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The evidence for the parallel roles playved by the modular group in N = 2 supersymmet-
ric Yang-Mills in (3 + 1) dimensions and the quantum Hall effect in (2 4+ 1) dimensions
1= reviewed, In both cases

v subgroup of the full modular group acts as a map between
different low energy phases of the theory, parametrised by a complex parameter in the
upper-half-complex plane whose real part is a topological parameter and whose 1magi-
nary part is the coupling associated the kinetic term of the effective U(1) gauge theory,
In the case of the quantum Hall effect experimental evidence in favour of the modular
action 1= al=o reviewed.
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1. Duality in Electromagnetism

Maxwell's equations in the absence of sources

\—><E-f——=f}. V-E=0,
il)
OE
VxB—-— =0, V-B=0
ol
(nsing units in which =5 = pg = ¢ = 1) are not only symmetric under the Pioncaré
oroup but also under the interchange of electric field E and the magnetic field B,
more specifically Maxwell's equations are symmetric under the map

E—B and B—- —-E. (2)

This svmmetry 18 known as duality, for any field conficuration (E.B) there 1= a
dual configuration (B, —E). Duality is a useful svmmetry, e.g. in rectangular wave-
ouide problems, uging this svmmetry one can immediately construct a transverse
magnetic mode once a transverse electric mode 18 known.,
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When electric sources, 1.e. acurrent J#, are inclnded this is no longer a svmmetry
but, in a seminal paper. Dirac' showed that a vestige of (2} remains provided
magnetic monopoles are introduced. By gquantising a charged particle with electric
charge (), in a backgronnd magnetic field generated by a monopole with magnetic
charge M, Dirac showed that single-valnedness of the wave-Tunction requires that
QM must satisly the gquantisation condition

2mhn
QM = 27hn = M = (3)
Q

where n is an integer. I —e is the charge on an electron, then there s a fundamental

unit of magnetic charge, namely 27{”‘". which we shall denote by

2nh
m = {4)
o

and the allowed magnetic charges are mtegral multiples of m.

Since magnetic monopoles have never heen observed, if they exist at all, they
must be very heavy, much heavier than an electron, and so duality is not a manifest
svinmetry of the ])]11.\'5'1(-5 it 12 at best a map between two descriptions of the same

theory. As a, = % ~ 37 18 80 small, the "magnetic” fine structure constant
m? 11 , .
Oy = —— = —— &= 34 (H)
drh 4o,

is very large and magnetic monopoles have very strong coupling to the electromag-
netic field.

There is a generalisation of the Dirac quantisation condition for particles that
carry both an electric and a magnetic charge at the same time, called dyons. 1t
a dvon with electric charge ) and magnetic charge M orbits a second dvon with
charees " and A, then Schwinger and Zwanziger showed that?

QM — Q'M = 2mnh. (6)
A dimensionless version of the Dirac-Schwinger-Zwanziger quantisation condition
can be obtained by writing @ = ge, Q' = ¢'e. M = pm and M' = p'm giving
@ —q¢'p=n (7)
with g, ¢, p, p" and n integers,

The simple Zo duality map (5)

200, — 2oy, = 5 (8
2ar,

can be extended to a much richer structure®* involving an infinite discrete group,
the modular group SI(2, Z)/Z, = I'(1), by including a topological term in the four-
dimensional action,

' . 1 al i (} 2y elenl il al : /
S = / (—FI'“,/}’; —f—m:'r £ ]'l"“’]’ﬁﬂ')d a. [f}:l

[ )
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Defining the complex parameter
T=—+4 —, (10)

using units with fii= 1, (8) generalises to the infinite set of maps

at +b .
—_— (11)
eT +d
where a, b, ¢ and d are anv four integers satisfving the condition ad — be = 1.7

A general element of the modular group can be represented as a 2 x 2 matrix of

()

with det v = ad—be= 1. so~ € Sl(2, Z), and group multiplication then corresponds

Integers,

to matrix multiplication. :1 rarly —+ has the same effect on 7 as + does =0 the
modular group is I'(1) = ! 1[_3.Z]_,.-‘Z2. The modular group is generated by two
maps: one that we shall denote by §
I .
S:7———. [1;]

1

reduces to (8) when # =0, and a second that we denote by T
T:7—7+1. (14)

1 a consequence of the topological nature of the § parameter, the partition function

obtained from (9} is invariant under @ — ¢ + 27, A useful identity is (S7)% = 1.
Notice that the imaginary part of 7 satisfies 37 = 0 (for stability ¢ > 0} and so

7 parametrises the upper-halt complex plane. Both & and T preserve the property

that 37 > 0 and they generate the modular group acting on the upper-half complex

plane.

2. Duality in A = 2, SU(2) SUSY Yang—Mills

Dirac considered a quantised particle moving in a fixed classical background field
and modular transformations are unlikely to be useful in the full theory of QED
when coupled electromagnetic and matter fields are quantised. Nevertheless Seiberg
and Witten showed® in 1994 that supersvmmetry ig a powerful constraint in fully
guantised N' = 2 supersymmetric Yang Mills theory: in the low-energy/long-
wavelength limit of the theory modular transformations of the complex coupling,
i at least a subgroup of them, are relevant.

Congider SU(2) Yang Mills in four-dimensional Minkowski space with global
A = 2 supersymmetry and, in the simplest case, no matter fields.” The field content

“In Euclidean space a consequence of this is that the partition transform is related to a modular
form and depends on topological invariants, the Euler characteristic and the Hirzebruch signature,
in a well-defined manner.*

bThere is by now a number of good reviews of A7 = 2 SUSY, see for example Refs. 6 and 7.
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is then the SU(2) gauge potential, A,;
of N7 = 2 supersymmetry, both transforming under the adjoint representation of

SU(2), and a single complex scalar ¢, again in the adjoint representation. The

two Weyl spinors (gluinos) in a doublet

hosonic part of the action is

t 1 f
§ — / (f.‘f"‘ { o sz l]'[: j,}”/ ],w’uz) + -;-),,._2 .___—h.u.fm l]'[: F;u/ ],}m]

)

| N | PR
+ q_2 ll'([:f_)'“o]] DF g — 3[01 , o_z) } . (15)

The fermionic terms {(not exhibited explicitly here) are dictated by supersvmmetry
and mvolve Yukawa interactions with the scalar field but it is crueial that supersym-
metry relates all the couplings and the only free parameters are the gauge coupling
g and the topological susceptibility #, all other couplings are in fact determined
by g. Just as in electrodynamics these parameters can be combined into a single
complex parameter

{ A o
T = 5= + Fg—_z [_ “r]
and semiclassical argnments imply modular symmetry (11) on this parameter.®
Quantum effects reduce this to a smaller group.

Classically the Higgs potential is minimised by any constant ¢ in the Lie algebra
of SU(2) such that [0, 0] = 0, and since we can always rotate ¢ by a globally well-
defined gange transformation, we can always take ¢ = fnﬁ_-; with e the nsual Pauli
matrix and e a complex constant with dimensions of mass. The classical vacuum
is thus highly degenerate and can be parametrised by a, a nonzero a breaks SU(2)
sange svmmetry down to U(1) {we are still free to rotate around the 73 direction)
and W= hosons acquire a mass proportional to a, leaving one U{1) zaunge hoson
(the photon) massless. At the same time the fermions and the scalar field also pick
up masses proportional to a except for the superpartners of the photon which are
protected by supersvmmetry and also remain massless. At the special point a =0
the gauge svmmetry is restored to the full SU{2) symmetry of the original theory.
Seiberg and Witten then argue that supersymmetry protects this degeneracy so
that it is not lifted and is still there in the full quantum theorv. At low energies,
much less than the mass a for a generic value of a, the only relevant degrees of
freedom in the theory are the massless U{1) gange boson and its superpartners
(except for some special values of a).

There is a number of very important consequences of quantisation. Firstly, the
point a = 0 where full SU{2} svmmetry is restored in the classical theory is n-
accessible in the gquantum theory, Secondly the effective low-energy coupling runs
as a Innction ol a, since a 1s related to a mass, this 18 somewhat analogous to the
Callan-Svmanzik running of the QED coupling. The effective gange coupling only

runs for energles greater than a, for energies less than a the running stops and at
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low energies it becomes frozen at its value g%(a). Using by now standard asvmp-
totic freedom arenments in gange theory, the low energy effective coupling ¢%{a)
thus decreases at large a and increases at small a. In fact the topological snscepti-
bility # also runs with a (as a consequence of instanton effects®®) and this can be
incorporated into an a-dependence of 7, 7(a). At large a the imaginary part of 7,
37, becomes large while at small a it 18 small.

A better, sange-invariant, parametrisation of the gquantum vacuna is given hy

u = tr{@?). For weak coupling (large a) u = 5(:2. but (6?2} # (d)(0) for strong

coupling (small ). Bv making a few plausible assumptions, including;

e the low energy effective action is analvtic in v except for isolated singularities
(holomorphicity is clogelv linked with supersvmmetry);

e the number of singularities is the minimum possible compatible with stability of
the theory (37 = 0),

Seiberg and Witten argued” that in the quantum theory the strong coupling regime
g% = 0 is associated not with @ = 0 but instead with two points in the complex
w-plane, v = £A? where A is, by definition, the QCD mass scale at which the
cgange coupling diverges. Furthermore they found an explicit expression for the full
low energy effective action and argued that new massless modes appear at the
singular points u = A%, in addition to the photon and its superpartners. These
new massless modes are In fact dvons, with the magnetic charge associated with
non-perturbative aspects of the classical theory (solitons). Since ¢ — oo when
1 = +A%, 7 is real at these points. For example the point 7 = 0 is associated with

u = A% and the dyons have zero electric charge, they are in fact simple monopoles

with monopole charge 1. The point 7 = 1 is associated with w = —A? and the dvons
have unit electric charge, and monopole charge 1.

The full modular group I'(1) iz not manifest in the gquantum theory, rather
Seiberg and Witten showed that the relevant map is (11) with both b and ¢ con-
strained to be even. This is a subgroup of the full modular group, denoted I'{2} in
the mathematical literature, and it is generated hy

T2 .1 —71+4+2 and Frir— ——— (17)

where F? = S71T728.° y iteelf is mvariant under 1'(2), but 7(u) is a multi-branched
function of wu.

Seiberg and Witten's I'(2) action commutes with the scaling flow as w 18 var-
ied. Taking the logarithmic derivative of 7(u) with respect to u, and imposing
ad— be =1, we sece that

d~(T) 1 dr

i =

du (r'T—t—ff))”E'

—
sl

“We define F=8-1T8: 7 — ;
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Meromorphic functions 7(u) satislying (18) are well studied in the mathematical
literature and are called modular forms of weight —2.
For Seiberg and Witten's expression for 7(u) it was shown in Refs, 9-12 that

dr 1 | 1
-l =\ —-—--+ —— |, (19
du 2mi (z)'_.;[_r] zJj;[_T]) (19)

where
S R S .
ha(7) = Z el and (7)) = Z (—1)e™ T (20)
Ti=—— "0 Ti=——m0

are Jacobi d-functions.® Scaling functions for A" = 2 SUSY Yang- Mills are also

discussed in Ref. 14. At weak coupling, g2 — 0, 7 — i00, ¥a(7) — 1 and 4(7) — 1
=0
dr adr i N
Um— R —— — — (21)
du 2 da w
which is the correct behaviour of the N = 2 one-loop A-function for the gauge

coupling,

3
o299 (22)
da L2

At weak coupling (large a), a is proportional to the gange boson mass and this flow
can be interpreted as giving the Callan Syvmanzik F-function in the asymptotic
regime. 1This interpretation is however not valid for finite a for two reasons: firstly
the statement that a is proportional to the gange hoson mass is only valid at weak
coupling and secondly because (19) diverges at strong coupling, ¢ — o0 where
7 — 0.2 The latter difficulty can be remedied by defining a different scaling function
which is still a modular form of weight —2. Seiberg and Witten's expression for 7(u)

can be inverted to give u(r)'"12

wo Uy A

_ a4 (23
A2 U 23)

which is invariant under I'(2) modular transformations.'>'® Fquation (19) can
therefore be multiplied by any ratio of polvnomials in « and we still have a modular
form of weight —2.° It 1s shown in Rel. 17 that the correct form of the Callan
Syvmanzik J-function at 7 = ioc, 7 = O and 7 = 1, up to a constant factor, is

obtained by nsing the scaling function

] 1 IT 2 |
B R I A S— (24
( \2>( + _-'\2) Ydu ~ mi (V5(7) + J(7)) (24)

and this is the only possible choice. The flow generated by (24) is shown in Fig. 1,
there are fixed points on the real axis at 7 = ¢/p where the massless dvons have

dDefinitions and relevant properties of the Jacobi functions can he found in the mathematics
literature, for example Ref. 13,
“This point was stressed in Ref. 10, See, for example, Theorem 4.3.4 of Ref. 16.
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Fig. 1.

electric charge ¢ and magnetic charge p, Odd p corresponds to attractive ixed points
in the ir direction and even p to attractive fixed points in the uv direction (p =0
corresponds to the original weakly coupled theorv, 7 = in0 with massless oluinos).
The repulsive singularities at 7 = =3 i with an odd integer n occur for u = 0 and
are the quantum vestige of the classical situation where full SU(2) symmetry would
be restored.

Omne point to note iz that, since the scaling function (24) is symmetric under
t — —u, which 18 equivalent to 7 — 7+ 1, the full symmetry of the scaling flow is
slightly larger than I'(2), it is generated by F? and T and corresponds to matrices
~ such that ¢ in (11) is even. This group is olten denoted by I';(2).

Observe also that there are semi-cireular trajectories linking some of the ir
attractive lixed points with odd monopole charge. These can all be obtained from
the semi-cirenlararch linking 7 = 0 and 7 = | by the action ol some ~ € T'(2), ol the
form (12) with ¢ even. Then 7 = ¢, /p; = ~(0) = -3 and 7 = go/pe = (1) = %
from which b =¢q;, d =p; and ¢u = a + b, ps = e+ d. Hence

P —qipz =1, (25)

since ad —be = 1, giving a selection rule for transitions between ir attractive lixed
points as uw iz varied, This is clearly related to the Dirac Schwinger Zwanziger
quantisation condition (7).

When matter in the fundamental representation is included the picture changes
in detail, but is similar in structure.'® In particular different subgroups of I'(1)
appear. To anticipate the notation we let I'y(N) C I'(1) denote the set ol matrices
with integral entries and unit determinant (12) such that ¢ = 0 mod N and let
I'"(N) c I'(1) denote those with b =0 mod N. These are both subgroups of I'(1):
I'y(N) being generated by 7 and S™'TNS while T'°(N) is generated by TV and
S™TS.
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Now consider N° = 2 supersymmetric SU(2) Yang Mills theory in four-
dimensional Minkowskl space with Ny flavours in the fundamental representation
of SU(2). The low energy effective action for 0 << Ny << 4 was derived in Ref. 18,
As the matter fields can have hall-integral charees, it is convenient to re-scale the
charge by a factor of two and define

== = (26)

Thus

|27 " 7

and I'y(2) acting on 7 I8 equivalent to I'V(2) acting on 7.
The quantum modular symmetries of the scaling function acting on 7’ are

Ny =0, I(2)
Np=1,T11(1
! b (28)
;\-f =2, I'h(2)
Ny =3, Tp(4)

and explicit forms of the corresponding modular functions are given in Ref. 19. For
Ny = 1 and Ny = 3 the group is the same as the symmetry group acting on the
effective action while for Ny = 0 and Ny = 2 it is larger, due to the Z, action
on the u-plane. Note the maximal case of Ny = 1 where the full modular group is
manilest at the quantum level, in this case the duality transformation 7° — —1 /7
is symmetric and 77 =7 s a fixed point.

3. Duality and the Quantum Hall Effect

Modular symmetry manifests itself in the quantum Hall effect (QHIE) in a manner
remarkably similar to that of "= 2 supersymmetric Yang-Mills. But while it has
not vet been established experimentally whether or not supersymmetry is relevant
to the spectrum of elementary particles in Nature, the quantum Hall effect is rooted
in experimental data and its supremely rich strocture was not anticipated by theo-
rists, The first snggestion that the modular group may be related to the QHE was
in Ref. 20 hut, as we shall see below, the wrong sub-group was identified in this
earliest attempt.

The quantum Hall effect is a phenomenon associated with two-dimensional semi-
conductors in strong transverse magnetic fields at low temperatures, so that the
thermal energy is much less than the cvelotron energy fiv,., with w, the cvelotron
frequency. It requires pure samples with high charge carrier mobility g =0 that
the dimensionless product By is close to unity. For reviews see e.g. Rels. 21-23.
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Bagically passing a current [ through a rectangular two-dimensional slice of semi-
conducting material requires maintaining a voltage parallel to the current (the
longitudinal voltage V7). The presence of a magnetic field B normal to the sample
then generates a transverse voltage (the Hall voltage Viy). Two independent con-
ductivities can therefore be defined: a longitudinal, or Ohmic, conductivity o; and
a transverse, or Hall, conductivity oz, along with the associated resistivities, pj,
and pp. The classical Hall relation is

B=—enpy =oyB=J" (29)

(with JU = en and n the density of charge carriers) and oy is inversely proportional
to 1 at fixed n. In the quantum Hall effect a5 is quantised as 1/8 is varied keeping n
and 1" fixed {or varving n keeping B and T fixed) and increases in a series of sharp
steps between very flat plateaux. At the plateaux oy vanishes and it is nonzero
only for the transition region between plateaux. In two (|'1]ll£‘]lH'11(1]lH conductivity
has dimensions ol ¢?/h and, in the first experiments,?* oy = :i% was an mntegral
multiple of f'2_,.-"'h at the plateaux (the integer QHE) thongh in later a‘X]qu]"l]llv]lle’_’
it was found that o could also be a rational multiple of €2 /h, oy = (L:j—; where ¢ 1s
almost alwayvs an odd integer {from now on we shall adopt units in which w2_...-"'h = 1.
The different quantum Hall plateaux are interpreted as being different phases of a
two-dimensional electron gas and transitions between the phases can be induced hy
varving the external magnetic field, keeping the charge carrier density constant.
Conductivity is actuallv a tensor

)’. = Oij ]L"j [;U]

with 7., and o,, the longitudinal conductivities in the » and y directions and

Tay = —Tye = gy the Hall conductivity associated with the magnetic field {for an
elementary discussion of the Hall effect see Rel. 26). From now on we shall assume
an isotropic medium with o,, = 7,, = op. Using complex coordinates z = x + iy
the conductivity tensor for an isotropic two-dimensional medinm can be described

by a single complex conductivity
T =0y tiop. (21)

Note that Ohmic conductivities must be positive for stability reasons, so @ i8 re-
stricted to the upper-hall complex plane. T'he resistivity tensor is the inverse of the
conductivity matrix, in complex notation py +ipy, = p = —1/0.

The approach adopted here is that the response functions (ie. the conduc-
tivities) in a low temperature two-dimensional syvstem can be obtained from a
(2 4 1)-dimensional field theory and to write down an effective action for (24 1)-
dimensional electrodynamics in which all the microscopic physics associated with
particles and/or holes has already been integrated out and incorporated into effec-
tive conpling constants, The classical Hall relation (29) can be derived from

Log[Ao] = —ogAoB + AgJ’ (32)
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the covariant version of which 18
T

Log[A] = —==2ehP 4,0, A, + AuJ®. (33)

Ohmic condunctivity can be incorporated by working in Fourier space (w.p) and

introducing a frequency dependent electric permittivity. In a conductor the low
frequency electric permittivity diverges, in the long wavelength limit p — 0, as
; T Py

fw) = —i—, (34

w

so, working in Fourier space, the effective dynamics of the electromagnetic field are

governed by

~ ) £ o
Lr-if[ﬁ.l_ — __l]'-‘z - %f"’“/pi.l;gf':/p + :'.llra J'“
i T
o~ l_*rl-sz _ %_____;wp ‘__.l“];”p + ;"l“.)"“ . [;-—)]

Note that the effective action is not real, an indication of the dissipative nature
of Ohmic resistance, and non-local in time, again a teature of a conducting medinm.
Also we have used a relativistic notation and F? shonld really be split into E - E
and B - B with different coefficients (response functions). In the long-wavelength,
low-frequency limit of a condnctor however, both response functions behave as
I /w, the ratio of the coefficients is a constant (the speed of light squared) and a
relativistic notation can be used.! Chern Simons theories of the QHE have been
considered by a number of authors.?™*? The inclusion of the F? term has been
analvsed from the general point of view of three-dimensional conformal field theory
in Ref. 33.

The most relevant term 1 (35), in the renormalisation group sense, is the Chern
Simons term and, at least na"l'\'a'l.\' assuming that there are no large anomalons
dimensions arising from integrating out the microscopic degrees of freedom, the
next most relevant term would be the nsnal Maxwell kinetic term. A version of the
Lagrangian (35) was used in the analysis of Ref. 31 in which it was argued that
the following transformations:

Tio—o+1 and F?o— _7 (36)

1 —2¢

map between different quantum Hall phases of a spin polarised sample.® The
T transformation is mterpreted as being due to shifting Landau levels by one,
e.g. by varying the magnetic field keeping n fixed. The F transformation, known
as flux-attachment, was anticipated in Ref. 34 for o5, = 0 as a mapping between
eround state wave functions, It is related to the composite fermion picture of the
QHE?23%3% where the effective mesoscopic degrees of freedom are fermionic parti-

cles which are composite objects consisting of more “fundamental” fermions bound

fFor finite w and /or nonzero p this would not be the case a= the response functions for E and B
would be different functions in general.

ENeither complex conductivities nor relativistic notation was used in Ref, 31, but their results are
most easily expressed in the notation used here.
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to an even number of magnetic flux-tubes of an effective U{1) gange hield known
as the statistical gauge field. The operation F? attaches two units of flux to each
composite fermion.

The imterpretation of the Hall plateaux in Rel. 31 is that one has charge carriers
which are fermions {electrons or holes) interacting strongly with the external field.
By attaching an odd number 2% + 1 of statistical flux units to each fermion the
resulting composite particles are bosons. By choosing & appropriately, it can be
arranged that the effect of the external magnetic field is canceled by the statistical
cange field and the composite bosons behave as free particles, Being hosons they can
condense to form a superconducting phase with a mass gap and this explains the
stability of the quantum Hall plateaux for the original fermions. Both the composite
fermion and the composite boson picture are useful, but in either case the phvsical
charge carriers are fermions,

The transformations (36) acting on the complex conductivity map between dif-
ferent quantum Hall phases, clearly they generate the group I'n(2). As mentioned
above the relevance of the modular group to the QHE was anticipated by Wilczek
and Shapere?” though these anthors focused on a different subgronp of I'(1), one
generated by 8 : 0 — —1/g and T? : ¢ — o + 2 which the authors denoted by
I'g, and the experimental data on the QHE do not bear this out, though we shall
return to this group below. Liitken and Ross?™ observed even before®' that the
guantum Hall phase diagram in the complex conductivity plane bore a striking
resemblance to the structure of moduli space in string theory, at least for toroidal
ceometry, and postulated that I'(1) was relevant to the quantum Hall effect. Later
in Rel. 38 the subgroup I'p(2) was identified as being one that preserves the parity
ol the denominator and therefore likely to be associated with the robustness of odd
denominators.

Followine the work of Rel. 31, see also Rel. 39, it was sugeested in Ref. 40
that I'3(2) should be the group relevant to two-dimengional svstems involving spin
polarised fermionic quasi-particles while Wilezek and Shapere’s group 'y should be
relevant to two-dimensional systems involving bosonic quasi-particles, This led to
a suite of predictions for two-dimensional superconductors in strong perpendicular
magnetic fields deseribed below. The analysis was generalised to the regime of non-
linear response in Ref. 41. Among the assumptions that go into the derivation of
(36) from (35) are that the temperature i1s sufficiently low and that the sample is
sufficiently pure, but unfortunately the analyses in Refs. 31, 37, 40 and 41 are unable
to quantify exactly what “sufficiently” means. Basically one must simply assume
that (35) contains the most relevant terms for obtainine the lone wavelenoth, low
[requency response functions, but obviously this s not always true even at the
lowest temperatures, for example 1t 1s believed that a Wigner crystal will form for
filling fractions below about 1/7 and (35), being rotationally invariant, cannot allow
for this.

Of course I'5(2) is not a svmmnetry of all of the physics, after all the conduc-

tivities differ on different plateaux, nevertheless it 15 a svmmetry of some physical
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properties. The derivation of the I'3(2) action in Rel. 31 required performing a
Gaussian Integral about a fixed backeround, different backerounds give different
initial conductivities, but in each case the dynamics contributing to the fluctua-
tions are the same and the dvnamics of the final system have the same form as that
of the initial one. This motivates the suggestion®?** that the scaling flow, which
is governed by the fluctnations, should commute with 173(2}, 1.e. although I'y(2) 18
not a svmmetry of all the physics, it is a symmetry of the scaling flow, Physically
the scaling flow of the QHE can be viewed as arising from changing the electron co-
herence length [, e.g. by varving the temperature 1" with [{1") a monotonic function
of 14545 Define a scaling function hy

der
Mloa) =1—. (37
70 =g (37)
Then, for anv v € 1'5(2), (7)) = E’g_l"_'f: with ad — be =1, so
1
Y{vio) ve)) = ——=X{r. 7). (38
(), v(T)) o rdr ) 38)

In general one expects 7 to depend on various parameters, such as the tempera-
ture 1", the external field B, the charge carrier density 0 and the impurity den-
sitv N; among others. If n and n; are fixed, then #{B.7") becomes a function of
B and 1" only. Experiments show that fixed points between plateaux correspond
to second order phase transitions between two quantum Hall phases and modular
svinmetry implies that scaling exponents should be the same at each fixed point, a
phenomenon known as super-universality. While there is strong evidence for super-
universality*7#® there are some experiments which seem to violate it*? and this
may be related to the suggestion that there exists a marginal operator at the crit-
ical point,” but an alternative explanation, that the scaling function might he a
modular form, is proposed in Ref. 51,

A second striking consequence of 'y (2) svmmetry of the scaling flow ig a selection
rule for quantum Hall transitions. Given that the nteger transition o @ 2 — 1 1s
observed we conclude that +(2) — ~(1) should also be possible. Let (1) = i— and
v(2) = & where ¢; and p; are mutually prime (i = 1.2). Then, with ~ of the form

Pz
(12}, f}— = E“Ifr’ and _;;); = ji’_l‘l_'f; s0q, =a+hb,p, =c+d, go=2a+band ps = 2e+4d.
Since ad — be = 1 we obtain the selection rule®?
G1p2 — qapr = 1. (39)

This selection rule is well borne out by the experimental data. In spin-split samples
any two adjacent well-formed plateaux, with no unresolved sub-structure hetween
them, obey this rule.

If we further assume that the only fixed points of the scaling flow are the fixed
points of I'5(2) then, with a few extra reasonable assumptions, the topology of
the flow diagram is completelv determined and it is exactly the same as the flow
diagram in Fig. 1 for "= 2 SUSY. The whole upper-half plane can be covered by
starting with the infinite strip of width 1 above the semi-cireular arch spanning 0
and 1 in Fig. | (called the fundamental region of T'5(2)'%) and acting on it with
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elements of I'5(2). Infrared fixed points have 7 = ¢/p corresponding to fermionic
charge carriers which are composite objects consisting ol bosons with electric charge
g and p units of statistical flux attached, with p odd.

Assuming also, gnided by experiment, that:

e rational numbers g/p with odd p are attractive, since they are experimentally so
stable;

o the flow comes down vertically from the points at ¢ = oy +ioc, 1.e. that oy does
not flow at high temperatures (weak coupling®°?)

then the topology forces the fixed points with 3o > 0 to be saddle points and the
only flow possible is compatible with the topologyv of Fig. 1. The precise form of
the flow in Fig. 1 can be deformed, but the fixed points cannot be moved. An even
stronger statement can be made with one further assumption. When a system is
symmetric under particle-hole mterchange one has symmetry under change of the
sien of oy, which is ¢ — 1 — 7 for the complex conductivity, This puts a reality
condition on ¥(, ) which, combined with the mathematical properties of invariant
functions of I'y(2), can be used to show that the boundary of the fundamental
domain, and its images under I'y(2) must always be flow lines.”® Any deformation
of Fig. 1 must therefore leave invariant the fixed points, the vertical lines above
integers on the real axis and the semi-circles spanning rational numbers on the real
line with odd denominators, {as well as the images of all these under I'y(2))

only the specific shape of the flow lines ingide the fundamental domain, and their
images under I'y(2), can be delormed. In particular T'3{2} symmetry provides a
remarkably robust derivation of the well-established experimental semi-circle law,
In many experiments the transition between two plateanx does follow a semi-circle
in the upper-hall complex conductivity plane to a very high degree of accuracy.®
The scaling hypothesis of Refs. 46 and 47 suggests that, at low temperatures, &

becomes a Tunction of a single scaling variable .;;-3 with a scaling exponent ~ and

the flow is then forced onto one of these semi-circles. Any deviation from a semi-
circular transition is an experimental signal that the sample nunder imvestization
8 not symmetric under particle-hole interchange. At a microscopic level the semi-
circle law has been derived in one specific model,” but modular symmetry provides
a very robust derivation, valid for any model which satisfies the above assumptions,
and is therefore much more general than any specific model. The general topology
of the flow in Fig. 1, at least for the integer QHE, was predicted by Khmel nitskii,*
though the normalisation of the vertical axis was not determined in that analvsis
and there was no extension to the fractional case,

The specific flow for Fig. 1 was determined by supplementing the above as-
sumptions with an additional constraint, that the scaling function {7} should be
a meromorphic function in the argument #." This makes it a modular form of

hStrictly speaking it is meromorphic in the variable ¢ = 77 rather than in & itself,
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weight —2 and the analyvtic form that approaches the stable fixed points on the real
axis most rapidly I8 exactly the same as that of N7 = 2 SUSY Yang Mills in the

previous section, up to an undetermined constant, namely

X(o) = =1 (10)

2 1
ri (Vi(a) + ¢ (o)’

7
and this gives the flow plotted in Fig. 1. To date there is no physical reazon for
assuming that ¥ should be independent of #. it is only motivated by mathematical
analogy with SUSY Yang Mills, but it does have the advantage of giving an explicit
form for the scaling lunction that can be visnalised. Any delormation away [rom
this by mcluding a non-meromorphic component is constrained by the considera-
tiong above and cannot change the topology. In [act the flow obtained using the
meromorphic ansatz does give remarkably good agreement with experiment and
the comparison is plotted in Figs, 2 and 3, taken from Rels, 56 and 57, Forther ex-
perimental evidence supporting modular svinmetry in the QHE is given in Rel. 58,

In summary, modular svmmetry I'g(2) applied to the quantum Hall effect for
spin-split samples leads to the ollowing predictions:

o universal critical points are predicted at ¢, = (1 + i) and its images under
I'p(2). Critical exponents must be the same for all fixed points which are related
by T'5(2).
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AN

o [xact flow lines in the a-plane can be derived from I'n(2) invariance plus invari-
ance under particle-hole svmmetryv: @ — 1 —a,. In particular the semi-circle law
ig a consequence of I'5(2) plus particle-hole symmetry.

o Flow in the infrared is towards the real axis, terminating on the real axis at
attractive fixed points at odd-denominator fractions. Even-denominator fractions
form repulsive fixed points of the flow.

o The selection rule [prgo —pog:| = 1 for allowed transition between o = ¢, /p; and

o =qz/ps.

For QUE samples that are not ully spin polarised one expects that the Landau
levels can come in adjacent pairs and 7 in (36) should be replaced hy T2, giving
the generators of I'(2) rather than I'y(2), and this modifies the experimental conse-
quences, I'(2) actnally has no fixed points above the real axis, so one cannot make
any predictions about the position ol the second-order phase transition between
two plateaux, but if there is particle-hole symmetry one still has the semi-circle
law and the fixed point must lie scomewhere on the semi-circle.” An experimental
analysis of the relation between modular svmmetry and Zeeman splitting is given
in Rel. 60,

The group I'(2) was also analysed, from the point of view of its action on ground
state wave-functions rather than on complex condnctivities, in Rel. 61 and on com-
plex conductivities in Ref. 62. Jain’s map was described in terms of dunalitv and

mirror symmetry in Rel. 63.
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The group I'g(2) 1s the subgroup of the full modular group that is relevant for
svetems with fermionic charge carriers in a strong perpendicular magnetic field with
the spins well split. If the effective charge carriers are bosonic, e.g. two-dimensional
superconductors, one can obtain predictions from the fermionic case by using the
flux attachment transformation to add an odd number of vortices to the quasi-
particles. For the case of a single unit of flux, this equivalent to conjugating 1";(2)
by F = 8 '78. The resulting group is generated by S and 72 and is the group
I'p of Rels. 20, 40 and 41 (a derivation of the combination of the & transformation
with particle-hole svmmetry, for a two-dimensional superconductor, was given in
Ref. 64). This group consists of elements 4 of the form {12) with either a, d both
odd and b, ¢ both even, or vice versa. In this case the predictions are different:

# universal critical points are predicted for the flow at the fixed points for transi-
tions between stable phases, ¢, =i and its images under I'p.!
The eritical exponents at all fixed points related hy I'g must all be the same.
Exact flow lines in the o-plane are immediate consequences of 1"y Invariance and
particle-hole svmmetry.*” The results are again semi-circles or vertical lines in
the o-plane, implyving a semi-circle law for these bosonic svstems.

¢ For nonzero magnetic fields the flow as the temperature ig reduced is towards
the real axis, terminating on the attractive fixed points o = p/q with pg even (as
opposed to having ¢ odd, as was the case for fermions). Fractions with odd pg
are repulsive fixed points.

o There is a selection rule that allowed {ractions ps/gs can be obtained {rom py /g
only if |prge — paqu| = 1.

The resulting flow diagram for bosonic systems is given 1n Rel. 40, 1t has a fixed
point at ¢, = i, as predicted by Fisher.” To date no two-dimensional supercon-
ductors have been manufactured with a high enongh mobility g that pB is close to
unity for sustainable magnetic fields, but it is predicted in Ref. 40 that a hierarchy

with the above properties will be observed if such samples are ever manufactured.

4. Conclusions

Modular symmetry is a generalisation of the Dirac quantisation condition for charge
i QED. Its mathematical foundation is strongest 1n supersymmetric syvstems, such
as supersvinmetric Yang-Mills and string theory, but a more realistic system, with
a wealth of experimental data to compare with, is the guantum Hall effect. The
Dirac—Schwinger-Zwanziger quantisation condition manifests itself in quantum Hall
svstems as a selection rule for transitions between allowed quantum Hall plateaux.

An important feature that these systems have in common is the existence of
topologically non-trivial field conficurations, monopoles in SUSY Yang Mills and

iThis statement is for hosonic charge carriers with the same electric charge as an electron it
becomes o, = ig2 and its images if the bosonic charge carriers have charge ¢, In particular, the
case g = £2 applies if the bosons are Cooper pairs, such as those considered in Ref. 65,
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vortices in the QHE, which can bind to the charge carriers to form pseudo-particles
carrving magnetic charge: dvons in SUSY Yang Mills and i the QHE fermions
which can be viewed as bosons with an odd number ol flux units attached. The
rational nature of the attractive fixed points on the real axis ¢/p is then related to
electric charge ¢ and magnetic charge p.

The earliest appearance of modular symmetry in the condensed matter litera-
ture was in the work of Cardy and Rabinovicel,®® where a coupled clock model was
analysed, interestingly with a view to gaining insight into guantum chromodynam-
ics. Phase diagrams for clock models were related to the QHE in Ref. 67. Another
model in which the modular group was found is the dissipative Holstader model.®®
There are certain features which all these models have in common. They all have
only two relevant couplings: one, y, associated with the dvnamical kinetic term,
which must be positive for stability reasons; and one, x, associated with a topo-
logical term. These are combined into the complex parameter, 7 = = + iy, on the
upper-half complex plane on which the modular group, or a subgroup thereof, acts.
[t seems that modular symmetry is not just an accident of one type of svstem, or
even a family of systems such as snpersymmetric field theories, but in fact is a more
general phenomenon and it may vet prove even more powerful in nnderstanding the
phvsics of strongly interacting svstems,
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