Cytokine 54 (2011) 282-288

journal homepage: www.elsevier.com/locate/issn/10434666

Contents lists available at ScienceDirect

Cytokine

Nitric oxide affects IL-6 expression in human peripheral blood mononuclear
cells involving cGMP-dependent modulation of NF-kB activity

Jakub Siednienko *P*, Joanna Nowak?, Paul N. Moynagh , Wojciech A. Gorczyca?

 Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroctaw, Poland
b Molecular Immunology Laboratory, Institute of Immunology, Department of Biology, National University of Ireland, Maynooth, Ireland

ARTICLE INFO

Article history:

Received 4 June 2010

Received in revised form 14 February 2011
Accepted 15 February 2011

Available online 16 March 2011

Keywords:
IL-6

NF-xB
Nitric oxide
cGMP
PBMC

ABSTRACT

Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We
report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the
expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating
compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (<10 pM) and
decreased at higher (>100 uM) concentrations of NO donors. Changes in the expression of IL-6 correlated
with changes in the activity of NF-kB, which increased at lower and decreased at higher concentrations of
both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-«xB
activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of sol-
uble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). More-
over, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors.
These observations show that NO, depending on its concentration, may act in human PBMCs as a stim-

ulator of IL-6 expression involving the sGC/cGMP/PKG pathway.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Interleukin 6 (IL-6) is pleiotropic cytokine playing an important
role in acute and chronic inflammation. It is synthesized by various
cell types including T lymphocytes, B lymphocytes, and monocytes
[1]. It is also well documented that the development of inflamma-
tion is regulated by nitric oxide (NO) and the compounds that
release NO (NO donors) are potent regulatory agents in inflamma-
tory processes [2-5]. NO donors have been reported to up- and
down-regulate the expression of various inflammatory mediators
[6-10]. The action of NO is time-dependent [11,12] and biphasic
[10,13-15]. Low concentrations of NO have a stimulatory effect
on synthesis of proteins involved in differentiation, apoptosis, or
inflammation [7,16], while high concentrations exert opposite
effects [17]. The intracellular signaling of NO can be mediated by
the second messenger guanosine 3',5'-cyclic monophosphate

Abbreviations: EMSA, electrophoretic mobility shift assay; GC, guanylyl cyclase;
GSNO, S-nitrosoglutathione; IBMX, 3-isobutyl-1-methylxanthine; ODQ, 1H-
[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; PDE, phosphodiesterase; PKG, cGMP-
dependent protein kinase; PBMC, peripheral blood mononuclear cell; sGC, soluble
GC; SNP, sodium nitroprusside.
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(cyclic GMP, cGMP) [5,18-21] and/or be cGMP indepen-
dent [6,11,17,22]. Similarly to nitric oxide, cGMP has also been
shown to play both pro- and anti-inflammatory roles [3-5,10,
23,24].

The cGMP-dependent pathway is initiated when NO binds to
the heme moiety of cytosolic (soluble) guanylyl cyclase (sGC)
and stimulates its enzymatic activity. The generated cGMP signal
is in turn transmitted to effector proteins, of which the cGMP-
dependent protein kinase (PKG) is the main target in most cells
[25]. Soluble guanylyl cyclases and PKG are also detected in lym-
phoid and myeloid cells of the immune system [18,19,23,26-29].

Nuclear factor kB (NF-xB) plays a key role in the development
of inflammation. This transcription factor controls the expression
of multiple genes including those encoding proinflammatory cyto-
kines TNF-a, IL-1B, and IL-6 [30-32]. In the cytoplasm, the NF-xB
heterodimer (usually consisting of the subunits p50 and p65) is
maintained in its inactive form by its association with inhibitory
proteins of the IkB family. In response to an activating signal, IkB
is phosphorylated by specific kinases and then degraded by the
proteasome. The released NF-xB heterodimer translocates to the
nucleus, binds to the consensus sites in the target genes and
regulates their transcription [30]. The activity of NF-xB can be
regulated by various factors including nitric oxide [11,33,34] and
thus observed effects of NO on synthesis of proinflammatory
cytokines may be mediated by its action on NF-xB. However, data
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concerning the role of the NO/cGMP pathway in this process and
development of inflammation are often conflicting. Therefore, we
designed and conducted a study to establish how NO affects the
expression of IL-6 in human peripheral blood mononuclear cells
(PBMCs), which are an important source of proinflammatory cyto-
kines [35]. We also define a role for cGMP in mediating the ob-
served effects of NO in these cells.

2. Materials and methods
2.1. Cell culture and reagents

Buffy coats were kindly provided by the Station of Blood Dona-
tion, 4th Military Hospital, Wroctaw, Poland. HEK293 cell line was
purchased from ECACC. The cells were grown in DMEM with Gluta-
MAX (Gibco-BRL) supplemented with 10% fetal bovine serum, pen-
icillin-streptomycin and noromycin and maintained at 37 °C in a
humidified atmosphere of 5% CO,. Fetal bovine serum (FBS) was
from GibcoBRL (Karlsruhe, Germany). SDS-PAGE reagents were ob-
tained from Fluka (Buchs, Germany). PKG inhibitor KT5823 was
obtained from Calbiochem-Novabiochem (Darmstadt, Germany).
S-nitrosoglutathione (GSNO), sodium nitroprusside (SNP), 1H-
[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one  (0DQ), 3-isobutyl-1-
methylxanthine (IBMX), leupeptin, pepstatin A, PMSF, and other
chemicals were from Sigma-Aldrich Co. (Poznan, Poland).

2.2. Expression vectors/recombinant plasmids

The IL-6-luciferase reporter constructs (pGL3-IL6-WT-luc and
pGL3-IL6-NFKB-m-luc) were a generous gift from William Farrar
(National Institute of Health, Frederick, Maryland). The pHACE
PKG-la and pHACE PKG-IB plasmids were a generous gift from Bo
Cen (Columbia University, New York).

2.3. Preparation of human PBMCs

PBMCs were obtained by density centrifugation of buffy coats of
healthy voluntary blood donors over Lymphoprep™ (Axis-Shield,
Oslo, Norway) as described previously [36].

2.4. Determination of IL-6

Isolated PBMCs were cultured at a concentration of 1 x 10°
cells/ml for 4 h at 37 °C in 5% CO, in 48-well culture dishes in
either the absence (control) or presence of NO donors. Culture
supernatants were collected, cleared by centrifugation, and frozen
at —70 °C until analysis. IL-6 was determined by microplate ELISA
using rat monoclonal antibodies against human IL-6 (Pharmingen,
San Diego, CA, USA) and recombinant human IL-6 as a standard
(Pharmingen, San Diego, CA, USA) according to the procedure rec-
ommended by the manufacturer.

2.5. Induction and measurement of intracellular cGMP

PBMCs were transferred to 48-well cell culture plates (Costar,
Corning, NY, USA) and allowed to rest for 30 min at 37 °C before
the experiments were performed. Each well contained 5.0 (10° cells
in a final volume of 0.5 ml. To prevent cGMP hydrolysis, 0.5 mM
IBMX was added, and after incubation at 37 °C for 10 min the cells
were supplemented with NO donors (SNP, GSNO). After 30 min of
incubation, the reaction was terminated, the cells were
disintegrated, and the intracellular content of cGMP was determined
by the ELISA-based method using rabbit antibodies specific to cGMP
[25,26]. All samples were prepared in quadruplicate.

2.6. Nuclear extracts

Nuclear extracts were prepared from PBMCs according to the
method described previously [37]. Briefly, PBMCs were washed
with ice-cold PBS and disintegrated in ice-cold buffer A (10 mM
HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM
DTT, 1 mM PMSF, 0.1 mM sodium ortovanadate, 0.1% NP-40) by
gentle pipetting on ice for 15 min. After centrifugation at 12,000g
for 1 min at 4 °C, the supernatants were removed and the nuclear
pellets were resuspended in a 3x packed nuclear volume of ice-
cold high-salt buffer B (20 mM HEPES pH 7.9, 10 mM KCl, 1 mM
EDTA, 1 mM EGTA, 420 mM NaCl, 20% glycerol, 1 mM DTT, 1 mM
PMSF). The samples were gently vortexed on ice for 30 min, centri-
fuged at 12,000g for 10 min at 4 °C, and the supernatants (nuclear
extracts) were saved.

2.7. Electrophoretic mobility shift assay (EMSA)

The  double-stranded  oligonucleotide  5-AGTTGAGGG-
GACTTTCCCAGGC-3’ (Promega, Madison, WI, USA) representing
the NF-kB consensus-binding site was end-labeled with T4 poly-
nucleotide kinase (Promega, Madison, WI, USA) in the presence
of [y->2P] ATP (NEN Life Science, Otwock, Poland). The nuclear ex-
tracts (10 pg of protein) were preincubated for 10 min in reaction
buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 5 mM MgCl,,
2.5mM EDTA, 2.5 mM DTT, 20% glycerol, and 0.25 mg/ml poly
(dI-dC)-poly (dI-dC)) followed by incubation with a 32P-labeled
NF-kB probe for 30 min at room temperature. The EMSA was per-
formed in a 4% acrylamide gel in a low-ionic-strength TBE buffer.
The dried gels were autoradiographed with storage phosphor
screens at —20 °C and the NF-kB complexes were analyzed using
a Typhoon 8600 Multi-imaging System software (Molecular
Dynamics/Amersham Pharmacia Biotech, Sunnyvale, CA, USA).
The resulting images were aquatinted using ImageQuant software
(Molecular Dynamics/Amersham Pharmacia Biotech, Sunnyvale,
CA, USA). The specificity of the NF-kB-binding protein was con-
trolled by competition with an excess of unlabeled oligonucleotide
and by supershift experiments. For the gel supershift assay, nuclear
protein was preincubated for 30 min with 1 pl of undiluted poly-
clonal antibodies to p50 and/or p65 (SCB, Santa Cruz, CA, USA).

2.8. RNA isolation, reverse transcription, and polymerase chain
reaction (RT-PCR)

Total RNA was isolated from all types of cells using the TRIzol®
Reagent according to the manufacturer’s instructions (Invitrogen).
Thereafter, 5 pg of total RNA was incubated with deoxyribonucle-
ase | (MBI Fermentas, Vilnius, Lithuania) and was reverse-tran-
scribed (RT) into cDNA using a RevertAid™ First Strand cDNA
Synthesis Kit (MBI Fermentas, Vilnius, Lithuania) with oligo(dT);s
primers according to the supplier’s instructions. The cDNA was
amplified using a PCR Core Kit (Qiagen, Hilden, Germany) and
0.4 uM of primers specific for human IL-6, sGCo, sGCB or hypoxan-
thine phosphoribosyl transferase (HPRT). The sequences and
annealing temperatures (T,) of the primers were: IL-6: For:
ATGTAGCCGCCCCACACAGA and Rev: ATTTGCCGAAGAGCCCCTCAG
(Ta =60 °C), sGCo: For CAGCCATTGCCAAGAAGCAGGAAA and Rev
AGGGAGGCATTAACGACACTTCCA (Tx = 60 °C), sGCB: For TGGAAAT
TGCTGGCCAGGTTCAAG and Rev AAAGACAGTATCGAGGCATCCGCT
(Ta=60°C) and HPRT: For AGTGATGATGAACCAGGTTA and Rev
ATTATAGTCAAGGGCATATC (Ta =58 °C). The PCR products were
separated in 1.5% agarose and visualized under UV light using ethi-
dium bromide. The resulting images were captured and analyzed
using Fragment Analysis software (Molecular Dynamics/Amer-
sham Pharmacia Biotech, Sunnyvale, CA, USA). No products were
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observed in the control (RT-) samples, in which the reverse trans-
criptase was omitted.

2.9. Real-time PCR

Total cDNA was used as starting material for real-time RT-PCR
quantitation with DyNAmo°HS SYBR Green Kit (Finnzymes) on a
real-time PCR system (DNA Engine OPTICON® system; M] Re-
search). For the amplification of the specific genes the following
primers were used; IL-6, For AGCCACTCACCTCTTCAGAACGAA,
and Rev CAGTGCCTCTTTGCTGCTTTCACA. For mRNA quantification,
the housekeeping gene hypoxanthine phosphoribosyltransferase 1
(HPRT) was used as a reference point using the following primers,
HPRT forward, AGCTTGCTGGTGAAAAGGAC, and reverse, TTATAGT-
CAAGGGCATATCC. Real-time PCR data were analyzed using 2 2A¢T
method as described [38].

2.10. Reporter assays

HEK293 cells (2 x 10* cells/well; 96 well plate) were co-trans-
fected with a luciferase reporter gene plasmid regulated by a wild
type IL-6 promoter, or the same promoter containing a mutation in
its kb-binding site (IL-6-AxB) (80 ng/well), and the expression
vectors PKG-Ioe and B using Lipofectamine 2000 as described by
the manufacturer (Invitrogen). In all cases, 40 ng/well of phRL-TK
reporter gene was co-transfected to normalize data for transfection
efficiency. After 24 h, cells were stimulated with 8-Br-cGMP or SNP
for 8 h. Thereafter, cell lysates were prepared and reporter gene
activity was measured using the Dual Luciferase Assay system
(Promega) as described [38]. Data was expressed as the mean fold
induction +SD relative to control levels, for a representative exper-
iment from a minimum of three separate experiments, each per-
formed in triplicate.

2.11. Data analyses

Statistical analysis was carried out using the unpaired Student’s
t test using SigmaPlot 2001 programme. p-Values of less than or
equal to 0.05 were considered to indicate a statistically significant
difference where x or # indicates p < 0.05 and ** or ## indicates
p <0.01.

3. Results
3.1. Expression of IL-6 is affected by NO donors in PBMCs

We initially examined the expression of IL-6 in response to var-
ious amounts of the nitric oxide as released from NO donating mol-
ecules. The cells were independently treated with two different NO
donors, sodium nitroprusside (SNP) and S-nitrosoglutathione
(GSNO) and cell supernatants subsequently assayed for protein
levels of IL-6 analyzed. Both donors, used at a low dose (10 pM),
caused an increase in IL-6 synthesis, while an inhibitory effect
was observed at higher (above 100 uM) concentrations (Fig. 1A).
In order to assess if the regulatory influence of NO was likely med-
iated at the level of transcription the effects of both NO donors on
the expression levels of IL.-6 mRNA were subsequently assessed.
Semi-quantitative RT-PCR was used to measure IL-6 mRNA levels
and the findings mirrored those observed when measuring IL-6
protein levels in that both donors stimulated IL-6 mRNA expres-
sion at low concentration with higher concentrations showing
inhibitory effects (Fig. 1B). Quantitative-real time PCR analysis also
confirmed these findings using SNP as a NO donor. Given that the
main intracellular receptor of nitric oxide is soluble guanylyl
cyclase, that synthesizes ¢cGMP, it was important to establish

whether cGMP mediates the effects of the NO donors on IL-6
expression.

Firstly the ability of the NO donors to influence cGMP synthesis
in PBMCs was examined. The experiments were performed in the
presence of a non-selective inhibitor of phosphodiesterases (IBMX)
to prevent hydrolysis of the synthesized nucleotide. The level of
c¢GMP in unstimulated (control) PBMCs was low (26 + 6.8 fmol/
10° cells/30 min) and considerably increased after treating the
cells with either donor of NO (Table 1). SNP and GSNO increased
the level of intracellular cGMP over 30-fold. This effect was re-
duced in the presence of the guanylyl cyclase inhibitor ODQ indi-
cating that both donors released NO which in turn activated the
enzyme. Given that NO could elevate cGMP the role of this signal-
ing molecule in regulating IL-6 expression was next examined. In-
deed 8-Br-cGMP, a known membrane-permeable analog of cGMP,
was shown to stimulate the expression of IL-6 mRNA (Fig. 1C) indi-
cating that cGMP is at least capable of replicating the stimulatory
effects of the NO donors. Furthermore cGMP appears to act a medi-
ator of the stimulatory effects of the NO donors since the guanylyl
cyclase inhibitor ODQ blocked the stimulatory effects of SNP on IL-
6 expression (Fig. 1C). In addition the stimulatory effects of SNP are
also blocked by the PKG inhibitor KT5823 and this supports a role
for cGMP-activated PKG in mediating the stimulatory effects. Inter-
estingly the inhibitors of guanylyl cyclase and PKG failed to affect
the inhibitory effects of the high concentrations of SNP suggesting
different mechanisms underlie the stimulatory and inhibitory ef-
fects of NO donors on IL-6 expression. Whilst the exact nature of
the inhibitory effects of NO on IL-6 is unknown, the high concen-
trations of NO donors do not induce any cytotoxicity and hence
we can exclude non-specific toxicity as a mechanistic basis to the
effects.

3.2. The effects of NO donors on IL-6 expression correlate with activity
of NF-kB

Since the expression of IL-6 is regulated by the transcription
factor NF-xB we next analyzed the influence of both donors on
its activity as measured by EMSA. The activity of NF-kB in freshly
isolated untreated PBMCs (Fig. 2A) showed some constitutive level,
which further increased after treating the cells with phorbol 12-
myristate 13-acetate (PMA). The effect of PMA was abolished in
the presence of gliotoxin, a known inhibitor of NF-kB activation
[32]. Similarly to PMA, SNP at a concentration of 10 uM also caused
an increase in NF-kB activity. Specificity of NF-xB complexes de-
tected by EMSA was confirmed by inhibition of the NFkB-DNA
complexes with the unlabeled (cold) oligonucleotide containing
the NF-kB binding site (specific competitor) whereas the unrelated
oligonucleotide (non-specific competitor) was ineffective. The
complex that was translocated to the nucleus consisted of p50
and p65 subunits as determined by supershift analysis using anti-
bodies specific against each subunit (Fig. 2A). The effect of SNP on
NF-xB activity was dose dependent and showed a biphasic charac-
ter (Fig. 2B). The activity of NF-kB increased at lower and de-
creased at higher (above 100 uM) concentrations of SNP. Similar
effects were observed when GSNO was applied as the NO donor
(Fig 20).

3.3. The activation of NF-xB by NO donors in PBMCs depends on the
c¢GMP pathway

The main intracellular receptor of nitric oxide is soluble gua-
nylyl cyclase which synthesizes cGMP. Therefore, it was important
to establish whether cGMP mediates the changes in NF-kB activity
caused by the NO donors. We thus explored the regulatory effects
of the inhibitors of the two key enzymes of the cGMP signaling
pathway, namely sGC and PKG. Inhibitors of both enzymes
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Fig. 1. NO donors regulate the expression of IL-6 expression in a dose-dependent manner. (A) PBMCs were treated with the indicated concentrations of SNP or GSNO and
10 uM 8-Br-cGMP and the expression of IL-6 was subsequently assayed by the ELISA-based method. Data are presented as mean * SE of three independent experiments. (B)
PBMC were treated with 8-Br-cGMP, SNP or GSNO for 4 h. Thereafter, total RNA was isolated, converted to first-strand cDNA. Various dilutions (1x, 10x or 100x) of cDNA
were used as template for semi-quantitative RT-PCR. HPRT was used as a housekeeping gene and the data is representative of three independent experiments. (C) Freshly
isolated PBMC were pretreated with ODQ (1.0 uM) or KT5823 (0.2 pM) for 20 min. Thereafter cells were treated with the indicated concentrations of 8-Br-cGMP, SNP or GSNO
for 12 h and total RNA was isolated, converted to first-strand cDNA and used as a template for quantitative IL-6 real-time RT-PCR as described under “Section 2”. Values were
normalized relative to HPRT and data are presented relative to unstimulated cells. #p < 0.05 or #*#p < 0.01 statistical significances related to control as described in Section 2.

Table 1
Synthesis of cGMP by soluble GC in response
to NO donors.

Treatment cGMP (fmol/10° cells)
None 26.0+6.8

SNP 833.5+68.5

SNP + ODQ 133.4£30.0

GSNO 1743.6 £ 109.1
GSNO+0DQ 133.0+40.5

PBMCs were treated with 10 uM SNP or
GSNO in the presence of 0.5 mM IBMX in
either the absence or presence of 1 uM ODQ
and then the intracellular content of cGMP
was determined according to the procedure
described in the Section 2. Results are
expressed as the mean + SD of three inde-
pendent experiments.

prevents the activation of NF-kB by NO in PBMCs. As shown in
Fig. 3A, cells treated with NO donors in the presence of either
0ODQ or KT5823 (inhibitor of PKG) showed decreased activation
of NF-kB in comparison with cells treated with NO donors alone.
In addition the inhibitory effects of the high concentrations of
SNP on NFkB are also blocked by the inhibitors indicating a key
role for cGMP and its effector enzyme in mediating the regulatory
effects of NO donors on NFkB. Indeed the ability of cGMP to regu-
late NFkB was directly confirmed by showing that 8-Br-cGMP, a
membrane-permeable analog of cGMP could activate NF-xB in
PBMCs and this was inhibited by PKG inhibitor KT5823 (Fig. 3B).

3.4. 8-Br-cGMP and NO donors target the NFkB binding site in the IL-6
promoter

In order to relate the regulatory effects of the NO/cGMP/PKG
pathway on NFkB to IL-6 expression we explored the effects of
the various molecules on activation of the IL-6 promoter and the
importance of the NFkB-bidning site in this promoter to mediating

these effects. To this end we used the IL-6 full length promoter and
IL-6 NF-xB deletion mutant luciferase reporter gene constructs
(Fig. 4A). The experiments with the IL-6 promoter constructs were
conducted in HEK293 cells and thus it was initially important to
confirm that these cells express sGC. RT-PCR was used to confirm
expression of both subunits (o and B) of sGC (Fig. 4B). Next,
HEK293 cells were co-transfected with the luciferase reporter con-
structs and PKG-loo or PKG-IB. We found that transfection of
HEK293 cells with the PKG-I increased the cGMP-dependent acti-
vation of the IL-6 reporter genes but not IL-6-AxB (Fig. 4C and
D). Interestingly, we found that transfection of HEK293 cells with
PKG-lo and treatment with the 8-Br-cGMP or 10 uM SNP lead to
stronger activation of the full-length IL-6 reporter gene, whilst
the PKG-IB was less effective (Fig. 4C and D). Taken together, these
data clearly demonstrate that a NO donor like SNP can elevate
cGMP to promote IL-6 gene induction in a PKG and NF-kB depen-
dent manner.

Interestingly the high concentration of SNP (500 pM) showed
inhibitory effect on both kinases and this correlates closely with
the inhibitory effects of high concentration of SNP on NFkB indicat-
ing that the latter is a key target for mediating the complex effects
of NO on IL-6 expression.

4. Discussion

Among the multiple physiological processes regulated by nitric
oxide are also those related to the development of inflammation
[2,39]. Published data show that NO may play a dual role in this
process and exerts either a stimulatory or an inhibitory effect on
the synthesis of proinflammatory cytokines [11,22,40].

Taking into account the possible pro- and anti-inflammatory
effects of NO, we examined whether and how NO donors affect
the expression of proinflammatory IL-6 and the activity of the
transcription factor NF-xB in human peripheral blood
mononuclear cells (PBMCs). The action of NO donors was
dose-dependent and showed biphasic character. At low
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Fig. 3. NO modulates NF-«B activity in PBMCs by the sGC/cGMP/PKG pathway. (A)
Cells were treated with low and high concentrations of SNP in either the presence or
absence of sGC inhibitor (1.0 uM ODQ) and PKG inhibitor (0.2 M KT5823). (B) Cells
were treated with 10 pM 8-Br-cGMP in the absence and presence of PKG inhibitor.
Nuclear extracts were analyzed by EMSA for binding to the probe containing the
NF-xB consensus sequence; ** or #¥p < 0.01 statistical significances as described in
Section 2, all other details are as described in the legend to Fig. 1.

concentrations, they elevated but at higher concentrations inhib-
ited both IL-6 expression and NF-kB activity. The stimulatory and
inhibitory effects of NO donors on NF-kB were mediated by the
cGMP-dependent pathway containing soluble GC and cGMP-
dependent protein kinase (PKG) as key elements, because the

effects were no longer apparent in the presence of specific inhibi-
tors of either enzyme. Interestingly whilst our studies indicate that
GC and PKG mediate the stimulatory effects of NO on IL-6 expres-
sion, the inhibitory effects of NO on IL-6 expression are likely man-
ifested by a distinct mechanism since such negative regulatory
effects are not blocked by inhibitors of sGC and PKG.

PKG has been detected in various immune cells [26-29], where
it was shown to be responsible for the effects of cGMP [18,19,28].
We observed that inhibition of PKG abrogated the effects of SNP on
the activity of NF-xB. Previous reports demonstrated that the sGC/
cGMP/PKG signaling pathway participates in stimulating NF-xB
activity in adult feline myocardium [20] and in human pulmonary
epithelial cells [33]. Our experiments show that this pathway reg-
ulates NF-kB activity also in human PBMCs. Cyclic GMP, generated
in response to a low concentration of NO donor, activates PKG that
stimulates NF-kB using a yet unknown pathway. Earlier published
data indicate that PKG may phosphorylate IkB and thus cause the
degradation of this inhibitory subunit and the activation of NF-xB
[20]. Another possibility was raised by He and Weber [41], who
showed that PKG is able to directly phosphorylate p65 in the
NF-xB heterodimer, increasing its transcriptional activity. The fact
that NO donors exert their stimulatory effect at low doses is also in
agreement with experiments that showed the expression of
endothelial nitric oxide synthase in murine macrophages [42]. This
type of NO synthase provides NO at a low level and induces
proinflammatory response in macrophages through the activation
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Fig. 4. The regulation of the IL-6 promoter activation by the cGMP/PKG pathway is dependent on the NF-kB. (A) Histograms of the IL-6 promoter luciferase constructs with
the regulatory binding sites for IL6-NF-kB, IL6-IL6NF and IL6-AP1. The transcription start site is indicated with the arrows. The IL-6 promoter constructs illustrated on panel A
were used for transfection and luciferase assay shown on panels C and D. (B) The mRNA of sGCs was detected using RT-PCR. HPRT is the reference gene. The first line contains
DNA mass markers. Their molecular sizes in bp are shown on the left side of the gel. (C and D) HEK293 cells were co-transfected with vectors encoding a reporter gene for the
full length IL-6 promoter (black) and IL-6 NF-kB deletion mutant (grey), and increasing amounts of the expression vectors encoding PKG-Io or B (1, 10, 100 ng) as indicated.
After 24 h cells were stimulated with 8-Br-cGMP (50 uM) or SNP for 8 h followed by harvesting of the cell lysates and assessment of luciferase gene reporter activity. The
results presented are representative of at least three independent experiments; *p < 0.05; **p < 0.01 statistical significances as described in Section 2.

of NF-kB [42]. Another cellular effect of low doses of NO is its pro-
tective role against apoptosis [43]. Since the anti-apoptotic role of
low concentrations of NO has been reported for several cell types,
our observations suggest that the NO/cGMP/PKG pathway might at
least in part be responsible for the anti-apoptotic effect of NF-kB
activation described for human leukocytes [32]. Further studies
are needed to explore this possibility in details.

Others described that NO inhibited the activity of NF-kB when
high levels of NO donors were used [5,10]. Again, our results
showed that at high concentrations of both SNP and GSNO a dimin-
ished expression of IL-6 correlated with decreased NF-kB activity.
Inhibitory, effects of higher doses of NO-donating compounds on
NF-kB activity, mediated at least in part by ¢cGMP, was also re-
cently reported for human mast cells [5]. However, cellular pro-
duction of NO is controlled, in part, by NF-xB itself [44]. In
particular, deletion of kB sites from the NOS2 promoter prevents
the cytokine-induced increase in NOS2 transcription [45]. The pri-
mary molecular mechanism by which high NO inhibits NF-xB sig-
naling is via S-nitrosylation of several different NF-kB proteins
including IxkB kinase B and p50 [46]. Particularly, p50 and p65
are S-nitrosylated under conditions of nitrosative stress and is
associated with a decrease in NF-kB (p50-p65) DNA binding
[46,47].

In summary, our findings indicate that the NO/sGC/cGMP/PKG
pathway is involved in the regulation of IL-6 expression in human
PBMCs through the regulation of NF-kB activity. Thus NO/cGMP-
dependent signaling appears to be an important regulatory
pathway in the inflammatory process. At its early stage, it may
accelerate the process by stimulating the synthesis of proinflam-
matory cytokines, while at a later stage, when the cells are fully
activated and NO is supplied in excess, it rather counteracts the
undesired development of inflammation.
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