were of the opinion that all 

educational systems hold a common end goal: optimal results and educational 

success. Their interest lay in examining the different methods utilised by 

different education systems in order to arrive at this end point. The IEA 

decided that by assessing a broad range of education systems simultaneously 

there would be enough variability to identify common relationships between 

different systems. The IEA originally consisted of twelve educational institutes 

but currently has members from 68 educational institutions, from universities 

to ministries of education (www.iea.nl).  

 

The IEA hopes to meet the following aims through its comparative assessment 

and research projects: 

• ‘Provide international benchmarks that may assist policy-makers in 

identifying the comparative strengths and weaknesses of their 

educational systems; 

• Provide high-quality data that will increase policy-makers’ 

understanding of key school- and non-school-based factors that 

influence teaching and learning; 

• Provide high-quality data which will serve as a resource for identifying 

areas of concern and action, and for preparing and evaluating 

educational reforms; 

• Develop and improve educational systems’ capacity to engage in 

national strategies for educational monitoring and improvement; 

• Contribute to development of the world-wide community of researchers 

in educational evaluation’. (www.iea.nl/misson_statement.html) 

http://www.iea.nl/misson_statement.html
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The First International Mathematics Study (FIMS) was carried out in the 

1960’s by the IEA. FIMS was a comparative study of mathematical 

achievement. The fact that it concerned mathematics was primarily due to the 

notion that mathematics was considered easier to compare between countries 

than any other subject. This was possibly due to the fact that mathematical 

notation is common to many countries and education systems. There were two 

research populations studied by FIMS: the first group were students of thirteen 

years old, the second group consisted of students in their last year of secondary 

school. Problems arose in comparing the second group between the countries 

involved in the study, as mathematics was not a compulsory component of 

education for all students, in all countries, in their final year of education. The 

FIMS was the first major international comparative study (Travers, K.J. & 

Weinzweig, A. in Kaiser, Luna & Huntley, 1999). 

 

The Second International Mathematics Study (SIMS) was undertaken in 1976. 

SIMS was a much more ambitious undertaking than the earlier TIMS and the 

primary goal was to create an international picture of mathematics education. 

The structure consisted of three sections:  

1. The Intended Curriculum: what is mandated at national level;  

2. The Implemented Curriculum: what is taught in the mathematics 

classroom, and 

3. The Attained Curriculum: the mathematics that students actually learn.   

 

The research population involved in SIMS consisted of two groups: the first 

group consisted of thirteen-year olds which was in keeping with the first 

population group in FIMS. The second group consisted of students in their 

final year of compulsory education (as per FIMS), but also those who were 

studying mathematics as a substantial component of their academic curriculum 

(Travers & Weinzweig, in Kaiser et al, 1999). By changing the second 

population to mandate that the students are in their last year of compulsory 
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education this became a population that was significantly easier to compare 

that that in FIMS.  

 

3.5.1. The Third International Mathematics and 

Science Study (TIMSS) 1995 

 

The Third International Mathematics and Science Study (TIMSS) was first 

carried out in over 40 countries in 1995 by the IEA (the International 

Association for the Evaluation of Educational Achievement). This was the first 

assessment of what was to become a series of assessments that continue to be 

completed in a four-year cycle. The following assessments were completed in 

1999, 2003, 2007 with the next assessment planned for 2011. The acronym 

TIMSS changed from the ‘Third Mathematics and Science Study’ to ‘Trends in 

Mathematics and Science Study’ after TIMSS 1995. The TIMSS 1995 

assessment was a more comprehensive study of mathematics education at an 

international level than either of the two earlier IEA sponsored studies: FIMS 

or SIMS. Mathematics achievement was assessed at five grade levels in three 

population groups, in comparison to the two population groups assessed in the 

earlier studies. (Beaton & Robitaille in Kaiser et al, 1999).  

TIMSS works continuously to ‘ensure the reliability, validity, and 

comparability of the data through careful planning and documentation, 

cooperation among participating countries, standardised procedures, and 

rigorous attention to quality control throughout’ (Mullis et al, 2009). This 

study has been used extensively to compare learning and teaching practices, 

along with student performance, in the international community. 

  

‘TIMSS followed in the wake of other reports and documents (National 

Commission on Excellence in Education, 1983; National Council of Teachers 

of Mathematics, 1989; 1995; American Association for the Advancement of 

science, 1989, 1993; Executive Office of the President, 1990) that have focused 
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attention on the importance, conditions, and goals of science and mathematics 

education’ (Greene et al, 2000:1).  

 

TIMSS was an IEA, multicultural study, with a significant role played by the 

United States, Germany, Canada, the Netherlands and Australia with regard to 

the administrative, developmental and analytical aspects of mathematics 

education in particular (Andrews as in Gates, 2001). More than 50 countries 

participated in the first TIMSS assessment in 1995. Forty-five countries took 

part in the achievement testing.  

 

Argentina Australia Austria 

Belgium Bulgaria Canada 

Colombia Cyprus Czech Republic 

Denmark England France 

Germany  Greece Hong Kong 

Hungary Iceland Indonesia 

Iran (Islamic Rep. Of) Ireland Israel 

Italy Japan Korea 

Kuwait Latvia Lithuania 

Mexico New Zealand Netherlands 

Norway Philippines Portugal 

Romani Russian Federation Scotland 

Singapore Slovak Republic Slovenia 

South Africa Spain Sweden 

Switzerland Thailand United States 

 
Table 2: Countries that participated in TIMSS 1995 achievement testing.  
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The TIMSS headquarters is in Boston College, Massachusetts in the United 

States. TIMSS 1995 defined three internationally desired population groups for 

its assessment:  

1. All students in the two adjacent grades that contain the most 9-year olds 

at the time of assessment;  

2. All students in the two grades that contain the most 13-year olds, and; 

3. Students in their final year of secondary schooling.  

 

Sampling standards were high and required at least 85% of the selected schools 

to participate. The mathematical content areas assessed by TIMSS were  

• number;  

• measurement;  

• geometry;  

• proportionality;  

• functions;  

• relations and equations;  

• data analysis,  

• probability and statistics, and; 

• analysis.  

 

Contextual information was also considered important in the TIMSS 

assessment series, in comparison to FIMS and SIMS where mathematical 

achievement was the sole component of assessment. Students were asked to 

complete questionnaires regarding aspects of their personal life including 

family backgrounds and extra-curricular interests. Teachers and school 

principals were also asked to fill out questionnaires regarding teaching 

practices, school characteristics etc. (Beaton & Robitaille in Kaiser et al, 1999). 
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3.5.1.1. TIMSS 1995 Results 

 

In TIMSS 1995 the Population One cohort (all students in the two adjacent 

grades that contain the most 9-year olds at the time of assessment) were 

assessed with regard to the following content areas:  

• whole numbers;  

• fractions and proportionality;  

• measurement;  

• estimation and number sense;  

• data representation, analysis and probability;  

• geometry; 

• patterns.   

 

The top ranking countries in the Population One TIMSS assessment were 

Singapore and Korea, with Japan, Hong Kong, the Netherlands, the Czech 

Republic and Austria also performing well (Beaton & Robitaille in Kaiser et al, 

1999).  

 

The Population Two (students in the two grades that contain the most 13-year 

olds at the time of implementation) assessment tested six content areas:  

• fractions and number sense;  

• measurement;  

• proportionality;  

• data representation, analysis and probability;  

• geometry, and;  

• algebra.  
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Singapore was the top performing country with respect to the Population Two 

results, with Korea, Japan and Hong Kong, Flemish-speaking Belgium and the 

Czech Republic performing well. Gender differences with respect to all 

population results showed little gender differentiation between male and 

female students, but those that did exist tended to favour boys over girls. A 

clear and positive relationship is noted between students verbalising a stronger 

liking of mathematics and higher scores in the TIMSS mathematics assessment 

(Beaton & Robitaille in Kaiser et al, 1999). 

 

3.5.1.2. Ireland and TIMSS 1995 

 

Lyons et al (2003) consider Ireland’s involvement in TIMSS 1995 and make 

the observation that mathematics teachers in Ireland attribute more importance 

to the memorisation of formulae and procedures than teachers elsewhere. 

Seventy-four per cent of Irish teachers rated this as an important teaching and 

learning method compared with an importance rating of 40% in other 

participating countries. The ability to think creatively, and understand the 

underlying mathematical concepts, was rated highly in the majority of 

countries, but teachers in Ireland attributed a relatively low ranking to these 

skills. The memorisation of formulae and procedures was rated much higher 

than the ability to think creatively. This would suggest that Irish education is 

more traditional in style, led by more traditional teachers, who are teaching in a 

more traditional way. This is reinforced by the examination system which is 

based, as discussed previously, on a terminal assessment system. As a result, 

examinable skills are valued and the closed-ended questions asked in the Junior 

and Leaving Certificate examinations test memorisation and reproduction 

skills, therefore these are the skills that Irish teachers tend to place value on. 
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3.5.2. Trends in Mathematics and Science Study 

(TIMSS) 1999. 

 

TIMSS 1999 was the second TIMSS study in the series and occurred four years 

after the first. Just seven countries participated in the mathematics part of this 

study: Japan, the Netherlands, Switzerland, Hong Kong SAR, the United 

States, Australia and the Czech Republic. Five countries participated in the 

science component of the study. The study focused solely on mathematics at 

the eighth grade. It was a videotape study that also used worksheets and 

textbook content used in class to supplement the information collected. 

Teacher questionnaires were also used. The study followed mathematics 

lessons in more than one thousand classrooms over a period of one academic 

year. All aspects of mathematics teaching and learning were considered 

(www.timss.bc.edu/timss1999.html).  

 

All seven countries involved in TIMSS 1999 shared some features in their 

mathematics lessons:  

1. The majority of the time (80%) spent in the mathematics lessons at 

eighth grade is spent on solving mathematics problems;  

2. In all seven countries a combination of whole class work and private 

individual work is used;  

3. The majority of mathematics lessons, in all the participating countries, 

considered previous mathematical work covered, and introduced new 

mathematical concepts also;  

4. At least 90% of mathematics lessons observed involved the utilisation 

of a mathematics textbook or worksheets; and  

5. Teachers spent considerable more time talking in mathematics lessons 

than students in a ratio of 8:1.  

 

It is noted in the results of TIMSS 1999 that the high scoring countries tended 

to employ a variety of teaching methods in their mathematics classrooms, as 

opposed to a single, shared teaching method in lower-achieving countries.  
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‘Distinctions included the length of time spent introducing new content, the 

coherence across mathematical problems and within their presentation, the 

topics covered and the procedural complexity of the mathematical problems, 

and classroom practices regarding individual student work and homework in 

class’ (www.timss.bc.edu/timss1999.html). 

 

TIMSS 1999 was a cross-national study which observed teaching and learning 

practices in mathematics, and science, in seven countries. In each of the 

participating countries approximately 100 schools were randomly selected. 

Eighth grade mathematics is the area studied, with the videotaping distributed 

evenly throughout the year in order to gain insight into the full syllabus as 

covered in the eighth grade in each of the countries involved. Bilingual coders 

were involved in the coding and analysing of data in non-English speaking 

countries. Data collected was weighted in order to obtain reliable information 

among participating countries (www.timss.bc.edu/timss1999.html).  

 

3.5.3. Trends in Mathematics and Science Study 

(TIMSS) 2003 

 

The third TIMSS (Trends in International Mathematics and Science Study) was 

carried out in 2003, and considered mathematics and science learning at two 

grades, fourth and eight, in forty-nine countries (Mullis et al, 2005). The aim 

was for students to have eight years of formal schooling at the time of 

assessment in the eighth grade, and for students to have had four years of 

formal schooling at the time of testing in the fourth grade. TIMSS 2003 

resulted in Singapore performing the best in mathematics at both the fourth and 

eighth grades (Muliis et al, 2004). Singapore’s mathematics performance is 

significantly higher than the rest of the performing countries. Other countries 

that performed well are the Republic of Korea, Hong Kong SAR and Chinese 

Taipei at the eighth grade, while Hong Kong SAR, Japan and Chinese Taipei 

performed well in mathematics at fourth grade (Mullis et al, 2004). 

The five mathematics content areas in TIMSS 2003 are: 

http://www.timss.bc.edu/timss1999.html
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• Number; 

• Algebra; 

• Measurement 

• Geometry; and  

• Data.  

                                                                                    (Mullis et al, 2004) 

 

The participating countries, and regions, in TIMSS 2003 are Australia, 

Belgium (Flemish), Bulgaria, Cyprus, England, Hong Kong SAR, Hungary, 

Iran (Islamic Republic of), Israel, Italy, Japan, Korea (Rep. of), Latvia, 

Lithuania, Netherlands, New Zealand, Romania, Russian Federation, 

Singapore, Slovak Republic, Slovenia, South Africa, United States, Ontario 

Province (Canada), Quebec Province (Canada), Argentina, Chile, Chinese 

Taipei, Indonesia, Jordan, Macedonia (Rep. of), Malaysia, Moldova (Rep. of), 

Morocco, Philippines, Tunisia, Indiana State (U.S.), Norway, Scotland, 

Sweden, Armenia, Bahrain, Botswana, Egypt, Estonia, Ghana, Lebanon, 

Palestinian National Authority, Saudi Arabia, Serbia, Syrian Arab Republic, 

Yemen, Basque Country (Spain) (Mullis et al, 2004). 

 

The mean score for eighth grade students in mathematics is 467, across all 

forty-six countries at this level. The mean score for students at the fourth grade 

is 495 and is an average of the twenty-five participating countries. The 

benchmarking participants are not utilised in calculating either average. TIMSS 

2003 saw a significant difference in the mean scores in mathematics 

achievement, at eighth grade, for the highest and lowest scoring countries with 

an average of 605 for Singapore and an average of 264 for South Africa. At 

eighth grade twenty-six countries, and the four benchmarking participants (the 

Basque Country, Spain; Indiana State, U.S.; Ontario Province, Canada; and 

Quebec Province, Canada), scored significantly above the international 

average, and eighteen countries scored significantly lower. Assessment in 
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mathematics at the fourth grade saw a high of 594 in Singapore to a low of 339 

in Tunisia (Mullis et al, 2004). 

 

The vast majority of the countries assessed in TIMSS 2003 had a defined 

national curriculum, the exceptions being the United States and Australia. The 

emphasis at the eighth grade was on understanding mathematical concepts, 

followed by competence in demonstrating basic skills; at fourth grade the 

emphasis is on the improvement, and mastering of, basic skills, followed by 

mathematical understanding (Mullis et al, 2004). The five content domains in 

mathematics in TIMSS 2003 were:  

1. Number; 

2. Algebra; 

3. Measurement; 

4. Geometry; and  

5. Data.  

 

Algebra was called ‘patterns and relationships’ at the fourth grade level. There 

were four acknowledged cognitive domains:  

1. Knowing Facts and Procedures; 

2. Using Concepts; 

3. Solving Routine Problems; and  

4. Reasoning (Mullis et al, 2005). 

The table in Appendix II shows the results of the TIMSS 2003 achievement 

testing in mathematics for the eighth grade population. 

 

The content areas in TIMSS 2003 consider number, algebra, measurement, 

geometry, and data. Topic areas were decided on with objectives specified to 

the two relevant populations: fourth and eighth grades. An NRC (National 

Research Coordinator) was selected by each of the participating countries and 
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the NRCs were involved throughout the process. An item-writing task for the 

NRCs from each of the participating countries commenced the process of 

selecting test items for TIMSS 2003. Countries participating in the assessment 

were then invited to submit topics to be included in the test. At this stage 

subject-matter specialists considered all the ideas. The mathematical items 

were field-tested in each of the participating countries with representative 

sample groups of students. The NRCs were also involved in the review of test 

items and in the review of the scoring criteria (Mullis et al, 2004). 

 

The student samples were picked carefully in accordance with the TIMSS 

selection data. TIMSS spent a considerable amount of time constructing 

procedures and guidelines to ensure that the national samples were of the 

highest possible quality and were valid and efficient. The NRCs were 

responsible for the implementation of the assessment in each of the 

participating countries (Mullis et al, 2004). 

 

At the eighth grade 194 items were tested, while at the fourth grade 161 items 

were tested. For the eighth grade assessment approximately one-third of the 

test items were constructed-response items, and involved students generating 

and writing their answers. Some of these constructed-response questions 

required extended answers.  

 

3.5.4. Trends in Mathematics and Science Study 

(TIMSS) 2007 

 

TIMSS 2007 was the fourth study carried out in this cycle of international 

mathematics and science assessments, and involved 425,000 students from 

fifty-nine participating countries (Mullis et al, 2008). At the fourth grade the 

top performing countries were Hong Kong SAR and Singapore, followed by 

Chinese Taipei and Japan in that order. Other countries that performed well 

were Kazakhstan, the Russian Federation, England, Latvia, and the 

Netherlands. The U.S. state of Massachusetts performed extremely well at 



119 

 

fourth grade at a level comparable with Chinese Taipei. At the eighth grade the 

top performing countries were Chinese Taipei, Korea, and Singapore, followed 

by Hong Kong SAR and Japan. There was a significant gap in average 

mathematical achievement between these five, top-performing Asian countries 

and the next group of countries in terms of achievement. The next group of 

countries consists of Hungary, England, the Russian Federation, and the United 

States. The U.S. state of Massachusetts performed at a higher mathematical 

level than this group of four countries, but was outperformed by the five Asian 

countries at the top of the league performance wise (Martin et al, 2008). The 

author is particularly interested in the mathematical performance of students in 

the U.S. state of Massachusetts as the U.S. research collected for this study is 

obtained from this state. This facilitates a comparison of Irish students with the 

highest achieving U.S. state in TIMSS assessments. 

 

Countries participating in TIMSS 2007 are: Algeria, Armenia, Australia, 

Austria, Bahrain, Bosnia and Herzegovina, Botswana, Bulgaria, Chinese 

Taipei, Colombia, Cyprus, Czech Republic, Denmark, Egypt, El Salvador, 

England, Georgia, Germany, Ghana, Hong Kong SAR, Hungary, Indonesia, 

Iran (Islamic Republic of),  Israel, Italy, Japan, Jordan, Kazakhstan, Korea 

(Republic of), Kuwait, Latvia, Lebanon, Lithuania, Malaysia, Malta, Mongolia, 

Morocco, Netherlands, New Zealand, Norway, Oman, Palestinian Nat’l Auth., 

Qatar, Romania, Russian Federation, Saudi Arabia, Scotland, Serbia, 

Singapore, Slovak Republic, Slovenia, Sweden, Syrian Arab Republic, 

Thailand, Tunisia, Turkey, Ukraine, United States, Yemen, with benchmarking 

participants Alberta, Canada; Basque Country, Spain; British Columbia, 

Canada; Dubai, UAE; Massachusetts, US; Minnesota, US; Ontario, Canada; 

and Quebec, Canada (Mullis et al., 2008). The table in Appendix 3 shows the 

results of the TIMSS 2007 achievement testing for the eighth grade population. 

 

Students were assessed at both the fourth and eighth grades as part of TIMSS 

2007. Fourth grade students were assessed in three content areas: number; 

geometric shapes and measures; and data display. At the eighth grade students 
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were assessed in four content areas: number; algebra; geometry; and data and 

chance. Students were given a test that resulted from extensive test 

development. At the fourth grade the test included 179 items and a total score 

of 192 points, while at the eighth grade the test contained 215 items, and a total 

of 238 points. At both fourth and eighth grades roughly half the test items are 

constructed-response, and half are multiple-choice. Representatives from each 

of the participating countries were involved in the test design. Each of the 

countries involved received training and support at each stage from the TIMSS 

and PIRLS International Study Centre, in Boston College (Mullis et al, 2008).  

 

The first step in test design was an item-writing workshop for the National 

Research Coordinators from each of the participating countries. Countries 

involved in TIMSS 2007 were then encouraged to submit possible test items 

which were reviewed by the selection committee. The test items were tested 

with representative samples of students in each of the participating countries. 

There was a constant review of the test items and the scoring criteria to ensure 

the items would effectively, and fairly, meet the test objectives for all students 

in the participating countries. TIMSS ensured that stringent procedures were 

implemented with regard to student sampling. Particular care was given to 

ensuring that the sample offered an accurate, representative estimate of the 

student population. Staff from ‘Statistics Canada’ were involved in ensuring 

that high sampling standards were implemented throughout (Mullis et al, 

2008). 

TIMSS again considered three aspects when designing the test:  

1. The intended curriculum: what each participating country intends to 

teach;  

2. The actual curriculum: the aspects of the curriculum that are actually 

taught; and  

3. The achieved curriculum: what students actually learn.  
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In considering the intended curriculum the IEA considered not only the 

curriculum, as defined by the participating country, but also the supports 

provided for curriculum implementation: teacher qualification levels, formal 

assessments etc. All the participating countries were invited, and expected, to 

write a chapter for the TIMSS 2007 Encyclopedia on their intended 

curriculum. The major components of the mathematics and science curriculum 

had to be reiterated in this chapter. Each participating country also answered a 

questionnaire regarding their mathematics curricula, and its implementation. 

The implementation of the curriculum was the focus of data collected in 

questionnaires completed by the principals and teachers of assessed students 

and the students themselves. Teachers had to supply information on each of the 

TIMSS content areas. Students were asked to complete questionnaires that 

considered social influences such as their home experiences, classroom events, 

extra-curricular factors etc. Teachers and school principals answered 

questionnaires to provide information about the socio-economic status of their 

students, school ethos, resources etc. (Mullis et al, 2008).  

 

The main methods of reporting the results from the TIMSS 2007 assessments 

were based on item response theory (IRT) scaling methods. As TIMSS 2007 is 

part of the TIMSS series of assessments, it is essential that the scaling methods 

used to score responses are comparable with the data collected in the preceding 

TIMSS assessments: 1995, 1999 and 2003. The TIMSS and PIRLS 

International Study Centre reviewed achievements item statistics for every 

participating country. Each participating country appointed a National 

Research Coordinator (NRC). The NRC was responsible for implementing the 

TIMSS 2007 test in their country, and ensuring that this was done in 

accordance with the TIMSS guidelines (Mullis et al, 2007).  

  

3.5.5. Trends in International Mathematics 

Achievement (TIMSS 1995, 1999, 2003 and 2007). 

 

The table in Appendix IV considers international trends in mathematics 

achievement at the eighth grade as noted in the various TIMSS assessments 
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(1995, 1999, 2003 and 2007). It is important to note that some of the 

differences in mathematics performance within particular countries can be 

anticipated due to the impact of major reforms. The TIMSS Encyclopedia 2007 

predicted the possibility of an improvement in mathematics scores in both the 

Russian Federation and Slovenia due to the addition of an extra year of 

compulsory schooling at primary level in addition to other positive educational 

reforms (Mullis et al, 2007). Mullis et al (2008) consider the trend in 

mathematics achievement by summarising that, at the eighth grade, ten 

countries had higher average achievement in the 2007 TIMSS assessment than 

in their initial testing, fifteen countries had a significantly lower mathematics 

score in 2007, and eleven countries showed no significant change. In contrast, 

at fourth grade, the authors noted that ten countries had higher achievement in 

2007 than their earlier results, five scored lower in 2007, and eight countries 

showed no significant change.  

 

As TIMSS works on a four-year cycle assessing students at the fourth grade, 

and again four years later when they are in the eighth grade, it necessitates 

particular grades performance as they move through the educational system in 

their country. In comparing results from 2003 with 2007, Mullis et al (2008), 

note that nine countries performed above the mean average in 2003 and again 

in 2007. These countries were Singapore, Hong Kong SAR, Japan, Chinese 

Taipei, Lithuania, the Russian Federation, England, Hungary, and the United 

States. These also held true for the benchmarking provinces of Ontario and 

Quebec, both in Canada. Australia, Scotland, Norway, Iran and Tunisia 

performed close to the scale mean score in both years 2003 and 2007. 

Performance in Italy deteriorated, from a similar score to the scale average in 

2003 to below it in 2007. Mathematical performance improved during this time 

period in both Slovenia and Armenia. Both countries were below the scale 

average in 2003 and move closer to the average in 2007 (Mullis et al, 2008). 

 

3.5.6. TIMSS in an International Context 

 

Andrews (in Gates, 2001) suggests that where mathematics is deemed to be 

taught successfully there are often common teaching and learning practices. He 
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focuses on research undertaken in Japan, France and Hungary in particular. 

The following are considered effective teaching and learning practices of 

mathematics based on his findings:  

1. Learners are taught in mixed-ability classes for the most part;  

2. Each individual class is taught as a unit;  

3. The majority of the class is dominated by the teacher presenting 

information, or managing the talk of others;  

4. Learners operate in a public domain;  

5. There is a constant review of what is being done by teachers;  

6. There is little time spent working from textbooks, and;  

7. Homework is used to provide a coherent link between mathematics 

lessons. 

 

Andrews (in Gates, 2001) also acknowledges common major issues in 

mathematics teaching in Japan, France and Hungary. These include the 

following:  

1. Mathematics is acknowledged as being difficult;  

2. Mathematics is considered a problem-solving activity;  

3. Mathematics problems tend to be chosen to exemplify generality; 

4. Development of mathematical ideas is considered important; 

5. Mathematical vocabulary is emphasised;  

6. Proof and justification are an important part of mathematics lessons;  

7. Mathematical ideas are constantly revisited, and  

8. Routine procedural work is not considered to be particularly important 

to mathematics learning, and relatively little time is spent on this aspect 

of mathematics. 
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It is interesting to compare these core mathematical beliefs from countries with 

an established, successful mathematical teaching model to the mathematical 

teaching principles in Ireland, which differ significantly. As discovered in the 

‘Inside Classrooms’ study Irish mathematics teachers value procedural learning 

above all else and the vast majority of class time is spent on this (Lyons et al, 

2003). This is in stark contrast to the afore-mentioned countries: Japan, France 

and Hungary. In Ireland proof and justification are considered an important 

aspect of examination success but outside of this they are not deemed an 

essential mathematical tool.  

The TIMSS cognitive domains are  

1. Knowing facts and procedures;  

2. Using concepts; 

3. Solving routine problems; and  

4. Reasoning. 

 

The difficulty arises with an international comparative study when it comes to 

developing reliable, valid achievement scales for the cognitive domains. This is 

due to the fact that the differences between students, especially across 

countries, can make it difficult to recognise which cognitive abilities students 

are utilising when problem solving in mathematics. The TIMSS content 

domains, (number, algebra, measurement, geometry, and data), are, for the 

most part, consistent with the curricula of the participating countries. It is 

interesting to note the different curricula areas where students perform at 

different levels and competencies, within and across countries. The results 

from TIMSS 1995, 1999 and 2003 suggest that eighth grade students in the 

United States perform relatively poorly, in an international context, in 

geometry, and relatively well on data items (Mullis et al, 2005). 
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3.5.7. Criticisms of TIMSS 

 

The use of English as the official language in TIMSS is seen to favour some 

countries, to the detriment of others argue Keitel and Kilpatrick (in Gates, 

2001). It is understandable that an assessment that is designed using the 

English language may naturally benefit English speakers in the style and 

language used. Others, including Dylan William, argue that the process of 

‘horse-trading’ whereby TIMSS representatives will invariably favour the 

curriculum and syllabus style of their own individual country will also 

influence the equity of the assessment (Andrews in Gates, 2001).  

 

3.6 The Programme for International Student 

Assessment (PISA) 

 

PISA, the Programme for International Student Assessment, is an international 

assessment that assesses mathematical ability and achievement together with 

other subjects and skills, including literacy skills. It is a project of the OECD, 

the Organisation for Economic Co-Operation and Development, and its 

participants include both OECD and partner countries. The PISA testing is 

carried out every three years and Ireland participates in each cycle of PISA 

assessments.  

 

In this section the author considers the PISA assessment process, and Irish 

performance in PISA. This section is primarily focused on PISA 2003 as it is 

the PISA assessment that focused on mathematical literacy. The initial PISA 

assessment was implemented in 2000 and every three years thereafter. The 

following table provides details of the PISA cycles implemented to date, and 

the forthcoming PISA 2012 cycle.  
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Cycle Major Domain Minor Domain 

PISA 2000 Reading Mathematics, Science 

PISA 2003 Mathematics Reading, Science and 

Cross-curricular problem-

solving 

PISA 2006 Science Reading, Mathematics 

PISA 2009 Reading Mathematics, Science 

PISA 2012 Mathematics Reading, Science and 

Cross-curricular problem-

solving 

 

 Table 3: PISA cycles (www.erc.ie)                                 

 

 The skills and knowledge of 15-year olds are assessed. In 2003 the major 

assessment focus was on literacy within mathematics. Reading literacy, 

scientific literacy and cross-curricular assessment solving were also assessed 

but to a lesser extent. The OECD defines mathematical literacy as 

‘an individual’s capacity to identify and understand the role that mathematics 

plays in the world, to make well-founded judgments and to use and engage 

with mathematics in ways that meet the needs of that individual’s life as a 

constructive, concerned and reflective citizen’ (OECD, 2003:24 as quoted in 

Cosgrove et al, 2005).  

 

3.6.1. PISA 2000 

 

In order to assess mathematical literacy, PISA 2000 identified three broad 

dimensions: 

• Processes: the ability to analyse, reason and communicate mathematical 

ideas. 

Processes are divided into three sub-divisions: 

(i) Reproduction, definitions and computations; 
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(ii) Connections and integration for problem-solving; and 

(iii) Mathematisation, mathematical thinking and generalisation.  

• Content: Themes such as change & growth, space & shape, chance, 

quantitative reasoning, and uncertainty & dependent relations;  

• Context: Doing and using mathematics in a variety of different 

situations including in one’s personal life, school life, work and society 

(OECD, 2000).  

 

The PISA processes used include modelling and problem-solving. OECD, 

2000, suggests that the modelling process requires the student to engage in the 

following: 

• Structuring the situation to be modeled; 

• Mathematising (reality to mathematics); 

• De-mathematising (mathematics to reality); 

• Reflecting, analysing and offering a personal critique of models and 

their results;  

• Validating the model; and 

• Communicating about the model and its results.  

 

In PISA 2000 the mathematics section covered two topics: ‘change and 

growth’; and ‘shape and space’. These mathematics sections covered aspects of 

the Junior Certificate curriculum including measurement, algebra, functions, 

geometry and statistics.  Ireland performed on a par with the OECD average of 

500.0 with a score of 502.9. This performance ranked Ireland in 15th place out 

of 27 countries. The five highest scoring countries were: 

1. Japan: 556.6 
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2. Korea, Rep. of: 546.9 

3. New Zealand: 536.9 

4. Finland: 536.2 

5. Australia: 533.3. 

 

Ireland demonstrated a strong performance by mathematically weaker students 

and at the 10th percentile Ireland ranked 14th out of 27 countries, with a score 

of 394.4 versus 366.6. In contrast to this Irish students struggled to perform at 

the highest level in mathematics in PISA 2000, and at the 90th percentile 

Ireland ranked 20th out of 27 countries with a mean score of 606.2 versus an 

OECD average of 624.8 (Shiel et al, 2001).  

 

3.6.2. PISA 2003 

 

The emphasis of PISA is on education for citizenship and preparedess for adult 

life. PISA is very much influenced by the Realistic Mathematics Education 

(RME) movement which is concerned with solving mathematical problems 

which relate to authentic, real-life problems. The PISA assessments are carried 

out at three-year intervals, with the primary assessment focus changing within 

the three main assessment areas: mathematics, reading and science. Cosgrove 

et al (2005) explain that PISA 2003 was an innovative assessment of 

mathematics as it did not strive to assess mathematics in terms of the national 

curricula of participating countries, rather it focused on assessing how well 

prepared 15-year old students are for participation in society and for meeting 

real-life challenges currently and in future work and life situations. In this 

regard PISA 2003 strongly emphasised realistic mathematics. PISA 2003 

assessed students in 41 countries. The table in Appendix V displays the 

participating countries.  

 

PISA mathematics is assessed with regard to three dimensions:  

• Context; 
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• Content; and 

• Competency.  

There are four recognised context areas:  

• Personal; 

• Social/occupational; 

• Public; and 

• Scientific.  

The four content areas assessed are: 

• Shape and space; 

• Change and relationships; 

• Quantity; and 

• Uncertainty.  

The areas of competency for consideration are: 

• Reproduction; 

• Connections; and 

• Reflection.  

 

Reproduction concerns the performance of routine mathematics skills: 

performing basic calculations, recalling memorised facts, solving basic 

problems following learned routines etc. Connections is the process of making 

connections between, within and across mathematical domains. Reflection is 

the ability to recognise the necessary mathematics in realistic problems, the 

ability to analyse mathematical procedures, and the ability to develop 

arguments and generalisations. 
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3.6.2.1. Ireland and PISA 2003 

 

As 15-year old students are assessed by the Programme for International 

Student Assessment (PISA), the students examined at this age in Ireland tend 

to be studying the Junior Certificate Curriculum. The Junior Certificate 

mathematics syllabus that is currently studied by students was revised and 

implemented in 2000 and examined for the first time in 2003. This revised 

syllabus is examined at the end of a three-year period and this is the sole means 

of recognised assessment. The mathematics course can be followed, and 

subsequently examined, at three levels: higher, ordinary and foundation level. 

The terminal examination consists of two papers for both higher and ordinary 

level, each paper containing six questions with three parts in each question. 

The foundation level examination consists of one paper which again contains 

six questions. There is no element of choice and each student must answer all 

the questions on the papers at their level.  

 

The syllabus has two aims:  

1. to contribute to the personal development of students; and  

2. to provide them with the necessary mathematical skills needed to 

further their mathematical education, and furthermore to provide them 

with adequate mathematical skills for life and work.  

 

The terminal examination assesses the following skills:  

• recall; 

• relational understanding; 

• instrumental understanding; and  

• application.  

 

Each of the six questions asked per paper in the established Junior Certificate 

mathematics examination consists of three parts, labeled (a), (b) and (c). Close 
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and Oldham (2005) believe that the three parts: (a), (b) and (c) assess the skills 

of  

• reproduction; 

• slightly harder reproduction; or 

• basic connections and connections respectively.  

 

The revised, established Junior Certificate curriculum emphasised a need for 

the development of relational understanding, and for students to establish the 

communication skills necessary to debate and defend their reasoning and 

results. The PISA movement is heavily influenced by the need for realistic 

mathematics education. PISA assesses the skills of 15-year olds and their 

mathematical problem-solving abilities in solving real-world problems using 

mathematical methods. The main aim of PISA is to assess real-world 

knowledge and preparedness for adult life. The Junior Certificate mathematics 

syllabus and PISA both have common aims. It is therefore important to 

establish the Irish outcomes in the PISA examination as a means of assessing 

the success of the Junior Certificate in meeting its aims.  

 

The PISA assessment is a pen and paper test. This is a familiar method of 

testing for Irish students as all mathematics examinations in Ireland involve 

pen and paper. There are five different types of mathematics questions that the 

student may be asked:  

• traditional multiple-choice items; 

• complex multiple-choice items; 

• closed-constructed response items; 

• short-response items; and 

• open-constructed response items.  

 

These types of questions are largely unfamiliar to Irish students with no 

multiple-choice items on the Junior Certificate syllabus. Both the short-

response items and the open-constructed response items pose difficulty for an 
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Irish 15-year old student as there may be a range of possible correct answers 

for both. This is not a concept that is addressed in the Junior Certificate 

mathematics curriculum. The closed-constructed response items are most 

familiar as the answer tends to be required in numerical form. The 

mathematical content areas focused on in the PISA assessment are space and 

shape, change and relationships, quantity and uncertainty. The area of 

uncertainty includes probability which poses a problem for Irish Junior 

Certificate students as it is not on the curriculum until the Leaving Certificate.  

The Irish performance in the PISA assessment in 2003 is distinctly average, 

ranking 17th of the 29 OECD countries and 20th of 40 participating countries. 

The three highest achieving countries are Hong Kong- China, Finland and 

Korea. The top-ranking European Union country is the Netherlands/Belgium. 

Cosgrove et al (2005) believe that the Irish mathematics performance in PISA 

2003 is perhaps better than expected due to the amount of mathematising 

required. Mathematisation is the process of utilising mathematical skills to 

solve real life problems. There is little emphasis on realistic mathematics in the 

Irish syllabus, with the style of question used focusing on abstraction.  

 

The gap between the best and poorest performing students is also considered 

by PISA in the observation of the gap between the 10th and 90th percentile 

ranks within the country. The gap between the highest achievers and the lowest 

achievers in the PISA assessment in Ireland in 2003 was relatively low, 

indicating a narrow spread of achievement in comparison to the OECD 

average. In the PISA assessment an item response theory scaling is used so that 

the difficulty of questions and student scores can be placed on the same scale. 

Students can score results from Level 1 up to Level 6 with Level 1 being the 

lowest and 6 the highest. The lowest achieving students in Ireland were ranked 

higher than their OECD colleagues, with 17% of Irish students scoring at the 

lowest level (level 1) in comparison to an OECD average of 21%. The highest 

achievers in Ireland were ranked lower than those in other countries with 11% 

of Irish students scoring at the highest proficiency level (levels 5 and 6 

combined) in comparison to an OECD average of 15%. This indicates that 

while we are providing adequate mathematics education for the weakest 

students within our system we are not sufficiently nurturing and challenging 
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those that are at the top of the group. This results in a situation where while we 

have fewer low-achievers in mathematics in Ireland than other OECD 

countries we also have fewer high-achievers. Irish mathematics students tend 

to perform very much within the average parameters with very few students at 

either extreme. In 2003, 72% of Irish students scored at Levels 2, 3 and 4 in 

comparison to 64% scoring at these levels in other OECD countries. This 

illustrates the mediocrity of our mathematics scores in comparison to other 

countries. This is a fundamental issue which must be addressed if we want a 

successful, knowledge economy in Ireland.  

 

In 2003, Irish students performed at a comparative level to the OECD average 

with the average Irish student achieving a mean of 503 compared to the OECD 

average of 500. In the PISA assessment Irish students performed similarly to 

those in other OECD countries in the area of Quantity with an average score of 

501.7 compared to the OECD average of 500.7. In the areas of Change and 

Relationships, and Uncertainty Irish students performed higher than the OECD 

average with a score of 506 in Change and Relationships compared with the 

OECD average of 498.8, and 517.2 in Uncertainty compared with 502. In the 

content area of Space and Shape Irish students had difficulty, significantly 

under performing in comparison to their OECD counter-parts with a score of 

476.2 compared with 496.3. The 2000 PISA assessment tested two of the areas 

in mathematics that were tested in 2003: Space and Shape, and Change and 

Relationships. There was no significant change in Irish performance between 

2000 and 2003 despite the introduction of the revised Junior Certificate 

curriculum during this period. This is of some concern as there was a 

significant increase in the OECD average score in the content area of Change 

and Relationships during this time
 
(Shiel et al, 2007).  

 

Shiel et al (2007) explain that while many of the objectives of the Junior 

Certificate curriculum compare favourably with those of the PISA assessments 

not all of the Junior Certificate objectives are examined in the final 

examination. It is the author’s opinion that this may lead to a situation where 

non-examinable objectives in the Irish curriculum may be neglected in favour 
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of those that are needed to perform well in the Junior Certificate examination. 

An objective of the Junior Certificate mathematics curriculum is the 

development of relational understanding and the ability to apply one’s 

mathematical knowledge to solve real-life mathematical problems. This is the 

concept known as mathematisation. This is consistent with the primary aim of 

PISA: to assess students’ ability to use their mathematical knowledge to solve 

real-world problems. However, while the aims of both the Junior Certificate 

mathematics curriculum and PISA with respect to relational understanding 

appear comparable this skill is not actually assessed in the Junior Certificate 

examination which leads to this concept being given less time, if any, in the 

Irish mathematics classroom. The Junior Certificate curriculum also aims to 

foster an appreciate of mathematics, which is also a PISA aim, yet as this is not 

an examinable skill it again may be neglected within the classroom due to the 

examination driven nature of the Irish system. The Junior Certificate requires 

the skill of reproducing for many of the content items which is not a skill that 

is encouraged by PISA. For these reasons teachers in the Irish mathematics 

classroom will probably tend to focus on examinable skills such as the 

reproduction of examination style questions, as opposed to higher-order skills 

involving reflection, discussion and explanation.  

 

Cosgrove et al (2005) suggest that there is a divergence between what is 

learned and what is assessed when one compares the aims and objectives of the 

Junior Certificate curriculum and PISA. The Junior Certificate syllabus 

necessitates vertical learning, where increasingly difficult mathematics are 

presented, usually in abstract contexts. The PISA assessment uses horizontal 

mathematising, where mathematical skills are used to solve real-life problems. 

Freudenthal (1991) described horizontal mathematisations as leading ‘from the 

world of life to the world of symbols’. Cosgrove et al (2005) recognise that the 

Junior Certificate assessment is more generous in recognising effort, by the 

award of attempt marks, than the PISA assessment. Conway and Sloane (2005) 

discuss the importance of the Junior Certificate providing students with an 

opportunity to experience fully the dual nature of mathematics in terms of both 
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horizontal and vertical mathematising. The authors discuss how one danger of 

reform of the Irish mathematics syllabus is the possibility that only one type of 

learning may be deemed appropriate for each of the levels higher, ordinary and 

foundation based on an assessment of student ability.  

 

In ‘PISA Mathematics: A Teacher’s Guide’ the authors asked curriculum 

experts in Ireland to rate the familiarity for Irish 15-year olds of each of the 

PISA mathematics items. Two-thirds of items were rated as being somewhat or 

very familiar to higher and ordinary level Junior Certificate students, with a 

half of items rated similarly for foundation level students. The context in which 

items are presented, usually in terms of real-life situations, and the format for 

answering these items were rated to be largely unfamiliar to all Irish Junior 

Certificate students. It was determined that PISA items could not always be 

found on the Junior Certificate syllabus. Of the PISA items, 29% could not be 

found on the higher level mathematics course, 33% were not on the ordinary 

level curriculum and 49% were deemed to be missing on the foundation level 

course. The topics that could not be located on the Junior Certificate syllabus 

included the space and shape items which could not be found in the Junior 

Certificate at any of the three levels, despite geometry being part of the 

curriculum. The curriculum experts determined that this was due to the fact 

that geometry in the Irish curriculum focuses on traditional Euclidian 

geometry, while PISA geometry emphasises visualisation skills. Therefore, 

Irish students are not given the opportunity to demonstrate the geometry skills 

they have obtained by the age of fifteen. The experts also expressed their 

opinion that there are discrepancies between Junior Certificate algebra, which 

is a significant part of the syllabus, and PISA algebra. This creates a situation 

where Irish students did not get sufficient opportunity to demonstrate their 

algebraic skills and ability. Despite the differences in the assessments there 

was a strong correlation between student performance in the Junior Certificate 

examination and the PISA assessment 2003, with a correlation between the two 

of 0.75, as discussed in Shiel et al (2007). 
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Close and Oldham (2005) examine the link between the 2003 Junior Certificate 

Examination and the PISA assessment. Their findings indicate that Junior 

Certificate students have not developed the necessary analytical and reflective 

skills, therefore leaving them unprepared for the high proportion of PISA items 

requiring reflection. The authors find that Irish teaching methods, 

concentrating on exposition and practice, provide little time for in-class 

reflection or discussion. As reflection, discussion and analysis are not key 

objectives of the Leaving Certificate syllabus, and are not easily examinable 

skills, it is unlikely that older Irish mathematics students would perform well in 

these areas either. 

 

3.6.3. PISA 2006 

 

Ireland’s mean score in PISA 2006 is 501.5 points which does not differ 

significantly from the OECD mean of 497.7. Ireland scored 16th out of the 30 

OECD countries and 22nd out of the 57 participating countries. The five top-

scoring countries are: 

1. Chinese Taipei: 549.4 

2. Finland: 548.4 

3. Hong Kong-China: 547.5 

4. Korea: 547.5 

5. Netherlands: 530.7 (Eivers et al, 2007). 

Ireland had fewer students performing at the highest proficiency level, Level 6, 

than the OECD average (1.6% versus 3.3%). At the lowest proficiency level, 

Level 1, Ireland performed better than the OECD average (16% versus 

approximately 21%), but poorer than high-scoring countries such as Korea and 

Hong Kong-China (approximately 9%) and Finland (6%) (Eivers et al, 2007). 

The following table, provided by Eivers et al (2007) demonstrates Irish 

performance at each mathematical level identified by PISA, in comparison to 

the OECD average. 
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Level cut-off point At this level most students can: Ireland 

%             

OECD 

% 

Level 6 (<669.3) Evaluate, generalise and use 

information from the mathematical 

modelling of complex probems. 

1.6 3.3 

Level 5 (607.0-

669.3) 

Develop and work with the 

mathematical modelling of complex 

situations. 

8.6 10.0 

Level 4 (544.7-

607.0) 

Work with mathematical models of 

complex, concrete situations 

20.6 19.1 

Level 3 (482.4-

544.7) 

Work in familiar contexts, usually 

requiring multiple steps for solution. 

28.6 24.3 

Level 2 (420.1-

482.4) 

Work in simple contexts that require no 

more than direct inference. 

24.1 21.9 

Level 1 (357.8-

420.1) 

Work on clearly defined tasks with 

familiar contexts where all the relevant 

information is present and inference is 

not required. 

12.3 13.6 

Below Level 1 

<357.8 

Do not respond correctly to more than 

50% of Level 1 questions. 

4.1 7.7 

 
Table 4: Irish test performance in PISA 2006 compared to OECD average (Eivers et al, 

2007) 

 

In PISA 2006 Irish boys outperformed girls in mathematical literacy (507.3 

versus 495.8). Only 0.9% of Irish females reached Level 6, versus 2.4% of 

Irish males. The OECD average was 2.5% of females and 4.2% of males 

reaching Level 6. This is similar to the OECD average (503.2 versus 492.0 in 

favour of males). There was a gender difference, favouring males, in 22 of the 

30 OECD countries (the largest gap was 23 points in Austria). Qatar was the 

only country where there was a significant gender difference favouring females 

(Eivers et al, 2007).  

 

3.6.4. PISA 2009 

 

Ireland obtained a mean score of 487.1 in mathematics in PISA 2009. This is 

significantly below the OECD average of 495.7. Ireland ranked 26th out of 34 
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OECD countries and 32nd out of 65 participating countries. The six top-

scoring countries are: 

1. Shanghai-China (600.1) 

2. Singapore (562.0) 

3. Hong Kong – China (554.5) 

4. Korea (546.2) 

5. Chinese-Taipei (543.2) 

6. Finland (540.5) (Shiel et al, 2010). 

 

Again, Ireland has significantly fewer students scoring at the higher levels 

(Level 5 and 6). At the top two levels 6.7% of Irish students performed 

sufficiently versus the OECD percentage of 12.7%. The United Kingdom and 

Poland both scored similarly in terms of the overall mean score in 

mathematical performance, but outscored Ireland significantly at Level 5 and 6 

with percentages of 9.8% and 10.4% respectively. Interestingly, despite 

Northern Ireland obtaining a mean score of 492.2, which is similar to Ireland, 

they significantly outperformed the Republic in performance at the top levels 

with 10.3% of students performing at levels 5 and 6. Finland had an amazing 

21.6% of students obtaining the necessary points at levels 5 and 6. At the lower 

end of the scale Ireland had 20.8% scoring at or below level 1, which is slightly 

fewer than the OECD average (Shiel et al, 2010).  

 

In PISA 2009 Irish males achieved a higher mean score (490.9) than females 

(483.3) in mathematics, but the difference was not significant. Both male and 

female scores are significantly lower than the OECD averages of 501.4 and 

489.9 respectively. Twenty-one OECD countries had a significant gender 

difference favouring males. The remaining 13 OECD countries had no 

significant gender difference. The proportion of Irish males, 20.6%, and 

females, 21%, at or below level 1 is comparable to the OECD averages of 

20.9% and 23.1% respectively. At Levels 5 and 6 fewer Irish male (8.1%) and 
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female (5.1%) students scored sufficiently compared to OECD figures of 

14.8% and 10.6% respectively (Shiel et al, 2010). 

 

3.6.5. Changes in Irish PISA Performance from 

2003 to 2009. 

 

Irish mathematical performance in PISA declined from 502.8 in PISA 2003 to 

487.1 in PISA 2009. This is a drop of 16 points. Only one other country 

experienced a greater decline, the Czech Republic, with 24 points. Following 

from this decline, Ireland’s rank dropped from 20th to 26th among the 

participating OECD countries. Ireland’s position also altered from being at the 

OECD average in 2003 to significantly below it in 2009 (Shiel et al, 2010). 

This is a worrying trend that shows a downward slide from results that are 

already mediocre at best.  

 

In 2003 the proportion of Irish students at or below Level 1 was 16.8%. By 

2009 this figure had increased to 20.8%. The number of students at or above 

Level 5 decreased from 11.3% in 2003 to 6.7% in 2009. Performance for both 

male and female students dropped significantly also (down 19 points for male 

students and 12 points for female students) (Shiel et al, 2010).  

 

The following table illustrates the key changes in Irish mathematical test 

performance from PISA 2003 to PISA 2009: 

 

Mathematics (Irish test 

performance) 

2003 2009 Change from 

2009 to 2003 

Mean Score 503 487 -16 

Mean Score (Males) 510 491 -19 

Mean Score (Females) 495 483 -12 

Gender Difference 15.0 8.0 -7.0 

% at or below Level 1 16.8 20.8 4.0 



140 

 

Mathematics (Irish test 

performance) 

2003 2009 Change from 

2009 to 2003 

% at or above Level 5 11.3 6.7 -4.7 

 

Table 5: Changes in Irish performance in mathematics, PISA 2003-2009                                                     

(Shiel et al, 2010) 

 

3.7 International Assessment of Educational Progress 

(IAEP) 

 

In 1988 the Educational Testing Services (ITS) carried out the First 

International Assessment of Educational Progress (IAEP) (Howson in Kaiser et 

al, 1999). The primary purpose of IAEP was to collect data on what students 

already know and their ability to apply this information, but cultural and 

societal factors plus students attitudes were also considered. IAEP-1 was 

carried out in 1988 and assessed the achievement of 13-year old students. The 

students were assessed in mathematics and science in six countries, the United 

States and five others.  

 

IAEP-1 is of particular interest to the author as Ireland was one of the six 

countries to participate in the study. The study considered five countries and 

four Canadian provinces (as Canada does not have a federal system of 

education). These included: 

• British Colombia, Canada; 

• New Brunswick (French and English), Canada; 

• Ontario (French and English), Canada; 

• Quebec, Canada; 

• Ireland; 

• Korea; 

• Spain; 

• The United Kingdom (with students represented from Scotland, Wales 

and England); and 
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• The United States.     

(Board of International Comparative Studies in Education, National Research 

Council, 1995:49). 

 

IAEP-2 was a similar assessment, carried out in 1991, but on a much larger 

scale as it involved twenty countries.  In IAEP-2 the mathematical and 

scientific skills of both 9-year olds and 13-year olds were considered. Twenty 

countries assessed 13-year olds and fourteen countries assessed the science and 

mathematical skills of 9-year olds. The samples collected in IAEP-2 varied 

significantly from country to country, with some countries assessing all age-

eligible students but others selectively assessing for various reasons (including 

geographical and language restrictions). There were also a significant number 

of age-eligible children omitted in some countries due to the fact that they were 

not attending school. The variation in assessment levels within countries makes 

it difficult to accurately compare the data collected and leads to a bias 

(www.nap.edu).  

 

Countries involved in IAEP-2, and their level of participation are considered in 

the following table (all students refers to all age-eligible students): 

 

Brazil São Paulo and Fortaleza, restricted grades, in-school population 

Canada Four provinces at age 9 and nine out of 10 provinces at age 13 

China 20 out of 29 provinces and independent cities, restricted grades, 

in-school population 

England All students, low participation at ages 9 and 13 

France All students 

Hungary All students 

Ireland All students 

Israel Hebrew-speaking schools only 

Italy Province of Emilia-Romagna, low participation at age 9 
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Jordan All students 

Korea All students 

Mozambique Cities of Maputo and Beira, in-school population, low 

participation (Mozambique did not assess Science.) 

Portugal Restricted grades, in-school population at age 13 

Scotland All students, low participation at age 9 

Slovenia All students 

Soviet Union 14 out of 15 republics, Russian-speaking schools 

Spain All regions except Cataluña 

Switzerland 15 out of 26 cantons 

Taiwan All students 

United States All students 

 

Table 6: Participating countries in IAEP-2 (Board on International Comparative Studies 

in Education, National Research Council, 1995:50) 

 

3.8 The Learner’s Perspective Study 

 

Clarke et al (2006) believe that it is ‘an essential thesis of the Learner’s 

Perspective Study (LPS) that international comparative research offers unique 

opportunities to interrogate established practice, existing theories and 

entrenched assumptions’ (Clarke et al, 2006:1). The Learner’s Perspective 

Study examines mathematics practice in eighth-grade classrooms in twelve 

countries. The authors believe that their study achieves this in a more 

integrated and comprehensive fashion than previous international studies. 

Clarke et al (2006) designed a series of research questions to assist data 

collection:  

1. ‘Within the classrooms studied in each country, is there evidence of a 

coherent body of student practice(s) (and to what extent might these 

practices be culturally specific)?’;  



143 

 

2. ‘What are the antecedent and consequent conditions and actions 

(particularly learner actions) associated with teacher practices 

identified in earlier studies as culturally specific and nationally 

characteristic?’;  

3. ‘To what extent does an individual teacher employ a variety of 

pedagogical approaches (and/or lesson scripts) in the course of 

teaching a lesson sequence?’;  

4. ‘What degree of similarity or difference (both locally and 

internationally) can be found in the learner (and teacher) practices 

occurring in classrooms identified by the local education community as 

constituting sites of competent teaching practice?’;  

5. ‘To what extent are teacher and learner practices in a mutually 

supportive relationship?’;  

6. ‘To what extent are particular documented teacher and learner 

practices associated with student construction of valued social and 

mathematical meanings?’; and  

7. ‘What are the implications for teacher education and the organisation 

of schools of the identification of those teacher and learner practices 

that appear to be consistent with the realisation of local goals (and 

those which are not)?’ (Clarke et al, 2006:7-9). 

 

The research design of the Learner’s Perspective Study attempts to complement 

the survey style approach by giving more time to the perspective of the learner. 

Clarke et al (2006) recognise three key requirements: 

1. The recording of interpersonal conversations between students during 

mathematics lessons;  
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2. The documentation of sequences of mathematics lessons, ideally 

covering a complete mathematics topic; and  

3. The identification of the intentions and interpretations underlying the 

actions and statements of the students during the lesson. 

 

 Clarke et al (2006) seek to challenge the traditional approach of a videotape 

study:  

‘single-camera and single-microphone approaches, with a focus on the 

teacher, embody a view of the passive, silent student, which is at odds with 

contemporary learning theory and classroom experience’ (Clarke et al, 

2006:16).  

 

This single-camera approach does not consider the perspective of the learner. 

Important factors that affect any classroom video study are considered in the 

process often known as ‘data reduction’ or ‘data construction’. Clarke et al 

consider the following as being of the utmost importance: the choice of 

classroom; the number of cameras used in the classroom; and who the cameras 

focus on, who is kept in view constantly and who is only picked up on camera 

in certain circumstances (Clarke et al, 2006). Data construction in the LPS 

(Learner’s Perspective study) utilised a three-camera approach: a camera 

focused on the teacher, another on the collective body of students, and a third 

focusing on the class as a whole. The use of these images (generally with a 

picture-in-picture image that showed the teacher in the top right-hand corner of 

the screen) was then used in post-lesson interviews to stimulate participants 

accounts of what had occurred during the mathematics lesson in question. This 

method was used for a sequence of at least ten consecutive lessons. The same 

research design was used in each of the twelve participating countries in order 

to enable the comparison of data. Three mathematics teachers were selected in 

each country to participate in the study. All teachers involved in the study were 

selected based on their acknowledged competence at a local level. Teacher 

selection was made by a local research group, in accordance with defined 

criteria (Clarke et al, 2006). 
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Students were given control of the video player, and the ability to replay 

certain events they considered important, in the post-lesson interviews, and 

were asked to comment on the classroom events. Post-lesson interviews were 

conducted on an individual basis in all countries except Germany, Israel and 

South Africa, where students strongly requested group interviews. Each of the 

three teachers in each country were also interviewed, at least three times, in a 

similar manner. ‘The validity of students’ and teachers’ verbal reconstructions 

of their motivations, feelings and thoughts was given significant thought ’ due 

to the interviews used in the study (Clarke et al, 2006:21).   

 

In analysing the data for the Australian and American participants in the LPS 

the following: 

1. There is evidence that the structure of a single U.S. lesson could not 

capture the essence of a typical lesson structure for all observed U.S. 

classrooms; 

2. Four distinct classroom activities occurred in the U.S. mathematics 

lessons observed: reviewing previous material; demonstrating how to 

solve problems for the day; practicing; and correcting seatwork and 

assigning homework; 

3. The lesson pattern reported in the TIMSS Classroom Videotape study 

(that a classroom begins with reviewing previous material followed; 

then with a demonstration of how to solve problems for the day; 

followed by practicing; and ending with correcting seatwork and 

assigning homework) did not appear as the complete lesson structure in 

any of the 80 U.S. lessons observed; 

4. Almost all U.S. lessons began with students correcting their homework 

from a transparency displayed by the teacher; 

5. Large portions of U.S. time were devoted to student practice and little 

time was given to teacher demonstration; 

6. The US lesson pattern did not match any of the observed Australian 

lessons; 
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7. There appeared to be significant structural differences between the 

Australian and the US lessons analysed; 

8. Australian mathematics lessons demonstrated a rapid alternation of 

activity types (Mesiti and Clarke, 2003). 

 

In relation to the comparison of LPS data between the U.S. and Australia 

Mesiti and Clarke (2003) make the important point that sometimes the 

similarities in lessons in one country are only evident when they are compared 

to lessons in another country. They also address the fact that there is a huge 

variation in lesson structure within countries and that it is important not to 

characterize an entire nations mathematics lessons with a single pattern. This 

highlights the value of comparative studies within and between countries.  

 

3.9 Mathematics in South East Asia 

 

No analysis of international mathematics education is complete without a 

reflection on mathematics achievement in East Asian countries. When the 

TIMSS 1995 results were first published in 1996 the mathematics education 

community was surprised at the sheer excellence of the achievement scores in 

East Asian countries. The four countries in particular that scored in the first 

four positions in mathematics achievement in TIMSS 1995 were Hong Kong, 

Japan, Korea and Singapore. Taiwan joined TIMSS in 1999 and since them 

these five East Asian countries are consistently in the top five positions in the 

TIMSS cycle of assessments: TIMSS 1999, 2004 and 2007. These five 

countries perform equally well in the PISA assessments in mathematics. 

Mainland China has not participated in either TIMSS or PISA but students 

from Mainland China have performed at an equally impressive level in 

mathematics in assessments such as IAEP (Leung and Li, 2010). 

 

3.9.1. Mathematics Education in Mainland China 

 

There has been significant reform in Mathematics Education in Mainland 

China over the past decade. Until ten years ago Chinese students performed 

relatively well in mathematics competitions and large-scale mathematical 
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studies, but there was an over-emphasis on acquisition of knowledge and skills. 

Mathematics instruction tended to focus on lecturing and memorisation to the 

detriment of other mathematical skills. Chinese students also spent more time 

studying mathematics, both in and out of school (Liu and Li in Leung & Li, 

2010). 

 

Liu and Li (in Leung and Li, 2010) acknowledge the following steps towards 

mathematics curriculum reform that have led the process of change over the 

last ten years: 

1. Curriculum Objectives: A move away from an over-emphasis on 

knowledge acquisition; 

2. Curriculum Structure: The school curriculum was deemed to have a 

need to be more balanced, with a move away from over-emphasising 

content-based subjects; 

3. Curriculum Content: Emphasises mathematical connections with every-

day life and knowledge, developed in conjunction with science and 

technology. 

4. Careful selection and encouragement of the skills needed for life-long 

learning; 

5. Curriculum Implementation: A move away from an over-emphasis on 

students’ acceptance, memorisation, drill and practice. Encourage 

students to learn through active participation, analysing and solving 

problems, communication and collaboration; 

6. Curriculum Program Evaluation: Less differentiation and selection by 

students’ ability; 

7. Curriculum Administration: Adapt the curriculum so that it is 

accessible to all students, regardless of their region and/or school. 

Administer the curriculum at three levels: national, regional and school. 

                                                                     (Liu and Li, in Leung and Li, 2010). 

 

Textbooks in Mainland China underwent reform as part of the over-haul of 

mathematics education. The new experimental textbooks have been found 

advantageous for the following reasons as they: 
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• Provide opportunities for students to explore mathematics 

independently; 

• Place value on connections in mathematics with students’ own personal 

experience; 

• Provide opportunities for ‘exploration-orientated’ teaching; and 

• Provide teaching options for teachers. 

                                                                     (Liu and Li, in Leung and Li, 2010). 

 

The curriculum changes implemented in China changed the focus of 

mathematics education away from knowledge acquisition and towards 

preparing students for future life experience. A new value was also placed on 

students having a positive school and mathematical experience. Openness and 

collaboration were also emphasised for the first time, and as outlined above the 

emphasis has moved from rote-learning towards exploratory learning and 

developing creativity in mathematics. 

 

3.9.2. Mathematics Education in Japan 

 

Andrews (in Gates, 2001) describes a typical Japanese lesson as one which 

moves at a slow pace because thinking about a problem, discussing it and 

focusing on the problem at hand are deemed more important than getting the 

correct answer. There is little time spent on textbook exercises. Students tend 

to work on mathematical problems in either small groups or individually, 

before a teacher-led discussion is held, with students ideas presented on the 

board. The discussion element of the lesson is significant with the teacher also 

leading a discussion about the previous lesson’s problem before moving on to 

the current lesson’s topic (Andrews in Gates, 2001). 

 

Conway and Sloane (2005) note that students in Japan are encouraged to solve 

problems by working with each-other, which lends to Brown’s (1997) notion of 

Fostering a Community of Learning (FCL) (see Chapter 2 for further 
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explanation). Conway and Sloane note that in an analysis of 8th grade 

classrooms in Japan the lesson often commenced with the teacher posing a 

mathematics problem on the board, telling students to consider the problem at 

hand and consult each-other, and then encouraging students to share their 

solutions and opinions with the whole class. This also encourages 

mathematical language skills. Conway and Sloane note that this type of FCL 

teaching is in marked contrast to observed lessons, at the same level, in the 

United States and Germany where the mathematics teaching was didactic and 

teacher-led, with students practicing their skills on almost identical problems. 

The author believes that the didactic, autocratic, teacher-led classroom style 

followed in these countries is very similar to what is currently happening in the 

Irish classroom.  

Stigler and Hiebert (1999) considered mathematics classrooms, of eighth grade 

students, in Japan, Germany and the USA. Their research has focused on the 

essentially culturally nature of teaching. They observe that Japanese lessons are 

never interrupted from the outside. ‘The lesson as a unit is the central element 

in the culture of the Japanese school, and each lesson must tell a coherent 

story’ (Clarke et al, 2006:10). In comparison mathematics lessons in the USA 

are combinations of smaller units. For this reason mathematics lessons in Japan 

are not disrupted in the same way by external factors (such as public address 

system, lunch monitors etc.) as they may be in the USA where interruptions are 

more common.  

 

In the Irish education system, in contrast to Japan and more in line with the 

education system in the USA, interruptions do tend to happen. Not only are 

public address systems common-place but also visits by year-heads, student-

teachers etc. occur. It is also a common occurrence in the Irish education 

system for students to miss mathematics classes (along with classes in other 

subjects) as a result of being involved in extra-curriculum activities such as 

sports. Due to the fact that it is extremely unlikely that all students in a 

mathematics class will play the same sport for the school it is most likely that a 

minority of students will miss school for a given sport. As a result the 
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mathematics lesson tends to continue as normal and these students miss out on 

the topic covered on that particular day. This is particularly detrimental for 

students that are involved in more than one extra-curricular activity in the 

school.  

 

 

3.10 Conclusion 

 

The author uses the insight gained from the literature reviewed in this chapter 

to design the research questions to effectively test the hypothesis: ‘That Irish 

students have the ability to transfer the mathematics learned in school to solve 

real-life problems’. The author plans to introduce an international component to 

her research by testing students not only from Ireland, but also from the U.S. 

state of Massachusetts. The comparative nature of the implemented tests gives 

an international component which raises interesting questions about the Irish 

curriculum and assessment style. 
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4.0 Chapter 4: Modelling and mathematics education 

 

4.1 Introduction 

 

This chapter considers modelling as a means of linking classroom mathematics 

with real-life scenarios. The following is a summary of the literature 

surrounding the possibilities available if one is to consider introducing 

modelling as a means of incorporating the realistic into the classroom. 

 

4.2 Traditional Mathematics 

 

Yanagimoto (2005) discusses how traditionally taught mathematics often 

consists of unnatural problems whose sole purpose is to teach a particular 

concept. The author suggests an example of what she considers to be a 

traditional, meaningless type of mathematics question: 

‘I bought ten writing instruments, both pencil and ball-point pens. I paid 

960 yen. The pencils cost 60 yen each; the ball-point pens cost 120 yen 

each. How many pencils did I buy?’(Yanagimoto, 2005:12).  

 

Modelling problems differ from problems posed in traditional mathematics 

education in that the problems introduced are ones which are faced in the 

society in which one lives, not unnatural problems that have been constructed 

solely to teach a mathematical principle. In traditional mathematics the value 

of the solution is judged by whether it is important to the system of pure 

mathematics, or the regularity with which the problem comes up in 

examinations; in modelling the value of the solution is judged by the results of 

its application.  

 

Lege (2005) explains that imitation and practice are cornerstones of traditional 

mathematics education, especially in relation to problem-solving. Keast (1999) 

highlights the following features of traditional mathematics. A traditional 

mathematics lesson: 
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• Has an authoritative figure who gives out information in a non-

contextual way. This information does not appear to have any relevance 

to the life of the student; 

• Promotes learning that is based on remembering and applying rules;  

• Consists of contrived exercises, examples and problems bearing little 

resemblance to real-life; 

• Encourages students to work individually; and 

• Promotes the idea that answers in mathematics are always known and 

pre-determined, and that an answer is either right or wrong. This leaves 

little room for discovery learning and/or creativity. 

 

Reusser and Stebler (1997) explain that students solve stereotypical, traditional 

mathematics problems with little relevance to real life (even if they are 

unsolvable). This outlook is based on the following assumptions by the 

student: 

• That every problem presented by a teacher or in a textbook makes 

sense; 

• That every question in mathematics is inherently correct and complete; 

• That there is only one ‘correct’ answer to every problem; 

• That one is obliged to give an answer to every question presented; 

• That all numbers provided in the question must be used in order to 

arrive at the correct solution; 

• If a chosen mathematical operation results in an answer that is a whole 

number (with no remainder) then one is probably on the correct track; 

• If one does not understand a problem then look for key words and at 

previously solved problems and repeat the same steps. Reproduction 

and pattern detection are key mathematical skills in solving traditional 

mathematics problems.  

 

Reusser and Stebler (1997) assert that these assumptions inhibit correct 

mathematisation and the ability of students to deal with realistic, not always 

tidy, variables. If students are to develop an ability to transfer their 

mathematical skills to real-life situations than school experience should 
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promote their ability to do so and not impede their mathematical development 

by dressing mathematics up with rules, procedures and formulae that must 

always be followed if the one, correct answer is to be arrived at. 

 

4.3 Mathematical beliefs 

 

Maab (2005) proposes that mathematical beliefs may be the main barriers to 

the integration of modelling in the traditional school setting. The mathematical 

belief system is formed by all beliefs regarding mathematics, mathematics 

instruction and the studying of mathematics. Maab (2005) raises the following 

questions: 

• How do students’ mathematical beliefs change over a course of 

mathematics classes during which  modelling exercises are introduced 

and integrated? 

• How far do such lessons enable students to carry out modelling 

processes independently? 

• What connections exist between mathematical beliefs and modelling 

competencies? 

 

When modelling is introduced in the classroom setting Maab found that the 

single factor that affects the process the most is the mathematical belief system 

of the students and their teachers. Students’ attitudes to mathematics and 

mathematical modelling are closely related to their mathematical beliefs.  

 

Grigutsch (1996) identified students’ mathematical beliefs as falling into four 

categories. Mathematics is referred to by Grigutsch as a field of science. The 

four main categories for mathematical beliefs are mathematics as: 

1. A science which mainly consists of problem solving processes. 

2. A science which is relevant for society and life. 

3. An exact, formal and logical science. 

4. A collection of rules and formulae. 
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4.4 Attitudes towards mathematics 

 

In designing an introductory course in mathematics for pre-university students 

in a university, UNEG, in Buenos Aires, Falsetti and Rodriguez (2005) 

considered the introduction of mathematical modelling as a means of 

combating negative attitudes towards mathematics. Their aim was to use 

modelling to improve mathematical confidence and hence performance in 

mathematics. A previous assessment determined the following characteristics 

among the students in the university towards mathematics: 

• A feeling of inhibition towards mathematics; 

• Intimidation when faced when variations in problems from the ones 

they have previously practiced and learned; 

• No reflection period when solving a problem; 

• A feeling that mathematics is very formal and regimental; 

• No problem solving strategies; and 

• Difficulty in making simple deductions and reasonings.  

 

Falsetti and Rodriguez (2005) aimed to instil in the students an image of 

mathematics as something they could contribute to and be a part of.  

‘If the boundary between mathematical and non-mathematical contexts can be 

seen as permeable, mathematics can be seen as a science that gives 

approximate, not categorical answers to the problems’ (Falsetti and Rodriguez, 

2005:15). 

 

Maab (2005) identified four main types of learners with regard to the 

mathematical modelling process: 

• Type 1: The reality-distant modeller: is opposed to the modelling 

process and embraces context rich mathematics. This results in a lack 

of competency in dealing with modelling problems. This type of learner 

has problems with the construction of the real model, the validation and 

the interpretation. 

• Type 2: The mathematics-distant modeller: gives preference to real-

world problems. This type of learner has a negative attitude to 
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traditional mathematics and generally performs poorly in mathematics 

tests. The mathematics-distant modeller is good at constructing the real 

model but runs into difficulty when it comes to mathematising and 

constructing the mathematical model. 

• Type 3: The reflecting modeller: has a positive attitude towards both 

mathematics and mathematical modelling. 

• Type 4: The uninterested modeller: has a negative attitude towards both 

mathematics and mathematical modelling. This type of learner 

struggles with the modelling process and also lacks basic mathematics 

competency.  

(Maab, 2005: 70). 

 

4.5 Anti-modelling environment 

 

Lin and Yang (2005) describe a non-friendly modelling environment as 

coming from three primary sources: 

• The background of mathematics teachers and students; 

• The examination process; 

• An education system that relies heavily on textbooks. 

 

The specific situation that Lin and Yang consider is that of Taiwanese students. 

Mathematics students in Taiwan perform very well in international assessments 

such as TIMSS but the authors believe that this does not demonstrate relational 

understanding. In Taiwan the traditional mathematics environment in the 

classroom leads to a situation where mathematical applications and modelling 

are unfamiliar and as a result students and teachers may feel excluded. The 

study carried out by Lin and Yang found that not all teachers are content with 

their students using their own approaches without being instructed by the 

teacher on how to go about solving the problem. The students in turn are used 

to being told what is correct and when their solution is the appropriate one. 

Students are also familiar with the teacher demonstrating procedures which 

they then follow in solving mathematical problems. 
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Lin and Yang (2005) also describe the over emphasis of examination 

preparation as having a negative impact on modelling in the classroom. In 

Taiwan students and teachers are very focused on preparing for the Joint 

University Entrance Examination (JUEE). This is of primary concern with 

regard to teaching and learning. Not only does this examination determine the 

future academic success of the students involved but the authors also explain 

that the teachers’ performance is also determined by the success of their 

students. This leads to an emphasis on memorisation of formulae and 

procedures, recall, drills and repetition of algorithms and constant practice of 

typical and traditional examination problems. This situation is very similar to 

the Irish examination system’s impact on the teaching and learning of 

mathematics in Irish schools. Perhaps the sole discrepancy is the reputation of 

the teacher being at risk. Despite this many Irish teachers and educators would 

possibly argue that a teacher’s reputation is determined within schools and 

communities by the class groups they teach and the examination success of 

those students. In this regard perhaps the Taiwanese situation is more similar 

than the author initially believed to be the case. 

 

The role of textbooks in the Irish education system and the over-reliance on 

textbooks by Irish students and teachers may have a negative impact on any 

attempt to introduce modelling to the traditional mathematics classroom. The 

primary purpose of the textbook is to support the mathematics teacher and 

provide a useful resource to assist one’s teaching. Yet many Irish mathematics 

teachers are led through the curriculum, with the textbook leading the way. A 

situation arises where teachers are slavishly following the textbook with little 

variation or adaption introduced by themselves. Textbooks emphasise drill and 

practice through the process of solving numerous mathematical questions of 

similar format and content. This in turn dominates these skills in Irish 

mathematics lessons and reproduction of familiar solutions becomes the key 

skill.  
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‘“Real” situations in textbooks were like ornaments that do not motivate 

learning and like an artificial reality that do require modelling with solving 

problems’ (Lin and Yang, 2005). 

 

A further issue which arises due to an over emphasis on the use of a textbook is 

the dependency on the quality of textbook itself. The quality of some of the 

popular textbooks used and the inherent pedagogical value may be 

questionable. This is an issue that is not given adequate consideration in Irish 

schools where brand loyalty may be an over-riding factor when textbook 

selection is under way.  

 

4.6 The modelling process: 

 

Yanagimoto (2005) proposes that it is necessary to review existing 

mathematics teaching methods that have nothing to do with real life and the 

functioning of society. Yanagimoto believes that the future in mathematics 

education relies on school mathematics focusing on undeveloped mathematical 

problems that have no proper answers or solutions. The most important aspect 

of mathematics teaching and learning should be the development of a creative, 

scientific mind and this is stifled by traditional mathematics education 

methods. An over emphasis on question recognition and reproduction is in 

direct opposition to the development of creative or flexible mathematical 

thought processes. The predictability of the Junior and Leaving Certificate 

mathematics examination questions are also negating creative thought. 

Students in Ireland are currently taught that mathematics is about recognising a 

pattern and solving the question as you normally would. The idea that 

mathematics is creative and unpredictable is not a concept that the majority of 

Irish mathematics students would agree with on completing their second level 

education. This is in contrast to what Yanagimoto suggests is the future in 

mathematics education. 
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‘The aim is to show students a zigzag thought process in the making, as well as 

models of refined perfection, in order to remind them of the importance of 

flexibility in ideas’ (Yanagimoto, 2005:2). 

 

Yanagimoto (2005) suggests that the benefits of mathematical modelling in 

education include: 

• Helping students to solve complicated problems involving actual 

phenomena using mathematics; 

• Modelling enables students to demonstrate their creativity in their 

approach to solving the problem; 

• Students are given the opportunity to approach problems they have not 

solved before, using methods they have not encountered before.  

(Yanagimoto, 2005). 

 

The following steps occur as part of the modelling process according to Maab 

(2005: 62): 

1. A real situation is simplified, idealised and structured; 

2. This leads to a model of the original, realistic situation; 

3. The real model is then mathematised (i.e. restructured in terms of the 

mathematical information deemed to be important). This leads to the 

formation of a mathematical problem; 

4. The mathematical problem is solved in order to obtain a mathematical 

solution; 

5. This solution must them be interpreted with respect to real-life; 

6. The procedure and solution have to be validated with respect to suitable 

reference values; and 

7. If the solution does not correspond to reality, then aspects of the 

modelling process must be adapted and then the process repeated.  

 

Modelling competencies as outlined by Maab (2005) include: 

• Competencies to understand the real problem and to set up a model 

based on reality; 
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• Competencies to set up a mathematical model from the real model and 

competencies to solve mathematical questions with this mathematical 

model. 

• Competencies to interpret mathematical results in a real situation. 

• Competencies to validate the solution. 

 

Some features of applied mathematics include, according to Yanagimoto 

(2005): 

• The use of concrete problems. 

• The value of the solution is judged by the results of its application. 

• Importance is attached to ideas rather than to the rigid application of 

theories. 

• There can be more than one solution. 

• Students must decide which model they feel is the most suitable. 

• Students must think independently about the process before coming to 

a conclusion. 

• Students’ comments after a modelling lesson included: ‘After this 

lesson, however, I came to realize that mathematics could be quite 

helpful to us in our real lives’ (Yanagimoto, 2005:11).  

 

Humble (2005) proposes that students should complement their decision 

making process by always questioning the answer to a given solution. Humble 

proposes that by asking why from the answer the students will generally find 

out more about the question. The beauty of mathematics for Humble is the 

puzzlement and confusion that must be faced before the solution is complete. 

In traditional mathematics students rarely embrace this puzzlement in their 

quest to find a solution as quickly as possible. By embracing the mathematical 

process, and enjoying this confusion, students will rely on their own 

mathematical instincts rather than those of their teacher. By questioning their 

solution students are not merely performing by rote but delving into the 

mathematical process that has just occurred.  
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Geraniou et al (2009) are working on a research project in the hope of 

developing a method of mathematics learning to improve mathematical 

generalisation. What students need to develop their mathematical thinking is 

the opportunity to ‘design situations that are rich in the construction and 

analysis of patterns, and provide both a rationale and computational support 

for expressing generality’ (Geraniou et al, 2009: 75). Modelling can be a useful 

tool to develop the mathematical generalisation skills of students with a 

constructivist pedagogical approach supporting students with their modelling 

activities. The preliminary data results from Geraniou et al suggest that while it 

is difficult to move from specific mathematical examples towards the general, 

the constructivist approach to learning allows the students to develop their 

skills by following a number of understandable steps.   

 

4.7 Positives and negatives attributed to mathematical 

modelling 

 

Like all concepts there are both positives and negatives attributed to the 

modelling process. Some of these are highlighted in the following section. 

Positives include the facilitation of in-class differentiation, the engagement of 

previously dis-engaged students, and the promotions of sense-making and 

reasoning skills. Negatives can include behaviour problems in students when 

faced with the modelling process and a perception that modelling is not ‘real’ 

mathematics.  

 

Maab (2005) introduced mathematical modelling to a group of students in the 

German lower-secondary school system. All the students involved in her 

programme developed mathematical modelling competencies over this period, 

regardless of their mathematical ability. The author determined that modelling 

questions have self-differentiating properties in that they can be as challenging 

as the student needs them to be, or as basic as required for the less-able student. 

Solutions can be developed and extended or reduced depending on students’ 

capabilities. The individual needs of all students can therefore be realised. 
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Lege (2005) introduced a mathematical modelling scheme to students that were 

deemed to be ‘at-risk’ in two schools in the United States. ‘At-risk’ is 

determined to be the probability that the students are at-risk of not graduating 

from high school. The students involved in Lege’s study were deemed to be at 

least one grade behind the grade they were actually in in terms of mathematical 

ability. The study involved approximately one quarter of the total ‘at-risk’ 

population of the two schools involved. Positives of introducing modelling into 

these two schools, as suggested by the author, include: 

• A positive change in the environment of the classroom; 

• A repositioning of the teacher as a guide rather than an expert; 

• The engagement of students in both mathematics and meaningful 

discussion; 

• The introduction of group work in a traditional classroom setting; 

• The elevation of critical-thinking skills; 

• Challenging students with a complex, problem-solving environment; 

• Developing sense-making; 

• The provision of a realistic problem-solving experience; and 

• The injection of a social component into mathematics education. 

 

Lin and Yang (2005) suggest that introducing modelling to the mathematics 

classroom will benefit situational reasoning, mathematisation skills and 

students’ ability to interpret and communicate in mathematical terms.  

 

Lege (2005) suggests that there is evidence that some students may become 

disengaged and demonstrate some behavioural problems when introduced to 

the mathematical modelling process. Reasons for this may include a perception 

that modelling is not really mathematics and the suspension of normal 

classroom roles.  
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In order to effectively introduce modelling in the Irish mathematics classroom 

it is essential that teachers have an awareness of the negative possibilities and 

are mindful of introducing mathematical modelling as ‘real’ mathematics. 

Examples of where mathematical modelling could be used in real life situations 

may be helpful in this situation. Through effective practice mathematical 

modelling will become a ‘normal’ classroom activity and appreciated by the 

students as such.  

 

4.8 Modelling and gender 

 

Palm and Nystrom (2010) examined the modelling of real-world problems with 

respect to gender. They considered the idea that there may be gender 

differences in the way students approach the modelling of real-world 

situations. The authors were also interested in task authenticity, and the 

appropriate use of real-world knowledge, affecting male and female students 

differently. Authentic school tasks are determined to be those that successfully 

emulate real-life tasks. Palm and Nystrom investigated their hypothesis with 

161, eleven year-old students. The students were from eight fifth grade classes 

from a selection of schools in Sweden. The study consisted of teacher 

interviews, student testing and post-testing interviews with the students 

involved. There were two different types of test: the first consisted of 

traditional style word questions while the second test consisted of authentic, 

realistic questions. No gender differences were found. While this is a small 

sample, it is indicative of what may be expected from other fifth-grade 

Swedish students.  

 

Keast (1999) discovered marked differences in mathematical learning styles 

that are not necessarily gender specific but they are gender related. In this 

study the researcher was involved in assessing the affect of single-sex 

mathematics classes in a small, rural, secondary school in Australia. It was 

proposed that the introduction of single-sex mathematics classes for students in 

years 7 and 8 may result in an increase in self-confidence for female students 

which led to a higher uptake of mathematics courses at senior level in the 
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school. Keast identified two learning styles: separate and connected knowing; 

and two associated teaching styles: separate and connected teaching. Separate 

teaching is thought to be traditional teaching of the ‘chalk-and-talk’ form. The 

following features of male and female learning styles were noted in the 

appropriate single-sex mathematics class in Keast’s study. 

Male students in the single-sex boy’s mathematics class: 

• Preferred to work individually; 

• Did not want to share their ideas; 

• Disliked group work; 

• Were more content as ‘separate knowers’; 

• Responded well to competition; and 

• Preferred learning from the board with the teacher instructing the 

students on what the important aspects to learn were. 

 

Female students in the single-sex girl’s mathematics class: 

• Formed small groups; 

• Liked working with others and sharing ideas; 

• Worked well through discussion and developing ideas in a connected 

way; 

• Sought help from each other; 

• Enjoyed the opportunity to investigate problems; 

• Were more content as ‘connected knowers’; and 

• Preferred discovery learning to traditional book work. 

 

Keast (1999) highlighted the fact that while all boys were content to learn in 

this individual, separate manner not all girls were content to be taught in a 

connected way. A minority of very able female mathematics students 

demonstrated a preference for learning individually and not as part of a group. 

Some girls developed from separate knowers to connected learners over the 

course of the year. Keast also noted that it was found to be ineffective to teach 

female mathematics students in the traditional way but that it was very difficult 
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to involve boys in discussion regarding their mathematical understanding and 

they worked better as individuals. 

 

Nathan and McMurchy-Pilkington (1997) investigated empowering the Maori 

community in New Zealand through mathematical power. They found that the 

preferred learning style of female Maori students was active-learning with a 

hands-on element. These women performed well in mathematical activities that 

were visual and engaging, and described them as interesting and fun. Students 

who enjoy mathematics and find it engaging will have a more positive attitude 

towards learning mathematics and making it part of their every day life. 

 

4.9 Modelling specific methodology 

 

Ikeda and Stephens (2010) carried out an experimental teaching program for 

9
th
 grade students in Japan. The authors hoped to establish a method of 

assessing the effectiveness of their modelling intervention. It was decided to 

pre and post test the students involved in the study using both a PISA problem 

and a general question, which involved determining what were important 

aspects of the modelling process. Responses to both the PISA problem and the 

general question were given a coding system and were analysed based on the 

students responses before and after the intervention. The intervention phase 

involved an experimental teaching programme in which the researchers 

attempted to improve students’ conceptual knowledge through modelling. This 

phase involved students in a 9
th

 grade Japanese high school and was carried out 

over a period of nine weeks. Three main teaching practices were emphasised in 

relation to improving the modelling skills of the students involved: 

• Conflicting situations: where the teacher presents the key conflicting 

situations that arise from particular modelling problems and the 

students then drive key ideas that arise from these situations; 

• Repeated connections: where the teacher constantly makes connections 

between students’ thinking which promote modelling; and 
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• Spiral reflections: where the teacher encourages the students to reflect 

on the modelling process and all which that entails through the series of 

nine lessons. 

 

Ikeda and Stephens (2010) study had a distinct research plan involving the 

following three steps: 

1. The three underlying teaching principles as outlined above; 

2. A planned program of experimental teaching; and 

3. A set of assessments to evaluate the effectiveness of the program. 

 

The planned program of experimental teaching included the constant emphasis 

of the three teaching principles, the phased introduction of a range of 

modelling tasks and a clear focus on the key ideas in order to promote 

modelling. Modelling was introduced to these students in order to assist them 

in solving real-world questions mathematically. Reflection was key to the 

experimental teaching phase and was used to encourage and promote 

understanding of the purpose of modelling and how it may used in real life, 

outside of the classroom environment.  

 

Ikeda and Stephens (2010) assessed the success of introducing modelling 

strategies to the above group by using a PISA 2006 assessment question and a 

general question on modelling as pre and post-test questions. The post-test 

showed significant improvement in both question types which suggests that the 

three teaching principles that were emphasised (conflicting situations, repeated 

connections and spiral reflections) were effective in improving student 

mathematical performance through modelling techniques.  

 

4.10 Conclusion 

 

In order for Irish mathematics teaching and learning to evolve effectively, and 

for the introduction of the ‘Project Maths’ curriculum to be a success, it is 

important that we consider opportunities in the Irish curriculum for 

mathematical modelling. The author is of the opinion that modelling is an 
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effective strategy for promoting connections between the mathematical theory 

traditionally learned in the classroom and realistic, authentic mathematics 

situations. However, she is fully aware that a willingness to embrace modelling 

on the part of the teacher is not sufficient when it comes to effectively 

introducing modelling in the mathematics classroom – students and teachers 

must fully embrace the modelling process and practice the requisite techniques 

for the introduction of modelling to be effective.  

 

It is important to note that the new ‘Project Maths’ curriculum does not engage 

in the modelling process, despite references to real-life mathematics and 

authentic problem-solving. The author believes that this is a design flaw in the 

‘Project Maths’ curriculum as mathematical modelling is the perfect 

opportunity to link traditional mathematics with innovative and effective 

problem solving techniques. Mathematical modelling affords the opportunity to 

allow students to develop as creative mathematicians while providing 

parameters within to do so. The techniques learned through modelling allow 

mathematical knowledge a valuable place in society and the work place. 
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5.0 Chapter 5: Methodology 

 

5.1 Introduction 

 

The research process and collection of data is discussed in this chapter. Both 

the methodology and the research methods selected by the author are 

examined, and the chronology of the research process is outlined. It is 

important to appreciate that while the term ‘methods’ refers to the procedures 

and instruments used, the word ‘methodology’ refers to the analysis of these 

procedures (Cohen and Mannion, 1992). Teddlie and Tashakkori (2009) 

describe research methods as specific strategies and procedures for 

implementing research design, while they define methodology as a broad 

approach to enquiry which specifies how research questions should be asked 

and answered. Gray (2009) explains that methodology is the analysis of a 

particular method used in research, and the broad philosophical and theoretical 

justification behind those methods.   

 

The purpose of this chapter is to introduce the reader to the theoretical 

framework supporting the research decisions, explain the background to 

deciding on one research instrument over another, and engage in an analysis of 

these research procedures. The author documents the move from the general 

research problem (Irish students performing poorly in international 

mathematics assessments such as PISA and TIMSS) towards the specific 

research question (student difficulty in transferring mathematical knowledge 

learned in the classroom to the problem-solving process in a different setting). 

Cohen et al (2000) refer to this process of focusing a research question as 

‘operationalisation’, and describe it as a move from the general towards a 

specific question for which the researcher seeks actual answers. 

‘Research is a systematic process of collecting analysing, and interpreting 

information (data) in order to increase our understanding of a 
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phenomenon about which we are interested or concerned’ (Leedy and 

Ormrod, 2010:2).  

 

Leedy and Ormrod (2010) suggest that there are eight distinct characteristics of 

research projects. The research: 

1. Originates with a question or problem; 

2. Requires clear articulation of a goal; 

3. Requires a specific plan for proceeding; 

4. Usually divides the principle problem into more manageable sub-

problems; 

5. Is guided by the specific research problem, question or hypothesis; 

6. Accepts certain critical assumptions; 

7. Requires the collection and interpretation of data in an attempt to 

resolve the problem that initiated the research; and 

8. Is cyclical by nature. 

 

The author illustrates the progression of her research with respect to these 

characteristics throughout the methodology chapter. The outcome of this 

research will lead to a greater understanding of knowledge acquisition versus 

understanding in Irish mathematics education, and will contribute towards a 

growing understanding of mathematics teaching and learning in Irish society. 

McNiff (2002) explains how research consists of three main components: 

• Ontology: the way we view ourselves; 

• Epistemology: how we understand and acquire knowledge; and 

• Methodology: how we do things. 

 

The author endeavours to maintain an awareness of these three components in 

the process of this research project. 
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5.2 The Research Question 

 

Can students utilise the mathematics they learn in school in unfamiliar 

situations? This is the primary research question. In order to answer this 

question the author did a significant amount of desk research on the topic. By 

considering the significant body of literature available the research question 

was refined. Three methods of data collection are used to collect the field 

research:  

• a structured observation to analyse the classroom situation in relation to 

mathematical learning theories;  

• two tests: the first a traditional pen and paper mathematics test and the 

second a realistic, problem-solving question involving justification of 

the answers and reflection.; 

• A semi-structured interview. 

 

5.3 The Research Sample 

 

The research sample consists of mathematics students in their second year of 

second level schooling. The author decided on this year group for several 

reasons including the following: 

• The students are not in their first year in Irish second-level education, 

therefore they have had time to make the necessary social adjustments 

and are familiar with the curriculum. The students also have had time to 

adjust to the teaching styles that pertain in mathematics teaching at 

second level; 

• It is a non-state examination year and therefore both the students and 

their teachers are under less time pressure; 

• The students generally have a mean age of fourteen years. This enables 

some comparison with the research subjects in PISA, who were fifteen, 

and TIMSS, where students in the 8
th

 grade were assessed. The 8
th

 

grade is very comparable age wise with Ireland’s 2
nd

 year. It would not 

be feasible to assess Irish fifteen years olds as the majority of them are 
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sitting the Junior Certificate examination at the end of that school year. 

As a result both students and teachers are under particular pressure in 

that academic year which would make participation in external research 

projects difficult. 

 

The research sample consists of students in six mathematics class groups in 

five Irish second-level, co-educational schools. The schools were selected at 

random from a geographical region encompassing three counties. The location 

was selected for convenience reasons for the author in order to make visiting 

the schools feasible within the school week. It was decided not to consider 

students in single-sex schools as gender may be introduced as a variable 

affecting the research question.  

 

5.4 Research Aims 

 

The primary research aim of this study is to test the hypothesis as set out in the 

introduction: ‘That students have difficulty transferring mathematical 

knowledge learned in the classroom to unfamiliar, realistic situations’. The 

author sets out to consider the hypothesis in relation to the theoretical 

framework as set out in section 5.9. The effects of different mathematical 

learning theories are considered through the data collection methods 

implemented: the structured observation, testing and semi-structured interview, 

and the subsequent data testing (both quantitative and qualitative). The ability 

of students to transfer mathematical knowledge is primarily assessed through 

the two tests:  

1. The traditional style test with questions and mathematical topics 

familiar to the student; and 

2. The realistic, problem-solving test with familiar mathematical topics 

posed in an unfamiliar format. 

 

Through assessing students’ mathematical knowledge by implementing two 

distinct tests the author hopes to resolve the primary research question. The 
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structured observation gives some insight into the learning styles that are 

involved in the teaching and learning of mathematics in the classroom 

situation. The effect of learning styles on mathematical transfer can be noted 

through considering the students involved in this research situation in light of 

their classroom experience. 

 

5.5 The Purpose of the Research 

 

The purpose of the author’s research is to identify any disparities that may exist 

between students’ ability to solve traditional versus realistic mathematical 

problems. The author is of the opinion that lack of transfer ability (from 

learned mathematical knowledge to problem-solving skills) can be 

demonstrated if students have difficulty in solving realistic questions that 

involve mathematising but can solve traditional questions that require 

reproduction relatively easily. The purpose of the structured observation is to 

incorporate the different learning theories/styles that are implemented in the 

classrooms that are involved in the study. The ability of the student to utilise 

the mathematical knowledge learned in the classroom to address realistic, 

unfamiliar, untidy situations can therefore be examined in terms of 

mathematical learning styles. 

 

5.6 Research Design 

 

Creswell (2009) describes a research design as a plan and procedure for 

research that incorporates everything from broad assumptions to detailed 

methods of data collection and analysis. Creswell (2009:5) suggested the 

following framework for design, as illustrated in the following diagram: 
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5.7 The Research Process 

 

 

 

Figure 1: The research process 

 

The author commenced her investigation into the research question by 

considering the considerable body of literature available. The focus in the 

literature review was initially on Irish students’ poor performance in 

international mathematics assessments. Through immersion in the vast body of 

research on the subject the author moved towards a more specific question: the 

ability of a student to transfer mathematics from the classroom to realistic 

situations.  

 

The literature introduced the author to the concept of different learning styles 

and the influence they can have on the ability of students to process knowledge 

correctly. The research question considers the concepts of reproducing 

knowledge versus the demonstration of understanding. If knowledge is not 

completely processed a difficulty can arise when students are expected to 

transfer this mathematical knowledge to an unfamiliar situation. The concept of 

different learning theories and styles (absolutist versus relativist philosophies) 

developed into a theoretical framework on which much of this study is based. 

The research process is illustrated in the following schematic: 
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Figure 2: An illustration of the research process carried out by the author 
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5.8 The Chronology of the Research 

 

The author completed the research over a three-year period. A chart 

documenting the chronological life of the research project is shown below: 

 

Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

2008      Literature Review 

2009 Literature Review     

   Decide on Research Question     

     Write up of literature review to date Analysis of research 
methods 

2010 Design of real-world 

test and pilot of same. 

Design of traditional 
test and pilot of same. 

Analyse results from 

pilot tests. 

Research and write 
research methods and 
methodology 
chapter. 

Research and write 

chapter on maths ed 

and modelling. 

Continue to research and 
write research methods and 

methodology chapter. 

   

     Design structured 
observation 

Pilot of structured 
observation 

  

        Approach 
schools for 
involvement in 
research and 
access to 
mathematics 
classes 

Visit all schools and 
classes involved in 
research and implement 
tests, observation and 
hold interviews. 

            

2011         

Analysis of data 

collected (structured 

observations and test 

data). 

Validity and 

reliability testing. 

Write up of thesis to 
include proof-reading 
all chapters to date, 
completing chapters 
etc. 

       

        

 

Table 7: Chronological life of the research project 
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5.9 The Theoretical Framework 

 

The theoretical framework underpinning the research is examined in this 

section. The author is using a framework based on the major learning theories 

in mathematics. The various learning theories are considered under one of two 

philosophical/epistemological categories (as outlined by Lyons et al (2003)): 

• Absolutist, and 

• Relativist. 

 

These general labels for learning theories provide a basic division between 

behaviourist style learning theories (absolutist) and cognitive theories 

(relativist). The author decided to use the two contrasting epistemological 

traditions of the absolutist and relativist traditions as a means of sorting the 

various learning theories into categories. ‘Inside Classrooms’ (Lynch et al, 

2003) is a significant body of literature based on research on Irish mathematics 

education at second-level and the author wished to acknowledge this work by 

using the same terminology used. The work carried out by Lynch et al (2003) 

draws on the work of Leone Burton for its discussion on epistemological 

traditions. As a result the author considers the work of Burton (1994, 1995, 

1999) in discussing the absolutist and relativist epistemological stances.  

 

Behaviourist, cognitive and constructivist learning theory are the primary 

learning styles considered by the author and are located within the contrasting 

epistemological traditions: the absolutist tradition and the relativist tradition. 

The author attempts to place the current Irish mathematics curriculum, and the 

teaching and learning happening in Irish mathematics classrooms, within this 

framework. The performance of the students participating in this research is 

considered in terms of the teaching and learning methods they are exposed to, 

and this is then considered in terms of the theoretical framework. 

 

The following table illustrates the categorisation of various learning theories 

into the categories: absolutist and relativist: 
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Absolutist Learning Theories Constructivist Learning Theories 

Behaviourism Cognitive Learning Theories 

Objectivism Constructivism 

Separate Knowing Connected Knowing 

 

Table 8: Absolutist and relativist learning theories 

 

Gergen (1997) claimed that objectivism/behaviourism and constructivism 

represent opposite extremes on an epistemological continuum. The objectivist 

learning theory is very similar to the behaviourist learning theory and the 

author will use these two terms interchangeably. Keast (1999) identifies two 

learning styles: separate and connected knowing, and two associated teaching 

styles: separate and connected teaching. Separate knowing and teaching is 

typical of traditional mathematics teaching. Keast believes that traditional 

mathematics teaching alienates the connected knower who benefits from 

mathematics that relates to one’s own life experience. 

 

In practice the conflicting epistemological view-points of absolutism and 

relativism and the learning theories of behaviourism and cognitive knowing are 

not mutually exclusive. Indeed many combinations exist between the various 

categories. In practice, many teachers speak of embedding a mixture of 

directed instruction, as per behaviourism, and constructivist learning theories, 

such as student-direct learning, in their teaching. It is also possible that a 

teacher may hold the belief that mathematics is objective, logical and 

consistent (as per the absolutist philosophy) while embracing constructivist 

practices, such as co-operative learning, in his/her classroom as a means of 

imparting this mathematical knowledge. The author acknowledges the various 

combinations of learning theories and philosophical stand-points that 

mathematics teachers may hold with relation to teaching and learning. In the 

course of the data collection and analysis of this research, the author considers 

the Irish mathematics education system within this notion of separate knowing 

and teaching versus connected knowing and teaching while acknowledging that 

these are not always mutually exclusive. 
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5.9.1. Behaviourism versus Constructivism 

 

Despite the reality of teaching practices frequently consisting of a mixture of 

behaviourist and cognitive learning theories, the literature often speaks of the 

opposing nature of the two. Handal (2003) demonstrated the polarity of the 

terms used to describe the behaviourist perspective and the constructivist 

perspective. The following table shows some of those terms used to represent 

the two learning theories:  

Behaviourist Perspective Constructivist Perspective 

Behaviourism Constructivism 

Traditional Progressive 

Mimetic Transformational 

Basic skills Higher order thinking 

Content Process 

Positivist Relativist 

Subject-centred Child-centred 

Transmission of factual and procedural 

knowledge 

Emphasis on qualitative transformation 

in outlook of the learner 

Euclidean Quasi-empirical 

Absolutist Fallibilist 

Technical-positivism Constructivism 

 

Table 9: Terms associated with the behaviourist and constructivist learning theories. 

  

 

Burton (1994) explains that a dichotomy appears to exist between the absolutist 

and relativist philosophies. She explains that this apparent dichotomy is in fact 

false as there are many positive and negative examples that can fit under each 

philosophical category. Burton (1994:209) provides the following explanation 

of aspects of both philosophies: 
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An absolutist philosophy A relativist philosophy 

Mathematics is seen as information Mathematics is a result from know-how 

Transmission of knowledge from 

teacher to students 

Enquiry-based learning 

Learners are dependent on the teacher Autonomous learners 

Competitive and individualised Collaborative and group-based 

Interaction through questions and 

answers 

Discussion based learning 

Assessment based on unseen written 

tests 

Assessment through integral tasks and 

by both the self and with peers. 

 

Table 10: Characteristics of the absolutist and relativist perspectives. 

 

From an Irish point of view the author is interested in considering which of the 

labels, seen in the table above, relate to mathematics education as it exists in 

Irish mathematics classrooms. The author intends to discuss the above table in 

the data analysis chapter with relation to the data collection methods: tests, 

structured observation and semi-structured interviews. Through analysing the 

data provided by these mixed method techniques the author will seek to link 

the findings to the absolutist and/or relative philosophies of learning.  

 

5.9.2. The Absolutist Philosophy: 

 

The absolutist tradition is that which is most typically associated with 

‘traditional’ mathematics and is very familiar to those involved in mathematics 

education in Ireland. The absolutist philosophy considers mathematics as a 

logical and value-free process. It often underpins the philosophical stand-point 

held by teachers who use behaviourist teaching methods such as the use of 

didactic teaching and the idea of the teacher as the transmitter of knowledge 

with the student as a receiver of this information. However, as mentioned 

earlier an absolutist philosophy does not guarantee the sole use of behaviourist 

teaching and learning methods in the classroom: it is possible to consider 
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mathematics as logical and value-free while utilising child-centred teaching 

methods in practice.  

 

Burton (1994: 207) describes behaviourist teaching methods as follows: ‘A 

hierarchy is thus defined for those engaged in teaching and learning, with 

lesser mortals, learners, attempting to obtain knowledge and skills from higher 

mortals, teachers’. Burton expands further when she simplifies her definition 

of the absolutist tradition to one in which the primary focus of mathematics 

education and the aim of educators regarding mathematical facts is to ‘convey 

them into the heads of the learners’ (Burton, 1995:520).  

 

Burton (1994) discusses how mathematics is considered to be a subject that is 

value-free, logical and knowledge based, and thus not a subject that is 

perceived to demand a demonstration of creativity and/or imagination. In the 

absolutist tradition of learning the knowledge, not the learner, is at the centre of 

all teaching and learning activity.  Mathematics, in the absolutist tradition, has 

a learning style that ‘assumes transmission of unchallengeable content’ (Burton, 

1994:207). Burton (1995) explains that despite the fact that absolute objectivity 

in mathematics is a myth, nevertheless it is a powerful myth which continues to 

exercise considerable power in mathematics education – both in curricular and 

methodological terms.  

 

5.9.3. Behaviourist Learning Theory 

 

Behaviourist learning theory has had a strong influence on mathematics 

education in the 20th century, and as an educational movement it possibly 

portrays ‘traditional’ mathematics education in the minds of most. 

Behaviourism promotes drill learning, repetition of procedures, the idea of the 

teacher as the expert and the centre of knowledge, memorisation of formulae 
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and the notion of mathematics being a subject where there is only ever one 

correct answer.  

 

‘Learning and teaching in behaviourist terms is a matter of optimising and 

manipulating the instructional environment towards the fulfilment of rigidly 

and specifically designed educational objectives’ (Handal, 2003, 5). 

 

Behaviourism is defined by Sloane and Conway (2005) as direct teaching  

followed by controlled practice, with a distinct focus on learning hierarchies 

and vertical transfer. Behaviourism focuses on the teaching and learning of 

mathematics in a formulaic way, following these steps: 

• Tasks are broken down into small, manageable pieces; 

• The basics are taught first; 

• Mathematics learning is incrementally reinforced and observable 

behaviour is rewarded; and 

• Time is not spent reasoning, reflecting or problem solving (Conway and 

Sloane, 2005:83). 

 

5.9.4. The Relativist Philosophy 

 

The relativist philosophy considers all knowledge to be culturally and 

politically situated. This philosophy is often associated with cognitive learning 

theories. Cognitive theory has been a popular movement in mathematics 

education over the last thirty years. Cognitive theory introduced a move 

towards active learning and advancement from the tradition of ‘chalk-and-talk’ 

teaching, allowing room for the cultural value of mathematics. Conway and 

Sloane (2005) describe cognitive learning theory as a move away from just 

recording information, as is common in behaviourist learning theory, towards 

interpreting information.  The basic behaviourist stance is that the information 

already exists; cognitive theory believes that knowledge is constructed by the 

learners experience and actions. Important educational insights offered by 

cognitive learning theory include: 
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• Learning is active; 

• Learning is about the construction of meaning; 

• Learning is helped and hindered by our prior knowledge and 

experience; 

• Learning re-organises our minds; 

• The mind develops in stage; and 

• Learning is often unsettling (Conway and Sloane, 2005:87). 

 

5.9.5. Constructivist Learning Theory 

 

Constructivism, as developed by Piaget, views mathematical learning as the 

construction of meaning and understanding based on the modelling of realistic 

situations, analysis of patterns and the acquisition of a mathematical outlook 

(Gales and Wefan, 2001:4). Constructivist learning theory, like the relativist 

epistemology, is based on the belief that all mathematical learning is linked to 

current and past knowledge and individual real-life experience. Active and 

discovery learning are the basis of constructivist learning, with creative 

thinking and a questioning mind highly valued.  

 

Holt (2001) explains that a social constructivist approach to the teaching and 

learning of mathematics will allow and encourage problem solving, articulate 

communication, active learning, participation and social interaction. The 

constructivist method of learning encourages communication, and active 

participation by each student as required. Oral communication is valued and 

viewed as a necessary mathematical tool. Improvisation co-action is described 

as being ‘a collaborative practice of acting, interacting and reacting, of making 

and creating, in the moment, without script or prescription, and in response to 

the stimulus of one’s context and environment’ (Martin and Towers, 2009:3).  

 

Mathematical understanding is a key component of constructivist learning 

theory. The growth of collective mathematical understanding through group 

work, and shared mathematical actions and thinking, is the basis of collective 

mathematical understanding. Mathematical understanding is seen as the 
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interplay between actions and general conceptualisations. Martin and Towers 

(2009) use eight layers of action for mathematical understanding to label the 

learner’s progress and their mathematical actions as their understanding grows. 

The theoretical framework used by Martin and Towers focused on the learners 

working in small groups and their collective mathematical activity in these 

groups. Collective understanding is seen as a dynamic process. The 

‘improvisational perspective focuses on the way in which collective 

mathematical understanding is constantly changing and growing (a process) 

as a group of learners work together in the moment, rather than on the 

establishment of collective classroom norms’ (Martin and Towers, 2009:2) 

 

5.10 A Mixed-Methods Study 

 

The researcher decided to use a mixed-methods design. The initial idea for the 

research focused on a quantitative study as the main research body, in which 

mathematical proficiency was assessed in two different types of mathematical 

test. This was followed by a statistical analysis of these results. As test design 

was undertaken, and preparation for implementation of these tests evolved, the 

researcher became aware that tests alone would not provide a clear picture as to 

what is happening in Irish mathematics classrooms. For this reason a 

qualitative aspect was introduced to the Irish data collection, this involved 

teacher/principal interviews. A further mixed methods aspect was also 

introduced in the form of systematic, structured classroom observations. The 

objective of the inclusion of the qualitative aspect was to situate Irish 

mathematical activity, provide a meaningful content for the information 

collected and link teaching and learning in the classroom to the learning 

theories and hence the guiding theoretical framework. 

 

Creswell and Clark (2011) suggest the following mixed methods evaluation 

criteria. The researcher: 

• Collects quantitative and qualitative data; 

• Uses rigorous procedures in collecting and analysing data; 
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• Integrates the quantitative and qualitative data so that their combined 

use provides a better understanding of the research question; 

• Includes the use of a mixed-methods research question design and 

integrates all features consistent with the design; 

• Frames the study within philosophical assumptions, and; 

• Conveys the research using terms currently used in mixed methods 

research. 

 

5.10.1. Convergent, parallel mixed-methods design 

 

The author decided to use a convergent, parallel design as the basis of the 

mixed-methods research. Creswell and Clark (2011) describe a convergent 

study as one in which the researcher collects and analyses quantitative and 

qualitative data at roughly the same time, within the same research phase, and 

merges both sets of results (quantitative and qualitative) for an overall 

interpretation of the research question. Quantitative results can be compared 

and contrasted with qualitative results for corroboration and validation of data. 

This can lead to a greater understanding of not only the research question but 

also the surrounding issues. Creswell and Clark (2011) suggest that a 

convergent mixed-methods study is also efficient as both quantitative and 

qualitative data can be collected at roughly the same time, and in some cases in 

one visit. 

 

Teddlie and Tashakkori (2009) believe that a major advantage of mixed 

methods research is the way in which it enables researchers to ask 

confirmatory and exploratory questions at the same time. A parallel mixed-

methods study uses both qualitative and quantitative methods in independent 

strands, in the same research phase, to answer both exploratory and 

confirmatory questions. It is typical that exploratory questions are usually 

qualitative (such as the semi-structured interview) and confirmatory questions 

are quantitative (as with the closed-item questions in the tests). However, 

Teddlie and Tashakkori (2009) emphasise the importance of remaining aware 

of the challenges that can arise in parallel research methods; primarily the 

complexity of implementing multiple research strands simultaneously. 
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While the data collected by the author required three visits for each class group 

involved, the data was still collected in a short period of time, and in several 

instances in one school week. The order in which the research was collected 

was not deemed to be of any significance, and the author was led by the 

teacher involved as to when they felt each step was most appropriate, for 

whatever reason, for they themselves and their class. The author implemented 

one sole research phase, with all data (quantitative, qualitative and qualitative 

into quantitative) collected and analysed in roughly the same time period. For 

each individual class group there was a very short data collection time period. 

For the overall research groups (excluding the pilot study) data was collected 

and analysed over a period of five months. There was no distinguishing break 

or feature in moving from data collection for one group to the next, and in 

terms of a research phase all data collection and analysis was conducted in a 

similar manner. 

 

By using a convergent mixed-methods design data, can be collected and 

analysed separately and independently, using data collection and analysis 

methods that are appropriately suited to each type (Creswell and Clark, 2011). 

Therefore, quantitative data can be analysed quantitatively and qualitative data 

qualitatively. By using a convergent mixed-methods design the author is of the 

opinion that the strengths of each research method (quantitative and 

qualitative) can be played to, the weaknesses accounted for and a greater sense 

can be achieved regarding the research question. By using a convergent 

research design both quantitative and qualitative data collection methods are 

equally valid and equally vocal in the voice they give to the research question. 

 

5.11 Data Collection Methods 

 

The author gave significant consideration to the data collection methods 

selected as these methods would have a significant impact on how effectively 

the research question could be examined. Creswell and Clark (2011) 

recommend that in designing a mixed-methods study the researcher utilises a 
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qualitative strand that incorporates ‘persuasive’ qualitative data collection 

procedures and a quantitative strand that included ‘rigorous’ quantitative data 

collection procedures. The author was conscious of effectively answering the 

research question through effective data collection and analysis. 

 

5.11.1. The Structured Observation 

 

The author selected classroom observation as a research method based on the 

fact that testing alone would not allow for an insight into the context in which 

the teaching and learning of mathematics takes place. Six mathematics classes 

were selected from five, Irish co-educational schools. The five schools were 

selected at random from a geographical region encompassing three counties. 

This geographical region facilitated the collection of data by the author. One 

mathematics second-year class group was nominated by four of the schools 

with the fifth school providing two second-year, mathematics class groups. As 

only one mathematics lesson was observed for each of the class groups 

involved in the research, the researcher is very aware that it only provides a 

snap-shot into how mathematics is taught and learned in a typical Irish, second-

year mathematics classroom. The schools involved in the research are co-

educational to allow for comparison between schools without the possible 

influencing factors that may occur by introducing single-sex schools to the 

mix. All five schools are non-fee paying schools.  The activities involved in 

teaching and learning in a ‘typical’ Irish mathematics classroom can be 

considered within the context of all the classrooms observed, and typical 

behaviours identified. The author believes the mixture of school types 

(community school, community college, secondary school from both rural and 

urban areas) provides a combination of factors that allows an insight into what 

a ‘typical’ Irish mathematics classroom looks like. Teaching and learning 

behaviours can be considered in terms of mathematics learning theories 

(absolutist and relativist), and thus Irish mathematics education placed within 

this spectrum of varying mathematics learning methods. 
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In considering classroom observation as a data collection method the author 

first considered how this would relate to the research question she wished to 

explore. As outlined above the researcher hoped to gain some insight into the 

learning theories implemented in the Irish mathematics classrooms observed, 

thus linking the observed behaviour to the theoretical framework of the 

research project. It was also hoped that by considering the teaching and 

learning behaviour in Irish classrooms the author could consider these 

activities in terms of the test performance by Irish students, and gain an 

indication as to how students perform based on classroom activity. 

  

Classroom observation as a data collection technique can take one of two 

forms: unstructured or structured observation. Teddlie and Tashakkori (2009: 

218) define the differing observational techniques as follows: 

• Unstructured/open-ended observations: These observations take the 

form of a running narrative. The recorder generally takes extensive 

field notes and records as many interactions as possible. Unstructured 

observations generally result in qualitative data. 

• Structured/closed-ended observations: Structured observations use data 

recording instruments or pre-determined protocols to record the 

observed situation in a structured format. These instruments/protocols 

tend to involve numeric scales. Structured observations result in 

quantitative data, which be statistically analysed.  

 

The author decided to use a structured observation data collection technique in 

order to facilitate the comparison of data collected in different mathematics 

classrooms. Numeric, quantitative data facilitated this comparison easily 

compared to the extent of the difficulties that may arise in attempting to 

compare qualitative data. The structured observation is a ‘technique in which 

the researcher employs explicitly formulated rules for the observation and 

recording of behaviour. The rules inform observers about what they should 

look for and how they should record behaviour’ (Bryman, 2001:508).  

 

Cohen et al (2005) highlight some features of the structured observation: 
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• It is time consuming to prepare but if correctly designed it takes little 

time to analyse the data; 

• It is systematic and enables the researcher to generate numerical data; 

• Numerical data facilitates comparisons, frequencies, patterns and trends 

to be noted; 

• The observer adopts a passive, non-intrusive role where they are merely 

noting the incidence of factors; 

• The categories for observation are discrete with no overlap; 

• It is essential that a pilot is developed, tested and re-tested for the 

structured observation to be effective; 

• A pre-designed observation schedule should be designed with 

appropriate space for noting incidence, presence and frequency; 

• Each column should represent a certain time interval with movement 

from left to right representing the chronology of events; 

• The researcher must practice completing the research schedule until 

proficient in entering data; and 

• The researcher must decide on notation to be used for coding purposes. 

 

The second decision the author made in relation to observation as a data 

collection method involved the debate regarding the participant-observer 

continuum.  In the complete observer role the researcher is at an extreme 

observer level and does not participate in the research at all, to the extent that 

the researcher involved would not enter the research setting (i.e. the classroom) 

at any stage when there are people present. At the opposite end of the 

continuum the researcher becomes fully engaged in the research setting and a 

full member of the group they wish to observe (Teddlie and Tashakkori, 

2009:222). The labels given to the various levels of observer within the 

participant-observer continuum are: 

• Complete participant; 

• Participant as observer; 

• Observer as participant; and 

• Complete observer (Teddlie and Tashakkori, 2009:222).  
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The author identifies herself as being closer to the ‘complete observer’ end of 

the continuum, but as she enters the classroom and meets with the students 

prior to, and during, the observed mathematics lesson the author identifies 

herself as an ‘observer as participant’.  

 

Coding is an important aspect of the structured observation. It is important to 

have devised an effective coding system in order to effectively analysis one’s 

findings. Bryman (2001) defines codes as tags that are attributed to data about 

people or other units of analysis. The aim of the coding system is to assign data 

relating to each variable to groups which are a category of the variable in 

question. A number can then be assigned to each category making the data 

quantifiable for quantitative research. In qualitative research coding is the 

process of data being broken down into its component parts. 

 

Concerns regarding the collection of numerical data include: 

• The method is behaviourist and excludes any mention of intentions of 

what/who is being observed; 

• Individual’s subjectivity is lost; 

• There is an assumption on the part of the researcher that certain 

observed behaviour provides evidence of underlying feelings and 

motivations (Cohen, 2000: 309). 

 

The author is fully aware of difficulties that may arise in the observation 

process and made every effort to ensure that all groups observed were treated 

in the same manner and data was recorded in a similar fashion. 

 

5.11.2. Testing (As a mixed-methods technique) 

 

Tests are designed in order to assess knowledge, intelligence or ability (Teddlie 

and Tashakkori, 2009). The author was interested in assessing both knowledge 

and ability; the mathematical knowledge to provide the information required 

and the ability to utilise this information to solve realistic problems. Tests as a 
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mixed-methods technique incorporate both quantitative and qualitative 

techniques by posing questions in such a way as to demand/necessitate a 

particular style of answer. For example closed-ended items result in a 

quantitative response, whereas open-ended questions typically necessitate a 

qualitative answer. The author utilised both types of questions; closed-ended 

questions in the traditional test and open-ended questions in the realistic test. 

Teddlie and Tashakkori (2009) note that qualitative data collected by testing is 

often quantitised as researchers using testing as a data collection method 

typically want numeric data which can be analysed using statistical methods. 

This is true of the data collected by the author in the realistic test; in order to 

quantitse the data, the responses provided to the open-ended questions were 

given numerical scores for ease of analysis. 

 

Rubrics are scales developed by researchers in order to rate responses 

generated by testing. Rubrics provide guidelines for assessing responses to 

open-ended questions, performances on tasks and products related to the topic 

of interest (Teddlie and Tashakkori, 2009). By providing criteria for assessing 

written responses to questions asked in tests, these numeric scales enable 

researchers to summarise results across all research participants. This enables 

the quantitising of both qualitative and quantitative data which facilitates a 

direct comparison between the research participants (Teddlie and Tashakkori, 

2009). 

 

When constructing a test Cohen et al (2007:321) suggest that the researcher 

considers the following: 

• The purpose of the test (ensuring that it tests what it is supposed to be 

testing); 

• The type of test (e.g. diagnostic, achievement, aptitude, criterion-

referenced, norm-referenced etc.); 

• The objectives of the test should be set out in very specific terms so that 

the content of the test can be seen to relate to the specific objectives of 

a curriculum; 

• The content of the test; 
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• The construction of the test should incorporate item analysis in order to 

clarify the discriminability and the item difficulty of the specific test; 

• The format of the test including its layout, instructions, methods of 

working and its completion; 

• The validity and reliability of the test; and 

• The provision of a manual of instructions for the administration, 

marking and data treatment of the test. 

 

The author remained aware of the above considerations when designing, 

administering and analysing the test. The effort to design, implement and 

assess the tests in a fair manner is essential to the effectiveness of the research. 

 

5.11.3. The Semi-structured Interview 

 

An interview involves the researcher (the interviewer) asking a person 

involved in the research questions relating to the research (the interviewer). 

The interview is a popular data-collection technique and allows for direct 

interaction between the interviewer and the interviewee. In some cases it 

facilitates the expansion of relevant topics as appropriate and it allows the 

interviewee to ask for clarification if there is any aspect of the interview that 

they do not fully understand. Research interviews take one of three particular 

formats in a qualitative/quantitative sense: 

• Interviews involving open-ended questions (generally qualitative); 

• Interviews based on closed-ended questions (usually quantitative); and  

• Interviews that include both closed-ended and open-ended questions 

(quantitative AND qualitative – mixed methods). 

 

Teddlie and Tashakkori (2009) present four types of interviews: 

1. Informal conversation interview: There are no pre-determined question 

topics. The interview takes the form of a conversation and questions 

emerge from the conversation as it progresses. This is a very fluid, 

organic type of interviewing technique. This interview style provides 

qualitative data. 
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2. General interview guide approach (semi-structured interview): Topics 

and issues are specified in advance. The interviewer decides on the 

order in which to ask the questions and on the wording of the questions 

during the course of the interview. There is the possibility of expanding 

on topics as the need arises. This interview style provides qualitative 

data. 

3. Standardised open-ended interview: The exact wording of the questions 

is determined by the interviewer in advance. So also is the order in 

which the questions will be asked. All interviewees are asked the same 

questions, in the same order. Questions are worded in a completely 

open-ended format. This interview style provides qualitative data. 

4. Closed fixed-response interview: Questions, the order of questions, and 

the range of responses are decided on in advance of the interview. 

Responses are fixed and the interviewee chooses from among these 

responses. Questions are worded in a closed-ended format. This 

interview provides quantitative data (Teddlie and Tashakkori, 

2009:229). 

  

Gray (2009) describes the informal, conversational interview as one which 

relies on the spontaneous generation of questions as the interview progresses. 

While this method may be informative it was decided by the author that in 

order to obtain answers to the questions deemed pertinent to the study, it was 

essential to follow a more structured type of interview technique. Despite the 

need for more structure than in an informal, conversational interview the 

structured interview was deemed to be too restrictive as it does not provide the 

opportunity to expand on topics as they arise. Gray (2009) describes a 

structured interview as one where pre-prepared questionnaires and standardised 

questions are used, and as a result all the respondents are answering identical 

questions that facilitate the recording of all responses in a standardised 

schedule. The author decided on a semi-structured interview as the optimum 

method of obtaining qualitative data of a high standard that would yield 

valuable information for the study in question. Gray (2009) explains that in a 

semi-structured interview the researcher has a list of issues and questions to be 

covered but they may not all necessarily be dealt with in every interview.  
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The semi-structured interview will provide the author with qualitative data to 

support the research question: Do students have the mathematical 

understanding to transfer the knowledge they learn in Irish schools to 

unfamiliar, problem-solving situations? By asking the teachers and/or 

principals involved in the study pertinent questions surrounding the teaching 

and learning of mathematics in their school the researcher hopes to place the 

classroom observations in context. This provides a basis to consider what is 

happening in Irish, and indeed Massachusetts’, schools. The author decided on 

a semi-structured interviewing technique as she is of the opinion that it allows 

the major topics to be asked of all the interviewees but allows the interview 

participants the opportunity to ask questions themselves and expand on topics 

that they feel are particularly relevant. 

 

5.12 The Data Collection Process 

 

While the selection of the data collection methods is critical in ensuring that 

the research question is effectively addressed, the data collection process is 

also important if the methods selected are to be utilised to their full effect. 

 

5.12.1. The Structured Observation 

 

As discussed earlier the author decided to use a structured observation data 

collection technique in order to facilitate the comparison of data collected in 

different mathematics classrooms. Numeric, quantitative data facilitated this 

comparison easily compared to the extent of the difficulties that may arise in 

attempting to compare qualitative data. 

 

The second decision the author made in relation to observation as a data 

collection method involved the debate regarding the participant-observer 

continuum.  As discussed earlier, the labels given to the various levels of 

observer within the participant-observer continuum are: 

• Complete participant; 
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• Participant as observer; 

• Observer as participant; and 

• Complete observer (Teddlie and Tashakkori, 2009:222).  

 

The author identifies herself as being an ‘observer as participant’ but closer to 

the ‘complete observer’ end of the scale. The author was aware of maintaining 

her position as ‘observer’ and not engaging or participating in the teaching and 

learning process at any stage. The sole verbal interaction the author had with 

the research participants during the observation process was at the beginning of 

the class when she thanked the students and teacher involved for facilitating 

the observation and referred very briefly to what this would entail. The teacher 

and students in each group had at this stage already been fully briefed as to 

what they were engaging in and what this information would be used for. The 

teachers involved were also given access to a copy of the observation template. 

It should be noted that all teachers involved refused a copy of the template and 

preferred to rely solely on the author’s information regarding the proposed 

observation. 

 

Observation was selected as a means of gaining insight into the learning 

theories that are implemented and facilitated in Irish mathematics lesson. The 

structured observation was decided on as the type of observational tool to be 

used in the data collection process as it can translate time spent in the 

classroom into numerical data which can be analysed in a quantitative sense 

using statistical analysis. This facilitates a direct comparison of teaching and 

learning activity in the mathematical classrooms observed.  A precise time-

structure can be decided on and different aspects of teaching and learning can 

be considered within this timeframe. Time spent on different elements of 

teaching and learning in a mathematics class can give some insight into the 

learning theories promoted in that particular classroom and this can then be 

considered in terms of the students’ ability to transfer mathematical knowledge.  
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Gray (2009) explains that one of the major problems with the process of 

observation is that of actually gaining access to the research setting, in this case 

the classroom. The author encountered significant resistance in this regard, in 

the most part due to resistance from the mathematics teachers involved but 

also, on occasion, from school principals. Despite repeated reassurance that the 

teachers themselves were not being examined, many teachers felt that the 

presence of a researcher in their mathematics class would be an overly 

intrusive, critical presence and chose not to be involved in the study. In one 

instance, despite the facilitation of the project by the school principal and board 

of management, all five second-year mathematics teachers in a particular 

school chose not to be involved in the study which resulted in the school in 

question not participating in the research. As a result of this unexpected 

resistance the researcher was delighted when two teachers from the same 

school volunteered their involvement in the research study. Prior to this it was 

a major achievement if one teacher in a school agreed to participate. Due to the 

resistance encountered by the researcher in gaining access to mathematics 

classes, a situation occurs in which the teachers who self-nominated to 

participate in the study are possibly confident being observed. This may 

indicate that the teachers involved in the research consider themselves to be 

proficient in their field and confident in their skills, therefore resulting in a 

particular type of teacher that is observed teaching in the course of the 

research. 

 

The majority of schools (three out of the five visited) volunteered their higher-

level class (and for those schools with more than one higher-level class the 

class involved was the highest of those studying the higher-level course). As a 

result the researcher specifically approached the remaining two schools, and 

the final two schools to come onboard the research, with a request that ordinary 

or foundation level students be involved in the study. This resulted in one 

school (which volunteered two class groups) volunteering their two 

mathematics class groups that involved students requiring the most assistance. 

These students were following the ordinary level mathematics course but it was 

anticipated that a minority of students in these class groups may decide to sit 

the foundation level mathematics paper in the Junior Certificate examination. 
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The fifth school allowed access to a mixed-ability, ordinary level class group. 

As a result all student abilities were involved, to some extent, in the research.  

 

Despite the resistance met by the researcher in obtaining access to mathematics 

classrooms, those teachers who did participate in the study were 100% 

committed to their involvement in the study and were comfortable with being 

observed. Out of the six class groups observed for the study, plus the initial 

pilot group, five of the teachers observed were female and two of the teachers 

(including the teacher involved in the pilot were male). All except two of the 

teachers had twenty years plus teaching experience, one had five years 

teaching experience and the teacher involved in the pilot observation was a 

trainee teacher. 

 

The author utilises the classroom observation as a means of considering the 

qualitative data observed in a quantitative manner. This is known as 

‘quantitising data’ and is the process of converting qualitative data into data 

that can be analysed in a statistical manner (Teddlie & Tashakkori, 2009). This 

was achieved by identifying a number of activities that frequently occur, or 

have the capacity to occur, in a typical mathematics lesson. Tasks were 

assessed at thirty-second intervals for the duration of the mathematics period. 

Tasks were not mutually exclusive, and it was possible for more than one 

identified activity to occur simultaneously (e.g. board-work and teacher 

explanation). Any of the identifiable tasks that occurred in the thirty-second 

period were marked – the duration of the individual identifying activities 

within the thirty-second period was not recorded. The observable qualitative 

data was in this manner converted into numerical data and as a result it was 

possible to analyse same in a quantitative manner. Teddlie & Tashakkori 

(2009) call this process of converting qualitative data into numerical data ‘data 

conversion/transformation’. 

 

The objective of the classroom observation was to gain an insight into what 

occurs in a typical Irish mathematics lesson. By observing a mathematics 
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lesson involving the class group that were involved in the test component of 

the research it was hoped that the author would gain knowledge regarding the 

teaching and learning methods used. As a result of considering the data 

collected through the observation, in conjunction with the data collected 

through testing, the effect of the teaching and learning styles on examination 

results can be considered. 

 

The pilot of the structured observation schedule is of paramount importance to 

the structured observation being effective. Cohen et al (2000:305) describe the 

decisions the pilot researcher must make: 

•The foci of the observation (both people and events); 

•The frequency of the observations (i.e. the time interval attributed); 

•The length of the observation period (i.e. a 40 minute class); and 

•The nature of the entry (i.e. an appropriate coding system). 

The author gave careful thought to the purpose and focus of the observation. 

The observation schedule was carefully designed to include all teaching and 

learning activities that the author expected to occur.  

 

5.12.2. Testing 

 

Through considering the research question in relation to the Irish situation, and 

the body of literature surrounding the area of testing, the author decided on 

testing as a research tool for collecting data. It was decided to use a process of 

testing that would consider the ability of Irish students’ to solve traditional, 

familiar questions, and also to test the same students with unfamiliar, realistic 

questions that utilise the same mathematical skills. In order to consider the 

performance of Irish students in relation to international performance it was 

decided to also implement both tests in the state of Massachusetts in the United 

States.  The decision to include students from another country was carefully 

considered by the author. The state of Massachusetts in the United States was 

decided on for several reasons, among which were: 

• The commonality of a shared language: English; 
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• The results that the state of Massachusetts have achieved in 

international mathematics testing. In TIMSS 2007 eighth and fourth 

grade students in Massachusetts outperformed all other states in the 

USA in mathematics, and also ranked among the highest achievers 

mathematically in the world. 4
th

 grade students from Massachusetts tied 

for third place in mathematics with Chinese Taipei and Japan (behind 

Hong Kong SAR (1
st
) and Singapore (2

nd
)). At eighth grade 

Massachusetts’ students ranked in 6
th

 place behind Chinese Taipei, 

Republic of Korea, Singapore, Hong Kong SAR and Japan 

(www.doe.mass.edu). 

 

 The students from Massachusetts that participated in the study were from one 

particular school district initially, and due to access constraints this was 

narrowed to students from one middle-school. The school involved was a 

public middle-school of roughly 1,000 students in a town on the outskirts of 

Boston.  

 

The author gave much thought to the style of test to be implemented and the 

order in which the testing would occur. After much consideration it was 

decided to implement two thirty minute tests. The length of the test was 

decided on based on the length of a typical Irish mathematics class of forty 

minutes. The author felt it was important that the test would not necessitate the 

full class time to be utilised in order to allow time to re-introduce the 

researcher, the test and to settle the students.  

 

5.12.2.1. The Realistic Test 

 

The author made the decision to draft the realistic test first. The reasoning for 

this was that the unfamiliar style of the realistic would be more difficult and 

time-consuming to draft, especially if it was to fully embrace the aspects 

deemed important by the author: 

• Questions in a format not familiar to Irish students; 

• Engagement by the student in the reflection process; 

http://www.doe.mass.edu/
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• Open-ended questions with more than one correct solution in some 

parts of the test; 

• The provision of surplus information that may not necessarily be 

required in finding a solution to the given problem; 

• A necessity for students to justify some part of their answer; and  

• Authentically realistic questions. 

 

The author explored the literature surrounding modelling (as seen in the 

literature review) and the concept of authentic questions. After much 

consideration the given realistic questions were decided on. It was also 

important to the author that the students were not overly constrained by time as 

it would be an added pressure; however the author felt it was important that the 

students be fully engaged by the questions posed for duration of the time 

available. 

 

5.12.2.2. The Traditional Test 

 

The traditional test consists of traditional mathematics questions posed in a 

familiar format. Irish students are particularly focused on preparation for the 

state examinations and therefore are familiar with a recognisable form of 

question. Some characteristics of traditional mathematics questions in the Irish 

Junior Certificate curriculum include the following: 

• Closed-ended questions; 

• There is one correct answer to each question; 

• Justification of the problem-solving methods using words is unusual; 

• Evidence of reflection is not typical; 

• All the numerical information provided in the question is necessary in 

finding the solution. No redundant information is provided. (Therefore 

the students believe that you must use all the given information, and 

that there will never be a situation when you have to possibly leave 

something irrelevant out); 

• Keywords act as prompts for students as to what to do; 

• Reproduction and procedural skills are required; and 

• Real-life experience is rarely called on. 
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In order to successfully replicate the assessment format that Irish students are 

familiar with, the author made the decision to utilise test questions from 

previously implemented Junior Certificate assessment papers. The author 

decided to select arithmetic and algebraic questions from the Junior Certificate 

examinations in order to achieve consistency with the skills necessary to 

successfully solve the mathematical problems in the realistic test. The author is 

of the opinion that this facilitates a comparison of results. 

 

5.12.2.3. The Semi-structured Interview 

 

The author highlights the following questions as being pertinent to her 

interviewing technique: 

• The level of the mathematics course followed by the class group in 

question; 

• The number of mathematics students in the class; 

• The number of class periods per week for mathematics in the time-table 

for the year group in question (second years); 

• Any behavioural issues that affect teaching and learning of mathematics 

with the class group in question; 

• The availability of extra assistance for students that may require it; 

• The number of mathematics class groups in the year; 

• The level of mathematics followed by the year group (is foundation 

level mathematics available for the students?); 

• The number of mathematics teachers in the school; 

• The value placed on a mathematical ethos in the school; 

• The use of information technology in mathematics lessons; 

• The implementation of ‘Project Maths’ teaching methods in preparation 

for the introduction of ‘Project Maths’ for all year groups; 

• The predicted Junior Certificate results for the class group in question. 

 

The author implemented the semi-structured interview as a means of obtaining 

qualitative data that provides an insight into what is happening in Irish schools 
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as regards the scheduling of mathematics classes, distribution of mathematics 

teachers and the provision of special help in mathematics for students who 

require extra assistance. The provision of smaller class groups for students who 

are less mathematically able was also investigated and noted. This concept of 

streaming students for mathematics is interesting as it is a relatively common 

concept in Ireland while research suggests that it is not a positive. The research 

relating to streaming mathematics students suggests that the ‘elite’ students in 

the top classes benefit from this system but all other students suffer from the 

glass-ceiling that streaming provides (Boaler, Wiliam & Brown, 2010). In 

Ireland the availability of different mathematics courses of varying degrees of 

difficulty (higher, ordinary, foundation) affords an imposed streaming of sorts. 

While it is difficult to argue with the provision of small classes with extra help 

for students who more require it, the debate regarding streaming is interesting 

and provides interesting food for thought.  

 

The topics selected for discussion in the semi-structured interview with the 

participants from the United States school varied slightly. The questions asked 

included (but were not restricted to): 

• The selection process for students involved in the study; 

• The mean age of the students involved; 

• Average class size; 

• The utilisation of Algebra 2 students in the study and the possibility 

that these students are more mathematically able than other students in 

the year group; 

• The number of students participating in the study as a percentage of the 

year group as a whole; 

• The length of a mathematics lesson; 

• The number of mathematics periods per week; 

• The levels of mathematics studies; 

• Topics covered in Algebra 2; 

• Other mathematics topics studied in addition to, or in place of, Algebra 

2. 
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5.13 Validity and Reliability 

 

It is essential that both validity and reliability are considered when conducting 

research of a high standard. The validity and reliability of the data collected 

will have a profoundly positive or negative effect on the end result of the 

research. Invalid and unreliable results completely undermine a research 

project.  Creswell and Clark (2011) explain that validity serves the purpose of 

checking the quality of the data, the results, and the interpretation. Validity of 

inferences made during the interpretation by the researcher, from the 

assessment results, can be adversely affected if items, tasks and conditions in 

the research instrument fail to match the construct that the researcher initially 

set out to assess (Chatterji, 2003:55). Chatterji explains that validity can also 

be lowered when the population and/or subpopulation assessed using the 

research instrument are different to the population for whom the research 

instrument was initially designed. 

 

5.13.1. Determining Validity and Reliability 

 

Teddlie and Tashakkori (2009) are adamant that the following two questions 

are pertinent when considering data quality: 

1. Measurement validity/credibility: Is the researcher accurately 

measuring / recording / capturing what they intended to, rather than 

something else? 

2. Measurement reliability/dependability: Assuming that the data 

collected is valid and credible, is the measurement and recording of 

data consistent and accurate, yielding little error? (Teddlie and 

Tashakkori, 2009:209). 

 

These two questions form the basis of the author’s analysis of her own research 

and data collection in terms of validity and reliability. Data collection methods 

(tests, classroom observation and semi-structured interview) were carefully 

selected and constructed keeping measurement validity and credibility in mind. 

In analysing the data collected the author was fully aware of the importance of 
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consistency and accuracy when recording and analysing all data collected (both 

quantitatively and qualitatively). By ensuring both validity and reliability for 

all data collected in the research process and by ensuring the data collection 

process and methods used were accurate and focused on the research question 

at hand, the author is confident that the research involved in this project is of a 

high standard and is both valid and reliable.  

  

There are different methods of assessing validity and reliability in mixed-

methods research. It is important to keep in mind that for a mixed-methods 

project to be of a high standard the individual components of the research (both 

quantitative and qualitative) must be equally valid and reliable (Teddlie and 

Tashakkori, 2009:208). Creswell and Clark (2011:210-211) give examples of 

different types of validity and reliability as follows: 

• Quantitative Validity: The validity of data collected in a quantitative 

manner serves two primary purposes: ensuring the quality of the scores 

collected, and the quality of the conclusions drawn from the 

quantitative analysis of the results. Quantitative validity means that the 

scores received from participants are meaningful indicators of the 

construct being measured; 

• Quantitative Reliability: The reliability of data collected in a 

quantitative manner is also essential. Quantitative reliability is 

established by ensuring that the results obtained from research 

participants are consistent and stable over time. Statistical procedures 

can confirm internal consistency and hence reliability. 

• Qualitative Validity: In qualitative research validity plays a more 

significant role than reliability. Qualitative validity focuses on whether 

the account provided by the researcher and the research participants is 

accurate, credible and can be trusted.  Qualitative validity is gleaned 

from the analysis procedures of the researcher, and involves assessing 

whether the information obtained through the qualitative data collection 

is accurate. 

• Qualitative Reliability: A minor role is played by reliability in 

qualitative studies. Reliability in qualitative research is primarily 

concerned with the reliability of multiple coders in a team research 
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problem. As a result this type of reliability plays no role in the author’s 

research project as there is no teamwork involved, and all research 

involved is carried out by the author.  

• Construct Validity: is concerned with assessing if the data collection 

procedures used measure what they were intended to measure; 

• Criterion-related Validity: is concerned with the scores adhering to 

some external standard; 

• Content Validity: assesses whether the items and questions used in the 

data collection procedures are representative of possible items; 

• Internal Validity: considers the cause and effect relationship between 

variables; and 

• External Validity: assesses the extent to which the researcher can 

determine that the results are applicable to a larger population. 

                                                                    (Creswell and Clark, 2011, 210:211) 

 

Teddlie and Tashakkori (2009) explain that content validity is often achieved 

by asking others to judge if your data collection instrument actually measures 

what you hope to assess, and is useful when the research instrument hopes to 

measure a specific and well-defined attribute. Content validity is of particular 

interest to the author as her research question is a well-defined one: ‘Have Irish 

mathematics students the ability to utilise the mathematics knowledge learned 

in school to solve unfamiliar mathematical problems that necessitate a level of 

understanding?’. The validity of the content in the tests implemented by the 

author is paramount as it is essential, for the research to be valid, that the tests 

effectively assess the research question. To ensure content validity the author 

organised a group of content and pedagogical experts consisting of experienced 

mathematics teachers, Junior Certificate examiners, school management with 

an interest in mathematics and university mathematics education personnel. 

This panel examined the content provided in the structured observation 

template, the tests and the proposed questions for the structured observation 

and offered their advice and comments. Further to several discussions with all 

those involved in this process the author is confident that content validity is 
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reached. The implementation of a convergent, parallel mixed-methods design 

also insured a level of validity among data collection methods. The author also 

uses triangulation between the three types of data collection to ensure validity.  

 

The reliability of the test, particularly the Realistic test, was ensured by 

operating a test-retest policy during the pilot study. Test-retest reliability 

examines the extent to which scores in the administration of a test are stable 

over time (Creswell, 2008). The Realistic test was implemented to the same 

group of students approximately eight weeks apart and the results for both tests 

were found to be similar establishing reliablity. The author did not operate a 

test-retest check on the Traditional test as it was based directly on the Junior 

Certificate examination and as a result the author was confident that it was 

already deemed reliable by the Department of Education and Skills.  

 

5.13.2. Triangulation 

 

Triangulation ‘refers to the combinations and comparisons of multiple data 

sources, data collection and analysis procedures, research methods, 

investigators, and inferences that occur at the end of a study’ (Teddlie and 

Tashakkori, 2009: 27). 

 

Triangulation is the process of using more than one data collection method, and 

hence more than one data analysis method. In a mixed method design it is 

typical for the process of triangulation to occur due to the fact that data is 

collected and analysed both quantitatively and qualitatively. Cohen et al (2000) 

describe triangulation as a process in research where two or more methods of 

data collection are used as a means of establishing validity. Teddlie & 

Tashakkori (2009) describe triangulation as a means of not only determining 

the quality of data but also a useful method of analysing mixed methods data. 

The purpose of triangulation is to seek corroboration of results using different 

methods, while the rationale of triangulation is to increase the validity of the 

constructs used by minimising the impact of irrelevant sources of variance 

inherent to bias (Gray, 2009).  
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The author uses triangulation as a means of testing the validity and quality of 

the data collected. Research methods and data collection procedures used in the 

triangulation process include: 

• A systematic, structured classroom observation; 

• The implementation of two tests; and 

• An informal interview with the mathematics teacher and school 

principal. 

 

5.13.3. Research Ethics 

 

The ethics involved in any research project involving human participants are  

complicated as it is important that the rights of each individual are not 

sacrificed in the name of research. Mathematics is a subject that often causes 

anxiety. As a result the author considers it imperative that all possible efforts 

are made to reduce the possibility of anxiety in implementing the mathematics 

assessments, keeping in mind that assessments in general are also prone to 

creating feelings of anxiety. Burns (2000) suggests that it is difficult to conduct 

research without encountering some ethical issues. Burns (2000:22) suggests 

adhering to the following ethical code: 

• Risks to the participants should be minimised and subjects not exposed 

to risk; 

• The benefits outweigh the risks in relation to participants; 

• The rights and welfare of the research subjects are protected; 

• Participation is voluntary; 

• The participant has the right to know the nature, purpose and duration 

of the research study; 

• The subject is free to withdraw anytime without penalty; 

• Information obtained is confidential; and 

• Participants are fully debriefed after the study. 

The author fully adhered to the ethical code suggested by Burns as outlined 

above.  

 



206 

 

5.13.4. The ethical dilemma 

 

Cohen et al (2000) describe an ethical dilemma as a situation which can arise 

in response to the conflict between the researcher’s quest for the truth and the 

subjects’ rights and values. Ethical problems can arise as a result of: 

• The research question; 

• The methods of data collection; 

• The age of the participants; 

• The mental capacity of the participants; 

• The procedures to be adopted; and 

• What will be done with the data collected. 

The author adhered to a strict ethical code in order to reduce any ethical 

conflict or the risk of encountering an ethical dilemma. The author was fully 

aware at all times during the research process of the possibility of ethical 

problems and made every effort to reduce and/or avoid ethical conflict. 

 

5.13.5. Informed consent 

 

The principle of informed consent arises from the individual’s, and therefore 

the research subject’s, right to freedom, which is a condition of living in a 

democratic society. Restrictions to personal freedom must be justified and 

consented to (Cohen et al, 2000:51). Cohen et al. identify four elements of 

informed consent: 

• Competence: implies that the subject, or those legally responsible for 

the subject, is capable of making correct decisions when given the 

relevant information.  

• Voluntarism: ensures that research participants make the decision to 

participate (or not) in the research knowingly and voluntarily. 

• Full Information: implies that the subject is fully informed as to what 

the research entails. 

• Comprehension: refers to the fact that the subject should fully 

understand what he/she is agreeing to. 
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The author was aware of the ethical implications of ensuring informed consent 

and fully adhered to the four principles of informed consent as suggested by 

Cohen. Students and parents/guardians were given information sheets 

providing information regarding the research project. Parent/guardian and 

student consent was required for inclusion in the study. It was made clear to all 

research participants that participation was voluntary and that they were 

entitled to leave the project at any stage (even if the data had already been 

collected). The author was available (by telephone and email) to 

parents/guardians and students at all times during the research and was willing 

to answer any questions that arose. As a result the author believes that she fully 

adhered to the following principles underlying informed consent. The 

researcher should provide: 

1. An unbiased and understandable explanation of the nature of the 

research, its purpose and the procedures to be followed;  

2. An understandable description of any reasonable level of discomfort 

that may be experienced by the subject; 

3. An explanation of any benefits which may be expected as a result of 

participating in the study; 

4. An understandable disclosure of any appropriate alternative procedures 

which may be advantageous to the research subject; 

5. An offer to answer any queries the subject may have with regard to the 

research; and 

6. A clear instruction that the subject is free to withdraw from the research 

project at any stage prior to its termination. 

(www.enmu.edu/services/grants/human-subjects-policy.doc). 

 

5.14 Conclusion 

 

The purpose of this chapter is to place the research question within the research 

methodology and research methods that pertain to it. The author is confident 

that her decision to use a mixed-methods design is an effective technique for 
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considering the research question: ‘the ability of Irish students to transfer 

mathematics from the classroom to unfamiliar, real life situations’.  

 

To summarise, the author decided on a mixed-methods study which uses the 

following research methods: 

• Systematic, structured classroom observations; 

• Semi-structured interviews; and 

• Testing. 

 

The methods selected effectively contribute to a convergent, parallel mixed-

methods design. The following chapters (chapter’s 6 and 7) consider the data 

collection using these methods and the analysis of the data collected.  
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6.0 Chapter 6: The Data Collection Process 

 

6.1 Introduction 

 

This chapter considers the data collection process and the implementation of 

this process. The author outlines the process, involving the following: 

• Obtaining Consent; 

• Selecting a research sample; 

• Gaining access to the schools involved in the research; 

• Selecting the data collection methods (as discussed in Chapter 5); and 

• Implementing the data collection methods. 

 

6.2 Obtaining Consent 

 

As this study involves young people, ethical clearance was obtained from the 

National University of Ireland Maynooth (NUIM) ethics board. In addition to 

providing the ethics board with information regarding the study and the 

purpose of the research, the author’s application also included: 

• An information sheet for mathematics teachers; 

• An information sheet for parents; 

• An information sheet, using appropriate language, for students; 

• Consent forms for parents; and 

• Consent forms for students.  

 

Once ethical clearance was obtained from the NUIM ethics board it was then 

necessary to approach the schools. In the first instance the author approached 

the principals of the schools, selected at random, as possible participants in the 

study. While the schools were selected at random it is important to reiterate 

that no single-sex schools were involved in the study (as single-sex education 

could then become an influencing factor on the data collected) and all schools 

approached were from three bordering counties for ease of data collection 

(based on proximity to the author’s place of work). The principals of the 

schools selected were provided with information about the research study and 
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asked to participate. The principal in each school acted as the gate-keeper to 

that institution and had complete power to deny access to the author. Those 

principals that agreed to participate in the study were then asked to discuss 

participation with the mathematics teachers in their school. One volunteer was 

needed from each school involved. The school principals were also responsible 

for approaching the board of management in their particular school for 

permission to initiate the research project in each individual school.  

 

The next step in the research process was obtaining consent from the students 

in the class group selected and the parents of these students. Consent forms 

were designed for distribution to both parents and students. It was decided by 

the author that each individual student would have the final say regarding their 

right to refuse to participate in the study, regardless of their parents’ consent. 

However, a parent or guardian’s right to refuse consent could not be invalidated 

by the student’s interest in participating. 

 

6.3 The Research Sample 

 

The author tested students in six mathematics class groups from five different 

Irish secondary schools, after an initial pilot study. The students involved in the 

research were all in second year at the time of testing. As mentioned earlier, all 

five schools were co-educational and comprised of a variety of school types: 

community school, community college and secondary school. Schools were 

located in both rural and urban areas. None of the schools selected were DEIS 

(Delivering Equality of Opportunity in Schools) schools; this was by accident 

rather than design as all schools were randomly selected as outlined below. 

Each school approached was asked to nominate one second-year mathematics 

class for inclusion in the study. This required the mathematics teacher of this 

class group to be a willing participant in the study. It was at the school’s 

discretion as to whether the nominated class group was an ordinary or a higher 

level class. All students within the class participating in the study had the 
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opportunity to opt out of the study. One school volunteered two class groups 

for participating in the study. 

 

6.3.1. School Selection 

 

Five Irish schools were involved in the study. The schools were selected at 

random from co-educational schools in three bordering counties. While the 

selection was random the author initially approached a broad range of school 

types: secondary, comprehensive schools, community schools and 

vocational/community colleges. The schools approached were selected based 

on their proximity to the author’s place of work in order to facilitate the 

collection of data. Seven schools were contacted and asked to participate in the 

study. All seven schools were initially approached via a telephone conversation 

with the principal of the each individual school. After some consideration and 

discussion with staff members all seven schools initially agreed to be involved 

in the study. The principal of one school initially agreed but the mathematics 

teachers refused to participate when requested. The author believes that this 

may have been due to a lack of comfort regarding the observation element of 

the data collection. Despite repeated reassurance that the teaching of teachers 

was merely being noted with reference to ‘Learning Theories in Mathematics’ 

some teachers were uncomfortable with what they felt was a critical presence 

in their classroom. 

 

A second school out of the seven who initially agreed to participate did not 

follow through. In this instance, despite repeated attempts to make contact with 

the principal on the part of the author, the school never responded to these 

attempts and access was thus denied. One of the seven schools agreed to 

participate with two class groups. Therefore the author considered six class 

groups in five schools. 

 

The following table considers the level of mathematics studied by each of the 

class groups involved: 
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Group number Teacher Level of Junior Certificate Mathematics 

studied 

1 A Ordinary Level 

2 B Higher Level 

3 C Higher Level 

4 D Ordinary Level 

5 E Higher Level 

6 F Ordinary Level 

7 (Massachusetts) G n/a 

 

Table 11: Schools and teachers involved and the level of Junior Certificate mathematics 

course studied 

 

The following table illustrates the schools involved in the data collection 

process and provides information about each of these schools: 

School School Type Location Size Class Group 

1 Secondary Large Town 
1150-

1250 

Ordinary Level (Lowest 

Group on each side of the 
timetable) 

2 
Community 
College 

Village 300-400 Higher Level (Wide range) 

3 
Community 
School 

Town 700-800 
Higher Level 

(Top group) 

4 
Community 
school 

Town 600-700 Ordinary Level 

5 Secondary Large Town 700-800 Higher Level (Top group) 

6  

(same as 1) 
Secondary Large Town 

1150-

1250 

Ordinary Level (Lowest 
Group on each side of the 

timetable) 

7  

(Massachusetts) 
Middle School Large Town 600-700  n/a 

 

Table 12: School type, location, size and class group 
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6.3.2. Massachusetts as a research sample 

 

In order to introduce an international component, as per the literature review, it 

was deemed important by the author to have data from a different country. 

TIMSS (Trends in Mathematics and Science Study) is based in Boston 

College, Massachusetts. For this reason the author decided to approach the 

surrounding school district in the hope that a school may be interested in 

participating in the study. 

 

Massachusetts is a state noted for its top class mathematical achievement in 

international assessments. In the most recent TIMSS (Trends in International 

Mathematics and Science Study) assessment, TIMSS 2007, Massachusetts was 

the top scoring state in the United States of America. Eighth grade students 

from Massachusetts (the cohort that participated in the author’s research) 

scored sixth in the world in mathematics with a score of 547. Massachusetts 

was only outperformed by Asian countries with the following scores: 

1. Chinese Taipei (598); 

2. Republic of Korea (597); 

3. Singapore (593); 

4. Hong Kong SAR (572); and 

5. Japan (570). 

              (http://www.doe.mass.edu) 

 

The author therefore was of the opinion that a comparison between Irish 

mathematics class groups and the same age cohort in Massachusetts would be 

particularly interesting due to the high performance of the state in international 

assessments. 

 

There are 400 school districts in the state of Massachusetts and 316 Middle 

Schools (www.doe.mass.edu). Three Massachusetts’ school districts were 

initially approached and asked to participate in the research. Each school 

district is responsible for designing and implementing their own curriculum. 

The superintendant in each school district is responsible for curriculum 

http://www.doe.mass.edu/
http://www.doe.mass.edu/
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matters. The school district involved in the research had a superintendant who 

was particularly helpful and interested in participating in the study. For this 

reason, the author decided to utilise this school district in the research. The 

other two school districts approached were initially interested in participating 

in the study but it became difficult to get a guarantee of participation. The 

school district involved in the study committed to providing a sufficient 

number of students for the research to be conducted and for this reason the 

author was content to proceed with this school district. 

 

The school district selected is located in a relatively affluent suburb 

approximately ten miles outside of the city of Boston. The suburb has a 

population of approximately 25,000 people. The school district is responsible 

for eight schools with a total student population of 4,428 students. There are 

five elementary schools; two middle schools and one high school. As the 

author’s research focus is on students in the eighth grade, the focus is on the 

middle school category which caters for students from the sixth to the eighth 

grade. The school district provided access to the larger of the two middle 

schools which had a student enrolment of approximately 600 students at the 

time of data collection.  

 

The participating school had a student-teacher ratio of 15 to 1. 17% of students 

had an IEP (Individualized Education Program) which is a written plan for 

students identified as requiring special needs services. There were 

approximately 200 students in grade 8 and the mean age at the time of testing 

was 13.5 years. All students that studied ‘Algebra 1’ were asked to participate 

(50% of eighth grade students). The most mathematically able students did not 

participate as these students were studying a different subject, ‘Advanced 

Topics’ (8% of 8
th

 graders). The least mathematically able students (42%) also 

did not participate as they were not studying algebra at the level required for 

test participation (as decided by their teachers).  
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6.4 Research methods 

 

‘There is growing evidence, then, that not only may schooling not contribute in 

a direct and obvious way to performance outside school, but also that 

knowledge acquired outside school is not always used to support in-school 

learning. Schooling is coming to look increasingly isolated from the rest of 

what we do’ (Resnick, 1987:57). 

 

The research seeks to examine the ability of Irish students to mathematise and 

use the mathematics learned in the classroom and school environment to solve 

unfamiliar, realistic mathematical problems. In order to consider this the author 

had to decide on a method of assessing both the skills of students and their 

mathematical ability as currently determined by the Irish assessment system. 

After much deliberation and analysis of the literature surrounding 

mathematisation, international assessments in mathematics and research 

methods, the author decided on a three-tier process involving the following: 

• Structured observations; 

• Semi-structured interviews; and 

• Testing. 

 

The following section considers each of the data collection methods in more 

detail.  

  

6.4.1. The Structured Observation 

 

A structured observation of a mathematics class involving the class group 

being assessed was carried out for each of the Irish groups. The purpose of the 

classroom observation is to gain some insight into the teaching and learning 

that is happening in a ‘traditional’ Irish mathematics class. The teaching and 

learning practices are considered in terms of mathematics learning theories 

(absolutist and relativist theories). The observations provide the context in 

which to consider the implemented tests. 
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6.4.2. The Semi-Structured Interview 

 

A semi-structured interview is implemented in order to gain insight into the 

mathematics activities in the classroom and the structure of mathematics 

activities (timetabling, allocating of classes etc.) within the school. The semi-

structured version of the interview was the data collection process decided on 

in order to facilitate the opinions of the interviewee to be expressed and allow 

elaboration of topics, questions and/or answers as the need arose. 

 

6.4.3. The Tests 

 

Two tests were selected by the author as a means of assessing mathematical 

knowledge, understanding and problem solving skills. The two tests decided on 

are: 

 

• A 'Traditional' mathematics test: based on the current Junior Certificate 

curriculum and focused on the related assessment style. The test 

questions are directly related to the Junior Certificate examination and 

are selected from past Junior Certificate papers. The questions are from 

the algebra, statistics and arithmetic sections of the ordinary level 

examination. The ordinary level syllabus is covered by all second year 

students who eventually sit both the higher and ordinary level Junior 

Certificate mathematics examination. For this reason the author felt that 

it found common ground without excluding anyone. All students in the 

schools involved follow the Junior Certificate ordinary level syllabus at 

some stage - even if they eventually sit the foundation level Junior 

Certificate examination. All questions in this 'Traditional' mathematics 

test (and in the Junior Certificate examinations) are closed-ended 

questions and have one correct answer only. No surplus information is 

provided. 

• A 'Realistic' mathematics test: which is not in a style familiar to Irish 

mathematics students and is connected to real-life experience and 

situations. The 'Realistic' test involves an authentic, problem-solving 

scenario. The scenario involves open-ended questions, for which there 
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can be more than one correct solution. Students are asked to 

demonstrate an understanding of how mathematics can be utilised to 

solve realistic problems. Students are asked to show evidence of 

decision-making and reflection. Surplus information is provided in 

some parts of some questions. The mathematics involved in the 

problem-solving are no more difficult than those required for the 

'Traditional' test, and are of an ordinary level, Junior Certificate 

standard. 

 

6.5 The pilot study 

 

The pilot study involved a second year class of 32 students. The pilot school is 

a large school of over 1,200 students situated in a large town in the west of 

Ireland. The students involved in the pilot study were all studying the higher 

level Junior Certificate course at the time the tests were administered. The 

school places a strong emphasis on mathematics and each second year class 

group has five, forty-minute classes per week. Students were streamed into 

higher and ordinary level groups at Christmas of first year to allow students to 

work at a pace that suits their individual ability. Topics are covered 

sequentially for all class groups allowing for movement from lower to higher 

ability class groups and vice-versa depending on the progress of each 

individual student.  

 

The school principal and board of management were fully supportive of the 

research project, and there were no significant issues with gaining access to the 

school. The mathematics teacher of the class group was also a willing 

participant in the research. Consent forms and information sheets were 

distributed to all students in the class group and to their parents/guardians. 

Consent was granted from all parents/guardians of the students, and just as 

importantly, all students in the class group were willing participants in the 

research. The author maintained a strict policy of giving the students the final 

say as regards refusing to participate regardless of their parents granting 

consent. Students were also informed on several occasions, and in the 

information sheet, that they were entitled to leave the research at any stage 
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prior to the research project finishing. Separate information sheets were 

provided for the following groups involved in the research: 

• Students; 

• Parents/guardians; and 

• Teachers. 

 

The pilot study involved the implementation of the following data collection 

processes: 

• Two ‘Realistic’ mathematics tests twice; 

• One ‘Traditional’ mathematics test; and 

• A structured observation. 

 

The researcher administered two Realistic tests in the first instance, in two 

separate mathematics lessons with the one class group. The reasoning behind 

the implementation of two realistic tests was to identify which test accurately 

assessed realistic problem solving skills effectively. Each Realistic test was 

implemented twice to assure reliability under test-retest conditions. The test-

retest process occurred approximately eight weeks apart. Consistency of grades 

for the repeated test were essential for the test to be deemed reliable. The 

Traditional test, as designed by the author, was also implemented. As this test 

consisted of ordinary level, Junior Certificate mathematics examination 

questions the author was confident that the students would be able to attempt 

varying amounts of this test depending on ability and therefore did not expect 

this test to need the same amount of adaption. The reliability of the Traditional 

test is also considered to be stable as it has been designed, tested and 

implemented by the Department of Education and Skills.  

 

The format of the Traditional test was found to be suitable following the pilot 

of same. However, one Realistic test was found to be superior (see 6.6.3.3). 

This test met the reliability standards required during the test-retest process. 

The pilot of this Realistic test identified issues that were amended. These 

problems included the following: 

• Formatting issues; 
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• No space provided for answers; and 

• Difficultly in identifying the question asked. 

 

The author adapted the Realistic test to take these issues into consideration; the 

format was adjusted, space was provided for answers and the actual question 

was highlighted for ease of identification. 

 

A structured observation schedule was also designed by the author (see 

6.6.1.1). The schedule was used to facilitate the structured observation of a 

mathematics lesson. The mathematics observed in the pilot study involved the 

higher level class group that participated in the testing of the pilot study. The 

author was satisfied that the template designed for the structured observation 

was effective and no changes were made after the pilot observation. The author 

initially used a regular watch for timing purposes in the pilot study but on 

reflection adapted this and used a stop-watch for the observations in the main 

research study. 

 

6.6 The Data Collection Process 

 

The following section introduces the data collection tools used in the research 

and discusses the implementation of these processes. 

 

6.6.1. The Structured Observation 

 

A structured observation is a quantitative method of observing activity within a 

classroom. This involves: 

• Identifying target behaviour(s) prior to observation; 

• Developing checklists or other schedules; and 

• Applying these instruments on classroom settings to record the 

frequency of occurrence of the identified behaviour (Atweh et al, 

1992:94). 

 

The categories predetermined as target behaviours prior to implementation of 

the study were designed with specific learning theories and styles in mind. The 
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author based the learning categories on behaviours she believes to be typical 

and/or desirable in a typical mathematics lesson.  

 

To recap, different learning theories in mathematics can be considered in two 

categories: 

 

• Objectivist Theories of Learning: The ‘Objectivist’ learning theories (to 

include behaviourism) are concerned with mathematics as being 

independent from the environment in which it is learned. The focus is 

on the information as the most important aspect of all teaching and 

learning. Teaching is didactic, with the teacher as the centre of all 

teaching and learning. Students focus on retaining knowledge, rote-

learning and reproduction. Tasks are broken down by the teacher into 

manageable components, with the mathematics task as a whole not 

considered overly important. Mathematical applications are not 

considered to be of importance under the ‘Objectivist’ view.  

• Relativist Theories of Learning: 

The ‘Relativist’ learning theories (to include constructivism) focus on 

the learner as the centre of all knowledge. The emphasis is on active 

learning and problem-solving. A distinct move away from abstraction is 

encouraged. Learning is not broken down into its component parts, 

rather learning is considered to be authentic and real. Mathematical 

applications are of paramount importance, with the student fully 

immersed with the problem as it appears in the real-world. Mathematics 

is not considered to be separate from one’s real-life, but rather part of 

one’s personal, as well as educational, experience. Student’s prior 

knowledge is of value from a Relativist standpoint.  
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6.6.1.1.  Analysis of the Structured 

Observation 

 

The structured observation schedule consists of 30-second intervals and 22 

teaching and learning activities that the author believes are characteristic of an 

Irish mathematics lesson. The activities are not mutually exclusive, and more 

than one activity can occur simultaneously (e.g. ‘board-work’ and ‘teacher 

explanation’). The identified activities comprise of generic tasks such as ‘role-

call’ (establishing who is absent) and ‘discipline’, and teaching and learning 

tasks. The author considers the mathematical activities in terms of Absolutist 

and Relativist theories of learning.  

 

The author organises some of the identified tasks in the structured observation 

schedule in terms of the Absolutist and Relativist theories of learning. The 

author considers teaching and learning tasks from the schedule as follows: 

 

Absolutist Relativist 

Board-work Group-work 

Book-work Student computer work 

Teacher explanation Real-life reference 

Student question Student discussion 

Teacher instruction Active Learning 

Teacher question   

Individual work  

Student answer  

 

Table 13: The categorisation of observable activities as either Absolutist or Relativist 

 

By observing typical teaching and learning behaviour in Irish classrooms the 

author expects to gain an insight into the learning theory that underpins current 

Irish mathematics education. The type of activity occurring in each 
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mathematics class observed will offer a window into the activity that occurs 

throughout the country. The author is fully aware that the six mathematics 

lessons observed are only a representation of what is typical, but nevertheless 

believes that the opportunity to observe the class groups involved in the testing 

and interview stages of the data collection process is a valuable opportunity to 

consider teaching and learning practices in Irish classrooms. 

 

The following (fig.3) is an extract of the structured observation schedule and 

shows the schedule for the first ten minutes (20, 30 second intervals). The 

schedule is repeated identically for the next 30 minutes (60, 30 second 

intervals).  

 

 
Figure 3: The structured observation schedule 
 

The three most frequent activities observed in each structured observation are 

highlighted in the analysis of the structured observation. 

 

The author implemented this structured observation schedule with each of the 

six Irish mathematics class groups involved in the research. As discussed in 

Chapter 5, the author identified herself as a ‘complete observer’. The teachers 
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involved in the research were informed in advance of the mathematics lesson 

that would be observed. The mathematics lesson observed involved the second 

year class group who were participating in the testing component of the 

research. The author observed the teaching and learning as it occurred in the 

mathematics lesson and completed the observation template for the duration of 

the lesson. The author found the implementation of the structured observation 

to be a very straight-forward process and no difficulties occurred. The findings 

of the observations are discussed in Chapter 7. 

 

6.6.2. The Semi-structured Interview 

 

As discussed in the ‘Research Methods and Methodology’ chapter, the semi-

structured interview was decided on by the author as a means of data 

collection. The primary reason for this is that the author felt that the data 

collected through testing and observation needed to be placed in context. The 

practicalities of what happens in the mathematics classroom, and indeed the 

position of mathematics within the school, are essential in considering the 

ability of students to transfer mathematical knowledge to solve authentic 

problems. The mathematics teacher is also the person who is most familiar 

with their mathematics class group, and therefore is perfectly placed to provide 

an insight into what typically happens in a mathematics lesson. A semi-

structured interview provides the author with qualitative data that offers an 

insight into teaching and learning practices, and hence mathematics learning 

theories, that the quantitative data provided by the structured observation and 

the testing cannot offer.  

 

To recap, the author highlights the following questions as being pertinent to 

obtaining the data she requires to validate data collected for her research 

question. The questions asked, and the information provided by the 

interviewee, varied from class group to class group, and between Ireland and 

the U.S. state of Massachusetts.  
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The following topics were covered in the interviews with each of the Irish 

mathematics teachers: 

• The level of the mathematics course followed by the class group in 

question, 

• The number of mathematics students in the class; 

• The work ethos within the class group; 

• The number of class periods per week for mathematics in the time-table 

for the year group in question (second years); 

• Any behavioural issues that affect teaching and learning of mathematics 

with the class group in question; 

• The availability of extra assistance for students that may require it 

(SNAs (special needs assistants), special needs tuition, homework club 

availability etc.); 

• The number of mathematics class groups in the year; 

• The level of mathematics followed by the year group: ordinary and 

higher level only or is foundation level mathematics available for the 

students; 

• Does the teacher anticipate that any of the students involved in the 

research may sit the foundation level examination in the Junior 

Certificate; 

• The number of mathematics teachers in the school; 

• The value placed on a mathematical ethos in the school; 

• The use of information technology in mathematics lessons; 

• The implementation of ‘Project Maths’ teaching methods in preparation 

for the introduction of ‘Project Maths’ for all year groups (the author is 

aware that the new ‘Project Maths’ syllabus is not in place for the class 

groups involved in the research project but is interested in any teaching 

and learning changes that may be undertaken in preparation for its 

implementation); and 

• The predicted Junior Certificate results for the class group in question. 
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The topics selected for discussion in the semi-structured interview with the 

participants from the school involved in the research project from the state of 

Massachusetts in the United States varied slightly. The questions asked 

included (but were not restricted to): 

• The selection process for students involved in the study; 

• The mean age of the students involved; 

• Average class size; 

• The utilisation of Algebra 1 students in the study and the possibility 

that these students are more mathematically able than other students in 

the year group; 

• The number of students participating in the study as a percentage of the 

year group as a whole; 

• The length of a mathematics lesson; 

• The number of mathematics periods per week; 

• The levels of mathematics studies; 

• Topics covered in Algebra 1; and 

• Other mathematics topics studied in addition to, or in place of, Algebra 

1. 

 

The author conducted the interviews with the teachers of the Irish class groups 

at a time after the classroom observation had been conducted. The duration of 

each interview was twenty minutes and the interview was held at a time that 

suited the teacher to be interviewed. All six Irish teachers involved in the 

research were willing interviewees and provided invaluable information for 

qualitative research purposes. The interviews provided a valuable insight into 

mathematics teaching practices and teacher opinions in Ireland. All Irish 

interviews were held in person and at the teacher’s school.  

 

The interview process was different when collecting data from the 

Massachusetts candidates. The restriction imposed by the author not visiting 

Massachusetts for data collection purposes necessitated the interview being 

conducted by telephone and through email. The Massachusetts teachers 

decided that it was most feasible if the head of the mathematics department in 
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the school spoke on their behalf. After an initial telephone conversation 

between the author and the head of department, Teacher G, it was decided to 

conduct further interviews by email. This allowed Teacher G to consult with 

the individual mathematics teachers and collect answers to the author’s 

questions. Six email interviews were conducted in total.  

 

The findings to all seven interviews are discussed in Chapter 7.  

 

6.6.3. The Testing Process 

 

The author administered tests in order to assess the ability of Irish students to 

mathematise and their ability to transfer mathematics learned in the classroom 

to unfamiliar situations. Two assessments, a Realistic and a Traditional test, 

were decided on in order to compare the ability of the students involved in the 

study to solve mathematics problems that varied in style. Each test was thirty 

minutes in duration.   

 

6.6.3.1. The Realistic Test 

 

‘If one views mathematics as a dynamic set of interconnected, humanly 

constructed ideas, then the assessment system must allow students to engage in 

rich activities that include problem-solving, reasoning, communication and 

making connections’ (Romberg,1995:4). 

 

The Realistic test focused on an unfamiliar, real-life scenario. The 

mathematical skills that were required by the test questions were skills that the 

students assessed should be familiar with. In accordance with the Irish 

mathematics curriculum these skills would not be considered difficult for a 

typical, second-year Irish student. The content validity of this test was assured 

by test analysis undertaken by an expert panel. 
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The PISA (Programme for International Student Assessment) provided a 

framework for the style of questioning used in the Realistic test compiled for 

this research project. PISA’s aim is to assess the extent to which participating 

countries have prepared students to play a constructive role in society. The 

focus of the PISA assessment is to consider if students have the ability and 

skills to use what they have learned in the classroom when faced with realistic 

situations they may encounter in their daily lives (http://www.oecd.org). The 

author is of the opinion that the PISA assessment style is similar in aim to the 

author’s own and for this reason the PISA assessment format formed a basis for 

the Realistic test used in this research. A high literacy level is required for this 

style of test. As a result all students were informed that the test could be read to 

them and the reading of the test could be repeated as often as they required. 

Irish students with identified high levels of learning difficulties had access to 

special needs assistance who were available to assist them with their literacy 

requirements. The realistic test is based on a question provided on the NRICH 

website (http://plus.maths.org/content/os/latestnews/jan-apr10/activity2/index). 

 

The Realistic test implemented is shown in Appendix VII for the Irish version 

and Appendix VIII for the Massachusetts’ version.  

 

6.6.3.2. The Traditional Test 

 

The Traditional test administered was designed based on the framework 

provided by the relevant terminal examination, the Junior Certificate. The 

author decided to base the test questions on the Junior Certificate assessment 

and selected questions from past examination papers. The reasoning behind 

this was that the Junior Certificate assessment is the means used for 

determining mathematical ability at junior cycle, at second-level, in Ireland. 

The mathematics topics tested included Junior Certificate algebra, arithmetic 

and statistics. 
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The Traditional test implemented is available in Appendix VIII (Irish version) 

and Appendix X (Massachusetts version). 

 

6.6.3.3.  Implementing the Tests 

 

The author visited each individual Irish school to administer the test in person. 

Two separate visits were required for each test. As discussed earlier, the test 

duration was thirty minutes. This was based on the fact that most Irish class 

periods are forty minutes in length and this allowed time for the author to 

introduce the test and for any housekeeping issues to be dealt with. The 

teachers involved in the study were not provided with the tests prior to 

implementation but were informed as to the basic concept of each. The test 

content was not divulged in advance. It was at the individual schools’ 

discretion as to whether the class teacher remained in the classroom for the 

testing or not. There were twelve Irish test scenarios in total, two for each class 

group. The class teacher was present in nine out of the twelve tests.  

 

As the author did not visit Massachusetts in person for data collection 

purposes, the implementation of the testing process varied slightly. The 

duration of each test remained at thirty minutes. Pdf versions of each test were 

emailed to Teacher G. There were two minor amendments to the 

Massachusetts’ version of the tests: 

• € symbols were changed to $; and 

• An income tax question on the Traditional test was amended slightly 

(see Appendices VIII and X). 

 

Teacher G took full responsibility for ensuring that the test content and format 

was not divulged before the testing process. The tests were sealed and sent by 

post to the author on the evening that the second test was implemented. 

Marking schemes are available for the tests to illustrate how they were scored 

(Appendix VII:ii; VIII:ii; IX:ii; X:ii).  
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6.7 Conclusion 

 

In summary, this chapter introduces the reader to the research methods selected 

for data collection purposes and the implementation of these. The data 

collection methods included: 

• Structured observations of mathematics lessons involving the Irish class 

groups participating in the research; 

• Semi-structured interviews with the mathematics teachers of the Irish 

class groups and the head of mathematics, Teacher G, from the school 

in Massachusetts; and 

• Testing of the Irish mathematics class groups in addition to a cohort of 

students from Massachusetts. 

Chapters 7 and 8 consider the findings from the data collection process. 
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7.0 Chapter 7: Data Analysis (Structured Observations and  

Interviews) 

 

7.1 Introduction 

 

This chapter considers the analysis of the structured observations of the 

mathematics lessons of seven class groups and analysis of the interviews with 

seven mathematics teachers. The seven groups involved in the structured 

observation include the pilot study and the six Irish mathematics class groups. 

The interviews were administered to the teachers of the six Irish mathematics 

groups plus the head of mathematics in the school from Massachusetts. 

 

7.2 The Structured Observation 

 

The following section considers the analysis of the data collected through 

quantitative methods by structured observation of the mathematics lessons with 

the Irish class groups involved in the research.  

 

 

7.2.1. The Pilot Observation 

 

The Pilot structured observation involved the observation of a student teacher, 

teaching trigonometry to a second year mathematics class group. The 

mathematics topic taught was not considered to be of importance as long as the 

teacher felt that the topic show-cased a ‘typical’ mathematics lesson for their 

class group. The class observed were a higher level group and are the same 

class group that were involved in the pilot testing. The class lasted thirty-six 

minutes and during the observation the majority of time was spent on 

correcting homework, given to students during the previous lesson and for 

completion the previous night. The teacher observed, Teacher P, explained that 

while it is typical for the correction of homework to take a significant 

proportion of the lesson, the observed class was especially concerned with the 

correction of homework. There was no particular reason for this and a 
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discussion with the teacher found that the length of class-time spent on 

homework varied from lesson to lesson. The three teaching and learning 

activities identified in the schedule that occurred the most frequently in the 

pilot observation are: 

1. Homework (78%): The ‘homework’ observation involved the teacher 

dealing with and reviewing the previous night’s homework by writing 

the correct solutions to the questions that were set on the whiteboard. 

The teacher asked the students questions to clarify that they understood 

the homework, and the students asked the teacher questions about 

elements of the homework and/or the explanation given by the teacher 

that they did not understand. The teacher also circulated the room in 

order to look at the homework the students had attempted the previous 

night in their copybooks. All of the homework set in the previous 

lesson comprised of questions from the prescribed textbook. The final 

answer to all questions are provided in the back of the text book – all 

questions were closed-ended with only one correct answer; 

2. Board work (73.6%): The teacher, Teacher P, used the whiteboard to 

display the correct answers to the previous night’s homework and to 

expand the topic (trigonometry) into new areas. As is very common in 

Behaviourist learning theories the teacher used the whiteboard as a 

resource for his ‘chalk-and-talk’ method of teaching. Again ‘chalk-and-

talk’ is a teaching technique frequently used in Irish mathematics 

classrooms, and involves the teacher explaining mathematical topics by 

writing solutions on the white-board and speaking about their workings 

as they work through the question; 

3. Teacher explanation (62.5%): The observed lesson was teacher-

centered with the students relying on the teacher to tell them exactly 

what to do. The students in the observed class were very concerned 

with copying everything the teacher, Teacher P, wrote on the board 

word for word into their copybooks. The teacher explained much of 
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what was written on the board and also answered the student’s 

questions. 

 

The focus of teaching and learning in the observed pilot class was firmly 

rooted in the Absolutist philosophies, with little, if any, emphasis on Relativist 

tasks such as ‘Group work’, ‘Real-life reference’, ‘Student discussion’ or ‘Active 

learning. Behaviourist tasks such as ‘Board-work’, ‘Individual work’, ‘ Teacher 

explanation’, ‘Student question’, ‘Teacher question’ and ‘Student answer’ 

dominated the observed mathematics lesson. The purpose of implementing a 

pilot structured observation is so that any adjustments to the schedule, deemed 

necessary by the researcher, can be made. The author was satisfied with the 

observation schedule initially decided on. The author initially used a watch 

with a second hand to time the observation intervals but after the pilot study 

decided to use a stopwatch for better accuracy. The author also made the 

decision, after the pilot study, to use a clipboard for ease of recording. The 

teacher in each of the observed lessons was given the choice as to where they 

wished to physically locate the observer within the class group. The pilot 

teacher placed the observer in the back, right-hand corner of the classroom. It 

was a good position within the room from which to unobtrusively observe what 

is happening in the class. As planned, and explained to the research 

participants, the observer did not participate in the observed lesson at all. 

 

The following table shows the time spent on the identified tasks in the pilot 

study: 

 

Type of Activity Fraction of total time 

slots (72, 30 sec slots) 

% of total class time (36 

mins) 

Role-call 3/72 4.2% 

Arrival/settling/packing 6/72 8.3% 

Discipline - - 
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Type of Activity Fraction of total time 

slots (72, 30 sec slots) 

% of total class time (36 

mins) 

Home-work 56/72 78% 

Active learning - - 

Book-work 15/72 20.8% 

Board-work 53/72 73.6% 

Individual work 14/72 19.4% 

Group work - - 

Teacher explanation 45/72 62.5% 

Student question 11/72 15.3% 

Teacher question 26/72 36.1% 

Student answer 26/72 36.1% 

Positive reinforcement - - 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference - - 

Non-maths activity 1/72 1.4% 

Teacher going around  9/72 12.5% 

Teacher instruction - - 

Student discussion 7/72 9.7% 

 

Table 14: Structured observation analysis of the pilot study 

 

The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of the pilot 

group: 
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Figure 4: Graphical analysis of the observed pilot lesson 

 

7.2.2. The Structured Observation -Group 1 

 

The observed class group are an ordinary mathematics class in a large 

secondary school. The class is dedicated to providing for the students who find 

mathematics particularly difficult. The researcher observed the teacher 

teaching mathematical functions to this group of students. The author noted 

that the small class size enabled the teacher, Teacher A, to provide individual 

support and attention for each of the students. This appeared to be needed by 

the majority of the nine students in the class. The students were engaged and 

attentive, with much effort put into individual work. Teacher A explained in 

the interview that individual work encourages students to focus on the task at 

hand. 

 

The most frequently identified teaching and learning activities in the 

observation schedule observed in Teacher A’s class were: 

1. Individual Work (48%): The students worked individually to solve 

mathematical problems. The questions solved originated from the 

textbook and were closed-ended questions with one correct answer; 



235 

 

2. Teacher going around (38.75%): The teacher spent a considerable 

amount of time going from student to student and ensuring that each 

student received the individual attention necessary to solve the 

mathematical problems correctly; and 

3. Book-work (30%): All the students had individual textbooks from 

which they worked. The teacher also selected mathematical problems 

from the prescribed textbook for demonstration purposes on the white 

board. 

 

The author notes that the activities that dominate in the observed class (group 

1) are concerned with tasks of an Absolutist nature. Tasks associated with the 

Relativist theory of teaching and learning include ‘group-work’, ‘student 

computer work’, ‘student discussion’, and ‘active learning’ were not part of the 

teaching and learning methods used in the observed class. However, the author 

notes that Teacher A made ‘real-life references’ more frequently than any of the 

other observed teachers, and made every effort to link the mathematics learned 

in the classroom to realistic situations. Despite this, the time spent on ‘real-life 

references’, 8.75%, was proportionately small. 

 

The following table illustrates the time spent on the observable activities in the 

lesson observed for group 1: 

 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call 2/80 2.5% 

Arrival/settling/packing 13/80 16.25% 

Discipline 4/80 5% 

Homework - - 

Active learning - - 
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Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Book-work 24/80 30% 

Board-work 20/80 25% 

Individual work 39/80 48.75% 

Group work - - 

Teacher explanation 12/80 15% 

Student question 4/80 5% 

Teacher question 23/80 28.75% 

Student answer 23/80 28.75% 

Positive reinforcement 22/80 27.5% 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference 7/80 8.75% 

Non-mathematical activity 3/80 3.75% 

Teacher going around  31/80 38.75% 

Teacher instruction 16/80 20% 

Student discussion 1/80 1.25% 

 

Table 15: Structured observation analysis of group 1 
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The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of the group 

1: 

 

 

 

Figure 5: Graphical analysis of the observed group 1 lesson 

 

7.2.3. The Structured Observation -Group 2 

 

The observed class, group 2, involved a higher-level mathematics class group 

in a small community college. There are only two mathematics groups in 

second year in school 2 due to the small number of students. As a result the 

higher level mathematics class catered for a wide ability range. The teacher, 

Teacher B, involved in the research is an established teacher with more than 

twenty years teaching experience.  

 

The three teaching and learning activities identified in the schedule that 

occurred the most frequently in the pilot observation are: 

1. Teacher explanation (80%): Teacher B spent a significant proportion 

of the class explaining the mathematical procedures used to solve 

mathematical problems. All mathematical problems solved in the 
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observed lesson originated from the textbook and involved closed-

ended questions with one correct answer; 

2. Board-work (71.25%): The teacher in the observed group 2 lesson used 

the white-board to demonstrate problem-solving techniques. This was 

supported by the use of explanations and questioning to ensure the 

students understood what was being demonstrated; and 

3. Individual work (46.25%): The students spent a considerable amount of 

time on practicing the problem-solving techniques demonstrated by the 

teacher. This involved solving problems that were similar on an 

individual basis in each student’s copybook. 

The following table shows the proportion of class time spent on each observed 

activity during the structured observation of group 2: 

 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call 1/80 1.25% 

Arrival/settling/packing 6/80 7.25 

Discipline - - 

Homework 32/80 40% 

Active learning - - 

Book-work 36/80 45% 

Board-work 57/80 71.25% 

Individual work 37/80 46.25% 

Group work - - 

Teacher explanation 64/80 80% 

Student question 15/80 18.75% 

Teacher question 34/80 42.5% 

Student answer 22/80 27.5% 
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Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Positive reinforcement 4/80 5% 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference - - 

Non-maths activity - - 

Teacher going around  6/80 7.5% 

Teacher instruction 12/80 15% 

Student discussion - - 

 

Table 16: Structured observation analysis of group 2 

 

The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of group 2: 

 

 

 

Figure 6: Graphical analysis of the observed group 2 lesson. 
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7.2.4. The Structured Observation -Group 3 

 

The observed group 3 lesson involves a top stream, higher level mathematics 

class. The teacher involved, Teacher C, explained that the students involved 

are a particularly able group with the majority having a great enthusiasm and 

capacity for mathematics. Teacher C was an enthusiastic and nurturing teacher, 

and was exceptionally encouraging of the students involved in the group 3 

observation. ‘Positive re-enforcement’ was a notable aspect of Teacher C’s 

teaching style (32.5%), with very affectionate language used towards all 

students. Teacher C is an established mathematics teacher, with more than 

twenty years teaching experience and is head of the mathematics department in 

her school. 

 

The three teaching and learning activities identified in the schedule that 

occurred the most frequently in the pilot observation are: 

1. Board-work (51.25%): The teacher in the observed group 3 class spent 

a significant proportion of the class demonstrating procedural 

techniques for solving mathematical problems on the white-board. All 

the questions solved originated from the prescribed textbook and were 

closed-ended questions with just one correct answer; 

2. Individual work (45%): the students in the observed group 3 class spent 

a considerable length of time on solving similar mathematical problems 

in their copybooks. The teacher demonstrated the technique on the 

board and the students then practiced this technique repeatedly by 

solving mathematical questions of a similar nature. The teacher 

regularly went from student to student, keeping a close eye on their 

work and providing advice where necessary; and 

3. Book-work (38.75%) and teacher explanation (38.75%): Textbooks 

were used for much of the class and all the mathematical questions, as 

explained earlier, derived from the textbooks. The teacher frequently 

explained what she had written on the board and the students were 

asked questions regarding same. 
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The following table displays the different activities observed during the 

structured observation of group 3: 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call 2/80 2.5% 

Arrival/settling/packing 6/80 7.5% 

Discipline - - 

Homework 6/80 7.5% 

Active learning - - 

Book-work 31/80 38.75% 

Board-work 41/80 51.25% 

Individual work 36/80 45% 

Group work - - 

Teacher explanation 31/80 38.75% 

Student question 4/80 5% 

Teacher question 24/80 30% 

Student answer 23/80 28.75% 

Positive reinforcement 26/80 32.5% 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference - - 

Non-maths activity 2/80 2.5% 

Teacher going around  25/80 31.25% 

Teacher instruction 13/80 16.25% 

Student discussion - - 

 

Table 17: Structured observation analysis of group 3 
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The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of group 3: 

 

 

Figure 7: Graphical analysis of the observed group 3 lesson 

 

7.2.5. The Structured Observation -Group 4 

 

The group 4 teacher, Teacher D, involved in the research is an experienced 

teacher with more than twenty years teaching experience. The class observed 

are an ordinary level mathematics class group. Teacher D’s teaching style is 

gentle and nurturing, disciplining is done in a most gentle and respectful 

manner. The students are treated as being equal to the teacher. As a result the 

observed class had the highest noise level but allowed for freedom of 

expression. 

 

The three teaching and learning activities identified in the schedule that 

occurred the most frequently in the pilot observation are: 

1. Teacher explanation (56.25%): The teacher, Teacher D, in the 

observed group 4 class spent a significant proportion of the lesson on 

explaining mathematical procedures and techniques; 
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2. Board-work (45%): Teacher explanations were supported by the 

demonstration of problem-solving techniques on the white board. All 

questions solved originated from the prescribed textbook and were 

closed-ended questions with one correct answer; and 

3. Home-work (41.25%): Solutions from the previous night’s homework 

were written on the board and the teacher explained the procedural 

technique used for solving each question. 

 

The following table illustrates the time spent on each activity in the observed 

class for group 4: 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call - - 

Arrival/settling/packing 14/80 17.5% 

Discipline 8/80 10% 

Homework 33/80 41.25% 

Active learning - - 

Book-work 22/80 27.5% 

Board-work 36/80 45% 

Individual work 22/80 27.5% 

Group work 5/80 6.25% 

Teacher explanation 45/80 56.25% 

Student question 12/80 15% 

Teacher question 17/80 21.25% 

Student answer 15/80 18.75% 

Positive reinforcement 7/80 8.75% 

Overhead projector - - 

Interactive white board - - 
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Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Student computer work - - 

Real-life reference - - 

Non-maths activity 1/80 1.25% 

Teacher going around  20/80 25% 

Teacher instruction 9/80 11.25% 

Student discussion 3/80 3.75% 

 

Table 18: Structured observation analysis of group 4 

 

The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of group 4: 

 

 

Figure 8: Graphical analysis of the observed group 4 lesson 

 

7.2.6. The Structured Observation - Group 5 

 

The teacher in question, Teacher E, described the observed class as reasonably 

typical with one or two exceptions. The first of these is the fact that 8 students 

(out of a possible 31 students) were absent due to involvement in school extra-
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curricular activities. Teacher E also referred to the fact that she was 

experimenting with some slight variations to her teaching style as she was 

preparing for the introduction of the new mathematics syllabus, Project Maths, 

despite the fact that the new curriculum will not affect the current second year 

students.  

 

Teacher E explained that there were rarely discipline issues with this particular 

class and believed this was due to the fact that they were a ‘Top A’ class. The 

teacher referred to other classes that were less mathematically able (such as the 

‘bottom honours class’) and where students were not as academically inclined 

as more likely to encounter discipline issues. The researcher noted that it was 

interesting that an experienced teacher (with over twenty years of teaching 

experience) was experimenting with her teaching style in anticipation of 

teaching changes that she will have to adapt to in the future.  

 

The three teaching and learning activities identified in the schedule that 

occurred the most frequently in the pilot observation are: 

1. Teacher explanation (57.5%): The teacher observed in the group 5 

observation explained the mathematical techniques involved and the 

procedures for solving these mathematical problems. All the 

mathematical questions solved in the observed lesson were closed-

ended questions, and had one correct answer only; 

2. Individual work (55%): The students in the group 5 lesson did a 

significant amount of individual work. This individual work involved 

the students solving given mathematical questions (all of which 

originated from the text-book but some of which were written up on the 

white board). The students worked on a series of similar mathematical 

problems, practicing the correct procedural technique in order to arrive 

at the correct solution; and 

3. Board work (52.5%): The teacher in the observed group 5 lesson used 

the white-board to demonstrate procedural techniques for solving the 

closed-ended mathematics questions from the textbook. The white-
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board was accompanied by teacher explanations as shown above. 

Again, this shows the use of the common ‘chalk-and-talk’ technique. 

The following table shows the amount of class time spent on each activity 

during the observed lesson for group 5: 

 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call - - 

Arrival/settling/packing 8/80 10% 

Discipline - - 

Homework 14/80 17.5% 

Active learning - - 

Book-work 31/80 38.75% 

Board-work 42/80 52.5% 

Individual work 44/80 55% 

Group work - - 

Teacher explanation 46/80 57.5% 

Student question 6/80 7.5% 

Teacher question - - 

Student answer - - 

Positive reinforcement 17/80 21.25% 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference - - 

Non-maths activity 5/80 6.25% 

Teacher going around  19/80 23.75% 
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Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Teacher instruction 16/80 20% 

Student discussion - - 

 

Table 19: Structured observation analysis of group 5 

 

The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of group 5: 

 

 

Figure 9: Graphical Analysis of the observed group 5 lesson 

 

7.2.7. The Structured Observation - Group 6 

 

The researcher wishes to note that the students described by Teacher F as 

having a particularly poor attendance history, and associated behavioural 

issues, were absent on the day that the class was observed. The relatively slow 

start to the class appeared to be due to organisational issues on the students’ 

behalf. Once the class commenced, the students demonstrated mathematical 

interest and enthusiasm. There was a significant amount of mathematical 

discussion between the students, often initiated by the students themselves. 
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The three teaching and learning activities identified in the schedule that 

occurred the most frequently in the pilot observation are: 

1. Board work (48.75%): The teacher observed, Teacher F, spent a 

significant length of the observed class period on board work. This 

involved the teacher showing students how to solve mathematical 

problems on the white board. All the questions solved were closed-

ended questions and only had one correct answer; 

2. Teacher explanation (34.29%): The teacher provided concise 

explanations of the mathematics demonstrated on the white board as 

she worked. This, again, is an example of the common ‘chalk-and-talk’ 

technique used in teaching mathematics in Ireland; and 

3. Teacher question (34.29%): The teacher frequently asked the students 

questions in order to verify that they understood what was being 

explained. 

The following table illustrates the amount of time spent on each activity during 

the observed lesson for group 6: 

 

Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Role-call 2/70 2.86% 

Arrival/settling/packing 15/70 21.43% 

Discipline 2/70 2.86% 

Homework 2/70 2.86% 

Active learning - - 

Book-work 1/70 1.42% 

Board-work 34/70 48.57% 

Individual work 15/70 21.43% 

Group work - - 
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Type of Activity Fraction of total time 

slots (80, 30 sec slots) 

% of total class time (40 

mins) 

Teacher explanation 24/70 34.29% 

Student question 8/70 11.43% 

Teacher question 24/70 34.29% 

Student answer 23/70 32.86% 

Positive reinforcement 13/70 18.57% 

Overhead projector - - 

Interactive white board - - 

Student computer work - - 

Real-life reference - - 

Non-maths activity 11/70 15.71% 

Teacher going around  10/70 14.29% 

Teacher instruction 6/70 8.57% 

Student discussion 11/70 15.71% 

 

Table 20: Structured observation analysis for group 6. 

 

The following graph provides a visual representation of the teaching and 

learning activities that occurred during the structured observation of group 6: 
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Figure 10: Graphical analysis of the observed group 6 lesson 

 

7.2.8. Analysis of the seven structured observations 

 

The following table considers the activities noted in the structured observations 

of the seven groups involved: 

 

Type of Activity Pilot Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Mean per 

class 

Role-call 3/72 2/80 1/80 2/80 - - 2/70 1.89% 

Arrival/settling/packing 6/72 13/80 6/80 6/80 14/80 8/80 15/70 12.65% 

Discipline - 4/80 - - 8/80 - 2/70 2.55% 

H.W. 56/72 - 32/80 6/80 33/80 14/80 2/70 26.7% 

Active Learning - - - - - - - 0% 

Book-work 15/72 24/80 36/80 31/80 22/80 31/80 1/70 28.89% 

Board-Work 53/72 20/80 57/80 41/80 36/80 42/80 34/70 52.46% 

Individual Work 14/72 39/80 37/80 36/80 22/80 44/80 15/70 37.63% 

Group Work - - - - 5/80 - - 0.89% 
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Type of Activity Pilot Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Mean per 

class 

Teacher Explanation 45/72 12/80 64/80 31/80 45/80 46/80 24/70 46.61% 

Student Q 11/72 4/80 15/80 4/80 12/80 6/80 8/70 11.13% 

Teacher Q 26/72 23/80 34/80 24/80  17/80 - 24/70 27.56% 

Student Ans 11/72 4/80 15/80 4/80 12/80 6/80 8/70 11.13% 

Positive Reinforcement - 22/80 4/80 26/80 7/80 17/80 13/70 16.23% 

OHP - - - - - - - 0% 

Interactive white board - - - - - - - 0% 

Student computer work - - - - - - - 0% 

Real-life reference - 7/80 - - - - - 1.25% 

Non-maths activity 1/72 3/80 - 2/80 1/80 5/80 11/70 4.41% 

Teacher going around  9/72 31/80 6/80 25/80 20/80 19/80 10/70 21.56% 

Teacher instruction - 16/80 12/80 13/80 9/80 16/80 6/70 13.01% 

Student discussion 7/72 1/80 - - 3/80 - 11/70 4.35% 

 

Table 21: Analysis of the seven groups involved in the structured observation 

 

In the above analysis of the seven observed class groups (including the pilot 

structured observation) the most frequently occurring teaching and learning 

activities are highlighted. These are: 

1. Board-work (52.46%); 

2. Teacher explanation (46.61%); and 

3. Individual work (37.63%). 

The term ‘board-work’ involves the teacher writing on the white-board to 

illustrate solutions to mathematical questions. The fact that the two most 

frequently occurring teaching and learning activities, across observation of the 

seven class groups, are based primarily on teacher activity, suggests that the 

teacher is the focus in the Irish mathematics classroom. It is interesting that the 

third most common classroom activity is ‘individual work’ which involves the 
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students working on their own. Activities that did not occur at all in the 

observed mathematics lessons are: 

• ‘Active learning’; 

• The use of an ‘overhead projector’; 

• The use of an ‘interactive white board’; and 

• Computer work of any kind, particularly ‘student computer work’. 

 

7.2.9. Reflection on the Findings from the 

Structured Observations: 

 

The structured observations of the seven mathematics lessons suggest that Irish 

mathematics teaching may be heavily influenced by the behaviourist 

philosophy. While the author is aware that seven observations is not a basis on 

which to determine the nature of teaching in Ireland it is interesting that the 

lessons observed are similar in terms of the teaching and learning activities 

addressed and those which do not occur. Individual work is valued over group 

work, the textbook is a key feature of the mathematics lesson and the teacher is 

the centre of all teaching and learning activity. Despite observing both male 

and female teachers, with varying levels of teaching experience, the overriding 

impression from the observed lessons is that mathematics teaching in Ireland 

varies little from classroom to classroom and from school to school. Again, this 

assumes that the lessons observed are typical of what is occurring in 

mathematics lessons throughout Ireland. 

 

Despite the fact that the teachers observed (including the student teacher) had 

undergone training for the incoming ‘Project Maths’ curriculum, the author 

observed no direct influence from this training on the teaching and learning 

activities in the mathematics lessons. It will be interesting to reconsider 

mathematical teaching styles in Ireland in the coming decade to see if ‘Project 
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Maths’ alters teaching habits in Irish classrooms. The author is of the opinion 

that teaching and learning methods in Ireland must undergo a significant 

overhaul if Irish mathematics education is to be altered and improved.  

 

7.3 The Semi-Structured Interviews 

 

The following section considers the findings from the semi-structured 

interviews. 

 

7.3.1. Semi-Structured Interview: Teacher A  

The school involved in the first interview, school 1, provided two class groups 

(group 1 and group 6) for the Research project. Both of the class groups were 

small, ordinary level mathematics classes. In both instances they represent the 

bottom stream in ordinary level (on two opposite sides of the time-table). The 

school is a large school with 1150-1250 students and eighty full-time teachers. 

It is a secondary school with an open-intake policy and a strong academic 

reputation. It is an established school, founded in the late 1800’s, with a strong 

sporting tradition. The school was initially a male only establishment but in 

recent years girls were welcomed and now account for a third of the student 

population. As a result of the large number of students in the school, and the 

fact that there is a compulsory obligation for all students to study mathematics 

in each year group, there are 24 teachers in the school who are qualified to 

teach mathematics. In second year there are ten mathematics class groups. The 

year group is divided in two to facilitate timetabling of staff, with five 

mathematics classes and mathematics teachers operating at any one time.  

 

The teacher in question, teacher A, has been teaching full-time for the last six 

years. Teacher A has a higher level degree in science with a specialisation in 

chemistry and a master’s degree in Information Technology. The second year 

class are the only mathematics group that Teacher A is teaching during the 

academic year in question, but in the past she has had a significant amount of 

mathematics in her timetable and is a respected higher level, Junior Certificate 
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and ordinary level, Leaving Certificate mathematics teacher. The class 

observed and assessed as part of the data collection are an ordinary level 

mathematics class with a significant number of students that require one-on-

one assistance. For this reason there are only nine students in the mathematics 

class, and in addition to the teacher there are three ‘special needs assistants’ 

(SNAs) for three individual students with various recognised learning and 

behavioural difficulties. The students are currently studying the ordinary level 

Junior Certificate mathematics syllabus. Teacher A would hope that the 

majority of the students would sit the ordinary level mathematics paper in the 

Junior Certificate at the end of their third year. It is very probable, however, 

that one or two of the students may end up sitting the foundation level Junior 

Certificate paper in mathematics. This will not be decided by the student, under 

advice from Teacher A, until after the trial examinations which will be held 

approximately three months before the actual Junior Certificate examinations 

commence. Teacher A may advise the student to sit the foundation level paper 

at this stage if the student received a very low score, significantly below the 

pass mark of 40%, in their trial examination in ordinary level mathematics. 

 

Teacher A was enthusiastic, when interviewed, about teaching mathematics 

and advancing her own teaching and learning skills. Teacher A was very 

comfortable with the concept of being involved in a structured observation and 

was a willing and enthusiastic interviewee. Topics discussed with Teacher A 

included the difficulty regarding punctuality and attendance with some students 

in the class group and the disruptive nature of this behaviour. 

 

Teacher A discussed some of the class activities that she utilises when teaching 

mathematics in an effort to encourage understanding and student participation 

– these include many examples of authentic problems involving real-life 

activities. However, Teacher A was keen to point out that the mathematical 

content of these activities is at a relatively basic level, and many of the students 

struggle with mathematics despite real-life references. An example given by 

Teacher A was the use of real-life scenarios involving arithmetic and the 

problems students have in decimalisation. When asked to calculate the cost of 



255 

 

three cups of coffee at €2.10 each, one particular student was adamant that the 

total cost of the coffee is €63. Despite discussion with the teacher regarding the 

unlikelihood that three cups of coffee could possibly cost that much the student 

in question was reluctant to accept otherwise. Despite these difficulties Teacher 

A was optimistic about the value of mathematical skills for all students and 

enthusiastic about the role she could play in this development. 

 

 

7.3.2. Semi-Structured Interview: Teacher B 

 

School 2 is a community college situated in a village and has a primarily rural 

catchment area, with a significant minority of students travelling 20 miles from 

the nearest large town. School 2 was built less than twenty years ago and 

benefits from excellent facilities and a dynamic, enthusiastic principal. The 

school replaced two established single-sex schools in one purpose built, co-

educational facility. The school has an upper limit for student enrolment of 325 

and this results in an intimate and familiar atmosphere. The student-teacher 

ratio averages out at approximately 12-1. The school is exceptionally well 

maintained and has a very strict work-ethos and code of conduct for students.  

 

The teacher, Teacher B, of the class involved in the research is an experienced 

teacher of over thirty years experience. Teacher B describes her methods of 

teaching mathematics as ‘traditional’ and ‘old-fashioned’. Teacher B explains 

that she is very aware that her experience in the classroom has led to the 

development of a very particular teaching style which relies heavily on ‘chalk 

and talk’. Despite this self-description of a ‘traditional’ teacher, the author 

found the teacher in question, Teacher B, to be an extremely open-minded, 

enthusiastic individual who was at pains to advance with the incoming ‘Project 

Maths’ curriculum. Teacher B demonstrated to the author some of the 

information technology resources she uses in the class including Geo-gebra for 
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co-ordinate geometry explanations and online resources for algebra. The author 

was heartened to see an experienced teacher with such passion and openness 

for change. 

 

As the school in question is small there are only two mathematics class groups 

in second year: one higher level class and an ordinary level class. The class 

involved in the research is the higher level class and as it is the only class in 

second year studying mathematics at this level there was a greater ability range 

than may be found in a higher level class in a larger school. Teacher B 

described the class as consisting of students that are extremely able down to 

students who realistically would eventually end up sitting the ordinary level, 

Junior Certificate examination. Discipline, Teacher B explained, was not an 

issue of any note with this particular class and this reflected the general ethos 

of the school which was very strictly run. Teacher B also explained that the 

small size of the school led to increased familiarity with the student body 

which reduced the occurrence of unnoticed discipline issues.  

 

 

7.3.3. Semi-Structured Interview: Teacher C 

 

Group 3 is a community school situated in a medium sized, industrial town in 

the west of Ireland. The school was built as part of a public-private partnership 

and is a well maintained facility. The teacher in question, Teacher C, is an 

experienced mathematics teacher and head of the mathematics department in 

the school. 

  

The class involved in the research, and taught by Teacher C, are a higher-level 

class. There are 150 second year students, and approximately 700 students in 

the school in total. There are fifty-four teachers in the school, nine of whom are 

qualified to teach mathematics. Students are taught a common-level 

mathematics program in first year, which covers roughly one third of the 

ordinary level mathematics course. Teacher C explained that students are 

examined with a common mathematics examination at the end of first year and 

their result from this examination, in conjunction with teacher advice based on 
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in-class tests throughout the year, determines the level of mathematics to be 

followed in second year: higher, ordinary or foundation.  

 

Teacher C explained the structured of mathematics class groups within the 

school in general and for second year in particular. In second year there are six 

mathematics class groups plus a reduced class group for students with 

identified learning difficulties which significantly affect their mathematical 

performance. Teacher C described the mathematics teachers in the school as 

enthusiastic and passionate. Three of the six mainstream mathematics class 

groups are higher level mathematics class groups, and the remaining three are 

ordinary level.  

 

Approximately seven or eight students sit the foundation level, Junior 

Certificate mathematics paper in the school each year. Teacher C explained 

that these foundation level students would be examination candidates that may 

have a particular learning difficult or social, personal and/or health issues that 

may have impacted on regular school attendance. The students who opt for the 

foundation level paper in the Junior Certificate usually follow the ordinary 

level course until some stage late in third year. For Leaving Certificate students 

there is the option of following the ‘Leaving Certificate Applied’ curriculum 

which is offered in a minority of schools, School 3 being one of them. Teacher 

C described ‘Leaving Certificate Applied’ (LCA) as an excellent option for 

students who wish to follow a less academic route and prepare for a vocational 

working life. The LCA option was first implemented in the school more than a 

decade ago and Teacher C described it as very successful. The LCA 

programme is a very valid option for students who may struggle significantly 

at academic subjects, to include mathematics, at Junior Certificate level.  

 

The class taught by Teacher C, and involved in this research project, is the 

higher level mathematics class group that contains the most mathematically 

able students in the year group. There are thirty students in the class and 

Teacher C speaks of them all in glowing terms. Teacher C is a dynamic, 

vibrant woman with a significant amount of teaching experience and is the 
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head of the mathematics department in the school. Teacher C is passionate 

about mathematics and sharing her mathematical knowledge with the students 

she teaches. All second year mathematics class groups have five class periods 

per week, and Teacher C explains that her students utilise the class time 

provided for learning at a very fast pace. Teacher C explains that at this 

mathematical level she rarely has to deal with discipline issues as the students 

are so eager to learn. This raises an interesting question regarding teacher, 

school and societal expectation regarding mathematical ability and discipline. 

In practical terms, very able students possibly are more eager to learn as it is 

more likely to be a positive experience; therefore there is less need to numb the 

pain of the mathematics class with disruptive behaviour. 

 

 

7.3.4. Semi-Structured Interview: Teacher D 

 

School 4 is a community college in a medium sized town situated in a rural 

location and drawing from a rural catchment area. The school has a student 

population of 600 students, with approximately 130 students in second year. 

The class observed are an ordinary level mathematics class with a reasonably 

wide ability range.  

  

The teacher of the class group, Teacher D, is a male teacher with over twenty 

years teaching experience. Teacher D is an enthusiastic teacher who is very 

interested in the concept of student-centred learning, deferring to students 

regarding decisions made, and gentle discipline. Teacher D explained how he 

treats students as equals and bases his teaching on a practice of guided learning 

rather than directive learning. Teacher D explained that he did not have any 

major discipline issues in the class but does allow, and indeed encourage, 

discussion and interaction in his mathematics class. This, he explained, 

sometimes led to issues with noise control and off-subject discussion but 

Teacher D believes that this is worth the benefits to be gained through active 

learning.  
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Teacher D has a very forward-thinking attitude to the teaching and learning of 

mathematics, but is curtailed to the same extent as others by the didactic 

element required for successful examination preparation. Teacher D uses a 

text-book on a regular basis and, like all Irish teachers involved in the research, 

is a regular proponent of the ‘chalk and talk’ movement. Information 

Technology resources are not utilised on a regular basis with this mathematics 

class. 

 

Teacher D explained that he has some reservations regarding the 

implementation of the new ‘Project Maths’ curriculum. These reservations are 

primarily due to a sense of being ill-prepared to teach the new curriculum 

without more substantial training. However, Teacher D described curriculum 

change as an essential aspect of improving mathematical performance in 

Ireland. Teacher D was particularly interested in the real life applications of 

mathematics and described how he runs the mathematics and science club in 

the school in an effort to promote mathematical (and scientific) applications.  

 

Teacher D was the only Irish mathematics teacher interviewed who had spent 

time teaching mathematics in another country. Teacher D described his time 

spent working as both a mathematics teacher and head of the mathematics 

department at a school in the United States of America. Teacher D expressed 

his opinion that Irish mathematics education could benefit from an awareness 

of advancement in mathematics education in other countries. While 

complementing Irish mathematics education as regards the high content level 

and the mathematical knowledge imparted, Teacher D explained that he spends 

a far more significant proportion of his class time in Ireland on didactic 

teaching in comparison to his teaching experience in the U.S.A. 

 

7.3.5. Semi-Structured Interview – Teacher E 

 

School 5 is a religious controlled secondary school in a large town. The school 

was founded in the 1800’s and has a strong academic reputation. The school 
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was previously run by a religious order but no longer has any of the religious 

order teaching. The school does not have an open admissions policy, with all 

students required to sit an aptitude test prior to acceptance. The school is 

medium sized with a student population of 700-800 students and 47 teaching 

staff. In total there are ten mathematics teachers currently teaching 

mathematics in the school, and there are a further two members of teaching 

staff that are qualified to teach mathematics but are not currently doing so.  

 

Teacher E is a mathematics and physical education teacher with over twenty-

five years experience. Teacher E explained the structure of mathematics class 

groups in her school and described it as well structured and effective. There are 

four, second year mathematics classes and five mathematics class periods per 

week in second year. Three of the second year mathematics class groups are 

following the higher level course, and one the ordinary level course. Teacher E 

described the general standard of mathematics as being reasonably high but 

believed that mathematics knowledge in general had deteriorated in the time 

she had been teaching.  

 

Teacher E explained that students are taught in common mathematics classes 

throughout first year. During this time they are regularly given common 

assessments and all grades are noted. At the end of first year the mathematics 

teacher makes a recommendation as to whether each particular student should 

proceed with the higher or ordinary level course. The recommendation is based 

on what the teacher has observed in class throughout the year and on the series 

of common tests that the student has sat. However all students are allowed 

follow the higher level course if they wish to do so, no student is forced to 

follow the ordinary level course against their wishes.  

 

The class group involved in the research are the most mathematically able of 

the three higher level groups. Teacher E described this class group as being a 

‘joy to teach’ but showed less enthusiasm for teaching mathematics to less able 

students. Teacher E explained that there were fewer discipline issues when 

teaching a more mathematically able class group.  
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Teacher E showed a willingness to incorporate new mathematics teaching 

techniques and was enthusiastic about the incoming ‘Project Maths’ 

curriculum. Teacher E explained how she is adapting her teaching at all levels 

and for all year groups in preparation for the implementation of the new 

curriculum. She explained that this was causing some difficulty as not all of the 

new techniques she tried were equally effective but despite this Teacher E 

remained determined that ‘Project Maths’ would be a success for her class 

groups. 

 

7.3.6. Semi-Structured Interview: Teacher F 

 

Teacher F is also based at School 1 (as is Teacher A). As noted above School 1 

is a large co-educational secondary school situated in a large town. The teacher 

in question, Teacher F, is an established teacher with close to thirty years 

teaching experience. Teacher F teaches science and mathematics to all year 

groups in the school.  

 

The class observed and assessed, Group 6, are the lowest stream on one side of 

the time-table (as discussed earlier, the school is so large each year group is 

split into two sections for ease of timetabling). The class consists of ten 

students and the teacher explained that attendance is generally poor with a 

minority of students rarely attending class. Teacher F also described student 

behavioural issues and frequent disrupted mathematics lessons. There were 

three students in the class who had a very poor attendance history and caused 

disruption on the rare occasions that they are present. 

 

Despite this, Teacher F described her fondness for the mathematics class and 

described the immense pleasure she gained in teaching a class group where she 

felt all progress was significant and valuable. Teacher F explained that with 

this particular class group she felt that she was teaching them valuable life 

skills rather than solely imparting mathematical knowledge as she felt is 

sometimes the case with a higher level class group. 
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Teacher F described her teaching style as very ‘traditional’ and expressed a 

level of trepidation regarding the incoming ‘Project Maths’ curriculum. Her 

reservation stemmed from a sense that she was not fully prepared to teach the 

new curriculum, despite attending the mandatory in-service workshops. 

Teacher F also expressed some reservation at the idea of teaching mathematics 

without a core textbook to rely on. 

 

7.3.7. Semi-Structured Interview: Teacher G 

(Massachusetts) 

 

The school from Massachusetts is a public ‘middle school’ with approximately 

600 students. ‘Middle school’ covers 6
th
, 7

th
 and 8

th
 grade. The students 

assessed for the purpose of this research are 8
th

 graders at the time of testing. 

There are approximately 200 8
th

 grade students in the school, and the mean age 

is 13.5 at the time of testing (January). The school is situated in a town on the 

outskirts of Boston with a predominately middle-class population. As 

discussed in Chapter 6, Massachusetts is the top performing U.S. state in terms 

of the international assessments carried out by TIMSS. In TIMSS 2007 eighth 

grade students from Massachusetts scored sixth in the world in mathematics. 

 

Teacher G, is the head of mathematics within the school. He is an experience 

mathematics teacher with more than twenty years experience and holds a 

master’s degree in mathematics education. Teacher G was the only 

mathematics teacher interviewed in Massachusetts. The mathematics teachers 

in the school elected that Teacher G speak on their behalf due to the fact that 

the researcher could not physically visit the school and all interviews would 

occur by telephone and email. After an initial telephone interview it was 

decided that email correspondence was best. Six email interviews occurred in 

total with Teacher G providing information about the school, the mathematics 

classes taught in eighth grade and the teaching and learning methods used.  
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The number of students from Massachusetts that participated in both tests is 

71. All students that study ‘Algebra 1’ were asked to participate (50% of eight 

grade, therefore approximately 100 students). Five mathematics teachers teach 

the class groups that participated in the research. All teachers hold a 

qualification in teaching, with various levels of mathematical qualifications. 

The following table provides an overview of the teachers involved in the study: 

 

Teacher Teaching 

Experience 

Gender Qualifications 

Teacher 1 

(Teacher G) 

22 years Male B.A. in 

mathematics and 

English 

M.A. in 

mathematics 

education 

Teacher 2 4 years Male B.Ed. science 

education 

Teacher 3 7 years Female B.A. History  

M.Ed. Education 

Teacher 4 31 years Female B.Sc. chemistry 

Teacher 5 2 years Female B.Sc. maths, 

physics 

 

Table 22: Overview of Massachusetts’ Teachers 

 

The most mathematically able eighth grade students did not participate in the 

research project, as these students do not study ‘Algebra 1’ but ‘Advanced 

Topics’. Eight percent of eighth-graders take the ‘Advanced Topics’ course. 

The least mathematically able eighth graders did not participate in the study 

either. These students are also not part of the cohort that study ‘Algebra 1’, 
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instead these students study ‘Algebra A’ which covers the first one-third of 

‘Algebra 1’. Forty two percent of eighth-graders take the ‘Algebra A’ course.  

 

The average class size in the participating school is 18 students. There are ten 

mathematics class groups in eighth grade to provide for the 200 students. There 

are five mathematics class periods per week for eighth grade students. The 

length of each mathematics class is 49 minutes. Topics covered in eighth grade 

‘Algebra 1’ include the following: 

• Equations; 

• Algebraic properties; 

• Inequalities; 

• Systems of equations and inequalities; 

• Exponents; 

• Quadratics; 

• Radicals; 

• Probability; 

• Proportions; and  

• Ratios. 

 

Teacher G explained that each Algebra 1 class participates in a project based 

on an open-ended question that takes approximately six weeks work. Each 

individual class teacher decides on the question and the topic it relates to. 

Group-work is encouraged within the class structure and the classrooms are 

physically designed to facilitate this with 4-6 smaller white boards located 

around the classroom for student use. Textbooks are used by the teachers, as 

are online computer programs that work on the concept of improving student 

fluency.  

 

Teacher G identified the following activities as occurring frequently in the five 

class groups involved in the research: 

• Group work; 

• Individual work; 
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• Continuous assessment; 

• Class tests; 

• Discovery learning; 

• Project work; 

• Problem-solving involving open-ended questions; 

• Teaching and learning involving the use of a text-book; 

• Teacher explanation while standing at a white-board; 

• Computer-work and the use of other information technology resources; 

and 

• Reinforcement through questions and answers. 

 

There appears to be a wider range of teaching and learning activities used in 

the mathematics lessons in the Massachusetts’ school. Without further 

investigation it is difficult to know how frequently the activities above occur in 

mathematics lessons or how representative they are of teaching in 

Massachusetts. As each school district in Massachusetts is responsible for their 

own curriculum, it is possible that more variation occurs between schools than 

may occur in Ireland. 

 

7.3.8. Reflection on the Findings from the Semi-

Structured Interviews 

 

The qualitative data offered by the semi-structured interviews provides a 

valuable insight into teaching and teacher attitudes towards mathematics 

education in Ireland. All the Irish teachers involved in this aspect of the 

research were enthusiastic and forthcoming. The author notes that the fact that 

all of the interviewed teachers volunteered to participate in the study may 

contribute towards this enthusiasm and is not necessarily a reflection of Irish 
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mathematics teaching in general. The following are some of the notable 

findings from the interviewing process with the Irish teachers: 

• Enthusiasm towards mathematics education in general and teaching in 

particular; 

• A respect for the young people they teach; 

• A willingness to participate in the research project; 

• A sense of confidence in their teaching ability; 

• Regular descriptions of their personal teaching style as being 

‘traditional’; 

• A sense of trepidation towards the implementation of ‘Project Maths’ 

and descriptions of feeling unprepared to teach the new curriculum. 

 

The interview data provided by the Massachusetts school through the initial 

telephone interview, and subsequent email correspondence, differed slightly as 

the head of the mathematics department, Teacher G, was speaking on behalf of 

the individual mathematics teachers. The value of this information was in 

providing the author with an insight into the teaching and learning of 

mathematics in the school, and the structure provided within the school to 

facilitate this. Interestingly, Teacher G described a greater variety of 

mathematics teaching and learning activities than those described and/or 

observed within the Irish groups. Activity learning and the use of information 

technology were described as being common place. Project work was also 

used. This would suggest that mathematics students are exposed to a broader 

range of teaching and learning activities in the Massachusetts’ school. 

 

7.4 Conclusion 

 

The data collected through the structured observation of the mathematics 

lessons with the Irish research groups involved and the interviews with the 

Irish teachers, plus the head of the mathematics department in the school in 

Massachusetts, provide a valuable insight into teaching and learning habits in 

mathematics. The Irish mathematics lessons observed are interesting in how 
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little teaching and learning activity varied between classrooms. One would 

imagine that younger teachers, new to the profession and recently trained in the 

newest mathematical education techniques as part of their teacher training 

would be more innovative in their approach than more established teachers, but 

this did not appear to be the case. All the Irish mathematics teachers observed 

taught in a method heavily influenced by the behaviourist philosophy and there 

was little time spent on group-work, active learning or the use of resources 

such as computers.  

 

The interviewing process provided the Irish teachers with an opportunity to 

explain their classroom practices and their attitude towards mathematics 

education. For the most part, the teachers agreed that the observed mathematics 

lessons were typical of teaching and learning activity in their mathematics 

classes. All the teachers interviewed were enthusiastic and spoke of a 

willingness to adapt. However, the overall impression the author got regarding 

the incoming ‘Project Maths’ syllabus was a sense of unease and trepidation on 

the part of the mathematics teachers interviewed. This appeared to be due to 

feeling unprepared and unsure as to what the curriculum entailed. The author is 

of the opinion that substantial support must be offered on a continuous basis, 

with a focus on teaching pedagogy, if ‘Project Maths’ is to be a success.  
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8.0 Chapter 8: Data Analysis of tests 

 

8.1 Introduction 

 

The following section considers the quantitative analysis of the results for the 

administered tests. As previously explained, the author implemented two tests 

in the data collection phase of the research. The tests consisted of a ‘Realistic’ 

test involving open-ended questions and a ‘Traditional’ test with closed-ended 

questions. The ‘Traditional’ test consisted of questions from the arithmetic, 

statistics and algebraic sections of the Junior Certificate mathematics 

examination. The questions administered from the Junior Certificate were from 

the Ordinary Level examination. The ‘Realistic’ test involved a problem-

solving scenario where the students had to make decisions based on the 

information provided. Evidence of reflection and a demonstration of 

understanding were required in the open-ended questions asked in the 

‘Realistic’ test. The mathematics involved in the ‘Realistic’ test are of a similar 

standard to those needed to solve the closed-ended questions in the 

‘Traditional’ test, and involved similar mathematics concepts. The 

identification of the standard of mathematics required to successfully answer 

the questions in both tests was validated by a group involving ‘experts’ in the 

area of teaching mathematics at second-level in Ireland.  

 

The research question is ‘Can students transfer the mathematical knowledge 

learned in the classroom to successfully solve realistic, authentic mathematical 

problems’. The phrase ‘achievement levels’ refers to the mean scores for each 

test. The author simplifies the hypothesis for testing and seeks to reject or 

accept the following: 
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• Null hypothesis: ‘There is no difference in achievement levels between the 

traditional test (test=0) and the realistic test (test=1)’; and 

• Alternative hypothesis: ‘There is a difference in achievement levels between 

the traditional test (test=0) and the realistic test (test=1)’. 

 The null hypothesis is tested by considering the statistical significance and 

correlation coefficient of the scores attributed to students in both test types. 

Two methods of statistical testing were used:  

• A two-sample t-test; and  

• A one-way ANOVA.  

 

Both test methods considered the Traditional test versus the Realistic test.  The 

purpose of the t-test is to assess if the means of the two groups are statistically 

different from each other. The author decided on a two-sample t-test as it is an 

effective method of considering small sample sizes. The objective is to make 

inferences about the difference between the two population means. When the 

sample size is small it is important that the original populations are normal. If 

the original sample for each population is normal than the difference between 

the means of both populations will be normal, even for small sample sizes 

(Mendenhall et al, 2009: 399).  

 

The use of the t-test for small populations is effective as long as the following 

four assumptions are met: 

• The samples are randomly selected; 

• The samples are independent; 

• The populations should be moderately normal; and 

• The population variance should be reasonably similar (Mendenhall et 

al, 2009:405). 
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The t-test and the ANOVA effectively test the same thing. The author uses 

both tests as a form of validation and reliability. The MINITAB statistical 

computer package was used for data analysis and graphical representations. All 

results were tested for a 95% confidence level (the assumption being that there 

is a 5% possibility that the scores are different due to chance – the 95% 

confidence level accounts for this and seeks to eliminate the possibility). 

Therefore the author sets the alpha-level for p=0.05. If p≤0.05 the author 

rejects the null hypothesis and states that there is a difference in performance 

between the Realistic and the Traditional tests. If p>0.05 the author fails to 

reject the null hypothesis, and states that there is no difference in mathematical 

achievement in the two tests (‘Traditional’ versus ‘Realistic’). 

 

8.2  The Pilot Study  

 

The pilot study considered a group of thirty-two students in a higher level, 

second-year mathematics class. The students are the top class within the higher 

level class groups in second year and are, according to their mathematics 

teacher, extremely able with a couple of students who struggle. The purpose of 

testing the students in the pilot study is to consider the effectiveness of the 

tests, and the ability of the tests to address the research question. 

The analysis seeks to either accept or reject the following: 

• The Null Hypothesis: ‘That there is no difference in achievement levels in the 

‘Traditional’ and the ‘Realistic’ test for all pilot students’; 

• The Alternative Hypothesis: ‘That there is a difference in achievement levels 

in the ‘Traditional’ and the ‘Realistic’ test for all pilot students’. 

The confidence level is set at 95% to account for any difference that may arise 

by chance – the alpha level of 0.05 goes some way towards eliminating this 

risk. 
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8.2.1. Pilot Study Descriptive Statistics (t=0, t=1)  

 

Descriptive Statistics: Traditional Test, Realistic Test  

 
Variable Test    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median      Q3 

Trad Test  0    30   2  93.82     1.58   8.64    60.83  89.55   97.50  100.00 

Realistic  1    30   2  52.07     3.49  19.11    12.00  34.00   57.00   66.00 

 

Variable  Test      Maximum  

Trad Test   0      100.00  

Realistic   1      84.00 

 

Figure 11: Descriptive Statistics for Pilot study (t=0, t=1) 

 

 

 

Figure 12: Graphical Summary of descriptive statistics for pilot study (t=0, t=1) 

 

8.2.2. Pilot study (t=0, t=1) hypothesis test (two 

sample t-test) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 
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• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

 

 

Figure 13: Graphical summary of test for equal variance for pilot study (t=0, t=1) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test (fig. 13). It is of note that both P-values of 0.000 and 0.000 are less than 

0.05. Therefore, this result is significant and there is sufficient evidence to 

conclude that the variances are not equal. Based on the outcome of the test for 

equal variance, we can reject the possibility of equal variance based on the p-

values of less than 0.05. 

 

Two-Sample T-Test and CI: Traditional Test, Realistic Test  

Difference = mu (Trad Test) - mu (Realistic Test) 

Estimate for difference:  41.76 

95% CI for difference:  (34.01, 49.50) 

T-Test of difference = 0 (vs not =): T-Value = 10.90  P-Value = 0.000  

DF = 40 

  

Figure 14: Two sample t-test statistics of Pilot study (t=0, t=1) 
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Figure 15: Pilot study two sample t-test Individual and box-plot graphics (t=0, t=1) 

 

Based on the outcome of the two sample t-test (fig. 14), the author notes the 

estimate difference is 41.76, which would indicate that there is a considerable 

difference between the performance responses of the ‘Traditional’ and 

‘Realistic’ tests. Based on the p-value of 0.000, the author rejects the null 
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hypothesis at the 5% level of significance and concludes that there is a 

difference between the results of the ‘Traditional’ and ‘Realistic’ tests. 

 

8.2.3. Pilot study (t=0, t=1) hypothesis test  (one way 

ANOVA) 

 

One-way ANOVA: Result versus Test  

Source  DF     SS     MS       F      P 

Test     1  26153  26153  118.86  0.000 

Error   58  12762    220 

Total   59  38915 

 

S = 14.83   R-Sq = 67.21%   R-Sq(adj) = 66.64% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---------+---------+---------+---------+ 

0      30  93.82   8.64                              (---*--) 

1      30  52.07  19.11  (---*--) 

                         ---------+---------+---------+---------+ 

                                 60        75        90       105 

 

Pooled StDev = 14.83 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper  ---+---------+---------+---------+------ 

1     -49.42  -41.76  -34.09  (----*----) 

                              ---+---------+---------+---------+------ 

                               -45       -30       -15         0 

 

 

Figure 16: Pilot study One way ANOVA statistics (t=0, t=1) 

 

The ANOVA output of immediate interest (fig. 16) is the F-test statistic. As the 

associated P-value is 0.000, one can reject the null hypothesis and conclude 

that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests 

(fig. 16); the confidence intervals for this study do not demonstrate an 

overlapping of the intervals for the test samples. Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is a significant difference between the performance of ‘test 
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0’ and ‘test 1’ as the interval goes from – 49.42 to – 34.09 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 41.76 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 17). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

 

Figure 17: Pilot One way ANOVA Residual plot graphics (t=0, t=1) 

 

Interpretation of the residual plots: 
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‘Residuals represent experimental error, the basic variability of an experiment, 

and should have an approximately normal distribution with a mean of 0 and the 

same variation for each treatment group’ (Mendenhall et al, 2009:488). 

 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  
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8.2.4. Pilot study (t=0, t=1) Correlation test 

 

Pearson correlation of Traditional Test and Realistic Test = 0.149 

P-Value = 0.431 

 

 

 

Figure 18: Pilot study Correlation statistics and matrix plot graphics (t=0, t=1) 

 

There is sufficient evidence to support the lack of presence of linear correlation 

between the two variable tests, as demonstrated by the r-value of 0.149 and a 

P-value of 0.431 (fig. 18). 
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8.2.5. Interpretation of Results (Pilot Study) 

 

As the p-value (for two-tailed significance) for the t-test is less than 0.5, 

p=0.000, the author rejects the null hypothesis ‘That there is no difference in 

achievement levels in the ‘Traditional’ test and the ‘Realistic’ test for all pilot 

students’. Hence, the analysis of the test results for all students (n=30) indicates 

that there is significant difference between performance in the ‘Traditional’ test 

and the ‘Realistic’ test. Students performed at a significantly higher level in the 

‘Traditional’ test in comparison to results gained in the ‘Realistic’ test. The 

‘Traditional’ test (M=93.82, S.D.=8.64) scored considerably higher than the 

‘Realistic’ test (M=52.1, S.D.=19.1). The estimate for difference between the 

two tests is 41.76 in favour of the ‘Traditional’ test (fig. 14).  

 

8.2.6. Adaption made to the Tests after analysis the 

Pilot study 

 

Following the initial marking stage of the ‘Realistic’ test the author made the decision 

to alter the test as follows: 

• To alter the format of the test so that it was divided into easy to read sub-

sections; and 

• Emphasise the questions so that students are aware of what they are 

being asked. 

 

The author was happy to continue with the ‘Traditional’ test as initially designed. 
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8.3 The Main Study 

 

The following table provides the coding and legend given to each of the groups 

involved in the testing process. The MA group (group 6) represents the 

students from the United States in the state of Massachusetts; the other five 

groups (number 1-5) represent the Irish class groups. 

 

Group number Group name 

1 MS (Ordinary Level) 

2 KD (Higher Level) 

3 SC (Higher level) 

4 MH (Ordinary Level) 

5 RC (Higher level) 

6 AQ (Ordinary Level) 

7 MA (Massachusetts) 

 

Gender number Gender type 

0 Male 

1 Female 

 

Test number Test type 

0 Traditional 

1 Realistic 

 

Level number Level type 

0 Ordinary (MS, MH, AQ) 

1 Higher (KD, SC, RC) 

2 USA 
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Region number Region name 

0 Ireland 

1 USA 

 

Table 23: Coded Identifiers of Main study Groups 

 

8.3.1. Traditional versus Realistic Test (All 

Students) 

 

The following graphical and numerical information provides the statistical 

analysis of the comparison of the results for student performance between the 

two tests, the ‘Traditional’ and the ‘Realistic’. 

 

The statistical analysis, provided by a two-sample t-test and a one-way 

ANOVA, considers the between test performance for all students involved in 

the research (n=157) and seeks to determine if there is a difference in test 

performance. The students involved in the research were from both Ireland and 

the U.S. state of Massachusetts.  The statistical analysis seeks to consider mean 

individual test performance and if there is a significant difference between 

them. The tests implemented are: 

• The ‘Traditional’ Test (test=0): which involves closed-ended questions 

based on the Junior Certificate curriculum and the Junior Certificate 

examination. The topics tested are based on the Algebraic and 

Arithmetic sections of the Junior Certificate course. The majority of 

Irish students involved in the study should have covered the topics 

necessary for successful completion of the ‘Traditional’ test by the 

stage of test implementation. The minority that may not would  be 

those students who need extra assistance to complete the Junior 

Certificate syllabus, and indeed terminal examination (but these 

students would have covered a significant proportion of the desired 
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material). The marking scheme is based on that provided for the Junior 

Certificate examination and marks are awarded for effort and correct 

steps. However, as is typical of the Junior Certificate assessment style, 

there is only one correct answer for each question asked. 

• The ‘Realistic’ Test (test=1): is based on an authentic, problem-solving 

scenario. The questions asked require logical thought, reasoning and 

reflection, and ask for evidence of these skills. The questions are asked 

in an open-ended manner and may have more than one correct answer. 

The ‘Realistic’ test requires the research participant (the student) to read 

more which may be an issue for students with compromised literacy 

skills. However, all students are allowed ask for assistance in the 

reading of the test and in Irish schools those students with significant 

learning difficulties have the assistance of an S.N.A (a special needs 

assistant) who may assist in the reading also. The mathematical skills 

necessary for successful completion of the ‘Realistic’ test are similar to 

those for the ‘Traditional’ test: namely algebraic and arithmetic skills. 

The mathematical skills required for both tests (test=0 and test=1) are 

of a similar level (this is verified by a group of ‘experts’ in the area of 

mathematics education). 

The analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

in the ‘Traditional’ (test=0) and the ‘Realistic’ test (test=1) for all 

students’; 

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels in the ‘Traditional’ (test=0) and the Realistic’ test (test=1) for all 

students’. 
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The confidence level is set at 95% to account for any difference that may arise 

by chance – the alpha level of 0.05 goes some way towards eliminating this 

risk. 

 

8.3.1.1. ‘Traditional’ versus ‘Realistic’ 

test descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

 
Variable  Test    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     157  21  75.56     1.62  20.31     0.00  64.17   80.00  91.67 

          1     157  11  55.33     1.59  20.57     0.00  45.00   61.67  70.00 

 

Variable  Test  Maximum 

Results   0      100.00 

          1       96.67 

 

Figure 19: Descriptive Statistics for Traditional vs. Realistic study 

 

 

 

Figure 20: Graphical Summary of descriptive statistics for Traditional vs. Realistic study 
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8.3.1.2. ‘Traditional’ versus ‘Realistic’ 

Hypothesis Test (Two sample t-test; t=0, t=1)  

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

 

 

Figure 21:  Graphical summary of test for equal variance for Traditional vs. Realistic 

study 
 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test (fig. 21). It is of note that both P-values of 0.872 and 0.785 are greater than 
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0.05. Therefore, this result is not significant and there is sufficient evidence to 

conclude that the variances are equal.  

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test    N  Mean  StDev  SE Mean 

0     157  75.6   20.3      1.6 

1     157  55.3   20.6      1.6 

Difference = mu (0) - mu (1) 

Estimate for difference:  20.23 

95% CI for difference:  (15.76, 24.70) 

T-Test of difference = 0 (vs not =): T-Value = 8.90  P-Value = 0.000  

DF = 322 

Both use Pooled StDev = 20.4433 

 

Figure 22: Two sample t-test statistics Traditional vs. Realistic study 
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Figure 23:  Two sample t-test Individual and box-plot graphics Traditional vs. Realistic 

study 

 

Based on the outcome of the two sample t-test, the author notes the estimate 

difference is 20.23, which would indicate that there is a considerable difference 

between the performance responses of the ‘Traditional’ and ‘Realistic’ tests (fig. 

22). Based on the p-value of 0.000, the author rejects the null hypothesis at the 

5% level of significance and concludes that there is a difference between the 

results of the ‘Traditional’ and ‘Realistic’ tests. 

 

8.3.1.3. Traditional versus Realistic 

study (t=0, t=1) Hypothesis Test (One way ANOVA) 

 

One-way ANOVA: Results versus Test  

Source   DF      SS     MS      F      P  

Test      1   33128  33128  79.27  0.000 

Error   322  134573    418  

Total   323  167701 

 

S = 20.44   R-Sq = 19.75%   R-Sq(adj) = 19.51% 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level    N   Mean  StDev  -----+---------+---------+---------+---- 

0      157  75.56  20.31                              (----*----) 
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1      157  55.33  20.57  (---*---) 

                          -----+---------+---------+---------+---- 

                            56.0      63.0      70.0      77.0 

 

Pooled StDev = 20.44 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

Individual confidence level = 95.00% 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper     -+---------+---------+---------+-----

--- 

1     -24.70  -20.23  -15.76     (-----*----) 

                                 -+---------+---------+---------+-----

--- 

                              -24.0     -16.0      -8.0       0.0 

 

 

Figure 24: One way ANOVA statistics Traditional vs. Realistic study 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (fig. 24). Additionally, the post-hoc testing 

performed using the Tukey test provides confidence intervals for the difference 

in the pair of means under evaluation. From this analysis, it can be concluded 

that there is a significant difference between the performance of ‘test 0’ and 

‘test 1’ as the interval goes from – 24.70 to – 15.76 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 20.23 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 25). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 
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Figure 25: One way ANOVA Residual plot graphics Traditional vs. Realistic study 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 
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• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results (fig. 25), is 

that there is no evidence to suggest that standard assumptions of the regression 

have been violated.  

8.3.1.4. Traditional versus Realistic 

study (t=0, t=1) Correlation Study 

 

Correlations: Results, Test  

Pearson correlation of Results and Test = -0.444 

P-Value = 0.000 

 

 

 

 

Figure 26: Traditional vs. Realistic study Correlation statistics matrix plot graphics (t=0, 

t=1) 

 

There is sufficient evidence to suggest a slight negative correlation between the 

two variable tests, as demonstrated by the r-value of -0.444 and a P-value of 

0.000 (fig. 26). 
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8.3.1.5. Interpretation of results 

(Realistic vs. Traditional – All Students) 

 

As the p-value (for two-tailed significance) for the t-test is less than 0.5 

(p=0.000), the author rejects the null hypothesis: ‘That there is no difference in 

achievement levels in the ‘Traditional’ (test=0) and the ‘Realistic’ test (test=1) 

for all students’. Hence, the analysis of the test results for all students (N=157) 

that participated in the research (in both Ireland and Massachusetts) indicates 

that there is a significance difference between performance in the traditional 

test (test=0) and the realistic test (test=1). This is indicated with a P-value of 

0.000 (a P-Value of less than 0.05 indicates no co-relation as confidence 

testing, and the alpha-level, was set at a 95% confidence level).  

 

Students performed at a significantly higher level in the ‘Traditional’ test 

compared to the ‘Realistic’ test. The ‘Traditional’ test, test=0, (M=75.6, S.D. 

20.3) scored higher than the ‘Realistic’ test, test=1, (M=46.5, SD=21.7). The 

estimate for difference between performance in the two tests is 20.23 in favour 

of the traditional test (as demonstrated above in the two-sample t-test results) 

(fig. 22). This rejects the null hypothesis: ‘There is no difference in 

achievement levels between the traditional test (test=0) and the realistic test 

(test=1)’.It is worth noting that a 20.23% mean difference is very substantial. 

This would indicate that students of all ability levels, genders, and from both 

Massachusetts and Ireland, perform at a higher achievement level in the 

‘Traditional’ test. The Pearson correlation coefficient is -0.444 which indicates 

there is a reasonable weak, negative correlation between the ‘Traditional’ and 

‘Realistic’ tests (fig. 26)). 
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8.3.1.6.  Test analysis for different 

categories 

 

The comparison between two groups from different countries is always a 

difficult process as no two groups from different education systems are ever 

truly equitable. The particularly high performance of the state of Massachusetts 

in international assessment provides an interesting point of comparison for 

Irish students. It is interesting to consider Irish performance when compared to 

participants in an education system that is considered to provide well educated 

mathematics students. The author considered a number of different 

comparisons between the research participants in order to initiate debate and 

raise questions about various influencing factors. The author is interested in 

considering the break-down of achievement difference for the following 

groups: 

• Ireland versus Massachusetts: The author wishes to consider the 

difference in achievement levels for Ireland only, Massachusetts only, 

and Ireland versus Massachusetts on the traditional test. The author 

then plans to tabulate the results and remark on any noticeable 

difference in achievement patterns between the two groups. 

• Gender – Male versus female: The author hopes to consider test 

achievement with respect to gender. The author plans to consider male 

results only and female results only, and compare the difference in 

achievement levels for the two groups.  

• Ability Grouping based on ‘Traditional’ test performance. The author 

considers all the students involved in the testing process (N=157) in 

three ability categories:  

-Results ≥80%,  

-Results between 60% and 80%, and  

-Results under 60%. 
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The author based these categories on test performance in the 

‘Traditional’ test as this is the test that would be associated with ability 

in Irish assessment.  

• Level of Junior Certificate Course Studied: For Irish students the 

author considered the level of course studied at Junior cycle. For all 

Irish students involved in the study this was either higher or ordinary 

level. There is a third (less difficult) Junior Certificate level, foundation 

level. However, while some of the students involved in this research 

may eventually sit the foundation level paper on the day of the Junior 

Certificate examination, at the time of the testing for this research all 

such students were studying the ordinary level course. The decision to 

eventually sit the foundation level paper would be made, on advice 

from the teacher, shortly before the terminal assessment in June of third 

year. The three ordinary level teachers involved in the research stress 

that they would avoid this route if at all possible as sitting the 

foundation level paper at Junior Certificate level restricts the 

mathematical options open to the students at senior cycle. 

 

8.3.2. Ireland versus Massachusetts Test Results  

 

The author considered the results for both tests from Ireland and Massachusetts 

in various ways:  

• Irish test results for Irish student performance in the ‘Traditional’ 

(test=0) versus ‘Realistic’ (test-1); 

• Massachusetts’ test results for student performance in the ‘Traditional’ 

(test=0) versus ‘Realistic’ (test=1);  

• Ireland versus Massachusetts for all test results (i.e. overall 

performance – all Irish test results versus all Massachusetts’ test 

results); 
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• Ireland, Higher level, (test=0) versus Massachusetts (test=1) for the 

‘Traditional’ test; and 

• Ireland, Higher level, (test=0) versus Massachusetts (test=1) for the 

‘Realistic’ test. 

The null hypothesis varied from scenario to scenario but all t-test and ANOVA 

analysis seeks to determine if there is a statistical difference between the two 

scenarios. 

 

8.3.2.1. Irish Test Study (Realistic vs. 

Traditional) 

 

The following statistical analysis considers the Irish test results for both tests 

(‘Realistic’ versus ‘Traditional’). The analysis seeks to either accept or reject 

the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels between the realistic and traditional tests’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 
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8.3.2.1.1. Irish study Descriptive 

statistics (t=0, t=1)  

 

Descriptive Statistics: Results for Region = 0  

 
Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     86  21  72.17     2.46  22.80     0.00  63.33   78.33  88.54 

          1     96  11  46.55     2.21  21.68     0.00  32.09   50.00  61.67 

 

Variable  Test  Maximum 

Results   0      100.00 

          1       96.67 

 

Figure 27: Descriptive statistics of Irish study (t=0, t=1) 

 

 

 

Figure 28: Graphical Summary of descriptive statistics of Irish study (t=0, t=1) 

 

8.3.2.1.2. Irish study (t=0, t=1) 

hypothesis test (Two sample t-test) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 
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• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

 

 

Figure 29: Graphical summary of test for equal variance of Irish study (t=0, t=1) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.632 and 0.811 are greater than 0.05 

(fig. 29). Therefore, this result is not significant and there is sufficient evidence 

to conclude that the variances are equal.  

 
Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     86  72.2   22.8      2.5 

1     96  46.5   21.7      2.2 

Difference = mu (0) - mu (1) 

Estimate for difference:  25.63 

95% CI for difference:  (19.12, 32.13) 

T-Test of difference = 0 (vs not =): T-Value = 7.77  P-Value = 0.000  

DF = 180 

Both use Pooled StDev = 22.2162 

 

Figure 30: Two sample t-test statistics Traditional vs. Realistic study 



295 

 

 

 

 

Figure 31: Two sample t-test Individual and box-plot graphics of Irish study (t=0, t=1) 

 

Based on the outcome of the two sample t-test, the author notes the estimate 

difference is 25.63, which would indicate that there is a considerable difference 

between the performance responses of the ‘Traditional’ and ‘Realistic’ tests (fig. 

30). Based on the p-value of 0.000, the author rejects the null hypothesis at the 
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5% level of significance and concludes that there is a difference between the 

results of the ‘Traditional’ and ‘Realistic’ tests for Irish students. 

 

8.3.2.1.3. Irish study (t=0, t=1) 

hypothesis test  (One way ANOVA) 

 

One-way ANOVA: Results versus Test  

 

Source   DF      SS     MS      F      P 

Test      1   29788  29788  60.35  0.000 

Error   180   88841    494 

Total   181  118629 

 

S = 22.22   R-Sq = 25.11%   R-Sq(adj) = 24.69% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  --------+---------+---------+---------+- 

0      86  72.17  22.80                           (----*----) 

1      96  46.55  21.68  (----*---) 

                         --------+---------+---------+---------+- 

                                50        60        70        80 

 

Pooled StDev = 22.22 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper  --+---------+---------+---------+------- 

1     -32.13  -25.63  -19.12  (-----*------) 

                              --+---------+---------+---------+------- 

                              -30       -20       -10         0 

 

Figure 32: One way ANOVA statistics of Irish study (t=0, t=1) 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (fig. 32). Additionally, the post-hoc testing 

performed using the Tukey test provides confidence intervals for the difference 

in the pair of means under evaluation. From this analysis, it can be concluded 
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that there is a significant difference between the performance of ‘test 0’ and 

‘test 1’ as the interval goes from – 32.13 to – 19.12 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 25.63 and is the 

estimated mean difference between the test groups (fig. 32).   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 33). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

 

Figure 33: One way ANOVA Residual plot graphics of Irish study (t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 
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a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

 

8.3.2.1.4. Irish study (t=0, t=1) 

(Correlations) 

 

Correlations: Results, Test, Region  

 
Pearson correlation of Results and Region = 0.322 

P-Value = 0.000 
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Figure 34: Correlation statistics and matrix plot of Irish study (t=0, t=1) 

 

8.3.2.1.5. Implication of Results 

(Irish results) 

  

The two-sample t-test for the Irish results showed a significant difference 

between performance in the ‘Traditional’ test and performance in the ‘Realistic’ 

test. The author rejects the null hypothesis ‘That there is no difference in 

achievement levels between the realistic and traditional tests’ as the t-value is 

statistically significant. This is demonstrated by a P-Value of 0.000. Test 0, 

‘Traditional’, (M=72.2, SD=22.8) scored higher than Test 1, ‘Realistic’ 

(m=46.5, SD=21.7).  Irish students performed significantly better in the 

‘Traditional’ test with the t-test showing an ‘estimate for difference’ of 25.63 in 

favour of the ‘Traditional’ test (fig. 30). 
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8.3.2.2. Massachusetts’ Study Results 

(Realistic vs. Traditional) 

 

The following statistical analysis considers the Massachusetts’ test results for 

both tests (‘Realistic’ versus ‘Traditional’). The analysis seeks to either accept 

or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels between the realistic and traditional tests’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.3.2.2.1. Massachusetts study 

Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

 
Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     71   0  79.67     1.90  16.02    33.33  67.50   83.33  92.50 

          1     71   0  67.21     1.28  10.80    30.00  61.67   68.33  73.33 

 

Variable  Test  Maximum 

Results   0      100.00 

1. 91.67 
 

Figure 35: Descriptive statistics of Massachusetts study (t=0, t=1) 
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Figure 36: Graphical Summary of descriptive statistics of Massachusetts study (t=0, t=1) 

 

8.3.2.2.2. Massachusetts study 

(t=0, t=1) hypothesis test (Two sample t-test) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 
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Figure 37: Graphical summary of test for equal variance of Massachusetts study (t=0, 

t=1) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.001 and 0.001 are less than 0.05 (fig. 

37). Therefore, this result is significant and there is sufficient evidence to 

conclude that the variances are not equal.  

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     71  79.7   16.0      1.9 

1     71  67.2   10.8      1.3 

Difference = mu (0) - mu (1) 

Estimate for difference:  12.46 

95% CI for difference:  (7.93, 17.00) 

T-Test of difference = 0 (vs not =): T-Value = 5.44  P-Value = 0.000  

DF = 122 

 

Figure 38: Two sample t-test statistics Traditional vs. Realistic study 



303 

 

 

 

 

Figure 39: Two sample t-test Individual and box-plot graphics of Massachusetts study 

(t=0, t=1) 
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Based on the outcome of the two sample t-test, the author notes the estimate 

difference is 12.46, which would indicate that there is a significant difference 

between the performance responses of the ‘Traditional’ and ‘Realistic’ tests (fig. 

38). Based on the p-value of 0.000, the author rejects the null hypothesis at the 

5% level of significance and concludes that there is a difference between the 

results of the ‘Traditional’ and ‘Realistic’ tests for Massachusetts’ students. 

 

8.3.2.2.3. Massachusetts study 

(t=0, t=1) hypothesis test (One way ANOVA) 

 

One-way ANOVA: Results versus Test  

Source   DF     SS    MS      F      P 

Test      1   5515  5515  29.56  0.000 

Error   140  26120   187 

Total   141  31635 

 

S = 13.66   R-Sq = 17.43%   R-Sq(adj) = 16.84% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev   --+---------+---------+---------+------- 

0      71  79.67  16.02                            (-----*------) 

1      71  67.21  10.80   (-----*------) 

                          --+---------+---------+---------+------- 

                         65.0      70.0      75.0      80.0 

 

Pooled StDev = 13.66 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

Individual confidence level = 95.00% 

 

Test = 0 subtracted from: 

Test   Lower  Center  Upper  --------+---------+---------+---------+- 

1     -17.00  -12.46  -7.93  (------*-------) 

                             --------+---------+---------+---------+- 

                                 -12.0      -6.0       0.0       6.0 

 

Figure 40: One way ANOVA statistics of Massachusetts study (t=0, t=1) 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 



305 

 

intervals for the test samples (fig. 40). Additionally, the post-hoc testing 

performed using the Tukey test provides confidence intervals for the difference 

in the pair of means under evaluation. From this analysis, it can be concluded 

that there is a significant difference between the performance of ‘test 0’ and 

‘test 1’ as the interval goes from – 17.00 to – 7.93 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 12.46 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 41). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

 

Figure 41: ANOVA Residual plot graphics of Massachusetts study (t=0, t=1) 
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Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  
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8.3.2.2.4. Massachusetts study 

(t=0, t=1) (Correlations) 

 

Correlations: Test, Results  

 
Pearson correlation of Test and Results = -0.418 

P-Value = 0.000 

 

  

Figure 42: Correlation matrix plot graphics of Massachusetts study (t=0, t=1) 

 

There is sufficient evidence to support the presence of moderate negative linear 

correlation between the two variable tests, as demonstrated by the r-value of -

4.18 and a P-value of 0.00 (fig. 42). 

 

8.3.2.2.5. Implication of Results 

(Massachusetts) 

 

The results from Massachusetts indicate that there is a significant difference in 

student performance between the two tests. The author therefore rejects the 

null hypothesis: ‘That there is no difference in achievement levels between the 

‘Traditional’ test (test=0) and the ‘Realistic’ test (test=1)’. The significant 
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difference in student performance between the ‘Traditional’ and ‘Realistic’ tests 

is indicated by a T-Value=5.44 and a P-value=0.000. As the P-value ≤0.05 this 

indicates a difference. As the T-Value is >0 it is apparent that the mean score 

in test=0 (Traditional) is higher than the mean score in test=1 (Realistic). Test 

0 (M=79.7, SD=16.0) scored higher than Test 1 (M=67.2, SD=10.8) (fig. 38). 

 

8.3.2.2.6. Implication of Irish Test 

Results in comparison to 

Massachusetts Test Results 

  

 Number Traditional 

(test=0) 

Realistic 

(test=1) 

p-value 

Ireland 86 M=72.2, 

SD=22.6 

M=46.5, 

SD=21.7 

0.000 

Massachusetts 71 M=79.7, SD=16 M=67.2, 
SD=10.8 

0.000 

 

Table 24: Irish and Massachusetts test results comparison  

 

The above table (table 24) illustrates the scores from the t-test for Ireland and 

Massachusetts (‘Traditional’ test versus ‘Realistic’ test). Despite the fact that the 

p-value for both groups is the same (p=0.000), indicating that there is a 

difference in performance between student achievement in the two tests, it is 

interesting to note that the difference is far greater for the Irish group than for 

the group from Massachusetts. The author finds it interesting that despite the 

fact that one would assume that Irish students are more familiar with a 

traditional style assessment, due to the fact that it is based on actual assessment 

questions from the Junior Certificate examination which assesses the Irish 

junior cycle curriculum, students from Massachusetts outperformed the Irish 

students in both the ‘Traditional’ test and the ‘Realistic’ test. The mean 

difference for Irish students between both tests is 25.63, in favour of the 

traditional test (fig. 30). The mean difference for students from Massachusetts 

is significantly smaller with a mean of 12.46 (fig. 38). This would indicate that 

Irish students find it more difficult to transfer the mathematics they are familiar 
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with to problem-solving scenarios where reflection and mathematical 

understanding are required.  

 

From an Irish point of view the out-performance of Irish students by those 

from Massachusetts is a worrying indicator of Irish mathematical achievement. 

This is especially worrying when one considers that the students involved in 

the research, from both groups, have the same mean age (≈13.5). However it 

should be noted that the least able students from the Massachusetts school do 

not study ‘Algebra 1’ (the general mathematics course) so did not sit the 

examination. Saying this it should be noted that the majority of the Irish 

students involved in the study are following the higher level course (N=68) 

compared to the ordinary level course (N=18). Indeed it should also be stated 

that following the ordinary level course in mathematics at Junior Cycle is not 

an indicator of compromised mathematical ability. Many proficient students, 

who do not consider themselves particularly mathematically gifted, follow the 

ordinary level course. The author will consider the traditional test results from 

both groups in closer details.  

 

8.3.2.3. Ireland versus Massachusetts 

(overall test results) 

 

The following statistical analysis considers the Irish test results (test=0) versus 

the Massachusetts’ tests results (test=1) over all tests (Irish test results for both 

‘Traditional’ and ‘Realistic’ tests versus Massachusetts’ test results for both 

‘Traditional’ and ‘Realistic’). The analysis seeks to either accept or reject the 

following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels, 

in both the ‘Traditional’ and ‘Realistic’ tests, between Ireland and 

Massachusetts’;  
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• The Alternative Hypothesis: ‘There is a difference in achievement 

levels, in both the ‘Traditional’ and ‘Realistic’ tests, between Ireland 

and Massachusetts’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.3.2.3.1. Ireland versus 

Massachusetts Descriptive statistics (overall test results) 

 

Descriptive Statistics: Results (Ireland versus Massachusetts for all) 

Variable  Region    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median      

Results   0       182  32  58.65     1.90  25.60     0.00  43.33   61.67   

          1       142   0  73.44     1.26  14.98    30.00  63.33   72.91   

Variable  Region  Maximum  Q3 

Results   0        100.00  79.17 

          1       100.00   84.38 

 

Figure 43: Descriptive Statistics of Ireland versus Massachusetts study (overall test 

results) 

 

 

 

Figure 44: Graphical Summary of descriptive statistics for Ireland versus Massachusetts 

study (overall test results) 
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8.3.2.3.2. Ireland versus 

Massachusetts, overall test results hypothesis test (Two sample 

t-test) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

 

 

Figure 45: Graphical summary of test for equal variance for Ireland versus 

Massachusetts study (overall test results) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test (fig. 45). It is of note that both P-values of 0.000 and 0.000 are less than 
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0.05. Therefore, this result is significant and there is sufficient evidence to 

conclude that the variances are not equal.  

Two-Sample T-Test and CI: Results, Region  

Two-sample T for Results 

Region    N  Mean  StDev  SE Mean 

0       182  58.7   25.6      1.9 

1       142  73.4   15.0      1.3 

Difference = mu (0) - mu (1) 

Estimate for difference:  -14.79 

95% CI for difference:  (-19.26, -10.31) 

T-Test of difference = 0 (vs not =): T-Value = -6.50  P-Value = 0.000  

DF = 300 

 

Figure 46: sample t-test statistics Traditional vs. Realistic study 
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Figure 47: Ireland versus Massachusetts study two sample t-test Individual and box-plot 

graphics (overall test results) 

 

Based on the outcome of the two sample t-test, the author notes the estimate 

difference is -14.79, which would indicate that there is a considerable 

difference between the performance responses of the Irish and Massachusetts 

tests (fig. 46). Based on the p-value of 0.000, the author rejects the null 

hypothesis at the 5% level of significance and concludes that there is a 

difference between the results of the Irish and Massachusetts overall test 

performance. 

 

8.3.2.3.3. Ireland versus 

Massachusetts, overall test results hypothesis test (One way 

ANOVA) 

 

One-way ANOVA: Results versus Region  

Source   DF      SS     MS      F      P 

Region    1   17437  17437  37.36  0.000 

Error   322  150264    467 

Total   323  167701 

 

S = 21.60   R-Sq = 10.40%   R-Sq(adj) = 10.12% 

 

 

                          Individual 95% CIs For Mean Based on 
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                          Pooled StDev 

Level    N   Mean  StDev  -------+---------+---------+---------+-- 

0      182  58.65  25.60  (----*----) 

1      142  73.44  14.98                         (-----*-----) 

                          -------+---------+---------+---------+-- 

                              60.0      66.0      72.0      78.0 

 

Pooled StDev = 21.60 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Region 

 

Individual confidence level = 95.00% 

 

 

Region = 0 subtracted from: 

 

Region  Lower  Center  Upper  -------+---------+---------+---------+-- 

1       10.03   14.79  19.54                       (------*------) 

                              -------+---------+---------+---------+-- 

                                   0.0       7.0      14.0      21.0 

 

 

Figure 48: Ireland versus Massachusetts study One way ANOVA statistics (overall test 

results) 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests 

(fig. 47); the confidence intervals for this study do not demonstrate an 

overlapping of the intervals for the test samples. Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is a significant difference between the performance of ‘test 

0’ and ‘test 1’ as the interval goes from 10.03 to 19.54 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains positive values, one can equate that ‘test 1’ had 

significantly higher results. The centre point of the CI is 14.79 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 48). The standard assumptions are as follows:  
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• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 
 Figure 49: Ireland versus Massachusetts study One way ANOVA Residual plot graphics 

(overall test results) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 
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• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

  

8.3.2.3.4. Ireland versus 

Massachusetts, overall test results Correlations test  

 

Correlations: Results, Region  

Pearson correlation of Results and Region = 0.322 

P-Value = 0.000 

 

 

 

Figure 50: Ireland versus Massachusetts study Correlation matrix plot graphics (overall 

test results) 

 

There is sufficient evidence to support the presence of a very slight positive 

correlation between the two variable tests, as demonstrated by the r-value of 

0.322 and a P-value of 0.000 (fig. 49). 
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8.3.2.3.5. Implications of Results 

(Ireland versus Massachusetts for all). 

 

The t-test for all tests finds a significant difference in performance between 

Ireland and Massachusetts with a t-value=-6.5 and a p-value=0.000 (fig. 46). 

The negative t-value indicates that the students in Massachusetts scored 

significantly higher over both tests than the Irish students. The fact that the p-

value is less than 0.05 indicates a significant difference between the scores of 

each group. As a result the null hypothesis ‘that there is no difference in 

achievement between Ireland and Massachusetts’ is rejected. Irish test results, 

test=0, (M=58.7, SD=25.6) scored lower than the Massachusetts test results, 

test=1, (M=73.4, SD 15). The mean difference is 14.59 in favour of the 

Massachusetts results. The Pearson Correlation of 0.322 indicates that there is 

a weak positive correlation between test performance in Ireland and test 

performance in Massachusetts. 

 

8.3.2.4. Ireland Higher Level versus 

Massachusetts (Traditional test) 

 

The following statistical analysis considers the Irish test results for Higher 

level students (test=0) versus the Massachusetts’ tests results (test=1) for the 

‘Traditional’ test only. The author was interested in comparing the ‘Traditional’ 

test for both groups as this is the test that is directly based on the Junior 

Certificate examination. As a result it provides an interesting indicator of how 

Irish students perform in the test that they are being prepared for on a daily 

basis in comparison with students from Massachusetts who are unfamiliar with 

the Irish assessment style. The author eliminated the Irish Ordinary level 

results from this analysis as the Massachusetts results do not include work 

from their least mathematically able students (due to the fact that they do not 
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study the ‘Algebra 1’ course which was a timetabling requirement by the school 

itself). The analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

in the ‘Traditional’ test between Irish Higher level students (test=0) 

and students from Massachusetts (test=1)’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels in the ‘Traditional’ test between Irish Higher level students 

(test=0) and students from Massachusetts (test=1). 

 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.3.2.4.1. Ireland Higher Level 

versus Massachusetts Descriptive statistics (Traditional test) 

 

Descriptive Statistics: Results (Ireland versus Massachusetts traditional test) 

Variable  Region   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0       68  11  80.42     1.69  13.91    40.00  73.54   82.50  91.67 

          1       71   0  79.67     1.90  16.02    33.33  67.50   83.33  92.50 

 

Variable  Region  Maximum 

Results   0        100.00 

 

Figure 51: Descriptive Statistics for Ireland Higher Level versus Massachusetts study 

(Traditional test results) 
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Figure 52: Graphical Summary of descriptive statistics for Ireland higher level versus 

Massachusetts study (Traditional test results) 

  

 

8.3.2.4.2. Ireland Higher Level 

versus Massachusetts hypothesis test traditional test (Two 

sample t-test)  

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 
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Figure 53: Graphical summary of test for equal variance for Ireland higher level versus 

Massachusetts study (Traditional test results) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.246 and 0.149 are greater than 0.05 

(fig. 53). Therefore, this result is not significant and there is sufficient evidence 

to conclude that the variances are equal.  

 

Two-Sample T-Test and CI: Results, Region  

Two-sample T for Results 

Region   N  Mean  StDev  SE Mean 

0       68  80.4   13.9      1.7 

1       71  79.7   16.0      1.9 

Difference = mu (0) - mu (1) 

Estimate for difference:  0.75 

95% CI for difference:  (-4.29, 5.79) 

T-Test of difference = 0 (vs not =): T-Value = 0.29  P-Value = 0.770  

DF = 137 

Both use Pooled StDev = 15.0221 

 

Figure 54: Two sample t-test statistics of Ireland higher level versus Massachusetts study 

(Traditional test results) 

 



321 

 

 

 

 

Figure 55: Two sample t-test Individual and box-plot graphics of Ireland higher level 

versus Massachusetts study (Traditional test results) 

 

Based on the outcome of the two sample t-test, the author notes the estimate 

difference is 0.75, which would indicate that there is not a significant 

difference between the performance responses of the Irish higher level students 
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and the Massachusetts’ tests. Based on the p-value of 0.770, the author fails to 

reject the null hypothesis at the 5% level of significance and concludes that 

there is no significant difference between the results of the Irish higher level 

students and the students in Massachusetts. 

 

8.3.2.4.3. Ireland Higher Level 

versus Massachusetts hypothesis test traditional test (One-way 

ANOVA) 

 

One-way ANOVA: Results versus Region  

Source   DF     SS   MS     F      P 

Region    1     19   19  0.09  0.770 

Error   137  30916  226 

Total   138  30935 

S = 15.02   R-Sq = 0.06%   R-Sq(adj) = 0.00% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---------+---------+---------+---------+ 

0      68  80.42  13.91     (-----------------*-----------------) 

1      71  79.67  16.02  (----------------*-----------------) 

                         ---------+---------+---------+---------+ 

                               78.0      80.0      82.0      84.0 

 

Pooled StDev = 15.02 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Region 

Individual confidence level = 95.00% 

Region = 0 subtracted from: 

Region  Lower  Center  Upper  ---------+---------+---------+---------+ 

1       -5.79   -0.75   4.29  (----------------*---------------) 

                              ---------+---------+---------+---------+ 

                                    -3.0       0.0       3.0       6.0 

 

 

Figure 56: One way ANOVA statistics of Ireland higher level versus Massachusetts study 

(Traditional test results) 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.770, one can fail to reject the null 

hypothesis and conclude that the means of the two samples are not statistically 

different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (fig. 56). Additionally, the post-hoc testing 

performed using the Tukey test provides confidence intervals for the difference 
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in the pair of means under evaluation. From this analysis, it can be concluded 

that there is no significant difference between the performance of ‘test 0’ and 

‘test 1’ as the interval goes from – 5.79 to 4.29 and zero is in the interval. The 

centre point of the CI is – 0.75 and is the estimated mean difference between 

the test groups.   

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 57). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 
 

Figure 57: One way ANOVA Residual plot graphics (t=0, t=1) statistics for Ireland 

higher level versus Massachusetts study (Traditional test results) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 
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this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

 

8.3.2.4.4. Ireland Higher Level 

versus Massachusetts hypothesis test traditional test 

(Correlation study) 

 

Correlations: Results, Region  

 
Pearson correlation of Results and Region = -0.025 

P-Value = 0.770 
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Figure 58: Correlation matrix plot graphics of Ireland Higher Level versus 

Massachusetts traditional test 

 

There is sufficient evidence to support the lack of presence of linear correlation 

between the two variable tests, as demonstrated by the r-value of -0.025 and a 

P-value of 0.770 (fig. 58). 

 

8.3.2.4.5. Implication of Results 

(H.L. Irish results vs. Massachusetts) 

  

The t-test analysis of the Irish Higher level results versus the Massachusetts 

results for the ‘Traditional’ test show no difference. The p-value is 0.770, as 

this is greater than the alpha-value of 0.5 it suggests there is no difference in 

student performance between regions. Therefore we fail to reject the null 

hypothesis ‘That there is no difference in achievement levels in the ‘Traditional’ 

test between Irish Higher level students (test=0) and students from 

Massachusetts (test=1)’. Irish Higher level students, test=0, (M=80.4, 

S.D.=13.9) score marginally higher than students from Massachusetts, test=1, 
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(M=79.7, S.D.=16.0). There is a very small difference between the mean 

scores for each region of 0.75. The author is surprised that the students from 

Massachusetts performed at such a comparable level with Irish Higher level 

students. One would accept that in an assessment system that students are 

being especially prepared for they would hold a distinct advantage. It is 

important to note that not only is the ‘Traditional’ test based on the Irish Junior 

Certificate curriculum, but the test questions are directly selected from the 

Junior Certificate assessment. In contrast the author remain reasonably 

unfamiliar with the content in the Massachusetts Algebra 1 curriculum, outside 

of the main topics the students cover while studying this eighth grade course. 

This would suggest, to some extent, that students from Massachusetts’ are 

demonstrating a greater mathematical ability as the content, the format style, 

the presentation of the questions, the wording etc. are not familiar to students 

in the United States to the same extent as they would be to Irish students. 

 

8.3.2.5. Ireland Higher Level versus 

Massachusetts (Realistic Tests) 

 

The following statistical analysis considers the Irish test results for Higher 

level students (test=0) versus the Massachusetts’ tests results (test=1)for the 

‘Realistic’ test only. The author eliminated the Irish Ordinary level results from 

this analysis as the Massachusetts results do not include work from the least 

mathematically able students (due to the fact that they do not study the 

‘Algebra 1’ course which was a timetabling requirement by the school itself). 

The analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels in the 

‘Traditional’ test between Irish Higher level students (test=0) and students 

from Massachusetts (test=1)’;  
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• The Alternative Hypothesis: ‘There is a difference in achievement levels in 

the ‘Traditional’ test between Irish Higher level students (test=0) and students 

from Massachusetts (test=1). 

 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.3.2.5.1. Ireland Higher Level 

versus Massachusetts Descriptive statistics  (Realistic test) 

 

Descriptive Statistics: Results (Ireland versus Massachusetts Realistic test) 

 

Variable  Region   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0       68  11  53.11     2.23  18.41    10.00  43.33   55.00  66.25 

          1       71   0  67.21     1.28  10.80    30.00  61.67   68.33  73.33 

 

Variable  Region  Maximum 

Results   0         96.67 

1. 91.67 
 

Figure 59: Descriptive Statistics for Ireland Higher Level versus Massachusetts study 

(Realistic test results) 
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Figure 60: Graphical summary of descriptive Statistics for Ireland Higher Level versus 

Massachusetts study (Realistic test results) 

 

8.3.2.5.2. Ireland Higher Level 

versus Massachusetts hypothesis test - two sample t-test 

(Realistic test))  

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 
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Figure 61: Graphical summary of test for equal variance for Ireland Higher Level versus 

Massachusetts study (Realistic test results) 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.000 and 0.000 are less than 0.05 (fig. 

61). Therefore, this result is significant and there is sufficient evidence to 

conclude that the variances are not equal. 

 

Two-Sample T-Test and CI: Results, Region  

Two-sample T for Results 

Region   N  Mean  StDev  SE Mean 

0       68  53.1   18.4      2.2 

1       71  67.2   10.8      1.3 

Difference = mu (0) - mu (1) 

Estimate for difference:  -14.09 

95% CI for difference:  (-19.20, -8.99) 

T-Test of difference = 0 (vs not =): T-Value = -5.48  P-Value = 0.000  

DF = 107 

 

 

Figure 62: Two sample t-test statistics for Ireland Higher Level versus Massachusetts 

study (Realistic test results) 
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Figure 63:  Two sample t-test Individual and box-plot graphics for Ireland Higher Level 

versus Massachusetts study (Realistic test results) 

 

Based on the outcome of the two sample t-test, the author notes the estimate 

difference is -14.09, which would indicate that there is a difference between 

the performance responses of the Irish, higher level students and the 
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Massachusetts’ students on the ‘Realistic’ test (fig. 62). Based on the p-value of 

0.000, the author rejects the null hypothesis at the 5% level of significance and 

concludes that there is a difference between the results in the ‘Realistic’ test 

between the Irish, higher level students and the students in Massachusetts.  

 

8.3.2.5.3. Ireland Higher Level 

versus Massachusetts  hypothesis test: one-way ANOVA 

(Realistic test)) 

 

One-way ANOVA: Results versus Region  

Source   DF     SS    MS      F      P 

Region    1   6900  6900  30.63  0.000 

Error   137  30864   225 

Total   138  37763 

 

S = 15.01   R-Sq = 18.27%   R-Sq(adj) = 17.67% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -------+---------+---------+---------+-- 

0      68  53.11  18.41  (-----*-----) 

1      71  67.21  10.80                         (-----*-----) 

                         -------+---------+---------+---------+-- 

                             54.0      60.0      66.0      72.0 

 

Pooled StDev = 15.01 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Region 

 

Individual confidence level = 95.00% 

 

Region = 0 subtracted from: 

 

Region  Lower  Center  Upper  -------+---------+---------+---------+-- 

1        9.06   14.09  19.13                      (------*------) 

                              -------+---------+---------+---------+-- 

                                   0.0       7.0      14.0      21.0 

 

 

Figure 64:  One way ANOVA statistics for Ireland Higher Level versus Massachusetts 

study (Realistic test results) 

 

The ANOVA output of immediate interest, as outlined above, is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 
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intervals for the test samples (fig. 64). Additionally, the post-hoc testing 

performed using the Tukey test provides confidence intervals for the difference 

in the pair of means under evaluation. From this analysis, it can be concluded 

that there is a significant difference between the performance of ‘test 0’ and 

‘test 1’ as the interval goes from 9.06 to 19.13 and zero is not in the interval. In 

this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and the 

resultant CI contains positive values, one can equate that ‘test 1’ had 

significantly higher results. The centre point of the CI is 14.09 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 65). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

 

Figure 65:  One way ANOVA Residual plot graphics for Ireland Higher Level versus 

Massachusetts study (Realistic test results) 
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Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  
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8.3.2.5.4. Ireland Higher Level 

versus Massachusetts hypothesis test - Realistic test 

(Correlation study) 

 

Correlations: Results, Region  

 
Pearson correlation of Results and Region = 0.427 

P-Value = 0.000 

 

 

 

Figure 66: Correlation matrix plot graphics Ireland Higher Level versus Massachusetts 

study (Realistic test results) 

 

There is sufficient evidence to support the presence of moderate correlation 

between the two variable tests, as demonstrated by the r-value of 0.427 and a 

p-value of 0.000 (fig. 66). 
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8.3.2.5.5. Implication of Results 

Ireland Higher Level versus Massachusetts study (Realistic test 

results) 

 

The t-test analysis of the Irish Higher level results versus the Massachusetts 

results for the ‘Realistic’ test show a significant difference. The p-value is 

0.000, as this is less than the alpha-value of 0.5 it suggests there is a significant 

difference in student performance between regions. Therefore we reject the 

null hypothesis ‘That there is no difference in achievement levels in the 

‘Realistic’ test between Irish Higher level students (test=0) and students from 

Massachusetts (test=1)’. Irish Higher level students, test=0, (M=53.1, 

S.D.=18.4) score marginally higher than students from Massachusetts, test=1, 

(M=67.2, S.D.=10.8). 
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8.4 Gender Test Results 

 

The following section considers the test results with respect to gender. 

 

8.4.1. Gender (Female vs. Male for all tests) 

 

The following statistical analysis considers the test results for gender: ‘Male’ 

(test=0) versus ‘Female’ (test=1). The difference is considered between male 

and female scores for all test results. The analysis seeks to either accept or 

reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between male and female test performance’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels between male and female test performance’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

8.4.1.1. Gender study: Descriptive 

statistics (t=0, t=1)  

  

Descriptive Statistics: Results  

Variable  Gender    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0       180  16  63.22     1.82  24.40     0.00  51.67   66.67  81.46 

          1       144  16  67.53     1.70  20.43    10.00  55.00   70.00  82.50 

Variable  Gender  Maximum 

Results   0        100.00 

1. 100.00 
 

 

Figure 67: Descriptive Statistics of Gender study (t=0, t=1) 
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The graphical summary of the descriptive statistics for the gender study is 

available in Appendix XI:i.  

8.4.1.2. Gender study: hypothesis test 

(Two sample t-test; t=0, t=1)  

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

The graphical information for the gender study is available in Appendix XI:ii. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. The P-values are 0.027 and 0.062 (Appendix XI:ii). The Levene value is 

greater than 0.05 which indicates an acceptance of equal variance. They are 

non-normal results as the p-value for the Anderson-darling test suggests in the 

descriptive statistics.  

 

Two-Sample T-Test and CI: Results, Gender  

Two-sample T for Results 

 

Gender    N  Mean  StDev  SE Mean 

0       180  63.2   24.4      1.8 

1       144  67.5   20.4      1.7 

 

 

Difference = mu (0) - mu (1) 

Estimate for difference:  -4.31 

95% CI for difference:  (-9.31, 0.69) 

T-Test of difference = 0 (vs not =): T-Value = -1.70  P-Value = 0.091  

DF = 322 

Both use Pooled StDev = 22.7199 

 

Figure 68: Gender study Two sample t-test statistics (t=0, t=1) 
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Based on the outcome of the two sample t-test, the author notes the estimate 

difference is -4.31, which would indicate that there is not a considerable 

difference between the performance responses of the female and male test 

results (fig. 68). Based on the p-value of 0.091, the author fails to reject the 

null hypothesis at the 5% level of significance and concludes that there is no 

significant difference between the results for female and male students. The 

individual and box-plot graphics for the gender study are available in Appendix 

XI:iii. 

 

8.4.1.3. Gender study, hypothesis test-

one way ANOVA (t=0, t=1) 

 

One-way ANOVA: Results versus Gender  

 

The ANOVA output of immediate interest (Appendix XI:iv) is the F-test 

statistic. As the associated P-value is 0.091, one can fail to reject the null 

hypothesis and conclude that the means of the two samples are not statistically 

different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XI:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is no significant difference between the performance of 

‘test 0’ and ‘test 1’ as the interval goes from – 0.69 to –9.31 and zero is in the 

interval. The centre point of the CI is 4.31 and is the estimated mean difference 

between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 69). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  
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• The values of random error are independent. 

 

 

 

Figure 69: One way ANOVA Residual plot graphics of Gender study (t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 



340 

 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

 

8.4.1.4. Gender: Correlation study (t=0, 

t=1) 

 

 

There is sufficient evidence to support the lack of presence of linear correlation 

between the two variable tests, as demonstrated by the r-value of 0.094 and a 

P-value of 0.091 (Appendix XI:v). 

 

8.4.1.5. Implication of Results: Gender 

study 

 

The statistical analysis of the tests, provided by the t-test, indicates that there is 

no significant difference between test performance for male and females 

students. The t-test finds a p-value=0.091. As the p-value is greater than 0.05 it 

is shown that there is no significance difference, and the difference that exists 

may be due to chance. Therefore the author fails to reject the null hypothesis 

‘That there is no difference in achievement levels between male and female test 

performance’. The difference that does exist favours female performance. 

Test=0, male test results, (M=63.2, S.D.=24.4) scored lower than test=1, 

female test results (M=67,5, S.D.=20.4). The difference in the mean 

performance between male and female students is 4.31, with female students 

scoring higher. The Pearson Correlation result is 0.094 which indicates an 

extremely weak, positive correlation between male and female test 

performance. 
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8.4.2. Gender (Female only) 

 

The following statistical analysis considers the test results for female 

performance in both tests (‘Realistic’ test=0 versus ‘Traditional’ test=1). The 

analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels, 

for female students, between the realistic and traditional tests’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels, for female students, between the realistic and traditional tests’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

8.4.2.1. Female study Descriptive 

statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

 
Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     71   9  77.24     2.20  18.57    16.67  66.67   82.50  91.67 

          1     73   7  58.08     2.06  17.61    10.00  50.00   63.33  70.00 

 

Variable  Test  Maximum 

Results   0      100.00 

          1       90.00 

 

Figure 70: Descriptive statistics of Female study (t=0, t=1) 

 

8.4.2.2. Female study hypothesis test: 

two sample t-test (t=0, t=1)  

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 
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• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.656 and 0.652 are greater than 0.05 

(Appendix XII:ii). Therefore, this result is not significant and there is sufficient 

evidence to conclude that the variances are equal. 

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     71  77.2   18.6      2.2 

1     73  58.1   17.6      2.1 

Difference = mu (0) - mu (1) 

Estimate for difference:  19.16 

95% CI for difference:  (13.20, 25.12) 

T-Test of difference = 0 (vs not =): T-Value = 6.36  P-Value = 0.000  

DF = 142 

Both use Pooled StDev = 18.0867 

 

Figure 71: Female study Two sample t-test statistics (t=0, t=1) 

 

The individual and box-plot graphics for the female study are available in 

Appendix XII:iii. Based on the outcome of the two sample t-test, the author 

notes the estimate difference is 19.61, which would indicate that there is a 

significant difference between the performance responses of the female 

students in the ‘Traditional’ and ‘Realistic’ tests. Based on the p-value of 0.000, 

the author rejects the null hypothesis at the 5% level of significance and 

concludes that there is a difference between the results of the ‘Traditional’ and 

‘Realistic’ tests for female students. 
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8.4.2.3. Female study Hypothesis test, 

One-way ANOVA (t=0, t=1)  

 

The ANOVA output of immediate interest (Appendix XII:iv) is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples. Additionally, the post-hoc testing performed 

using the Tukey test provides confidence intervals for the difference in the pair 

of means under evaluation. From this analysis, it can be concluded that there is 

a significant difference between the performance of ‘test 0’ and ‘test 1’ as the 

interval goes from –25.12  to –13.20 and zero is not in the interval. In this 

instance, where the ‘test 0’ has been subtracted from ‘test 1’ and the resultant CI 

contains negative values, one can equate that ‘test 1’ had significantly lower 

results. The centre point of the CI is – 19.16 and is the estimated mean 

difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 72). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 
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Figure 72: One way ANOVA Residual plot graphics of Female study (t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 
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around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

8.4.2.4. Female study Correlation Study 

(t=0, t=1)  

 

 

There is sufficient evidence to support the presence of moderate negative linear 

correlation between the two variable tests, as demonstrated by the r-value of -

0.471 and a P-value of 0.000 (Appendix XII:v). 

 

8.4.2.5. Implications of Results (Female 

only) 

 

The t-test results for female students show a significant difference between 

female test performance in the ‘Traditional’ test and the ‘Realistic’ test. The t-

test provides a p-value=0.000, as this value is less than the alpha value of 0.05 

it indicates that there is a significant difference (fig. 71). Therefore the null 

hypothesis ‘that there is no difference in achievement levels, for female 

students, between the realistic and traditional tests’ is rejected. Female students 

scored higher in the ‘Traditional’ test (test=0) than the ‘Realistic’ test (test=1). 

Test=0 (M=77.2, S.D.=18.6) scored higher than test=1 (M=58.1, S.D.=17.6). 

There is a difference between the mean of the two tests=19.16. 
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8.4.3.  Gender (Male only) 

 

The following statistical analysis considers the male test results for both tests 

(‘Realistic’ test=0 versus ‘Traditional’ test=1). The analysis seeks to either 

accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels, 

for male students, between the realistic and traditional tests’;  

• The Alternative Hypothesis: ‘There is a difference in achievement 

levels, for male students, between the realistic and traditional tests’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

8.4.3.1. Male study Descriptive statistics 

(t=0, t=1)  

 

Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     86  12  74.18     2.33  21.65     0.00  63.33   79.17  91.67 

          1     94   4  53.19     2.32  22.46     0.00  43.33   56.67  68.33 

 

Variable  Test  Maximum 

Results   0      100.00 

   1   96.67 

 

 

Figure 73: Descriptive statistics Male study (t=0, t=1) 

 
 

 

8.4.3.2. Male study Hypothesis test, two 

sample t-test (t=0, t=1)  

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 
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• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.731 and 0.576 are greater than 0.05 

(Appendix XIII:ii). Therefore, this result is significant and there is sufficient 

evidence to conclude that the variances are equal. 

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     86  74.2   21.6      2.3 

1     94  53.2   22.5      2.3 

Difference = mu (0) - mu (1) 

Estimate for difference:  20.98 

95% CI for difference:  (14.48, 27.49) 

T-Test of difference = 0 (vs not =): T-Value = 6.37  P-Value = 0.000  

DF = 178 

Both use Pooled StDev = 22.0791 

 

Figure 74: Male study Two sample t-test statistics (t=0, t=1) 

 

Appendix XIII:iii displays the individual and box-plot graphics for the male 

study. Based on the outcome of the two sample t-test, the author notes the 

estimate difference is 20.98, which would indicate that there is a significant 

difference between the performance responses of the male students in the 

‘Traditional’ and ‘Realistic’ tests (fig. 74). Based on the p-value of 0.000, the 

author rejects the null hypothesis at the 5% level of significance and concludes 

that there is a difference between the results of the ‘Traditional’ and ‘Realistic’ 

tests for male students. 
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8.4.3.3. Male study Hypothesis test, One 

way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XIII:iv) is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples. Additionally, the post-hoc testing performed 

using the Tukey test provides confidence intervals for the difference in the pair 

of means under evaluation. From this analysis, it can be concluded that there is 

a significant difference between the performance of ‘test 0’ and ‘test 1’ as the 

interval goes from – 27.49 to –14.48 and zero is not in the interval. In this 

instance, where the ‘test 0’ has been subtracted from ‘test 1’ and the resultant CI 

contains negative values, one can equate that ‘test 1’ had significantly lower 

results. The centre point of the CI is – 20.28 and is the estimated mean 

difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 75). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 
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Figure 75: One way ANOVA Residual plot graphics of Male study (t=0, t=1) 

 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 
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around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

  

8.4.3.4. Male study Correlation study 

 

Correlations: Results, Test  
 
 

 

There is sufficient evidence to support presence of moderate negative linear 

correlation between the two variable tests (Appendix XIII:v), as demonstrated 

by the r-value of  -0.431and a P-value of 0.000. 

 

8.4.3.5. Implication of Results (Male 

students) 

 

The t-test analysis of male performance between the ‘Traditional’ test (test=0) 

and the ‘Realistic’ test (test=1) shows a significant difference. The t-test 

provides a p-value=0.000. As this p-value is lower than the alpha value of 0.05 

the hypothesis ‘That there is no difference in achievement levels, for male 

students, between the realistic and traditional tests’ is rejected. Male students 

perform better in the ‘Traditional’ test, with a mean difference of 20.98. Test=0 

(M=74.2, S.D.= 21.6)  scored higher than Test=1 (M=53.2, S.D.=22.5).  

  

 

 

8.4.3.6. Implication of overall results 

(Male versus Female students) 
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 Number Trad (test=0) Realistic 

(test=1) 

p-value 

Female 71 M=77.2, 

SD=18.6 

M=58.1, 

SD=17.6 

0.000 

Male 86 M=74.3, 

SD=21.6 

M=53.2, 

SD=22.5 

0.000 

 
Table 25: Male versus Female overall results 

 

The above table shows performance for male and female students across both 

tests, ‘Traditional’ and ‘Realistic’. The mean difference between male and 

female scores in test=0 (the ‘Traditional’ test) is 2.9 in favour of female 

students. The mean difference between male and female scores in test=1 (the 

‘Realistic’ test) is 4.9, in favour of female students again. It is interesting to 

note that not only do female students perform marginally better than male 

students in the implemented tests, but that the margin is greater for the 

‘Realistic’ tests. This is noteworthy as much research has indicated that female 

students perform better when context is provided in mathematics questions 

(Bolger & Kellaghan, 1990; Burton, 1994; Tims,1994). 
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8.5 Performance in the Traditional Test as an Indicator 

 

The following section considers the test performance by students between the 

‘Realistic’ and ‘Traditional’ tests when performance in the ‘Traditional’ test is 

used as an indicator.  

 

8.5.1. Traditional Test Performance ≥80% 

 

The following statistical analysis considers the test results for students that 

attained a score of greater, or equal to, 80% in the ‘Traditional’ test. It seeks to 

determine if there is a difference in test performance for this student group 

between the tests implemented (‘Realistic’ versus ‘Traditional’).  The author is 

interested in considering the overall group in this subsection as it contains the 

students that educators in Ireland would typically consider ‘more 

mathematically able’. The analysis seeks to either accept or reject the 

following:  

• The Null Hypothesis: ‘That there is no difference in achievement level 

between the realistic and traditional tests, for students that obtained a score 

of ≥80% in test=0’;  

• The Alternative Hypothesis: ‘There is a difference in achievement levels 

between the realistic and traditional tests, for students that obtained a score 

of ≥80% in test=0’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 
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8.5.1.1. Traditional test performance 

≥80% study Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

Variable  Test   N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median      Q3 

Results   0     80   0  90.542    0.674  6.029   80.000  85.207  91.250  95.623 

          1     80   0   62.43     1.77  15.80    15.00   55.00   63.33   71.67 

Variable  Test  Maximum 

Results   0     100.000 

1. 96.67 
 

Figure 76: Descriptive statistics traditional ≥ 80% study (t=0, t=1) 

 

8.5.1.2. Traditional performance ≥80% 

Hypothesis test, two sample t-test (t=0, t=1) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.000 and 0.000 are less than 0.05 

(Appendix XIV:ii). Therefore, this result is significant and there is sufficient 

evidence to conclude that the variances are not equal. 
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Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N   Mean  StDev  SE Mean 

0     80  90.54   6.03     0.67 

1     80   62.4   15.8      1.8 

Difference = mu (0) - mu (1) 

Estimate for difference:  28.11 

95% CI for difference:  (24.36, 31.87) 

T-Test of difference = 0 (vs not =): T-Value = 14.87  P-Value = 0.000  

DF = 101 

 

Figure 77: Trad  ≥ 80% Two sample t-test statistics (t=0, t=1) 
 

 

The Individual and box-plot graphics for the traditional test ≥80% are available 

in Appendix XIV:iii. Based on the outcome of the two sample t-test, the author 

notes the estimate difference is 28.11, which would indicate that there is a 

considerable difference between the performance responses of the ‘Traditional’ 

and ‘Realistic’ tests, for students who scored ≥80% in the ‘Traditional’ test (fig. 

77). Based on the p-value of 0.000, the author rejects the null hypothesis at the 

5% level of significance and concludes that there is a difference between the 

results of the ‘Traditional’ and ‘Realistic’ tests for this cohort of students. 

 

8.5.1.3. Traditional performance ≥80% 

Hypothesis test, One way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XIV:iv) is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XIV:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 
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concluded that there is a significant difference between the performance of ‘test 

0’ and ‘test 1’ as the interval goes from –31.85 to – 24.38 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 28.11 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 78). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

 

Figure 78: One way ANOVA Residual plot graphics of traditional. ≥ 80% study (t=0, t=1) 
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Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that 

there is no evidence to suggest that standard assumptions of the regression 

have been violated.  

 

8.5.1.4. Traditional performance ≥80% 

Correlation study 

Correlations: Results, Test  
 

There is sufficient evidence to support the presence of strong weak linear 

correlation between the two variable tests, as demonstrated by the r-value 

of -0.764 and a P-value of 0.000 (Appendix XIV:v). 
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8.5.1.5. Implication of Results (for  

students scoring ≥80% in test=0) 

 

The t-test shows a significant difference between scores in the ‘Traditional’ and 

‘Realistic’ tests for students who scored ≥80% in test=0.  This differences is 

indicated by a t-test p-value=0.000. As the p-value is less than the set alpha 

value of 0.05 this indicates a significant difference between test performance 

(fig. 77). Therefore, the null hypothesis ‘that there is no difference in 

achievement level between the realistic and traditional tests, for students that 

obtained a score of ≥80% in test =0’ is rejected. The ‘Traditional’ test, test=0, 

(M=90.54, S.D.=6.03) scores higher than the ‘Realistic’ test, test=1, (M=62.4, 

S.D.=15.8). The difference between the mean is 28.11. This is a significant gap 

in performance for students that are typically considered to be ‘more 

mathematically able’. The greater standard deviation for test=1 can somewhat 

be explained due to the fact that there are parameters put on the scores for 

test=0 (all scores ≥ 80%) but none for test=1. The Pearson Correlation result is 

-0.764 indicating a strong, negative correlation between students scoring more 

than 80% in the traditional test and their result in the realistic test. 
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8.5.2. Traditional performance 60%≤x<80% 

 

The following statistical analysis considers the results for both tests (‘Realistic’ 

versus ‘Traditional’) for students who scored between 60% and 80% in the 

‘Traditional’ test (test=0). The analysis seeks to either accept or reject the 

following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests, for students who scored between 

60% and 80% in test=0’;  

• The Alternative Hypothesis: ‘There is a difference in achievement levels 

between the realistic and traditional tests, for students who scored between 

60% and 80% in test=0’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.5.2.1. Traditional performance 

60%≤x<80% Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

 

Variable  Test   N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median      Q3 

Results   0     47   0  71.366    0.847  5.809   60.830  65.830  72.500  76.670 

          1     47   0   56.33     2.76  18.89     5.00   46.67   61.67   70.00 

 

Variable  Test  Maximum 

Results   0      79.170 

          1       81.67 

 

 Figure 79: Descriptive statistics traditional 60%≤x<80% study (t=0, t=1) 
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8.5.2.2. Traditional performance 

60%≤x<80% Hypothesis test, two sample t-test (t=0, t=1) 

  

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.000 and 0.000 are less than 0.05 

(Appendix XV:ii). Therefore, this result is significant and there is sufficient 

evidence to conclude that the variances are not equal. 

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N   Mean  StDev  SE Mean 

0     47  71.37   5.81     0.85 

1     47   56.3   18.9      2.8 

 

Difference = mu (0) - mu (1) 

Estimate for difference:  15.04 

95% CI for difference:  (9.25, 20.82) 

T-Test of difference = 0 (vs not =): T-Value = 5.21  P-Value = 0.000  

DF = 54 

 

Figure 80: Trad  60%≤x<80% Two sample t-test statistics (t=0, t=1) 

 

Appendix XV:iii displays the Individual and box-plot graphics for the 

traditional test from 60% to 80%. Based on the outcome of the two sample t-

test, the author notes the estimate difference is 15.04, which would indicate 

that there is a considerable difference between the performance responses of 

the ‘Traditional’ and ‘Realistic’ tests, for students who scored between 60% and 

80% in the ‘Traditional’ test (fig. 80). Based on the p-value of 0.000, the author 
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rejects the null hypothesis at the 5% level of significance and concludes that 

there is a difference between the results of the ‘Traditional’ and ‘Realistic’ tests 

for this cohort of students. 

 

8.5.2.3. Traditional performance 

60%≤x<80% Hypothesis test, One way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XV:iv) is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XV:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is a significant difference between the performance of ‘test 

0’ and ‘test 1’ as the interval goes from – 20.76 to – 9.31 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 15.04 and is the 

estimated mean difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 81). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 
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Figure 81: One way ANOVA Residual plot graphics of traditional 60%≤x<80% study 

(t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 
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• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

  

8.5.2.4. Traditional performance 

60%≤x<80% Correlation study 

 

Correlations: Results, Test  

 

There is sufficient evidence to support the presence of a slightly weak linear 

correlation between the two variable tests, as demonstrated by the r-value of -

0.478 and a P-value of 0.000 (Appendix XV:v). 

 

8.5.2.5. Implication of results 

(60%≤x<80% in test=0) 

 

The t-test analysis shows that there is a difference in achievement between the 

‘Traditional’ and ‘Realistic’ tests for students who scored 60%≤x<80% in test 

=0 (‘Traditional”). The t-test provides a p-value =0.000 and due to the fact that 

this is less than the set alpha level of 0.05 this indicates a significant difference. 

Therefore, the hypothesis ‘that there is no difference in achievement levels 

between the realistic and traditional tests, for students who score 60%≤x<80% 

in test=0’is rejected. There is an estimate for difference between the mean of 

test=0 and test=1 of 15.04 for the 47 students who scored in this range in the 

‘Traditional’ test. Test=0, ‘Traditional’, (M=71.37, S.D.=5.81) scored higher 
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than test=1, ‘Realistic’ (M-56.3, S.D.=18.9). Again there is a considerably 

larger standard deviation (S.D.) for test=1, the ‘Realistic’ test but part of this is 

due to the fact that parameters were set for test=0 (60%≤x<80%) but not for 

test=1. The Pearson Correlation result of -0.478 indicates a moderately weak 

correlation between test performance of between 60% and 80% in the 

traditional test, and test performance in the realistic test. 
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8.5.3. Traditional Test performance 0%≤x<60% 

 

The following statistical analysis considers the test results for both tests 

(‘Realistic’ versus ‘Traditional’), for students who scored less than 60% in the 

‘Traditional’ test (test=0). The analysis seeks to either accept or reject the 

following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests, for students who score less than 

60% in test=0’;  

• The Alternative Hypothesis: ‘There is a difference in achievement levels 

between the realistic and traditional tests, for students who score less than 

60% in test=0’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.5.3.1. Traditional performance 

0%≤x<60% Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     30  21  42.19     2.98  16.32     0.00  28.75   49.59  55.21 

          1     40  11  39.96     3.63  22.96     0.00  19.58   42.50  59.17 

Variable  Test  Maximum 

Results   0       58.33 

          1       76.67 

 

Figure 82: Descriptive statistics traditional 0%≤x<60% study (t=0, t=1) 
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8.5.3.2. Traditional performance 

0%≤x<60% Hypothesis test, two sample t-test (t=0, t=1) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. The P-values of 0.059 and 0.017 (Appendix XVI:ii). The Levene value of 

0.017 suggests that the variance is not equal.  

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     30  42.2   16.3      3.0 

1     40  40.0   23.0      3.6 

 

Difference = mu (0) - mu (1) 

Estimate for difference:  2.24 

95% CI for difference:  (-7.14, 11.61) 

T-Test of difference = 0 (vs not =): T-Value = 0.48  P-Value = 0.636  

DF = 67 

 

Figure 83: Trad  <60% Two sample t-test statistics (t=0, t=1) 
 

Appendix XVI:iii displays the Individual and box-plot graphics for the 

traditional test less than 60%. Based on the outcome of the two sample t-test, 

the author notes the estimate difference is 2.24, which would indicate that there 

is not a significant difference between the performance responses of the 

‘Traditional’ and ‘Realistic’ tests, for students who scored less than 60% in the 

‘Traditional’ test (fig. 83). Based on the p-value of 0.636, the author fails to 
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reject the null hypothesis at the 5% level of significance and concludes that 

there is no significant difference between the results of the ‘Traditional’ and 

‘Realistic’ tests for this cohort of students. 

 

8.5.3.3. Traditional performance 

0%≤x<60% Hypothesis test, One way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XVI:iv) is the F-test 

statistic. As the associated P-value is 0.636, one can fail to reject the null 

hypothesis and conclude that the means of the two samples are not statistically 

different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XVI:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is no significant difference between the performance of 

‘test 0’ and ‘test 1’ as the interval goes from – 12.07 to 7.60 and zero is in the 

interval. The centre point of the CI is – 2.24 and is the estimated mean 

difference between the test groups.   

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 84). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 
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Figure 84: One way ANOVA Residual plot graphics of traditional 0%≤x<60% study 

(t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 

The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 
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• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

 

8.5.3.4. Traditional performance 

0%≤x<60% Correlation study 

 

Correlations: Results, Test  

 

There is sufficient evidence to support the lack of presence of linear correlation 

between the two variable tests, as demonstrated by the r-value of -0.055 and a 

P-value of 0.651 (Appendix XVI:v). 

 

8.5.3.5. Implication of Results 

(Traditional performance 0%≤x<60 

 

The t-test analysis of test results for students who scored less than 60% in 

test=0 (‘Traditional’) shows that there is no difference between test 

performance in the ‘Traditional’ and ‘Realistic’ tests. The t-test produces a p-

value of 0.636 (fig. 83). As this p-value is greater than the set alpha level of 

0.05 it indicates that any difference that may exist between tests is 

coincidental. Therefore, the author fails to reject the hypothesis ‘that there is no 

difference in achievement levels between the realistic and traditional tests, for 

students who score less than 60% in test=0’. There is a small mean difference 

between test=0 and test=1 of 2.24. This difference favours the ‘Traditional’ test. 
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Test=0, ‘Traditional, (M=42.2, S.D. 16.3) scores marginally higher than test=1, 

‘Realistic’ (M=40, S.D.=23.0). Again the larger standard deviation (S.D.) for 

test=1 may be due to the fact that parameters were set for test=0 (<60%) but 

not for test=1. The Pearson Correlation result is -0.055 which indicates a weak, 

negative correlation between test performance for students who scored less 

than 60% in the traditional test. 

 

8.5.4. An analysis of the test results between ability 

groupings. 

 

As outlined above, the author analysed between test performance for different 

groups based on achievement in the ‘Traditional’ test. The author subdivided 

the overall research sample as follows: 

• Students who achieved a score of ≥80% in the ‘Traditional’ test, test=0 

(N=80); 

• Students who achieved a score of 60%≤x<80% in the ‘Traditional’ test, test=0 

(N=47); and  

• Students who achieved a score of <60% in the ‘Traditional’ test, test=0 

(N=30). 

 

The author decided on the above divisions based on the premise that students 

who perform well in the Junior Certificate examination (on which the 

‘Traditional’ test is directly based) are considered to be mathematically able by 

Irish standards. The author was interested in considering the link between 

traditional mathematical ability (a demonstration of the ability to reproduce 

mathematical information in a familiar manner) and the ability to demonstrate 

mathematical understanding (by solving unfamiliar mathematical problems that 

demand thought and reflection). The author designed the two tests to be 

implemented based on these concepts with the ‘Traditional’ test designed to test 
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mathematical knowledge and the ‘Realistic’ test designed to test mathematical 

transfer ability and understanding. 

  

The following table displays the results from the implemented tests for each of 

the ability sub-groups: 

 

 Number Trad (test=0) Realistic 

(test=1) 

p-value 

≥80% in Test=0 N=80 M=90.54, 

S.D.=6.03 

M=62.4, 

S.D.=15.8 

0.000 

60% ≤ x < 80% in 

Test=0 

N=47 M=71.36, 

S.D.=5.81 

M=56.3, 

S.D.=18.9 

0.000 

<60% in Test=0 N=30 M=42.2, 

S.D.=16.3 

M=40.0, 

S.D.=23.0 

0.636 

 

 

Table 31: Ability group results 

 

It is interesting to note that while there is a significant difference between test 

performance for the first two groups: ‘≥80% in Test=0’ and ‘60%≤x<80% in 

Test=0’, indicated by a p-value=0.000, there is no significant difference in test 

performance for the third group (<60% in Test=0) indicated with a p-

value=0.635. It is also worth noting that the difference between mean test 

performance for the group ‘≥80% in Test=0’ is larger (28.14) than the mean 

difference between tests for the second group ‘60%≤x<80% in Test=0’ (15.06). 

This would suggest that there is less of a relationship between reproducing 

knowledge effectively and demonstrating mathematical understanding than one 

may expect. Indeed despite a mean difference of 19.18 in test=0 for the first 

two groups, there is a mean difference of just 6.1 between the same two groups 

for test=1. The author is interested in the possibilities suggested by the above 

results, including a suggestion that the skills needed to perform successfully in 

the two tests are very separate, and in some cases almost unrelated. 
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It is worth recapping at this stage that the two tests were designed as follows:  

 

• The Traditional Test: is based on the Junior Certificate examination paper 1. 

The questions are directly sourced from a past Junior Certificate examination 

paper and focus on the topics of algebra and arithmetic. The questions are 

based on the ordinary level Junior Certificate examination and therefore 

reflect what is covered in the Ordinary level Junior Certificate syllabus. It is 

important to note that all students that sit the Higher Level junior certificate 

examination would have covered both the Ordinary level course, in addition 

to the Higher level course. The students would be very familiar with the style 

of question used in the Traditional test as the syllabus directly prepares 

students for this examination. As mentioned in the literature review many 

Irish teachers focus on examinable skills and as a results most (if not all) of 

the students involved in the test would be familiar to a classroom environment 

in which the answering of Junior Certificate style questions would be 

commonplace. The questions involved are closed-ended questions and have 

only one correct answer. Again this is the basis of all Junior Certificate 

teaching and learning.  

 

• The Realistic Test: is based on a realistic, problem-solving scenario. The 

questions involve a significant amount of reading which may be problematic 

for some students. (Students involved in this research were allowed to ask for 

help with reading of the questions if necessary. It is also worth noting that 

Irish students with particularly severe learning difficulties would have had the 

assistance of an S.N.A., a ‘special needs assistant’). The questions required the 

students to think about a realistic scenario in which socio-cultural issues , 

including the consideration of ethical issues, have a role in the decision 

making process. Minor surplus information was provided in some of the 

questions. Demonstration of reflection and justification was asked for. The 

questions asked were open-ended and could have more than one correct 

answer. 
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8.6 Level of Junior Certificate Course studied by Irish 

students 

 

The following section considers the Irish test results for students by level 

studied at the time of testing: higher level or ordinary level. 

 

8.6.1. Higher Level Junior Certificate Course (all 

tests) 

 

The following statistical analysis considers the Irish test results for students 

following the higher level course over both tests (‘Realistic’ versus 

‘Traditional’). The analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests for Irish higher level students’;  

• The Alternative Hypothesis: ‘There is a difference in achievement levels 

between the realistic and traditional tests for Irish higher level students’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.6.2. Higher Level Junior Certificate Course 

Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

Variable  Test    N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     139  11  80.04     1.27  14.97    33.33  71.67   82.50  91.67 

          1     139  11  60.31     1.40  16.54    10.00  51.67   63.33  70.00 

Variable  Test  Maximum 

Results   0      100.00 

         1       96.67 

 

Figure 85: Descriptive statistics of higher level junior certification study (t=0, t=1) 
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8.6.2.1. Higher Level Junior Certificate 

Course  Hypothesis test, two sample t-test (t=0, t=1) 

 

 The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.023 and 0.032 are less than 0.05 

(Appendix XVII:ii). Therefore, this result is significant and there is sufficient 

evidence to conclude that the variances are not equal. 

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     68  80.4   13.9      1.7 

1     68  53.1   18.4      2.2 

 

Difference = mu (0) - mu (1) 

Estimate for difference:  27.30 

95% CI for difference:  (21.77, 32.84) 

T-Test of difference = 0 (vs not =): T-Value = 9.76  P-Value = 0.000  

DF = 124 

 

Figure 86: Higher Level JC course Two sample t-test statistics (t=0, t=1) 
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Appendix XVII:iii illustrates the Individual and box-plot graphics for the 

higher level course. Based on the outcome of the two sample t-test, the author 

notes the estimate difference is 27.3, which would indicate that there is a 

considerable difference between the performance responses of the ‘Traditional’ 

and ‘Realistic’ tests, for higher level, Junior Certificate students (fig. 86). Based 

on the p-value of 0.000, the author rejects the null hypothesis at the 5% level of 

significance and concludes that there is a difference between the results of the 

‘Traditional’ and ‘Realistic’ tests for this cohort of students. 

 

8.6.2.2. Higher Level Junior Certificate 

Course Hypothesis test, One way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XVII:iv) is the F-test 

statistic. As the associated P-value is 0.000, one can reject the null hypothesis 

and conclude that the means of the two samples are statistically different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XVII:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is a significant difference between the performance of ‘test 

0’ and ‘test 1’ as the interval goes from – 32.84 to – 21.77 and zero is not in the 

interval. In this instance, where the ‘test 0’ has been subtracted from ‘test 1’ and 

the resultant CI contains negative values, one can equate that ‘test 1’ had 

significantly lower results. The centre point of the CI is – 27.30 and is the 

estimated mean difference between the test groups.  



375 

 

 

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 87). The standard assumptions are as follows:  

• The relationship between Y and X must be linear; 

• The values are normally distributed; and  

• The values of random error are independent. 

 

 

Figure 87: One way ANOVA Residual plot graphics of higher level junior certification 

study (t=0, t=1) 

 

Interpretation of the residual plots: 

• The normal probability plot of residuals: Plots the residuals from each 

observation against the expected value of the residual had it come from 

a normal distribution. All plotted values appear in a straight line if the 

residuals are approximately normal (Mendenhall et al, 2009: 489). In 

this instance the values are in a reasonably straight line which suggests 

that there is no reason to state that the assumptions have been breached. 

• The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant variance. 
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The data appears to have a random pattern and as a result there is no 

reason to state that the assumptions have been breached. 

• The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears to 

support the normal distribution and as a result there is no reason to state 

that the assumptions have been breached. 

• Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that the 

assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

8.6.3.    

63. Higher Level Junior Certificate Course  

Correlation study 

 

Correlations: Results, Test  

 

There is sufficient evidence to support the presence of a slightly weak linear 

correlation between the two variable tests, as demonstrated by the r-value of -

0.531 and a P-value of 0.000 (Appendix XVII:v). 

 

8.6.3.1. Implication of Results (Higher 

Level Junior Certificate Course) 

  

 The t-test demonstrates that there is a difference between test 

achievement in the ‘Traditional’ test (test=0) and the ‘Realistic’ test (test=1) for 

Irish higher level students. This is indicated with a p-value=0.000, which is 

less than the set alpha level of 0.05 indicated a significant difference between 

the tests (fig. 86). Therefore the author rejects the hypothesis ‘that there is no 

difference in achievement levels between the realistic and traditional tests for 
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Irish higher level students’. Test=0 (M=80.4, S.D.=13.9) scores higher than 

test=1 (M=53.1, S.D.=18.4).  This shows a difference in the mean scores 

between tests of 27.3 in favour of the ‘Traditional’ test (test=0). It is interesting 

to note that while the mean score in the ‘Traditional’ test for higher level 

students is at a level that may be expected (due to the fact that more 

mathematically students take the Higher level mathematics course), the mean 

score for the ‘Realistic’ test is at a very low level (53.1) for students that are 

considered to be ‘more mathematically able’. The Pearson Correlation result is 

-0.531 indicating a moderately weak, negative correlation between test 

performance for Higher level, Irish students. 
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8.6.4. Ordinary Level Junior Certificate Course (all 

tests) 

  

The following statistical analysis considers the Irish test results for students 

studying the ordinary level course over both tests (‘Realistic’ versus 

‘Traditional’). The analysis seeks to either accept or reject the following:  

• The Null Hypothesis: ‘That there is no difference in achievement levels 

between the realistic and traditional tests for ordinary level students’;  

• The Alternative Hypothesis: ‘There is a difference in achievement levels 

between the realistic and traditional tests for ordinary level students’. 

The confidence level is again set at 95% to account for any difference that may 

arise by chance – the alpha level of 0.05 goes some way towards eliminating 

this risk. 

 

8.6.4.1. Ordinary Level Junior 

Certificate Course Descriptive statistics (t=0, t=1)  

 

Descriptive Statistics: Results  

Variable  Test   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3 

Results   0     18  10  41.02     5.46  23.18     0.00  22.08   43.34  61.45 

          1     28   0  30.60     3.97  20.99     0.00  10.83   32.50  51.25 

Variable  Test  Maximum 

Results   0       83.33 

          1       68.33 

 

Figure 88: Descriptive statistics of ordinary level junior certification study (t=0, t=1) 
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8.6.4.2. Ordinary Level Junior 

Certificate Course  Hypothesis test, two sample t-test (t=0, t=1) 

 

The approach taken to determine the difference between the mean responses 

for the ‘Traditional’ and ‘Realistic’ tests at the 5% level of significance is as 

follows: 

• Assess the data sets for equal variance; 

• Conduct a two-sample t-test, with or without equal variance, based on 

the variance findings; and 

• Conclude from the t-test whether the difference is significant at the 

appropriate level. 

Minitab provides a test statistic and P-value for both the F-Test and Levene’s 

test. It is of note that both P-values of 0.628 and 0.508 are greater than 0.05 

(Appendix XVIII:ii). Therefore, this result is not significant and there is 

sufficient evidence to conclude that the variances are equal. 

 

Two-Sample T-Test and CI: Results, Test  

Two-sample T for Results 

Test   N  Mean  StDev  SE Mean 

0     18  41.0   23.2      5.5 

1     28  30.6   21.0      4.0 

Difference = mu (0) - mu (1) 

Estimate for difference:  10.42 

95% CI for difference:  (-2.89, 23.73) 

T-Test of difference = 0 (vs not =): T-Value = 1.58  P-Value = 0.122  

DF = 44 

Both use Pooled StDev = 21.8626 

 

Figure 89: Ordinary Level JC course Two sample t-test statistics (t=0, t=1) 
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Appendix XVIII:iii displays the Individual and box-plot graphics for the 

ordinary level course. Based on the outcome of the two sample t-test, the 

author notes the estimate difference is 10.42, which would indicate that there is 

some difference between the performance responses of the ‘Traditional’ and 

‘Realistic’ tests, for ordinary level, Junior Certificate students (fig. 89). Based 

on the p-value of 0.122, the author fails to reject the null hypothesis at the 5% 

level of significance and concludes that there is no significant difference 

between the results of the ‘Traditional’ and ‘Realistic’ tests for ordinary level, 

Irish students. 

 

8.6.4.3. Ordinary Level Junior 

Certificate Course Hypothesis test, One way ANOVA (t=0, t=1)  

 

One-way ANOVA: Results versus Test  

 

The ANOVA output of immediate interest (Appendix XVIII:iv) is the F-test 

statistic. As the associated P-value is 0.122, one can fail reject the null 

hypothesis and conclude that the means of the two samples are not statistically 

different. 

 

Minitab also generates confidence intervals (CIs) for the mean of both tests; 

the confidence intervals for this study do not demonstrate an overlapping of the 

intervals for the test samples (Appendix XVIII:iv). Additionally, the post-hoc 

testing performed using the Tukey test provides confidence intervals for the 

difference in the pair of means under evaluation. From this analysis, it can be 

concluded that there is no significant difference between the performance of 

‘test 0’ and ‘test 1’ as the interval goes from – 23.73 to 2.89 and zero is in the 

interval. The centre point of the CI is – 10.42 and is the estimated mean 

difference between the test groups.   

In order to test that the ANOVA assumptions were not violated; a residual plot 

was created (fig. 90). The standard assumptions are as follows:  
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 The relationship between Y and X must be linear; 

 The values are normally distributed; and  

 The values of random error are independent. 

 

 

 

Figure 90: One way ANOVA Residual plot graphics of ordinary level junior certification 

study (t=0, t=1) 

 

Interpretation of the residual plots: 

 The normal probability plot of residuals: Plots the residuals from 

each observation against the expected value of the residual had it 

come from a normal distribution. All plotted values appear in a 

straight line if the residuals are approximately normal (Mendenhall 

et al, 2009: 489). In this instance the values are in a reasonably 

straight line which suggests that there is no reason to state that the 

assumptions have been breached. 

 The plot of residual versus fit: This graph plots the residual values 

against the expected value of the observation using the experimental 

design implemented. The plot is used to check for constant 

variance. The data appears to have a random pattern and as a result 

there is no reason to state that the assumptions have been breached. 
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 The histogram of residuals: The plot is used to check distribution. 

Viewed in conjunction with the normal plot, the histogram appears 

to support the normal distribution and as a result there is no reason 

to state that the assumptions have been breached. 

 Residual versus overall plot: This plot is used to check for 

observational influence. The data appears to have a random pattern 

around the central line and as a result there is no reason to state that 

the assumptions have been breached. 

 

The overall conclusion, based on the residual plots for the results, is that there 

is no evidence to suggest that standard assumptions of the regression have been 

violated.  

 

8.6.4.4. Ordinary Level Junior 

Certificate Course Correlation study 

 

Correlations: Results, Test  

 

There is sufficient evidence to support the lack of presence of linear correlation 

between the two variable tests, as demonstrated by the r-value of -0.231 and a 

P-value of 0.122 (Appendix XVIII:v). 

 

8.6.4.5. Implication of Results 

(Ordinary Level Junior Certificate Course) 

  

 The t-test analysis for Ordinary level Irish students across the two tests 

(‘Traditional’ and ‘Realistic’) indicates that there is no significant difference 

between test performances. The t-test produces a p-value of 0.122. As this p-

value is great than the defined alpha-level of 0.05 the test indicates no 

difference (fig. 89). Therefore, the author fails to reject the hypothesis ‘that 

there is no difference in achievement levels between the realistic and 

traditional tests for ordinary level students’.  The mean difference between test 

performances is 10.42, in favour of the ‘Traditional’ test. Test=0 (M=41.0, 
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S.D.=23.2) scores higher than test=1 (M=30.6, S.D.=21).  It is very interesting 

that there is no significant difference between test performance between the 

‘Traditional’ and ‘Realistic’ tests for Ordinary level Irish students as there is a 

significant difference between tests for Higher level students (as shown 

earlier). The Pearson Correlation result is -0.231 indicating a weak, negative 

correlation in test performance for Irish, Ordinary level students. 

 

8.6.5. An analysis of the test results between Higher 

and Ordinary level students 

 

 The following table shows the results for Irish higher and ordinary level 

students for both tests (‘Traditional’ and ‘Realistic’). 

 Number Trad (test=0) Realistic 

(test=1) 

p-value 

Higher Level 68 M=80.4, 

SD=13.9 

M=53.1, 

SD=18.4 

0.000 

Ordinary Level  18 M=41.0, 

SD=23.2 

M=30.6, 

SD=21.0 

0.122 

 

Table 26: Test results for higher and ordinary level students 

 

As expected students who were following the higher level Junior Certificate 

course scored better than those who were studying the Ordinary Level course 

in both the ‘Traditional’ and ‘Realistic’ test. There is a mean difference for the 

‘Traditional’ test of 39.4 in favour of students following the Higher level 

course. The mean difference for the ‘Realistic’ test is 22.5 which is noticeable 

lower. It should also be noted that, as discussed earlier, while there is a 

difference in test performance for Higher level students between test=0 and 

test=1 (p=0.000), there is no significant difference for Ordinary level students 

(p=0.122). The implication appears to be that students who perform well in the 

‘Traditional’ test are less likely to score at a similar level in the ‘Realistic’ test 

than Ordinary level students.  Those students who perform at the lower end of 
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the ‘Traditional’ test and are more likely to perform at a similar level in the 

‘Realistic’ test.  

 

8.7 Summary of Test Findings 

  

The analysis of the test findings shows that there is a significant difference 

between test performances in the ‘Traditional’ test versus the ‘Realistic’ test. 

The two tests implemented for all students (n=157) show a mean result of 

75.6% for the ‘Traditional’ test and a mean of 55.3% for the ‘Realistic’ test. The 

mean difference is substantial, 20.3%. One would assume that Irish students 

perform better in the ‘Traditional’ test due to the fact that it is based on the 

Junior Certificate examination style to which they are accustomed. This 

assumption holds true with Irish students (n=86) obtaining a mean of 72.2% in 

the ‘Traditional’ test and 46.5% in the ‘Realistic’ test. However, unexpectedly 

the students from Massachusetts performed at a higher rate than the Irish 

students in the Junior Certificate questions posed in the ‘Traditional’ test with a 

mean score of 79.7%. Students from Massachusetts also outperformed Irish 

students in the ‘Realistic’ test with a mean score of 67.2%. There was no 

significant difference in test performance due to gender. However, the slight 

difference that exists favours female students with girls scoring a mean of 

77.2% in the ‘Traditional’ test and 58.1% in the ‘Realistic’ test, versus males 

scoring 74.2% in the ‘Traditional’ test and 53.2% in the ‘Realistic’ test.  

 

 

 

 

 



385 

 

9.0 Chapter 9: The Conclusion 

 

9.1 Introduction 

 

The purpose of this work is to establish if Irish students have the ability to 

mathematise and transfer the mathematical knowledge learned in the classroom 

to unfamiliar, problem-solving situations. The author selected data collection 

techniques, including a systematic, structured observation, testing and semi-

structured interviews, in order to gain an insight into Irish mathematics 

education in general, and the research question in particular. 

 

9.2 Findings from the Structured Observation 

 

The systematic, structured observations implemented in the classrooms of the 

Irish research participants provide interesting data, in that the activities in the 

classes observed are very similar. None of the mathematics lessons observed 

involved active-learning, group work or the use of information technology. All 

lessons observed involved high levels of teacher explanation, teacher question 

and answer, student question and answer, book work, board work and teacher 

instruction. It is interesting to note that the activities occurring in Irish 

mathematics lessons are behaviourist and traditional in nature with teaching to 

the examination very much the focus. 

 

9.2.1. Teaching in Ireland 

 

Interestingly, the systematic, structured observation of the class groups 

involved suggested that teaching practices in Ireland are largely behaviourist 

and relativist in style. While past literature may have suggested this to be the 

case, the complete lack of relativist teaching methods in the classrooms 

observed was surprising. All seven teachers observed in the structured 

observations taught in very much the same way, despite the differences in 

teaching experience, gender and age. Group-work, active learning, discovery 

learning and other relativist practices were not observed. In the subsequent 

interviews the teachers commented that the observed class is indicative of what 
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they would usually do and how a class would normally unfold. One would 

imagine that when under pressure, as is possibly the case when one is being 

observed, human nature would dictate that one would teach in a manner which 

one considers one’s best performance. This would suggest that Irish teachers’ 

comfort zone involves a significant amount of teacher explanation, teacher 

questioning, book work, and perhaps most noticeably board work involving the 

teacher writing on the board and explaining as they write. 

 

Despite information technology resources being freely available in all schools 

involved in the research, the teachers involved did not appear to use them. No 

technological resources were used in the observed lessons. Only two teachers 

made any reference to using I.T. (information technology) resources when 

interviewed. Despite significant financial funding for the acquisition of I.T. 

resources in schools the research suggests that I.T. has not, as yet, made a 

significant impact on mathematics teaching and learning in Ireland. I.T. 

training has also been provided for mathematics teachers in conjunction with 

the in-service training available for the ‘Project Maths’ curriculum. Specific 

mathematics and I.T. courses have been made available for all second-level 

mathematics teachers in the evening time. In addition to this, the ‘Project 

Maths’ workshops that all second-level mathematics teachers are required to 

attend (during the school day) provide training in teaching mathematics with 

the use of I.T. resources as an aid. All seven teachers observed had attended 

three ‘Project Maths’ workshops at the time of observation and as a result 

would have some training in I.T. resources as a teaching and learning tool.  

 

All schools involved in the study also had significant I.T. resources including, 

but not limited to, teacher lap-tops (with financial aid towards purchase 

provided by the school), teacher and student computers, and interactive white-

boards. The lack of incorporation of these resources in the mathematics lessons 

observed, and the impression gained by the author during the interviews, would 
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suggest that the majority of the teachers observed rarely, if ever, use I.T. as a 

teaching and learning resource.  

 

Irish teachers may be resistant to changing the tried and tested behaviourist 

teaching methods of old, which they are familiar with and have developed to a 

proficient degree. This may be a significant problem is attempting to rectify the 

poor performance of Irish mathematics students in international assessments. 

Generations of teaching, learning and assessing mathematics in one particular 

way creates a resistance to the incorporation of new techniques and teaching 

methods in the classroom. It should be noted that, for the most part, this 

resistance is not due to teachers trying to be difficult, but rather a difficulty and 

indeed a nervousness on the teachers’ part in attempting to incorporate new 

techniques. A fear of failure is a very real worry for Irish mathematics teachers 

with regard to implementing new teaching and learning techniques. The 

interviews provided the author with an insight into the trepidation felt by the 

teachers interviewed with regard to incorporating the new teaching methods 

required for successful implementation of the ‘Project Maths’ curriculum. With 

this level of trepidation it is important that teachers are provided with sufficient 

in-service training and ongoing assistance where required. One must wonder if 

the roll-out of ‘Project Maths’ just two years after implementation in the pilot 

schools, and with teachers having attending two ‘Project Maths’ workshops at 

the time of initial implementation of the curriculum in September 2010, is 

sufficient, both time and preparation wise, for the vast changes required in 

teaching and learning techniques.  
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9.3 Findings from the Semi-structured Interview 

 

The purpose of the semi-structured interviews was to collect qualitative data 

that would give context to the quantitative data produced by the 

implementation of tests and the structured observations. The findings gave 

context to the individual situation for each class group and verified that the 

activities observed in the mathematics lesson on the day of the structured 

observation were typical of a mathematics class with that group. The 

interviews provided the teachers involved with the research the opportunity to 

provide any additional information they deem pertinent. 

 

The general findings from the semi-structured interview include: 

1. Positive and enthusiastic attitudes displayed by all teachers 

interviewed to mathematics and mathematics teaching; 

2. A behaviourist approach to teaching and learning is the common 

theme when the teachers interviewed describe teaching and 

learning in their mathematics lessons; 

3. All teachers interviewed displayed an open-mind with regard to 

their involvement in the author’s research; 

4. An appreciation of young people and their qualities; 

5. A security in the familiarity of the course; 

6. Trepidation with regard to the implementation of the new 

‘Project Maths’ curriculum and the impact this will have on 

their teaching techniques; and 

7. A frustration with the restrictions placed on teaching and 

learning by the terminal examination.  
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9.4 Overall test findings 

 

The overall test findings show that students in both Ireland and Massachusetts 

performed better on the Traditional test than on the Realistic test. The mean 

score for the Traditional test is 75.6% compared to 55.3% for the Realistic test, 

with a mean difference of 20.23. It is interesting to note that the mathematics 

required in the Realistic test were considerably less difficult in terms of 

mathematical content than the content in the Traditional test. The mean 

difference is exceptional when one considers the content level and 

mathematical knowledge required to successfully answer the questions in each 

test. Therefore the poorer performance in the Realistic test is possibly due to 

the following factors:  

• Lack of familiarity with the question format; 

• Difficulty in recognising the mathematical information required when 

the questions are presented in a different format; 

• Inability to mathematise (that is the ability to transfer a realistic 

situation into a mathematical situation); 

• Difficulty when applying mathematical knowledge in unfamiliar 

situations; 

• Experience of learning for knowledge acquisition rather than 

understanding; 

• Inexperience when provided with context – this possibly confuses some 

of the students as they now have other factors to consider. Research 

shows that female students value context as it makes the mathematical 

situation relevant to their lives and to their reference points – male 

students tend to perform well in context free situations and do not 

display the same need to be connected to the familiar with the 

provision of context (Tims, 1994; Bolger and Kellaghan, 1990). One 

should ask the question how so do male students perform so well in the 

PISA assessment series?; 



390 

 

• Confusion when faced with open-ended questions. Irish students are 

familiar with closed-ended questions only, and do not encounter open-

ended questions in either the curriculum or the state examinations. As 

a result it is unusual for Irish teachers to provide students with open-

ended mathematics questions as they are not related to the curriculum; 

• The vagaries of real-life are unexpected and confusing. Irish students 

are trained to see mathematics as an exact process used only in exact 

situations. Anything that appears to have numerous valid possibilities 

may be confusing as it is against everything they have been trained to 

expect; 

• Difficulty in assessing what is being asked, and what information is 

unnecessary, when dealing with authentic questions. Irish students 

never encounter mathematics questions where surplus information is 

required – in the Irish mathematics tradition one uses all information 

provided. As a result, the style of the Realistic test where the 

numerical data provided does not necessarily relate directly to the 

questions asked, is unfamiliar to Irish students; and 

• For some students the higher word content used in the Realistic test is 

possibly an issue. This is not a usual aspect of Irish mathematics 

examination questions where the word content, and therefore the 

amount of reading needed, is normally kept to a minimum. Irish 

students are familiar with a higher proportion of numerical data, and 

relatively little word content. The high-word content, and amount of 

reading involved, in solving the questions in the Realistic test are 

probably a particular issue for students with reading issues, including 

students with dyslexia. No precise questions were asked in the 

interviews relating to this, but at all stages of testing students were told 

that help was available if there were any issues with reading. A small 

number of Irish students had SNAs (special needs assistants) available 

for individual assistance with reading when completing the tests. 

Despite the availability of literary assistance to all students, the 

unfamiliar nature of the mathematics questions in the Realistic test in 



391 

 

terms of the amount of reading required may still have been an issue 

for some students.  

 

The suggestion appears to be that students, regardless of nationality, gender or 

ability, perform better in the Traditional test. As explained in more detail later 

in this chapter this tends to be a far less significant difference as mathematical 

ability reduces (students who scored higher than 80% in the Traditional test 

have a between test mean difference of 28.11, whereas students who scored 

less than 60% in the Traditional test have a mean test difference of 2.24). The 

higher performance in the Traditional test across the board appears to suggest 

that it is easier to teach and learn mathematics for knowledge acquisition rather 

than for understanding. In the Irish scenario it would appear that behaviourist 

and absolutist teaching methods encourage the skills needed for successful 

performance in traditional tests which have the following characteristics: 

• Context-free; 

• Closed-ended questions; 

• Easily identifiable content; 

• Posed in a familiar format; 

• Requiring little to no real-life experience; and 

• Providing only the necessary information for successful completion of 

the question (no surplus information is provided).  

 

The same teaching methods ill-prepare students for the authentic, open-ended 

questions required for successful performance in the Realistic test. In-class 

practice of the following techniques are essential if students are to develop the 

necessary skills to transfer the mathematics learned in the classroom to 

authentic, real-life scenarios: 

• mathematisation techniques; 

• modeling; 



392 

 

• investigative learning; 

• group-work; and  

• discussion. 

 

9.4.1. No noticeable gender difference 

 

Interestingly, there was no evidence of any significant gender difference in test 

performance. In terms of overall test performance there is no significant gender 

difference between male and female students. Female students achieved a 

mean score (across both tests) of 67.5%, compared to a mean score for male 

students of 63.2%. The mean test difference of 4.31, favouring female students, 

is not a significant difference but is notable as PISA test results consistently 

show a significant difference in test performance in favour of male students 

across the vast majority of OECD countries. The following table shows Irish 

gender performance in three of the PISA assessments (Eivers et al, 2007 and 

Shiel et al, 2009): 

 

PISA Female Male Difference 

2003 495 510 15 (in favour of 

males) 

2006 495.8 507.8 12 (in favour of 

males) 

2009 483 491 8 (in favour of 

males) 

 

Table 27: Irish gender performance in three of the PISA assessments (Eivers et al, 2007 

and Shiel et al, 2009): 

 

The above table considers Irish gender performance in PISA 2003, 2006 and 

2009. Shiel et al (2001: viii) note that in PISA 2000 male students performed 

significantly better than females by about one-sixth of a standard deviation. As 

is notable from the table above, male Irish students consistently outperform 

female students in mathematics performance in the PISA assessment series. 

While the difference is not significant in the case of the years mentioned in the 
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table above, it is still interesting and cannot be dismissed that male students 

outperform female students in each PISA cycle. This is notable in its contrast 

to the results found by the author (as mentioned above) where female students 

outperformed male test performance across both tests.  

 

In terms of female only performance, test performance was higher in the 

Traditional test, with a mean score of 77.2%. Female test performance in the 

Realistic test was 58.1%. The difference between tests of 19.16 in favour of the 

Traditional test is only marginally lower, and not dissimilar, to the mean 

difference between tests for all students (male and female) of 20.23. Male test 

performance in the Traditional test is better than test performance in the 

Realistic test with mean values of 74.2% and 53.2%. The mean difference of 

20.98 is marginally higher than that between tests of all students (20.23).  

 

9.4.2. Massachusetts’ students 

 

Students in Massachusetts are taught mathematics in a different way to those in 

Ireland. Interviews with the Massachusetts’ head of department suggest that all 

of the following components are incorporated in mathematics lessons in the 

school involved in the research: 

• Group work; 

• Individual work; 

• Continuous assessment; 

• Class tests; 

• Discovery learning; 

• Project work; 

• Problem-solving involving open-ended questions; 

• Teaching and learning involving the use of a text-book; 

• Teacher explanation while standing at a white-board; 
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• Computer-work and the use of other information technology resources; 

and 

• Reinforcement through questions and answers. 

 

As is evident from the teaching and learning methods, and resources, identified 

as those commonly used in the mathematics classroom in Massachusetts, the 

level of variety is much greater than that in the Irish classroom. The learning 

theory underpinning mathematics activity in the Massachusetts classroom 

appears to include both absolutist and relativist practices. This is in stark 

contrast to the Irish classroom where mathematics activity appears to be firmly 

steeped in the behaviourist and absolutist theories of learning. In all seven 

mathematics lessons observed in Ireland there was no group work, active 

learning, exploratory learning, project work or activities involving computers 

or other I.C.T. (information and communication technology) resources.  

 

 Interestingly, the Massachusetts cohort not only out-performed their Irish 

associates in the Realistic test but they also scored at a surprisingly high level 

in the Traditional test. This is particularly interesting, and unexpected, as Irish 

students are specifically geared towards this style of examination, and the 

Traditional test used in the testing process is derived directly from past Junior 

Certificate examinations. As a result the author did not anticipate a particularly 

strong performance for the Massachusetts contingent as the test is based 

directly on the Irish curriculum and examines content that the Irish students 

involved in the research would have studied by the time of testing. The format 

of the Traditional test would also be familiar to Irish students as most Irish 

mathematics tests in second-level schooling would be directly based on this 

format. The teachers in Massachusetts were not consulted as to content studied 

prior to testing so it is surprising that students from Massachusetts matched 

Irish students in terms of performance on the Traditional test when all these 

factors are taken into account. As the least able students from the school in 

Massachusetts involved in the study did not participate (due to the fact they 

had not commenced an algebra course at the time of data collection), when 

comparing Traditional test performance between Ireland and Massachusetts the 
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author considered Irish students following the higher level course. The Irish 

mean score (for higher level students) in the Traditional test is 80.4% and for 

students from Massachusetts the mean score is 79.7%. The mean difference is 

marginal at 0.75. 

 

Students from Massachusetts also performed well in the Realistic test and 

outperformed Irish students significantly. Again the author considered Irish 

higher level students for comparison purposes. The Irish higher level mean 

result is 53.1% versus a mean result of 67.2% for students from Massachusetts. 

The mean difference is 14.1, in favour of students from Massachusetts. If 

teaching and learning methods in Massachusetts are considerably different to 

those implemented in Ireland, and it would appear they are, then this appears to 

have a positive impact on teaching for understanding as demonstrated by the 

superior test performance of Massachusetts’ students in the Realistic test. As 

mentioned above, this positive impact on test performance in the Realistic test 

does not have a negative impact on test performance in the Traditional test, and 

indeed if one takes into account that the Massachusetts cohort were not directly 

catered for in the content choice, or in particular the assessment style, one 

would imagine that the traditional mathematics taught and valued in Ireland are 

not down-played in Massachusetts. The combination of traditional and 

authentic mathematics taught in Massachusetts has the benefit of catering for 

both teaching for knowledge acquisition, and teaching for understanding.  

 

9.4.3. High-performing students  

 

The most significant result from the research is perhaps the variance in test 

difference between higher performing and lower performing mathematics 

students. Students who perform well in the Traditional test (thus demonstrating 

an ability to reproduce and display mathematical knowledge) tend to perform 

significantly worse in the Realistic test (which requires the application of 

mathematical knowledge and reflection, demonstration understanding). There 

is a particularly large gap for high-achieving, Irish students. Teaching in 

Ireland prepares mathematically able students for the Traditional test but does 
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not appear to influence overall mathematical understanding if the Realistic test 

results in this study are indicative of a general trend. There is a significantly 

greater discrepancy in test performance for high-achieving students than for 

lower performing students. Students who performed at the lower end of the 

scale in the Traditional test had a much smaller mean difference between tests. 

 

Irish higher level students performed better in both tests than ordinary level 

students (as would be expected). The interesting data arose from the 

significantly greater difference between test performances for higher level 

students than for their ordinary level colleagues. Irish higher level students 

scored a mean result of 80.4% in the Traditional test and a mean score of 

53.1% in the Realistic test. This gave a mean difference of 27.3 in favour of the 

Traditional test. While the author anticipated some difference in between test 

performance, and past performance in International assessments would suggest 

that Irish students may perform better in the Traditional test, the vast mean 

difference was still surprising. The implemented t-test shows a significant 

difference in between test performance for the higher level group. Ordinary 

level Irish students scored a mean result of 41.0% in the Traditional test and 

30.6% in the Realistic test. This resulted in a mean difference of 10.42. The 

implemented t-test also shows no significant difference in between test 

performance for the Ordinary level group. This possibly arises from the fact 

that in some instances Ordinary level students performed better in the Realistic 

test than in Traditional test. The mean difference between higher and ordinary 

level students in the Traditional test is 39.4, but for the Realistic test it is 

considerably lower at 22.5. The higher level students, by virtue of the fact that 

they are following the higher level course, have mastered the methods used to 

succeed (for the most part) in the higher level assessments. This would suggest 

that the teaching and learning methods used in teaching mathematics for 

knowledge acquisition are successful for this particular cohort of students. 

While natural mathematical ability no doubt plays some role in determining 

mathematical success, the possibility exists that the style of context-free 

mathematics that Irish mathematics education currently embraces is neglecting 

a cohort of mathematics students that require a different learning style. The 

discrepancy in the mean test difference for ordinary and higher level students 
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supports the possibility that this may be the case. Authentic scenarios, real-life 

reference and the provision of information to provide context may be a 

necessity for some learners. 

 

In order to expand on this concept of a greater difference in between test 

performance for more mathematically able students (based on the Irish concept 

of mathematical ability) the author decided to group all students by 

performance in the Traditional test. This also includes the students from 

Massachusetts in the testing with regard to ability. The author used student 

performance in the Traditional test as an indicator of mathematically ability. 

The reasoning behind this is that Irish classes are streamed into higher and 

ordinary level classes, and ability groupings within these levels, based on 

traditional mathematics test results. The author considered three groups from 

the research sample: 

• Students who scored a result greater or equal to 80% in the traditional 

test; 

• Students who obtained a score between 60% and 80% (60%≤x<80%) 

in the traditional test; and 

• Students who scored less than 60% in the traditional test.  

 

The between test performance gap was significantly greater for students in the 

first group (≥80%) than students in the third group (<60%). Students in the 

group who scored ≥80% achieved a mean result of 90.54% in the Traditional 

test compared to 62.4%. This gives a significant mean difference of 28.11, in 

favour of the Traditional test. Students in the second group (based on a 

Traditional test result of between 60% and 80%) scored a mean result of 

71.37% in the Traditional test compared to 56.3% in the Realistic test. The 

mean difference in this instance is considerably lower than for those students in 

the first group (≥80% in the Traditional test) at 15.04, favouring the Traditional 

test. The third group, involving students who scored less than 60% in the 
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Traditional test, scored a mean result of 42.2% in the Traditional test compared 

to 40% in the Realistic test. The mean difference for this group is negligible at 

2.24 (favouring the Traditional test).  

 

The following table demonstrates the mean difference for the various ability 

groups considered. 

 

Group Mean difference Significant 

Difference 

Better test 

performance 

≥80% in Traditional 

Test 

28.11 Yes Traditional 

60%≤mean<80% in 

Traditional Test 

15.04 Yes Traditional 

<60% in Traditional 

Test 

2.24 No Traditional 

Irish Higher level 27.3 Yes Traditional 

Irish Ordinary level 10.42 No Traditional 

 
Table 28: Mean difference for the various ability groups 

 

High achieving students demonstrate an ability to learn mathematical 

knowledge effectively, recognise when they are being asked to showcase this, 

and reproduce the knowledge when required. Despite the acquisition of these 

skills, and a demonstration in the Traditional test of their ability to use them, 

poor test performance in the Realistic test indicated that there is little 

mathematical understanding and an inability to recognise what is being asked 

(in a practical sense and mathematically). The poor performance by high 

achieving mathematics students in the Realistic test demonstrates inadequate 

problem-solving skills when faced with an authentic task. It is important to 

reiterate that the mathematical skills required to solve the questions in the 

Realistic test were no more difficult, and possibly easier, than those in the 

Traditional test. Therefore as mentioned earlier in this chapter, the perceived 

difficulty of the Realistic test is possibly due to the following factors: 

• Lack of familiarity with authentic problem-solving questions; 
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• Difficulty in recognising what is being asked on both a practical and 

mathematical level; 

• Inexperience with open-ended questions; 

• Confusion when provided with information that provides context but 

may not be required (in a mathematical sense) to find a solution; 

• Discomfort with the high word count and the level of reading required; 

and 

• Lack of familiarity with the question style. 

 

The discrepancy in test performance between the Traditional test and the 

Realistic test reduces as student performance in the Traditional test reduces. It 

is interesting to note that there is a noticeably smaller gap in between test 

performance for both ordinary level students, and particularly for all students 

who scored less than 60% in the Traditional test. One can also note, from 

analysis of test performance for those students who scored between 60% and 

80%, that mean difference between tests reduces as student performance in the 

Traditional test decreases. It is interesting to note the narrowing of the 

performance gap as scores in the Traditional test lower. There is also no 

significant difference between tests for both ordinary level students and those 

students who scored less than 60% in the Traditional test.  

 

Is the suggestion that teaching can improve performance when it comes to 

knowledge acquisition but that it has less of an impact when application skills 

and teaching for understanding is involved? Or, in the Irish case in particular, 

is the implication that behaviourist methods of teaching iron out difficulties 

students may have when it comes to reproducing knowledge but these 

absolutist methods fail to prepare students for authentic, real-life problem-

solving scenarios? Perhaps teaching and learning influenced by absolutist 

learning theories favour students that learn mathematics more easily and this 

results in higher performance in the traditional style assessment format, but 

fails to prepare these same students for realistic scenarios. Or as suggested 
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above, the absolutist model currently followed in Ireland may suit some 

learners but neglect others, especially those who require contextual 

information.  

 

9.5 Irish mathematics performance 2003-2009 

 

In the course of the research the author developed an awareness of how 

mathematical performance in the Irish examination system is not in line with 

Irish performance in international mathematics assessments such as PISA. As 

discussed in Chapter 3, Irish results declined significantly in the period from 

2003 to 2009 (incorporating the assessments PISA 2003, 2006 and 2009). In 

contrast to this, examination performance in the mathematics Junior Certificate 

examination did not change significantly over the same period and 

participation rates at higher level increased (for comparison purposes the 

author specifically looks at Junior Certificate examination results for the same 

years as the PISA assessments – 2003, 2006, 2009).  

 

In the Junior Certificate examination in 2003, 43.12% of students of students 

sat the higher level paper, 46.86% sat the ordinary level paper and 12.53% the 

foundation level paper. The percentage of A-grades at higher, ordinary and 

foundation level respectively was 17.2%, 9.2% and 15.4%. In the 2006 Junior 

Certificate mathematics examination the participation rates at higher and 

ordinary level had increased, while at foundation level they had reduced. All of 

these participation changes would indicate improvement with regard to 

mathematical ability – if the number of students sitting the examination at the 

upper two levels is increasing while the proportion of students sitting the 

examination at the most basic level reduces, one would imagine mathematical 

performance is improving. The increase in participation rates from 2003 to 

2006 was as follows: 

• Higher Level: 1.88% of an increase to 42.29%. The number of A-

grades at this level increased also by 0.8% to 18%. 
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• Ordinary Level: 0.22% of an increase in participation to 47.08%. The 

number of A-grades at this level also increased from 9.2% to 13.3%, an 

increase of 4.2%. 

• Foundation Level: A reduction in participation of 2.1% to 10.43%. The 

number of A-grades at this level increased from 15.4% to 17.1%, an 

increase of 1.7%. 

 

The changes that occurred from the 2003 examination to the 2006 Junior 

Certificate examination are all positive in terms of mathematical performance. 

As outlined above, participation rates increased at the two highest levels and 

decreased at the most basic level. Furthermore, the number of A-grades at each 

level also increased, which would suggest that the number of students excelling 

at each level is also improving. In contrast to this, Irish performance in PISA 

declined over the same period, from a mean score of 502.8 in 2003 to 501.5 in 

2006. The number of students scoring at the highest levels (level 5 and 6) in 

the PISA 2006 assessment also reduced from 11.3% in 2003 to 10.2% in 2006. 

The participation rates of Irish students sitting the higher level Junior 

Certificate mathematics examination continued to increase for higher and 

ordinary level and reduce for the foundation level paper in the period from 

2006 to 2009 as follows: 

• Higher Level: Participation levels increased from 42.49% to 43.12%, 

an increase of 0.63%. The number of A-grades reduced slightly from 

18% to 16.7%. 

• Ordinary Level: Participation levels increased by 0.35% to 47.4%. The 

number of A-grades reduced from 13.3% to 11.7%. 

• Foundation Level: The number of students sitting the foundation level 

mathematics examination reduced from 10.43% to 9.48%, a reduction 

of 0.95%. The number of A-grades at this level increased from 17.1% 

to 19%. 

In the period from 2006 to 2009 participation rates continued to suggest 

improved mathematical performance in Ireland, with an increase in the 
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proportion of students sitting the higher and ordinary level papers and a 

reduction in those sitting the foundation level paper. The number of A-grades 

at higher and ordinary level reduced slightly. This reduction in grades at the 

highest level could be due to the increased participation rate – students that 

previously may have attained an A at ordinary level were now sitting the 

higher level examination and possibly obtaining a relatively lower grade.  

 

It is interesting that while participation rates continued to improve in this 

period, 2006 to 2009, and the number of A-grades did not change significantly, 

Irish mathematical performance in PISA deteriorated. The Irish mean score in 

the mathematics component of PISA 2006 is 501.5. In the PISA 2009 

assessment this had reduced to 487.1, a reduction of 14.1 points. Even more 

poignantly, Ireland had moved from a position of 16
th
 place among the OECD 

countries in PISA 2006 to 26
th
 position in PISA 2009. In 2006 the Irish score 

did not differ significantly from the OECD average, however, in 2009 Ireland’s 

score was now ranked as significantly below the OECD average. All of these 

results from PISA are disturbing. Despite this Junior Certificate performance 

for the same period remained relatively unchanged.  

 

The following table shows the pattern of results for both the Junior Certificate 

mathematics examination and the PISA assessments from 2003 to 2009: 
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Year 

PISA 

mean 

score 

PISA rank 

(among 

OECD 

countries) 

Level  

5&6 in 

PISA 

H.L. 

participation 

Junior Cert. (% 

of A’s) 

O.L. 

participation 

Junior Cert. (% 

of A’s) 

F.L. 

participation  

Junior Cert. (% 

of A’s) 

2009 487.1 26
th 

6.7% 43.12% 

(16.7%) 

47.4% 

(11.7%) 

9.48% (19%) 

2006 501.5 16
th 

10.2% 42.49% (18%) 47.08% 

(13.3%) 

10.43% 

(17.1%) 

2003 502.8 20th 11.3% 40.61% 

(17.2%) 

46.86% 

(9.2%) 

12.53% 

(15.4%) 

 
Table 29: Irish mathematics performance in both PISA and the Junior Certificate 

examination 

2003, 2006, 2009 (www.examinations.ie, Eivers et al, 2007 and Shiel et al, 2010).  

 

It is worth questioning why Irish mathematical performance continues to 

succeed on its own terms, in the Junior Certificate examination, when it is 

clearly deteriorating at an international level. The most likely answer is that the 

teaching and learning in the Irish mathematics classroom is specifically geared 

towards one particular examination style, the Junior Certificate, with little 

regard for the qualities that PISA considers important: reflection, analysis and 

problem-solving skills. The behaviourist teaching methods used in the Irish 

classroom are effective in preparing students to succeed in the Junior 

Certificate examination which consists of predictable questions requiring 

recognition, memorisation and reproduction skills. These skills are not 

particularly valued in terms of international assessment where the emphasis has 

moved towards preparedness for the real world. It is in this regard that Irish 

mathematics education is struggling the most.  

 

9.6 Curriculum objectives 

 

A primary objective of the incoming ‘Project Maths’ curriculum is to ‘allow 

students to appreciate how mathematics relates to real-life and work’ and to 

‘make mathematics more meaningful for students and relatable to their own life 

http://www.examinations.ie/
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experience’ (www.ncca.ie). It is interesting to note that the relatability of 

mathematics to real-life has been a recurring theme in the objectives of the 

various mathematics curricula in the Irish education system. The 1973 

objectives of the Intermediate Certificate mathematics course included ‘an 

understanding and association of mathematics and their role in everyday life’ 

(Report of the Irish National Committee, 1976: 18). The Junior Certificate 

objectives from the curriculum introduced in 2000 (for examination in 2003) 

state that students should have the ability to apply their mathematical 

knowledge and ‘they should be able to use mathematics (and perhaps also to 

recognise uses beyond their own scope and employ) – hence seeing that it is a 

powerful tool with many areas of applicability’. The 2000 curriculum 

objectives also state that students should develop the ability to analyse 

information, including information presented in unfamiliar contexts (NCCA, 

2002:9). 

 

The author finds it interesting that the objective with regard to relatability to 

real-life experience remains relatively consistent through the syllabus changes. 

Despite this, Irish students continue to struggle with this aspect in assessments. 

Employers also complain that while Irish graduates have significant 

mathematical knowledge, their ability to apply this knowledge is of a low 

standard and is a consistent failure in graduates they employ. Despite the 

enthusiastic objectives of the ‘Project Maths’ curriculum, which include 

making mathematics more relatable to students’ personal experience and more 

meaningful for students, it remains to be seen if the new curriculum will 

improve students’ application of mathematics. While the author believes that 

this objective is admirable, she is very aware that this has been a consistent 

objective, in some shape or form, since 1973 and unfortunately has not had any 

considerable impact on the ability of Irish students to demonstrate any 

significant ability to utilise their mathematical knowledge in unfamiliar 

http://www.ncca.ie/
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scenarios as demonstrated by the worsening performance of students in 

international assessments (including TIMSS and PISA), and indeed by the 

results from the tests in this research.  

 

9.7 Limitations of the study 

 

There were several limitations to this study, not least the proposition of great 

statements based on the relatively low numbers studied. The author accepts 

that this study is indicative of current trends in mathematics education among 

the cohorts studied but does not represent Irish mathematics education in its 

entirety. The two tests, the Traditional and the Realistic, were relatively 

subjective in how the marks were allocated to the different questions (see 

Appendix VII:ii; VIII:ii; IX:ii; X:ii). This weakens the validity and the 

reliability of the tests somewhat, and thus the comparability of the scores of the 

two tests. Another limitation of the quantitative aspect of the study is the fact 

that the Massachusetts sample was not matched to the Irish sample on any 

relevant variable which meant that analysis of covariance could not be carried 

out. 

 

9.8 Conclusion: 

 

This research suggests that Irish students struggle to mathematise and use their 

mathematical knowledge in unfamiliar situations. The behaviourist style of the 

teaching and learning implemented in Irish mathematics lessons is of 

considerable note as it does not give ample opportunity to develop the 

necessary skills for problem-solving in authentic situations. While the new 

‘Project Maths’ curriculum aims to address this issue the author is of the 

opinion that the Junior and Leaving Certificate assessment style remains an 

issue and runs the risk of repeating the pattern of the current assessment with 

regard to question predictability. Curriculum change, as with the introduction 

of ‘Project Maths’, is essential but the single most important factor for change 

rests with the teachers and their teaching and learning belief system and 

techniques. While in-service training provides some assistance in this regard 



406 

 

the author is of the opinion that one cannot simply roll out a new curriculum 

and hope that it will adjust classroom practices – significant work must focus 

on changing the teaching and assessment habits of generations of Irish teaching 

and learning experiences.  
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Appendix II- TIMSS 2003 Achievement Testing for 8th Grade 

Countries Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average 

Scale Score 

Human 

Development 

Index 

Singapore 8 14.3 605 (3.6) 0.884 

Korea, Rep. of 8 14.6 589 (2.2) 0.879 

Hong Kong, SAR 8 14.4 586 (3.3) 0.889 

Chinese Taipei 8 14.2 585 (4.6) - 

Japan 8 14.4 570 (2.1) 0.932 

Belgium (Flemish) 8 14.1 537 (2.8) 0.937 

Netherlands 8 14.3 536 (3.8) 0.938 

Estonia 8 15.2 531 (3.0) 0.833 

Hungary 8 14.5 529 (3.2) 0.837 

Malaysia 8 14.3 508 (4.1) 0.79 

Lativa 8 15.0 508 (3.2) 0.811 

Russian Federation 7 or 8 14.2 508 (3.7) 0.779 

Slovak Republic 8 14.3 508 (3.3) 0.836 

Australia 8 or 9 13.9 505 (4.6) 0.939 

United States 8 14.2 504 (3.3) 0.937 

Lithuania 8 14.9 502 (2.5) 0.824 

Sweden 8 14.9 499 (2.6) 0.941 

Scotland 9 13.7 498 (3.7) 0.930 

Israel 8 14.0 496 (3.4) 0.905 

New Zealand 8.5-9.5 14.1 494 (5.3) 0.917 

Slovenia 7 or 8 13.8 493 (2.2) 0.881 

Italy 8 13.9 484 (3.2) 0.916 

Armenia 8 14.9 478 (3.0) 0.729 

Serbia 8 14.9 477 (2.6) - 
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Countries Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average 

Scale Score 

Human 

Development 

Index 

Bulgaria 8 14.9 476 (4.3) 0.795 

Romania 8 15.0 475 (4.8) 0.773 

INTERNATIONAL 

AVERAGE 

8 14.5 467 (0.5) - 

Norway 7 13.8 461 (2.5) 0.944 

Moldova, Rep. of 8 14.9 460 (4.0) 0.700 

Cyprus 8 13.8 459 (1.7) 0.891 

Macedonia, Rep. of 8 14.6 435 (3.5) 0.784 

Lebanon 8 14.6 433 (3.1) 0.752 

Jordan 8 13.9 424 (4.1) 0.743 

Iran, Islamic Rep. of 8 14.4 411 (2.4) 0.719 

Indonesia 8 14.5 411 (4.8) 0.682 

Tunisia 8 14.8 410 (2.2) 0.740 

Egypt 8 14.4 406 (3.5) 0.648 

Bahrain 8 14.1 401 (1.7) 0.839 

Palestinian Nat’l 

Auth. 

8 14.1 390 (3.1) 0.731 

Chile 8 14.2 387 (3.3) 0.831 

Morocco 8 15.2 387 (2.5) 0.606 

Philippines 8 14.8 378 (5.2) 0.751 

Botswana 8 15.1 366 (2.6) 0.614 

Saudi Arablia 8 14.1 332 (4.6) 0.769 

Ghana 8 15.5 276 (4.7) 0.567 

South Africa 8 15.1 264 (5.5) 0.684 

England 9 14.3 498 (4.7) 0.930 



420 

 

Countries Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average 

Scale Score 

Human 

Development 

Index 

Benchmarking Participants 

Basque Country, 

Spain 

8 14.1 487 (2.7) - 

Indiana State, U.S. 8 14.5 508 (5.2) - 

Ontario Province, 

Canada 

8 13.8 521 (3.1) - 

Quebec Province, 

Canada 

8 14.2 543 (3.0) - 
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Appendix III- TIMSS 2007 Achievement Testing for 8th Grade  

Country Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average Scale 

Score 

Human 

Development 

Index 

Chinese Taipei 8 14.2 598(4.5) 0.932 

Korea, Rep. of 8 14.3 597(2.7) 0.921 

Singapore 8 14.4 593(3.8) 0.922 

Hong Kong SAR 8 14.4 572(5.8) 0.937 

Japan 8 14.5 570(2.4) 0.953 

Hungary 8 14.6 517(3.5) 0.874 

England 9 14.2 513(4.8) 0.946 

Russian 

Federation 

7 OR 8 14.6 512(4.1) 0.802 

United States 8 14.3 508(2.8) 0.951 

Lithuania 8 14.9 506(2.3) 0.862 

Czech Republic 8 14.4 504(2.4) 0.891 

Slovenia 7 or 8 13.8 501(2.1) 0.917 

TIMSS Scale Avg. - - 500 - 

Armenia 8 14.9 499(3.5) 0.775 

Australia 8 13.9 496(3.9) 0.962 

Sweden 8 14.8 491(2.3) 0.956 

Malta 9 14.0 488(1.2) 0.878 

Scotland 9 13.7 487(3.7) 0.946 

Serbia 8 14.9 486(3.3) 0.810 

Italy 8 13.9 480(3.0) 0.941 

Malaysia 8 14.3 474(5.0) 0.811 

Norway 8 13.8 469(2.0) 0.968 

Cyprus 8 13.8 465(1.6) 0.903 
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Country Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average Scale 

Score 

Human 

Development 

Index 

Bulgaria 8 14.9 464(5.0) 0.824 

Israel 8 14.0 463(3.9) 0.932 

Ukraine 8 14.2 462(3.6) 0.788 

Romania 8 15.0 461(4.1) 0.813 

Bosnia and 

Herzegovina 

8 or 9 14.7 456(2.7) 0.803 

Lebanon 8 14.4 449(4.0) 0.772 

Thailand 8 14.3 441(5.0) 0.781 

Turkey 8 14.0 432(4.8) 0.775 

Jordan 8 14.0 427(4.1) 0.773 

Tunisia 8 14.5 420(2.4) 0.766 

Georgia 8 14.2 410(5.9) 0.754 

Iran, Islamic Rep. 

of 

8 14.2 403(4.1) 0.759 

Bahrain 8 14.1 398(1.6) 0.866 

Indonesia 8 14.3 397(3.8) 0.728 

Syrian Arab Rep. 8 13.9 395(3.8) 0.724 

Egypt 8 14.1 391(3.6) 0.708 

Algeria 8 14.5 387(2.1) 0.733 

Colombia 8 14.5 380(3.6) 0.791 

Oman 8 14.3 372(3.4) 0.814 

Palestinian Nat’l 

Auth. 

8 14.0 367(3.5) 0.731 

Botswana 8 14.9 364(2.3) 0.654 

Kuwait 8 14.4 354(2.3) 0.891 

El Salvador 8 15.0 340(2.8) 0.735 
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Country Years of 

Schooling 

Average Age 

at Time of 

Testing 

Average Scale 

Score 

Human 

Development 

Index 

Saudi Arabia 8 14.4 329(2.9) 0.812 

Ghana 8 15.8 309(4.4) 0.553 

Qatar 8 13.9 307(1.4) 0.875 

Morocco 8 14.8 381(3.0) 0.646 

Benchmarking 

Participants 

    

Massachusetts, 

U.S. 

8 14.2 547(4.6) - 

Minnesota, U.S. 8 14.3 532(4.4) - 

Quebec, Canada 8 14.2 528(3.5) - 

Ontario, Canada 8 13.8 517(3.5) - 

British Colombia, 

Canada 

8 13.9 509(3.0) - 

Basque Country, 

Spain 

8 14.1 499(3.0) - 

Dubai, UAE 8 14.2 461(2.4) - 
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Appendix IV- TIMSS 1995, 1999, 2003, 2007. 

Country Scale 

Score 

1995 

Scale 

Score 

1999 

Scale 

Score 

2003 

Scale 

Score 

2007 

2003 to 

2007 

diff. 

1999 to 

2007 

diff. 

1995 to 

2007 

diff. 

Chinese Taipei - 585 585 598 13 13 - 

Korea, Rep. of 581 587 589 597 8 10 17 

Singapore 609 604 605 593 -13 -12 -16 

Hong Kong SAR 569 582 586 572 -14 -10 4 

Japan 581 579 570 570 0 -9 -11 

Hungary 527 532 529 517 -12 -15 -10 

England 498 496 498 513 15 17 16 

Russian 

Federation 

524 526 508 512 4 -14 -12 

United States 492 502 504 508 4 7 16 

Lithuania 472 482 502 506 4 24 34 

Czech Republic 546 520 - 504 - -16 -42 

Slovenia 494 - 493 501 9 - 7 

Armenia - - 478 499 21 - - 

Australia 509 - 505 496 -8 - -13 

Sweden 540 - 499 491 -8 - -48 

Scotland 493 - 498 487 -10 - -6 

Serbia - - 477 486 9 - - 

Italy - 479 484 480 -4 0 - 

Malaysia - 519 508 474 -34 -45 - 

Norway 498 - 461 469 8 - -29 

Cyprus 468 476 459 465 6 -11 -2 

Bulgaria 527 511 476 464 -13 -47 -63 

Israel - 466 496 463 -32 -3 - 
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Country Scale 

Score 

1995 

Scale 

Score 

1999 

Scale 

Score 

2003 

Scale 

Score 

2007 

2003 to 

2007 

diff. 

1999 to 

2007 

diff. 

1995 to 

2007 

diff. 

Romania 474 472 475 461 -14 -11 -12 

Lebanon - - 433 449 16 - - 

Thailand - 467 - 441 - -26 - 

Jordan - 428 424 427 3 -1 - 

Tunisia - 448 410 420 10 -28 - 

Indonesia - 403 411 405 -5 2 - 

Iran, Islamic Rep. 

of 

418 422 411 403 -8 -19 -15 

Bahrain - - 401 398 -3 - - 

Egypt - - 406 391 -16 - - 

Colombia 332 - - 380 - - 47 

Palestinian Nat’l 

Auth. 

- - 390 367 -23 - - 

Botswana - - 366 364 -3 - - 

Ghana - - 276 309 34 - - 

Benchmarking 

Participants 

       

Massachusetts, 

U.S. 

- 513 - 547 - 34 - 

Minnesota, U.S. 518 - - 532 - - 14 

Quebec, Canada 56 566 543 528 -15 -38 -28 

Ontario, Canada 501 517 521 517 -4 1 17 

British Columbia, 

Canada 

- 522 - 509 - -12 - 

Basque Country, 

Spain 

- - 2003 2007 11 - - 
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Appendix V – PISA 2003: Participating countries 

OECD Countries Non-OECD Countries 

Australia Argentina 

Austria Brazil 

Belgium Chile 

Canada China 

Czech Republic Hong Kong 

Denmark Indonesia 

Finland Russian Federation 

France Slovenia 

Germany Tunisia 

Greece Thailand 

Hungary  

Iceland  

Ireland  

Italy  

Japan  

Korea  

Luxembourg  

Mexico  

New Zealand  

The Netherlands  

Norway  

Poland  

Portugal  

Rep. of Korea   
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OECD Countries Non-OECD Countries 

Slovakia  

Spain  

Sweden  

Switzerland  

Turkey  

United States  

United Kingdom  
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Appendix VI - Structured observation schedule 
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Appendix VII - Realistic Test implemented in Ireland 

Appendix VII:i: Realistic test implemented in Ireland 
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Appendix VII:ii: Marking scheme for Realistic test implemented in Ireland 

  

Q. 1 Solution: 

Drug C gives the longest average survival time. 

For 2,150 patients it costs 2150 x 470 = €1,010,500. However, this is over budget. 

Drug B costs 2,150 x 400=€860,000. Drug B is the best choice as you can afford it and it gives 

a longer survival time than Drug A. 

 

5 marks, attempt 2 for correctly working out the cost of any one drug. 
5 marks, attempt 2 for a valid justification. 

Total 10 marks. 
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Q. 2 Solution: 

(i) The greatest average survival time: 

C to men and B to women: ((800x4.0)+(1,350x3.5))/2150=3.69 years 

A to men, C to women: ((800x3.9)+(4.3x1,350))/2150=4.14 years 

Therefore the greatest average survival time that is within budget consists of giving 

Drug A to men and C to women. 
5 marks, attempt 2 for calculating the average survival time for any one group or 

combination of groups correctly. 

5 marks, attempt 2 for selecting an option within budget with a valid justification 

(ii) Consider cost with justification 

A to men and C to women (800x350)+(1,350x470)=€914,500 

5 marks, attempt 2 Consideration of life expectancy with cost taken into account. 

Justification provided. 
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Solution: 

(ii) 
Ethical considerations, equality, severity of cancer etc. etc. etc. 

5 marks for any reasonable suggestion. 

 

 

Total for Q.2  

20 marks 
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Question 3: 

Solution: 

(i) 

Drug A: Poor survival time, average quality of life 

Drug B: Average survival time, best quality of life 

Drug C: Best survival time, poor quality of life 

 

5 marks, attempt 2 Full marks for a full list of advantages/disadvantages. 
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Solution: 

(ii) 
You could decide to multiply the survival time by the quality of life giving the following: 

Drug A: 1.4 

Drug B: 2.8 
Drug C: 0.42 

Using this formula Drug B performs best.  

 

5 marks, attempt 2 for any reasonable solution with justification. 
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Appendix VIII - Realistic Test implemented in Massachusetts 

Appendix VIII:i: Realistic test implemented in MA 
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Appendix VIII:ii: Marking scheme for Realistic test implemented in MA 

 

Q. 1 Solution: 

Drug C gives the longest average survival time. 

For 2,150 patients it costs 2150 x 470 = $1,010,500. However, this is over budget. 

Drug B costs 2,150 x 400=$860,000. Drug B is the best choice as you can afford it and it gives 

a longer survival time than Drug A. 

 

5 marks, attempt 2 for correctly working out the cost of any one drug. 

5 marks, attempt 2 for a valid justification. 

Total 10 marks. 
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Q. 2 Solution: 

(i) The greatest average survival time: 

C to men and B to women: ((800x4.0)+(1,350x3.5))/2150=3.69 years 

A to men, C to women: ((800x3.9)+(4.3x1,350))/2150=4.14 years 

Therefore the greatest average survival time that is within budget consists of giving 

Drug A to men and C to women. 

5 marks, attempt 2 for calculating the average survival time for any one group or 

combination of groups correctly. 
5 marks, attempt 2 for selecting an option within budget with a valid justification 

(ii) Consider cost with justification 

A to men and C to women (800x350)+(1,350x470)=$914,500 

5 marks, attempt 2 Consideration of life expectancy with cost taken into account. 

Justification provided. 
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Solution: 

(ii) 
Ethical considerations, equality, severity of cancer etc. etc. etc. 

5 marks for any reasonable suggestion. 

 

 

Total for Q.2  

20 marks 
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Question 3: 

Solution: 

(i) 

Drug A: Poor survival time, average quality of life 

Drug B: Average survival time, best quality of life 

Drug C: Best survival time, poor quality of life 

 

5 marks, attempt 2 Full marks for a full list of advantages/disadvantages. 
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Solution: 

(ii) 
You could decide to multiply the survival time by the quality of life giving the following: 

Drug A: 1.4 

Drug B: 2.8 
Drug C: 0.42 

Using this formula Drug B performs best.  

 

5 marks, attempt 2 for any reasonable solution with justification. 
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Appendix IX - Traditional test implemented in Ireland 

Appendix IX:i: Traditional test implemented in Ireland 
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Appendix IX:ii: Marking scheme for Traditional test implemented in Ireland 

 

Solution: 

Question 1 (a)  

(6x1.05)+(3x1.20)+(5x0.65)=€13.50 

10 marks, attempt 3. 

 

Question 1(b) 
750x1.21=€907.50 

10 marks, attempt 3. 



458 

 

 

Solution: 

Question 1 (c) 

(7450x2.6%)+7450=€7643.70 

10 marks, attempt 3. 



459 

 

 

Solution: 

Question 1 (d) 

(i) 440x.2=€88 

10 marks, attempt 3. 

(ii) 730-440=290x.42=€121.80 

10 marks, attempt 3. 
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Solution 

Question 1 (d) 
(iii) 88+121.80=€209.80 

5 marks, attempt 2 

(iv) 209.80-65=144.80 then 730-144.80=€585.20 

15 marks, attempt 5. 
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Solution 

Question 2 (a) 

(1+4+3+4+1+4+12+4+15+4)/10=5.2 

10 marks, attempt 3. 

Question 2 (b) (i) 

2 hours 

5 marks 
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Solution: 

Question 2 (b) (ii) 

Friday. 

5 marks 
Question 2 (b) (iii) 

Total hours studied during the week: 2+3.5+3+2.5+1=12 

3÷12x100%=25% 

15 marks, attempt 5. 
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Solution: 

Question 3 (a) (i) 

5x+y=32 

5 marks, attempt 2 

Question 3 (b) (ii) 

8x+3y=54 

5 marks, attempt 2 
Solve both equations simultaneously to get x=6 and y=2. 

10 marks, attempt 3.  
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Appendix X - Traditional test implemented in Massachusetts 

Appendix X:i – Traditional test implemented in MA 

 



465 
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Appendix X:ii – Marking scheme for Traditional test implemented in MA 

 

Solution: 

Question 1 (a)  

(6x1.05)+(3x1.20)+(5x0.65)=$13.50 

10 marks, attempt 3. 

 

Question 1(b) 

750x1.21=$907.50 

10 marks, attempt 3. 
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Solution: 

Question 1 (c) 

(7450x2.6%)+7450=$7643.70 

10 marks, attempt 3. 
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Solution: 

Question 1 (d) 

(i) 440x.2=$88 

10 marks, attempt 3. 

(ii) 730-440=290x.42=$121.80 

10 marks, attempt 3. 
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Solution 

Question 1 (d) 

(i) 88+121.80=$209.80 

5 marks, attempt 2 

(ii) 730-209.80=$520.20 

5 marks, attempt 2 
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Solution 

Question 2 (a) 

(1+4+3+4+1+4+12+4+15+4)/10=5.2 

10 marks, attempt 3. 

Question 2 (b) (i) 

2 hours 

5 marks 
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Solution: 

Question 2 (b) (ii) 
Friday. 

5 marks 

Question 2 (b) (iii) 

Total hours studied during the week: 2+3.5+3+2.5+1=12 

3÷12x100%=25% 

15 marks, attempt 5. 
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Solution: 

Question 3 (a) (i) 

5x+y=32 

5 marks, attempt 2 
Question 3 (b) (ii) 

8x+3y=54 

5 marks, attempt 2 

Solve both equations simultaneously to get x=6 and y=2. 

10 marks, attempt 3.  
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Appendix XI – Gender Test Results 

 

 

Appendix XI:i Graphical Summary of descriptive statistics of Gender study (t=0, t=1) 

 

 

 

Appendix XI:ii: Gender study Graphical summary of test for equal variance (t=0, t=1) 
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Appendix XI:iii:  Two sample t-test Individual and box-plot graphics of Gender study (t=0, 

t=1) 
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Source   DF      SS    MS     F      P 

Gender    1    1487  1487  2.88  0.091 

Error   322  166214   516 

Total   323  167701 

 

S = 22.72   R-Sq = 0.89%   R-Sq(adj) = 0.58% 

 

 

                          Individual 95% CIs For Mean Based on Pooled 

StDev 

Level    N   Mean  StDev     +---------+---------+---------+--------- 

0      180  63.22  24.40     (----------*----------) 

1      144  67.53  20.43                  (-----------*------------) 

                             +---------+---------+---------+--------- 

                          60.0      63.0      66.0      69.0 

 

Pooled StDev = 22.72 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Gender 

 

Individual confidence level = 95.00% 

 

 

Gender = 0 subtracted from: 

 

Gender  Lower  Center  Upper  ---+---------+---------+---------+------ 

1       -0.69    4.31   9.31             (------------*-----------) 

                              ---+---------+---------+---------+------ 

                              -4.0       0.0       4.0       8.0 

 

Appendix XI:iv: One way ANOVA statistics of Gender study (t=0, t=1) 

Correlations: Results, Gender  

Pearson correlation of Results and Gender = 0.094 

P-Value = 0.091 

Appendix XI:v: Correlation statistics and matrix plot graphics of Gender study (t=0, t=1) 
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Appendix XII – Female Test Results 

 

 

 

Appendix XII:i: Graphical Summary of descriptive statistics for Female study (t=0, t=1) 

 

 

 

 
Appendix XII:ii: Graphical summary of test for equal variance for Female study (t=0, t=1)  
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Appendix XII:iii: Two sample t-test Individual and box-plot graphics of Female study (t=0, 

t=1) 
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Source   DF     SS     MS      F      P 

Test      1  13212  13212  40.39  0.000 

Error   142  46452    327 

Total   143  59665 

 

S = 18.09   R-Sq = 22.14%   R-Sq(adj) = 21.60% 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---+---------+---------+---------+------ 

0      71  77.24  18.57                             (-----*-----) 

1      73  58.08  17.61  (-----*-----) 

                         ---+---------+---------+---------+------ 

                         56.0      63.0      70.0      77.0 

Pooled StDev = 18.09 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

Test = 0 subtracted from: 

Test   Lower  Center   Upper     -+---------+---------+---------+-----

--- 

1     -25.12  -19.16  -13.20     (------*-------) 

                                 -+---------+---------+---------+-----

--- 

                              -24.0     -16.0      -8.0       0.0 

 

 

Appendix XII:iv: One way ANOVA statistics of Female study (t=0, t=1) 

 
Correlations: Results, Test  

 

Pearson correlation of Results and Test = -0.471 

P-Value = 0.000 

  

  

 

Appendix XII:v: Correlation statistics and matrix plot of Female study (t=0, t=1) 
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 Appendix XIII – Male Test Results 

Appendix XIII:i: Graphical Summary of descriptive statistics for Male study (t=0, t=1) 

 

 

 

Appendix XIII:ii: Graphical summary of test for equal variance for Male study (t=0, t=1)  
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Appendix XIII:iii: Two sample t-test Individual and box-plot graphics of Male study (t=0, 

t=1) 
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Source   DF      SS     MS      F      P 

Test      1   19777  19777  40.57  0.000 

Error   178   86772    487 

Total   179  106549 

S = 22.08   R-Sq = 18.56%   R-Sq(adj) = 18.10% 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---------+---------+---------+---------+ 

0      86  74.18  21.65                            (-----*-----) 

1      94  53.19  22.46  (----*-----) 

                         ---------+---------+---------+---------+ 

                               56.0      64.0      72.0      80.0 

Pooled StDev = 22.08 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper  -------+---------+---------+---------+-- 

1     -27.49  -20.98  -14.48  (-----*------) 

                              -------+---------+---------+---------+-- 

                                   -20       -10         0        10 

 

 

Appendix XIII:iv: One way ANOVA statistics of Male study (t=0, t=1) 

 

Pearson correlation of Results and Test = -0.431 

P-Value = 0.000 

 

 
 

 

Appendix XIII:v: Correlation statistics and matrix plot of Male study (t=0, t=1) 
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Appendix XIV – Traditional Test as an Indicator( ≥80%) 

 

 

Appendix XIV:i: Graphical Summary of descriptive statistics of traditional ≥80% study (t=0, 

t=1) 

 

  

Appendix XIV:ii: Graphical summary of test for equal variance of traditional  ≥ 80% study 

(t=0, t=1)  
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Appendix XIV:iii : Two sample t-test Individual and box-plot graphics of trad. ≥ 80% study 

(t=0, t=1) 
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Source   DF     SS     MS       F      P 

Test      1  31616  31616  221.07  0.000 

Error   158  22596    143 

Total   159  54213 

S = 11.96   R-Sq = 58.32%   R-Sq(adj) = 58.06% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev   +---------+---------+---------+--------- 

0      80  90.54   6.03                               (--*-) 

1      80  62.43  15.80   (-*--) 

                          +---------+---------+---------+--------- 

                         60        70        80        90 

 

Pooled StDev = 11.96 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper  --+---------+---------+---------+------- 

1     -31.85  -28.11  -24.38  (---*---) 

                              --+---------+---------+---------+------- 

                              -30       -20       -10         0 

 

Appendix XIV:iv: One way ANOVA statistics of traditional ≥ 80% study (t=0, t=1) 

 
Pearson correlation of Results and Test = -0.764 

P-Value = 0.000 

 

 

Appendix XIV:v: Correlation statistics and matrix plot of traditional ≥ 80% study (t=0, t=1) 
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Appendix XV – Traditional Test as an Indicator (60%≤x<80%) 

 

 

Appendix XV:i: Graphical Summary of descriptive statistics of traditional 60%≤x<80% study 

(t=0, t=1) 
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Appendix XV:ii: Graphical summary of test for equal variance of traditional 60%≤x<80% 

study (t=0, t=1)  

 

 

 

Appendix XV:iii: Two sample t-test Individual and box-plot graphics of traditional 

60%≤x<80% study (t=0, t=1) 
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One-way ANOVA: Results versus Test  

Source  DF     SS    MS      F      P 

Test     1   5313  5313  27.19  0.000 

Error   92  17975   195 

Total   93  23287 

 

S = 13.98   R-Sq = 22.81%   R-Sq(adj) = 21.97% 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---+---------+---------+---------+------ 

0      47  71.37   5.81                           (------*------) 

1      47  56.33  18.89  (------*------) 

                         ---+---------+---------+---------+------ 

                         54.0      60.0      66.0      72.0 

 

Pooled StDev = 13.98 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

 

Test = 0 subtracted from: 

 

Test   Lower  Center  Upper      +---------+---------+---------+--------- 

1     -20.76  -15.04  -9.31      (--------*-------) 

                                 +---------+---------+---------+--------- 

                             -21.0     -14.0      -7.0       0.0 

 

Appendix XV:iv: One way ANOVA statistics of traditional 60%≤x<80% study (t=0, t=1) 

Pearson correlation of Results and Test = -0.478 

P-Value = 0.000 

 

Appendix XV:v: Correlation statistics and matrix plot of traditional 60%≤x<80% study (t=0, 

t=1) 
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Appendix XVI – Traditional Test as an Indicator (<60%) 

 

Appendix XVI:i: Graphical Summary of descriptive statistics of traditional 0%≤x<60% study 

(t=0, t=1) 
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Appendix XVI:ii: Graphical summary of test for equal variance of traditional 0%≤x<60% 

study (t=0, t=1)  

 

 

 

Appendix XVI:iii: Two sample t-test Individual and box-plot graphics of traditional 

0%≤x<60% study (t=0, t=1) 
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Source  DF     SS   MS     F      P 

Test     1     86   86  0.21  0.651 

Error   68  28292  416 

Total   69  28377 

 

S = 20.40   R-Sq = 0.30%   R-Sq(adj) = 0.00% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ---+---------+---------+---------+------ 

0      30  42.19  16.32     (-------------*--------------) 

1      40  39.96  22.96  (------------*------------) 

                         ---+---------+---------+---------+------ 

                         35.0      40.0      45.0      50.0 

 

Pooled StDev = 20.40 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

 

Test = 0 subtracted from: 

 

Test   Lower  Center  Upper      +---------+---------+---------+--------- 

1     -12.07   -2.24   7.60      (---------------*----------------) 

                                 +---------+---------+---------+--------- 

                             -12.0      -6.0       0.0       6.0 

 

Appendix XVI:iv: One way ANOVA statistics of traditional 0%≤x<60% study (t=0, t=1) 

Pearson correlation of Results and Test = -0.055 

P-Value = 0.651 

 

 

Appendix XVI:v: Correlation statistics and matrix plot of traditional 0%≤x<60% study (t=0, 

t=1) 



496 

 

 

Appendix XVII: Higher Level Junior Certificate Course 

 

 

Appendix XVII:i: Graphical Summary of descriptive statistics of higher level junior 

certification study (t=0, t=1) 
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Appendix XVII:ii: Graphical summary of test for equal variance of higher level junior 

certification % study (t=0, t=1)  

 

 

 

 

Appendix XVII:iii: Two sample t-test Individual and box-plot graphics of higher level junior 

certification study (t=0, t=1) 
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Source   DF     SS     MS      F      P 
Test      1  25348  25348  95.25  0.000 

Error   134  35660    266 

Total   135  61007 

 

S = 16.31   R-Sq = 41.55%   R-Sq(adj) = 41.11% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -+---------+---------+---------+-------- 

0      68  80.42  13.91                              (--*---) 

1      68  53.11  18.41  (---*---) 

                         -+---------+---------+---------+-------- 

                         50        60        70        80 

 

Pooled StDev = 16.31 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

Test = 0 subtracted from: 

 

Test   Lower  Center   Upper  ---+---------+---------+---------+------ 

1     -32.84  -27.30  -21.77  (-----*----) 

                              ---+---------+---------+---------+------ 

                               -30       -20       -10         0 

 

Appendix XVII:iv: One way ANOVA statistics of higher level junior certification study (t=0, 

t=1) 

 

Pearson correlation of Results and Test = -0.531 

P-Value = 0.000 

 

 

Appendix XVII:v: Correlation statistics and matrix plot of higher level junior certification 

study (t=0, t=1)
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Appendix XVIII – Ordinary Level Junior Certificate Course 

 

 

Appendix XVIII:i: Graphical Summary of descriptive statistics of ordinary level junior 

certification study (t=0, t=1) 
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Appendix XVIII:ii: Graphical summary of test for equal variance of ordinary level junior 

certification % study (t=0, t=1)  

 

 

 

Appendix XVIII:iii: Two sample t-test Individual and box-plot graphics of ordinary level 

junior certification study (t=0, t=1) 
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Source  DF     SS    MS     F      P 

Test     1   1190  1190  2.49  0.122 

Error   44  21031   478 

Total   45  22221 

 

S = 21.86   R-Sq = 5.36%   R-Sq(adj) = 3.21% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev   --+---------+---------+---------+------- 

0      18  41.02  23.18             (------------*------------) 

1      28  30.60  20.99   (---------*----------) 

                          --+---------+---------+---------+------- 

                         24.0      32.0      40.0      48.0 

 

Pooled StDev = 21.86 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Test 

 

Individual confidence level = 95.00% 

 

 

Test = 0 subtracted from: 

 

Test   Lower  Center  Upper  ----+---------+---------+---------+----- 

1     -23.73  -10.42   2.89  (-------------*------------) 

                             ----+---------+---------+---------+----- 

                               -20       -10         0        10 

 

Appendix XVIII:iv: One way ANOVA statistics of ordinary level junior certification study 

(t=0, t=1) 

Pearson correlation of Results and Test = -0.231 

P-Value = 0.122 
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Appendix XIX - Teacher Information Sheet 
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Appendix XX - Parent/Guardian information sheet: 
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Appendix XXI - Student information sheet: 
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Appendix XXII - Parent/Guardian letter of consent 
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Appendix XXIII – Student letter of consent 
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Appendix XXIV – Ethical application approval letter 

 

 


