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a b s t r a c t

Important steps in developing reliable bioindicators for soil quality are characterising soil biodiversity
and determining the response of its components to environmental factors across a range of land uses and
soil types. Baseline data from a national survey in Ireland were used to explore relationships between
diversity and composition of micro-organisms (bacteria, fungi, mycorrhiza), and micro-, meso- and
macro-fauna (nematodes; mites; earthworms, ants) across a general gradient representing dominant
land uses (arable, pasture, rough-grazing, forest and bogland). These diversity data were also linked to
soil physico-chemical properties. Differences in diversity and composition of meso- and macro-fauna,
but not microbes, were clear between agriculturally-managed (arable and pasture) and extensively-
managed (rough-grazing and bogland) soils corresponding to a broad division between ‘mineral’ and
‘organic’ soils. The abundance, richness and composition of nematode and earthworm taxa were
significantly congruent with a number of the other groups. Further analysis, using significant indicator
species from each group, identified potential target taxa and linked them to soil environmental gradients.
This study suggests that there is potential surrogacy between the diversity of key soil taxa groups and
that different sets of bioindicators may be most effective under agricultural and extensive land use.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Large-scale soil monitoring schemes that include biological
measurements are already established in many European countries
[e.g. 1e3]. These are important in detecting impacts of broader
environmental changes but also in assessingmore specific effects of
land management practices on soil organisms and the ecosystem
services they support. The EU thematic strategy on soil protection
has identified major threats to soil quality and biodiversity [4].
However, no integrated EU-wide programme of biological moni-
toring exists and therefore recent impetus has been towards a reli-
able and harmonised programme across different countries [5e8].
logy, Lancaster Environment
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While the advantages of a harmonised system are clear, it is
challenging to reach consensus on which groups of taxa, or partic-
ular “keystone” taxa, act as good indicators of soil quality and should
be monitored [5,9]. Indeed, there are different types of bio-
indicators, and the appropriate measures may depend on whether
the need is for an indicator of soil biodiversity itself, the ecological
soil status, or an environmental change imposed on the soil
ecosystem [10]. A number of studies have examined cross-taxon
congruency in aquatic systems e.g. [11,12] and above-ground
terrestrial systems [13e15], but such assessments for below-
ground biodiversity are scarce. This type of assessment can subse-
quently be used to identify potential surrogacy in soil bioindicators.

Understanding how the diversity of different groups of soil taxa
may provide information on the quality and status of soils remains
a challenge, because for many ecosystems we lack biological
typologies and the opportunity for comparative analyses. Conse-
quently, an important step in developing reliable bioindicators for
soil health is the characterisation of soil biodiversity and then
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determining the response of its components to environmental
factors across a range of land uses and soil types.

Systematic biodiversity surveys require co-located data
including a representative range of soil taxa, covering dominant
land use and soil types over an extensive geographical area in order
to make inferences about potential soil bioindicators. Here, we use
data from a national survey of soil biodiversity carried out in Ireland
to a) characterise soil taxa assemblages across five major land uses
(classified as arable, pasture, forest, rough-grazing and bogland),
b) examine how abundance, richness and composition of different
major groups of soil taxa are related to each other across land uses,
and c) determine potential indicator taxa for land use and
management and their relationship with soil environmental
factors.

2. Material and methods

2.1. National soil biodiversity survey

A baseline soil biodiversity survey (‘CréBeo’ project) was
undertaken to contribute to the development of a national soil
monitoring network in Ireland. This was linked with an earlier
initiative in soil chemical monitoring, the National Soil Database
(NSD) project [16], which contains site information, a suite of
chemical soil measurements and GIS-supported mapping for 1310
locations. A sub-set of the NSD sites was selected, based on
a number of criteria including the inclusion of major land uses and
soil types in proportion to their known frequency in Ireland and
geographical spread. In total, 61 sites were sampled during the soil
biodiversity survey including arable (n ¼ 14), pasture (n ¼ 21),
forest (n ¼ 10; 5 each of coniferous and broadleaved forest), rough-
grazing (n ¼ 8) and bogland (n ¼ 8) land uses (Table 1;
Supplementary Fig. A1). The major soil types were classified
following Gardiner and Radford [17] and included: Acid brown
earths (n ¼ 10), shallow brown earths (n ¼ 3), brown podzolics
(n ¼ 9), grey-brown podzolics (n ¼ 10), podzolics (n ¼ 3), gleys
(n ¼ 10), lithosols (n ¼ 3) and peats (n ¼ 13). Soil data held in the
NSD were utilised to examine relationships between physico-
chemical properties and soil taxa. Much of these soil data was
produced by the ‘SoilC’ project [18] which had 55 sites in common
with the present soil biodiversity baseline survey.

2.2. Sampling and processing of soil organisms

A 20 m � 20 m plot was centred on the NSD [16] GPS coordi-
nates of each site. The different groups of soil taxa were sampled
within this plot using separate protocols as briefly outlined below
(see Supplementary File A for detailed methods):
Table 1
Summary of taxa richness in the CréBeo baseline survey; minimum and maximum taxa
mean taxa richness recordedwithin each land use and results of non-parametric Kruskale
where the specific group of soil taxawas sampled; analyses of ‘Shared sites’ include only t
clarity.

Soil
organisms

Min. richness
and associated
land use

Max. richness
and associated
land use

Land use type

Arable
(A)

Pastu
(P)

Bacteria 24 A 356 B 160 200
Fungi 6 A 159 F 89 78
AMF 2 A 78 P 25 41
Nematodes 5 B 25 P, RG 18 19
Mites 0 A,B 27 RG 3 9
Earthworms 0 F, RG, B 11 P 6 7
Ants 0 all 5 RG 0 1

Significance: * ¼ P < 0.05; ** ¼ P < 0.01; *** ¼ P < 0.001. AMF ¼ Arbuscular mycorrhiz
1. Soil bacteria and fungi were surveyed at all sites. Twenty soil
cores (20 cm depth) were collected and bulked per site, sieved
(4 mm) and stored at �20 �C for DNA extraction. Molecular
fingerprinting techniques (Automated Ribosomal Intergenic
Spacer Analysis) were used to assess general bacterial and
fungal diversity (as ribotypes).

2. Arbuscular mycorrhizal fungi (AMF) were surveyed within 45
NSD locations in 2006. Bulked soil samples (obtained from step
1.) were used for bioassays with Trifolium repens L. (White
clover) and molecular fingerprinting techniques were used to
characterise the AMF diversity (as Terminal Restriction Frag-
ments) in the plant roots.

3. Nematodes were surveyed at all sites by sugar centrifugation
extraction from a 100 cm3 sub-sample of bulked soil (obtained
from step 1.). Nematodes were counted and approximately 100
nematodes from each sitewere identified to at least genus level
(except for Rhabditidae and Neodiplogasteridae).

4. Micro-arthropods (Collembola and Acari) were extracted from
4 intact soil cores (5 cm diameter, 5 cm depth) per site using
a Kempson apparatus. Oribatid (mainly detritivorous) and
mesostigmatid (predatory) mites were identified to species
level.

5. Earthworms were extracted in the field by hand-sorting four
25 cm � 25 cm � 25 cm soil blocks and, where feasible, by
chemical expellant from four 50 cm � 50 cm quadrats. Mature
individuals were identified to species level.

6. Soil-dwelling ant diversity was assessed using 20-m-line of
crumb baits to attract species that forage and by visual searches
(30e60 min) within a 100 m-radius of each GPS location. All
ants were identified to species level.

2.3. Statistical analyses

Unless stated otherwise, all analyses were conducted in the
R statistical environment [19].

The effect of land use on the richness of each soil taxa group
was analysed using a KruskaleWallis non-parametric (c2) test
since replication of land use was unbalanced. Patterns of site
compositional similarity were investigated using Non-metric
Multidimensional Scaling (NMDS). Similarity matrices were
calculated using BrayeCurtis associations on square-root trans-
formed data and clustering of sites according to soil type and land
use was tested by PERMANOVA using the distance matrices in the
adonis function of the vegan package [20]. Homogeneity of
multivariate dispersion [21,22] was tested using the betadisper
function in vegan [20]. However, soil-dwelling ants were omitted
for the adonis analysis due to their sparse coverage and low
diversity. The same analyses were repeated using only the arable
richness recorded at a site, and the associated land use where these were recorded,
Wallis (c2) tests of the effect of land use on taxa richness. ‘All sites’ includes every site
hose sites where all soil taxawere sampled. Values are rounded to nearest integer for

KruskaleWallis (c2)

re Forest
(F)

Rough-grazing
(RG)

Bogland
(B)

All sites Shared sites

184 187 216 2.55 2.76
64 62 31 8.13 9.30
34 33 42 4.87 4.36
17 17 12 19.23*** 9.53*
14 15 3 20.21*** 11.28*
4 3 0 30.31*** 14.24**
1 2 2 18.98*** 13.49**

al fungi.
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Fig. 1. NMDS ordination of nematode composition across different land uses. Stress
value ¼ 0.18. Each datapoint represents an individual site.
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and pasture sites to examine whether the patterns were consistent
within only agricultural systems. The effect of soil type was also
examined only within arable and pasture sites since it tends to be
confounded by land use in organic soils (e.g. boglands contain
peats).

Congruence between different taxa groups was assessed using
Spearman correlation of abundance, richness, Shannon diversity
and BrayeCurtis similarity. Spearman coefficients and significance
of correlations for abundance, richness and Shannon diversity were
calculated using the Rcorr function of the Hmisc package [23]. In
addition, Mantel tests were used to determine the significance of
rank correlations between BrayeCurtis matrices of different taxa
groups in the vegan package [20].

Indicator species analysis (IndVal) was conducted to examine
the fidelity and specificity of individual taxa to the different land
uses [24] within the indicspecies package [25]. Group-equalised
options were used to account for differences in numbers of sites
between each land use. The number of indicator taxa significant at
P < 0.05 within each different group of soil taxa and land use were
recorded. This analysis was repeated using only arable and pasture
sites to assess potential indicators within agricultural land uses. We
acknowledge that this represents a large number of individual
analyses but consider this as a liberal method of identifying the
potential pool of indicator taxa and of reducing the dataset to taxa
likely to be important as indicators.

The correlation between abundances of all significant indicator
taxa (as identified above) and soil physico-chemical gradients was
assessed using Redundancy Analyses (RDA). RDA is a constrained
ordination, aiming to find linear combinations of the predictor
variables that explain the greatest variation in the data cloud [26],
based on the smallest residual sum of squares. Small differences in
values of abiotic data between samples can have large impacts on
the outcome of multivariate analyses [27]. Therefore, in order to
reduce variation between samples, all abiotic factors were square-
root transformed and standardised. The abundance of all indicator
taxa were also standardised (subtract minimum from value and
divide by the range) to account for the different scales of
measurement between taxa groups. The model to explain
variability encompassed a selection of properties including rela-
tively easy to obtain information (moisture content, pH, bulk
density, C, N and P concentrations), and those that did not show
any co-linearity (i.e. where correlation between variables was
<0.80). The RDAwas repeated using those indicator taxa identified
within IndVal analyses using arable and pasture sites. RDA analyses
were visualised in two dimensional ordinations using CANOCO for
Windows v.4.5 [28].

3. Results

3.1. The diversity of biota

A total of 1148 bacterial ribotypes, 874 fungal ribotypes,179 AMF
Terminal Restriction Fragments, 94 nematode genera, 108 mite
species, 19 earthworm species and 8 ant species were recorded
across all sites. The greatest richness recorded at one site was 356
ribotypes for bacteria, 159 ribotypes for fungi, 78 Terminal
Restriction Fragments for AMF, 25 genera for nematodes, 27 species
for mites, 11 species for earthworms, and 5 species for ants. The
greatest number of taxa recorded did not occur at an arable site for
any of the taxa groups. The lowest richness of bacteria, fungi and
AMF taxa were all recorded at an arable site. The smallest richness
of nematode genera was recorded at a bogland site, while low
richness of mites and earthworms occurred in several land uses,
and all land uses had sites where no ant species were recorded
(Table 1).
3.2. Land use and soil biodiversity

There were significant differences in the richness of nematode,
mite, earthworm and ant taxa between land uses, but not in the
richness of bacteria, fungi or AMF (Table 1).Mean taxon richnesswas
greatest in pasture for nematodes and earthworms, rough-grazing
for mites, and both rough-grazing and bogland for ants (Table 1).
This pattern across soil taxa was similar in the land uses where the
greatest number of taxa was recorded (Table 1). There were no
differences in the richness of any taxa between soil types within
arable and pasture land uses (data not shown).

Therewasnosignificanteffectof landuseonbacteria composition
(F4,35 ¼ 1.02, P ¼ 0.357) or AMF composition (F4,35 ¼ 1.42, P ¼ 0.065)
(Supplementary Fig. B1). However, there was a highly significant
influence of land use on fungi (F4,35 ¼ 1.20, P ¼ 0.001), nematode
(F4,35¼ 6.36, P¼ 0.001), mite (F4,33¼1.58, P¼ 0.001) and earthworm
(F4,33 ¼ 3.05, P ¼ 0.001) composition. Although multivariate disper-
sion was significantly different between land uses for nematodes
(F¼ 3.9, P¼ 0.006) andmites (F¼ 1.6, P¼ 0.008), visual inspection of
the axes of the principal coordinate indicates that there were clear
differences between land uses for nematodes (Supplementary
Fig. B2). Land use explained 11.8%, 13.9% and 12.8% of the variation
in bacteria, fungi and mycorrhiza composition, respectively. In
contrast, land use explained almost three times as much of the
variation (31.2%) in nematode composition (Fig. 1) in comparison to
that of the microbial taxa. The same pattern was present across the
different taxawhen only agricultural sites (arable and pasture) were
included in the analyses, except that the percentage sum of squares
explained by landusewas lower, and therewere nodifferences in the
composition of any taxa between soil types (data not shown).
3.3. Congruency between soil taxa groups

Consistent correlations between particular taxa across the
different measures were evident for bacteria and earthworms,
fungi and nematodes, fungi and earthworms, and nematodes and
earthworms (Supplementary Table B1). The only significant corre-
lations in the abundance of soil taxa were between bacteria and
earthworms (Fig. 2A), and nematodes and earthworms (Fig. 2B),
being negatively and positively correlated, respectively. There were
significant positive correlations in taxon richness between fungi
and earthworms (Fig. 2C), and between nematodes and earth-
worms (Fig. 2D). Conversely, there were significant negative
correlations between nematodes and earthworms, and ants
(Supplementary Table B1). Positive correlations in composition
(BrayeCurtis similarity) were highly significant for fungi and
nematodes, and, as with taxon richness, for fungi and earthworms
(Fig. 2E), and nematodes and earthworms (Fig. 2F).



Fig. 2. Examples of the strongest cross-taxon correlations between abundance (A and B), richness (C and D) and composition (E and F) of soil taxa groups. For abundance and
richness each point represents an individual site; for composition each point is a pairwise similarity between two sites. Spearman Rho coefficient inset; all correlations are
significance at P < 0.05 after correction for multiple comparisons.
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3.4. Potential indicator taxa across land uses

IndVal analyses identified 14, 10, 22, 34 and 61 significant
indicators for arable, pasture, forest, rough-grazing and bogland,
respectively (Table 2). Bacteria, AMF and ants had no indicators of
Table 2
Numbers of taxa identified by the ‘IndVal’ analyses as indicators of different land
uses in the different soil taxa groups.

Soil
organisms

Land use type % of significant
taxa

Arable Pasture Forest Rough-
grazing

Bogland

Bacteria 0 (15) 0 (11) 13 11 41 5.7
Fungi 3 (20) 0 (1) 4 9 4 2.3
AMF 0 (0) 0 (2) 0 3 13 8.9
Nematodes 6 (1) 5 (4) 0 4 2 17.7
Mites 5 (1) 0 (2) 5 7 0 11.2
Earthworms 0 (1) 5 (3) 0 0 0 26.3
Ants 0 (0) 0 (0) 0 0 1 12.5

Indicators are significant at P < 0.05; % of significant taxa is calculated within each
group. Values in parentheses are numbers of indicator taxa identified in analysis of
only arable and pasture land uses. AMF ¼ Arbuscular mycorrhizal fungi.
arable and pasture and their greatest number of indicators in
bogland, fungi and mites had indicator taxa in four land uses
and their greatest number in rough-grazing; nematodes had indi-
cators in all land uses except the forest land use, earthworms had
indicators in pasture (Table 2). Interestingly, analysis using only
arable and pasture sites resulted in far greater significant results for
bacteria and fungi, being 15 and 11 respectively for bacteria, and 20
and 1 for fungi respectively (Table 2). However, it is noted that the
percentage of significant taxa in bacteria and fungi was not greater
than would be expected by chance at P ¼ 0.05.
3.5. Indicator taxa across environmental gradients

Indicator taxa were correlated with several physico-chemical
soil properties characteristic of the different land uses (Figs. 3
and 4). Including all land uses, 28% and 20% of variation in speciese
environment relation was explained by axes 1 and 2, respectively
(Table 3). Microbial indicator taxa (bacteria, fungi, mycorrhiza)
weremore generally associatedwith boglands, whereas nematodes
and earthworms indicator taxa were more strongly associated with
arable and pasture (Fig. 3; colour version in Supplementary Fig. B1).



Fig. 3. Redundancy analyses (RDA) of taxa identified as indicators using IndVal and soil physico-chemical variables across all land uses. Ellipses represent 95% confidence intervals
of land uses using site scores from axes 1 and 2. Arrows indicate gradients of soil physico-chemical variables; asterisks denote variables significantly correlated with RDA axes.

Fig. 4. Redundancy analyses (RDA) of taxa identified as indicators using IndVal and soil physic-chemical variables across agricultural land uses (Arable and pasture only). Legend as
in Fig. 3. Ellipses represent 95% confidence intervals of land uses using site scores from axes 1 and 2. Arrows indicate gradients of soil physico-chemical variables; asterisks denote
variables significantly correlated with RDA axes.
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Table 3
Summary statistics from Redundancy Analyses (RDA) of taxa identified as indicators
by indicator species analysis and soil physico-chemical variables.

RDA statistics All land uses Arable þ Pasture

Axis 1 Axis 2 All axes Axis 1 Axis 2 All axes

Eigenvalue 0.173 0.125 0.258 0.148
Specieseenvironment

correlation
0.913 0.891 0.973 0.909

Specieseenvironment
variation (Cumulative %)

27.8 47.9 62.0 37.4 58.9 69.5
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Mean bulk density significantly correlated (F¼ 4.31, P< 0.001) with
the indicator taxa data, being typically lower in the rough-grazing
and bogland (extensive land uses) compared to arable (intensive
land use). In addition, Fe and Al significantly correlated with the
indicator data (F ¼ 2.24, P ¼ 0.015 and F ¼ 2.37, P ¼ 0.007,
respectively). Al and pH showed a similar correlation, albeit pH was
not significant.

When only arable and pasture (intensively managed land) were
included, 37% and 22% of variation in specieseenvironment relation
was explained by axes 1 and 2, respectively (Table 3). Again,
microbial indicator taxa (bacteria and fungi) were associated
together, with arable land use in this case, and earthworm indica-
tors associated with pasture (Fig. 4). Two mite indicator taxa were
also associated with a small outlier group of pasture sites which
appeared to have high concentrations of Ca and P (Fig. 4;
Supplementary Fig. B2). With only arable and pasture sites, mean
bulk density was also significantly correlated (F ¼ 1.96, P ¼ 0.043)
with the species data, being lower in the arable than the pasture
soils (Fig. 4). Al was significantly correlated with the indicator taxa
data (F ¼ 2.13, P ¼ 0.040) with the greatest concentration in the
opposite direction to the pasture outlier group (Fig. 4), and N
correlated significantly with the indicator taxa data (F ¼ 3.06,
P ¼ 0.002) being higher in the pasture soils.

4. Discussion

McGeoch [10] discussed different types of biological indicators
including those that are typical of a habitat or ecological status
and those that are representative of the diversity of other taxa.
Here, we have explored these categories of indicator in the soil
using a national baseline survey of a range of different taxa groups
(e.g. microbes, micro-, meso- and macro-fauna).

The potential value of these different taxa as indicators of
habitat or ecological status was first gauged by examining their
richness and composition across sites, and assessing whether
a significant amount of variation could be explained by land use.
Land use appeared to have a stronger influence on the richness of
soil fauna (nematodes, mites, earthworms and ants) compared to
microbes (bacteria, fungi, mycorrhiza). It has been suggested that
microbes do not respond to large-scale environmental gradients as
do meso- and macro-fauna [29]. Therefore, it is likely that specific
management practices such as crop types within a land use had
a stronger relationship with microbial diversity [30,31]. Although,
within arable and pasture sites soil type did not influence richness
of any soil taxa. Changes in richness of faunal groupswere generally
evident between agriculturally-managed (arable and pasture) and
extensively-managed (rough-grazing and bogland) soils, and this
corresponded to a division between ‘mineral’ and ‘organic’ soils.
Greater nematode and earthworm richness was associated with
arable and pasture, and greater mite and ant richness was associ-
ated with rough-grazing and bogland. This is similar to findings by
Rutgers et al. [3] from a national soil monitoring scheme in different
habitats in the Netherlands with generally greater abundance and
richness of nematodes and earthworms in dairy systems. A similar
pattern was also evident when examining taxon composition with
land use accounting for a lower proportion of variation in microbial
taxa groups and soil type having no effect within arable and
pasture. Although broad differences in soil communities are greatly
appreciated [1,3,8,9,29] it is less well understood how particular
taxa, within these broad groups, may respond to soil environmental
gradients and contribute to patterns across these land uses.

A second approach to examining these different taxa as
potential indicators of habitat or ecological status was based upon
the fidelity and specificity of individual taxa to the different land
uses [24,25,32]. A comparison of the taxa identified in this way
showed that generally greater numbers of microbial taxa were
indicators of the extensive land uses (forest, rough-grazing and
bogland) and almost none were characteristic of intensive land
uses (arable and pasture). However, when using only arable and
pasture in the analysis, many microbial taxa appear as indicators
of these land uses. This implies that the microbial indicator taxa
found associated with intensive land uses are also found in
extensive land uses. Nematodes had indicator taxa across inten-
sive and extensive land uses, and this is in agreement with the
greatest amount of variation in nematode composition being
explained by land use, whereas ant taxa were not generally good
indicators and only one indicator taxon for bogland was identified.
Though the number of analyses differed between the taxa
(because of different numbers of recorded taxa), the indicator
values of individual taxa are derived independently of other taxa
and therefore this type of analysis is valuable for exploring the
pool of potential indicators in different land uses. A wide range of
studies have used indicator value analysis to examine inverte-
brates characteristic of habitats or land management but fewer
have attempted to make links to their traits [e.g. 33,34]. A more
detailed examination of indicator traits of soil taxa was beyond the
scope of this study but could generate more mechanistic insights.
Furthermore, indicator taxa may reveal stronger affinities across
several land uses [32].

The indicator taxa identified were utilised to reduce the datasets
to taxa likely to be important indicators across land uses. O’Neill
et al. [35] used this type of analysis with a soil micro-invertebrate
dataset and found that classification efficiency for vegetation
cover decreased only marginally using only the significant indicator
morphotaxa. Moreover, the variability explained by the first two
axes of a principal components analysis increased when using only
the significant indicator taxa compared to the full complement of
taxa [35]. We combined the significant indicators from all taxa
groups to explore the correlation of their abundances with soil
physico-chemical gradients. The primary axis of variation was
generally associated with the change from intensive (arable)
through to extensive (bogland) land use; thoughmean bulk density
was the only significant soil characteristic that showed a strong
correlation with this axis, it clearly masked the significance of
similarly strong relationships with moisture, carbon and nitrogen
in the opposite direction. The ordinations also highlighted how
individual indicator taxa were related to the main axes of variation
and this may be a useful exploratory tool to identify taxa that are
most responsive to particular gradients.

Studies of cross-taxon congruency from above-ground systems
have found inconsistent relationships [13e15]. For example, in
grasslands, Oertli et al. [14] found no significant congruency
between taxonomic richness of three insect groups (bees, aculeate
wasps and grasshoppers) but significant congruency in commu-
nity similarity of bees and grasshoppers. Lovell et al. [13] reported
mostly weak correlations in congruency of richness and compo-
sitional similarity of above-ground invertebrates. We may expect
that congruency is both more likely and stronger in the soil
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given the importance of local environmental conditions and the
physical nature of soil as a habitat. Indeed, we found consistent
correlations between several taxa groups, in particular, positive
correlations between fungi, nematodes and earthworms, thus
demonstrating that there is a level of congruency across different
measures of soil biodiversity. However, congruency between other
taxa was limited. Different soil taxa may be more dominant at
different times of the year, for example, microbes can show high
seasonal variation [36]. The activity of ecosystem engineering
organisms such as earthworms can also impact upon other
smaller-bodied taxa and these effects should not be ignored in
assessing soil biodiversity.

It is also acknowledged that the outcomes of these analyses
may in part depend on the methods used to measure the richness
and composition of the different soil taxa, and these outcomes may
change using different methods. For example, the AMF diversity
investigated here was assessed using a bait-plant method and this
may have limited the richness and composition of taxa being
recorded [37]. Furthermore, the difference in ‘taxonomic’ resolu-
tion between molecular and morphological approaches may
influence differences between microbial and micro-, meso-,
macro-fauna. Nevertheless, these are standard and widespread
methods to extract and measure soil biodiversity and if we are
looking for relative measures or fingerprints of soil assemblages, as
opposed to an exhaustive cataloguing, then their comparison is
informative. Developments in molecular techniques for the anal-
ysis of soil biodiversity [e.g. 38e40] will undoubtedly become
particularly important as the choice of indicators is streamlined,
but there is still the need to compare these with ‘classic’
approaches.

5. Conclusions

There are few soil biodiversity surveys that include the major
land uses and a relatively large geographical spread with this range
of below-ground taxa [e.g. 3]. Characterising the richness and
composition of different soil taxa groups and identifying potential
indicators across land uses indicates that separate sets of taxa
groups may be more useful as bioindicators in agriculturally and
extensivelymanaged land. The facts that land use accounted for the
greatest amount of variation in nematode composition and that
nematodes were indicator taxa in most land uses supports their
potential as robust indicators across all land uses. Analysis of
significant indicators can also help identify potential target taxa
that are responsive to soil physico-chemical gradients and upon
which future sampling could be focused. Further development of
these types of analyses can inform soil monitoring programmes
and increase their efficacy in being able to detect the effects of land
management changes on soil status and the many ecosystem
services supported by soil organisms.
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