
A Reinvestigation of the Extended Kalman Filter applied to Formant 
Tracking 

 
Joseph Timoney1, Tom Lysaght1, Victor Lazzarini2 And Ruiyao Gao3 

1 Dept. of Computer Science, 2 Department of Music, NUI Maynooth, Maynooth, Co. Kildare,     
3 ABB Ltd., Finnabair Industrial Park, Dundalk, Co. Louth, Ireland 

contact author: jtimoney@cs.may.ie,  

Abstract. This paper examines the application of the Extended Kalman Filter to formant 
tracking. The derivation of the Jacobian matrix for the Extended Kalman filter procedure 
is given. Additionally, it demonstrates how robustness can be incorporated to the 
procedure. Results are presented to illustrate the formant tracking ability of the non-
robust and robust Extended Kalman filter algorithms. 

I. Introduction 

A key feature in the analysis of speech signals is the formants that describe the time-varying resonant 
frequencies of the vocal tract. Many approaches have been suggested in the literature for the tracking 
of formants, with the most popular techniques being derived on a frame-based Linear Prediction 
coefficient (LPC) analysis of the speech signal. The major drawback of these frame-based techniques 
is that continuity of the formant estimates across frames must be imposed [1]. An alternative to a 
frame-based analysis is to use a technique that will track the formants on a sample-by-sample basis, 
whereby continuity should be ensured because of the proximity of the values. A good choice for this 
is the well-known Kalman filter which assumes the system to be linear and dynamic. However, its 
disadvantage for formant tracking is that it does not provide an estimate of the formant values; rather 
it returns the LPC parameters from which they can be derived afterwards. If the actual formant values 
are needed there and then the problem is non-linear and in that case an Extended Kalman Filter (EKF) 
can be applied [2]. However, attempting to implement the algorithm as described in [2] was 
problematic because the derivation of a required linearization term was unclear. This paper aims to 
rectify these problems and to produce a complete description of the EKF applied to formant tracking. 
Additionally, it present results for evaluation purposes. Furthermore, a modification of the EKF 
algorithm is also made to investigate whether more recent results in robust Kalman filtering [3] 
confers any performance gains. 

II. Method 

The EKF uses a non-linear state space description of the system as given by 

( ) kkk k wxfx +=+ ,1     (1) 

( ) kkk k vxhy += ,     (2) 

where, ky  is the observed output, kx  is the state, ( ).f  and ( ).h  describe non-linear, and 

possibly time-varying, state transition and measurement matrices respectively. kw  and kv  are 

independent zero-mean white Gaussian noise processes with covariance matrices kQ  and kR  
respectively.  



The state transition and measurement matrices are linearized with respect to the most recent state 
estimate, either kx̂  or -ˆ kx , by first constructing the Jacobian matrices of partial derivatives 
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These matrices are then employed in a first-order Taylor series approximation of the non-linear 
functions ( ).f  and ( ).h  around kx̂  or -ˆ kx  respectively. The EKF recursion equations can then be 
written as follows 

Initialization: for k=0, set the initial state estimate as 

[ ]00ˆ xx E=      (4) 

and the initial error covariance as 

[ ]( ) [ ]( )[ ]TEEE 00000 xxxxP −−=   (5) 

Computation: for k=1,2, …. compute: 

a) The propagation of the state estimate:  ( )−
−

− = 1ˆ,ˆ kk k xfx    (6) 

b) The propagation of the Error Covariance: k
T

kkkkkk QFPFP += +−+
−

1,11,  (7) 

c) The Kalman gain matrix:   [ ] 1−−− += k
T
kkk

T
kkk RHPHHPG  (8) 

d) The State Estimate Update:   ( )−− −+= kkkkk k xhyGxx ˆ,ˆˆ  (9) 

e) The Error Covariance update:   ( ) −−= kkkk PHGIP   (10) 

In the formant tracking problem the state vector is assumed a set of m formants frequencies and their 
respective bandwidths [2], 

[ ]T
mm BBBFFF ,,,,,,, 2121 ��=x  

It is assumed that the dynamic model for state update is linear, that is the formant values and 
bandwidths at time k+1 are equal to the current values plus some deviation 

kkk wxx +=+1     (11) 

Thus, the state transition function ( ).f  and its corresponding linearized matrix kk ,1+F  are given by the 

identity matrix I. It is assumed that the speech signal is produced by an all-pole model of order n, with 
LPC parameters naa ,,1 � giving an output value 

( ) ( ) ( ) kn vnkyakyaky +−−−−−= �11   (12) 

Letting 

( ) ( ) ( )[ ]Tnkykyky −−−= �21S  and [ ]T
naaa �21=a   (13) 

means that (12) can also be rewritten as 

( ) aSTky −=     (14) 



The vocal tract transfer function of the all-pole model can be expressed as the cascade of m=n/2 
resonators, each one representing a single formant resonance, 
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The formants and bandwidths are contained in the resonator coefficients and are given by 

( )TFec j
TB

j
j π−= π− 2cos2     (16) 

TB
j

jed π−= 2       (17) 

From (3), to apply the EKF the matrix kH  must be computed for steps (c) and (e), as described by 
equations (8) and (10), of the procedure  
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A recursive equation for the computation of (18) was proposed in [2]. Within this equation there are 
three terms. It is with the definition of the update of the second and third terms, *a  and **a , in [2] 
where the difficulty occurred as the procedure is not entirely clear. An attempted implementation of 
the EKF using a best possible interpretation of this recursion equation was seen not to produce good 
formant tracks but ones whose values fluctuated in an unstable manner. A subsequent expansion by 
hand of the recursive equation was also found not to correspond with the true value of kH  if 
computed directly from (18). Therefore a new expression for the recursion was required. Analysis 

following an expansion of 
kx

a
∂
δ  for m formants lead to the observation that each of columns i, 

denoted as ( )icol , of this (2m x 2m) matrix could be generated by the expressions 
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where the ‘.’ denotes the multiplication of each element and the vectors iC  and iD  are given by 
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where the product symbol (ΠΠΠΠ) denotes a polynomial multiplication (vector convolution), and the final 
and first entry in iC  and iD  is zero respectively. This means that the partial derivative in (18) is 
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To create a robust EKF, the procedure outlined in [3] can be applied to (7) and (8) to give 
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where λ  is a forgetting factor and ( )( )kw ε− ˆ1  is a weighting function derived from the residual model 
error.  



III. Experiments 

To test the EKF approach ideally a database of speech utterances with hand-labelled formants would 
be used, but because this was unavailable, the approach of [4] was followed to create synthetic 
sounds. Forty-eight speech utterances were processed using Wavesurfer software [5], and the pitch 
and formants extracted. Only formant data in voiced speech regions were retained and then 
interpolated. These formants were then used to generate synthetic speech. Both EKF algorithms were 
applied to the synthetic sounds. Q  and R  were diagonal matrices whose covariance was 50 and 0.1 
respectively for the first test, and 50 and 0.005 respectively for the second test. The initial formant 
values were set to be { }3500,2500,1500,400 Hz, all having a bandwidth of 50Hz. The covariance 
error matrix was diagonal and its entries were initialised at 100.  In the case of the robust EKF λ  was 
chosen to be 0.9975 as lower values sometimes resulted the matrix inversion in (23) being ill-
conditioned. The histogram peak and standard deviation of the absolute error difference was found 
between the synthetic and tracked formant values for both tests. Table 1 presents the results. 

 Peak Error 

IR ×= 1.0  

Std. Error 

IR ×= 1.0  

Peak Error 

IR ×= 005.0  

Std. Error 

IR ×= 005.0  

EKF 17.24 Hz 201 Hz 6.41 Hz 161.63Hz 

Robust 
EKF 

14.41 Hz 193.4 Hz 8.78 Hz 159.8 Hz 

Table 1 Histogram Peak and Standard Deviation of Absolute Error of both EKF approaches 

IV. Conclusions 

From the results it can be seen that the user-defined measurement error covariance is the most 
important parameter in determining the accuracy of the EKF formant tracking. Taking account of 
robustness does help to improve algorithm performance but not significantly and not completely.  
Setting the measurement error covariance to be IR ×= 005.0  most frequently gives a value for 
formant error that is reasonably small but it appears that the standard deviation of the error is large 
and would suggest that the EKF approach is not ideal for formant tracking. However, some of the 
blame can be attributed to the formant values used to create the synthetic speech, as they were derived 
using another tracking algorithm [5] and thus were not always reliable or smooth, being subject to 
considerable fluctuations on occasion. Future work will seek proper hand-labelled formant data to 
verify to what degree this was a source of error. 
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