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[Ag,(9-aca),] (1) (9-acaH = 9-anthracenecarboxylic acid) reacts with a series of imidazoles to give

[Ag(imidH), 5(CH3CN)g 7](9-aca) (3), [Agq(imidH)4(9-aca)s(MeOH),] (4), {[Ag(1-Me-imid),]o[Aga(9-
aca)g]} (5), {[Ag(1-Bu-imid),],[Ag4(9-aca)e]} (6) and [Ag(apim)](9-aca)-H,O (7) (imidH = imidazole;
1-Me-imid = 1-methylimidazole; 1-Bu-imid = 1-butylimidazole; apim = 1-(3-aminopropyl)imidazole).

The mononuclear complex 3, hexanuclear 4-6, and polymeric 7, were all characterised using X-ray

crystallography. While many of the complexes possess excellent in vitro antifungal and antibacterial

activities they are, unanimously, more effective against fungal cells. The insect, Galleria mellonella, can

survive high doses of the Ag(1) complexes administered in vivo, and a number of the complexes offer

significant protection to larvae infected with a lethal dose of pathogenic Candida albicans cells.

Introduction

Pathogenic fungi and bacteria cause many infectious diseases in
both immunosuppressed and immunocompetent individuals.
Additionally, infections with resistant microorganisms are often
associated with high rates of morbidity and mortality and also
increase health care treatment costs.'™ In recent times, there has
been something of a renaissance in the use of nanoparticulate
silver(0) and silver(1) complexes to prevent and to treat stubborn
microbial infections. Despite the fact that microbial resistance to
Ag(1) is relatively rare, Ag(i)-resistance genes have been ident-
ified, giving rise to concerns over the widespread use of clinical
and hygiene products containing silver.’ Although a small
number of people experience delayed sensitivity to silver, the
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metal and its monocation do not present a serious toxic risk to
any organ system in the human body.®

The Ag(1) ion is now the active agent in many healthcare pro-
ducts such as silver-coated catheters,” wound dressings™’ and
burn treatment creams.'® Evidence has been provided'' for the
antifungal activity of a burn wound dressing coated with AgNO;
against Candida albicans, C. glabrata, C. tropicalis and Sac-
charomyces cerevisiae. Ag(0) nanoparticles have been incorpor-
ated into a topical antimicrobial gel and demonstrated potent
activity against Aspergillus niger and C. albicans.'* The anti-
microbial effects of medical devices containing Ag(0) have
formed the basis of a recent review which highlights the growing
importance of materials that prevent microbial surface
adhesion."?

The Ag(1) ion is known to interfere with electron transport'
and alter the respiration of C. albicans cells.'> McCann and co-
workers suggested that the interaction of Ag(1) and the
mitochondrion,'*'® coupled with the generation of lipid per-
oxides,'* was evidence for the generation of free radicals. More
recently,'” it has been demonstrated that C. albicans cells
respond to AgClO, by activating an oxidative stress response via
phosphorylation of a high osmolarity protein (HoglP) and
nuclear translocation of the C. albicans activating protein-1
(Caplp). The high antimicrobial efficacy of tetrahedral, Ag(1)
bis-phosphine'® and N-heterocyclic carbene'® complexes has
been demonstrated. Li and coworkers?® reported that the hexa-
nuclear Ag(1) complex, [AggLe]-4DMF (HL = 2-thiophene N(4)-
methylthiosemicarbazone), showed moderate activity against
Gram negative and Gram positive bacteria with MIC¢o values
(minimum inhibitory concentration of complex required for
100% retardation of bacterial cell growth) >0.5 ug cm™ and dis-
played poor growth inhibition towards the fungi, C. albicans and
C. lusitaniae. In recent studies, [Ag,(phen);(mal)]-2H,O (phen
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= 1,10-phenanthroline; malH, = malonic acid) was shown to
inhibit the growth of C. albicans, by affecting mitochondrial
function, retarding cytochrome synthesis, uncoupling cellular
respiration and causing gross distortions in cell morphology.?'
The mononuclear complex, [Ag(phendio),]ClO4 (phendio =
1,10-phenanthroline-5,6-dione), strongly inhibited the growth of
C. albicans and caused extensive, non-specific DNA cleavage in
the organism.?* Against the same fungi, the Ag(1) salicylate com-
plexes, [Ago(salH),] and [Agr(NH3),(salH),] (salH, = salicylic
acid), had MIC, ¢, values of 5.0 and 0.5 uM, respectively.23
Investigations into the effects of silver(1) ions on bacterial
cells revealed that they interact with the respiratory chain of
Escherichia coli** and can lower the content of phospholipid
fatty acids in some metal-reducing bacteria.’> Electron
microscopy and X-ray microanalysis have shown that silver
builds up as granules in the cell wall and in the cytoplasm of
E. coli and Staphylococcus aureus,*>*’ inflicting damage to the
RNA and DNA and also deactivating cellular proteins. The most
widely known bactericidal mechanism of the Ag(i) ion is its
interaction with the thiol group of the L-cysteine residue of pro-
teins and consequent enzyme inactivation.”*>° Other Ag(1) bac-
tericidal mechanisms, such as K' ion release,! bonding to
DNA*? and the generation of intracellular reactive oxygen

species,?***3* have also been reported.
N
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imidazole (imidH) R=H

1-methylimidazole (1-Me-imid) R = CH;
1-butylimidazole (1-Bu-imid) R = (CH3)3CH3
1-(3-aminopropyl)imidazole (apim) R =
(CH2)3NH,

O, OH

9-anthracenecarboxylic acid
(9-acaH)

In 2007, we reported”” the structures and biological activities
of dinuclear and tetranuclear Ag(1) complexes containing the 9-
anthracenecarboxylate anion (9-acaH = 9-anthracenecarboxylic
acid (Fig. 1)). [Agx(9-aca),] (1) was found to be very active
against the bacterial species E. coli and methicillin-resistant
S. aureus (MRSA) (MICso = 22.44 and 11.36 uM, respectively)
and against the fungus C. albicans (MIC;o0 = 0.95 uM).
However, the tetranuclear, amine complex, [Ag(9-aca),(NHs),]
(2), displayed enhanced activity universally against the microbial
cells (corresponding inhibitory concentrations were 8.51, 5.44
and 0.14 uM, respectively).>> The significant improvement in
biological activity witnessed upon the introduction of the NH;
ligands in 2 and in [Ag,(NHs),(salH),]** was the stimulus for
the present work.

Herein, we report the synthesis, structures and in vitro antimi-
crobial effects of a series of new Ag(1) complexes containing
both the 9-aca™ anion and N-donor ligands based on imidazole
(Fig. 1). Metal complexes containing imidazole-based ligands
are also of interest because the imidazole ring is an essential
metal binding site in many metalloproteins. In addition to
measuring the in vitro antimicrobial properties of the present
Ag(1) complexes their in vivo cytotoxicities were also examined
using the insect model, Galleria mellonella.

Experimental

Infrared spectra were recorded in the region 4000-370 cm™' on a
Perkin Elmer System 2000 FT spectrometer. Microanalytical
data were provided by the Microanalytical Laboratory, University
College Dublin, Belfield, Dublin 4, Ireland. X-ray crystallo-
graphic data (Table 1) were collected at 150(2) K on a Bruker
APEX II diffractometer and the structures were solved by direct
methods and refined on F* using all the reflections.*® All of
the non-hydrogen atoms were refined using anisotropic atomic

Fig. 1 Ligand structures. displacement parameters. Hydrogen atoms were inserted at
Table 1 Crystallographic data for complexes 3—7
Complex 3 4 5 6 7
Formula C23.30H203A2 N5 30, Ci04H78Ag6NgO 14 Cio6H78Ag6NsO12 Ci18H102Ag6NsO12 C21H2AgN;0;
Formula weight 514.42 2310.96 2302.98 2471.30 472.29
Crystal size, mm 0.33 x0.22 x 0.21 0.23 x0.15 % 0.12 0.43 x 0.32 x 0.06 0.32 x0.19 x 0.12 0.20 x 0.17 x 0.07
Crystal system Monoclinic Orthorhombic Triclinic Triclinic Orthorhombic
Space group P2y/n Pbcn P1 P1 Pbhca
a, 9.7905(5) 20.6935(8) 11.7251(17) 17.6333(7) 9.6450(6)
b, 14.2012(7) 18.2786(7) 17.908(3) 19.3853(8) 19.0589(11)
¢, A 16.3251(9) 23.6859(10) 23.464(3) 30.4753(13) 21.2920(12)
a,’ 90 90 111.403(2) 96.019(1) 90
B ° 101.864(1) 90 90.095(2) 95.831(1) 90
7, ° 90 90 101.710(2) 90.237(1) 90
VA3 2221.3(2) 8959.1(6) 4476.2(11) 10305.1(7) 3914.0(4)
VA 4 4 2 4 8
D, Mg m™ 1.538 1.713 1.709 1.593 1.603
i, mm ! 0.938 1.358 1.357 1.185 1.057
Refl collected 19 005 80 667 35083 89958 37907
Refl unique (Rjy) 4361 (0.0326) 9793 (0.0580) 15 686(0.0421) 40 407(0.0422) 4890 (0.0398)
Data/restraints/parameters 4361/23/326 9793/0/599 15 686/0/1194 40407/ 3021/2665 4890/6/265
Goodness-of-fit on 2 1.049 1.025 1.049 1.067 1.027

Ry, WR; [1>20(])]
Ry, WR, (all data)

=3
Apmim Apmax: € A

0.0347, 0.0730
0.0460, 0.0782
0.936, —1.192

0.0316, 0.0695
0.0475, 0.0765
0.487, —0.788

0.0666, 0.1746
0.0856 0.1882
4.988, —1.066

0.0505, 0.1130
0.0739, 0.1228
1.703, -0.978

0.0280, 0.0665
0.0410, 0.0723
0.447, —0.546
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calculated positions using a riding model, except for those
bonded to oxygen or nitrogen in complex 7, which were located
from difference maps and the coordinates refined. When the
refinement for complex 5 had converged there remained a
number of peaks in the electron density map at ca. 5 ¢ A=, and
a second crystal showed the same effect. The geometry of these
peaks was similar to the arrangement of silver ions in the main
components, and it seems likely that these effects are due to a
small twin contribution. However, attempts to incorporate this
did not improve the model. In complex 6 there are two indepen-
dent {[Ag(1-Bu-imid),],[Ag4(9-aca)s]} assemblies in the asym-
metric unit, oriented about 90° to each other and very similar to
one another. There is a disorder in the alkyl substituents attached
to four of the eight imidazole groups and these were each mod-
elled with partial occupancy of two overlapping sites (50 : 50 or
60 : 40). Some restraints (SAME and ISOR) were also employed.

Sterilisation of microbiological equipment and media was
carried out at 394 K and 124 kPa for 20 min. Solutions that were
susceptible to decomposition during autoclaving were sterilised
by membrane filtration using 0.45 pm Millipore membrane
filters. All worktops and benches were sterilised by washing
with 70% (v/v) ethanol-water prior to use. Round-bottomed
microtitre plates were read using a Labsystems iEMS Reader MF
at 540 nm (C. albicans). Flat-bottomed microtitre plates were
read using a Bio-Tek Synergy HT plate reader at 600 nm (E. coli
and MRSA). Fungal cell density was measured using a Neu-
bauer hemocytometer under a light microscope at a magnifi-
cation of x400. Bacterial cell density was recorded at an optical
density of 600 nm using an Eppendorf Biophotometer.

Chemicals were purchased from commercial sources and were
used without further purification. All of the silver(i) complexes
were synthesised in the absence of light and the products were
stored in the dark. [Ag4(9-aca),(NH;),] (2) was prepared from
[Ag>(9-aca),] (1) in accordance with the literature method.>”
C. albicans ATCC 10231 was obtained from the American Type
Culture Collection, Manassas, VA, USA. E. coli was supplied as
a clinical isolate by the Clinical Microbiology Laboratory,
St. James’s Hospital, Dublin, Ireland, and was originally isolated
from a wound infection. MRSA was obtained as a clinical isolate
from Microbiologics, North St. Cloud Mn, USA, and was orig-
inally isolated from a wound infection. G. mellonella larvae in
the sixth developmental stage were obtained from Livefoods
Direct Ltd., Sheffield, S25 4]J, UK. They were stored at 288 K
in wood shavings and used within 3 weeks of delivery. Signifi-
cance of the larvae survival rates was analysed at 72 h using
the log rank (Mantel-Cox) method utilising GraphPad Prism
software (version 5). Three categories of significance were used
(*=p<0.05, ¥* =p <0.01 and *** = p < 0.001).

Preparation of [Ag,(9-aca),] (1)

This complex was prepared using an improved modification of
the literature procedure.’® 9-Anthracenecarboxylic acid (9-acaH)
(1.117 g, 5.03 mmol) was added slowly to a solution of potass-
jum hydroxide (0.282 g, 5.03 mmol) in water (30 cm®) until
pH 7 was reached. The solution was then filtered to remove any
undissolved material. A solution of silver nitrate (0.849 g,
5.03 mmol) in water (10 cm®) was added dropwise to the

K'(9-aca)” solution. The resulting suspension was stirred for
0.5 h and then filtered. The yellow solid was washed with
ethanol and air-dried. Yield: 1.202 g (73%).

Preparation of crystalline [Ag(imidH), 3(CH;CN), 7](9-aca) (3)

[Ags(9-aca),] (1) (0.329 g, 0.5 mmol) was stirred in hot aceto-
nitrile (70 cm®) and any small traces of undissolved material was
removed by filtration. Imidazole (0.207 g, 3.0 mmol) was dis-
solved in acetonitrile (10 cm®) and added slowly to the stirred
solution of 1. The small amount of white precipitate which
formed was filtered off and the clear filtrate was allowed to stand
overnight. The white crystalline product which formed was
filtered off, washed with acetonitrile and air-dried. Yield: 0.09 g
(18%). Solubility: soluble in MeOH, hot EtOH and DMSO.
Anal. calcd for C23.30H20'30AgN5.3002: C, 5440, H, 398,
N, 14.43%. Found: C, 54.15; H, 3.91; N, 14.61%. IR (cm_l,
KBr): 3436, 3128, 3030, 2923, 2837, 2700, 2624, 2250, 1625,
1562, 1448, 1426, 1390, 1320, 1275, 1261, 1072.

Preparation of crystalline [Agq(imidH),(9-aca)s(MeOH),]| (4)

[Agy(9-aca),] (1) (0.109 g, 0.16 mmol) was suspended in metha-
nol (10 cm?) and to this was added a methanolic solution of imi-
dazole (1 em?, 0.16 M, 0.16 mmol). The mixture was stirred for
1 h and then filtered. Diethyl ether was slowly added to the
filtrate to precipitate the pale-yellow product. The solid was
filtered off, washed with diethyl ether and air-dried. Crystals of
the product formed in the ether filtrate. Yield: 0.04 g (44%).
Solubility: soluble in MeOH and DMSO. Anal. caled for
Cio4H73Age¢NgO14: C, 54.05; H, 3.40; N, 4.85%. Found: C,
53.75; H, 3.39; N, 4.73%. IR (cm™', KBr): 3448, 3045, 1625,
1538, 1484, 1433, 1393, 1320, 1273, 1238, 1178, 1090.

Preparation of crystalline {{[Ag(1-Me-imid),],[Ag4(9-aca)s]} (5)

1-Methylimidazole (0.82 g, 1.0 mmol) was added to a hot sus-
pension of [Agy(9-aca),] (1) (0.165 g, 0.25 mmol) in ethanol
(30 cm®) and the mixture immediately turned clear. Following
filtration to remove any insoluble particles the filtrate was
reduced to low volume by rotary evaporation. Diethyl ether was
added to precipitate the beige solid, which was filtered off,
washed with diethyl ether and allowed to air-dry. The solid was
dissolved in DMSO and the solution reduced under high vacuum
to yield the beige product. The solid was washed with a small
amount of cold EtOH and air dried. The solid was again dis-
solved in the minimum volume of DMSO and crystals formed
when the solution was allowed to stand for one week. Yield:
0.075 g (37%). Solubility: soluble in hot MeOH, EtOH and
DMSO. Anal. calcd for Cio6H73AgsNgO15: C, 55.27; H, 3.42;
N, 4.87%. Found: C, 54.98; H, 3.42; N, 4.63%. IR (cm_l, KBr):
3468, 3116, 1621, 1565, 1536, 1428, 1392, 1321, 1275, 1235,
1180, 1112, 1087, 1017.

Preparation of crystalline {{Ag(1-Bu-imid),],[Ag4(9-aca)s]} (6)

[Ags(9-aca),] (1) (0.750 g, 1.14 mmol) was dissolved in hot
acetonitrile (80 cm®) and the solution filtered to remove any
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traces of undissolved solid. The filtrate was allowed to cool to
room temperature. 1-Butylimidazole (0.567 g, 4.56 mmol) was
added and the resulting solution was stirred at room temperature
for 20 h. After gravity filtration the filtrate was reduced to a low
volume on a rotary evaporator and then diethyl ether was slowly
added. The precipitated beige solid was filtered off, washed with
diethyl ether and allowed to air-dry. The solid was recrystallised
from hot ethanol to yield yellow crystals, which were then
filtered off, washed with cold ethanol (1 cm®) and allowed to air-
dry. Yield: 0.301 g (51%). Solubility: soluble in MeOH, hot
EtOH, CHC13 and DMSO. Anal. calcd for CllngOzAg6N8012:
C, 57.35; H, 4.16; N, 4.53%. Found: C, 57.23; H, 4.23; N,
4.47%. IR (cm™', KBr): 3468, 2958, 1622, 1565, 1536, 1427,
1391, 1321, 1274, 1232, 1179, 1112, 1085, 1018.

Preparation of crystalline [Ag(apim)](9-aca)-H,O (7)

[Agy(9-aca),] (1) (0.500 g, 0.76 mmol) was dissolved in hot
acetonitrile (70 cm®) and the solution filtered to remove any
undissolved particles. 1-(3-Aminopropyl)imidazole (0.190 g,
1.52 mmol) was dissolved in acetonitrile (5 cm®) and added to
the stirred solution of 1. The resulting suspension was stirred for
0.5 h at room temperature and the beige solid was filtered off,
washed with acetonitrile and air-dried. The solid was recrystal-
lised from a 9:1 ethanol-methanol mixture to yield colourless
crystals. Yield: 0.589 g (82%). Solubility: soluble in MeOH, hot
EtOH and DMSO. Anal. caled for C,Hy,AgN303: C, 53.40; H,
4.70%; N, 8.90%. Found: C, 53.31; H, 4.58%; N, 8.89%. IR
(em™", KBr): 3427, 3236, 3129, 3046, 2932, 1568, 1518, 1425,
1389, 1319, 1277, 1231, 1112, 1089, 1055.

In vitro antimicrobial screening. Minimal growth media
(MM) was prepared as previously described.’> Yeast extract
peptone dextrose (YEPD) media was composed of 2% (w/v)
glucose, 2% (w/v) bacteriological peptone and 1% (w/v) yeast
extract. To solidify the media 2% (w/v) bacteriological agar was
added when required. Nutrient broth and phosphate buffered
saline (PBS) were made up according to the manufacturer’s
instructions (Scharlau Microbiology and Aldrich, respectively).

In vitro bacterial susceptibility testing. E. coli and methicillin-
resistant S. aureus (MRSA) were grown on nutrient broth agar
plates at 310 K and maintained at 277 K for short-term storage.
All assays were run in triplicate and on three independent
occasions. Fresh solutions of complexes were prepared immedi-
ately prior to testing. Complexes (0.020 g) were added to DMSO
(1 cm3) then water (9 cm’) was added to give a stock solution
(concentration 2000 mg cm ™). Complexes with low solubility
were tested as fine suspensions. The stock solution (1 cm®) was
added to water (9 cm®) to yield a solution/suspension with a con-
centration of 200 ug cm™>.

Nutrient broth (100 pl) was added to each well of a 96-well,
flat-bottomed microtitre plate. Water (100 ul) was added to
column 1 of the plate (negative control with no bacterial cells).
Column 2 was the positive control (media with bacterial cells).
100 ul of the above complex solution (200 ug cm™) was added
to every well in column 3. Serial dilutions (1:1) were made
from column 3-12 to produce a test concentration range of
100-0.2 ug cm ™.

E. coli and MRSA were grown overnight to the stationary
phase in nutrient broth at 310 K and 200 rpm. The cells were
diluted to give an optical density of 0.1 at A = 600 nm. The cell
suspension (100 ul) was added to every well in columns 2—12.
The completed plates were incubated at 310 K in a static incuba-
tor and the final optical density recorded. MICs, values
(minimum concentration required to inhibit 50% of cell growth)
were then determined and expressed in terms of uM
concentration.

In vitro fungal susceptibility testing. C. albicans (ATCC
10231) was grown on YEPD agar plates at 310 K and main-
tained at 277 K for short-term storage. All assays were run in tri-
plicate and on three independent occasions. Fresh solutions of
complexes were prepared immediately prior to testing. Com-
plexes (0.020 g) were dissolved in DMSO (1 ¢cm?) and added to
water (9 cm’) to give a stock solution (concentration 2000 mg
cm ™). Complexes with low solubility were tested as fine suspen-
sions. The stock solution (or suspension) (0.5 cm®) was added to
water (9.5 cm’) to give a solution with a concentration of 100 pg
cm ™. MM (100 ul) was added to each well of a 96-well, round-
bottomed microtitre plate. Water (100 ul) was added to column 1
of the plate (negative control, media with no fungal cells).
Column 2 was the positive control (media and fungal cells only).
100 ul of the above complex solution (100 ug cm™) was added
to every well in column 3. Serial dilutions (1:1) were made
from columns 3—-12 to produce a test concentration range of
50-0.1 ug cm ™.

C. albicans was grown to the stationary phase overnight at
310 K on YEPD media. The cells were washed with PBS sol-
ution and resuspended in MM at a density of 5 x 10° cells cm™.
The cell suspension (100 pl) was added to every well in
columns 2-12. The completed plate was then covered with
acetate foil (Sarstedt) to prevent dehydration. The plate was incu-
bated at 310 K with continuous shaking for 24 h. The optical
density (A = 540 nm) of each well was recorded at 1 h intervals.
MIC, oo values were then determined and expressed in terms of
UM concentration.

In vivo cytotoxicity studies using Galleria mellonella. Since
the immune system of insects bears a number of strong structural
and functional similarities to the innate immune system of
mammals,>”*® insects can be used to screen the in vivo effect of
drugs without the necessity of mammalian testing. The larvae of
the greater wax moth, G. mellonella, have been utilised success-
fully since 1982 for in vivo studies of the pathogenicity of bac-
teria and fungi.®**® With specific reference to C. albicans, the
G. mellonella model has provided invaluable information from
fungal virulence studies.***® Furthermore, the curative effects of
antifungal prescription drugs*® and some silver(1) compounds®
on C. albicans-infected G. mellonella have already been
determined.

G. mellonella larvae in the sixth developmental stage were
used to determine the in vivo cytotoxicity of ketoconazole,
AgNO; and complexes 1-7. Ten healthy larvae, between
0.20-0.40 g in weight and with no cuticle discoloration, were
used in each test. Fresh solutions of the test complexes were pre-
pared immediately prior to testing. Test compounds (0.020 g)
were dissolved in DMSO (1 ¢m?®) and added to water (9 cm®) to
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give a stock solution (concentration 2000 mg em™). Test sol-
utions were made from this stock solution. In cases of limited
solubility the resulting suspensions were used for the tests. Each
compound was tested at two concentrations; 100 pg cm™ and
twice their MIC ¢, value (in pg cm™). The test solution (20 pul)
was administered to the larvae by injection directly into the hae-
mocoel through the last pro-leg. The base of the pro-leg can be
opened by applying gentle pressure to the sides of the larvae and
this aperture will re-seal after removal of the syringe without
leaving a scar. Larvae were placed in sterile petri dishes and
incubated at 303 K for 72 h. Larvae survival was monitored after
this 72 h period. Death was assessed by the lack of movement in
response to stimulus together with discoloration of the cuticle.
Three controls were employed in all assays. The first consisted
of untouched larvae maintained at the same temperature as the
test larvae. The second was larvae with the pro-leg pierced with
an inoculation needle but no substance injected into them. The
third control was larvae that were inoculated with 20 pl of the
same sterile water used to make the test solutions.

In vivo antifungal screening using G. mellonella. G. mello-
nella larvae in the sixth developmental stage were used to deter-
mine the in vivo antimicrobial activity of ketoconazole, AgNO;
and complexes 1-7. As with the cytotoxicity studies (see above)
ten larvae were injected with a fresh solution (or suspension) of
the complex. Test concentrations were again 100 ug cm™ and
twice their MIC, o value (in pug em™>). C. albicans was grown to
the stationary phase in YEPD media at 310 K for 24 h. The cell
concentration was assessed using a haemocytometer following
dilution of the culture with PBS. The cells were washed three
times with PBS and re-suspended in sterile PBS following har-
vesting by centrifugation (4000 x g for 10 min) to yield a sus-
pension of 1 x 10® cell cm™

Two treatments (prophylactic and treatment of infection) were
employed in the screening of the test solutions. Five controls
were used in each assay. The first control consisted of untouched
larvae maintained at the same temperature as the test larvae
(negative control). The second was larvae with the pro-leg
pierced with an inoculation needle but no substance injected into
them. The third control was larvae that were inoculated with the
same sterile water (20 ul) used to make the test solutions, and
the fourth was larvae inoculated with the same sterile PBS sol-
ution used to wash and make the C. albicans suspension. The
positive control consisted of larvae inoculated with C. albicans
and no test solution administered. The latter control is the one
given in the results illustrated in Fig. 12. Significance was deter-
mined using the log rank (Mantel-Cox) method. Positive
results were placed into one of three categories: * = p < 0.05,
** =p<0.01 and *** = p <0.001.

Prophylactic treatment. The test solution (20 pul) was adminis-
tered to the larvae by injection as outlined above. Larvae were
then placed in sterile petri dishes and incubated at 303 K for 1 h,
after which time they were inoculated with 20 ul of the C. albi-
cans cell suspension (2 x 10° cells). This number represents a
lethal dose of fungal cells. The larvae were incubated at 303 K
for 72 h and larvae survival was monitored immediately after
this period.

Treatment of infection. Larvae were inoculated with 20 ul of
the C. albicans suspension (2 x 10° cells) by injection as

described above. The larvae were then placed in sterile petri
dishes and incubated at 303 K for 1 h, after which time the test
solution (20 ul) was administered by injection. The larvae were
incubated at 303 K for 72 h and larvae survival was monitored
immediately after this period.

Results and discussion
Complex syntheses and structures

Synthetic routes to the complexes are given in Scheme 1. Our
previously reported synthesis of [Ag,(9-aca),] (1), from Ag,O
and 9-acaH,*® had the major drawback of a low product yield
(21%). A greatly improved yield (73%) was achieved by reacting
the salt, K*(9-aca)~, with AgNO5. The complex consists of poly-
meric ribbons of linked disilver(1), syn—syn bridged, dicarboxy-
late units and having an Ag-Ag distance of 2.851(1) A.»
Complex 1 was used as the starting material for the preparation
of the other silver(i) complexes. The previously reported
complex, [Agy(9-aca),(NH3);] (2),*° was prepared by reacting 1
with aqueous ammonia. Complex 2 was shown to be tetrameric
and centrosymmetric, with two syn—syn bridging carboxylates
linked to the bimetallic Ag—Ag core, and a further two, syn—anti
bridged carboxylate ligands in the equatorial plane, being coor-
dinated to one Ag in the bimetallic core and to a second Ag,
with the latter also bonded to an NH; ligand. The closest Ag—Ag
distance in the complex is 2.939(1) A.

The imidazole complex, [Ag(imidH),3(CH;CN)5](9-aca)
(3), was synthesised from 1 and imidazole in acetonitrile. In this
process, 1 disintegrates and re-assembles as a mononuclear
complex where the metal ion is ligated by imidazole and aceto-
nitrile, and the 9-aca™ ligands are relegated to uncoordinated
counterions. The X-ray crystal structure of 3 is shown in Fig. 2
and selected bond lengths and angles are given in Table 2. The
Ag(1) ion forms short bonds to the imine N atom of two imida-
zole molcules (both Ag—N = 2.126(2) A). These Ag—N bonds
are slightly longer than those found in the mononuclear imida-
zole complexes, [Ag(imidH),]NO; (2.115(2) and 2.120(2) A)
and [Ag(imidH),]CIOy4 (2.131(2) A),>" and also in the trisilver(i)
complex, [Ags(imidH)s](ClO4); (2.075 A).>* A third ligand is
coordinated to the metal in 3 and this has been modelled as a
70 : 30 disorder between acetonitrile and imidazole, respectively.
The metal-nitrogen bonds to this third ligand are somewhat
longer again (Agl-N51 acetonitrile = 2.713(8) A; Agl-N41
imidazole = 2.588(17) A). There is also a longer interaction with
the carboxylate oxygen atom of a neighbouring 9-aca™ unit
(Agl-02B = 3.009(2) A) (Fig. 3). In [Ag(imidH), 5(CH;CN), /]-

[AggimidH)y(9-aca)s(Me OH)a] (4)

imidH

([Ag(1-Me-imid) ][ Agy(9-acalg]} (5) MeOH [ Ag(imi dH), ;(MeCN) 7)(9-aca) ()

- Moimis ImidH
MeCN
B Mso
[Ag4(9-aca)QTH)y) @) *——gr—— [Agy(-aca)y] y————— AgNOs + R*(9-aca)’

apim 1-Bu-inid
MeCN MeCN
E1OHMeO EtOH

[Ag(apim)](9-aca) HyO (7) {[Ag(1-Bu-imid)}o[ Agy(9-aca)s]} (6)

Scheme 1 Synthetic routes to the complexes.
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Table 2 Selected bond lengths (A) and angles (°)

Table 2 (Contd.)

Complex 3
Agl-N21
Agl-N31
Agl-N41
Agl-N51
Agl-02*

Symmetry transformations used to generate equivalent atoms:

2.126(2)
2.126(2)
2.588(17)
2.713(8)
3.009(2)

*—x+ 12,y —12,—z+1/2

Complex 4
Agl-N21
Agl-N31
Agl-Ag2
Ag2-0O1B
Ag2-0O1A
Ag2-02A
Ag3-01D
Ag3-01C
Ag3-041
Ag3-Ag3

Symmetry transformations used to generate equivalent atoms:

* —x =z + 1/2

Complex 5
Agl-012C*
Agl-011C
Agl-O11A
Agl-O11B
Agl-Agl*
Agl-Ag2*
Agl-Ag2
Ag2-012B*
Ag2-012A
Ag2-Agl*
Ag3-Ol11E
Ag3-O12E}
Ag3-Ol11F
Ag3-011D
Ag3-Ag3t
Ag3-Agdt
Ag3-Agd
Agd-012D7F
Agd-O12F
Agd-Ag3T
Ag5-NIB
Ag5-N1A
Ag6-N1C
Ag6-N1D

Symmetry transformations used to generate equivalent atoms:

2.088(2)
2.089(2)
3.0651(4)
2.218(2)
2.416(2)
2.424(2)
2.1574(19)
2.1681(19)
2.467(2)
2.8818(5)

2.246(5)
2.272(5)
2.316(6)
2.384(5)
2.7860(12)
2.9623(9)
3.0079(9)
2.188(5)
2.193(5)
2.9623(9)
2.222(6)
2.248(6)
2.319(6)
2.389(5)
2.7889(12)
2.9489(9)
2.9838(9)
2.183(5)
2.185(5)
2.9488(9)
2.124(9)
2.136(8)
2.131(8)
2.134(8)

N21-Agl-N31
N21-Agl-N41
N31-Agl-N41
N21-Agl-N51
N31-Agl-N51
N21-Agl-02*
N31-Agl-02*
N41-Agl-02*
N51-Agl-02*

N21-Agl-N31
O(B-Ag2-01A)
O1B-Ag2-02A
O1A-Ag2-02A
01D-Ag3-01C
01D-Ag3-041

01C-Ag3-041

01D-Ag3-02B
01C-Ag3-02B
041-Ag3-02B

012C*1-Agl-O11C
012C*-Agl-O11A
O11C-AgI-O11A
012C*-Agl-O11B
011C-AgI-O11B
O11A-Agl-O11B
O12B*-Ag2-012A
O11E-Ag3-O12E}
O11E-Ag3-O11F
O12E+-Ag3-O11F
O11E-Ag3-O11D
O12E-Ag3-011D
O11F-Ag3-O11D
012D}-Ag4-O12F
NIB-Ag5-N1A
N1B-Ag5-O11B
N1A-Ag5-O11B
NI1B-Ag5-O11A
NI1A-Ag5-Ol11A
O11B-Ag5-O11A
NIC-Ag6-NID
N1C-Ag6-0O11D
NID-Ag6-O11D
N1C-Ag6-O11F
NID-Ag6-O11F
011D-Ag6-O11F

Fext L=y—zf-x+2,-p—z+t 1

Complex 6
Agl-O1A
Agl-02D
Agl-Agd
Agl-Ag2
Ag2-Ol1E
Ag2-OI1F
Ag2-02A
Ag2-0O1B
Ag2-Agd
Ag2-Ag3
Ag3-01C
Ag3-02B
Ag3-Agd
Ag4-O1D
Ag4-02C
Agd-O2F
Ag4-O2E
Ag5-N1A

2.207(4)
2.217(4)
2.8750(6)
2.9028(6)
2.222(4)
2.226(4)
2.335(4)
2.357(4)
2.8365(5)
2.8770(6)
2.174(4)
2.192(4)
2.8949(6)
2.275(4)
2.304(4)
2.354(4)
2.355(4)
2.116(5)

O1A-Agl-02D
OIE-Ag2-O1F

OIE-Ag2-02A
OIF-Ag2-02A
OIE-Ag2-O1B
OIF-Ag2-O1B

02A-Ag2-O1B
01C-Ag3-02B
O1D-Agd-02C
O1D-Ag4-O2F
02C-Agd-O2F

01D-Ag4-O2E
02C-Agd-O2E
02F-Ag4-O2E

NIA-Ag5-N1B
NI1A-Ag5-02A
NIB-Ag5-02A
N1A-Ag5-O1B

168.51(10)
96.1(6)
94.7(6)
93.7(3)
96.0(3)
93.98(8)
92.38(7)
76.5(3)
88.78(18)

174.33(10)
143.97(7)
154.09(7)
54.34(7)
162.45(8)
102.11(7)
92.58(8)
94.62(7)
95.22(7)
88.95(7)

156.3(2)
100.7(2)
103.02)
93.4(2)
87.79(19)
88.2(2)
140.4(2)
158.7(2)
99.5(2)
101.72)
94.7(2
88.4(2)
86.8(2)
140.9(2)
170.8(3)
90.4(2)
96.1(2)
100.9(3)
87.1(3)
75.53(17)
171.2(3)
91.8(2)
95.4(2)
84.1(3)
102.8(3)
73.58(17)

132.81(16)
154.83(15)
108.55(15)
91.25(14)
94.95(15)
99.15(16)
93.86(14)
135.29(16)
89.46(15)
107.09(18)
93.00(15)
92.01(17)
102.37(15)
155.64(13)
176.98(18)
93.44(16)
89.43(15)
89.53(16)

Ag5-N1B 2.117(5) N1B-Ag5-0O1B 92.03(16)
Ag6-N1D 2.131(5) 02A-Ag5-01B 76.98(11)
Ag6-N1C 2.131(5) N1D-Ag6-N1C 175.1(2)
N1D-Ag6-O1D 90.55(19)
N1C-Ag6-0O1D 94.19(19)
N1D-Ag6-02C 97.24(17)
N1C-Ag6-02C 85.17(16)
01D-Ag6-02C 73.86(12)
Ag7-01G 2.196(4) 01G-Ag7-02] 132.37(16)
Ag7-02] 2.202(4) 02J-Ag7-0O1L 105.68(16)
Ag7-O1L 2.564(4) O1K-Ag8-02L 153.12(15)
AgT7-Agl0 2.8760(6) O1K-Ag8-02G 99.71(16)
AgT7-Ag8 2.9646(6) 02L-Ag8-02G 104.46(16)
Ag8-01K 2.217(4) O1K-Ag8-O1H 104.54(16)
Ag8-O2L 2.257(4) 02L-Ag8-O1H 85.64(14)
Ag8-02G 2.301(4) 02G-Ag8-O1H 93.64(14)
Ag8-O1H 2.382(4) O11-Ag9-02H 135.17(16)
Ag8-Agl0 2.8165(5) 02I-Agl0-0O1J 88.66(15)
Ag8-Ag9 2.8544(6) 021-Agl0-02K 95.31(16)
Ag9-011 2.178(4) 01J-Agl0-0O2K 109.95(17)
Ag9-02H 2.203(4) 021-Agl0-O1L 99.16(15)
Ag9-Agl0 2.9511(6) 01J-Agl0-O1L 87.68(16)
Agl0-021 2.286(4) 02K-Agl0-O1L 157.45(14)
Agl0-O1J 2.304(4) N1E-Agl1-N1F 176.84(19)
Agl0-0O2K 2.309(4) N1E-Agl1-O1H 93.65(16)
Agl0-OIL 2.374(4) N1F-Agl1-O1H 89.24(16)
Agl1-NI1E 2.112(5) N1E-Agl1-02G 87.63(17)
Agl1-N1F 2.113(5) N1F-Agl1-02G 94.29(16)
Agl2-N1H 2.122(5) O1H-Agl1-02G 76.30(11)
Agl2-N1G 2.124(5) N1H-Agl2-N1G 175.0(2)
N1H-Agl12-01J 94.68(18)
N1G-Agl2-01J 90.14(18)
N1H-Agl2-02I 86.61(17)
N1G-Agl2-021 95.99(18)
01J-Agl12-021 73.43(12)
Complex 7
Agl-N1 2.0841(18)
Agl-N3* 2.1069(18) N1-Agl-N3* 177.76(7)

Symmetry transformations used to generate equivalent atoms:
*x+12,y+1/2,z

Fig. 2 The asymmetric unit of [Ag(imidH),3(CH3CN)q;](9-aca) (3)
showing the disorder of one imidH with CH3CN.

(9-aca) (3), the metal is coordinated approximately linearly with
the first two imidazole ligands (N21-Agl-N31 = 168.51(10)°),
whilst the third ligand lies almost perpendicular (N21-Agl1-N51
= 93.7(3)°). The structure is linked into chains by hydrogen
bonding between carboxylate oxygens and the hydrogen atoms
on the pyrrole-type nitrogens (N-H) of the imidazoles (Fig. 3).

This journal is © The Royal Society of Chemistry 2012

Dalton Trans., 2012, 41, 6516-6527 | 6521


http://dx.doi.org/10.1039/c2dt12166b

Downloaded by NUI Maynooth on 29 January 2013
Published on 05 April 2012 on http://pubs.rsc.org | doi:10.1039/C2DT12166B

Table 3 Antimicrobial activities of complexes 1-7, silver nitrate and the clinically used compounds, ketoconazole and silver sulfadiazine. MIC
values are given in uM concentrations of complex and Ag(1) ions (in brackets)

E. coli MICs, (LM)

MRSA MICso (uM) C. albicans MIC g (UM)

Complex {[Ag'] uM} {[Ag"] uM} {[Ag"] uM}
[Agy(9-aca),] (1) 22.44 {44.88} 11.36 {22.72} 0.95 {1.90}
[Ag4(9-aca)4(NH3),] (2) 8.51 {34.04} 5.44 {21.76} 0.14 {0.56}
[Ag(imidH), 3(CH3CN), 7](9-aca) (3) 20.66 {20.66} 67.07 {67.07} 0.38 (0.38}
[Age(imidH)4(9-aca)s(MeOH),] (4) 1.87 {11.22} 5.85 {35.10} 0.54 {3.24}
{[Ag(1-Me-imid),],[Ag4(9-aca)s]} (5) 8.64 {51.84} 8.10 {48.60} 0.34 {2.04}
{[Ag(1-Bu-imid),]>[Ag4(9-aca)s]} (6) 7.04 {42.24} 6.16 {36.96} 0.32 {1.92}
[Ag(apim)](9-aca)-H,O (7) 30.13 {30.13} 27.50 {27.50} 0.43 {0.43}
AgNO; 65.19 {65.19} 34.32 {34.32} 1.83 {1.83}
Ketoconazole 4.70

Silver sulfadiazine 73.05 {73.05}

50.20 {50.20}

Fig. 3 Weak interactions of the silver(1) centre with the carboxylate
oxygen atoms and the H-bonding between the imidazole N-H and car-
boxylate oxygens in [Ag(imidH), 3(CH;CN)y7](9-aca) (3). The disor-
dered solvate ligand has been omitted for clarity and H-bonds are
represented by dashed lines.

This assembly is further supported by m—r stacking of the imida-
zole groups, with a centroid—centroid distance of 3.64 A.

The IR spectrum of 3 exhibits a weak band at 2250 cm™" for
the C=N bond stretching vibration. Bands are also observed at
3436 and 1072 cm™', corresponding to the N-H and C-N
stretching vibrations of imidazole, respectively.’' Bands for the
anthracene ring system occur at 1625, 760 and 739 cm™'.33*
Carboxylate vocojsym and Viocoysym Vibrations are present at
1562 and 1426 cm™', respectively, giving a Aoco) value of
136 cm™". This value indicates a bridging carboxylate which, in
this case, is associated with the pseudo-bridging via hydrogen
bonds.>

[Age(imidH)4(9-aca)s(MeOH),] (4) was synthesised from 1
and imidazole in methanol, with a yield of 44%. Thus, a minor
change in the reaction conditions (methanol as solvent as
opposed to acetonitrile) causes a dramatic change in the product
formulation. The X-ray crystal structure of the hexanuclear
complex 4 (Fig. 4 and Table 2) shows that there is a two-fold
axis through the molecule and that it contains both three- and
five-coordinate silver(r) ions (Fig. 5). The Agl—-Ag2 bond length
is 3.0651(4) A, while the Ag3—-Ag3A bond is significantly
shorter at 2.8818(5) A. Both of these Ag—Ag distances are close
to that in metallic silver (2.889(6) A) and are much shorter than
the sum of the van der Waals radii of two Ag(0) atoms (3.44 A),
implying the existence of d'°-d'® interactions between two
closed-shell Ag(1) ions. Such argentophilic interactions have
been observed in a large number of multinuclear Ag(i) com-
plexes.>® In 4, Agl is coordinated approximately linearly by two
imidazoles (N21-Agl-N31 bond angle of 174.33(10)°) with
identical Ag—N bond lengths (2.088(2) A). These latter bonds

Fig. 4 Structure of [Ags(imidH)4(9-aca)s(MeOH),] (4). The two-fold
axis lies in the plane of the page and bisects the Ag3—Ag3A vector (sym-
metry code —x,y,—z + 1/2). H-bonds are represented by dashed lines.

Fig. 5 Coordination sphere of [Ags(imidH)4(9-aca)s(MeOH),] (4) with
the imidazole and anthracene rings omitted for clarity.

are slightly shorter than the corresponding Ag—N bond (2.126(2)
A) of the ordered imidazole in [Ag(imidH), 5(CH;CN), ;](9-aca)
(3). In complex (4), Ag2 is coordinated to three different carbox-
ylate groups as well as being bonded to Agl. Ag3 is also coordi-
nated to three different carboxylate groups, plus the oxygen of a
coordinated methanol molecule and another silver ion (Ag3A).
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Two of the carboxylate ligands are in the syn—syn configuration
(O1C and O1Ca, O1D and O1DA), two are syn—anti (O1B and
02B, O1BA and O2BA) and two are coordinated in a symmetri-
cal, bidentate chelation mode (OlA and O2A, OIAA and
O2AA). There is also intramolecular H-bonding between the OH
of the alcohol group and a neighbouring carboxylate oxygen
atom (041-O1A 2.782(3) A), as well as intermolecular H-
bonding between the amine hydrogen of the imidazole and a car-
boxylate oxygen of a neighbouring 9-aca™ ligand (N22-O2A
2.796(3) A under symmetry operation —x + 1/2, y — 1/2, z and
N32-02B, 2.815(3) under —x + 1/2, y + 1/2, z). A very weak
n-interaction between Ag(1) and the anthracene ring of a neigh-
bouring molecule is also observed. The structure of 4 is quite
different to that of the recently reported, hexanuclear, centrosym-
metric complex, [Agq(dmp),(9-aca)s] (dmp = 2,6-dimethylpyri-
dine),”” prepared by reacting AgNO; with 9-acaH in the
presence of dmp. In this complex, all six Ag(1) ions are ligated
by carboxylate oxygen atoms, and the two heterocyclic, N-donor
dmp ligands are bonded to separate metal centres. In addition,
the solid state structure of [Agg(dmp),(9-aca)s] exhibits intramo-
lecular and intermolecular anthracene C—H---Ag interactions as
well as m— stacking interactions. The metal coordination geome-
try within the hexanuclear core of 4 is also very different to that
recently reported for a number of hexa-Ag(r) thiosemicarbazone
complexes and, furthermore, the shortest Ag—Ag distances in the
latter complexes are significantly longer than in 4.°">°

Fig. 6 The two independent molecules of [Ag(1-Me-imid),],[Ag4(9-
aca)g] (5) illustrating the difference in arrangement of the anthracene
ligands.

The IR spectrum of 4 has peaks at 3448 and 1091 cm™" for
the O—H and C—N stretching vibrations of MeOH and imidazole,
respectively. Distinctive bands for the vibrations of the anthra-
cene ring system appear at 1625, 760 and 736 cm™". Carboxylate
Vocoysym and  Vocoysym Vibrations occur at 1538 and
1433 cm™', respectively, giving a Aoco) value of 105 em™! and
implying the presence of bridging carboxylates.

The initial beige precipitate which formed upon reacting 1
with 1-methylimidazole (1-Me-imidH) in ethanol was recrystal-
lised from DMSO to give {[Ag(1-Me-imid),],[Ag4(9-aca)s]}
(5). The X-ray crystal structure of 5 (Fig. 6 and Table 2) shows it
to consist of two independent, centrosymmetric molecules which
differ chiefly in the angle between the planes of the anthracene
ligands. Each molecule of 5 contains a dianionic, complex
central core, [Ag4(9-aca)6]2_, with the two complex cations,
[Ag(1-Me-imidH),]", on the periphery of the molecule. It is the
manner in which these two dications are each linked to the tetra-
nuclear core by a bridging carboxylate oxygen atom that princi-
pally distinguishes this structure from 4.

The central tetrasilver(1) cluster in 5 contains Ag—Ag bond
lengths ranging from 2.786 to 3.009 A, and the average distance
from a core metal to a peripheral metal is 5.821 A (Fig. 7). The
Agl-AglA distance of 2.786 A in 5 is the shortest in the present
family of Ag(1) anthracenecarboxylate complexes and it is also
significantly smaller than any argentophilic interactions found in
[Agg(dmp),(9-aca)s] (minimum Ag-Ag is 2.895 A)°7 In
complex 5, two 9-aca” ligands (O11C, O12C and O111, O12I)
are coordinated in a syn—syn fashion to the central silver(1) ions
(Agl, AglA), and the other four carboxylate ligands are

Ag2A

Fig. 7 Simplified structures of [Ag(1-Me-imid),],[Ags(9-aca)s] (5)
showing (a) Ag—Ag and Ag—O bonding and (b) Ag—Ag bond distances
(A) for one of the molecules.
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Fig. 9 Structure of one molecule of {[Ag(1-Bu-imid),],[Ag4(9-aca)s]} (6) with the anthracene rings and alkyl chains removed for clarity.

coordinated to two central silver(r) ions and one peripheral silver
(1) ion. The average core Ag—O bond length is 2.304 A (e.g.
Agl-Ol11) and the average peripheral Ag—O bond length is
2.671 A (e.g. (Ag5-O11A). The 1-Me-imid ligands are coordi-
nated to the metals through the imine N atom and lie in an
approximately linear arrangement (N1A—-Ag5-NI1B bond angle
is 171.10°). The methyl groups on each of the two imidazole
ligands are cis to each other and are orientated towards the centre
of the molecule.

The IR spectrum of 5 contains bands at 1621, 772 and
736 cm™' for the anthracene ring system, and a band for the
C-N stretching vibration of the imidazole ring at 1087 cm™'.
The carboxylate Viocojasym and Viocoysym stretching vibrations
occur at 1565 and 1428 cm™', respectively, giving a Aoco)

value of 137 cm™'. This value indicates the presence of carboxy-
lates with a chelating and/or bridging mode of coordination.

The reaction of 1 with 1-butylimidazole in acetonitrile pro-
duced a beige solid which, upon recrystallisation from ethanol,
yielded {[Ag(1-Bu-imid),],[Ag4(9-aca)e]} (6). The X-ray crystal
structure of 6 (Fig. 8, Table 2) shows two very similar but inde-
pendent assemblies within the asymmetric unit and orientated at
approximately 90° to each other. There is also some disorder
within the butyl chains of the imidazole ligands. The complex
contains two-, four- and six-coordinate silver(i) ions (Fig. 9).
Two of the metals are coordinated approximately linearly to the
imine nitrogen atoms of two 1-Bu-imid ligands (bond angles of
176.98(18), 175.1(2), 176.84(19) and 175.0(2)°), with an
average Ag-N bond length of 2.124 A. There are also longer
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Fig. 10 Structure of one asymmetric unit of [Ag(apim)](9-aca)-H,O
(.

interactions of these silver ions with carboxylate oxygen atoms
at the central core of the molecule (Ag5—-02A, Ag5-Ol1B,
Ag6—02C and Ag6—OI1D bond lengths of 2.696(4), 2.809(4),
2.756(4) and 2.603(4) A, respectively). Within the central,
dicationic [Ags(9-aca)s]*~ core there are five Ag—Ag bonds, with
lengths ranging from 2.8165(5) to 2.9646(6) A. All of the
anthracene ligands use both of their carboxylate oxygen atoms to
coordinate to two different silver ions in a syn—syn binding
mode. There are no intramolecular or intermolecular n—m inter-
actions between either the anthracene or the imidazole rings. The
structure of 6 is very similar to that of 5, indicating that the
change in the length of the alkyl chain (from methyl to butyl) on
the tertiary N atom of the imidazole ring does not appear to
affect the core structure of the product.

The IR spectrum of 6 contains bands for the anthracene rings
at 1622, 759 and 732 cm™'. The band representing the C-N
stretching vibration of the 1-Bu-imid ligands occur at
1085 cm™'. Carboxylate Viocoysym and Viocoysym Vibrations
appear at 1565 and 1427 em™, respectively, giving a Aco)
value of 138 cm™" and indicating that the carboxylate ligands
are coordinated in either a chelating or a bridging mode.

[Ag(apim)](9-aca)-H,O (7) was synthesised in high yield from
1 and 1-(3-aminopropyl)-imidazole (apim) in acetonitrile. The
X-ray crystal structure of 7 (Fig. 10, Table 2) shows the metal
bonded to the imine nitrogen atom of the imidazole ring (Agl—
NI = 2.0841(18) A). The metals and the apim ligands bond
together to form 1-D, zig-zag polymeric chains (Fig. 11) with
the silver being coordinated approximately linearly to the imine
nitrogen of one apim and the nitrogen of the pendant amine
function of another imidazole (Agl-N3A = 2.1069(18) A and
N1-Agl-N3A = 177.76(7)°). n=—r Stacking interactions are also
observed between the imidazole rings, creating 2-D sheets (ESIf
Fig. a). The water molecule of hydration links to the anionic

9-aca” units through H-bonds forming polymeric chains which
zig-zag in-and-out through the spaces in the [Ag(apim)],”"
sheets (ESIt Fig. b). There are also H-bonding interactions
linking a carboxylate oxygen to the hydrogen of the pendant
amine group (ESIf Fig. ¢). Due to the relatively long distance
between the sheets, there are no n—m interactions involving the
anthracene rings. The structurally similar and previously charac-
terised®® apim complex, [Ag(apim)]ClO., also shows the same
type of zig-zag arrangement of polymeric [Ag(apim)],”" chains,
but this complex has weak metal-anion (ClO, ) interactions
which are not present in 7.

The IR spectrum of 7 contains bands at 3427 and 3236 cm™"
corresponding to the apim NH, stretching vibrations, and a band
at 1089 cm™' for the C—N stretching vibration of the imidazole
ring. Two bands are present at 761 and 735 cm™" for the stretch-
ing vibrations of the anthracene ring system, but the third band,
which is usually located at approximately 1625 cm™, is masked
by the strong Vocojsym carboxylate stretching band centred at
1568 cm™'. The Vocoyym Stretching vibration occurs at
1426 cm™', thus giving a Aoco) value of 142 cm™". Although
this value implies that the carboxylate is either chelating or brid-
ging™ it is evident from the X-ray crystal structure of the
complex that this is not the case. Thus, it must be stressed that
coordination mode assignments based on Aco values®® can,
indeed, be quite tentative.

In summary, it is evident from the formulations of complexes
3-7 that a slight change in either the reaction solvent or the
structure of the imidazole ligand employed during the synthesis
can have a marked effect on the structure of the isolated product.
Unsubstituted imidazole leads to the mononuclear species, 3.
Having an alkyl substituent on the tertiary N atom of the imida-
zole gives the hexanuclear complexes, 4, 5 and 6. When the
alkyl substituent carries an amine functionality on its terminus
the polymeric complex 7 forms.

Antimicrobial activity

The silver(1) complexes, 1-7, the simple silver(1) salt, silver
nitrate, and selected, known antimicrobial drugs (antibacterial
silver sulfadiazine and antifungal ketoconazole) were screened,
in vitro, for their ability to inhibit the growth of pathogenic bac-
terial and fungal cells. Activities (as MICsy or MIC;, values)
are reported (Table 3) as uM concentrations of the complexes
and also as UM concentrations of administered Ag(1) ion in con-
sideration of the different amounts of Ag(i) ions present in the
various complexes. Test solutions (or suspensions) were made
by dissolving the sample in DMSO and diluting with water to
yield the required concentration. The maximum DMSO concen-
tration in any test solution was 0.5% v/v, and at this level the
DMSO does not inhibit the growth of the microbial cells. The
metal-free ligands (9-acaH and the various imidazoles) were also
screened for their biological activity and all were inactive at a
concentration of <100 pg cm™>.

In terms of both complex concentration and the concentration
of Ag(1) ions, 1-7 were all more active than AgNO5 and silver
sulfadiazine against Gram-negative E. coli. Against Gram-posi-
tive MRSA, only 3 was less active, in terms of complex concen-
tration, than AgNO;. Comparisons made on the basis of Ag(1)
ion concentration reveal that only complexes 1, 2 and 7 were
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Fig. 11

more active against MRSA than AgNOs;. In terms of Ag(1) ion
concentration, 1, 2 and 7 were more active than AgNOj; against
both species of bacteria. The structurally similar double complex
salts, 5 and 6, displayed similar antibacterial properties.

With respect to complex concentrations, 1-7 were all con-
siderably more active against C. albicans than both ketoconazole
and AgNO; (Table 3). However, as a function of Ag(i) ion con-
centration, only 2, 3 and 7 were a lot more active than AgNOs;.
The latter three complexes, which all contain N-donor imidazole
ligands, were more active than the parent carboxylate complex,
1. Complexes 5 and 6, which contain imidazole ligands carrying
substituents (Me or Bu) on the N1 atom of the heterocyclic ring,
and which also have ligated 9-aca™ anions, appear to be only
marginally more active than hexanuclear 4, which has un-substi-
tuted imidazoles coordinated to two of the metal centres. Against
all three microbial species, and in terms of Ag(1) ion content,
only 2 and 7 were significantly more active than AgNOs;.

In vivo toxicity profiling was carried out using the G. mello-
nella insect model. G. mellonella larvae were administered with
test solutions (or suspensions) by injection directly into the hae-
mocoel through the last pro-leg. Survival was monitored after
72 h and death was assessed by the lack of movement in
response to stimulus together with discoloration of the cuticle.
The toxicity of all of the test samples was assessed at two differ-
ent concentrations: 100 ug em™ and twice their MIC,qo value.
Silver nitrate and ketoconazole were used as reference standards.
It was found that all of the larvae survived the highest adminis-
tered concentration (100 pg cm™>) of AgNOs;, ketoconazole and
complexes 1-7. Two types of in vivo antifungal screening proto-
cols were conducted using the larvae: (i) prophylactic treatment
and (ii) the treatment of infection (pre-infected larvae). The
larvae were infected with a lethal dose of C. albicans (2 x 10°
fungal cells) in each of the two screening protocols. For prophy-
lactic treatment, the test compound was administered 1 h prior to
infection with C. albicans cells, while for the treatment of infec-
tion experiments the compound was administered 1 h after infec-
tion with C. albicans. In each case, larvae survival was assessed
after a 72 h interval and the results are presented in Fig. 12.

Complex 2, administered prophylactically at a concentration
of 100 ug cm™, significantly increased the survival rate (90%)
of G. mellonella larvae 72 h after infection with a lethal dose of
C. albicans cells. This response was superior to that given by
AgNO; (80%) and ketoconazole (75%), which were, in turn,
better than that the other Ag(i) complexes. When the prophylac-
tic experiment was repeated using a concentration dosage of
2 x MICqgp concentration the % survival of larvae decreased
in all cases. Complex 2 still offered the best protection (65%

[Ag(apim)],”" cationic polymer chains in the structure of [Ag(apim)](9-aca)-H,O (7).
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Fig. 12 Survival of G. mellonella larvae 72 h after being infected with
a lethal dose of C. albicans (2 x 10° fungal cells). For prophylactic treat-
ment, the test compound was administered 1 h prior to infection with C.
albicans cells, while for the treatment of infection experiments the com-
pound was administered 1 h after infection with C. albicans. Com-
pounds tested were AgNO3, ketoconazole and 1-7. All compounds were
administered at two different concentrations (100 pg cm™ and 2 x
MIC; ¢ concentration in pug cm™).

survival) and this was followed by AgNO3 (55%). Complex 1
and ketoconazole were equally active (50%) at this dosage.
Larvae which were pre-infected with a lethal dose of C. albi-
cans cells and then subsequently treated with 100 pg cm™ of
the test compounds, responded best to ketoconazole and silver
nitrate (both gave 75% survival after 72 h). The most effective
Ag(1) complex was 7 (70%), followed by 5 (60%) and 2 (60%).
At the 2 x MIC,(( concentration dosage all of the test materials
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generally offered less protection towards a pre-existing fungal
infection than at the 100 ug cm™ concentration level. AgNO;
performed best (60% survival), followed by 1 (35%), 2 (30%)
and 5 (30%). Under the same conditions, only 20% of infected
larvae survived upon treatment with ketoconazole.

In summary, the prophylactic method of administering the
silver(1) complexes proved more effective at increasing the survi-
val rate of G. mellonella infected with C. albicans. This may be
attributed not only to the efficacy of the test compound (direct
anti-effect) but also to the anticipated increase in the number of
haemocytes, antimicrobial peptides and proteins produced by the
innate immune system of the insect in response to the presence
of the administered foreign substance (indirect anti-effect).>°

Conclusions

A myriad of structurally diverse Ag(i) complexes containing the
9-anthracenecarboxylate anion and imidazoles can be syn-
thesised from the parent complex, [Ag,(9-aca),] (1). While
many of the complexes possess excellent, in vitro antifungal and
antibacterial activities they are, unanimously, more effective
against fungal cells. G. mellonella can survive high doses of the
Ag(1) complexes administered in vivo, and a number of the com-
plexes offer significant protection to larvae infected with a lethal
dose of pathogenic C. albicans cells. These silver complexes
offer significant potential as new antimicrobial agents for clinical
application.

Acknowledgements

Financial support from the Irish Research Council for Science,
Engineering and Technology (IRCSET) and the John and Pat
Hume Scholarship Scheme, NUI Maynooth (R. Curran) are
gratefully acknowledged.

Notes and references

S. R. Wilkinson and J. M. Kelly, Expert Rev. Mol. Med., 2009, 11, e31.

H. S. Fraimow and C. Tsigrelis, Crit. Care Clin., 2011, 27, 163.

M. H. Miceli, J. A. Diaz and S. A. Lee, Lancet Infect. Dis., 2011, 11,

142.

A. Melaiye and W. J. Youngs, Expert Opin. Ther. Pat., 2005, 15, 125.

S. Silver, FEMS Microbiol. Rev., 2003, 27, 341.

A. B. G. Lansdown, Crit. Rev. Toxicol., 2007, 37, 237.

M. K. Dasgupta, Adv. Perit. Dial., 1994, 10, 195.

A. P. Adams, E. M. Santschi and M. A. Mellencamp, Ver. Surg., 1999,

28, 219.

W. W. Monafo and B. Freedman, Surg. Clin. North Am., 1987, 67, 133.

J. B. Wright, K. Lam and R. E. Burrell, Am. J. Infect. Control, 1998, 26,

572.

11 J. B. Wright, K. Lam, J. Hansen and R. E. Burrell, Am. J. Infect. Control,
1999, 27, 344.

12 J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal and
K. M. Paknikar, Mol. Pharmaceutics, 2009, 6, 1388.

13 D. R. Monteiro, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho,
E. Rodrigues de Camargo and D. Barros Barbosa, Int. J. Antimicrob.
Agents, 2009, 34, 103.

14 M. McCann, M. Geraghty, M. Devereux, D. O’Shea, J. Mason and
L. O’Sullivan, Met.-Based Drugs, 2000, 7, 185.

15 B. Coyle, K. Kavanagh, M. McCann, M. Devereux and M. Geraghty,
BioMetals, 2003, 16, 321.

16 B. Coyle, P. Kinsella, M. McCann, M. Devereux, R. O’Connor,
M. Clynes and K. Kavanagh, Toxicol. in Vitro, 2004, 18, 63.

17 R. Rowan, M. McCann and K. Kavanagh, Med. Mycol., 2010, 48, 498.

O S

[ RN B RO I N

18

19

20

21

22

23

24
25

26
27

28
29

44

45

46

47

49

50

51

58

59

60

S. J. Berners-Price, R. K. Johnson, A. J. Giovenella, L. F. Faucette,
C. K. Mirabelli and P. J. Sadler, J. Inorg. Biochem., 1988, 33, 285.

K. M. Hindi, A. J. Ditto, M. J. Panzner, D. A. Medvetz, D. S. Han,
C. E. Hovis, J. K. Hilliard, J. B. Taylor, Y. H. Yun, C L. Cannon and
W. J. Youngs, Biomaterials, 2009, 30, 3771.

M.-X. Li, D. Zhang, L.-Z. Zhang and J.-Y. Niu, Inorg. Chem. Commun.,
2010, 13, 1268.

M. Devereux, M. McCann, D. O’ Shea, R. Kelly, D. A. Egan,
C. Deegan, K. Kavanagh, V. McKee and G. J. Finn, J. Inorg. Biochem.,
2004, 98, 1023.

M. McCann, B. Coyle, S. McKay, P. McCormack, K. Kavanagh,
M. Devereux, V. McKee, P. Kinsella, R. O’Connor and M. Clynes, Bio-
Metals, 2004, 17, 635.

B. Coyle, M. McCann, K. Kavanagh, M. Devereux, V. McKee, N. Kayal,
D. A. Egan, C. Deegan and G. J. Finn, J. Inorg. Biochem., 2004, 98, 1361.
K. B. Holt and A. J. Bard, Biochemistry, 2005, 44, 13214.

H. Wang, N. Law, G. Pearson, B. E. Van Donegen, R. M. Jarvis,
R. Goodacre and J. R. Lloyd, J. Bacteriol., 2009, 192, 1143.

Q. Feng, J. Biomed. Mater. Res., 2000, 52, 662.

W.-K. Jung, H.-C. Koo, K.-W. Kim, S. Shin, S.-H. Kim and Y.-H. Park,
Appl. Environ. Microbiol., 2008, 74, 2171.

S. L. Percival, P. G. Bowler and D. Russell, J. Hosp. Infect., 2005, 60, 1.

S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr and A. D. Russell, Lett.
Appl. Microbiol., 1997, 25, 279.

G. McDonnel and A. D. Russell, Clin. Microbiol. Rev., 1999, 12, 147.

A. D. Russell and W. B. Hugo, Prog. Med. Chem., 1994, 31, 351.

H. Arkawa and J. F. Neault, Biophys. J., 2001, 81, 1580.

H.-J. Park, J. Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M. B. Gu and
J. Yoon, Water Res., 2009, 43, 1027.

H. Le Pape, F. Solano-Serena, P. Contini, C. Devillers, A. Maftah and
P. Leprat, J. Inorg. Biochem., 2004, 98, 1054.

R. Curran, J. Lenehan, M. McCann, K. Kavanagh, M. Devereux,
D. A. Egan, G. Clifford, K. Keane, B. S. Creaven and V. McKee, /norg.
Chem. Commun., 2007, 10, 1149.

G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2007,
64, 112.

J. Klein, Scand. J. Immunol., 1997, 46, 558.

M. Salzet, Trends Immunol., 2001, 22, 285.

J. B. Walters and N. A. Ratcliffe, J. Insect Physiol., 1983, 29, 417.

G. Dunphy and A. Halwani, J. Insect Physiol., 1997, 43, 1023.

G. B. Dunphy, D. B. Morton, A. Kropinski and J. M. Chadwick, J. Inver-
tebr. Pathol., 1986, 47, 48.

K. Kavanagh and E. P. Reeves, FEMS Microbiol. Rev., 2004, 28, 101.

J. Renwick, P. Daly, E. P. Reeves and K. Kavanagh, Mycopathologia,
2006, 161, 377.

M. Brennan, D. Y. Thomas, M. Whiteway and K. Kavanagh, FEMS
Immunol. Med. Microbiol., 2002, 34, 153.

D. Bergin, L. Murphy, J. Keenan, M. Clynes and K. Kavanagh, Microbes
Infect., 2006, 8, 2105.

D. Bergin, E. P. Reeves, J. Renwick, F. B. Wientjes and K. Kavanagh,
Infect. Immun., 2005, 73, 4161.

P. Mowlds and K. Kavanagh, Mycopathologia, 2007, 165, 5.

P. Mowlds, A. Barron and K. Kavanagh, Microbes Infect., 2008, 10, 628.
E. Mylonakis, R. Moreno, J. B. El Khoury, A. Idnurm, J. Heitman, S.
B. Calderwood, F. M. Ausubel and A. Diener, Infect. Immun., 2005, 73,
3842.

R. Rowan, C. Moran, M. McCann and K. Kavanagh, BioMetals, 2008,
22, 461.

M. E. Effendy, C. Pettinari, R. Pettinari, A. Pizzablocca, B. W. Skelton
and A. H. White, Inorg. Chim. Acta, 2006, 359, 1504.

G. W. Eastland, M. A. Mazid, D. R. Russell and M. C. R. Symons,
J. Chem. Soc., Dalton Trans., 1980, 1682.

Spectroscopic Tools; http:/www.science-and-fun.de/tools/

Y. Kachkurova, Theor. Exp. Chem., 1967, 3, 498.

G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.

P. Pyykko, Chem. Rev., 1997, 97, 597.

C.-S. Liu, P-Q. Chen, Z. Chang, J.-J. Wang, L.-F. Yan, H.-W. Sun,
X.-H. Bu, Z. Lin, Z.-M. Li and S. R. Batten, Inorg. Chem. Commun.,
2008, 11, 159.

L. J. Ashfield, A. R. Cowley, J. R. Dilworth and P. S. Donnelly, Inorg.
Chem., 2004, 43, 4121.

A. Castifieiras, 1. Garcia-Santos, S. Dehnen and P. Sevillano, Polyhedron,
2006, 25, 3653.

R. Rowan, T. Tallon, A. M. Sheahan, R. Curran, M. McCann,
K. Kavanagh, M. Devereux and V. McKee, Polyhedron, 2006, 25, 1771.

This journal is © The Royal Society of Chemistry 2012

Dalton Trans., 2012, 41, 6516-6527 | 6527


http://dx.doi.org/10.1039/c2dt12166b



