
 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-217

NEW SNDOBJ LIBRARY CLASSES FOR SINUSOIDAL MODELLING

Joseph Timoney, Victor Lazzarini† and Thomas Lysaght

Department of Computer Science,
†Music Technology Laboratory,

National University of Ireland, Maynooth.
{Jtimoney,Vlazzarini,Tlysaght}@may.ie

ABSTRACT

We present an object-oriented implementation for sinusoidal
modelling based on the C++ Sound Object Library (SndObj).
We outline the background to this analysis/synthesis technique
and its inclusion in many well known methods of speech and
music signal processing. Incorporation of such a well known
technique into the SndObj library will enable the development of
further audio processing techniques such as vocoding, time and
pitch scaling and cross-synthesis on an object-oriented
development platform.

1. SINUSOIDAL MODELLING

Sinusoidal models are based on a well known assumption that
the audio signal can be represented as a sum of sine waves with
time-varying amplitudes and frequencies. In the basic model, the

audio signal ()ns is modeled as the sum of a small number, L,

of sinusoids:

() ()∑
=

+=
L

l
lll nAns

1

cos ϕω (1)

where ()nAl and ()nlϕ are the time varying amplitude and

phase of each sinusoidal component associated with the

frequency track lω . The basic model is also known as the

McAulay / Quatieri Model [1] (see Figure 1). This technique is
incorporated in the SMS model [2] as well as for voice and
instrumental morphing applications [3]. This basic model has
also some modifications such as ABS/OLA (Analysis by
Synthesis / Overlap Add) and Hybrid / Sinusoidal Noise models.

1.1. Analysis

The analysis stage estimates sets of amplitude, frequency, and
phase parameters for each analysis frame. The short-time Fourier
transform (STFT) is used to analyse the input signal into frames.
The frequency window size and hop period are input to the
STFT. An instantaneous frequency routine (IFGram) is also
computed and uses a separate window for discrete differentiation
to computing the instantaneous frequency as the time-derivative
of the phase. The analysis stage is illustrated in the first part of
Figure 1. Figure 2 shows the instantaneous frequency plot for the

first 500msecs of a stopped violin sound, A4=440Hz (A4,
MUMS Vol. 1, Track1, Index 16).

Figure 1. McAulay/Quatieri Model.

To account for rapid movements in spectral peaks due to

such factors as voiced/unvoiced transitions and pitch changes
present in speech signals or harmonic and inharmonic peaks and
frequency modulation in music signals a peak-tracking the
McAulay/Quatieri model uses a simple and effective peak-
tracking. This tracks time-varying development marking the
‘birth and ‘death’ along each constituent sinusoidal component.
The algorithm matches peaks between STFT frames and
interpolates the frequency position and magnitude along each
track.. The output is sorted by start time (track ‘birth’) and then
by frequency of each track’s first value. In Figure 1. the absolute
value of the SFTF is used in computing the amplitude and
frequency for each track and the phase from the angle of the
STFT. Figure 3 shows a total of 123 tracks for the first
500msecs of the violin note in Figure 2. Figure 4 shows the
overlay of tracks on a speech signal STFT.

A magnitude threshold determines the number of tracks
recovered and thus accounts for the timbral quality of the
synthesized signal. In Figure 3 the threshold is set at 0.002 times
the maximum magnitude present in the STFT. Frequency in Hz
is calculated using the instantaneous frequency and bin position
for each track.

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-218

Figure 2. IFGram plot for 500 msecs violin A4 sound.

Figure 3. 123 tracks for the first 500msecs of the violin
sound in Figure 1.

1.2. Synthesis

In the synthesis stage a simple interpolation is used to compute
amplitude values for each track between hop periods. To ensure
that each frequency track is maximally smooth across frame
boundaries, phase unwrapping is performed along each track of
the STFT. For this, a cubic interpolation function is applied to
smoothly interpolate the phase between STFT frames ensuring
that the interpolated phase and frequency values equal those at
the frame boundaries. The computed amplitudes, frequencies
and phases for each track provide the parameters for the overlap-
add resynthesis using a sine wave oscillator. The inputs to the
synthesis routine are the amplitude, frequency and phase
parameter sets for each track. A sine wave is computed for each
track based on the interpolated frequency and phase values and a
magnitude envelope is applied using the interpolated amplitude.
This is illustrated in the second part of Figure 1. This
analysis/synthesis method results in speech and music signals

that are perceptually indistinguishable from the original signals
and has been used for time-scale, pitch-scale, and frequency
modification of speech.

Figure 4. Overlay of tracks on a speech signal STFT.

2. IMPLEMENTATION

An object-oriented implementation of the technique is proposed,
integrating the SndObj library [4]. It is based on two main
classes: SinAnal and SinSynth. These classes are derived from a
FFT base class, which provides the mechanisms for short-time
Fourier analysis and Instantaneous Frequency Distribution. The
FFT class itself is derived from SndObj, which is the base class
for all processing classes in the library. The processing in this
class is based on a DoAnalysis() method, which implements
the STFT and a DoIFAnalysis() method which implements
the IFGram. The former is an overridable method which can be
modified to suit any analysis methods provided by derived
classes. The analysis output is available to any FFT-derived
object or to an FFT object itself (which can perform the inverse
operation, by invoking the DoProcess() method). The
outline of the main attributes and methods for this class is shown
on fig.5.

Figure 5. The FFT class

Since the Sinusoidal Analysis data is likely to be stored for
further processing, a way of storing it on a proprietary file format
is needed. A third class, providing these file IO services
complements this initial set of tools. This will enable complex
processing to be done in separate steps, if necessary.

2.1. SinAnal class

This class encapsulates the processes involved in extracting the
harmonic peak tracks, with their associated amplitude, frequency
and phase data. Figure 6 shows its most important attributes and

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-219

methods. It takes an input consisting of a number of STFT
frames describing the analysed signal plus the IFGram. This
input is generated by an FFT object. For each hop period, upon
the invocation of its DoAnalysis() method, the SinAnal class
generates an output consisting of a specified number of tracks,
with amplitude, frequency in Hz and phase offset values on each
track. This output is available through the Output_Tracks()
method. The implementation outline of this method is shown on
Fig. 7.

The number of tracks is variable and depends on the nature
of the analysed signal and the threshold value, which is set at
construction time. Likewise, the size of the output data on each
hop period is dependent on the number of tracks present. The
current number of tracks is updated every hop period. The
current number of tracks is retrieved with
GetNumberTracks() method.

Figure 6. The SinAnal class

The SinAnal class tracks output format is understood by two

basic classes: SinSynth, designed to resynthesize the analysed
signal; and SndSinIO, which implements file input/output to a
proprietary file format. Other classes which take this analysis
data format are envisaged to be implemented. With these,
techniques such as timestretching, filtering, pitch-tracking and
cross-synthesis would be available to library users.

Figure 7. SinAnal and SinSynth processing methods

2.2. SinSynth class

This class, derived from FFT, takes an input from a SinAnal or
SndSinIO object (plus any other object which can output track
data) and implements a sinusoidal resynthesis of the analysis
data. It implements a specialised version of the DoProcess()
method inherited from the base class SndObj. This method
implements the resynthesis from the magnitude, frequency and
phase data present in the harmonic tracks, as shown in fig.?. Its
output consists of time-domain signal with the resynthesized
waveform. As with any SndObj-derived class, its output is
available for further processing by other SndObj classes or to be
output by a SndIO class. Figure 8 shows an example of a simple
analysis-synthesis chain using the three classes discussed above.
A soundfile input is put through FFT and sinusoidal analysis
objects and is resynthesised using a sinusoidal resynthesis object.
The resulting audio is written to a soundfile. It is expected that
the usefulness of this processing will be complemented by
spectral transformation classes, which will act on the sinusoidal
analysis data.

Figure 8. Sinusoidal analysis example

2.3. SndSinIO class

This class, derived from the SndObj library class SndIO,
implements file IO to a WAVE FORMAT EXTENSIBLE-
derived format[5]. Originally designed with multi-channel
applications in mind, this is a new format specification from
Microsoft which provides extensibility and customization of
features, based on the original RIFF-Wave format. Within this
format, any number of fields can be defined, as well as the data
encoding and format itself. An identifier called the Globally
Unique Identifier (GUID) is used to define new formats, so that
that the original format can be freely extended by third parties
without the need for previous registration. This specification has
been successfully used for Phase Vocoder analysis files in the
PVOC_EX format [6].

The file format is a chunked format, as shown in fig. 9. The
format chunk is extended to incorporate proprietary information.
It is defined by the C-language structure shown on fig. 10. In this
format fields, the information stored is mostly related to the
original waveform data (sampling rate, sample format, channels
etc.). As with PVOC_EX, the full scope of the multichannel
capabilities of the format can be used. The format proposed for
the sinusoidal analysis data will include information such as
hopsize, analysis threshold, maximum number of tracks etc. The

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-220

C++ structures defining the format are shown on fig. 11. The
total size of the format chunk is 64 bytes (the
WAVE_EXTENSIBLE requirement is that it should be aligned
to 8-byte boundaries).

Figure 9. WaveFormatExtensible outline

The data chunk is composed of the track data, in the format

output by the SinAnal class: for each hop period (frame) the data
is composed of the number of tracks (integer) followed by the
magnitude, frequency and phase for each track (single or double
precision floating- point). Multiple channels are interleaved on a
frame-by-frame basis (in a manner similar to the PVOC_EX
format). The advantage of using a customised version of a well-
known format is that it provides the possibility of sharing
analysis data with other applications. Any number manipulating
program that understand this format can be used to read, process
or generate sinusoidal analysis data.

Figure 10. WAVE_FORMAT_EXTENSIBLE structure

As mentioned above, the SndSinIO can provide input data

for resysnthesis or further transformation well as storing the data
generated by the SinAnal class. An object of this class can be
constructed for input or for output. In the former case, as with all
SndIO-derived classes, the Read() method is used iteratively to
read data from the file. This data can be accessed by the
Output_Tracks() method (in a similar way to SinAnal).
Other information about that data can be retrieved by a number
of methods (GetTrackNumbers(), GetThreshold()
etc.). In the case of output, the data is written using the
Write() method. A description of the main aspects of this class
is shown in fig.12.

3. CONCLUSION AND FURTHER RESEARCH

The Sinusoidal analysis technique can be very useful for
sound and music processing applications. The addition of this
facility to the SndObj library provides a very powerful way of
manipulating sound spectra. So far, only the analysis and the
resynthesis have been proposed, but it is expected that many
more classes will be developed to deal with the data generated by
this type of processing.

Figure 11. WAVEFORMATSINUSEX structure

Figure 12. SndSinIO class

4. BIBLIOGRAPHY

[1] McCaulay, Robert, J., Quatieri, Thomas F., “Speech
 Analysis/Synthesis Based on a Sinusoidal Representation”,
 IEEE Trans. On Acoustics, Speech, and Signal Processing,
 Vol. ASSP-34, No. 4, August 1986.
[2] Serra, X. “Musical Sound Modelling with Sinusoids plus
 Noise”. G.D. Poli an others (eds.), Musical Signal
 Processing, Swets & Zeitlinger Publishers, 1997.
[3] Tellman, E., Haken L., and Holloway B., “Timbre
 Morphing of Sounds with Unequal Numbers of Features”,
 J. Audio Eng. Soc., 43:9 1995.
[4] Lazzarini, V,“The Sound Object Library”, Organised Sound

5 (1), Cambridge: Cambridge Univ. Press., 2000, pp. 35-49
[5] http://www.microsoft.com/hwdev/audio/multichaud.htm
[6] Dobson, R, “PVOC-EX: File format for Phase Vocoder

data, based on WAVE_FORMAT_EXTENSIBLE”.
 http://www.bath.ac.uk/~masrwd/pvocex/pvocex.html

