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Abstract 

 

 In this thesis, increased vertebrate genome sampling and recent methodological 

advancements were combined to address three distinct questions pertaining to vertebrate 

molecular evolution.  

 Gene duplicability is the tendency to retain multiple gene copies after a duplication 

event. Various factors correlate with gene duplicability, such as protein function and 

timing of expression during development. The position of a gene’s encoded product in the 

protein-protein interaction network recently emerged as an additional factor determining 

gene duplicability. The first investigation described in this thesis coupled comparative 

genomics with protein-protein interaction data to assess the dynamic relationship between 

gene duplicability and network structure in primates. 

 Deciphering the timing of the Ursidae (bear) phylogeny speciation events has 

proven to be a challenging task. A valuable node to calibrate in such studies is that 

separating giant panda and polar bear. The exact timing of this important calibration node 

is currently disputed. The second investigation described in this thesis applied the largest 

amount of nuclear data currently available in a Bayesian framework to attempt to 

accurately estimate the timing of divergence between the giant panda and polar bear. 

 It is known that synonymous codon usage is governed by a combination of 

selective and neutral processes. Currently, it is thought that primarily neutral processes 

govern synonymous codon usage in vertebrates, possibly due to their lower long-term 

effective population sizes. The third investigation described in this thesis combined 

increased genomic sampling and a novel codon usage bias index to conduct the first 

systematic investigation into the forces that govern synonymous codon usage in 

vertebrates.
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      Chapter 1: Introduction 
 
 
 Since the latter half of the 20th century, molecular data has become a standard 

means of exploring evolutionary hypotheses. This has culminated in the present era, in 

which a meteoric rise in whole genome sequence availability offers unprecedented 

opportunities to explore the central tenets of evolution from a molecular perspective (Eisen 

and Fraser, 2003, Wolfe and Li, 2003, Mardis, 2008). 

 This thesis encompasses three separate investigations that explore vertebrate 

molecular evolution from several angles. Each investigation is distinct regarding the 

hypothesis under examination and the tools used to consider each hypothesis. The purpose 

of this introductory chapter is to present fundamental concepts and methods that are 

commonly employed in molecular evolutionary studies. Each subsequent chapter contains 

a separate introductory section that is relevant to that particular investigation. 
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1.1   Molecules as documents of evolutionary history 
!

In the last century, several significant discoveries allowed the concepts and tools of 

molecular biology to permeate evolutionary investigations. For example, deoxyribonucleic 

acid (DNA) was determined as the genetic material of a cell (Avery et al., 1944, Hershey 

and Chase, 1952), the molecular structure of DNA was unraveled (Watson and Crick, 

1953) and the genetic code was deciphered (Crick et al., 1961, Nirenberg and Matthaei, 

1961, Nirenberg, 2004). 

However, two seminal publications ultimately united the field of evolution and 

molecular biology. First, it was proposed that the number of amino acid residue differences 

between a pair of molecules could be indicative of the time elapsed since their evolutionary 

divergence (Zuckerkandl and Pauling, 1962). Second, it was suggested that semantides (a 

class of molecules encompassing DNA, ribonucleic acid (RNA) and polypeptides) were 

the most informative molecules for the investigation of evolutionary events (Zuckerkandl 

and Pauling, 1965). These two influential studies, accompanied by complementary 

methodological and conceptual advances (for example; Fitch and Margoliash (1967), 

Dayhoff and Eck (1968), Kimura (1968), Ohno (1970)) provided a foundation upon which 

the field of modern molecular evolution has been built. Since this time, the discipline has 

progressed at an exceptional pace, greatly broadening the spectrum of questions that can be 

addressed from a molecular perspective (Koonin, 2009, Lander, 2011). Over the course of 

the following sections, some of the key concepts relating to molecular evolution will be 

discussed. 

 
 
 
!
!
!



!
! 3!

1.2   Homology and alignment 
!
 As all living organisms descended from a common ancestor, homology is a 

fundamental concept of molecular evolution. Sir Richard Owen introduced the term 

homolog as “the same organ in different animals under every variety of form and function”  

(Owen, 1843, quoted in Koonin, 2005). It is unsurprising that common ancestry is not 

included in this definition, as it was a pre-Darwinian and pre-Mendelian era. Currently, 

homology may be defined in an evolutionary sense as “the relationship of any two 

characters that have descended, usually with divergence, from a common ancestral 

character” (Fitch, 2000). Prominent forms of homology include orthology and paralogy, 

describing specific cases that arise from speciation and gene duplication events, 

respectively.  

 Homology between genetic sequences is commonly assessed using an expect value 

(“E-value”) statistic that is derived from the Basic Local Alignment Search Tool (BLAST) 

(Altschul et al., 1990). An E-value describes the number of hits that would be expected to 

be returned for a particular sequence by chance, given a database of a particular size. In 

chapter 4 of this thesis, a reciprocal blast strategy was employed. This is a commonly 

implemented technique to identify potential orthologs, in which two genes are deemed to 

be orthologs if they identify each other as best hits in the opposite genome.  

 Once homology between a set of genetic sequences is established, these genes 

comprise a homologous gene family. The alignment of the members of such a family (i.e. a 

multiple sequence alignment (MSA)) serves two important purposes. First, it reveals 

common features that are important for the structure and function of the set of homologs. 

Second, it uncovers poorly conserved regions that are less important for the underlying 

common function or structure, but may define specificity in each homolog. Numerous 

MSA algorithms exist, including those that are implemented in Clustal, Muscle and  

Probabilistic Alignment Kit (PRANK) (Thompson et al. (1994), Edgar (2004) and 
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Löytynoja and Goldman (2005), respectively). Curation of the resultant MSA is commonly 

carried out to resolve ambiguously aligned regions. Although manual curation is routinely 

performed, an automated approach such as that implemented in Gblocks (Castresana, 

2000), trimAl (Capella-Gutiérrez et al., 2009) or Block Mapping and Gathering with 

Entropy (BMGE) (Criscuolo and Gribaldo, 2010) may be more suitable in studies that 

involve large amounts of sequence data. 

 

1.3   Supermatrices 

 The rise in fully sequenced genomes has led to an increased number of molecular 

evolutionary studies that incorporate multiple homologous gene families (for example, 

Wildman et al. (2007), Dunn et al. (2008)). Methodologies such as the supermatrix and 

supertree approach combine such large amounts of data into a single framework, upon 

which phylogenetic hypotheses are generated. In a supertree approach, a phylogenetic tree 

is reconstructed for each gene family alignment and the derived source trees are merged to 

generate a phylogenetic hypothesis. Alternatively, a supermatrix approach may be 

employed, in which all of the gene family alignments (i.e. input matrices) are amalgamated 

into a single phylogenetic matrix and subsequently analysed simultaneously (Kluge 1989, 

De Queiroz and Gatesy, 2007). 

 There has been considerable debate over which approach is a more suitable mode 

of data concatenation and phylogenetic inference (for example, see Beninda-Emonds, 

2004, De Queiroz and Gatesy, 2007, Von Haeseler, 2012). However, supertrees were not 

used throughout this research, and as such, shall not be discussed in further detail. 

Supermatrices use the phylogenetic information encoded in the characters more fully than 

supertree methods (de Queiroz and Gatesy, 2007). Furthermore, the lack of requirement for 

fully overlapping data sets is commonly cited as an additional advantage of supermatrices. 

In the event that a taxon is not present in a given source matrix, this taxon is represented in 



!
! 5!

the supermatrix by a series of question marks that extend the length of the other sequences 

in the source matrix. The effect of missing data on the biological hypotheses that are 

inferred from a supermatrix approach has been disputed (Wiens, 2003, Wiens, 2006, 

Sanderson et al., 2010). Regardless of these potential concerns, supermatrices have been 

successfully employed in answering an array of evolutionary questions, such as 

investigating the diversification of rodents (Fabre et al., 2012) and primates (Chatterjee et 

al., 2009). The supermatrix approach to phylogenetic tree reconstruction is described in 

Figure 1.1. 
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Figure 1.1 A supermatrix approach to homologous gene family concatenation.  

In this example, there are three input homologous gene family alignments (labelled data 

set 1, 2 and 3). These families are concatenated to generate a supermatrix. The 

supermatrix may be used in conjunction with a phylogenetic tree reconstruction method to 

infer a phylogenetic hypothesis. 

!
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1.4   Phylogenetic tree reconstruction  
!
 Without a phylogenetic framework, each species would remain an independent 

mystery upon which a limited number of evolutionary investigations could be conducted. 

Although Lamarck is accredited with the publication of the first evolutionary tree 

(Lamarck, 1809) (Figure 1.2), it was essentially the sole figure in Darwin’s renowned 

publication “On the Origin of Species” (Figure 1.3) (Darwin, 1859) that popularized the 

phylogenetic tree concept.  

 Historically, a phylogeny reconstruction was used simply to understand the pattern 

of common ancestry between taxa. Recently, phylogenies reconstructed using genetic 

sequences have addressed more diverse biological questions. For example, phylogenetic 

trees have been applied to studies involving human health (Worobey et al., 2004), forensics 

(Metzker et al., 2002) and conservation (Erwin, 1991, Vézquez and Gittleman, 1998). 

Specifically in an evolutionary context, phylogenetic trees have previously aided the 

identification of entities that are under the influence of natural selection (Suzuki et al., 

2001, Kosiol et al., 2008) and the detection of orthology and paralogy events (Goodman et 

al., 1979, Goodstadt and Ponting, 2006, Gabaldón, 2008). 

 At present, there are several methods routinely used to reconstruct phylogenetic 

trees, each of which may be categorized as a distance matrix or character-based method. 

The primary difference between the two categories is centred on the treatment of the data. 

Distance matrix methods transform aligned sequences into a pairwise distance matrix and 

identify a phylogenetic hypothesis that predicts the observed set of distances a closely as 

possible (Felsenstein, 2004). In contrast, character-based methods consider each aligned 

site individually to calculate a probability for each possible hypothesis. Subsequently, the 

most probable phylogenetic hypothesis is identified (Felsenstein, 2004). In the following 

sections, both sets of methods will be discussed. 
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Figure 1.2 Lamarck’s evolutionary tree. 

This tree is considered to be the first example of an evolutionary tree. It is (an english 

translation of) Lamarck’s interpretation of the evolution of animals (Lamarck, 1809). 

!
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Figure 1.3 Darwin’s tree of life. 

This depiction of a phylogenetic tree is the sole illustration in Darwin’s celebrated 

publication “On the Origin of Species” (Darwin 1859). 
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1.4.1   Distance matrix methods 
!
 Distance matrix (DM) methods were introduced into the field of phylogenetics 

independently by Cavalli-Sforza & Edwards (1967) and Fitch & Margoliash (1967). All 

DM methods calculate an evolutionary distance between all pairs of taxa, and identify a 

phylogenetic tree that predicts the observed set of distances as accurately as possible 

(Felsenstein, 2004). Several DM methods exist, such as the Nei’s minimum evolution 

method (Kidd and Sgaramella-Zonta, 1971, Rzhetsky and Nei, 1992, 1993) and the 

commonly used neighbor joining (NJ) protocol (Saitou and Nei, 1987). NJ was the sole 

DM method implemented in this thesis and so shall be discussed further. 

 In NJ, a star-like tree topology is initially assumed for a set of sequences, in which 

no taxa cluster together. The sequences are converted into a distance matrix that estimates 

the evolutionary distance between them. Based on the computed distance matrix, a 

summed branch length is calculated between each pair of taxa, and the two taxa with the 

smallest summed branch length are selected and connected together. This pair of taxa is 

now considered as an operational taxonomic unit (OTU). The OTU is treated as another 

taxon, with the branch length of the OTU calculated as an average of the branch lengths of 

the initial two taxa. This calculation is repeated for each pair of taxa in the data set, until all 

of the internal branches have been identified (Saitou and Nei, 1987).  

 NJ is regularly used as a preliminary rapid tree building method to serve as a basis 

for other methods and has proven to be a valuable tool in phylogenetic tree reconstruction 

exercises that incorporate a large number of sequences (Tamura et al., 2004). However, if 

the error in the distance estimation is large, it can be difficult to obtain a reliable distance 

matrix that is the input for NJ.  Obviously, if the input to the algorithm is poor, the 

algorithm has little chance of success (Holder and Lewis, 2003).  
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1.4.2   Character-based methods 
 
1.4.3   Maximum parsimony 
!
 In a character-based phylogeny concept, maximum parsimony (MP) was proposed 

by Camin and Sokal (1965), who defined the term and devised the algorithm to estimate 

evolutionary change and construct a phylogenetic tree. The principle of this method is that 

precedence is given to simplicity. For each phylogenetic tree proposed, the minimum 

number of substitutions required to reconstruct the evolutionary history of each character 

site is determined. Subsequently, the hypothesis that requires the fewest changes to explain 

the observed topology is considered the best estimate of the phylogeny, and is described as 

the most parsimonious tree (Yang, 1996b). 

 Although the concept of maximum parsimony is straightforward, the method is 

criticized because of its implicit assumption that multiple substitutions at the same site are 

rare. Felsenstein (1978) crucially demonstrated that in some cases, parsimony is 

statistically inconsistent. This means that there are situations in which an incorrect 

conclusion will be obtained with a greater amount of confidence as the amount of data 

increases (discussed in section 1.6.1). Consequently, probabilistic methods (that attempt to 

account for multiple substitutions at the same site) have progressively supplanted MP as a 

method of phylogenetic tree inference in molecular sequence studies (Gadagkar and 

Kumar, 2005, Spencer et al., 2005). 
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1.4.4   Models of substitution 
!

 “All models are wrong, but some are useful” 

      − Box (1976) 

 Sequence divergence is linear for a limited time after a divergence event as 

multiple substitutions that occur at the same site eventually obscure the true evolutionary 

distance between two sequences. This is a particularly worrying scenario in the 

investigation of anciently diverged or fast-evolving sequences. Thus, models of 

substitution are commonly employed in phylogenetic tree reconstruction methods. These 

models combine the observed evolutionary distance between sequences with an estimate of 

the unobservable change that cannot be deterministically calculated to approximate a 

number of substitutions that more accurately reflects reality. Two categories of 

probabilistic models of substitution were used in this thesis: those that model DNA and 

protein sequence evolution, each of which shall be described.  

 
1.4.5   Models of DNA sequence evolution 
!
 The most commonly implemented models of DNA sequence evolution generally 

differ in three parameters: (i) substitution parameters, (ii) base frequency parameters and 

(iii) rate heterogeneity parameters. Depending on their structure, nucleotides may be 

categorized as either purines (adenine and guanine) or pyrimidines (cytosine and thymine). 

Substitutions that exchange a purine for another purine, or a pyrimidine for another 

pyrimidine, are referred to as transitions. Conversely, substitutions that convert a purine to 

a pyrimidine (or vice versa) are described as transversions (Figure 1.4). Models of DNA 

sequence evolution differ by the relative rate at which transitions (α) and transversions (β) 

are proposed to occur. Some models, such as the Jukes-Cantor (JC) model (Jukes and 

Cantor, 1969) and Felsenstein (F81) model (Felsenstein, 1981) expect that transitions and 

transversions occur at equal rates. Other models, such as the Kimura-2-Parameter (K2P) 
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model (Kimura, 1980), Hasegawa et al. (HKY85) model (Hasegawa et al., 1985) and 

General Time Reversible (GTR) model (Tavaré, 1986) suggest that such substitutions 

occur at different rates, in line with previous observations that transitions occur more 

frequently than transversions (Brown et al., 1982, Gojobori et al., 1982) (Figure 1.5).  

The second parameter that distinguishes the various models of DNA sequence 

evolution is the average frequency at which each nucleotide base is estimated to occur (πx, 

where x is either A, C, G or T). Some models (for example, JC and K2P) assume that base 

composition is at equilibrium, while others (such as F81, HKY85 and GTR) posit that this 

may not be the case (Figure 1.5). 

 The last issue to consider when analyzing the history of molecular sequences is that 

the evolutionary rate between different sites in a sequence may vary considerably due to, 

for example, constraints of the genetic code or selection for gene function. Such variation 

is often modelled using a gamma distribution (Yang, 1996a). The shape of this distribution 

is controlled by a parameter, α , that specifies the range of mutation rate variation that is 

observed between sites. A small α value represents extreme rate variation, while a large α 

value indicates minor rate variation. However, it has been suggested that assuming that all 

sites in a sequence are free to vary may lead to an incorrect estimation of subsitutions when 

there are sites that do not change. This suggestion may be incorporated into a sequence 

evolutionary model through the designation of a proportion of the sites as invariant (or 

invariable), signifying that they do not vary in their rate of substitution (Hasegawa, 

Kishino et al. 1985).  
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Figure 1.4 Nucleotide substitution matrix. 

A and G are purine bases. C and T are pyrimidine bases. Blue arrows indicate transitions. Red 

arrows indicate transversions. This figure was reproduced from Page and Holmes (1998) 

(Chapter 5: Measuring Genetic Change, page 146). 



!
! 15!

  

Figure 1.5 A summary of five commonly implemented DNA sequence evolution models. 

The various models differ in their approach to calculating how often various substitutions are 

expected to occur, and to the relative frequency of each of the nucleotide bases. This figure was 

reproduced from Page and Holmes (1998) (Chapter 5: Measuring Genetic Change, page 153). 
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1.4.6   Models of protein sequence evolution 
!
 Models of protein evolution are pre-computed matrices that describe the probability 

that one amino acid changes to any other amino acid. Dayhoff and colleagues pioneered a 

counting method to generate point accepted mutation (PAM) matrices from a limited 

amount of protein sequence data that was available at the time (Dayhoff and Eck, 1968, 

Dayhoff et al., 1972). Subsequently, Jones et al. (1992) applied Dayhoff’s methodology to 

produce a replacement matrix from a much larger database (the JTT matrix). However, 

these two counting methods effectively employ parsimony to estimate amino acid 

replacement matrices. In order to remove the potentially problematic parsimonous aspect 

of calculating substitution probabilities, Whelan and Goldman (2001) applied a likelihood 

framework to generate the WAG matrix that more effectively handles multiple 

substitutions at the same site. 

 
1.4.7   Model selection 
!

Model misspecification under- or over-estimates the magnitude of substitution that 

has occurred in a set of aligned sequences, in turn affecting the outcome of a phylogenetic 

analysis. For example, an inappropriate model may influence branch length estimation and 

bias statistical support values (Buckley et al., 2001, Buckley and Cunningham, 2002). As 

such, it is important to carefully select a model of substitution that adequately captures the 

underlying evolutionary process in a statistically rigorous manner. There are different 

criteria available to aid model selection, three of which were used throughout this thesis: 

Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian Information Criterion (BIC) 

(Schwarz, 1978) and Bayes Factors (BF) (Kass and Raftery, 1995). 

AIC is a popular model selection criterion measured using the following formula: 

AIC = 2k - 2ln(L)    [1.1] 
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where k is the number of model parameters, and L is the maximum likelihood value. As 

AIC penalizes excessive parameter use, while rewarding a well fitting model, the optimal 

model is that which obtains the lowest AIC score. Alternatively, assessment of model 

suitability may be facilitated in a Bayesian framework through the implementation of the 

Bayesian Information Criterion. BIC is similar to AIC, with the exception that the penalty 

term that is included for each additional parameter introduced by BIC is larger than in AIC. 

Although it is debated which of the two aforementioned criteria is more suited as a 

selection criterion (Posada and Buckley, 2004, Alfaro and Huelsenbeck, 2006, Ripplinger 

and Sullivan, 2008), both measures are implemented in commonly used model selection 

software programs, such as ModelGenerator (Keane et al., 2006) and ProtTest (Abascal et 

al., 2005). Finally, BF represent the probability of the data given a null hypothesis, over the 

probability of the data given an alternative hypothesis (Goodman, 1999). The BF returned 

when two hypotheses are compared is generally interpreted according to the table of Kass 

and Raftery (1995) (Table 1.1).  
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Bayes Factors Interpretation 

Log10(Bayes Factor) Bayes Factor Evidence against null 
hypothesis 

0 – 0.5 1 – 3.2 Barely worth a mention 

0.5 – 1 3.2 – 10 Substantial 

1 – 2 10 – 100 Strong 

> 2 > 100 Decisive 

Table 1.1 Interpretation of Bayes Factors (redrawn from Kass and Raftery, 1995). 
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1.4.8   Maximum likelihood 
 
 The concept of maximum likelihood (ML) is accredited to the statistician R. A. 

Fisher (Fisher, 1912, Fisher, 1922). However, his research generally focussed on 

quantitative genetics. It was Edwards and Cavalli-Sforza (1964) who subsequently 

suggested that maximum likelihood methods could have a phylogenetic application. After 

a number of progressions, Felsenstein (1981) adapted the method for DNA sequence data 

and developed the “pruning algorithm” that allowed ML principles to be carried out on a 

realistic number of sequences. ML may be understood as a parametric approach to tree 

building that estimates the probability of observing data (d) (i.e an aligned set of genetic 

sequences), given a hypothesis (a tree (τ) and a substitution model (θ)). It may be defined 

mathematically as:  

 

L (τ, θ) = Pr (d |τ, θ) 

                               

 For each site in an alignment (the data), given a substitution model and a 

phylogenetic tree (the hypothesis), a likelihood is calculated. The product of these site 

likelihoods provides the total likelihood for the considered hypothesis. The optimal tree is 

that which returns the highest likelihood (that is, the lowest negative log-transformed 

likelihood) (Felsenstein, 1981). ML estimates are generally deemed to be more robust to 

systematic error and model violation than other methods, particularly parsimony 

(Huelsenbeck 1995, Whelan et al., 2001, although see Warnow (2012)). However, multiple 

equally good answers render it difficult to guarantee that the ML tree is actually maximal. 

In addition, for ML, each possible hypothesis be assessed individually, which is technically 

prohibitive to calculate for any reasonable number of taxa (Huelsenbeck et al., 2001, 

Delsuc et al., 2005). For example, with a 5-taxa data set, there are 15 possible unrooted 

[1.2] 
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trees, However, a 10-taxa data set results in an exponential rise to 2,027,025 possible 

unrooted trees. This issue may be circumvented through the use of heuristics that reduce 

tree search space. In these heuristics, a starting tree is progressively altered to maximise the 

likelihood function. There are a number of heuristic tree rearrangement algorithms. For 

example, nearest neigbour interchange (NNI) invokes the exchange of two neighbouring 

branches, while subtree pruning and regrafting (SPR) involves the detachment of a subtree 

from an existing tree, followed by a re-attachment of the subtree to a different part of the 

existing tree (for a review, see Felsenstein, 2004). ML remains an incredibly popular 

method of phylogenetic tree inference at present. For example, Whelan and Goldman 

(2001) used ML to estimate the WAG model of amino acid substitution (see section 1.4.6), 

and Perelman et al. (2011) implemented an ML approach to understand the divergence of 

primates.  

 
1.4.9  Bayesian inference 
!

Bayesian inference is closely allied to ML as both are character-based methods of 

phylogenetic tree reconstruction that incorporate probabilistic models of sequence 

evolution. A fundamental conceptual difference between the two is that Bayesian inference 

incorporates prior knowledge into its calculation. Bayesian phylogenetics is centred on the 

posterior probability (PP) of a hypothesis. This may be defined using Bayes’ theorem: 

 

Pr ! ! = !" ! ×!" ! !
!" ! !

 

This equation calculates the PP of hypothesis H (i.e. a phylogenetic tree) given data 

D (i.e. an aligned set of genetic sequences), a substitution model and a prior probability 

distribution for the set of all available alternative hypotheses (in this case, all the possible 

[1.3] 
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phylogenetic trees). The denominator is a normalising constant that is computationally 

intensive to calculate as it requires a summation of the likelihoods of all the possible 

hypotheses (i.e. trees) (Yang and Rannala, 1997). However, the PP of a tree may be 

approximated using Markov Chain Monte Carlo (MCMC) methods that consider a random 

sample from the posterior distribution, providing an approximation for the true posterior 

probability (Yang and Rannala, 1997, Huelsenbeck et al., 2001, Felsenstein, 2004).  

 In phylogenetics, the most commonly used MCMC method is the Metropolis-

Hastings algorithm (Metropolis et al., 1953, Hastings, 1970). In this approach, the PP of an 

arbitrary starting tree is calculated, which shall be defined as the “current tree”. This tree is 

randomly perturbed, producing a “new tree”, whose PP is also calculated. The Metropolis-

Hastings algorithm decides whether to accept or reject the newly proposed tree as the next 

state in the Markov chain by calculating the height ratio of the PP of the two trees. 

Through repetition of tree proposal, acceptance and rejection, a Markov chain of trees is 

created. For a properly constructed and adequately run Markov chain, the proportion of 

time that any tree is visited in the chain is a valid approximation of its PP (Tierney, 1994). 

Thus, the chain tends to remain in regions of high PP. The algorithm may be terminated 

when multiple independent Markov chains converge (i.e. exhibit similar posterior 

distributions).  

 Bayesian inference may be superior to ML as it seeks to glean information about 

the shape of the PP landscape rather than locating the global maximum. This means that 

the proposed tree is less likely to be a local maximum in tree space (Huelsenbeck et al., 

2001). Recently, the Bayesian approach has become a popular method of phylogenetic 

inference that has been implemented in a diverse array of studies, such as the inference and 

evaluation of uncertainty in phylogenies (Huelsenbeck et al., 2000; Murphy et al., 2001), 

and in the estimation of divergence times (Rota-Stabelli et al., 2011). 

!
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!
1.5   Assessment of confidence in phylogenetic inference 
!
 It is important to assess the level of confidence in an inferred phylogenetic 

hypothesis, to allow for comparison between different topologies and methodologies. 

There are a number of ways to determine the robustness of an inferred tree, some of which 

shall be described. 

  Bootstrapping is a non-parametric statistical technique that was originally devised 

by Efron (1979) but formally proposed as a method of obtaining confidence limits of 

phylogenies by Felsenstein (1985). It currently represents one of the most common forms 

of confidence interval inference on a phylogenetic hypothesis. For example, of all the 

publications in the journal “Systematic Biology” in 2001, at least 50% of those presented 

phylogenetic analyses, and all of the studies that reconstructed phylogenies used the 

bootstrap method to measure nodal support (Soltis and Soltis, 2003). In this technique, a 

data matrix (i.e. an alignment) is randomly re-sampled with replacement multiple times to 

produce pseudo-replicate data matrices of equal length. Phylogenetic trees are generated 

for each pseudo-replicate data matrix, and the resultant trees are summarized into a single 

tree using a majority-rule component consensus approach (Margush and McMorris, 1981). 

The support value on each node of a bootstrapped tree is indicitive of the proportion of 

times that a given clade is found in the replicate data sets. It is important to clarify that 

bootstrapping measures the repeatability of a data set, rather than accuracy of the inferred 

phylogeny. 

 One of the most popular methods for assessing tree incongruence is the 

Approximately Unbiased (AU) topology test (Shimodaira, 2002), which was implemented 

in chapter 2 of this thesis. This multiscale bootstrap procedure is designed to assess 

whether a given tree is a significantly more likely hypothesis than another tree. Several sets 

of bootstrap replicates are generated by changing the sequence length, which may differ 
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from that of the original data. The number of times that a hypothesis is supported by each 

of the replicates is counted for each set to obtain bootstrap probability values for different 

sequence lengths. The AU-test calculates the approximately unbiased P-value from the 

change in bootstrap probability values along the changing sequence length.  

!
1.6   Sources of phylogenetic error 
!

There are two principal categories of phylogenetic error: stochastic (sampling) 

error, and systematic error. Stochastic error constitutes one of the major limitations of 

phylogenetic analyses that are based on single or few genes. As the number of positions in 

a single gene is usually quite low, random noise may lead to poor resolution of the 

phylogenetic hypothesis under consideration (Philippe et al., 2005). For example, Rokas et 

al. (2003) investigated phylogenies that were obtained from 106 orthologous genes 

belonging to eight yeast species. Once a phylogenetic tree was reconstructed for each 

homologous gene family individually, more than twenty alternative topologies were 

generated. Subsequent concatenation of all genes in the data set produced a robust 

phylogeny that significantly rejected all other potential phylogenies obtained in the gene-

scale analyses. The increased resolution provided by augmented gene sampling has led to 

the optimistic view that using genomic data will diminish the stochastic error that is often 

observed in analyses that focus on a single or few genes (Gee, 2003, Jeffroy et al., 2006). 

Systematic errors occur when a reconstruction method arrives upon an incorrect 

solution with stronger support as the amount of data considered increases (Philippe et al., 

2005). Such inconsistencies may result in alternative conflicting phylogenies or absolute 

clade support for incorrect topologies. For instance, let us refer to the Rokas et al. (2003) 

study described in the previous paragraph. The concatenation of data was an integral 

component in the reconstruction of a robust phylogeny. However, Phillips et al. (2004) 

demonstrated that the data set contained non-phylogenetic signal. Dependent upon the 
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optimality criterion or model assumptions, mutually incongruent, yet 100% supported 

phylogenetic trees, could be obtained. Three common causes of systematic inconsistencies 

are long branch attraction, compositional attraction and heterotachy, each of which shall be 

described. 

 
1.6.1   Long branch attraction 
!

Felsenstein (1978) crucially observed that parsimony might be statistically 

inconsistent, as rapidly evolving lineages would be inferred as closely related, regardless of 

their true relationships. It is possible that two long branch sister taxa separated by a short 

internode will acquire more identical bases by chance than the few number of inherited 

changes on the short internode that groups the long branch with its true relative. In this 

case, the most parsimonious solution would be to erroneously group the two longer 

branches as sister taxa, resulting in long branch attraction (LBA). 

Although originally observed in parsimony analyses, LBA has subsequently been 

demonstrated to affect other tree reconstruction methods, if the proposed model of 

substitution is strongly violated (Swofford, 2001, Lemonn and Moriarty, 2004 Bergsten, 

2005). However, probabilistic methods that incorporate an estimate of the expected amount 

of change along each branch of the tree are generally thought to be more robust to the 

effects of LBA (Kuhner and Felsenstein, 1994, Swofford et al., 2001; Bergsten, 2005). 

There has been an array of methods proposed to diminish the impact that LBA may 

have on a phylogenetic inference. In some situations, LBA may be ameliorated through 

increased taxonomic sampling (Pollock et al., 2002, Poe, 2003, Heath et al., 2008). 

Alternatively, the effect of LBA may be reduced through the elimination of fast-evolving 

sites that can be saturated by multiple substitutions (Brinkmann and Philippe, 1999, 

Cummins and McInerney, 2011). Finally, selection of an appropriate outgroup may be 

critical in avoiding LBA because in situations where the selected outgroup is extremely 
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divergent, a fast evolving ingroup taxon may be artifactually attracted to the long branch of 

the outgroup (Bergsten, 2005). However, often the simple lack of suitable outgroup 

availability is a limiting factor. 

 
1.6.2   Compositional attraction 
!

Genetic sequences tend to exhibit compositional bias that causes sequences to be 

erroneously grouped together based upon the similarity of their nucleotide or amino acid 

composition. Although originally suggested to be an issue confined to nucleotide-based 

phylogenies (Loomis and Smith, 1990), compositional bias was later demonstrated to also 

occur in phylogenies that were derived with amino acid sequences (Foster et al., 1997, 

Chang and Campbell, 2000).  

Common approaches to alleviate the impact of compositional bias include 

recoding, RY coding in the case of nucleotides (in which purines are recoded as “R” and 

pyrimidines as “Y”) (Woese, 1991) or Dayhoff recoding in the case of amino acids (in 

which amino acids are recoded into various functional categories) (Hrdy et al., 2004). 

Alternatively, the use of heterogeneous models that account for compositional variation 

throughout the tree are becomingly increasingly popular (for example, Foster et al. (2009)).  

 
1.6.3   Heterotachy 
 

Heterotachy describes the situation in which the evolutionary rate of a site varies 

with time due to changing functional or structural constraints (Philippe and Lopez, 2001). 

As a result, fast-evolving sites may become slowly evolving (or vice versa) in different 

lineages. Heterotachy leaves no observable signature on genetic sequences, making it 

extremely difficult to identify (Kolaczkowski and Thornton, 2004). Recently, some 

approaches have been developed to detect heterotachy. For example, a non-homogeneous 

gamma model was suggested to account for variability in site rates over time (Fitch and 
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Markowitz, 1970, Kolaczkowsi and Thornton, 2004). More recently, Whelan et al. (2011) 

developed a likelihood ratio test based approach that allows substitution rates to vary 

independently among the branches of the tree. 

 

1.7    The subphylum Vertebrata 

 Vertebrata is a diverse subphylum of Phylum Chordata, comprising of 

approximately 63,000 named species (Hoffmann et al., 2010) that is further divided into 

seven distinct phylogenetic classes. These are Agnatha, Chondrichthyes, Osteichthyes, 

Amphibia, Aves, Reptilia and Mammalia (Figure 1.6). For reasons discussed in the 

following sections, most of the vertebrate species that have been sequenced to date are 

belong to the Class Mammalia. Thus, Mammalia is the only vertebrate class that will be 

discussed in further detail. 

 
 
1.7.1  The Class Mammalia 
 
 At present, it is estimated that there are 5,676 extant mammalian species and 

approximately 4,000 fossil genera (Wilson, 2005) that are categorized as Protheria 

(monotremes) and Theria. The latter is composed of the infraclasses Metatheria 

(marsupials) and Eutheria (placental mammals).  

 The radiation of mammals is a richly documented transition that is continuously re-

written by key fossil discoveries and increasingly comprehensive phylogenies. In 2002, 

Eomaia scansoria was discovered and described as an early Eutherian that lived 

approximately 125 million years ago (Ji et al., 2002). More recently, the oldest known 

placental mammal fossil, Juramaia sinensis, was estimated to have lived approximately 

160 million years ago, extending the first appearence of the Eutherian clade by 35 MY 

(Luo et al., 2011). In addition, this new fossil corroborates with marsupial-eutherian 
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divergences recently estimated to have occured 143 – 193 MYA using molecular data (van 

Rheede et al., 2006, Bininda-Emonds et al., 2008, Phillips et al., 2009). 

 Placental mammals represent the most diverse of the three extant mammalian 

lineages (Novacek, 1992, McKenna et al., 1997). A number of studies suggest that 

morphological data alone are unreliable for resolving the affinities of this particular clade 

(Springer and Murphy, 2007, Lee and Camens, 2009). It has been the advent of molecular 

phylogenetics, sequencing of the human genome (Lander et al., 2001, Venter et al., 2001), 

and subsequent sequencing of other mammalian genomes that has greatly improved our 

understanding of Eutherian phylogeny.  

 Currently, the Ensembl gene sequence database (Hubbard et al., 2002) includes 

more mammalian genomes than other vertebrate classes, in spite of the fact that there are 

approximately 5,676 named mammalian species, almost double the number of bird species 

(10,027) and six times as many fish species (31,327) (Hoffman et al., 2010). Why are 

vertebrate genome sequencing projects biased towards mammals? Incentives for 

sequencing mammalian genomes mirror historical motives for model organism selection. 

For example, the understanding and treatment of complex disorders such as diabetes, 

hypertension and obesity has been advanced considerably through the use of various 

mammalian models (Truett et al. (1991), Jacob and Kwitek (2002), Farrer (2006)). The 

sequencing of such organisms may provide further insight into genetic underlying causes 

of common medical conditions (for example, Stoll, 2000).  

 A still unfulfilled promise of comparative biology is a unified view of the origin 

and evolutionary divergence of mammalian species. Until recently, paleontological, 

morphological, and small amounts of molecular sequence data struggled to identify and 

date ancient mammalian speciation events. Thus, mammalian taxa genome comparison 

provides incredibly powerful tools for a deeper understanding of phylogenetic divergences, 

general trends in genomic complexity evolution and lineage specific adaptations.  
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 The realization of the benefits of sequencing non-human mammalian genomes such 

as those described above motivated the initiation of the “Mammalian Genome Project” 

(http://www.broadinstitute.org/scientific-community/science/projects/mammals-

models/mammalian-genome-project), aimed at sequencing multiple placental mammalian 

genomes at “low coverage”. To understand the phrase “low coverage” in a genome 

sequencing context, and its implications for molecular evolutionary analyses, a short 

summary of genome sequencing shall be provided.  

 
 
1.7.2   Vertebrate genome sequencing 
 
 In 1977, Sanger et al. published two methodological papers regarding the rapid 

determination of DNA sequences that provided opportunites to examine molecular 

evolutionary hypotheses from a whole new viewpoint (Sanger et al., 1977a, Sanger et al., 

1977b). In the last decade, a new wave of cost-effective sequencing technologies have 

been introduced (for a review of the various sequencing strategies, see Mardis (2008), 

Schuster (2008), Shendure and Ji (2008), Ansorge (2009), Metzker, (2009)). Essentially, to 

sequence a genome, DNA is fragmented into short sections. The base pairs composing 

these fragments are obtained. Through repeated rounds of the base decipherication stage, 

multiple overlapping reads of the bases composing each DNA fragment are retrieved. The 

coverage of a genome, such as “2×” refers to the number of overlapping sequences that 

built a region of gene assembly.  

 There are inherent limitations associated with genomes that are sequenced at low 

coverage. For example, all of the usual genome sequencing issues (such as missing 

sequence, sequence fragmentation and inaccurate insertions/deletions/substitutions) will be 

exasperated in a low-coverage genome (Green, 2007, Milinkovitch, 2010). Thus, some 

argue that in spite of the additional data that low-coverage genome sequencing provides, it 
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will remain difficult to truly differentiate artifacts from evolutionary events until improved 

homogeneity in both taxon sampling and sequencing coverage (Milinkovitch et al., 2010).  
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!  

Figure 1.6 Phylogeny of Phylum Vertebrata. 

Figure re-drawn and adapted from Kasahara (2007). 



!
! 31!

1.8   Aims of thesis 
!
 Monumentous technological and conceptual advances coupled with a remarkable 

rise in genomic-scale data availability allow a diverse array of evolutionary hypotheses to 

be examined from a molecular perspective. The ultimate aim of this thesis is to exploit 

such recent progress to address various questions pertaining to vertebrate evolution.  

  In chapter 2, I will describe networks (specifically protein-protein interaction 

networks), gene duplication and the mammalian order Primata. Then, I will present an 

investigation that was conducted in collaboration with Dr. David Alvarez-Ponce to assess 

the relationship between primate protein-protein interaction network structure and gene 

duplicability.  

 Chapter 3 commences with a discussion of molecular dating and the mammalian 

taxonomic family Ursidae. Until recently, the date of divergence between two members of 

this clade (polar bear and giant panda) has been examined using either mitochondrial data 

or a small amount of nuclear data. BGI Shenzhen, China provided an unpublished polar 

bear genome that allowed the speciation event between giant panda and polar bear to be 

addressed using the largest amount of nuclear data to date in a Bayesian framework. 

  In chapter 4, I will describe the forces that govern synonymous codon usage bias. 

Then, I will examine the evidence that vertebrate synonymous codon usage is maintained 

by a balance between neutral and selective processes, using novel gene expression data and 

codon usage bias index. The thesis closes with some concluding remarks in chapter 5. 
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Chapter 2: The dynamic relationship between gene duplicability and network 

structure in primates. 

2.1   Introduction 
!
 One of the key insights provided by fully sequenced genomes is the pervasiveness 

of gene duplication and loss in organisms (Ohno, 1970, Zhang, 2003). However, not all 

genes are equally likely to duplicate. While some gene families are represented by dozens 

of members in a given genome, others remain as singletons over time. This observation 

naturally leads to the question as to what constrains gene duplication. 

 There are a number of biological factors known to correlate with gene duplicability. 

One such factor is the position of a gene’s encoded product in a protein-protein interaction 

network (PIN). This chapter commences with an introduction to gene duplication, 

networks and primates. Subsequently, a study is described that explored if the structure of 

the primate PIN constrains the duplicability of its encoding genes from two distinct 

perspectives. First, it is known that the relationship between gene duplicability and 

network centrality is not universal. In some species, such as Saccharomyces cerevisiae, 

non-duplicated genes tend to occupy more central PIN positions, whereas in humans, the 

opposite trend is true (Prachumwat and Li, 2006, Liang and Li, 2007). This led us to 

question the relationship between gene duplicability and protein centrality over the course 

of primate evolution. Second, it has recently been demonstrated that physically interacting 

proteins exhibit similar evolutionary histories, such as similar rates of evolution (for a 

review, see Lovell and Robertson (2010)). However, it is less clear whether the 

phylogenetic tree topologies of interacting proteins are more similar than expected at 

random. Fryxell (1996) argued that this might be the case, due to co-duplication. Although 

a number of examples of correlated tree topologies have been reported (for example, 

Fryxell, 1996, Koretke, 2000), an analysis at the level of the entire primate interactome is 
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yet to be conducted. Thus, our second null hypothesis stated that the phylogenetic trees of 

physically interacting proteins are no more similar than expected at random, and that there 

is no evidence for widespread co-duplication in primates. 

 This study was conducted in collaboration with Dr. David Alvarez-Ponce. I 

assembled a primate data set, reconstructed homologous gene family phylogenetic trees 

and inferred the duplication events that occurred throughout primate evolution. In addition, 

I mapped the inferred duplications to the human interactome and conducted the biological 

enrichment, age and suspected pseudogene content analyses. Finally, I compared the 

phylogenetic tree topologies of physically interacting proteins (in the actual network, and 

in the randomized networks). Dr. Alvarez-Ponce assembled the PIN, sub-networks and 

randomized networks. He calculated the network centralities and determined the 

proportion of duplicated genes that interact in the network. Results presented in this 

chapter have been published in the journal Molecular Biology and Evolution (see Doherty 

et al., 2012; see also the Publication section of this thesis). 

!  
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2.1.1   The evolutionary significance of gene duplication in vertebrates 
!

A number of early geneticists recognized the potential evolutionary significance of 

gene duplication (reviewed in Taylor and Raes, 2004). However, it was ultimately one 

highly prescient publication that explicitly proposed gene duplication as a significant factor 

in organismal diversification (Ohno, 1970). Since this time, whole genome sequence 

analyses have confirmed the existence of paralogous genes in species belonging to all three 

domains of life (Zhang, 2003). 

There are a number of molecular mechanisms that generate gene duplications 

(reviewed in Hahn, 2009). For example, unequal crossing over is an outcome of 

homologous recombination between sequences. Retroposition describes the integration of 

reverse transcribed mature RNA at random sites in the genome. Finally, a whole genome 

duplication (WGD) generates a duplicate for every gene in the genome, that are 

differentially preserved and lost based on various biological factors (Maere et al., 2005, 

Hakes et al., 2007, Amoutzias and Van De Peer, 2010). It is generally hypothesized that 

vertebrate genomes were shaped by two rounds of WGD (the “2R hypothesis”) 

(Panopoulou and Poustka (2005), Kasahara (2007)).  

Exploring patterns of gene duplication is often key to understanding the origin and 

evolution of important vertebrate traits. For example, the acquisition of vertebrate colour 

vision is the result of visual pigment gene duplication (Yokoyama, 1994). Furthermore, 

differential duplication of salivary amylase genes among different human populations and 

primate species is correlated with the level of starch consumed in the diet (Perry et al., 

2007). Lastly, gene duplication has been implicated in the pathogenesis of various common 

diseases (Zhang et al., 2009).  
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2.1.2   Gene duplicability 
!
 Not every gene that duplicates in a genome becomes fixed in a population, as a 

duplicate is likely to be lost unless it offers a selective advantage to the organism in which 

it is found (Ohno, 1970, Lipinski et al., 2011). Gene duplicability defines the propensity to 

retain multiple gene copies in a genome. Over the last decade, some of the factors that 

correlate with gene duplicability have been identified. For example, in yeast, a higher 

duplicability is observed in proteins that are exposed to the extracellular environment than 

for those that are localized to intracellular components (Prachumwat and Li, 2006). This 

has been attributed to the fact that yeast inhabit a wide range of biological niches, so 

genetic diversity for proteins that interact with the external environment may confer 

benefits to the organism. Other biological factors that correlate with gene duplicability 

include gene function (Marland et al., 2004, Conant and Wagner, 2002), complexity of the 

encoded proteins (Papp et al., 2003) and timing of expression during development 

(Castillo-Davis and Hartl, 2002, Yang and Li, 2004). In the investigation described in this 

chapter, we focused on the relationship between gene duplicability and the structure of the 

primate protein-protein interaction network. 

 
2.1.3   Protein-protein interaction networks 
!
 It is clear that most entities in the biosphere exist as components of complex 

pathways and networks. In a network, each vertex or point is defined as a “node”, with 

nodes connected to one another via “edges” (Freeman, 1971) (Figure 2.1). Many different 

biological networks exist, including those that describe protein interactions and metabolic 

events. PINs are undirected networks in which it is customary to consider the nodes as 

proteins, and the edges as physical interactions between proteins. PINs have previously 

provided insights into cell robustness to perturbation, protein function and the molecular 
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basis of disease (Brun et al., 2003, Han et al., 2004, Kim et al., 2006, Ideker and Sharan, 

2008).  

 As described in the introductory paragraph to this chapter, the aim of this 

investigation is to understand the influence that a position of a protein in a PIN has on the 

duplicability of its encoding gene. This aim was divided into two distinct questions. First, 

we examined the relationship between gene duplicability and network centrality in 

primates. Then, we asked if the phylogenetic trees of physically interacting proteins were 

more similar than expected by chance, and if such similarity could be attributed to co-

duplication. The reasoning behind each of these questions shall be described separately in 

the following sections. 
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Figure 2.1 A network.  

Each node (A, B, C, D and E) is blue and each edge is red. In a protein-protein interaction 

network, each node is a protein and each edge is a physical interaction between two proteins. 
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2.1.4   Analysis of the relationship between gene duplicability and network centrality 

in primates 

  The position of a protein in a network may be described by various characteristics, 

or “network centralities”. Three of the most common network centralities are degree, 

betweenness and closeness. Node degree indicates how many links a node has to other 

nodes. For example, in Figure 2.1, node “A” has a degree 1, while node “E” has a degree 2. 

Betweenness is a measure of the number of shortest paths between protein pairs to which a 

protein belongs. Vertices that have a high probability of occurring on a randomly selected 

shortest path between two randomly selected nodes have a high betweenness. Finally, 

closeness is defined as the inverse of the sum of its distances to all other nodes. The more 

central a node is, the lower its total distance to all other nodes (Freeman, 1979). 

 Some aspects of gene evolution have been demonstrated to be affected by the 

centrality of their encoded products in the PIN. For instance, genes that occupy more 

central network positions tend to evolve more slowly (Fraser et al., 2002, Hahn and Kern, 

2005). Although gene duplicability has also been demonstrated to be affected by the 

protein network centrality, this relationship has not remained constant over the evolution of 

eukaryotes. For example, in C. elegans and S. cerevisiae, singleton (i.e. unduplicated) 

genes tend to occupy more central positions in the network than duplicated genes (Hughes 

and Friedman, 2005, Prachumwat and Li, 2006). This is possibly because duplication of a 

gene may disrupt the dosage balance of the interactions in which it is involved, which may 

be more detrimental for the most highly connected genes (Papp et al., 2003). Conversely, 

duplicated genes tend to be more central than singleton genes in Homo sapiens (Liang and 

Li, 2007). Although this is known to be a derived character resulting from the high 

duplicability of metazoan-specific genes (D'antonio and Ciccarelli, 2011), it remains 

unclear why a different pattern is observed in H. sapiens. Liang and Li (2007) suggested 

that perhaps in mammals, a high connectivity of duplicated genes might confer a greater 
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chance of functional diversification (e.g. tissue specialization). Functional diversification 

may not be a major factor in yeast, due to the simplicity of such single-celled organisms. 

The contrasting observations between human and other species indicates that the 

relationship between network position and gene duplicability is dynamic. Thus, the first 

section of this investigation analyzed the relationship between centrality and duplication 

throughout the evolution of primates. 

 

2.1.5   Comparison of phylogenetic tree topologies between physically interacting 

proteins 

!
 It has been demonstrated that genes encoding interacting proteins tend to co-evolve 

(for a review, see Lovell and Robertson, 2010). Co-evolution describes the process in 

which a change in one entity establishes a selective pressure for a change in another entity 

(Fraser et al., 2004). For example, interacting genes manifest more similar branch lengths 

in their phylogenies than would be expected from a random network (Fraser et al., 2004, Li 

and Rodrigo, 2009). Such similarities in branch lengths have usually been assessed using 

the mirrortree approach. In this approach, a distance matrix is constructed from a MSA for 

each homologous family of an interacting pair of proteins. The similarity between the 

distance matrices is calculated as a correlation coefficient (Goh et al., 2000, Pazos and 

Valencia, 2001, Pazos and Valencia, 2008). 

 It is less clear if phylogenetic trees inferred from interacting proteins are 

topologically more similar than expected at random. A number of correlated tree 

topologies among interacting genes have been reported (Fryxell, 1996, Koretke et al., 

2000). However, on a whole-interactome level, Kelly and Stumpf (2010) found negligible 

evidence for an increased topological similarity between the trees of interacting proteins in 

yeast orthologous sequences. Unfortunately, both the mirrortree method, and the 1:1 
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ortholog approach undertaken by Kelly and Stumpf, does not address potential topological 

similarity between interacting phylogenetic trees that may be attributed to co-duplication. 

 Almost two decades ago, Fryxell hypothesized that the phylogenetic tree topologies 

belonging to physically interacting proteins may be similar due to co-duplication. This 

could occur because the successful duplication and divergence of one gene may alter the 

selective environment, thus facilitating the duplication and divergence of functionally 

interacting genes (Fryxell et al., 1996). Alternatively, the duplication of a gene may be 

deleterious unless its interacting partner duplicates at a similar time. For example, the 

duplication of a gene without its interacting partner may disrupt the balanced concentration 

of subcomponents in a protein complex. In turn, an imbalance of complex subcomponents 

may disrupt protein binding or form toxic precipitates. However, co-duplication on a whole 

interactome-scale is yet to be detected in primates. Thus, the second null hypothesis of this 

investigation stated that the phylogenetic trees of physically interacting proteins are no 

more similar than expected by chance, and that there is no evidence for co-duplication in 

primates. 

 

2.1.6   Primates 
 
 With the exception of the outgroup, all of the species used in this investigation 

belong to the Order Primata. This order represents an interesting clade in the Class 

Mammalia, primarily due to their biomedical relevance and their phylogenetic position 

with respect to humans. Comparative primate genomic analyses have provided novel 

insights into various aspects of primate evolution (for a review, see Marques-Bonet et al., 

2009). In particular, primates represent an interesting clade in which to examine the 

relationship between gene duplicability and network position of the encoded proteins for 

two reasons. First, primates exhibit an increased rate of gene duplication, and a decreased 

rate of nucleotide substitution compared to other mammals (Yi et al., 2002, Hahn et al., 
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2007, Steiper and Seiffert, 2012). Incorporating interactome and gene duplication data may 

provide some interesting insights into primate evolution. Second, the human PIN is the 

highest-quality mammalian PIN currently available. Due to the scarcity of interactomic 

data, particularly for non-model organisms, it is commonplace to transfer interactions that 

occur in one organism to another organism (for example, Matthews et al. (2001), Huang et 

al. (2007) and Wiles et al. (2010) have transferred interaction data between H. sapiens, S. 

cerevisiae and C. elegans). The investigation described in this chapter assumes it is 

realistic to transfer such interaction data from humans to a set of closely related species, 

such as other primates. Taken together, primates represent a natural choice of data set for 

this study. 
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2.2   Materials and Methods 

2.2.1   Genomic data collection and data set assembly  
!
 A data set consisting of six primates (human, chimpanzee, gorilla, orangutan, 

macaque and marmoset) and one rodent (mouse) was assembled. The phylogeny of these 

species may be found in Figure 2.2. For each taxon, the longest canonical transcript for all 

the protein-coding genes was retrieved from the Ensembl database (version 61; Feburary 

2011) (Flicek et al., 2011). 1,906 human genes and 5 mouse genes that had not been 

assigned to an Ensembl gene family were removed. The initial data set consisted of 

147,686 genes separated into 27,167 gene families. 571 sequences that were unlikely to 

encode functional proteins as their coding sequence was interrupted by a stop codon or 

their length was not a multiple of three were discarded. 147,115 genes divided into 26,932 

gene families were retained. Finally, homologous gene families that contained strictly 

fewer than four sequences, the minimum number of sequences required for a phylogenetic 

tree to convey non-trivial information, were removed. Hence, the initial data set comprised 

12,158 gene families and 125,909 genes (Table 2.1). 
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Figure 2.2 Primate phylogeny. 

The numbers above the internal branches (1-6) represent the name that was assigned to a 

particular branch. Estimation of species divergence was retrieved from Benton et al. (2009; 

page 44). 



!
! 44!

 

Species 
 
 

Common name No. of genes 
retrieved from 
Ensembl  

No. of genes 
after filtering 

# genes in 
fams with >4 
seqs 

Homo sapiens Human 20,716 20,570 18,161 
Pan troglodytes Chimpanzee 19,829 19,758 17,321 
Gorilla gorilla Western Gorilla 20,962 20,934 17,836 
Pongo abelii Sumatran Orangutan 20,068 20,045 16,897 
Macaca mulatta Rhesus Macaque 21,905 21,890 18,302 
Callithrix jacchus Common Marmoset 21,168 21,150 18,244 
Mus musculus Mm   Mouse 23,038 22,768 19,148 
Total   147,686 147,115 125,909 

Table 2.1 Summary of the data set preparation stage. 
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2.2.2   Network preparation  
!
 The human interactome was assembled from interactions available in the BioGRID 

database version 3.1.81 (Stark et al., 2011). Only non-redundant physical interactions 

among pairs of human proteins with an Ensembl ID were considered. The network (termed 

PIN0) contained 9,087 proteins connected by 39,883 interactions (Figure 2.3). As 

described in section 2.1.5, we addressed whether the phylogenetic trees of physically 

interacting proteins tend to be significantly more topologically similar than expected at 

random, and if this similarity could be attributed to co-duplication. For this purpose, it was 

necessary to produce a subnetwork solely comprising proteins belonging to gene families 

that portray non-trivial phylogenetic tree topologies. Proteins in the network belonging to 

homologous gene families that contained less than four sequences were removed. This sub-

network (PIN1) comprised 8,650 proteins connected by 37,878 interactions (Figure 2.3).  

 There are a number of confounding factors that may influence results that are 

obtained in this analysis, and so must be ameliorated. Many functionally important genes 

encode proteins that self-interact. Such self-interaction confers several structural and 

functional advantages to proteins, including improved stability and specificity to active 

sites (reviewed in Marianayagam et al., 2004). PINs have been demonstrated to be 

enriched in such self-interactions (Ispolatov et al., 2005, Pereira-Leal et al., 2007). Thus, 

self-interacting pairs of proteins were removed from PIN1. Duplication of a gene encoding 

self-interacting proteins creates a pair of paralogous proteins that interact with each other. 

It is known that the PIN is enriched in proteins that are encoded by paralogous genes 

(Ispolatov et al., 2005, Pereira-Leal et al., 2007). As shall be described in the following 

sections, a set of genes that duplicated throughout the evolution of primates was identified. 

Thus, proteins that are encoded by paralogous genes were also removed. Once interactions 

between paralogous genes, and self-interactions were removed, what remained was a 

subnetwork of PIN1, which was named PIN2. As can be observed from Figure 2.3, PIN2 
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contained 8,518 proteins connected via 36,501 interactions. 

 Duplication events potentially affect large chromosomal regions. This involves the 

simultaneous duplication of multiple adjacent genes, which would consequently exhibit 

similar duplication histories. Furthermore, genes that encode functionally related proteins 

tend to cluster together in the genome (Lee and Sonnhammer, 2003, Makino and 

McLysaght, 2008). For each protein in PIN2, the chromosomal position of its encoding 

gene was retrieved from the Ensembl database. Pairs of interacting genes that are located 

on the same arm of the same chromosome were removed. Thus, PIN3 contained 8,426 

proteins connected by 35,269 interactions (Figure 2.3). 

 It is important to gauge whether the observed outcome of an analysis is 

substantially different from expected. To achieve this, a null distribution of values under 

which the observed value should fall was obtained, and the difference between the 

expected and observed measure was examined. A set of random networks (either 250 or 

10,000 random networks, depending on the analysis) was generated for each original 

network (PIN0, PIN1, PIN2 and PIN3) using a network rewiring approach. This algorithm 

functions by repeatedly selecting two edges at random (e.g., A–B and C–D) and swapping 

them (yielding A–D and C–B, or A–C and B–D). The operation was iterated 100 × m times 

on each random network, where m is the number of edges. Therefore, each random 

network contains the same nodes, the same number of edges, and the same degree for each 

node as the original network. A measure that was calculated in this investigation was 

compared to the measure expected from a null distribution of random networks. P-values 

were computed as the proportion of random networks with a parameter value higher or 

equal to, or lower or equal to (depending on the section of the analysis) the observed 

network. 
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       Figure 2.3  Description of subnetworks.  
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2.2.3   Phylogenetic tree reconstruction 
!

 The amino acid sequences of each primate homologous gene family were aligned 

using MUSCLE (Edgar, 2004) implemented in the TranslatorX program (Abascal et al., 

2010). The resulting amino acid alignments guided the alignment of the corresponding 

nucleotide coding sequences. These nucleotide alignments were used to reconstruct 

phylogenetic trees using SPIMAP version 1.1 (Rasmussen and Kellis, 2011). SPIMAP is 

an empirically Bayesian algorithm that endeavours to accurately reconstruct gene trees 

using prior information that is learned from the genomes and species tree. The prior 

genomic information was captured in two parameters. First, a duplication and loss 

parameter aimed to learn gene duplication and loss rates across all of the homologous gene 

families. This was calculated by counting the number of genes per species in all 12,158 

gene families using the “spimap-train-duploss” program of SPIMAP. A rate of gene birth 

of 0.007101 duplications/gene/million years and a rate of gene death of 0.002081 

losses/gene/million years were estimated. The second parameter estimated substitution 

rates. 5,280 single orthologous gene families (i.e. gene families that contained at most one 

gene from each species) were extracted. For each of these gene families, phylogenetic trees 

were reconstructed using RAxML software (version 7.0.4) (Stamatakis, 2006) and the 

optimal model chosen by ModelGenerator (Keane et al., 2006). All other RaxML 

parameters were maintained at default settings. 1,732 gene trees with a topology congruent 

to the species tree were extracted. This set of gene trees was used to determine the 

substitution rate parameters using the “spimap-train-rates” program in SPIMAP. Once 

these parameters were calculated, SPIMAP reconstructed gene trees using the “spimap” 

program with default settings (that is, providing a gene family alignment as an input, a 

species tree, HKY85 as a model of DNA substitution and to allow base frequencies and 

transition/transversion ratios to be calculated empirically).  
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 The setting of HKY85 as a universal model of DNA substitution for every gene 

family in the data set is obviously not ideal, as HKY85 may not accurately reflect the 

reality of how all the gene families evolved. However, it is currently the only model of 

DNA substitution that is implemented in SPIMAP. One may ask why not use an alternative 

method of phylogenetic tree reconstruction, in which more models of DNA substitution are 

implemented. Originally, phylogenetic trees were reconstructed using both SPIMAP (with 

the parameters described in the previous paragaph) and PhyML version 3.0 (Guindon and 

Gascuel., 2003). Using PhyML, the model of substitution was chosen by ModelGenerator.  

 An Approximately Unbiased (AU) test implemented in Consel v. 1.19 (Shimodaira 

and Hasegawa, 2001) was performed on each pair of phylogenetic trees (i.e. one gene 

family, with a phylogenetic tree reconstructed with both PhyML and SPIMAP). The AU 

test was successfully performed on 12,091 of the 12,158 pairs of phylogenetic trees. For 

138 of these pairs of trees, the PhyML tree had a statistically significant higher likelihood 

value than the SPIMAP tree, according to the AU test. For 2,783 pairs of trees, the 

SPIMAP tree had a significantly higher likelihood value than the PhyML tree. In 9,170 

pairs of trees, neither tree had a significantly higher likelihood than than the other. So in 

total, there were essentially only 138 of 12,091 cases in which PhyML proposed a 

significantly more likely tree topology than SPIMAP. As such, SPIMAP was selected as 

the method of phylogenetic tree reconstruction, in spite of the limitation of having to use 

HKY85 as a universal model of DNA substitution. 

 
2.2.4   Gene duplication inference 
!
 This study used two approaches to identify gene duplication events. Given a 

species tree and a gene tree, the aim of gene/species tree reconciliation is to identify the 

topological discrepancies between a gene and species tree, and to interpret these 

discrepancies as duplication and loss events on the gene tree (Figure 2.4) (Goodman et al., 
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1979, Page, 1994). For each of the 12,158 phylogenetic trees, gene duplications were 

inferred using gene/species tree reconciliation with the PhyloTree class in ETE package 

version 2.1 (Huerta-Cepas et al., 2010). However, an incorrectly reconstructed gene tree 

will inevitably invoke false inferences of duplication and loss using a gene/species tree 

reconciliation algorithm (Hahn, 2007). To address this possible confounding factor, 

duplications were independently inferred using a species overlap method, again with the 

PhyloTree class in ETE package version 2.1. In this procedure, a duplication is assigned if 

the same taxa are found either side of the node (Figure 2.4).  

 The timing of each duplication event was identified through examination of the 

species that were represented in the descendent leaves of a duplication node. The 

duplication event was assigned to the branch preceding the deepest node in the reference 

species tree whose descendants include all of the species involved in the duplication. For 

instance, if the taxa that descended from a duplication node included only great apes, the 

duplication event would be assigned to the branch immediately preceding the radiation of 

the great apes. This was conducted using the PhyloTree class in ETE package version 2.1, 

for both species overlap and reconciliation. 

!
2.2.5   Mapping primate duplications to human interactome 
!
! Each duplication event was mapped to a human gene that encodes a protein in the 

human PIN, using the PhyloTree class in ETE package version 2.1. Briefly, the algorithm 

examined the descendant leaves of each duplication node. If there was at least one human 

gene in this set of leaves, the duplication event was assigned to this human gene (or set of 

human genes). Otherwise, the parental node of that node was systematically examined until 

the descendant leaves contained at least one human homolog. Thus, each duplication event 

was assigned to a human gene (or a set of human genes) that were either the result of this 

duplication or the closest human homolog(s) to the genes involved in this duplication.  
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(a) (b) (c) (d) 

Figure 2.4. Gene duplication inference (a) Species tree (b) Gene tree (c) Reconciled gene 

tree (d) Duplication inferred with species overlap. 

Duplication node is marked with a “D” in Figure 2.4c and 2.4d. A broken branch denotes a loss.  
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2.2.6   Biological enrichment analysis 
!

A biological enrichment analysis was conducted to investigate if the set of human 

genes assigned to each branch of the species tree exhibited significant overrepresentation 

in certain biological characteristics compared to the rest of the human genome. This was 

conducted using the duplications that were inferred with gene/species tree reconciliation. 

FatiGO (Al-Shahrour et al., 2004) inputs two lists of genes (i.e. a list of human homologs 

that were assigned to a branch, and the rest of the human genome) and converts them into 

two lists of Gene Ontology (GO) terms (Ashburner et al., 2000). A Fisher’s exact test for 2 

× 2 contingency tables is subsequently implemented to identify significant over-

representation of GO terms in one gene set with respect to the other. Duplicate genes 

within and between the two lists were removed using the “remove all duplicates” 

parameter. Each set of human genes was compared to the rest of the human genome. 

Enrichment was searched for in the “biological process” GO category using “direct 

transmission” for the GO levels 3-7. Fisher’s exact test for “over-represented terms in list 

1” was conducted, which is recommended when searching a set of genes against the rest of 

the genome (http://bioinfo.cipf.es/babelomicswiki/tool:fatigo). An adjusted P-value of less 

than 0.05 was deemed to be significant. 

 

2.2.7   Exploration of the relationship between network structure and gene 

duplicability 

As described in the introduction section, there were two questions posed in this 

investigation. The first question addressed the relationship between gene duplicability and 

network centrality. The second question asked if the phylogenetic tree topologies of 

physically interacting proteins were significantly more similar than expected from random 

pairs. Finally, we asked if any such similarity could be attributed to co-duplication. The 

methods used to address each of these questions shall be discussed in turn.!
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!
2.2.7.1   Analysis of the relationship between gene duplicability and network 

centrality in primates 

 It was hypothesized that there is no relationship between gene duplicability and 

protein centrality. First, this hypothesis was tested for all the proteins in the human 

interactome, and subsequently for the human genes assigned to each branch of the species 

tree individually.  

 For each protein in PIN0, degree, betweenness and closeness centralities were 

calculated using the “centrality” algorithm implemented in NetworkX package 

(http://networkx.lanl.gov/). To examine whether duplicated genes tend to occupy 

significantly more central positions in the PIN than non-duplicated genes, a Mann-Whitney 

test was implemented. The Mann-Whitney test is a non-parametric statistical test that 

assesses whether one of two samples of independent observations tend to have larger 

values than the other set of samples. The Mann-Whitney test was implemented in the 

“Wilcoxon-Rank Sum and Signed Rank Test” package (v. 2.16.0) in R 

(http://stat.ethz.ch/R-manual/R-patched/library/stats/html/wilcox.test.html). Subsequently, 

the centrality values for the set of human genes assigned to each branch of the phylogeny 

were obtained from the centralities that had been calculated for the proteins in the 

interactome. To examine whether each the genes assigned to each branch were more 

central than genes that had not duplicated in a particular branch, a Mann-Whitney test was 

once again performed, as described in previous paragraph.  

 Next, we examined the age profile of the sets of duplicated genes assigned to each 

branch of the phylogeny. A similarity search of each human gene against the GenBank NR 

database was conducted (downloaded on 12/10/2010; Pruitt et al., (2007)) using the BlastP 

algorithm (Altschul et al., 1990) implemented in Blast version 2.2.23, with an E-value cut-

off set to 10-8. Potential homologs were retained in the event that the database sequence 



!
! 54!

aligned to greater than 80% of the query sequence and met the E-value requirement. This 

step removes hits that were identified as putative homologs based on common domains or 

motifs. The taxonomic classification of each identified homolog was obtained from the 

NCBI Taxonomy database (downloaded on 12/10/2010). If all of the homologs to a 

particular human gene were classified as metazoan, the human gene was categorized as 

“metazoan-specific”. Alternatively, if the human gene identified homologs in species that 

are more ancient than metazoans, the gene was classified as “ancient”. 

  There was the possibility that the taxonomic classification of a single homolog 

could determine whether a human gene was metazoan-specific or ancient. For example, in 

the event that a particular human gene obtained 499 metazoan homologs, and a single S. 

cerevisiae homolog, this particular gene would be classified as “ancient”. However, 

perhaps the single yeast homolog is not a true homolog of the human gene in question. To 

minimize the risk that a single homolog would determine the evolutionary origin of a 

human gene, the process of gene age assignment was repeated. In this case, a gene was 

defined as ancient if at least 5% of the homologs corresponded to non-metazoan genomes. 

In both cases, once every human gene was assigned as either “ancient” or “metazoan-

specific”, the proportion of ancient human genes in each branch was calculated. 

 As described in the introduction, one molecular mechanism by which gene 

duplication occurs is through a process called retroposition. As these “retrogenes” lack 

functional regulatory elements, it is thought that the majority of retrogenes will eventually 

become pseudogenized, creating “processed pseudogenes”. Such genes do not encode 

functional proteins. We wanted to investigate the proportion of potential processed 

pseudogenes in each branch of the phylogeny. As transcription has occurred, processed 

pseudogenes do not contain introns. Thus, a gene was classified as a “suspected 

pseudogene” if it contained exactly one exon. The number of exons per human gene 

assigned to each branch of the phylogeny was retrieved from the Ensembl database 
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(version 61) and the proportion of intronless genes (i.e. suspected pseudogenes) was 

calculated for each branch in the phylogeny. 

 

2.2.7.2   Comparison of phylogenetic tree topologies between physically interacting 

proteins 

  The first null hypothesis I tested is that phylogenetic tree topologies of physically 

interacting proteins are not any more similar than what would be expected from comparing 

tree topologies belonging to random pairs of proteins. Each pair of physically interacting 

proteins in PIN1 (i.e. the subnetwork comprising solely non-trivial tree topologies) was 

converted into a pair of phylogenetic trees using script 2.1 in script index 2.0. TreeKO is a 

duplication-aware algorithm that compares two tree topologies (regardless of the number 

of duplications present) and provides a Robinson-Foulds based distance measure of the 

similarity between two topologies (Marcet-Houben and Gabaldón, 2011). Using the “tree 

comparison” algorithm in TreeKO, a “strict distance” between every pair of phylogenetic 

trees in PIN1 was calculated. The strict distance is essentially a weighted Robinson-Foulds 

distance that penalizes differences in evolutionarily relevant events such as gene 

duplications and gene losses, returning a value between 0 and 1. If the strict distance is 0, it 

may be interpreted that the two trees are identical in terms of their topology (and as such 

duplication patterns). If the score is close to 1, the two trees are highly dissimilar in terms 

of their topology. Using the “root method” parameter, each phylogenetic tree was rooted in 

such a way that minimized the number of duplications assigned to each tree. Once a strict 

distance score was calculated for each pair of interacting phylogenetic trees in PIN1, an 

overall average topological distance was calculated for all the pairs of trees in PIN1. 

 It is important to evaluate whether the average topological distance that was 

calculated between the trees in PIN1 was to be expected. 250 randomized networks were 

assembled as described in section 2.2.2. Identical to the protocol explained in the previous 
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paragraph, each pair of interacting proteins in each of the 250 randomized PIN1s was 

converted into a pair of phylogenetic trees. A topological distance was calculated between 

each pair of phylogenetic trees and from this, an average topological distance was 

calculated. Subsequently, the average topological distance obtained for PIN1 was 

compared to the null distribution of average topological distances calculated from the 250 

PIN1 randomized networks. A P-value was calculated as the proportion of randomized 

networks for which the average topological distance was lower than or equal to the 

observed network. Subsequently, the analysis described in this section was repeated for 

PIN2 (in which self-interactions and interactions between proteins encoded by paralogous 

genes were removed) and PIN3 (in which genes that are clustered on the same arm of the 

same chromosome were removed). 

 The second null hypothesis of this section states that the topological similarity 

between phylogenetic trees of physically interacting proteins is not attributed to co-

duplication. First, it was considered whether the human interactome overall was enriched 

in interactions among proteins encoded by duplicated genes. The number of interactions 

involving genes that had undergone duplication in any branch of the phylogeny (N) in 

PIN1 was calculated. The network was randomized 10,000 times (see section 2.2.2 for 

protocol). For each of these randomized networks, the number of interactions involving 

genes that had undergone duplication in any branch of the phylogeny was re-calculated. A 

P-value was computed as the proportion of randomizations for which the simulated N-

value was higher or equal to the observed value. The protocol described in this paragraph 

was repeated for PIN2 and PIN3. 

 Subsequently, the number of interactions in PIN1 between genes that underwent 

duplication in each branch of the phylogeny was computed as Ni.  PIN1 was randomized 

10,000 times (see section 2.2.2). For each random PIN1 network, the number of 

interactions between genes that underwent duplication in each branch was re-computed. A 
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P-value was calculated as the proportion of randomizations for which the simulated N-

value was higher or equal to the observed value. The analysis described in this paragraph 

was repeated for subnetworks PIN2 and PIN3. 

 

  



!
! 58!

2.3   Results 

2.3.1   Analysis of gene duplication  

 After filtering, there were 125,909 genes divided among 12,158 

phylogenetic trees in the data set. The species/gene tree reconciliation approach inferred a 

total of 22,969 duplication events between all the phylogenetic trees, while the species 

overlap method inferred a total of 15,814 duplications. For duplications inferred with 

gene/species tree reconciliation, an overall gene duplication rate of 0.00348 

duplications/gene/million years was estimated across the phylogeny of the studied species. 

However, this rate widely varied across the different branches of the tree, ranging from 

0.0012 duplications/gene/million years (on the chimpanzee external branch) to 0.0252 

duplications/gene/million years (on the internal branch 2; Figure 2.2). In agreement with 

previous reports (Hahn et al., 2007), an increased duplication rate was observed in the 

primate lineage (0.00388 duplications/gene/million years) compared to the mouse external 

branch (0.0018 duplications/gene/million years). Furthermore, an accelerated rate of 

duplication in great apes (0.0041 duplications/gene/million years) was observed compared 

to the average rate in primates (0.00388 duplications/gene/million years), once again 

consistent with previous observations (Hahn et al., 2007). Finally, there was a remarkably 

high gene duplication rate in the branch subtending the human, chimpanzee and gorilla 

clade (0.0252 duplications/gene/million years). Although this sudden burst of duplication 

has been previously described (Marques-Bonet et al., 2009), it is yet to be satisfactorily 

explained (Table 2.2, Table 2.3).  

In total, 22,285 human genes were assigned to the phylogeny with gene tree/species 

tree reconciliation, and 16,339 human genes assigned with species overlap (Table 2.2; 

Table 2.3). The gene enrichment analysis identified 31 unique biological processes 

enriched among duplicated genes in the external branches of the phylogeny (Electronic 

Appendix 2.1). The enriched biological processes include immune/defense response, 



!
! 59!

sensory perception and xenobiotic metabolism. This corresponds to previous research that 

demonstrated that in primates, duplicated genes are enriched in GO categories associated 

with DNA metabolism, DNA recombination, DNA transposition, defense response, 

xenobiotic metabolism, sensory perception and signal transduction (Huerta-Cepas et al., 

2007). Bailey and Eichler (2006) noted that the enrichment of duplicated genes in the 

immune system might reflect an increased sophistication in the primate immune, 

xenobiotic recognition and detoxification systems, thus facilitating changes to food sources 

or infectious agents. Additionally, significant sensory perception enrichment was clearly 

observed in the mouse external branch. 30.53% of genes assigned to this branch were 

annotated to the GO term “sensory perception of smell”, compared with just 0.93% of the 

rest of the genome. This enrichment correlates with previous observations that olfactory 

transduction pathway genes have duplicated in the mouse lineage (Niimura and Nei, 2005).
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Branch Branch 
Length 

# Duplications 
 per branch 

Duplication rate 
(Dups/gene/MY) 

# Human 
genes 
assigned to 
branch 

External branch: ! ! ! !
Human 6.5 495 0.0037 790 
Chimpanzee 6.5 157 0.0012 217 
Gorilla 8.0 424 0.0025 426 
Orangutan 11.2 292 0.0013 342 
Macaque 23.5 902 0.0018 731 
Marmoset 33.7 1,526 0.0021 1,043 
Mouse  61.5 2,584 0.0018 796 
Internal branch: !    
Branch 1 1.5 90 0.0030 179 
Branch 2 3.2 216 0.0033 344 
Branch 3 12.3 331 0.0013 539 
Branch 4 10.2 706 0.0033 1,029 
Branch 5 27.8 967 0.0016 1,293 
Branch 6 - 7,124 - 8,610 

Branch Branch 
Length 

# Duplications 
 per branch 

Duplication rate 
(Dups/gene/MY) 

# Human 
genes 
assigned to 
branch 

External branch: ! ! !
Human 6.5 495 0.0037 790 
Chimpanzee 6.5 157 0.0012 217 
Gorilla 8.0 424 0.0025 426 
Orangutan 11.2 292 0.0013 342 
Macaque 23.5 902 0.0018 731 
Marmoset 33.7 1,526 0.0021 1,043 
Mouse  61.5 2,584 0.0018 796 
Internal branch: ! ! ! !
Branch 1 1.5 90 0.0030 179 
Branch 2 3.2 1,655 0.0252 1,805 
Branch 3 12.3 1,770 0.0071 1,906 
Branch 4 10.2 2,127 0.0099 2,274 
Branch 5 27.8 3,220 0.0055 3,108 
Branch 6 - 7,727 - 8,668 

Table 2.3 Gene duplications inferred (species overlap).  

Table 2.2 Gene duplications inferred (gene tree/species tree reconciliation). 
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2.3.2   The relationship between network centrality and gene duplicability in the 

primate PIN 

 The relationship between the network centralities of a protein and the duplicability 

of its encoding gene was evaluated. Overall, duplicated genes occupied significantly more 

central positions in the human PIN0 than singleton genes (P-value = 2.89×10 –13 for 

degree; P-value = 3.01×10 –10 for betweenness; P-value = 2.11×10 –14 for closeness). This 

is in agreement with previous observations in the human interactome (Liang and Li, 

2007). 

  Examining each branch of the phylogeny individually, duplicated genes generally 

exhibited a higher average centrality than singleton genes in ten out of the thirteen 

branches of the species tree (Table 2.4, 2.5, 2.6). Unexpectedly, the opposite trend was 

observed in the three remaining branches (the human lineage, and internal branches 1 and 

2; labelled in grey on Figure 2.2). This opposite trend is statistically significantly different 

in two of these branches for all three centralities and for duplications inferred with both 

reconciliation and species overlap (the human external branch and internal branch 1; 

Table 2.4, 2.5, 2.6). Therefore, we suggested that the relationship between centrality and 

duplicability has inverted during primate radiation.  

 D’Antonio and Ciccarelli (2011) demonstrated that human genes of ancient origin 

exhibit the same pattern as observed in E. coli, S. cerevisiae and D. melanogaster (i.e. 

duplicated genes tend to be less central). In contrast, human genes that originated within 

the metazoans exhibit the opposite trend. Thus, the varying relationship between 

centrality and duplicability could be explained if duplications in the human external 

branch and internal branch 1 and 2 primarily involved ancient genes. However, the 

proportion of ancient genes in these branches (on average, approximately 16% for 

duplications inferred with reconciliation) was generally lower than the proportion of 
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ancient genes assigned to the other branches of the phylogeny (approximately 21%) 

(Table 2.7, 2.8). Similar results are obtained for duplications inferred with species 

overlap, as the proportion of ancient genes inferred on the branches of interest was 

approximately 14%, compared to the rest of the branches, in which ~21% of the genes 

were classed as ancient. This indicates that the age of genes is not the factor responsible 

for the heterogeneity in the observed relationship between duplicability and centrality. 

 We hypothesized that the human external branch and internal branches 1 and 2 

may be enriched in suspected pseudogenes. As pseudogenes are generally non-functional, 

the selective mechanisms that promote the positive association between centrality and 

duplicability may not operate on these genes. However, the branches of interest did not 

exhibit an extraordinarily different proportion of suspected pseudogenes to that observed 

in the other branches for duplications inferred with reconciliation or species overlap 

(Table 2.7, Table 2.8). 
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Degree 
 Branch     Duplicated Non-duplicated P – value 
    n mean n mean   
External branches Human 97 6.2 8,990 8.81 0.001 
 Chimpanzee 26 53.04 9,061 8.65 0.3 
 Gorilla 165 11.89 8,922 8.72 0.062 
 Orangutan 110 11.77 8,977 8.74 0.218 
 Macaque 374 11.4 8,713 8.67 0.001 
 Marmoset 574 11.38 8,513 8.6 1.19E-08 
 Mouse 229 15.25 8,858 8.61 0.174 
Gene/species tree Branch 1 36 5.39 9,051 8.79 3.63E-04 
Reconciliation Branch 2 763 8.22 8,324 8.83 0.67 
(Internal branch) Branch 3 909 9.56 8,178 8.69 1.56E-01 
 Branch 4 977 10 8,110 8.63 0.015 
 Branch 5 1,504 9.61 7,583 8.61 4.79E-05 
  Branch 6 4,470 9.92 4,617 7.67 9.62E-11 
Species overlap Branch 1 36 5.39 9,051 8.79 3.63E-04 
(Internal branch) Branch 2 81 9.75 9,006 8.77 0.837 
 Branch 3 141 9.11 8,946 8.77 0.818 
 Branch 4 356 8.62 8,731 8.78 0.886 
 Branch 5 476 9.49 8,611 8.74 0.266 
  Branch 6 4,439 9.92 4,648 7.69 2.57E-10 

Table 2.4 Comparison of degree centrality between duplicated and non-duplicated genes for 

each branch of primate phylogeny. 

Column 1 (entitled “Branch”) indicates the name assigned to a branch. Column 2 is the number of 

duplicated genes that are present in a branch, and also present in PIN0. Column 3 is the mean 

degree for the genes that are present in that branch. Columns 4 and 5 are the number of genes, and 

the mean degree, for non-duplicated genes (i.e. every gene in the interactome, that has not 

duplicated in that particular branch). P-value indicated by Mann-Whitney test. 
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Closeness 
 Branch Duplicated Non-duplicated P-value 
  N Mean N Mean  
External branches Human 97 0.249 8,990 0.266 0.01 
 Chimpanzee 26 0.232 9,061 0.266 0.105 
 Gorilla 165 0.267 8,922 0.266 1.85E-04 
 Orangutan 110 0.271 8,977 0.266 0.008 
 Macaque 374 0.274 8,713 0.266 2.58E-16 
 Marmoset 574 0.273 8,513 0.265 1.14E-20 
 Mouse 229 0.266 8,858 0.266 0.043 
Gene/species tree Branch 1 36 0.238 9,051 0.266 0.003 
reconciliation Branch 2 763 0.271 8,324 0.265 0.175 
(Internal branch) Branch 3 909 0.265 8,178 0.266 0.328 
 Branch 4 977 0.267 8,110 0.266 0.007 
 Branch 5 1,504 0.268 7,583 0.265 1.19E-05 
 Branch 6 4,470 0.266 4,617 0.266 1.01E-07 
Species overlap Branch 1 36 0.238 9,051 0.266 0.003 
(Internal branch) Branch 2 81 0.273 9,006 0.266 0.035 
 Branch 3 141 0.272 8,946 0.266 0.084 
 Branch 4 356 0.267 8,731 0.266 0.046 
 Branch 5 476 0.266 8,611 0.266 0.013 
 Branch 6 4,439 0.266 4,648 0.266 9.53E-08 

Table 2.5 Comparison of closeness between duplicated and non-duplicated genes for each 

branch of the primate phylogeny.  

Column 1 (titled “Branch”) indicates the name assigned to a branch. Column 2 is the number of 

duplicated genes that are present in a branch, and also present in PIN0. Column 3 is the mean 

closeness for the genes that are present in that branch. Columns 4 and 5 are the number of genes, 

and the mean closeness, for non-duplicated genes (i.e. every gene in the interactome, that has not 

duplicated in that particular branch). P-value indicated by Mann-Whitney test. 
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Betweenness 
 Branch     Duplicated Non-duplicated P-value 
    N Mean N Mean   
External branches Human 97 7849.72 8,990 12922.32 0.002 
 Chimpanzee 26 507787.62 9,061 11448.03 0.26 
 Gorilla 165 21134.46 8,922 12715.3 0.02 
 Orangutan 110 20053.03 8,977 12780.13 0.097 
 Macaque 374 17163.64 8,713 12683.79 1.71E-05 
 Marmoset 574 17281.96 8,513 12570.56 1.10E-09 
 Mouse 229 72909.96 8,858 11315.95 0.006 
Gene/species tree Branch 1 36 7932.45 9,051 12887.8 0.005 
Reconciliation Branch 2 763 10162.68 8,324 13116.16 0.677 
(Internal branch) Branch 3 909 14722.74 8,178 12662.03 0.130 
 Branch 4 977 14369.92 8,110 12687.26 0.084 
 Branch 5 1,504 13455.87 7,583 12751.61 2.09E-04 
  Branch 6 4,470 16462.57 4,617 9388.22 1.07E-10 
Species overlap Branch 1 36 7932.45 9,051 12887.8 0.005 
(Internal branch) Branch 2 81 14138.07 9,006 12856.75 0.633 
 Branch 3 141 18260.83 8,946 12783.18 0.549 
 Branch 4 356 10864.04 8,731 12949.89 0.720 
 Branch 5 476 14686.19 8,611 12767.67 0.223 
  Branch 6 4,439 16499.05 4,648 9400.56 2.76E-10 

Table 2.6 Comparison of betweenness between duplicated and non-duplicated genes for each 

branch of the primate phylogeny.  

Column 1 (titled “Branch”) indicates the name assigned to a branch. Column 2 is the number of 

duplicated genes that are present in a branch, and also present in PIN0. Column 3 is the mean 

betweenness for the genes that are present in that branch. Columns 4 and 5 are the number of genes, 

and the mean betweenness, for non-duplicated genes (i.e. every gene in the interactome, that has not 

duplicated in that particular branch). P-value indicated by Mann-Whitney test. 
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                   Pseudogene Analysis                    Age analysis 

    Gene classed as 
ancient, if 5% 
homologs are 
ancient 

Gene classed as 
ancient, if one 
homolog is ancient 

Branch 
 
 
 

# Human 
genes in 
branch  

# One-
exon 
human 
genes in 
branch 

% 
Intronless 
genes in 
branch 

# Ancient 
genes in 
branch 

% 
Ancient 
genes in 
branch 

# Ancient 
genes in 
branch 

% 
Ancient 
genes in 
branch 

External        
Human 790 147 18.61 75 9.49 115 14.56 
Chimpanzee 217 46 21.20 23 10.60 33 15.21 
Gorilla 426 93 21.83 94 22.06 120 28.17 
Orangutan 342 53 15.50 76 22.22 96 28.07 
Macaque 731 71 9.71 235 32.15 282 38.58 
Marmoset 1,043 101 9.68 323 30.97 406 38.93 
Mouse  796 334  41.96 102 12.81 160 20.10 
Internal        
Branch 1 179 24 13.41 31 17.32 36 20.11 
Branch 2 1,805 142 7.87 418 23.16 536 29.70 
Branch 3 1,906 149 7.82 406 21.30 558 29.28 
Branch 4 2,274 250 10.99 524 23.04 690 30.34 
Branch 5 3,108 279 8.98 662 21.30 886 28.51 
Branch 6 8,668 712 8.21 1796 20.72 2,530 29.19 

Table 2.7 Age and pseudogene analysis (gene/species tree reconciliation). 
 
Columns 1-3 indicate the suspected pseudogene content for each branch of the phylogeny. 
 
Columns 4-6 indicate the proportion of genes in each branch that were classified as ancient. 
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                  Pseudogene Analysis                      Age analysis 

    Gene classed as 
ancient, if 5% 
homologs are 
ancient 

Gene classed as 
ancient, if one 
homolog is ancient 

Branch 
 
 
 

# Human 
genes in 
branch  

# One-
exon 
human 
genes in 
branch 

% 
Intronless 
genes in 
branch 

# Ancient 
genes in 
branch 

% 
Ancient 
genes in 
branch 

# Ancient 
genes in 
branch 

% Ancient 
genes in 
branch 

External        
Human 790 147 18.61 75 9.49 115 14.56 
Chimpanzee 217 46 21.20 23 10.60 33 15.21 
Gorilla 426 93 21.83 94 22.06 120 28.17 
Orangutan 342 53 15.50 76 22.22 96 28.07 
Macaque 731 71 9.71 235 32.15 282 38.58 
Marmoset 1,043 101 9.68 323 30.97 406 38.93 
Mouse  796 334  41.96 102 12.81 160 20.10 
Internal        
Branch 1 179 24 13.41 31 17.31 36 20.11 
Branch 2 344 46 13.37 51 14.83 68 19.77 
Branch 3 539 96 17.81 104 19.29 128 23.75 
Branch 4 1,029 204 19.83 210 20.41 284 27.60 
Branch 5 1,293 233 18.02 251 19.41 337 26.06 
Branch 6 8,610 712 8.27 1,779 20.66 2,511 29.16 

Table 2.8 Age and pseudogene analysis (species overlap). 
 
Columns 1-3 indicate the suspected pseudogene content for each branch of the phylogeny.  
 
Columns 4-6 indicate the proportion of genes in each branch that were classified as ancient. 
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2.3.3   Comparison of the phylogenetic tree topologies of physically interacting  
 
proteins 
 
  The second null hypothesis in this investigation asserted that the tree topologies of 

physically interacting proteins are not more similar than what would be expected at 

random. In PIN1, each pair of interacting proteins was converted into a pair of interacting 

trees. The average topological distance between all the trees in a PIN was computed as 

0.319. To establish whether the topologies between the trees of interacting proteins in 

PIN1 were more similar than expected at random, a null distribution of topological 

distances was calculated for 250 randomized PIN1 networks. None of the 250 randomized 

networks exhibited an average topological distance lower than or equal to the observed 

network (average value for the random networks, D = 0.339; P < 0.004; Figure 2.5a). This 

indicates that the phylogenetic trees belonging to physically interacting proteins were 

significantly more similar than expected at random. 

 There are a number of structural features of PINs might also produce such a 

similarity and should be eliminated as potential sources of confounding bias. PIN2 is a 

subnetwork of PIN1, in which self-interactions and interactions among proteins that are 

encoded by paralogous genes have been removed. In PIN2, a significantly lower average 

topological distance between the trees of interacting proteins than expected in a random 

network was observed (D = 0.331; average value for the randomizations, D = 0.338; P < 

0.004; Figure 2.5b). PIN3 is a subnetwork of PIN2 in which interactions between genes 

that are located on the same arm of a chromosome have been removed. Similarly in PIN3, 

the average topological distance between the trees of interacting proteins is still lower 

than expected at random (D = 0.331; average value for the simulations, D = 0.338; P < 

0.004; Figure 2.5c). These results indicate that genes encoding interacting proteins 

manifest more similar tree topologies than expected from random pairs. In addition, the 
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observations suggest that this pattern is independent of the enrichment of the network in 

self-interactions, interactions among paralogous genes and interactions among genes that 

co-localize in the genome.  
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Figure 2.5 Distance between phylogenetic trees of interacting proteins in the human interactome.  

The observed average topological distance in the interactome is represented as a red arrow, and the average 

topological distribution inferred from 250 randomized networks is represented as a histogram. Figure (a) 

indicates distances for PIN1, (b) indicates distances for PIN2 and (c) indicates distances for PIN3. 

 

(a) 

(b) 

(c) 
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2.3.4   Evidence for co-duplication in the primate phylogeny 
!
 The final null hypothesis stated that the observed similarity in phylogenetic tree 

topologies is not due to co-duplication. In this section, N indicates the number of interactions that 

occur between duplicated genes. First, it was found that the human interactome (PIN1) was 

enriched in interactions among proteins encoded by duplicated genes. None of the 10,000 

random networks exhibited an N value higher than or equal to the observed one (P < 0.0001), 

indicating that duplicated genes tend to interact with each other in the interactome. This result 

holds when self-interactions and interactions among paralogs (N = 21,872; P < 0.0001 for PIN2), 

and interactions between genes locating in the same chromosome arm (N = 21,152; P < 0.0001 

for PIN3) were removed from the analyses.  

 The number of interactions between duplicated genes were calculated for each branch of 

the primate phylogeny separately and compared to a null distribution of 10,000 randomized 

PIN1 networks. In PIN1, N values for each branch were significantly higher than expected from 

a random network in all 13 branches (P < 0.05), indicating that genes that have undergone 

duplication in each of these branches tend to interact with each other (Table 2.9). When self-

interactions and interactions among paralogs are removed (PIN2), N values are higher than the 

average values for the random networks in 10 out of the 13 branches, with statistically 

significant differences in four of the branches (the external branches leading to gorilla, marmoset 

and mouse, and internal branch 6; Table 2.10). Almost equivalent results were obtained when 

interactions among genes in the same chromosome arm were removed from the analysis (PIN3; 

Table 2.11).  

 We concluded that although the tendency for genes that duplicated in a given branch to 

interact with each other is partially due to the enrichment of the network in self-interactions and 

interactions among paralogs, such features cannot completely account for the observed trend.
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Branch   PIN1 
N M P 

External  Human 14 2.21 <0.0001 
Branches Chimpanzee 9 3.73 0.001 
 Gorilla 55 24.2 <0.0001 
 Orangutan 33 10.52 <0.0001 
 Macaque 138 114.28 0.0119 
 Marmoset 380 269.35 <0.0001 
  Mouse 147 65.73 <0.0001 
Gene/species tree 
reconciliation 

Branch 1 2 0.22 0.019 
Branch 2 339 244.43 <0.0001 
Branch 3 555 473.75 <0.0001 

 Branch 4 700 601.32 <0.0001 
 Branch 5 1,502 1313.07 <0.0001 
  Branch 6 13,658 12340.78 <0.0001 
Species overlap Branch 1 2 0.22 0.019 
 Branch 2 14 3.75 <0.0001 
 Branch 3 35 10.24 <0.0001 
 Branch 4 98 59.26 <0.0001 
 Branch 5 197 127.93 <0.0001 
  Branch 6 13,509 12166.9 <0.0001 

Table 2.9 Number of interactions between proteins encoded by genes duplicated in the phylogeny 

branch (PIN1). 

Ni is the observed number of interactions (in PIN1) between proteins encoded by genes duplicated in 

branch i. Mi is the average N value across 10,000 network randomizations. Finally, P is the proportion 

of randomizations for which the simulated N value is higher or equal to the observed one.  
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Branch   PIN2 
N M P 

External  Human 1 1.97 0.8618 
Branches Chimpanzee 4 2.6 0.2334 
 Gorilla 34 23.21 0.0169 
 Orangutan 15 9.79 0.0659 
 Macaque 96 111.04 0.9443 
 Marmoset 299 261.51 0.0059 
  Mouse 109 61.92 <0.0001 
Gene/species tree 
reconciliation 

Branch 1 1 0.18 0.1668 
Branch 2 249 233.45 0.1421 
Branch 3 431 452.42 0.8816 

 Branch 4 582 580.25 0.4765 
 Branch 5 1,282 1256.72 0.1951 
  Branch 6 12,752 11747.23 <0.0001 
Species overlap Branch 1 1 0.18 0.1668 
 Branch 2 5 3.53 0.2763 
 Branch 3 18 9.49 0.0078 
 Branch 4 56 56.75 0.5569 
 Branch 5 130 122.06 0.2353 
  Branch 6 12,605 11576.51 <0.0001 

Table 2.10 Number of interactions between proteins encoded by genes duplicated in the 

phylogeny branch (PIN2). 

Ni is the observed number of interactions between proteins (in PIN2) encoded by genes 

duplicated in branch i. Mi is the average N value across 10,000 network randomizations. 

Finally, P is the proportion of randomizations for which the simulated N value is higher or 

equal to the observed one.  

!
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Branch   PIN3 
N M P 

Branches Human 1 1.82 0.8407 
 Chimpanzee 3 1.95 0.3054 
 Gorilla 33 22.15 0.0153 
 Orangutan 14 9.44 0.0921 
 Macaque 89 105.6 0.9649 
 Marmoset 285 252.35 0.0143 
  Mouse 103 59.09 <0.0001 
Gene/species tree 
reconciliation 

Branch 1 1 0.16 0.1524 
Branch 2 237 223.89 0.1706 
Branch 3 415 436.76 0.8926 

 Branch 4 563 562.98 0.5063 
 Branch 5 1,248 1221.08 0.1776 
  Branch 6 12,332 11359.67 <0.0001 
Species overlap Branch 1 1 0.16 0.1524 
 Branch 2 5 3.38 0.2473 
 Branch 3 18 9.03 0.0043 
 Branch 4 54 54.96 0.5674 
 Branch 5 125 117.24 0.2343 
  Branch 6 12,188 11192.24 <0.0001 

Table 2.11 Number of interactions between proteins encoded by genes duplicated in the 

phylogeny branch (PIN3). 

Ni is the observed number of interactions (in PIN3) between proteins encoded by genes duplicated 

in branch i. Mi is the average N value across 10,000 network randomizations. Finally, P is the 

proportion of randomizations for which the simulated N value is higher or equal to the observed 

one.  

!
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2.4   Discussion 
 
 The aim of this chapter was to combine comparative genomics and protein-protein 

interaction network data to explore the relationship between the structure of the primate 

PIN and the duplicability of the genes encoding its components. To achieve this, two 

distinct questions were asked.  First, the relationship between protein network centrality 

and gene duplicability was evaluated. Second, we examined whether interacting proteins 

manifest topologically similar phylogenetic trees, and whether there is evidence for co-

duplication among interacting proteins.  

 Consistent with previous observations in the H. sapiens genome (Liang and Li, 

2007), it was observed that primate genes that duplicated in any branch of the species tree 

tend to be more central than singleton genes (Table 2.4, Table 2.5, Table 2.6). 

Unexpectedly, the opposite relationship between duplicability and centrality is observed 

in the external branch leading to humans, and in the internal branches subtending the 

human/chimpanzee (internal branch 1) and the human/chimpanzee/gorilla (internal 

branch 2). This resembles the pattern observed in E. coli, S. cerevisiae and D. 

melanogaster (Hughes and Friedman, 2005, Prachumwat and Li, 2006). Therefore, the 

relationship between duplicability and centrality seems to have undergone a reversal 

during the evolution of great apes. 

 The contrasting pattern observed among ancient and more recently evolved 

human genes could provide an explanation for the different relationship between 

centrality and duplicability that is observed in the different branches of the phylogeny 

(D’antonio and Ciccarelli, 2011). However, the proportion of ancient genes among genes 

that duplicated in the human external branch, and internal branches 1 and 2, is generally 

lower than genes that duplicated in the other branches of the phylogeny (Table 2.7, Table 

2.8). This indicates that gene age is not the factor responsible for the heterogeneity in the 
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relationship between duplicability and centrality observed here. It was also examined 

whether these particular branches contained an unusually high proportion of suspected 

pseudogenes, as perhaps these genes would not be under the same selective pressure that 

promotes the relationship between gene duplicability and network centrality observed in 

the other branches. However, the proportion of suspected pseudogenes in these particular 

branches were not substantially different from that observed in other branches (Table 2.7, 

Table 2.8). 

 Next, it was observed that the phylogenetic trees of physically interacting proteins 

exhibit a higher similarity than expected at random. This was in spite of accounting for 

possible confounding factors such as self-interactions and interactions among paralogs, or 

interactions between functionally related genes. These observations contrast with those 

made by Kelly and Stumpf (2010), who recently found negligible evidence that pairs of 

interacting yeast proteins presented similar phylogenetic trees topologies. Three possible 

reasons might account for the different results obtained in both studies. First, Kelly and 

Stumpf analyzed the yeast interactome, whereas this study focused on primates. It is 

possible that both interactomes exhibit a different trend. Second, the data sets used by 

Kelly and Stumpf (2,528–5,109 proteins and 5,728–21,283 interactions) were remarkably 

smaller than those employed in the current study, which could have limited the statistical 

power in the analyses of Kelly and Stumpf. Lastly, Kelly and Stumpf inferred 

phylogenetic trees from 1:1 orthologous sets, which removes the effect of duplication and 

loss events in the tree topologies. In contrast, this investigation used entire homologous 

gene families, including paralogs. Thus, the different results obtained in the analysis by 

Kelly and Stumpf (2010) and this analysis may also potentially be the result, at least 

partially, of interacting genes exhibiting similar patterns of duplication and/or loss. 

 Finally, the number of interactions between genes that underwent duplication at 
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any branch of the phylogeny was found to be higher than expected from a random 

network. This observation indicated that duplicated human genes tend to interact with 

each other in the PIN, supporting the hypothesis that the duplication of a gene may 

increase the likelihood of duplication of its interacting partners. This trend holds true 

when genes that duplicated in each particular branch of the phylogeny are analyzed 

separately. The significance vanishes for most of the branches when self-interactions and 

interactions among paralogs are removed. However, the trend remains significant for four 

of the branches (the external branches leading to gorilla, marmoset and mouse, and 

internal branch 6; Table 2.11). Interestingly, these branches include the three longest 

branches to which the most duplications had been assigned (the external branches leading 

to mouse and marmoset, and internal branch 6). Perhaps the lack of significance in the 

remaining branches may be at least partially due to reduced statistical power in the 

shorter branches. Alternatively, the absence of significance in these branches might be a 

consequence of the reduced efficacy of selective mechanisms that favour the co-

duplication of interacting genes in the same branches of the phylogeny. As one may 

expect that the selective advantage of duplicating the interacting partner of a protein 

would be small, the tendency of interacting genes to co-duplicate in the same branches of 

the species tree may only be observed in organisms in which natural selection is highly 

efficient. Primates have a lower effective population size (see section 4.1.2 for a 

description of effective population size) than rodents (Hughes and Friedman, 2009). 

Therefore, the evolutionary pressure that promotes the co-duplication of genes encoding 

interacting proteins may be less efficient in primates. 

 In summary, a major aim of the post-genomic era is to move from a reductionist 

approach of studying cell components to a more integrative view of the cell. A key 

element of this effort is to understand the interactions between the individual cellular 



!
! 78!

components, and to combine such information to produce models of entire biological 

systems. Taken together, the analyses describe in this chapter indicate that the primate 

PIN imposes constraints on the fate of genes encoding its components.  
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Chapter 3: An estimation of the timing of divergence between A. melanoleuca and U. 

maritimus. 

3.1   Introduction 
!
 Ursidae is a taxonomic family comprising eight species assigned to three 

subfamilies, including Ailuropodinae (monotypic with the giant panda) and Ursinae 

(encompassing six species – one of which is the polar bear). The Ursinae experienced 

rapid radiation (Waits et al., 1999, Krause et al., 2008), and elucidation of the timing of 

speciation events in this clade has proved to be a challenging task (for example, Waits et 

al., 1999, Yu et al., 2004). In such investigations, a valuable node to calibrate is the 

divergence between polar bear and giant panda. This divergence is usually calibrated at 

12 MYA (for example, Talbot and Shields (1996), Waits et al. (1999), Yu et al. (2004), 

Yu et al. (2007)), based on teeth morphology from a potential ancestor of the giant panda 

(Thenius, 1979, quoted in Krause et al., 2008) and genetic distances that were calculated 

over two decades ago (Wayne et al., 1991). 

 With the increased availability of molecular sequence data, the validity of the 

proposed 12 MY divergence between polar bear and giant panda has been questioned. 

For example, mitochondrial sequences have recently estimated that the two species may 

have diverged more anciently, approximately 19 MYA (Krause et al., 2008). The authors 

argue that as the fossil record for bear species is sparse and the oldest giant panda fossil, 

Ailuropoda microta, is dated at < 2.4 MYA (Jin et al., 2007), an early Miocene 

divergence between giant panda and polar bear is possible. To date, the largest study that 

has explored the Ursidae phylogeny using nuclear sequences consisted of merely 14 

genes (Pagès et al., 2008). This data set did not attempt to estimate any divergence times 

among the Ursidae.  
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 BGI-Shenzhen, China recently sequenced the full nuclear genomes of giant panda 

and polar bear, providing more data that could be used to address the divergence between 

these two species from a novel perspective. This chapter commences with an introduction 

to molecular phylogenetic dating and the Ursidae. Subsequently, a study is described that 

incorporated the largest amount of nuclear data available to date from 22 vertebrates, 

including two bear species, in a Bayesian framework, to accurately estimate the timing of 

divergence between the polar bear and giant panda. The acquisition of a more precise 

calibration point between these two species will aid future investigations that aim to 

resolve the enigmatic timing of divergence events that occurred among ursine bears. 

 

3.1.1   An introduction to Ursidae 
 
 Ursidae is a taxonomic family encompassing eight species assigned to three 

subfamilies: Ailuropodinae (monotypic with Ailuropoda melanoleuca), Tremarctinae 

(monotypic with Tremarctos ornatus), and Ursinae (encompassing six species – Ursus 

thibetanus, Ursus arctos, Ursus americanus, Ursus maritimus, Helarctos malayanus, and 

Ursus ursinus) (Figure 3.1). Ursidae represent an interesting phylogenetic clade to 

investigate for a number of reasons. Ecologically, members of this family are present on 

most continents and occupy ecological niches ranging from the Arctic ice shelves to 

tropical rainforests. Conservationally, most bear genera are currently classified as 

threatened (http://www.redlist.org). For example, the polar bear (Ursus maritimus) has 

become emblematic of the decline of Arctic biodiversity as a result of global climate 

change (Hunter et al., 2010). In addition, multiple environmental risks threaten the 

sustainability of the giant panda (Ailuropoda melanoleuca) (Liu et al., 2001, Zhang, 

2008). Finally, from an evolutionary perspective, the Ursinae subfamily experienced 

rapid radiation (Waits et al., 1999) and clarification of ursine bear speciation events has 
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proven to be a challenging task. In attempts to decipher the timing of such events, a 

valuable node to calibrate is the divergence between giant panda and polar bear (Figure 

3.1).  

 Two primary sources of data have provided divergence estimates for the polar 

bear-giant panda speciation event. The first source of data is the examination of fossils. 

Thenius (1979) estimated that the polar bear-giant panda divergence occurred 12-15 

MYA, based on teeth morphology of a potential ancestor of the giant panda (Agriarctos) 

(Krause et al., 2008). This estimate has been applied as a calibration point in numerous 

studies (for example, Waits et al. (1999), Yu et al. (2004)). More recently, the oldest giant 

panda fossil, Ailuropoda microta, was dated at < 2.4 MYA (Jin et al., 2007). Aside from 

a few recent discoveries (Ingólfsson and Wiig, 2008, Lindqvist et al., 2010), polar bear 

fossils are quite rare. This is thought to be because the animals live and die mostly over 

vast areas of sea ice. Thus, upon their death, it is likely that their remains are scavenged 

by other animals, or disappear into the ocean (Harington, 2008, Ingólfsson and Wiig, 

2008, Laidre et al., 2008). 

 Molecular sequences have also been employed to explore the timing of speciation 

events in the Ursidae. Krause et al. (2008) used whole mitochondrial genomes to 

demonstrate that the giant panda-polar bear divergence may have occurred more 

anciently than suggested by fossils, approximately 19 MYA. Using 14 nuclear genes, the 

most comprehensive investigation that explored the Ursidae phylogeny using nuclear 

sequence data did not attempt to date the speciation events in the Ursidae phylogeny 

(Pagès et al., 2008). 
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Figure 3.1 Ursidae phylogeny. 

Different variations of the Ursidae phylogeny have been suggested, specifically with respect 

to the branching order of the ursine bears. The phylogeny presented here was adapted from 

Krause et al. (2008; Figure 1). 

!
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3.1.2   Estimation of divergence between polar bear and giant panda 
 
 The objective of the investigation described in this chapter is to establish an 

accurate estimate of the divergence between giant panda and polar bear using a large 

amount of nuclear sequence data in a Bayesian framework. In this section, the major 

components of a molecular phylogenetic dating analysis will be described. 

 

3.1.3   The molecular clock hypothesis  
 
 Zuckerkandl and Pauling (1962) recognized that the similarity of protein 

sequences between different species could be indicative of the timing of speciation and 

gene duplication events, as molecular evolution appeared to occur at an approximately 

uniform rate over time. Soon after, the term molecular evolutionary clock (or “molecular 

clock” for short) was introduced (Zuckerkandl and Pauling, 1965). Recently, as the 

volume of molecular sequence data in the public domain has increased, the molecular 

clock concept has been applied to a range of evolutionary questions. For example, Korber 

et al. (2000) used the molecular clock to establish that the last common ancestor of the 

main pandemic strain of human immunodeficiency virus (HIV) diverged in the 1930s. 

This estimation was used to counter claims that the virus was originally spread through 

the distribution of a contaminated oral polio vaccine in Central Africa between 1957 and 

1960 (Hooper, 2001). In addition, molecular clocks have been implemented to explore 

the timing of several controversial evolutionary events, such as the “Cambrian explosion” 

of the metazoan phyla (Bromham et al., 1998, Blair and Hedges, 2005, Erwin et al., 

2011) and the proliferation of modern mammalian orders (Bininda-Emonds et al., 2007, 

Meredith et al., 2011). 
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3.1.4 Relaxed molecular clock models 
 
 Although the molecular clock hypothesis was originally postulated using 

empirical data, it soon received a theoretical backing. Kimura proposed the neutral theory 

of evolution, suggesting that a large proportion of mutations do not impact evolutionary 

fitness, so natural selection would neither favour nor disfavour them (Kimura, 1968, 

Kimura and Ohta, 1971). Eventually, each of these neutral mutations would either spread 

throughout a population and become fixed in all its members, or would be entirely lost 

through genetic drift. Kimura demonstrated that a molecular clock is expected if the rates 

at which mutations become fixed in a population (known as the substitution rate) is 

equivalent to the rate of appearance of new mutations in each member of the population 

(known as the mutation rate). This concept was defined as the “strict” molecular clock.   

 Subsequent research demonstrated that the null hypothesis of the molecular clock 

is too simplistic, as the rate of molecular evolution can vary significantly among genes 

and organisms (Wolfe et al., 1987, Steiper and Seiffert, 2012). To remedy this matter, 

“relaxed” molecular clocks were proposed, that retain some aspects of the original 

molecular clock hypothesis while relaxing the assumption of a strictly constant rate 

between all lineages of a phylogeny. Three probabilistic models of molecular clock 

relaxation were used in this investigation: Cox-Ingersoll-Ross (CIR) (Lepage et al., 

2007), uncorrelated gamma (UGam) (Drummond et al., 2006) and lognormal (LogN) 

(Thorne et al., 1998). Primarily, each of these relaxed molecular clock models differ in 

whether autocorrelation occurs and the distribution used to model the rate of substitution. 

 Temporal autocorrelation, as implemented in LogN and CIR, limits the speed at 

which a substitution rate can vary from an ancestral to a descendent lineage (Sanderson, 

1997). A descendent lineage may inherit an initial substitution rate from its ancestral 

lineage, and evolve new rates independently. The biological reasoning behind 
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autocorrelated relaxed molecular clocks can be summarized in the form of two key 

assumptions. The first assumption is that substitution rates are indirectly heritable 

because they are correlated with a variety of inherited characteristics. For example, 

among mammals, nucleotide substitution rates correlate with body size (Gillooly et al., 

2005) and generation time (Nikolaev et al., 2007). The second assumption is that the rate 

of mutation and substitution are correlated. Unless evolution is proceeding in an 

effectively neutral manner, or closely related species are experiencing similar selection 

intensities, it is unlikely that substitution and mutation rates will be strictly correlated. As 

I cannot be certain of this second assumption for the species involved in this 

investigation, both autocorrelated (CIR and LogN) and an uncorrelated relaxed molecular 

clock model (UGam) were initially selected. Subsequently, Bayes factors were 

implemented to explore whether an autocorrelated or uncorrelated molecular clock model 

best suited the observed data. 

 Relaxed molecular clock also differ in terms of the distribution that describes the 

substitution rate variation between each ancestral and descendent branch. The LogN 

model assigns the ancestral substitution rate as the mean for a lognormal distribution, 

from which the descendent substitution rate is calculated. The CIR model operates 

slightly differently. It allows the rate of substitution to vary in descendent branches in a 

Brownian (spring-like) motion, in which small rate changes are permitted, while larger 

substitution rate changes are unlikely to be biologically accurate and so discouraged. 

Finally, regarding the UGam model, the rates of substitution are drawn independently of 

each other across the branches of the phylogeny, from a gamma distribution. 

 
!
!
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3.1.5   The fossil record  
!
 Fossils have been used for over 200 years to estimate the timing of speciation 

events. The fossil record describes the traces of organisms that remain in fossiliferous 

rock formations. Speciation divergence events can be estimated using a combination of 

molecular sequences and the fossil record. When the selected molecular clock is 

calibrated using external information about the geological ages of one or more nodes of 

the phylogeny, branch lengths that have been estimated from sequences can be converted 

into geological times.  

 Although the fossil record has provided many insights into divergence events for 

a wide range of species (for example, Douzery et al., 2004, Steiper and Young, 2006), it 

is regularly criticized as flawed (Graur and Martin, 2004). The imperfection of the fossil 

record has been known since Darwin’s time. For example, he pointed out that many 

living organisms are composed solely of soft parts, and so are unlikely to be preserved. In 

addition, other species inhabit environments in which sedimentation does not accumulate. 

Finally, Darwin argued that the incompleteness of the fossil record may give the illusion 

of an explosive event, but with the eventual discovery of older and better preserved rock, 

the ancestors of taxa could potentially be identified.  

 There has been substantial discussion regarding how best to apply fossil 

constraints in a molecular phylogenetic dating analysis (Graur and Martin, 2004, Glazko 

et al., 2005). In essence, fossil calibration can either rely on a single or few “well 

documented” dates, or a large number of independent divergence estimates. Although the 

latter approach is by no means flawless, reliance on a single paleontological date has been 

strongly criticized (Lee, 1999, Graur and Martin, 2004). For this reason, a number of 

calibration points were selected for this analysis. 
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3.2   Materials and Methods 

3.2.1   Data collection and data set assembly 
!
 A data set consisting of 21 vertebrate species (all of the species described in Table 

3.1 with the exception of polar bear) was assembled. For each taxon, the longest 

canonical transcript isoform for all of the protein coding genes was retrieved from 

Ensembl BioMart database (version 62; April 2011) (Kinsella et al., 2011). This initial 

data set comprised 554,087 genes. Once genes that had not been assigned to an Ensembl 

gene family were removed, 421,430 genes remained in total. The protein coding genes of 

polar bear were retrieved directly from BGI Shenzhen, China and added to the data set. 

 From the updated data set that included polar bear sequences, genes that were 

unlikely to encode functional proteins as their coding sequence was interrupted by a stop 

codon or their length was not a multiple of three, were discarded. A total of 415,069 non- 

polar bear genes separated among 58,451 gene families, and 21,888 polar bear genes that 

are not yet deposited in the Ensembl database (and thus have not been assigned to an 

Ensembl gene family) were retained (Table 3.1). 
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Taxonomic Name Species 

No. of genes 
retrieved from 
Ensembl  

No. of genes in 
Ensembl 
families 

No. of genes 
after filtering 

Anolis carolinensis Anole 22,269 18,939 17,792 
Gallus gallus Chicken 17,934 16,736 16,508 
Pan troglodytes Chimpanzee 27,166 19,829 19,758 
Bos taurus Cow 25,670 21,048 21,009 
Canis familiaris Dog 24,660 19,305 19,281 
Loxodonta africana Elephant 23,208 20,020 20,019 
Taeniopygia guttata Finch 18,581 17,475 17,470 
Gorilla gorilla Gorilla 29,216 20,962 20,934 
Cavia porcellus Guinea Pig 25,028 18,673 18,661 
Equus caballus Horse 26,954 20,436 20,381 
Homo sapiens Human 22,268 21,285 21,285 
Macaca mulatta Macaque 30,247 21,905 21,890 
Callithrix jacchus Marmoset 32,339 21,168 21,150 
Mus musculus Mouse 36,814 23,038 22,772 
Monodelphis domestica Opossum 22,038 19,466 19,448 
Pongo abelii Orangutan 28,087 20,068 20,045 
Ailuropoda melanoleuca Giant Panda 23,225 19,330 19,329 
Sus scrofa Pig 20,460 17,493 17,480 
Ornithorhynchus anatinus Platypus 22,369 17,951 17,934 
Ursus maritimus Polar Bear 22,673 * 21,888 
Oryctolagus cuniculus Rabbit 23,365 23,365 19,025 
Rattus norvegicus Rat 29,516 22,938 22,898 
Total - 554,087 421,430 436,957 

Table 3.1 Genes retained at each stage of the data set assembly. 

Polar bear protein coding genes are currently not available in the Ensembl database. The asterix (*) 

denotes that none of the polar bear genes had been assigned to Ensembl gene families. Assignment of 

polar bear genes to homologous gene families occurred in Section 3.2.2. 

!
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3.2.2   Orthology assignment and gene family alignment 
 
 All of the sequences in the data set were translated from nucleotides into amino acids 

using the Transeq program implemented in the EMBOSS package version 6.5.0.0 (Rice et al., 

2000). Codons were translated into the first open reading frame using the standard genetic 

code. A reciprocal BLAST strategy was employed to detect putative orthologs between polar 

bear and the other vertebrates. To achieve this, I implemented the BlastP algorithm (version 

2.2.21) to compare the polar bear genome against all the other vertebrates (and vice versa) 

with an E-value cut-off set to 10-10 . 

  Each polar bear gene was inserted into the homologous gene family of its reciprocal 

best hit. To generate a meaningful phylogenetic hypothesis of species evolution, it was 

essential to solely align orthologous genes that diverged via speciation events. 4,993 single 

copy orthologous gene families, consisting of 99,533 genes in total, were extracted. Each of 

these single copy orthologous gene families contained at most one sequence per species in the 

data set. The sequences in each single copy orthologous gene family were aligned using 

Muscle 3.7, with default settings (i.e. providing the homologous gene family, and not 

invoking the use of any parameters to accelerate the alignment procedure). 

 
3.2.3   Alignment improvement 
 
 Visual inspection of the homologous gene family alignments demonstrated that there 

was heterogeneity in multiple sequence alignment quality that may affect phylogenetic tree 

reconstruction. From this set of 4,993 alignments, three supermatrices were constructed and 

compared to examine the quality of the data used in the investigation. First, each single 

orthologous family was concatenated into a supermatrix that was 3,268,187 residues long. If a 

taxon was missing in a particular family, the sequence was represented by a series of question 

marks. However, as discussed in section 1.3, the amount of missing data that can be tolerated 
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in a supermatrix has been the source of debate. To ameliorate the impact that missing data 

could potentially have on the phylogenetic inferences generated in this investigation, partial 

single copy orthologous gene families (i.e. those that did not have a representative from each 

of the 22 species) were removed. 405 single orthologous gene families in this data set 

contained the full 22 taxa. These 405 gene families were concatenated into a supermatrix, 

comprising 303,480 residues. This is almost 10% of the original alignment, which was 

3,268,187 residues in length. To clarify, at this point, there were two independent 

supermatrices: the original supermatrix of the concatenated data, and the supermatrix after 

partial single orthologous gene families were removed. Some regions of the aligned sequences 

may have been ambiguously aligned or extremely divergent, potentially biasing any inferred 

phylogenetic hypothesis. There are a number of algorithms available to automatically detect 

and remove potentially mis-aligned regions, such as trimAl version 1.4 (Capella-Gutiérrez et 

al., 2009), Block Mapping and Gathering with Entropy (BMGE) version 1.1 (Criscuolo and 

Gribaldo, 2010) and Gblocks version 0.9b (Castresana, 2000). Each of the 405 single copy 

orthologous gene family alignments (in which all 22 species were present) was individually 

improved using Gblocks with the parameters: gapped positions were eliminated, the minimum 

block length was set to 8 amino acid positions, while the maximum number of permitted 

consecutive non-conserved positions was set to 15. Subsequently, each gene family was 

concatenated into a supermatrix. The resultant supermatrix was 102,740 residues in length. 

Each single copy orthologous gene family (without partial families) was also independently 

improved two other automatic alignment improvement software programs (trimAl and 

BMGE), and supermatrices were constructed. However, in subsequent analyses, these 

additional supermatrices produced almost identical results to those described for Gblocks. 

Thus, Gblocks was arbitrarily selected as the alignment improvement program of choice, and 

data for the supermatrices derived using trimAl and BMGE are not shown. To be clear, at this 



!
!

!91!

point, there were three supermatrices. These were: 

(i) The supermatrix (3,268,187 residues in length) of 4,993 single orthologous families 

(full and partial families, that had not been subject to any alignment improvement 

procedure). 

(ii) The supermatrix (303,480 residues in length) of 405 single orthologous families with 

partial families removed (that had not been subject to any alignment improvement 

procedure). 

(iii) The supermatrix (102,740 residues in length) of 405 single orthologous families that 

had been improved with Gblocks, with partial homologous gene families removed. 

 A singleton may be defined as a unique residue in an otherwise completely conserved 

column of an alignment (Figure 3.2). This singleton may be the result of an evolutionary 

process such as positive selection, but could also be produced artificially as a result of 

sequencing or assembly errors. The number of singletons present per species in each 

supermatrix was calculated, using script 3.1 in script index 3.0. The supermatrix that had been 

improved with Gblocks was deemed to be the most sensible alignment for use for the 

remainder of the investigation.  
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Figure 3.2 An example of a singleton. 

In column 3 of this alignment, taxon 3 has a singleton character state. It is denoted in red.  
 
None of the other sites manifest a singleton.!
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3.2.4   Phylogenetic tree reconstruction 
 
 There are a number of considerations necessary for phylogenetic tree reconstruction. 

A phylogenetic outgroup may be defined as a species (or set of species) that is closely related 

to, but phylogenetically distinct from, the set of taxa under investigation. Three species 

formed the outgroup for this investigation: Gallus gallus, Taeniopygia guttata and Anolis 

carolinensis. Another important consideration is selection of an appropriate amino acid 

substitution model. ModelGenerator (Keane et al., 2006) selects the best-fitting model of 

substitution according to AIC, BIC and a corrected AIC. As the supermatrix was 102,740 

amino acid residues in length, it encountered computer memory issues. Instead, a “sliding 

window” approach was implemented. Sections of the supermatrix that were 10,000 amino 

acids in length were extracted. These sections corresponded to supermatrix residues 10,000-

20,000; 30,000-40,000; 50,000-60,000; 70,000-80,000 and 90,000-100,000. ModelGenerator 

was used on each section individually. The number of substitution rate categories was set to 4. 

ModelGenerator consistently found the same model (JTT) for all sections of the supermatrix. 

Equivalent results were obtained using ProtTest3 instead of ModelGenerator. Thus, JTT was 

the model of amino acid substitution selected for phylogenetic tree reconstruction. 

 RAxML (version 7.0.4) (Stamatakis, 2006) reconstructed a phylogenetic tree topology 

for the supermatrix using a “PROTGAMMAIJTTF” model of amino acid substitution. This 

model uses the Jones-Taylor-Thornton amino acid substitution matrix (Jones et al., 1992). The 

“GAMMA” parameter indicates that the rate variation among the sites follows a gamma 

distribution. A proportion of the sites are deemed invariant as denoted by the “I” parameter, 

and the amino acid frequencies are estimated from the data set, as indicated by the “F” 

parameter. The supermatrix was bootstrapped 100 times. The outgroup was specified as 

Gallus gallus, Taeniopygia guttata and Anolis carolinesis and a user starter tree was specified 

(phylogeny of tree provided from Benton et al. (2009); Figure 3).  
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3.2.5   Preparation for molecular phylogenetic dating analysis 

 There are a number of requirements for a molecular phylogenetic dating analysis. 

Some of these have already been described (i.e. an alignment, a phylogenetic tree, an 

outgroup and a model of amino acid substitution). Other factors necessary are a relaxed clock 

model and a reliable set of calibrations. The selection of each of these shall be discussed. 

 PhyloBayes version 3.3 (Lartillot et al., 2009) was used to conduct the molecular 

phylogenetic dating analysis. First, it was necessary to identify the most suitable relaxed clock 

model. A deconstrained model observes the level of signal that the data itself exhibits, in the 

absence of an amino acid substitution or relaxed molecular clock model. The deconstrained 

model for the supermatrix was computed using “estbranches” software implemented in the 

multidistribute package (version 09.25.03) (Thorne, 2003). The supermatrix was provided, 

and a “JTT” amino acid substitution model was selected. Subsequently, the “bf” program was 

implemented in PhyloBayes version 3.3 in which each molecular clock model (i.e. CIR, LogN 

and UGam) was compared to the deconstrained model using the “long” parameter. 

Subsequently, the ratio of each relaxed clock model to the deconstrained model was 

calculated. From these ratios, the ratio of each relaxed molecular clock model to every other 

relaxed clock model was computed. Bayes Factors were interpreted according to Kass and 

Raftery (1995) . A set of 13 calibrations was chosen from Benton et al. (2009) (Table 3.2). 

Each calibration is described as a range that extended from a minimum constraint to a 

maximum constraint. 
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Species Species Soft 
Maximum 
(MY) 

Hard 
minimum 
(MY) 

Mouse Rat 14 10 
Chicken Zebra Finch 86.5 66 
Human Chimpanzee 10 5.7 
Human Orangutan 33.7 11.2 
Human Macaque 34 23.5 
Human Marmoset 65.8 33.7 
Cow Pig 65.8 52.4 
Platypus Anole 330.4 312.3 
Mouse Guinea Pig 58.9 52.3 
Anole Chicken 299.8 255.9 
Human  Opossum 171.2 124 
Human Platypus 191.1 162.9 
Horse  Dog 131.5 62.5 

Table 3.2 Calibrations selected for molecular dating analysis. 
  
This set of calibrations was selected from Benton et al. (2009). 
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3.2.6   Molecular dating analysis 

3.2.6.1   Preparation for molecular dating analysis 
!
 In addition to the observed sequence data, Bayesian phylogenetic inference can 

incorporate other sources of knowledge through the application of prior probability 

distributions, or “priors” for short. The prior may be described as the probability distribution 

that would express one’s uncertainty about a quantity, before data is taken into consideration. 

In turn, the prior is combined with a likelihood function to provide a posterior probability 

distribution.  

 In this investigation, a birth-death prior distribution for the divergence times of the 

internal nodes was selected. The birth-death prior permits the implementation of soft bounds, 

which in turn allows for the integration of uncertainty in the calibrations provided (Yang and 

Rannala, 2006). This is important because hard bounds, such as those imposed by a uniform 

prior, often provide good lower bounds, but problematic upper bounds. Thus, a more flexible 

distribution and soft bounds are preferable, so a birth-death prior and soft bounds were 

specified (using the “bd” and “sb” parameters in PhyloBayes).  

 There are cases in which the prior distribution on divergence times that is proposed 

without calibrations may be substantially different from the prior probability conditional on 

the calibrations. Thus, an MCMC chain was conducted using PhyloBayes version 3.3 “under 

the prior” to determine if the distribution of nodes of interest sampled by the MCMC is 

sufficiently wide (i.e. non informative), before proceeding with a posterior sampling. To 

achieve this, the “prior” parameter was selected that deactivates all maximum likelihood 

computations. In addition, the set of calibrations, supermatrix, and phylogenetic tree that have 

previously been described were provided. The “soft bounds” parameter was set to 0.3 

meaning that a proportion of 0.3 of the total probability mass was allocated outside of the 

specified bound. A birth death process and a JTT amino acid substitution matrix were 
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selected. Two MCMC chains were constructed in parallel for 25 hours, creating 10,400 and 

9,624 cycles each. Convergence was assessed by implementing the “tracecomp” program in 

PhyloBayes with a burn-in of 1,000 cycles. That is to say, I removed approximately 10% of 

the total number of cycles from subsequent analyses, as suggested in the PhyloBayes version 

3.3 manual (page 11). I examined how often the bounds (i.e. the age limits set by the 

calibration file) were disturbed, and the dates that were assigned for the uncalibrated internal 

nodes. These dates should be wide in range, as they are not yet being constrained by the 

calibration dates that are imposed on surrounding nodes.  

 

3.2.6.2   Molecular dating analysis 
!
 Once a set of parameters had been selected, the next stage was to perform the 

molecular dating analysis. The “pb” program in Phylobayes was conducted on a supermatrix 

in duplicate. A JTT amino acid substitution model was used, the soft bounds parameter was 

set to 0.3 and the set of calibrations were provided. As the Bayes factor analysis failed to 

clearly select an optimum relaxed clock model, CIR, LogN and UGam were selected in turn. 

Each pair of MCMC chains was constructed for approximately 400 hours (generating ~ 6,300 

cycles), until convergence was reached. Convergence was assessed using the “tracecomp” 

program implemented in PhyloBayes. The burn in was set to 10% of the total number of 

cycles for each model. 

!
3.2.6.3   Sensitivity analysis 
 
 There are a number of parameters throughout the course of a molecular dating analysis 

that, when altered, may impact an inferred estimation of divergence. Two of these factors are 

the amino acid substitution model selected and the set of calibrations provided. JTT was the 

optimum model selected by both ModelGenerator and ProtTest. But what impact does altering 

the substitution model have on the inferred estimation of species divergence? The molecular 
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dating analysis was repeated exactly as described in section 3.2.6.2. The only variable that 

altered each time was the sequential replacement of the amino acid substitution model with 

WAG, GTR or LG.  

 Due to the incompleteness of the fossil record, it is not always possible to accurately 

calibrate every node surrounding the node of interest. An example of this issue is clearly 

observed in this study. Benton et al. (2009) provides the most comprehensive overview of 

vertebrate calibration points currently available. However, using the Benton et al. guide to 

calibration and the phylogeny that RAxML reconstructed, there are six distinct nodes that 

have been assigned almost identical calibration bounds (61.5/62.5 – 131.5 MY) (Table 3.3). 

To identify the impact that calibration of any of these nodes had on the final divergence dates 

produced, five alternative sets of calibration points were composed. Each alternative set 

maintained 12 of the 13 original calibrations. The only bounds that varied was the 13th node 

(Table 3.4). Each time, the 13th node was sequentially selected from Table 3.3. For each set of 

alternative calibrations, the molecular dating analysis was repeated, exactly as described in 

3.2.6.2. 
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Calibration Species Species Soft 
Maximum 
(MY) 

Hard 
minimum 
(MY) 

Original Horse  Dog 131.5 62.5 
2 Cow Dog 131.5 62.5 
3 Human Elephant 131.5 62.5 
4 Human Horse 131.5 62.5 
5 Human Rabbit 131.5 61.5 
6 Rabbit Guinea Pig 131.5 61.5 

Calibration # Species Species Soft 
Maximum 
(MY) 

Hard 
minimum 
(MY) 

1 Mouse Rat 14.0 10.0 
2 Chicken Zebra Finch 86.5 66.0 
3 Human Chimpanzee 10.0 5.7 
4 Human Orangutan 33.7 11.2 
5 Human Macaque 34.0 23.5 
6 Human Marmoset 65.8 33.7 
7 Cow Pig 65.8 52.4 
8 Platypus Anole 330.4 312.3 
9 Mouse Guinea pig 58.9 52.3 
10 Anole Chicken 299.8 255.9 
11 Human  Opossum 171.2 124 
12 Human Platypus 191.1 162.9 
13 X X 131.5 61.5/62.5 

Table 3.4 Alternative calibration selection. 

The original molecular dating analysis was conducted a further five times, to test the effect 

of using different calibration combinations on the inferred date. In each of the five analyses, 

calibration #13 was sequentially altered in each round of molecular dating to one of the 

calibration points described in Table 3.3. 

Table 3.3 Identical calibration points 

Six nodes that were described with almost identical calibration points in Benton et al. (2009). 

The effect that using any one of these calibration had on inferred divergence estimates was 

examined. 
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3.3   Results 
 
3.3.1   Phylogenetic tree reconstruction 
 
 In total, 4,993 single copy orthologous gene families were extracted and concatenated 

into a supermatrix that was 3,268,187 residues in length. Once partial families were removed, 

405 gene families remained. These genes were combined into a supermatrix that was 303,480 

residues in length. After improvement with Gblocks, a supermatrix that was 102,740 residues 

in length remained.  

 The number of singletons in each of the supermatrices was compared. It is evident that 

the vertebrate genomes used in this analysis are heterogeneous in the number of singletons per 

species. For example, excluding dog, there are 12,287 singletons per species in the original 

supermatrix. The dog, however, has 138,953 singletons; this is over ten times this average. 

Although such singletons could indeed arise from biological processes such as positive 

selection, to possess over ten times the average number per species seems suspicious. Similar 

unusually high numbers are observed in the pig, platypus and polar bear (Table 3.5). Once 

partial families were removed, the average number of singletons per species reduced 

dramatically. Unusually high numbers of singletons were observed in some of the genomes 

that were sequenced at low coverage (for example, the anole) or are considered to be of poor 

quality (for example, the platypus; Dr. David Alvarez-Ponce, personal communication). The 

supermatrix that had been improved with Gblocks was divided into sections of 10,000 amino 

acids, and ModelGenerator unanimously selected JTT as the optimal model of amino acid 

substitution for all sections (Table 3.6, almost identical results were obtained using ProtTest 

instead of ModelGenerator – data not shown). Thus, “JTT + I + G + F” was the set of 

parameters selected for phylogenetic tree reconstruction. This model uses the Jones-Taylor-

Thornton amino acid substitution matrix (Jones et al., 1992). The “GAMMA” parameter 

indicates that the rate variation among the sites follows a gamma distribution. A proportion of 
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the sites are deemed invariant as denoted by the “I” parameter, and the amino acid frequencies 

are estimated from the data set, as indicated by the “F” parameter. 

 A phylogenetic tree was reconstructed and the resulting topology was examined. 

Generally, 100% bootstrap support was found for all the nodes in the tree, with the exception 

of the nodes defining the human/chimpanzee/gorilla clade and the horse/dog clade (Figure 

3.3).  

The low bootstrap support in the human-chimpanzee-gorilla clade reflects the 

uncertainty that has surrounded this particular phylogeny for a long period of time (for 

example, O’hUigin et al., 2002, Langergraber et al., 2012). As the gorilla lineage is thought to 

have diverged shortly before the human-chimpanzee lineage, polymorphisms in the ancestral 

population of all three species could persist from the divergence of the first to the second 

species (O’hUigin et al., 2002). The random fixation of alleles in these three lineages led to a 

situation in which different nucleotide positions in the species are represented by different 

phylogenies. Thus, the human genome may be considered a mosaic of different regions that 

are differentially related to chimpanzees and gorilla, which is the likely cause of the low 

bootstrap support found at this node. 

 Low bootstrap support is also observed at the node separating the horse-dog lineage. 

Despite progress over the last decade (for example, Beninda-Emonds et al., 2007), there are 

portions of the mammalian phylogeny that remain unresolved. There are competing 

hypotheses regarding the phylogenetic relationships between Cetartiodactyla (cow), Carnivora 

(dog) and Perissodactyla (horse). Some studies support the ((cow, horse), dog) hypothesis (for 

example, Murphy et al., 2001a,) while other studies support the ((horse, dog), cow) hypothesis 

(for example, Murphy et al., 2001b). Other studies have encountered similar issues regarding 

the phylogeny of this clade (for example, Kullberg et al., 2006, Hou et al., 2009). Thus, it was 

unsurprising that this node obtained a low bootstrap support value. 



!
!

!102!

  

 

 
 
  

Species 

Supermatrix, 
no partial 
fams 
removed 

Supermatrix, 
partial fams 
removed 

Supermatrix, 
partial fams 
removed and 
Gblocks 

Anole 21,897 6,277 2,677 
Chicken 13,095 3,117 683 
Chimpanzee 2,990 482 32 
Cow 8,265 2,495 599 
Dog 138,953 2,064 249 
Elephant 22,015 1,841 972 
Finch 6,595 1,933 912 
Gorilla 4,871 2,030 773 
Guinea Pig 6,096 2,316 738 
Horse 3,383 805 289 
Human 4,053 117 21 
Macaque 7,997 2,796 772 
Marmoset 6,363 1,178 428 
Mouse 7,141 942 203 
Opossum 14,437 3,285 1,370 
Orangutan 4,988 1,946 298 
Giant Panda 6,308 864 128 
Pig 27,296 8,740 518 
Platypus 32,566 13,332 2,556 
Polar Bear 37,896 3,965 162 
Rabbit 6,937 3,048 545 
Rat 12,847 2,355 711 

Table 3.5 Number of singletons in each supermatrix. 
 
Column 2 indicates the number of singletons in the original unperturbed supermatrix. Column 3 

indicates the number of singletons in the supermatrix, after partial families have been removed. 

Column 4 indicates the number of singletons in the supermatrix, after partial families have been 

removed, and the supermatrix has been improved with Gblocks.!
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 10,000-20,000 30,000-40,000 50,000-60,000 70,000-80,000 90,000-100,000 
AIC JTT + I + G JTT + I + G + F JTT + I + G + F JTT + I + G + F JTT + I + G + F 
AICc JTT + I + G JTT + I + G + F JTT + I + G + F JTT + I + G + F JTT + G + F 
BIC JTT + I + G JTT + I + G + F JTT + I + G + F JTT + I + G JTT + G 

      

Table 3.6 Optimal model of amino acid substitution as selected by ModelGenerator. 

JTT was the optimum model of amino acid substitution selected for all sections of the alignment, 

regardless of model selection criteria (AIC, AICc or BIC). In addition, almost identical results 

were obtained using a second algorithm of model selection, ProtTest, or using supermatrices that 

had been improved using different improvement softwares (TrimAl or BMGE). 
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Figure 3.3 Phylogenetic tree. 

The phylogeny reconstructed using the supermatrix. The value assigned to each node indicates a 

bootstrap support value. 
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3.3.2   Estimation of divergence times 
 
 Two MCMC chains were constructed “under the prior” to ensure that the distributions 

of the uncalibrated nodes were sufficiently wide before any posterior sampling was 

performed. Examining the resulting chronograms, all of the uncalibrated nodes exhibit an 

extremely wide time span, generally encompassing approximately 60-90 million years 

(Electronic Appendix 3.1; Table 3.7). In addition, I examined how often the bounds set by the 

calibrations were broken. Perhaps if any of the bounds were consistently broken (for example, 

80-90% of the time), this may be indicative of incompatible calibration ranges. The upper 

bounds of the calibrations were generally broken 1.3-19.56% of the time, while the lower 

bounds were breached in the range of 6.2-17.62% of the time (Table 3.8).  

 Following the interpretation of Bayes Factors described by Kass and Raftery (section 

1.5), none of the relaxed molecular clock models appeared to be particularly more suited to 

the data than any other model (Appendix 3.1). As such, all three relaxed clock models were 

used to calculate a divergence date between the species. From the chronograms, I examined 

the divergence estimates calculated for giant panda-polar bear node (Electronic Appendix 

3.9). As can be observed from Table 3.9, the estimation is not narrow in range, spanning 

approximately 10-26 MY using the autocorrelated relaxed clock models, and 6-24 MY using 

the uncorrelated gamma model. This was disappointing, as the range estimated by these 

relaxed molecular clocks actually encompasses the estimates from fossil data (12 MY, 

Thenius, 1979, quoted in Krause et al., 2008) and mitochondrial sequence data (~19 MY, 

Krause et al., 2008). Next, I examined if the other uncalibrated nodes were similarly wide in 

range, and if they agreed with previous findings. Generally, the uncalibrated nodes 

encompassed ~59-93 MY (using a correlated molecular clock model) and ~58-112 MY (using 

an uncorrelated molecular clock model) (Table 3.10). Comparing these dates to previous 

observations proved to be a difficult task, due to the incompleteness of the fossil record, and 
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the debate between estimates obtained using molecular and fossil data. It is for these reasons 

that Benton et al. (2009) currently calibrates all of the nodes to a wide range of ~61.5-131.5 

MY, encompassing ~70 MY. For example, the rabbit-human divergence is synonymous with 

the latest branching point between Primata and Rodentia. At present, fossil data for this 

branching point does not exceed 65.2 MY (Benton et al., 2009). However, molecular data 

have disputed this estimate (for example, Kitazoe et al., 2007). The divergence obtained for 

this particular node in this investigation (~69-85 MYA) agrees that the estimated timing of 

divergence appears to be slightly older than that calculated from the fossil record. The rabbit-

mouse divergence is synonymous with the clade Glires that consists of the orders Rodentia 

and Lagomorpha. The date of divergence is traditionally estimated to have occurred ~65 

MYA, or younger (Benton et al., 2009). Thus, the estimation of 50-70 MY for this particular 

node obtained in this investigation appears to broadly agree with the fossil record. However, 

such inferences should be made with extreme caution. 
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   Prior 1 (calibration file)   Prior 2 (calibration file) 
 Upper 

bound 
Lower 
bound 

% 
Overflow 

% 
Underflow 

% 
Overflow 

% 
Underflow 

Mouse - Rat 14 10 14.9 14.74 14.05 14.13 
Chicken - Finch 86.5 66 19.56 11.08 18.78 10.73 
Human - Chimp 10 5.7 12.26 16.17 12.25 16.66 
Human - Orangutan 33.7 11.2 1.3 7.83 1.48 8.41 
Human - Macaque 34 23.5 18.74 9.26 17.99 9.76 
Human - Marmoset 65.8 33.7 17.48 6.2 16.57 6.66 
Pig - Cow 65.8 52.4 15.91 11.94 16.02 12.31 
Lizard - Platypus 330.4 312.3 14.77 14.46 14.94 14.54 
Mouse - Guinea Pig 58.9 52.5 12.32 17.05 12.74 17.62 
Lizard - Chicken 299.8 255.9 13.36 15.39 13.12 15.02 
Human - Opossum 171.2 124 7.94 14.26 8 14.19 
Human - Platypus 191.1 162.9 17.6 10.48 17.71 10.87 
Horse - Dog 131.5 61.5 6.01 15.72 6.06 14.98 

Species Species  Range of  
Estimate (MY) 

Years encompassed 
(MY) 

Rabbit Mouse 53 – 129 ~60 
Rabbit Human 58 – 147 ~90 
Rabbit Bear 68 – 160 ~90 
Rabbit Elephant 68 – 160 ~90 
Cow Dog 62 – 150 ~90 
Dog Bear 8 – 104 ~70 
Polar Bear Giant Panda 0.9 – 71 ~70 

Table 3.8 Output from construction of MCMC chains under the prior. 
 
This table shows the percentage of times that the bounds of the calibrations provided were broken,  
 
from constructing MCMC chains under the prior. The prior was conducted in parallel, producing “prior  
 
1” and “prior 2” results. 

Table 3.7 Divergence estimate of uncalibrated nodes (under prior). 
 
This table shows the divergence range for the uncalibrate nodes, estimated from the construction of  
 
MCMC chains under the prior. 
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  Model 

Relaxed 
clock model Run 

Total # 
Cycles Burn In Min Age Max Age 

Under the 
prior 

CIR 1 10,040 1,000 0.96 71.63 
CIR 2 9,624 1,000 0.85 71.76 

JTT 

CIR 1 7,526 700 10.33 23.31 
CIR 2 7,542 700 10.33 23.3 
Ln 1 6,440 600 12.74 26.73 
Ln 2 6,420 600 12.85 25.95 
UGam 1 5,038 500 6.29 24.35 
UGam 2 5,024 500 6.15 23.9 

Species Species  Correlated mol. 
clock model 
(MY) 

Uncorrelated mol. 
clock model (MY) 

Rabbit Mouse 59 – 70 58 – 78 
Rabbit Human 63 – 77 63 – 88 
Rabbit Bear 67 – 85 69 – 97 
Rabbit Elephant 75 – 93 76 – 112 
Cow Dog 60 – 75 60 – 84 

Table 3.9 Molecular dating analysis – polar bear/giant panda node. 
 
The first row indicates the molecular dating estimate for the polar bear-giant panda  
 
divergence once phylobayes is conducted “under the prior”. The remaining rows indicate  
 
the molecular dating analysis, with JTT as the model of amino acid substitution for each of  
 
the relaxed clock models. 
 

Table 3.10 Molecular dating analysis – other uncalibrated nodes. 
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 There are a number of parameters throughout the course of this molecular dating 

analysis that, if altered, may impact the date of divergence inferred in this study. Two of these 

potential factors are the amino acid substitution model selected and the set of calibrations 

provided. Each of these factors was examined in turn, to see what impact, if any, alteration of 

the parameter had on the overall estimate of divergence. 

 JTT was unanimously selected as the model of amino acid substitution. In all sections 

of the alignment, variants of the JTT model composed the six best-fit models, according to 

AIC, AICc and BIC (Table 3.11). I asked how much the divergence estimates of the 

uncalibrated nodes of the phylogeny change, if the model of amino acid substitution is 

swapped for a less optimal model. However, the polar bear-giant panda divergence remained 

in the region of 10-27 MY with a correlated relaxed clock model, and 6-25 MY with an 

uncorrelated clock model, regardless of the model of amino acid substitution selected (Table 

3.12). A similar pattern emerged from examination of the other calibrated nodes (Table 3.13). 

For example, the original dating analysis suggested that the rabbit-mouse divergence occurred 

approximately 59 to 70 MYA. From all the alternative amino acid substitution models 

selected, each correlated relaxed clock models estimate a divergence of ~58-70 MYA, while 

the uncorrelated model estimated a wider range of 58-78 MYA in all cases. (Table 3.13). 

Similarly, the date that is traditionally assigned to the rabbit-human node is approximately 

65.2 MYA, based on fossils (Benton et al., 2009), and a variety of older and younger dates, 

based on molecular data. The estimates obtained from the correlated relaxed clock models 

display a wider range, encompassing 63-76 MY, while the uncorrelated relaxed clock models 

exhibit an even wider range again, in the region of 63-86 MYA (Table 3.13). Thus, I 

concluded that alteration of the model of amino acid substitution offers no extra insight into 

the divergence that the selection of the original model of substitution could not. 
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 Accurate estimation of the divergence between polar bear and giant panda partially 

depended on the ability to accurately calibrate other surrounding nodes. However, there was 

an inherent limitation to this study, as six of the internal nodes are currently calibrated with 

the same wide range, encompassing almost 70 MY (61.5-131.5 MYA; Table 3.3). Thus, I 

repeated the molecular dating analysis five more times. Each time, all the parameters 

remained constant with the exception of a single calibration. The aim of this exercise was to 

understand what effect changing a single, potentially problematic, calibration had on the 

inferred estimates of divergence. The original estimate was approximately 10-29 MYA (using 

a correlated relaxed clock model) and 6-24 MYA (using an uncorrelated relaxed clock 

model). As can be observed from Table 3.13, the dates of divergence between giant panda and 

polar bear (or the other calibrated nodes) did not substantially alter, dependent upon the exact 

combination of calibrations used.  
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!  AIC AICc BIC 
10,000-20,000 Model 1 JTT+I +G + F JTT+I+G JTT+I+G 
 Model 2 JTT+I+G JTT+I+G+F JTT+G 
 Model 3 JTT+G+F JTT+G JTT+I+G+F 
 Model 4 JTT+G JTT+G+F JTT+G+F 
 Model 5 JTT+I+F JTT+I JTT+I 
 Model 6 JTT+I JTT+I+F JTT+I+F 
30,000-40,000  Model 1 JTT+I+G+F JTT+I+G+F JTT+I+G+F 
 Model 2 JTT+G+F JTT+G+F JTT+G+F 
 Model 3 JTT+I+G JTT+I+G JTT+I+G 
 Model 4 JTT+G JTT+G JTT+G 
 Model 5 JTT+I+F JTT+I+F JTT+I+F 
 Model 6 JTT+I JTT+I JTT+I 
50,000-60,000 Model 1 JTT+I+G+F JTT+I+G+F JTT+I+G+F 
 Model 2 JTT+G+F JTT+G+F JTT+G+F 
 Model 3 JTT+I+G JTT+I+G JTT+G 
 Model 4 JTT+G JTT+G JTT+I+ G 
 Model 5 JTT+I+F JTT+I+F JTT+I+F 
 Model 6 JTT+I JTT+I JTT+I 
70,000-80,000 Model 1 JTT+I+G+F JTT+I+G+F JTT+I+G 
 Model 2 JTT+G+F JTT+I+F JTT+I+G+F 
 Model 3 JTT+I+G JTT+F+G JTT+G 
 Model 4 JTT+G JTT+G JTT+F+G 
 Model 5 JTT+I+F JTT+I+F JTT+I 
 Model 6 JTT+I JTT+I JTT+I+F 
90,000-100,000 Model 1 JTT+I+G+F JTT+G+F JTT+G 
 Model 2 JTT+G+F JTT+I+G+F JTT+I+G 
 Model 3 JTT+G JTT+G JTT+ G+F 
! Model 4 JTT+I+G JTT+I+G JTT+I+G+F 
! Model 5 JTT+I+F JTT+I+F JTT+I 
! Model 6 JTT+I JTT+I JTT+I+F 

Table 3.11 First six models of amino acid substitution, for all sections of supermatrix, as 
 
selected by ModelGenerator, according to the AIC, AICc and the BIC criterion. 
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Species Species  Correlated mol. 
clock model 
(MY) 

Uncorrelated mol. 
clock model (MY) 

Rabbit Mouse 58 – 70  58 – 78 
Rabbit Human 63 – 77  63 – 86 
Rabbit Bear 68 – 85  70 – 98 
Rabbit Elephant 74 – 95  74 – 114 
Cow Dog 60 – 75  61 – 84 

Model Dating model Run Total # cycles Burn In Min Age Max Age 

WAG 

CIR 1 6,284 600 10.33 23.96 
CIR 2 6,247 600 10.02 23.31 
Ln 1 6,439 600 12.81 26.37 
Ln 2 6,455 600 12.98 26.41 
UGam 1 9,431 900 6.15 23.82 
UGam 2 9,384 900 6.24 24.63 

GTR 

CIR 1 4,531 400 10.41 23.25 
CIR 2 4,472 400 10.28 23.69 
Ln 1 4,707 400 12.81 26.34 
Ln 2 4,706 400 12.91 25.6 
UGam 1 3,864 400 6.16 24.19 
UGam 2 3,709 400 6.13 24.07 

LG 

CIR 1 5,419 500 10.23 23.17 
CIR 2 5,376 500 10.45 23.32 
Ln 1 5,635 500 12.85 27.07 
Ln 2 5,609 500 12.71 26.4 
UGam 1 4,272 400 6.21 24.72 
UGam 2 4,463 400 6.22 24.54 

 

Table 3.12 Molecular dating analysis, conducted with alternative models of amino acid  
 
substitution.  
 
This table describes the divergence estimates for the polar bear-giant panda node. 
 

Table 3.13 Molecular dating analysis, conducted with alternative models of amino acid  
 
substitution.  
 
This table describes the divergence estimates for other uncalibrated nodes. 
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Calibration # Dating model Run Total # Gens Burn In Min Age Max Age 

2 
(Cow –Dog 
131.5 – 61.5 
MYA) 

CIR 1 5,015 500 10.29 23.1 
CIR 2 5,008 500 10.55 17.7 
Ln 1 5,088 500 10.65 18.21 
Ln 2 5,121 500 10.66 18.35 
UGam 1 6,499 600  6.14 24.02 
UGam 2 6,468 600 6.2 23.82 

3 
(Human-
Elephant 
131.5-61.5 
MYA) 

CIR 1 5,026 500 10.48 17.96 
CIR 2 5,051 500 10.18 23.65 
Ln 1 5,143 500 13.01 27.41 
Ln 2 5,151 500 12.99 27.53 
UGam 1 6,549 600 6.2 24.2 
UGam 2 6,398 600 6.3 23.71 

4 
(Human-Horse 
131.5 – 61.5 
MYA) 

CIR 1 4,818 1000 10.43 23.52 
CIR 2 4,786 1000 10.21 23.1 
Ln 1 4,872 500 12.85 26.49 
Ln 2 4,717 500 12.72 26.29 
UGam 1 6,194 600 6.13 24.62 
UGam 2 6,055 600 6.02 24.02 

5 
(Human-Rabbit 
131.5-61.5 
MYA) 

CIR 1 4,744 500 10.39 23.31 
CIR 2 4,234 500 10.48 23.19 
Ln 1 4,699 500 12.64 26.23 
Ln 2 4,025 500 12.64 26.2 
UGam 1 5,658 600 6.04 24.4 
UGam 2 5,394 600 5.98 24.32 

6 
(Rabbit-Guinea 
Pig 
131.5 – 61.5 
MYA) 

CIR 1 3,160 500 10.39 23.61 
CIR 2 3,178 500 10.42 23.86 
Ln 1 3,233 250 12.72 26.67 
Ln 2 3,203 250 12.89 26.34 
UGam 1 2,503 250 6.15 23.78 
UGam 2 2,464 250 6.19 24.36 

Table 3.14 Molecular dating analysis with alternative calibrations. 
 
In column 1, each alternative calibration corresponds to a particular calibration that is described in  
 
Table3.3. Each alternative calibration was conducted in duplicate, generating run 1 and 2 (column 3). 
 
 Column 3, 4 and 5 indicate the total number of PhyloBayes cycles, the burn in and the divergence  
 
estimate for the polar bear-giant panda node, for each model and calibration. 
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!  

Species Species  Correlated mol. 
clock model 
(MY) 

Uncorrelated mol. 
clock model (MY) 

Rabbit Mouse 58 – 70  58 – 80 
Rabbit Human 61 – 78  63 – 88 
Rabbit Bear 66 – 86  70 – 98 
Rabbit Elephant 74 – 95  74 – 114 
Cow Dog 60 – 76  58 –8 6 

Table 3.15 Molecular dating analysis with alternative calibrations (other nodes). 
 
In column 1, each alternative calibration corresponds to a particular calibration that is described in  
 
Table 3.3. Columns 3 and 4 indicate the min and max divergence estimate calculated for the rabbit- 
 
mouse and rabbit-human node. 
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3.4   Discussion 
 
  The objective of the investigation described in this chapter was to acquire an accurate 

estimation of the timing of divergence between polar bear and giant panda. In turn, this would 

provide a valuable calibration point in future explorations that aim to decipher the timing of 

ursine bear speciation events. Unlike previous molecular sequence analyses that depended on 

minute amounts of nuclear sequence data (for example, Pagès et al., 2008) or mitochondrial 

data (Krause et al., 2008), this study combined whole nuclear genomes into a Bayesian setting 

to understand the speciation event from a novel perspective. 

 Unfortunately, the divergence estimate that was eventually obtained for the node of 

interest is too wide to provide a useful calibration point between polar bear and giant panda 

(6-27 MYA). In fact, this range encompasses the 12-22 MY range that was obtained in 

previous studies (Thenius, 1979, Krause et al., 2008). I considered the factors that may have 

attributed to this result. First, I considered the data set itself. The meteoric rise in vertebrate 

genome sequence availability is commonly cited as a panacea for resolving difficult 

phylogenetic problems, including the resolution of the bear phylogeny (for example, Yu et al., 

2004, Pagès et al., 2008). However, Milinkovitch (2010) argued that even with the inclusion 

of more data, it would remain difficult to differentiate between sequencing and assembly 

artifacts from true changes in the mode and tempo of evolution until there is better 

homogeneity in both taxon sampling and genome quality in all genomes. Data quality as a 

potential issue was considered prior to the commencement of this experiment, and a number 

of steps were undertaken in order to alleviate this issue as much as possible. For example, 

genes that were unlikely to encode functional proteins, as their sequence length was not a 

multiple of three or contained more than one stop codon, were removed. In addition, I used 

protein sequence data instead of nucleotides, to attempt to lessen the possibility of undetected 

saturation in the sequences. To alleviate potential problems with uneven taxon sampling in the 
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supermatrix, I removed all partial single copy orthologous gene families. Finally, Gblocks 

was performed on every homologous gene family alignment to remove ambiguously aligned 

or particularly divergent regions.  

 Singletons may indeed arise from processes such as positive selection. For example, a 

species may possess a unique amino acid at a particular point in a sequence that allows it to 

thrive in a particular environment, or evoke a particular immune response. In this analysis, 

singletons were used as a rough indication of genome sequence quality. As can be observed in 

Table 3.5, some species, including those suspected to be of low sequencing or assembly 

quality, exhibit suspiciously high numbers of singletons. Thus, it is possible that there was a 

data quality issue in this experiment.  

 Once a supermatrix was obtained, the next step was to combine the resulting 

phylogenetic tree with various parameters in a Bayesian setting to estimate the divergence 

between species. The phylogenetic tree itself contained two nodes with low bootstrap support, 

the human-chimpanzee-gorilla clade and the horse-cow-dog clade. Low support values for 

both of these nodes were not unexpected, as the phylogenetic relationships that comprise 

these clades are regularly the source of contention among molecular systematists. The 

incomplete and flawed fossil record could undoubtedly have played a role in the poor 

estimation of divergence obtained in this study, as could the improper selection of model of 

amino acid substitution or relaxed molecular clock model. However, systematic alteration of 

all of these parameters did not appear to drastically change the date of divergence between 

polar bear and giant panda, or between other species in the tree, such as the rabbit-mouse 

divergence or rabbit-human divergence.  

 In summary, in spite of the precautions take to alleviate any potential issues 

surrounding the estimation of the divergence between polar bear and giant panda, the 



!
!

!117!

elucidation of an accurate estimation of timing of divergence between the bear species 

remains an elusive task. 
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Chapter 4: An investigation into the forces governing synonymous codon usage in 

vertebrates 

4.1   Introduction 
!

Synonymous codon usage (SCU) is maintained by a balance between selective and 

neutral processes (Bulmer, 1991). In prokaryotes and eukaryotic non-vertebrates, natural 

selection acting at the level of translation is deemed to be the dominant force shaping SCU 

patterns (Ikemura, 1985, Shields et al., 1988, Duret, 2000). However, the slight selective 

advantage offered by alternative synonymous codons was historically thought to be overcome 

by neutral processes (such as mutational bias and genetic drift) in species in which selection is 

less efficient, such as vertebrates (Rao et al., 2011).  

Possible evidence for translational selection in some vertebrates has recently been 

detected (Musto et al., 2001, Romero et al., 2003, Urrutia and Hurst, 2003). However, a 

systematic examination into the cause of vertebrate synonymous codon usage has not been 

conducted to date. This chapter commences with an introduction to the genetic code and 

synonymous codon usage. Subsequently, a study is described that combined newly sequenced 

genomes and novel gene expression data to examine the null hypothesis that translational 

selection is unable to overcome mutational bias and random genetic drift in vertebrates.  
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4.1.1   The genetic code 
!
 The genetic code guides the conversion of nucleotide triplets into a sequence of amino 

acids (Crick et al., 1961). Although slight variations exist (Fox, 1987, Knight et al., 2001), the 

standard genetic code asserts that there are 20 amino acids unambiguously encoded by 61 

sense codons, and three termination codons. The genetic code is degenerate, meaning that 

most of the amino acids are encoded by between two and six “synonymous” codons. In the 

past, the exact synonymous codon encoding a particular amino acid was thought to have little 

physiological effect on a cell. However, it has been recently demonstrated that the choice of 

synonymous codon at a particular position in a sequence affects various cellular mechanisms 

including protein folding (Zhou et al., 2009) and protein function (Hudson et al., 2011). 

Understanding synonymous codon usage also has biomedical and biotechnological 

applications. For example, synonymous mutations are implicated in the progression of various 

human diseases (Sauna and Kimchi-Sarfaty, 2011) and considerably alter transgene 

production rates (Angov et al., 2008). So, although synonymous codons encode the same 

amino acid, it is clear that it is vital to understand the causes and effects of synonymous codon 

usage variation. 

!
!
4.1.2   The Selection-Mutation-Drift theory 
!
 The current accepted model explaining synonymous codon usage bias is the 

“Selection-Mutation-Drift” theory (Bulmer, 1991). This theory proposes that natural selection 

favours optimal codons over non-optimal codons for each amino acid, while mutational bias 

and genetic drift allow non-optimal codons to persist. The selectionist component of the 

theory asserts that natural selection maintains SCU bias to ensure translational accuracy, 

translational efficiency or both. The translational accuracy hypothesis posits that 

preferentially used codons are those that are most likely to ensure that the encoded protein 
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matches the sequence prescribed by the encoding gene and folds properly within a cell 

(Akashi, 1994, Stoletzki and Eyre-Walker, 2007, Drummond and Wilke, 2008, Zhou et al., 

2009). Such translational accuracy is imperative in order to avoid wasting energy and 

cytotoxic misfolding, both of which may be detrimental to the cell (Komar et al., 1999, 

Drummond and Wilke, 2009).  

Translational efficiency describes how effectively cellular material is used in protein 

translation. The translational efficiency hypothesis posits that different synonymous codons 

are translated at different speeds due to disparities in codon selection time (i.e. the time 

needed for each codon to find a suitable tRNA anti-codon) (Bulmer, 1991). Faster translation 

allows ribosomes to spend less time bound to mRNA. In turn, this elevates the number of free 

ribosomes available and increases the number of mRNAs that can potentially be translated per 

ribosome. Alternatively, Qian et al. (2012) recently suggested that preferred codons are not 

translated faster than unpreferred codons. Instead, the selection coefficient for synonymous 

mutations to achieve codon-tRNA balance is greater in highly expressed than in lowly 

expressed genes.  

The mutational bias component of the Selection-Mutation-Drift theory refers to the 

systematic nonuniformity in mutations that arise from DNA replication and repair processes. 

In essence, mutational bias suggests that the codon composition of a gene is purely reflective 

of the location in a genome in which it is found. For example, base mismatches that are 

introduced into mammalian cell lines are preferentially repaired to guanine or cytosine, 

causing a mutational bias that would lead to differential patterns of synonymous codon usage 

(reviewed in Marais, 2003).  

The final component of the Selection-Mutation-Drift theory is random genetic drift, 

which may affect synonymous codon usage patterns, depending on how effectively natural 

selection impacts a species. Effective population size (Ne) is a concept that was originally 
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introduced into population genetics by Wright (1931) (quoted in Wang et al., 2008), who 

defined it as: 

 

“the number of breeding individuals in an idealized population that would show the 

same amount of dispersion of allele frequencies under random genetic drift or the same 

amount of inbreeding as the population under consideration” 

 

The effectiveness of selection on alternative synonymous codon choice is determined 

by the product of Ne and the selective advantage (s) of a codon over its alternatives at the 

same site (Bulmer, 1991). This selective advantage is typically weak, so a large Ne is required 

for translational selection to be effective relative to genetic drift (Dos Reis and Wernisch, 

2009). 

 

4.1.3   Synonymous codon usage bias in vertebrates 
!

In vertebrates, it is thought that base composition is the most pervasive influence on 

synonymous codon usage (Rao et al., 2011). There are a number of reasons suggested to 

explain why natural selection may be unable to overcome neutral processes in vertebrates. For 

example, in humans, the effective population size is approximately 10,000 (Zhao et al., 2000). 

Conversely, the effective population size of E. coli (in which translational selection has been 

detected) is thought to be orders of magnitude larger (Charlesworth and Eyre-Walker, 2006). 

As described in the previous section, efficacy of natural selection is a function of effective 

population size. Thus, perhaps the apparent absence of translational selection in vertebrates 

can at least partially be explained by the lower effective population sizes in humans. 

Vertebrate chromosomal regions are compartmentalized based on GC content (i.e. 

isochores) (Bernardi and Bernardi, 1986, Bernardi, 1995), For example, α- and β- globin 
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genes show substantially different codon usage patterns, because they are located in isochores 

with different levels of GC content, in spite of the fact that they are both highly expressed and 

perform a similar function (Bernardi et al., 1985). From this, one could conclude that 

variation in vertebrate codon usage is the result of the isochore structure. However, evidence 

that translational selection may overcome random genetic drift has recently been detected in a 

handful of vertebrate species (Musto et al., 2001, Romero et al., 2003, Urrutia and Hurst, 

2003, Yang and Nielsen, 2008). 

!
4.1.4   Examination of synonymous codon usage bias in vertebrates 
!
 Synonymous codon usage patterns within and between species have been effectively 

explored using an array of methods. First, a multitude of indices have been developed 

specifically for codon usage investigations and implemented in various software packages, 

such as codonW (Peden, 1997). Second, a number of genomic characteristics have been 

observed to correlate with synonymous codon usage, and statistics to quantify these genomic 

characteristics have been developed. Finally, multivariate techniques have been successfully 

employed to explore how codon usage patterns co-vary with other genomic features, such as 

base composition or gene expression. The synonymous codon usage bias indices, genomic 

statistics and multivariate techniques that were implemented in this investigation will be 

described in this section. 

!
4.1.4.1   Codon usage bias indices  
 

Commonly implemented codon usage bias (CUB) indices may broadly be classified 

into two categories based on whether or not a prior knowledge of preferred codons is 

required. The three indices selected for this investigation were relative synonymous codon 

usage (RSCU), effective number of codons (Nc) and codon deviation co-efficient (CDC). It 



!
!

!123!

was not necessary to supply a reference gene set for any of the codon usage bias indices 

selected for this analysis.  

RSCU measurements have previously provided insights into synonymous codon usage 

patterns in a diverse array of organisms (Sharp et al., 1988, Stenico et al., 1994, Duret and 

Mouchiroud, 1999). The RSCU value of a particular codon is defined as the observed number 

of codon occurrences divided by the number of occurrences that would be expected if the 

synonymous codons for the encoded amino acid were used uniformly (Sharp et al., 1986). For 

unbiased synonymous codon usage, the RSCU value is 1. For synonymous codon usage that 

is more infrequent than expected codon usage for an amino acid, the RSCU is less than 1, 

while the inverse is true for codon usage that is more frequent than expected.  

 The “effective number of codons” (Nc) (Wright, 1990) is a second index of codon bias 

that estimates, for those codons with a synonymous alternative, how many synonymous 

codons are effectively used in a gene to encode a particular amino acid. In cases of extreme 

bias, in which one codon is exclusively used for each amino acid, the Nc value is 20. 

Conversely, if all synonymous alternatives are being used equally frequently, the Nc is 61. 

Genes that are more biased in their base composition are expected to exhibit a lower Nc. Thus, 

plotting Nc values against base composition parameters and exploring the relationship 

between the two can identify genes that are more restricted in their codon usage than might be 

expected given their base composition.  

 Recently, it has become apparent that it is essential to incorporate differential base 

composition parameters into CUB estimation (Zhang and Yu, 2010). The codon deviation 

coefficient (CDC) quantifies CUB accounting for heterogeneous background nucleotide 

composition not only in sequences, but at each position of a codon (Zhang et al., 2012). The 

calculation of the CDC score is based on two vectors. Each vector represents the expected and 

observed codon usage of one gene. A distance metric is calculated that is based on the cosine 
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of the angles between the observed and expected vectors. CDC calculates a distance 

coefficient ranging from 0 (i.e. the observed and expected codon vectors are pointing in the 

same direction in vector space, so there is no bias observed) to 1 (i.e. the observed and 

expected vectors are pointing at 90° to each other in vector space, resulting in maximum 

bias). CDC also employs a bootstrapping technique (see section 1.5) to assess the statistical 

significance of the distance coefficient that is obtained.  

!
4.1.4.2   Genomic characteristics that correlate with codon usage bias 
 

Often, the synonymous codon usage patterns observed in a genome correlate with 

particular genomic characteristics. For example, as described previously, there is a 

relationship between the base composition of a gene, and Nc of a gene. This is because as a 

gene’s codon bias increases (i.e. is more AT- or GC-rich), the number of available codons 

decreases. In this investigation, GC content and GC content at the third synonymous codon 

position (GC3) were included in the analysis to explore the relationship between the base 

composition of a gene, and the number of codons used by a gene. The third positions of 

codons are subject to less constraint than the other two positions. So, if there is any mutational 

bias, it is likely to impact the positions with the least constraint (Grocock and Sharp, 2002).  

!
4.1.4.3   Correspondence analysis 
!
 Correspondence Analysis (CA) is a multivariate technique that is commonly 

implemented to explore how variation in codon usage co-varies with other biological traits, 

such as expression level or GC content (Shields et al., 1988, Musto et al., 2001). CA functions 

by representing each gene as a vector. Each co-ordinate of the vector indicates a gene’s usage 

of a particular synonymous codon. A series of orthogonal axes are created by each gene’s 

vector to identify trends that explain the data variation, with each subsequent axis explaining a 
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decreasing amount of variation. In this way, the fraction of the variation that is accounted for 

by each axis may be identified.  

 There is debate over whether it is more appropriate to perform CA on relative 

frequencies such as RSCU values or on raw codon counts (Perrière and Thioulouse, 2002, 

Zavala et al., 2002). Using RSCU values to perform a CA avoids possible biases linked to 

amino acid composition. However, while the desire to remove amino acid effects is justified, 

the action may infer other more subtle biases in the process (Perrière and Thioulouse, 2002). 

One alternative strategy is to perform a CA on raw codon counts and RSCU values in parallel, 

and to compare the results. This approach has already been successfully applied to studies 

devoted to Heliobacter pylori (Lafay et al., 2000) and transposable elements (Lerat et al., 

2000) and was the approach undertaken in this study. 

 
 
4.1.4.4   Significance tests used in investigation 
 
 There were three statistical significance tests implemented at various stages of this 

investigation, each of which shall be described. The Spearman correlation is a non-parametric 

measure of the linear relationship between two data sets. The co-efficient spans from -1 to +1, 

with 0 indicating that there is no correlation. Positive correlations imply that as x increases, so 

does y. Conversely, negative correlations imply that as x increases, y decreases. The Wilcoxon 

rank-sum test examines the null hypothesis that two sets of measurements are drawn from the 

same distribution. The alternative hypothesis is that one set of values tends to be larger than 

the values in the other sample. The Mann-Whitney test is also a non-parametric statistical test 

that assesses whether one of two samples of independent observations tend to have larger 

values than the other set of samples. However, in the Mann-Whitney test, the samples are 

assumed to be unpaired. 
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4.1.4.5   Exploration of synonymous codon usage in verterbates 
!
 At this point, we know that translational selection has been identified in various 

species, and that there are several synonymous codon usage indices and statistical tests 

commonly invoked to denote the level of codon bias present in a gene. But specifically how 

are these indices and gene sequences combined to identify evidence of translational selection?  

First, as the selective advantage offered by synonymous codons is expected to be quite weak, 

the selective pressure to reduce the cost of translation is expected to have the greatest impact 

on highly expressed genes. In agreement with this model, a positive correlation between CUB 

and expression level has been observed in several eukaryotes, such as S. cerevisiae, C. 

elegans, Arabidopsis thaliana and D. melanogaster (Duret and Mouchiroud, 1999, Castillo-

Davis et al., 2002). Thus, the first null hypothesis considered is that highly and lowly 

expressed genes exhibit the same level of codon bias. 

 The selection on synonymous codon positions is thought to lead to a co-adaptation of 

codon usage and tRNA content to optimize translation. Such a correlation has previously   

been detected in prokaryotes (Ikemura, 1985, Kanaya et al., 1999) and eukaryotes (Ikemura, 

1985, Kanaya et al., 2001). The second null hypothesis that I examined is that there is no 

correlation between preferred codons, and the most abundant cellular tRNAs. In addition, 

vertebrate synonymous codon usage was explored in other ways. Wright (1990) suggested 

that plotting Nc against GC3 could be used to understand codon usage among genes. If GC3 

were the sole determinant of codon usage variation among genes, Nc values would fall on a 

continuous curve. This is because as the mutational bias in a gene becomes less pronounced, 

Nc becomes greater. In addition, such a plot would allow for the identification of genes that 

are more biased in their codon usage than expected, given their GC3 content. Finally, 

correspondence analyses were conducted to establish if there were any additional patterns that 

affect synonymous codon usage that were not captured in the other analyses. 
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4.2   Methods 
 
4.2.1   Genomic data collection and data set assembly 

A data set comprising 38 vertebrates was assembled. For each taxon, the longest 

canonical transcripts for all the protein-coding genes were retrieved from Ensembl version 66 

(Flicek et al., 2012). The initial data set comprised 712,902 sequences. Genes that contained 

non-translatable regions were removed. In total, 558,871 genes were retained (Table 4.1). The 

next stage was to assign a level of expression to each vertebrate gene. Su et al. (2004) 

described the patterns of gene expression for approximately 44,000 human transcripts across 

84 tissues. Using this data, Dr. David-Alvarez Ponce assembled a data set consisting of 

expression data for 17,738 human genes across 84 tissues (Electronic Appendix 4.1). In total, 

16,634 of the human genes that were retrieved from the Ensembl database were present in Dr. 

Alvarez-Ponce’s data set. For each of these 16,634 genes, an expression level was assigned to 

each gene as the highest expression level a gene attained across all 84 tissues.  

It was necessary to assign gene expression data for each non-human vertebrate and 

identify a set of highly expressed genes for each species. Compared to our knowledge of gene 

and protein sequence evolution, inter-species patterns of gene expression conservation are 

poorly understood. Recent research suggests that core gene expression level has remained 

relatively conserved between orthologous genes from different vertebrate species (Liao and 

Zhang, 2006, Chan et al., 2009). Thus, in this study, it was assumed that a highly expressed 

gene in humans was also likely to be relatively equally highly expressed in other vertebrates. 

Putative vertebrate orthologs were identified for each human gene using a reciprocal best-hit 

similarity search. The BLASTN algorithm (Altschul et al., 1990) compared the human 

genome to every other vertebrate genome (and vice versa). The E-value cut-off was set to e -

10. A total of 16,420 human genes found a recriprocal best hit in at least one other vertebrate 

species (Electronic Appendix 4.2). The expression level of each human gene was transferred 
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to its ortholog. Highly and lowly expressed genes were identified as the 5% highest and 

lowest expressed human genes and their orthologs in the other vertebrate species (Table 4.2, 

Table 4.3). 

Highly expressed genes tend to produce shorter proteins to reduce the cost of protein 

production (Moriyama and Powell, 1998, Duret and Mouchiroud, 1999, Marais and Duret, 

2001). For each species, the average gene length of each set of highly and lowly expressed 

genes were calculated (Table 4.2, Table 4.3). In general among all species, the average highly 

expressed gene length was shorter (1,081 nucleotides) than that of lowly expressed genes 

(1,381 nucleotides). However, a second pattern emerged when the gene lengths of highly 

expressed genes were examined in greater detail. In chimpanzee, for example, the average 

gene length was 1,179 base pairs. As expected, this length is shorter than the average for  

chimpanzee lowly expressed genes (1,539 base pairs). However, the four longest gene 

sequences in the chimpanzee highly expressed gene set were 20,010, 13,689, 10,716 and 

10,191 base pairs in length. Such exceptionally long genes do not exhibit a typically short 

gene length expected of vertebrate highly expressed genes. There is the chance that these 

genes may have been erroneously categorized as highly expressed. Thus, an additional 

filtering step was performed, in which the 5% longest of each set of genes were removed 

(Table 4.2, Table 4.3).  
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Species 
Initial 

number 
of genes 

Number of 
genes after 
filtering 

Number of 
orthologs 

American Pika 15,993 7,652 5,684 
Anole 17,800 17,735 9,118 
Armadillo 14,839 5,285 3,346 
Cat 15,047 5,850 4,412 
Chicken 16,929 16,471 9,036 
Chimpanzee 18,770 18,471 14,968 
Cow 20,036 19,786 14,648 
Dog 19,335 19,088 14,344 
Elephant 20,310 19,798 14,339 
Finch 17,501 17,285 9,076 
Flying Fox 17,023 10,087 8,090 
Galago 19,517 19,238 14,622 
Gibbon 18,631 17,232 14,170 
Gorilla 21,354 20,674 15,133 
Guinea Pig 18,699 18,494 13,914 
Hedgehog 14,591 5,777 3,981 
Horse 20,459 20,291 14,539 
Human 21,922 21,672 - 
Hyrax 16,090 6,526 4,865 
Kangaroo Rat 15,829 7,189 5,357 
Macaque 22,137 21,644 15,148 
Marmoset 21,703 20,784 15,094 
Microbat 19,751 19,467 13,469 
Mouse 23,043 22,938 16,460 
Mouse Lemur 16,319 7,341 5,448 
Opossum 23,225 19,417 12,460 
Orangutan 19,793 19,512 14,803 
Panda 19,609 18,443 14,045 
Pig 20,192 17,097 11,769 
Platypus 17,637 17,566 9,755 
Rabbit 21,888 18,811 13,553 
Rat 22,533 19,216 13,899 
Sloth 23,360 4,561 3,036 
Squirrel 12,425 5,187 3,543 
Tarsier 14,828 5,791 4,254 
Tasmanian Devil 18,302 13,646 11,745 
Tenrec 18,920 7,016 4,287 
Wallaby 16,562 5,833 3,735 
Total 712,902 558,871 394,745 

Table 4.1 Number of genes retained at each stage of filtering process 
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 !        Highly expressed genes 

  Original   Trimmed   

  # Genes  Gene 
 Length (bp) # Genes Gene 

Length (bp) 
American Pika 382 821.21 361 726.41 
Anole 429 1348.97 399 1015.56 
Armadillo 269 667.99 247 578.28 
Cat 326 743.46 304 627.54 
Chicken 431 1387.67 399 1033.08 
Chimpanzee 793 1179.36 760 958.16 
Cow 753 1239.03 722 998.37 
Dog 732 1293.94 684 993.98 
Elephant 736 1254.24 703 1023.03 
Finch 430 1298.18 418 1085.75 
Flying Fox 502 908.07 475 791.11 
Galago 733 1259.02 703 1015.67 
Gibbon 768 1199.58 722 966.42 
Gorilla 810 1258.78 760 973.24 
Guinea Pig 703 1254.9 665 983.31 
Hedgehog 285 728.03 266 639.54 
Horse 734 1229.86 703 985.59 
Human 819 1191.52 779 946.63 
Hyrax 339 728.82 323 653.9 
Kangaroo Rat 357 794.64 342 705.96 
Macaque 792 1201.6 741 950.58 
Marmoset 796 1262.2 741 978.24 
Microbat 694 1234.37 665 995.63 
Mouse 741 1305.67 703 1032.6 
Mouse Lemur 389 792.21 361 666.63 
Opossum 642 1367.67 611 1018.81 
Orangutan 800 1209.51 570 1049.16 
Panda 798 1275.35 760 947.83 
Pig 602 1136.46 570 919.54 
Platypus 485 1224.14 456 936.76 
Rabbit 704 1274.98 665 1011.18 
Rat 714 1288.84 684 1034.62 
Sloth 227 634.12 209 559.94 
Squirrel 267 658.87 247 580.18 
Tarsier 283 700.91 266 615.3 
Tasmanian Devil 575 1305.33 551 1082.76 
Tenrec 329 698.71 304 606.14 
Wallaby 253 725.21 247 680.72 
Average   1081.14   878.11 

  

Table 4.2 Assembly of sets of highly expressed genes 
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!       Lowly expressed genes 

  Original   Trimmed   

  # Genes Gene Length 
(bp) # Genes Gene Length 

(bp) 
American Pika 303 1219.07 285 1106.69 
Anole 313 1656.2 304 1553.92 
Armadillo 222 943.69 209 871.21 
Cat 254 1001.63 247 955.28 
Chicken 304 1686.07 285 1461.48 
Chimpanzee 718 1539.91 684 1354.72 
Cow 660 1558.61 627 1382.47 
Dog 649 1530.52 608 1320.26 
Elephant 668 1495.71 627 1302.88 
Finch 311 1587.31 304 1492.93 
Flying Fox 387 1314.71 361 1165.53 
Galago 689 1574.06 646 1366.24 
Gibbon 621 1567.41 589 1377.07 
Gorilla 721 1552.7 684 1367.81 
Guinea Pig 631 1524.35 608 1377.42 
Hedgehog 234 1046.38 228 997.46 
Horse 657 1476.52 627 1305.04 
Human 818 1529.68 779 1346.81 
Hyrax 271 1127.47 266 1078.34 
Kangaroo Rat 288 1116.64 266 1000.68 
Macaque 688 1513.5 646 1314.77 
Marmoset 697 1536.8 665 1379.72 
Microbat 570 1523.62 551 1374.27 
Mouse 315 1077.57 304 1011.27 
Mouse Lemur 675 1626.63 646 1431.77 
Opossum 564 1559.8 538 1317.53 
Orangutan 672 1484.58 513 1414.59 
Panda 678 1520.42 646 1334.31 
Pig 533 1417.57 513 1272.91 
Platypus 365 1368.93 342 1171.18 
Rabbit 594 1499.03 570 1355.66 
Rat 633 1593.44 608 1428.07 
Sloth 184 997.5 171 877.09 
Squirrel 184 987.55 171 874.32 
Tarsier 213 1034.58 209 1001.5 
Tasmanian Devil 496 1572.94 475 1400.87 
Tenrec 231 1022.34 228 990.66 
Wallaby 205 1099.79 190 985.18 
Average   1381.19   1240 

Table 4.3 Assembly of sets of lowly expressed genes 
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4.2.2   Identification of translational selection in vertebrates 
!
 As discussed in the introduction, there are two genomic characteristics that are 

indicitive of translational selection in a species. First, I examined if each set of highly 

expressed genes was more biased in codon usage pattern than each set of lowly expressed 

genes. Subsequently, I asked if the preferred codons for an amino acid in each set of highly 

expressed genes correlated with the most abundant tRNA genes. In the following sections, 

each of these questions are addressed in turn. 

 

4.2.2.1   Calculation of codon bias in highly and lowly expressed genes  
!
 This section examined whether codon bias for each set of highly expressed genes was 

more pronounced than the bias exhibited by each set of lowly expressed genes. The CUB of a 

gene was calculated using the CDC index that is implemented in the Compositional Analysis 

Toolkit v. 1.0 (http://cbrc.kaust.edu.sa/CAT/). As it has been previously demonstrated that 

certain CUB indices are affected by gene length (Urrutia and Hurst, 2001), the level of codon 

bias in each set of highly and lowly expressed genes was calculated in duplicate. In one case, 

gene length was explicitly strictly controlled for, and in the other case, it was not. Each case 

will be described separately. 

  First, for each species, I obtained a sub-set of highly and lowly expressed genes in 

which each highly expressed gene was paired to lowly expressed gene of exactly equal length. 

If there was more than one lowly expressed gene of equal length to a highly expressed gene 

(or vice versa), one of the genes of that particular length was selected at random. For each 

gene in each sub-set of highly and lowly expressed genes, a CDC index was calculated, using 

the standard genetic code and setting the bootstrap parameter to 1,000 bootstraps. If a gene 

obtained a P-value that was greater than 0.05, the gene was deemed to have exhibited a 

statistically insignificant codon bias. As Zhang et al. (2012) alluded to, and as observed in this 
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study, genes that displayed statistically insignificant P-values tended to be extremely short. 

Pairs of genes that did not obtain statistically significant CDC scores were removed. An 

average CDC score was calculated for the remaining significantly biased genes in each sub-

set of highly and lowly expressed genes.  

 To investigate whether the CDC scores of each set of highly and lowly expressed 

genes for a species were significantly differently distributed from each other, a Wilcoxon 

signed rank test implemented in R package “Wilcoxon Rank Sum and Signed Rank Tests” 

was conducted (http://stat.ethz.ch/R-manual/R-patched/library/stats/html/wilcox.test.html). 

For this test, a set of CDC scores for highly and lowly expressed genes for a species were 

provided, and the “paired” parameter was set to true. The analysis described in the previous 

paragraph was subsequently repeated, with the exception that gene length was not explicitly 

controlled for. In this case, the full set of highly and lowly expressed gene sequences was 

provided to the CDC algorithm. For each gene, a CDC index was calculated. As in the 

previous paragraph, the standard genetic code was selected, and the bootstrap parameter was 

set to 1,000 bootstraps. Genes that did not obtain a statistically significant CDC index in the 

bootstrap procedure of the CDC algorithm were removed. For the remaining genes in each set 

of highly and lowly expressed genes, an average CDC index was calculated. A Wilcoxon rank 

sum test implemented in the R package  “Wilcoxon Rank Sum and Signed Rank Tests” was 

conducted, using the same package as described in the previous paragraph. The set of CDC 

indices obtained for highly and lowly expressed genes were provided, and the “paired” 

parameter was set to “false”. This is equivalent to the Mann-Whitney test. 
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4.2.2.2   Correlation of codon bias with tRNA abundance 
!
 This section examined if the preferred codons in a set of highly expressed genes from 

each species correlated with the most abundant tRNA genes in a genome. Codons encoding 

methionine, tryptophan and termination codons were excluded from this analysis. First, for 

each species, a set of preferred codons were identified. To achieve this, RSCU values for each 

amino acid were calculated for each set of highly expressed orthologs (and also in lowly 

expressed orthologs) using codonW version 1.4.4. The preferred codon used for each amino 

acid was defined as the one that obtained the highest RSCU value. Next, for 23 of the species 

in this study, the number of tRNA genes for each codon was retrieved from the Genomic 

tRNA database (retrieved April 18th 2012) (Chan and Lowe, 2009). Subsequently, using script 

4.1 in script index 4.0, I examined if the preferred codon for each amino acid (i.e. the codon 

that obtained the highest RSCU value) matched the most abundant tRNA gene for that amino 

acid in each species. 

 
 

4.2.3   Exploration of variation of synonymous codon usage in vertebrates 

4.2.3.1   Examination of effective number of codons in genes 

 As suggested by Wright (1990), a plot of Nc versus GC3 can be used as a preliminary 

exploration of codon heterogeneity. In such a plot, a normal distribution indicates the 

expected Nc value due to solely mutational bias. For the genes of each vertebrate species, Nc 

and GC3 content were calculated using the codonW program. Nc was plotted against GC3 

using Python version 2.6.5 and the Pylab module implemented in matplotlib package version 

1.1.1 (script 4.2 in the script index). 

The distribution of genes in each plot was examined. Genes that were relatively 

balanced in their GC3 content (45 – 55%), but biased in their codon usage (Nc < 30), were 

extracted for further investigation (using script 4.3 in script index 4.0). There were 193 genes 
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in total that displayed this pattern. For each of these genes, it’s human ortholog was identified. 

A biological enrichment analysis was conducted using FatiGO (FatiGO is described in section 

2.2.6). The set of 193 human orthologs was compared against the rest of the genome. 

Duplicate genes were removed within and between lists. Overrepresentation in cellular 

component, molecular function and biological process GO categories were searched for, using 

the “direct transmission” parameter. Fisher’s exact test (for overrepresentation in list 1) was 

implemented, and an adjusted P-value of less than 0.05 was deemed significant. However, the 

193 genes were not overrepresented in any GO terms. The Nc boundary was adjusted to 40. 

1,326 genes were extracted (again, using script 4.3 in script index 4.0) that possessed a GC3 

content of 45-55% and an Nc less than 40. The FatiGO analysis described in this paragraph 

was repeated using almost identical parameters. The only exception was that enrichment of 

genes in biochemical pathways from the KEGG (Kanehisa, 2004) and Reactome (Joshi-Tope 

et al., 2005) databases were additionally searched for. For these 1,326 genes, the number of 

amino acids in each gene were calculated (in addition to the Nc and GC3 values that had 

previously been calculated) and compared to the same genomic characteristics were 

calculated for the full set of genes from each species.  

!  
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Species # Genes 
American Pika 13 
Anole 89 
Armadillo 26 
Cat 16 
Chicken 58 
Chimpanzee 32 
Cow 12 
Dog 13 
Elephant 19 
Finch 45 
Flying Fox 18 
Galago 15 
Gibbon 25 
Gorilla 72 
Guinea Pig 23 
Hedgehog 26 
Horse 14 
Human 61 
Hyrax 10 
Kangaroo Rat 18 
Macaque 60 
Marmoset 58 
Microbat 8 
Mouse 59 
Mouse Lemur 21 
Panda 19 
Opossum 24 
Orangutan 68 
Pig 39 
Platypus 38 
Rabbit 14 
Rat 89 
Sloth 21 
Squirrel 25 
Tarsier 25 
Tasmanian Devil 110 
Tenrec 18 
Wallaby 25 

Table 4.4 Number of interesting genes per species extracted from GC3 versus Nc plots  
!
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4.2.3.2   Correspondence analysis 
 

An extensive exploration into the source of codon usage variation among genes can be 

achieved using multivariate statistical analysis. Codons that encode methionine and 

tryptophan were removed as these two amino acids do not have synonymous alternative 

codons. In addition, the rarity of cysteine is thought to affect the outcome of CA and so these 

codons were removed (Perrière and Thioulouse, 2002). Finally, stop codons were removed.  

Thus, 57 codons were used in this analysis. A correspondence analysis was conducted in 

codonW for the full set of genes belonging to each species. This analysis was carried out in 

duplicate. In one case, RSCU values were used as the input data and in the other case, raw 

codon counts was used as the input data. The fraction of variation accounted for by each axis 

was identified from the “.summary.coa” output from codonW.  

For each species, axis 1 versus axis 2 of each CA was plotted (using script 4.4 script 

index 4.0). Unusual clusters of non-highly expressed genes in anole, armadillo, horse and 

Tasmanian devil were identified on the resulting CA plots of axis 1 versus axis 2, using both 

RSCU values and raw codon counts. An example of such an unusual cluster may be observed 

in Figure 4.1. I wanted to examine what was unique about the codon usage of the genes 

composing these clusters, and why they were only present in certain genomes. To extract 

these genes for further investigation, it was necessary to locate their co-ordinates on the CA 

plot of axis 1 versus axis 2. This was achieved through visual inspection of the CA plots. The 

co-ordinates of the unusual genes from each plot (using RSCU data) of axis 1 versus axis 2 

are described in Table 4.4. Using script 4.5 in script index 4.0, the sequences composing these 

clusters were extracted and visually inspected. Finally, two other sets of plots were 

constructed. First GC3 was plotted against axis 1 for each species using an adapted version of 

script 4.2 in script index 4.0. Linear correlation was calculated using a Spearman correlation 



!
!

!138!

co-efficient, implemented in SciPy. In addition, axis 2 was plotted against the expression level 

for each species, to explore any potential correlation between the two. 
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Figure 4.1 An example of an unusual cluster of genes. 

Plot of axis 1 versus axis 2 of correspondence analysis for horse. Blue indicates non-highly 

expressed genes. Red indicates highly expressed genes. Genes that display an unusual pattern of 

codon usage are indicated with a green circle.  
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As X axis Y axis No. Genes 
extracted 

Anole -0.1 – 0.5 Less than -0.3 164 
Armadillo 0.2 – 0.5 Less than -0.3 125 
Horse Less than -0.2 Above +0.2 350 
Tasmanian devil Greater than -0.5, 

Less than 1 
Greater than 0.5 55 

Table 4.5 Co-ordinates of genes composing unusual clusters that were extracted for 

further analysis. 

Once axis 1 versus axis 2 of each CA was plotted, there were four species that exhibited 

unusual clusters of genes. To extract these genes for further analysis, it was necessary to define 

their location on the plot. Column 1 indicates the cut off for the co-ordinates of the genes that 

were extracted from the x-axis. Column 2 indicates the cut off for the co-ordinates of the genes 

that were extracted from the y-axis. For example, in horse, all genes that had an x-axis co-

ordinate less than -0.2 and a y-axis co-ordinate greater than +0.2 was extracted for further 

analysis.  
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4.3  Results 

4.3.1   Evidence for translational selection in vertebrates 
!

This study employs four specific strategies to understand the interplay between 

mutation, selection and random genetic drift in 38 vertebrates, using a data set of 394,745 

genes. First, I used a a novel algorithm (CDC index) that considers background nucleotide 

composition to examine whether codon usage bias is more pronounced in highly-expressed 

genes than in lowly-expressed genes. Second, I examined whether there was a correlation 

between the most abundant tRNA genes in a genome and the most preferred codons in each 

set of highly-expressed genes. Third, I compared base composition and Nc , and I investigated 

genes that appear to be using a more biased set of codons than might be expected from a 

simple mutational process. Finally, multivariate analyses were carried out to establish if there 

are additional patterns that substantially affect synonymous codon usage that might not be 

captured in these other analyses. Each of these results will be described in turn. 

I examined whether highly expressed genes tended to be more biased in their codon 

usage pattern than lowly expressed genes. This experiment was conducted in duplicate. First, 

gene length was explicitly accounted for. The number of paired genes of identical length that 

were extracted for each species may be observed in Table 4.6. In all cases, highly expressed 

genes exhibited a higher average codon bias than lowly expressed genes. In general, the 

average codon bias for each set of highly expressed genes was in the range of ~0.14 – 0.15 

(on average, across all species, 0.143), while the average codon bias for each set of lowly 

expressed genes was in the range of ~0.12 – 0.13 (on average, across all species, 0.135) 

(Table 4.6). Using the Wilcoxon signed-rank test and setting a significant P-value cut-off as 

less than or equal to 0.05, the difference in codon bias distributions between highly and lowly 

expressed genes was statistically significant in 21 of the 38 species (Table 4.6).  
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The calculation of CDC scores for highly and lowly expressed genes was repeated, not 

accounting for gene length. In this case, average codon bias was similar to that observed when 

gene length was strictly accounted for, ~0.14 – 0.15 in highly expressed genes (on average 

across all species, 0.156), versus ~0.12 – 0.13 in lowly expressed genes (on average across all 

species, 0.128) (Table 4.7). In this instance, the difference in codon bias levels between highly 

and lowly expressed genes was statistically significant in all 38 species, using the Mann-

Whitney test and setting a significant P-value cut-off as less than 0.05 (Table 4.7). Although 

the difference in average CDC index between highly and lowly expressed genes is quite small 

(generally ~0.01 difference in CDC scores between highly and lowly expressed genes), a 

slightly larger difference (~0.02) was observed in rodents, marsupials and monotremes. 

Rodents and marsupials have previously been demonstrated to display a higher effective 

population size than other mammals, such as primates (Goodstadt et al., 2007, Hughes and 

Friedman, 2009). This corresponds favourably with the scenario in which species with a 

higher effective population size are more likely to display evidence of translational selection 

than those with smaller effective population sizes. 

 Next, I asked whether there was a correlation between the most abundant tRNA genes 

in a genome and the preferred codons in each set of highly expressed genes. For 23 species, I 

asked how often the most abundant tRNA gene matched the preferred synonymous sense 

codon (i.e. excluding termination codons, tryptophan and methionine). A match between 

tRNA gene and preferred codon was regularly observed in those amino acids that are encoded 

by two codons (Table 4.8). A more interesting observation is matches between codons and 

tRNA genes for amino acids that are encoded by more than two codons. In such cases, 

matches are still observed in all 23 species in leucine, valine, glycine, proline, serine and 

arginine (Table 4.8). An equivalent analysis of matching tRNA gene to mRNA codon 

abundance was conducted for lowly expressed genes. Almost identical results to those 
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described in the previous paragraph for highly expressed genes were obtained for lowly 

expressed genes (Table 4.9).  
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Species Number of 
genes 

CDC (HE)  CDC (LE) P-value 

American Pika 59 0.15 0.14 0.01 
Anole 69 0.13 0.12 0.02 
Armadillo 40 0.15 0.14 0.47 
Cat 38 0.14 0.15 0.48 
Chicken 72 0.13 0.12 0.29 
Chimpanzee 177 0.14 0.13 0.12 
Cow 161 0.14 0.13 0.01 
Dog 166 0.14 0.13 0 
Elephant 172 0.14 0.13 0 
Finch 68 0.13 0.13 0.35 
Flying Fox 81 0.14 0.13 0.06 
Galago 176 0.14 0.13 0.05 
Gibbon 157 0.14 0.14 0.05 
Gorilla 195 0.14 0.13 0.04 
Guinea Pig 151 0.14 0.13 0.41 
Hedgehog 39 0.15 0.14 0.1 
Horse 171 0.14 0.13 0.02 
Human 182 0.14 0.13 0.02 
Hyrax 52 0.15 0.15 0.16 
Kangaroo Rat 58 0.16 0.13 0 
Macaque 175 0.15 0.14 0 
Marmoset 161 0.14 0.13 0.02 
Microbat 145 0.14 0.13 0.01 
Mouse Lemur 172 0.14 0.15 0.59 
Mouse 61 0.15 0.13 0 
Panda 156 0.14 0.13 0 
Opossum 133 0.14 0.12 0 
Orangutan 156 0.14 0.14 0.01 
Pig 130 0.14 0.14 0.31 
Platypus 90 0.14 0.12 0.01 
Rabbit 143 0.13 0.12 0.04 
Rat 141 0.15 0.13 0 
Sloth 19 0.16 0.15 0.42 
Squirrel 38 0.16 0.16 0.03 
Tarsier 36 0.15 0.15 0.15 
Tasmanian Devil 107 0.14 0.14 0 
Tenrec 44 0.13 0.13 0.66 
Wallaby 35 0.15 0.15 0.29 

Table 4.6 CDC scores for each set of highly expressed (HE) and lowly expressed  
 
(LE) genes, once gene length is explicitly controlled. 
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Species CDC (HE) CDC (LE) P-value 

American Pika 0.16 0.13 5.54E-13 
Anole 0.14 0.11 2.16E-15 
Armadillo 0.16 0.13 2.79E-05 
Cat 0.17 0.13 5.19E-10 
Chicken 0.15 0.12 5.61E-09 
Chimpanzee 0.16 0.13 2.20E-16 
Cow 0.15 0.12 2.20E-16 
Dog 0.15 0.12 2.20E-16 
Elephant 0.15 0.12 2.20E-16 
Finch 0.15 0.12 2.20E-16 
Flying Fox 0.15 0.13 4.69E-12 
Galago 0.15 0.13 2.20E-16 
Gibbon 0.15 0.13 2.20E-16 
Gorilla 0.15 0.13 2.20E-16 
Guinea Pig 0.15 0.13 2.30E-14 
Hedgehog 0.17 0.13 1.15E-12 
Horse 0.15 0.12 2.20E-16 
Human 0.16 0.13 2.20E-16 
Hyrax 0.17 0.13 3.04E-07 
Kangaroo Rat 0.17 0.13 2.20E-16 
Macaque 0.15 0.13 2.20E-16 
Marmoset 0.15 0.12 2.20E-16 
Microbat 0.15 0.12 2.20E-16 
Mouse Lemur 0.15 0.14 1.86E-09 
Mouse 0.16 0.12 2.20E-16 
Panda 0.15 0.12 5.86E-16 
Opossum 0.15 0.12 2.20E-16 
Orangutan 0.16 0.13 2.20E-16 
Pig 0.15 0.13 8.25E-16 
Platypus 0.14 0.11 1.49E-08 
Rabbit 0.14 0.12 2.20E-16 
Rat 0.15 0.12 2.20E-16 
Sloth 0.18 0.14 1.11E-07 
Squirrel 0.17 0.13 1.28E-08 
Tarsier 0.18 0.14 1.30E-07 
Tasmanian Devil 0.15 0.12 2.20E-16 
Tenrec 0.16 0.13 1.17E-09 
Wallaby 0.17 0.13 3.81E-16 

Table 4.7 CDC scores for highly (HE) and lowly (LE) expressed genes,  
 
gene length not explicitly considered. 
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  Total 
No. 

AA encoded 
by 2 codons   Amino acids encoded by more than 2 codons 

     Pro Leu Ser Val Arg Gly 
Anole 10 8  CCA CUG      
Cat 8 8         
Chicken 10 9   CUG      
Chimpanzee 10 8     GUG  GGC 
Cow 8 7     GUG    
Dog 10 8   CUG  GUG    
Finch 12 9   CUG AGC   GGC 
Gibbon 10 8     GUG  GGC 
Gorilla 9 7     GUG  GGC 
Guinea Pig 12 8   CUG AGC GUG  GGC 
Horse 12 9    AGC GUG  GGC 
Human 10 8     GUG  GGC 
Macaque 9 7     GUG  GGC 
Marmoset 11 8   CUG  GUG  GGC 
Mouse 12 9   CUG  GUG  GGC 
Mouse Lemur 12 8   CUG AGC GUG  GGC 
Opossum 13 7  CCU CUG UCU GUG AGA GGC 
Orangutan 11 8   CUG  GUG  GGC 
Panda 10 8    AGC   GGC 
Pig 9 7     GUG  GGC 
Platypus 6 5      CGG   
Rabbit 13 9   CUG AGC GUG  GGC 
Rat 11 8     CUG     AGG GGC 

Table 4.8 Correlation between preferred codons and tRNA abundance (highly expressed 

genes).  

Column 1 indicates the total number of cases (out of 20 amino acids) in which the preferred codon 

matched the most abundant tRNA gene for an amino acid. Column 2 demonstrates the number of 

these cases in which the amino acid was encoded by exactly 2 codons. The remaining columns 

indicate, for those amino acids encoded by more than 2 codons, precisely which codons matched 

the most abundant tRNA genes.   
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  Total 
No. 

AA encoded 
by 2 codons   Amino acids encoded by more than 2 codons 

     Pro Leu Ser Val Arg Gly 
Anole 10 8  CCA CUG      
Cat 8 8         
Chicken 10 9   CUG      
Chimpanzee 10 8     GUG  GGC 
Cow 8 7     GUG    
Dog 10 8   CUG  GUG    
Finch 13 9  CCU CUG AGC   GGC 
Gibbon 10 8     GUG  GGC 
Gorilla 9 7     GUG  GGC 
Guinea Pig 12 8   CUG AGC GUG  GGC 
Horse 12 9     GUG  GGC 
Human 10 8     GUG  GGC 
Macaque 9 7     GUG  GGC 
Marmoset 11 8   CUG  GUG  GGC 
Mouse 12 9   CUG  GUG  GGC 
Mouse Lemur 11 8   CUG  GUG  GGC 
Opossum 11 7   CUG UCU GUG  GGC 
Orangutan 11 8   CUG  GUG  GGC 
Panda 10 8    AGC   GGC 
Pig 9 7     GUG  GGC 
Platypus 6 5      CGG   
Rabbit 13 9   CUG AGC GUG  GGC 
Rat 11 8     CUG     AGG GGC 

Table 4.9 Correlation between preferred codons and tRNA abundance (lowly expressed 

genes).  

Column 1 indicates the total number of cases (out of 20 amino acids) in which the preferred codon 

matched the most abundant tRNA gene for an amino acid. Column 2 demonstrates the number of 

these cases in which the amino acid was encoded by exactly 2 codons. The remaining columns 

indicate, for those amino acids encoded by more than 2 codons, precisely which codons matched 

the most abundant tRNA genes.   
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4.3.2   Further exploration of synonymous codon usage variation in vertebrates 
!

In each species, GC3 values of genes ranged from 0 to 100%, while Nc values ranged 

from 20 to 61 (Table 4.10). As suggested by Wright, a plot of Nc against GC3 can be used as a 

preliminary exploration of such heterogeneity. A normal distribution indicates the expected 

Nc values if bias is due to solely GC3 because genes that are more biased in their base 

composition are expected to exhibit a lower number of effective codons As can be observed 

from the plots (Electronic Appendix 4.3), most genes in each species fall into a restricted 

cloud of genes, and highly expressed genes are not confined to a particular section of each 

plot. 

A limited number of genes in each species contained a small number of effective 

codons (Nc < 40), in spite of the fact that their GC3 content was relatively balanced (45-55%) 

(Table 4.4). These genes were extracted for further investigation. First, I examined whether 

this combined set of genes was enriched in any GO category or metabolic pathway. Genes 

were enriched in the GO category “defence response to bacterium” (GO:0042742), the 

Reactome pathways “REACT_1505” (integration of energy metabolism) and 

“REACT_15380” (diabetes pathway) and the KEGG pathways “hsa00190” (oxidative 

phosphorylation) and “hsa05012” (Parkinson’s disease) (Electronic Appendix 4.4). These 

observations do not offer particular insight into why these genes may be using a smaller 

number of effective codons. The only noticeable difference between the genomic 

characteristics of these sets of genes and the rest of the orthologous genes was is a slightly 

lower GC content, GC3 content and lower number of amino acids than the average for a given 

genome (Electronic Appendix 4.5). However, there is an inherent statistical limitation in the 

small number of genes that were extracted for most species, thus, such observations should be 

interpreted with caution. 
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       Species GC3 

 
Nc 

 
Min Max 

 
Min Max 

American Pika 0 0.992 
 

20 61 
Anole 0.042 1 

 
20 61 

Armadillo 0.176 1 
 

23.06 61 
Cat 0.133 0.995 

 
24.15 61 

Chicken 0.153 1 
 

21.5 61 
Chimpanzee 0 1 

 
23 61 

Cow 0.198 0.994 
 

20 61 
Dog 0.125 1 

 
22.73 61 

Elephant 0.018 1 
 

22.01 61 
Finch 0.03 1 

 
20 61 

Flying Fox 0.083 1 
 

20 61 
Galago 0.077 0.978 

 
20 61 

Gibbon 0.059 0.976 
 

25.09 61 
Gorilla 0 1 

 
20 61 

Guinea Pig 0.029 1 
 

22.14 61 
Hedgehog 0.158 0.996 

 
25.17 61 

Horse 0.179 1 
 

23 61 
Human 0 1 

 
20 61 

Hyrax 0.2 1 
 

25.03 61 
Kangaroo Rat 0.125 1 

 
23.35 61 

Macaque 0.09 1 
 

20.17 61 
Marmoset 0.024 1 

 
21.96 61 

Microbat 0.091 1 
 

21.91 61 
Mouse 0 0.97 

 
20.97 61 

Mouse Lemur 0.161 1 
 

24.15 61 
Opossum 0.1 0.997 

 
22.14 61 

Orangutan 0 0.971 
 

20 61 
Panda 0.14 1 

 
23.14 61 

Pig 0 1 
 

20.79 61 
Platypus 0.112 1 

 
21.91 61 

Rabbit 0.06 1 
 

21.5 61 
Rat 0 1 

 
20 61 

Sloth 0.071 0.995 
 

22.98 61 
Squirrel 0.05 0.98 

 
22.75 61 

Tarsier 0.067 1 
 

22.14 61 
Tasmanian Devil 0.051 0.994 

 
20.96 61 

Tenrec 0.182 1 
 

21.83 61 
Wallaby 0.118 1   25.48 61 
Min 0 0.97 

 
20 61 

Max 0.2 1   25.48 61 

Table 4.10 Minimum and maximum GC3 content and Nc for each species.  
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 A correspondence analysis was conducted for each species to establish if there were 

additional patterns that greatly affect synonymous codon usage that may not have been 

previously uncovered. Axis 1 versus axis 2 of each correspondence analysis was plotted for 

each species. Most of the genes fall in a single cloud around the origin, and highly expressed 

genes are scattered throughout this cloud. The relative inertia of the first two axes was 

examined (Table 4.11; Electronic Appendix 4.6; Electronic Appendix 4.7). In the CA of 

RSCU values, it was observed that the first axis accounts for ~37.36% and the next highest 

axis accounts for ~4.22% of the relative inertia. Similarly, for the CA carried out with raw 

codon counts, the first axis accounts for ~30.83% of the relative inertia, while the next highest 

axis accounts for ~6.97%. Thus, it may be concluded that there is a single major trend 

governing synonymous codon usage. 

 A usefulness of correspondence analyses is that the co-ordinates of the genes on the 

major axes may be compared with other statistics (such as base composition) to investigate 

the meaning of the observed trends. There was no correlation detected between gene 

expression and axis 1 in any species, in agreement with previous observations (Musto et al., 

2001) (Electronic Appendix 4.8). For each species, axis 1 co-ordinates strongly correlated 

with GC3 (according to a Spearman correlation, ~0.96-0.99; Electronic Appendix 4.8 and 4.9). 

While the genomes are overall balanced in their GC content (~52%), the average GC content 

of the 1st position of the codons is 55%, of the 2nd positions is 42% and of the 3rd positions 

is 60% (Table 4.12). If vertebrate genomes were subject to a mutational bias towards GC-

richness, the impact is most likely to be most pronounced at sites where there is little 

constraint. As third codon positions are subject to less constraint than first or second 

positions, the observation that GC3 is higher than the overall GC-content is what is to be 

expected if the bias were due to mutational bias (Grocock and Sharp, 2002).  Combining the 

evidence that the first axis contains most of the codon usage variation, and that the first axis 
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strongly correlates with GC3 content suggests that mutational bias is a major factor that 

governs vertebrate synonymous codon usage.  

 From visual inspection of CA axis 1 versus axis 2 plots, a number of unusual clusters 

were identified in anole, armadillo, horse and tasmanian devil (Figure 4.2). It was observed 

that all the clusters comprise sequences that tend to be extremely short and repetitive in 

nature, and obviously represent among the most poorly sequenced and/or annotated sequences 

of the data sets. 
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  RSCU values  Raw codon counts 

Species Axis 0 
inertia 

Max 
inertia of 
other axes 

 Axis 0 
inertia 

Max 
inertia of 
other axes 

      
American Pika 30.98 3.88  25.33 6.9 
Anole 42.63 3.83  29.51 7.53 
Armadillo 34.89 4.04  28.6 7.39 
Cat 27.96 4.16  22.92 7 
Chicken 41.83 3.85  30.54 6.41 
Chimpanzee 42.19 4.13  36.12 5.99 
Cow 44.58 3.84  37.04 7.04 
Dog 44.44 4.25  36.85 6.91 
Elephant 39.54 4.37  32.71 8.93 
Finch 44.67 3.69  31.68 6.15 
Flying Fox 37.13 4.35  31.55 6.39 
Galago 37.6 4.78  31.65 6.99 
Gibbon 41.08 4.01  35.91 5.81 
Gorilla 42.68 4.14  34.93 6.03 
Guinea Pig 40.58 4.27  34.46 7.08 
Hedgehog 31.87 4.44  26.43 7.36 
Horse 41.96 3.75  35.04 7.5 
Human 42.35 4.21  34.07 6.12 
Hyrax 29.5 4.55  25.92 6.66 
Kangaroo Rat 30.74 6.88  27.32 7.04 
Macaque 41.55 4.05  33.73 5.78 
Marmoset 41.55 4.29  33.97 5.96 
Microbat 44.75 3.62  37.23 6.2 
Mouse 28.69 5.1  22.59 8.43 
Mouse Lemur 33.34 4.06  26.75 6.52 
Panda 42.89 3.54  36.14 6.83 
Opossum 38.36 4.75  29.25 7.27 
Orangutan 41.71 4.14  34.8 5.87 
Pig 41.1 3.76  33.8 7.36 
Platypus 41.8 3.23  32.73 7.01 
Rabbit 48.12 3.21  39.49 6.66 
Rat 26.71 4.95  20.1 8.51 
Sloth 27.79 4.4  21.64 8.23 
Squirrel 26.77 4.38  22.43 7.54 
Tarsier 28.77 4.34  23.19 6.54 
Tasmanian Devil 40.47 4.04  27.93 7.93 
Tenrec 31.56 3.95  25.07 6.68 
Wallaby 24.75 5.22   20.15 8.51 

Table 4.11 Correspondence analysis of RSCU values, and raw codon counts. 
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Figure 4.2 Clusters of genes on CA plots.  

These clusters were observed from plotting axis 1 versus axis 2 of the correspondence 

analysis of each species. 
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Species 

Total 
GC 
content 

1st codon 
position 

2nd codon 
position 

3rd codon 
position 

American Pika 55.89 57.19 43.55 66.94 
Anole 49.03 53.02 40.36 53.73 
Armadillo 53.07 55.21 42.64 61.37 
Cat 55.53 56.89 43.87 65.83 
Chicken 51.19 54.39 42.4 56.77 
Chimpanzee 52.69 55.81 42.97 59.29 
Cow 53.48 55.88 42.37 62.19 
Dog 52.95 55.86 42.58 60.42 
Elephant 51.81 54.63 41.63 59.17 
Finch 52.01 54.61 41.13 60.28 
Flying Fox 53.55 56.11 43.19 61.39 
Galago 51.89 55.38 42.01 58.29 
Gibbon 52.3 55.61 42.87 58.14 
Gorilla 52.35 55.42 42.99 58.64 
Guinea Pig 52.87 55.71 42.14 60.76 
Hedgehog 52.74 54.72 42.57 60.95 
Horse 51.63 54.48 41.15 59.26 
Human 53.08 56.08 43.34 59.8 
Hyrax 53.98 56.4 43.44 62.11 
Kangaroo Rat 54.05 56.11 43.78 62.75 
Macaque 52.25 55.47 42.89 58.38 
Marmoset 52.17 55.46 42.56 58.48 
Microbat 53.56 55.87 42.37 62.43 
Mouse 51.6 54.32 42.25 58.24 
Mouse Lemur 54.81 56.4 43.88 64.15 
Opossum 48.89 53.13 40.84 52.68 
Orangutan 52.54 55.61 43.1 58.92 
Panda 53.02 55.73 42.3 61.03 
Pig 52.29 55.81 42.41 61.65 
Platypus 54.16 55.46 42.37 64.65 
Polar Bear 52.16 54.75 42.02 59.88 
Rabbit 54.34 56.62 42.75 64.1 
Rat 51.49 54.24 42.05 58.16 
Sloth 49.21 52.18 41.04 54.39 
Squirrel 51.92 54.33 42.63 58.81 
Tarsier 49.46 52.8 41.36 54.23 
Tasmanian Devil 48.4 52.69 40.67 51.85 
Tenrec 54.05 55.43 43.57 63.16 
Wallaby 51.18 54.31 41.79 57.44 
Average 52.40 55.13 42.41 59.76 

Table 4.12 Average GC content in total, and at each codon position for each species. 
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4.4   Discussion  
!
 The aim of this chapter was to combine the recent surge in genome sequence 

availability with methodological advancements to further the understanding of the enigmatic 

relationship between mutation, selection and genetic drift in vertebrates. Detection of 

translational selection in vertebrates has proven to be a challenging and elusive task, obscured 

by low long-term effective population sizes and the existence of isochores (Musto et al., 2001; 

Urrutia and Hurst, 2001; Romero et al., 2003). There are two premises commonly invoked to 

be evident of translational selection. First, if selection acts to enhance protein translation, such 

selection should be particularly pronounced in highly expressed genes. Significantly stronger 

bias was observed in all cases when gene length was not controlled for, and in a substantial 

proportion of species when gene length was strictly controlled for. This pattern agrees with 

previous observations in S. cerevisiae, C. elegans, A. thaliana and D. melanogaster (Duret 

and Mouchiroud 1999; Castillo-Davis and Hartl 2002). The second sequence characteristic 

indicitive of the presence of natural selection is a correlation between the set of preferred 

codons used in highly expressed genes with the most abundant cellular tRNAs. In the 23 

species for which tRNA gene data was available, a correlation between tRNA abundance and 

codon preference was regularly observed. To my knowledge, this is the first systematic 

detection of such a pattern in vertebrates, although isolated cases of such a correlation has 

previously been detected in prokaryotes (Ikemura, 1985, Yamao et al., 1991, Kanaya, 1999) 

and in eukaryotes (Ikemura, 1985, Kanaya et al., 2001). Taken together, these observations 

indicate that there may be an extremely weak selective force that affects synonymous codon 

usage choice in vertebrates.  

  I explored whether mutational bias could be detected as an additional factor 

governing synonymous codon usage in vertebrates. In plots that compare the effective number 

of codons to base composition, a normal distribution is expected if mutational bias solely 
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governs synonymous codon usage in vertebrates. For each species, most genes follow such a 

pattern. In addition, highly expressed genes do not tend to cluster in any one section of each 

plot. A more extensive analysis into the source of variation among synonymous codon usage 

choice may be obtained through a CA plot. From the examination of the level of variation 

contained in each axis, it became apparent that there was a single source of variation in 

synonymous codon usage that did not correlate with gene expression in any species, but 

strongly correlated with GC3 content in all species. I also examined if axis 2 correlated with 

gene expression, but this was not the case. If mutational bias towards GC-richness were the 

sole force governing synonymous codon usage, one may expect to observe a higher GC 

content in the third codon position, which is under less selective constraint (Grocock and 

Sharp, 2002). In this study, the average GC content of each species was approximately 52%, 

while the average GC3 content was 60%.  

 In summary, this chapter presents the first systematic study into the cause of 

synonymous codon usage in vertebrates. Although neutral processes undoubtedly play a 

substantial role in synonymous codon selection, Yang and Nielson (2008) suggested that there 

was possible evidence for an extremely weak selective force governing synonymous codon 

usage in humans. This investigation agrees that, in addition to mutational bias, translational 

selection appears to be an extremely weak force governing synonymous codon usage in 

vertebrates. 

  

!

 
!
!
!



!
!

!157!

!
Chapter 5: Concluding remarks 

!
!
 The aim of this thesis was to combine increased genomic sequence and expression 

data availability with complementary methodological advancements to address questions 

pertaining to vertebrate molecular evolution from a novel perspective.  

 Chapter 2 coupled comparative genomics and protein-protein interaction network data 

to explore the relationship between the structure of the primate PIN and the duplicability of 

the genes encoding its components. A key methodological advancement exploited in this 

study was the development of an algorithm that allowed for the comparison of phylogenetic 

tree topologies in the presence of gene duplications (Marcet Houbon and Gabaldon, 2010). 

This novel algorithm may at least partially explain why this study found evidence for 

significant topological similarity between physically interacting proteins, contrary to a recent 

similar investigation in yeast (Kelly and Stumpf, 2010). This study also exploited the 

availability of high quality genomes, an essential factor given that Milinkovitch et al. (2010) 

recently demonstrated that low-coverage genomes tend to generate striking artifacts in gene 

duplication events.  

 In the third chapter, an attempt is made to estimate the timing of the speciation event 

between polar bear and giant panda, in the hope that an accurate divergence estimate would 

aid future studies that explore the radiation of ursine bears. The investigation benefitted from 

almost 30 times more nuclear sequence data per bear species than the current largest bear 

phylogeny study using nuclear data. Even this increase in data, combined with our current 

knowledge of the fossil record in a Bayesian framework, was not enough to understand the 

estimation of divergence between these two species. This should spur the quest to sequence 

more bear genomes, which should finally resolve the enigmatic divergence between these two 

species. In addition, the implementation of a singleton analysis was an effective method to 
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demonstrate the heterogeneity that exists between the sequences of the data set. Careful 

consideration of sequence heterogeneity was also necessary in chapter 4. Once CA plots had 

been constructed, it became clear that some species exhibited an unusual pattern of codon 

usage. However, on further examination, I observed that those genes were among the poorly 

sequenced in the data set. Thus, it is vital to be aware of sequence heterogeneity in any 

molecular evolutionary study. 

 The search for evidence that translational selection governs synonymous codon usage 

in vertebrates has proven to be challenging, and until now, widespread detection of such 

selection in vertebrates has been evasive. The investigation described in chapter 4 presents, to 

my knowledge, the first systematic study demonstrating that mutational bias is a key force 

affecting synonymous codon usage in vertebrates. In addition, the observations indicate that 

translational selection may be an additional widespread, albeit weak, selective force that 

governs the use of synonymous codons in vertebrates.  

 This thesis is a testimony to an obvious progression in the field of molecular 

evolution. For example, a decade ago, the studies in this thesis could not have been achieved, 

due to a lack of vertebrate genome sequence data, expression data and protein-protein 

interaction network data. In addition, some of the crucial methodological concepts, such as 

the CDC index and the treeKO algorithm, were yet to be devised. A progression of concept 

development of this extent is undoubtedly promising for the next decade, and future in 

general, of molecular evolutionary investigations. 

! !
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     Appendix 

Appendix A1: Bayes Factor Analysis 
!
Each model versus the deconstrained model (that was generated from multidistribute): 
UGam = 0.045054 [-0.393527: 0.097022] 
Ln = -0.54 [-0.587666: -0.29091] 
CIR = -0.05 [-0.08: 0.102636] 
 
!
!
Equation that was used to compare models: 
!
!
!"#$%!!
!"#$%!! =!"#$%&−!"#$%&![!!"#$%&!"#!- !"#$%&!"#!:!"#$%&!"#!- !"#$%&!"#!! ] 
!
!
!
 
Comparison of each molecular clock model to every other model: 
UGam versus CIR: 

!"#$
!"# = 0.045054+ !0.05! !−0.393527− 0.102636: 0.097022+ 0.08  

 
!"#$
!"# = 0.095054! – 0.496163: 0.177022  

!
!
 
UGam versus LN: 

!"#$
!" = 0.045054+ !0.54! !−0.393527+ 0.29091: 0.097022+ 0.587666  

 
!"#$
!! = 0.585054! −0.102617: 1.557886  

!
!
 
CIR versus LN: 

!"#
!" = −0.05+ !0.54! !−0.08+ 0.29091: 0.102636+ 0.587666  

 
!"#
!" = 0.49! 0.21091: 0.690302 !
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Abstract

Although gene duplications occur at a higher rate, only a small fraction of these are retained. The position of a gene’s encoded
product in the protein–protein interaction network has recently emerged as a determining factor of gene duplicability. However,
the direction of the relationship between network centrality and duplicability is not universal: In Escherichia coli, yeast, fly, and
worm, duplicated genes more often act at the periphery of the network, whereas in humans, such genes tend to occupy the most
central positions. Herein, we have inferred duplication events that took place in the different branches of the primate phylogeny.
In agreement with previous observations, we found that duplications generally affected the most central network genes, which is
presumably the process that has most influenced the trend in humans. However, the opposite trend—that is, duplication being
more common in genes whose encoded products are peripheral in the network—is observed for three recent branches,
including, quite counterintuitively, the external branch leading to humans. This indicates a shift in the relationship between
centrality and duplicability during primate evolution. Furthermore, we found that genes encoding interacting proteins exhibit
phylogenetic tree topologies that are more similar than expected for random pairs and that genes duplicated in a given branch of
the phylogeny tend to interact with those that duplicated in the same lineage. These results indicate that duplication of a gene
increases the likelihood of duplication of its interacting partners. Our observations indicate that the structure of the primate
protein–protein interaction network affects gene duplicability in previously unrecognized ways.

Key words: gene duplicability, protein–protein interaction network, network evolution, primate evolution.

Introduction
One of the key insights provided by fully sequenced genomes
is the pervasiveness of gene duplication and loss in all organ-
isms (Ohno 1970; Zhang 2003), which has resulted in
modern-day genomes being replete with multigene families
and a confusing pattern of orthologs and paralogs distrib-
uted throughout life on the planet. However, genes widely
differ in their propensity to retain duplicates, whereas some
gene families are represented by dozens or even hundreds of
members in a given genome, others remain as singleton genes
over time. This observation naturally leads to the key question
concerning why genes duplicate and the even bigger
question of what constraints exist that might prevent dupli-
cations from occurring or at least retard their rate of
occurrence.

Gene duplication is often the key for understanding the
origin and evolution of important advantageous traits. For
example, the acquisition of color vision in vertebrates is the
result of the duplication of retinal visual pigment genes
(Yokoyama 2002), and salivary amylase gene copy number
is positively correlated with dietary starch intake in human
populations (Perry et al. 2007). On the other hand, gene du-
plication is a significant factor in the pathogenesis of various

diseases such as cancer (Slamon et al. 1987; Lahortiga et al.
2007). A duplicated gene is very likely to be lost unless it offers
a selective advantage to the organism in which it is found, and
therefore, only a fraction of duplicated genes are retained
after duplication (Ohno 1970; Lipinski et al. 2011). Over the
past decade, the combination of genomic and functional data
has allowed us to identify the factors correlating with gene
duplicability, that is, the tendency to retain both gene copies
after duplication. These factors include gene function
(Marland et al. 2004) and complexity (Papp et al. 2003;
Yang et al. 2003; He and Zhang 2005), subcellular location
(Prachumwat and Li 2006), and timing of expression during
development (Castillo-Davis and Hartl 2002; Yang and Li
2004). Yet, a large fraction of the variability of gene duplic-
ability remains unexplained.

Genes and proteins rarely act in isolation, and over the past
few years, in particular, we have been gaining a better under-
standing of the complex networks of interactions in which
these molecules find themselves. The high throughput accu-
mulation of interactomic data now allows us to investigate
the relationship between the patterns of molecular evolution
of genes and the position that their encoded products occupy
in protein–protein interaction networks (PINs) (see Cork and
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Purugganan 2004; Eanes 2011; Zera 2011; Alvarez-Ponce et al.
2012). The position of a protein in the network can be mea-
sured from its network centrality, which can be computed as
its degree (number of proteins with which it interacts), be-
tweenness (number of shortest paths between protein pairs
to which it belongs), or closeness (the inverse of the average
distance to all other proteins in the network) (Borgatti 2005;
Mason and Verwoerd 2007). Some aspects of the evolution of
genes have been shown to be affected by the centrality of
their encoded products in the PIN (e.g., Luisi et al. 2012). For
instance, genes occupying the most central positions tend to
be more selectively constrained (Fraser et al. 2002; Hahn and
Kern 2005; Lemos et al. 2005). Although gene duplicability is
also affected by centrality, the direction of the relationship
between centrality and duplicability is not universal. In E. coli,
yeast, and fly, singleton genes tend to occupy more central
positions in the network than duplicated genes (Hughes and
Friedman 2005; Prachumwat and Li 2006; Makino et al. 2009).
A possible explanation for this phenomenon is that duplica-
tion of a gene may disrupt the dosage balance of the inter-
actions in which it is involved (Veitia 2002; Papp et al. 2003),
and this may have more deleterious effects for the most
highly connected genes. Conversely, duplicated genes tend
to be more central than singleton genes in the human PIN
(Liang and Li 2007), which is a derived character resulting
from the high duplicability of metazoan-specific genes
(D’Antonio and Ciccarelli 2011). However, it remains unclear
why this different pattern is observed in humans. These con-
trasting observations indicate that, although network
position has a clear effect on a gene’s duplicability, the rela-
tionship between duplicability and PIN centrality has under-
gone modification in the vertebrate lineage. This dynamic
behavior of the relationship between centrality and duplic-
ability opens the question of whether more shifts have taken
place during evolution and, if so, how often did they occur
and when.

Further evidence for the dependence between the position
of genes in an interaction network and their patterns of evo-
lution comes from the observation that genes encoding in-
teracting proteins tend to exhibit correlated evolutionary
histories (for a review, see Lovell and Robertson 2010). For
example, their rates of evolution are more similar than
expected from random protein pairs (Fraser et al. 2002;
Lemos et al. 2005; Alvarez-Ponce et al. 2011). This similarity
is generally attributed to molecular co-evolution or to inter-
acting proteins being subject to similar evolutionary forces
and it can be potentially used to infer protein–protein inter-
actions from sequence data (Codoñer and Fares 2008; Fares
et al. 2011). For instance, several studies have shown that
interacting genes manifest phylogenetic histories that are
more similar than expected in a random network, as evi-
denced by the similarity in the lengths of the branches in
the phylogeny. However, gene tree similarities have usually
been assessed using the mirrortree approach, which relies on
the underlying distance matrices (Goh et al. 2000; Pazos and
Valencia 2001; Pazos et al. 2008). It is less clear whether the
actual phylogenetic trees inferred from interacting proteins
are more topologically similar than expected from random

protein pairs. In fact, Kelly and Stumpf (2010) found only
negligible evidence for such an increased level of similarity
between pairs of trees inferred from interacting proteins in
sets of yeast orthologous sequences. However, both the
mirrortree approach and the approach used by Kelly and
Stumpf rely on sets of 1:1 orthologs. Although computation-
ally convenient, this approach does not address the potential
gene tree similarity resulting from similar duplication histo-
ries. Almost 20 years ago, it was hypothesized that interacting
genes may tend to exhibit topologically similar phylogenetic
trees owing to co-duplication at similar evolutionary times
(Fryxell 1996). Arguably, duplication of a gene with interacting
partners may be deleterious unless the interacting genes
co-duplicate soon after or before the event (Papp et al.
2003). Alternatively, the functional diversification of dupli-
cated genes could be facilitated by a pre-existing heterogene-
ity in proteins that interact with their products (Fryxell 1996).
Although a number of examples of correlated tree topologies
for interacting genes have been reported (e.g., Fryxell 1996;
Koretke et al. 2000; Alvarez-Ponce et al. 2009), an analysis
at the level of the entire interactome has not been carried
out to date.

Herein, we combine comparative genomics and protein–
protein interaction data to explore the relationship between
the structure of the primate PIN and the duplicability of genes
encoding its components. For that purpose, we inferred the
gene duplication events that took place in each of the
branches of a phylogeny consisting of six primates and one
rodent and evaluated the dependence between the duplic-
ability of genes and the position of their encoded products in
the PIN. The results revealed a complex relationship between
network position and duplicability. We found that 1) in agree-
ment with previous observations, duplicated genes act at the
most central positions of the human PIN; however, when we
examined the trend across different portions of the primate
phylogeny, the opposite (i.e., gene duplication preferentially
affecting genes whose encoded products are peripheral in the
PIN) was observed for genes duplicated in the external branch
leading to humans and the two internal branches subtending
the human/chimpanzee and the human/chimpanzee/gorilla
clades, indicating that the relationship between duplicability
and centrality has undergone modification more than once
during animal evolution; 2) genes encoding interacting pro-
teins exhibit more similar tree topologies than expected in a
random network; and 3) genes that duplicated in a given
branch tend to interact with genes that duplicated in the
same branch, indicating that the duplication of a gene in-
creases the likelihood of duplication of its interacting partners
in the network. Taken together, these results indicate that the
structure of the primate network constrains the patterns of
duplication of their components at multiple levels and in a
dynamic manner.

Materials and Methods

Genomic Data
We retrieved all protein-coding sequences (CDSs) and family
assignments for human, chimpanzee, gorilla, orangutan,
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macaque, marmoset, and mouse from the Ensembl database
(version 61; Flicek et al. 2011). We eliminated the following
from our analyses: 1) coding sequences that were interrupted
by a stop codon or whose length was not a multiple of three;
2) sequences that had not been assigned to any gene family;
and 3) gene families consisting of less than four sequences.
After this filtering, a dataset comprising 125,999 genes belong-
ing to 12,158 gene families was retained.

Phylogenetic Tree Reconstruction and Duplication
Inference
For each gene family, we aligned the protein sequences using
MUSCLE (Edgar 2004). The resulting protein alignments were
used to guide the alignment of the corresponding CDSs using
TranslatorX (Abascal et al. 2010). The CDS alignments were
subsequently used to reconstruct Bayesian phylogenetic trees
using SPIMAP (Rasmussen and Kellis 2011). Gene duplica-
tions were inferred using the species/gene tree reconciliation
approach implemented in the SPIMAP software and the spe-
cies overlap method (Huerta-Cepas et al. 2007; Gabaldón
2008) implemented in the ETE package (Huerta-Cepas et al.
2010). For these analyses, we used the reference species tree
provided in the study by Benton et al. (2009) (fig. 1).

We assigned each duplication event to a branch of the
reference species tree and to one or more human genes. For
each duplication node, we examined the species represented
in the descendant leaves. We assigned the duplication event
to the branch preceding the deepest node in the reference
species tree whose descendants include all the species
affected by the duplication. For instance, if sequences
descending from a duplication node included sequences
from all great apes, the duplication event was assigned to
the branch subtending the radiation of the great apes.
Subsequently, we assigned the duplication event to the set
of human genes that are the result of this duplication event or
are the closest human homologs to the genes involved in this
duplication. If there was at least one human gene in the set of
descendant leaves of a duplication node, the duplication

event was assigned to this human gene or set of genes.
Otherwise, we systematically examined the parental node
of that node until the descendant leaves contained at least
one human homolog.

Network-Level Analysis
The human interactome was assembled from the interactions
available from the BioGRID database version 3.1.81 (Stark
et al. 2011). Only nonredundant physical interactions
among pairs of human proteins with an Ensembl ID were
considered. The network (termed PIN0) contains 9,087 pro-
teins connected by 39,883 interactions. For each protein,
degree was computed as the number of interacting partners,
and betweenness and closeness centralities were computed
using the NetworkX package (http://networkx.lanl.gov/).
Proteins not represented in the PIN0 network were not
used in network-level analyses.

We evaluated whether the phylogenetic trees of genes
encoding interacting proteins were more similar than ex-
pected in a random network and whether genes that dupli-
cated in a given branch of the species tree tend to interact
with genes that duplicated in the same branch. For that
purpose, a subnetwork containing only proteins with a
nontrivial tree was used (PIN1; supplementary fig. S1,
Supplementary Material online). We used as statistics the
average tree topological similarity of interacting proteins
(see below) and the number of interactions among proteins
encoded by duplicated genes. The statistical significance of
measured network parameters was evaluated from an ensem-
ble of 250 or 10,000 randomized networks. Random networks
were generated using a network rewiring approach. Each
random network was generated from PIN1 by repeatedly
choosing two edges at random (e.g., A–B and C–D) and
swapping them (yielding A–D and C–B, or A–C and B–D).
This operation was iterated 100!m times on each random
network, where m is the number of edges. Therefore, each
random network contains the same nodes, the same number
of edges, and the same degree for each node as the original
network. P values were computed as the proportion of
random networks with a parameter value higher or equal
to the observed one.

To discard the potential impact of confounding network
features in our results, analyses were repeated on two subnet-
works of PIN1. PIN2 is a subnetwork of PIN1 with no self-
interactions or interactions among proteins encoded by
paralogous genes; and PIN3 is a subnetwork of PIN2 without
interactions among proteins encoded by genes locating in the
same chromosome arm (supplementary fig. S1, Supplemen-
tary Material online). A separate network ensemble was gen-
erated for each of these networks. The same restrictions used
to generate each subnetwork were imposed to the corre-
sponding ensembles, only allowing edge swaps respecting
these restrictions.

Comparison of Phylogenetic Trees
We used the “tree comparison” program from the treeKO
package (Marcet-Houben and Gabaldón 2011) to compare

Human

Chimpanzee

 Gorilla

 Orangutan

Macaque

Marmoset

Mouse

10203040
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FIG. 1. Phylogeny of the species included in the analysis. Divergence
dates were retrieved from the study by Benton et al. (2009). The
number above each internal branch (1–6) is the name that we have
assigned to that branch. Branches for which duplicated genes tend to be
less connected than nonduplicated genes are represented in gray.
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the tree topologies of pairs of interacting proteins. The “strict
distance” was used. Trees were rooted in the branch that
minimized the number of gene duplications in the tree.

Age of Human Genes
To establish the age of each human gene, we carried out a
similarity search against the nr database (downloaded on 12
October 2010; Pruitt et al. 2007) using the BLASTP algorithm
(Altschul et al. 1990). Only genes that aligned to more than
80% of the query sequence were retained. If at least 5% of the
hits corresponded to nonmetazoan genomes, the hu-
man gene was considered to be of premetazoan ancestry
(i.e., “ancient”).

Results

Identifying Duplication Events in the Primate
Phylogeny
We retrieved all CDSs for six primates (human, chimpanzee,
gorilla, orangutan, macaque, and marmoset) and one rodent
(mouse). After filtering the dataset (see Materials and
Methods), we retained a total of 125,999 genes belonging
to 12,158 gene families (supplementary table S1,
Supplementary Material online). For each family, we recon-
structed a phylogenetic tree using a Bayesian approach. Using
these phylogenetic trees, we inferred the duplication and loss
events that took place during the evolution of each family
using the gene tree/species tree reconciliation approach
(Goodman et al. 1979; Page 1994). This algorithm compares
each gene tree with an established species tree topology
(fig. 1), and discrepancies between the two are attributed to
duplication or loss events. Because inference of gene losses is
methodologically problematic (Hahn 2007), only gene dupli-
cations are considered in the current analysis. In addition to
the gene tree/species tree reconciliation approach, we used
the reconciliation-independent species overlap method
(Huerta-Cepas et al. 2007; Gabaldón 2008), which is based
on the pattern of species overlap in the descendant leaves
of each duplication node. The gene tree/species tree

reconciliation approach inferred a total of 22,969 duplications
across the studied phylogeny, whereas the more conservative
species overlap method inferred 15,814 duplications (table 1
and supplementary table S2, Supplementary Material online).
Unless otherwise stated, the results reported throughout this
article correspond to duplications inferred using the gene
tree/species tree reconciliation method; however, we carried
out all analyses in parallel using both approaches, with qual-
itatively equivalent results. These results are detailed in the
relevant tables, and all analyses and data are available in the
Supplementary Material online or on request from the
authors.

We estimated an overall gene duplication rate of 0.00348
duplications/gene/My across the phylogeny of the studied
species. However, we found that the duplication rate varied
widely across the different branches of the tree, ranging from
0.0012 duplications/gene/My on the chimpanzee external
branch to 0.0252 duplications/gene/My on the internal
branch subtending the human, chimpanzee, and gorilla
clade (labeled as branch 2; see table 1). This represents a
greater than 20-fold difference in duplication rate between
these branches. The remarkable acceleration in the rate of
gene duplication in branch 2 has been described previously
and has been suggested to be the result of changes in the
effective population size or the generation time during the
evolution of the great apes (Marques-Bonet et al. 2009). In
agreement with previous reports (Hahn et al. 2007), we ob-
served an increased rate of gene duplication in the primate
lineage (0.00388 duplications/gene/My) compared with the
mouse branch (0.0018 duplications/gene/My). Furthermore,
we observed an increased rate of duplication in the great apes
(0.0041 duplications/gene/My) compared with the average
rate in primates, also consistent with previous observations
(Fortna et al. 2004; Hahn et al. 2007).

Of particular interest in the assessment of gene duplication
is the issue of what kinds of genes have duplicated and in
which evolutionary time. For each branch in the species tree,
we obtained a list of human genes that are either the result of

Table 1. Summary Statistics for Each Branch of the Studied Phylogeny (Species/Gene Tree Reconciliation Method).

Branch Name Branch
Length (My)

Number of
Duplications

Rate of
Duplication

Number of
Human Homologs

Ancient Human
Homologs (%)

Ancient Human
Homologs in
PIN0 (%)

Human 6.5 495 0.0037 790 9.49 18.95

Chimpanzee 6.5 157 0.0012 217 10.60 30.77

Gorilla 8.0 424 0.0025 426 22.06 38.79

Orangutan 11.2 292 0.0013 342 22.22 41.82

Macaque 23.5 902 0.0018 731 32.15 45.41

Marmoset 33.7 1,526 0.0021 1,043 30.97 39.99

Mouse 61.5 2,584 0.0018 796 12.81 28.38

Branch 1 1.5 90 0.0030 179 17.32 26.47

Branch 2 3.2 1,655 0.0252 1,805 23.16 29.13

Branch 3 12.3 1,770 0.0071 1,906 21.30 26.99

Branch 4 10.2 2,127 0.0099 2,274 23.04 31.25

Branch 5 27.8 3,220 0.0055 3,108 21.30 26.15

Branch 6 — 7,727 — 8,668 20.72 22.83
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duplication events that occurred in that branch or the closest
human homologs to the genes involved in the duplications
that occurred at that branch (see Materials and Methods).
We considered whether each of the resulting gene lists was
enriched in certain Gene Ontology (GO; Ashburner et al.
2000) terms. For that purpose, we compared the frequency
of each GO term in the list of duplicated genes with the rest of
the human genome using the FatiGO software (Al-Shahrour
et al. 2004), which specifically seeks to find significant associ-
ations between GO terms and lists of genes. A total of 67
unique biological processes are enriched among genes dupli-
cated in any of the external branches of the phylogeny (sup-
plementary table S3, Supplementary Material online). In
general, we observed enrichment in the “reproduction,”
“transcription,” “translation,” and “environment percep-
tion” GO categories, in agreement with previous results
(e.g., Demuth and Hahn 2009; Huerta-Cepas et al. 2007).
Interestingly, we observed a clear enrichment in GO catego-
ries associated with olfactory transduction in mouse-specific
duplications, as reported previously by Niimura and Nei
(2005, 2007).

From these results, we can conclude that our dataset and
treatments of the data are in line with previous work. In this
study, we have conducted an interactome-wide analysis of
gene duplication.

The Relationship between Centrality and Duplicability
Underwent Modification during Primate Evolution
Having identified the genes that underwent duplication in
each branch of the phylogeny of the studied species, we
sought to investigate the relationship between the structure
of the network and the duplicability of its components. For
that purpose, we assembled a human interactome (termed
PIN0) from all interactions available in the BioGRID database
(Stark et al. 2011). For each gene in the network, we com-
puted three centrality measures (degree, betweenness, and
closeness) and compared their values for nonduplicated
genes and genes that underwent duplication in any branch
of the phylogeny. In agreement with previous observations in

the human interactome (Liang and Li 2007; D’Antonio and
Ciccarelli 2011), we found that duplicated genes occupy more
central positions in the human PIN than nonduplicated genes
using the Mann–Whitney U test (P = 2.89! 10"13 for degree;
P = 3.01! 10"10 for betweenness; and P = 2.11! 10"14 for
closeness; supplementary table S4, Supplementary Material
online, and fig. 2). Crucially, however, this analysis only
takes into account whether genes underwent duplication in
any branch of the phylogeny, and therefore, it does not con-
sider the specific branches on the species tree in which those
duplications occurred. A more interesting analysis is to con-
sider duplications that happened at approximately the same
time and whether different parts of the interactome were
perturbed by duplication at different times.

We conducted an analysis that partitioned duplication
events into the branches in the phylogeny in which they
occurred. We observed that duplicated genes exhibit a
higher average degree (i.e., number of interacting partners)
than nonduplicated genes in 10 of the 13 branches of the
species tree, with statistically significant differences in 5 of the
branches (supplementary table S4, Supplementary Material
online, and fig. 2). Unexpectedly, the opposite trend (i.e., a
higher degree for nonduplicated genes) is observed in the
three remaining branches (the external branch leading to
the human lineage and internal branches 1 and 2), with sta-
tistically significant differences in two of these branches (the
human branch and internal branch 1; supplementary table S4,
Supplementary Material online, and fig. 2). We obtained sim-
ilar results when we used betweenness and closeness as the
measures of network centrality and when the more conser-
vative species overlap method was used as the method for
inferring duplication events (supplementary table S4,
Supplementary Material online). Therefore, despite the
general tendency of duplications to occur at the most
central genes of the network, the relationship between cen-
trality and duplicability has inverted during the primate
radiation.

These observations presents us with a picture of the rela-
tionship between network position and gene duplicability
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that is more complex than has been reported previously and
that up to now was assumed to be the general rule for ver-
tebrates. To gain a more complete understanding into the
relationship between the structure of the network and the
patterns of duplication of its components, we considered
whether duplications of genes encoding interacting proteins
were correlated.

Interacting Proteins in the Human PIN Tend to
Exhibit Topologically Similar Phylogenetic Trees
For each pair of interacting proteins, we compared the topol-
ogies of the corresponding phylogenetic trees using the
treeKO algorithm (Marcet-Houben and Gabaldón 2011).
We used the “strict distance,” which takes into account
both the patterns of speciation and the duplication and
loss patterns. For this analysis, we used a subnetwork of
PIN0 (termed PIN1; see supplementary fig. S1,
Supplementary Material online) that contained only proteins
encoded by genes capable of reconstructing nontrivial phy-
logenetic trees (those belonging to gene families with four or
more members). According to the treeKO algorithm, trees
derived from interacting proteins exhibit an average distance
of D = 0.319. To assess the significance of this value, we com-
pared it with a null distribution obtained from a set of ran-
domized networks with the same nodes, number of
interactions, and degree for each node as the original network
(PIN1; see Materials and Methods). Of 250 randomized ver-
sions of PIN1, none showed a D value lower than or equal to
the observed one (average value for the simulations,
D = 0.339; P< 0.004; fig. 3), indicating that interacting pro-
teins in the human interactome manifest tree topologies
that are more similar than expected from a random network.

This similarity might be the result of molecular co-
evolution of genes encoding interacting proteins. However,
a number of features of PINs might also produce such a
similarity, and their effects should be ameliorated as much

as possible to eliminate potential sources of confounding bias.
First, PINs are known to be enriched in self-interactions (i.e., in-
teractions among identical proteins) and interactions among
proteins encoded by paralogous genes (Ispolatov et al. 2005;
Pereira-Leal et al. 2007; Alvarez-Ponce and McInerney 2011).
Because genes involved in these interactions are represented
in the same phylogenetic trees, this enrichment could poten-
tially contribute to the low observed D value. To discard this
possibility, analyses were repeated in a subnetwork of PIN1 in
which all such interactions were removed (PIN2; see supple-
mentary fig. S1, Supplementary Material online). We found
that interacting proteins still exhibit a higher similarity than
expected in a random network (D = 0.331; average value for
the simulations, D = 0.338; P< 0.004), indicating that these
features do not affect our observations. Second, duplication
events sometimes affect large chromosomal regions, thereby
involving simultaneous duplication of multiple adjacent
genes, which would consequently have similar duplication
histories. In addition, genes encoding interacting proteins
tend to cluster together in the genome (Lee and
Sonnhammer 2003; Makino and McLysaght 2008). Taken to-
gether, these tendencies may also contribute to the similarity
in tree topologies observed among interacting proteins.
However, the topological similarity of trees in the observed
interactome is still significantly higher than expected at
random when interactions involving proteins encoded by
genes that localize to the same chromosome arm are also
removed (D = 0.331; average value for the simulations,
D = 0.338; P< 0.004 for PIN3; supplementary fig. S1,
Supplementary Material online).

These results indicate that genes encoding interacting pro-
teins manifest more similar tree topologies than expected
from random pairs and that this pattern is independent of
the enrichment of the network in self-interactions, interac-
tions among paralogous genes, and interactions among
genes that co-localize in the genome. This similarity can po-
tentially be the result of genes that encode interacting pro-
teins exhibiting similar duplication histories. To test this
possibility, we investigated whether the duplications of inter-
acting genes tend to occur in the same branches of the spe-
cies tree.

Genes Encoding Interacting Proteins Tend to
Co-duplicate in the Same Branches of the Phylogeny
We considered whether the human interactome was
enriched in interactions among proteins encoded by dupli-
cated genes. For that purpose, we computed the number of
interactions involving genes that have undergone duplication
in any branch of the phylogeny (N = 22,988 in PIN1) and
compared this number to the null distribution obtained
from a collection of 10,000 random networks. None of
these random networks exhibits an N value higher than or
equal to the observed one (P< 0.0001), indicating that du-
plicated genes tend to interact with each other in the real
network. This result holds when self-interactions and interac-
tions among paralogs (N = 21,872; P< 0.0001 for PIN2), and
interactions between genes locating in the same
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FIG. 3. Topological distance between the trees corresponding to pairs of
interacting proteins in the human interactome. The observed value in
the actual interactome (PIN1) is represented as an arrow, and the dis-
tribution inferred from 250 randomized networks is represented as a
histogram.
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chromosome arm (N = 21,152; P< 0.0001 for PIN3), are re-
moved from the analyses.

We carried out an equivalent analysis for genes duplicated
in each of the 13 branches of the studied phylogeny; that is,
we examined whether genes that duplicated in a given branch
tend to interact with genes that duplicated in the same
branch. For each branch i, we computed the number of in-
teractions between genes that underwent duplication in that
branch, Ni, and evaluated its statistical significance as above.
When all interactions are considered (PIN1), the Ni values are
significantly higher than expected from a random network
in all 13 branches (P< 0.05; supplementary table S5,
Supplementary Material online), indicating that genes that
have undergone duplication in each of these branches tend
to interact with each other. When self-interactions and inter-
actions among paralogs are removed (PIN2), the Ni values are
higher than the average values for the random networks for
10 of the 13 branches, with statistically significant differences
in 4 of the branches (the external branches leading to gorilla,
marmoset, and mouse, and internal branch 6; supplementary
table S5 and supplementary fig. S2, Supplementary Material
online). Qualitatively equivalent results were obtained when
interactions among genes in the same chromosome arm were
also removed from the analysis (PIN3; supplementary
table S5, Supplementary Material online). Similar results are
obtained using the species overlap method (supplementary
table S5, Supplementary Material online). These results
indicate that although the tendency of genes that duplicated
in a given branch to interact with each other is in part the
result of the enrichment of the network in self-interactions
and interactions among paralogs (Ispolatov et al. 2005;
Pereira-Leal et al. 2007; Alvarez-Ponce and McInerney 2011),
these features cannot completely account for the observed
trend.

Discussion
We used phylogenetic methods to accurately determine the
branches of the primate phylogeny at which each gene family
duplicated and investigated the relationship between a gene’s
pattern of duplication and the position of its encoded prod-
uct in the primate PIN. We addressed this dependency from
three perspectives. First, we evaluated the relationship be-
tween network centrality of a protein and the duplicability
of the encoding gene in the different branches of the studied
phylogeny. Second, we tested whether interacting proteins
manifest topologically similar phylogenetic trees, in particular,
when we look beyond the analysis of 1:1 orthologs. Finally, we
considered whether genes encoding interacting proteins tend
to duplicate at the same branches of the phylogeny. In all
three cases, we found new significant results, with some pat-
terns being more complex than previously thought.

The Dynamic Relationship between Centrality and
Duplicability
In E. coli, yeast, and fly, genes occupying central positions tend
to remain singleton, whereas those acting at the periphery of
the network can more often retain duplicated copies (Hughes

and Friedman 2005; Prachumwat and Li 2006; Makino et al.
2009). This has been attributed to the deleterious effects of
altering the dosage balance of protein–protein interactions
(Veitia 2002; Papp et al. 2003). In contrast with the pattern
observed in the aforementioned organisms, duplicated genes
tend to be more central in the human interactome (Liang and
Li 2007; D’Antonio and Ciccarelli 2011), indicating that the
relationship between duplicability and centrality has under-
gone modification during animal evolution. The pattern ob-
served in the human interactome has been attributed to the
possibility that the involvement of a gene in a higher number
of interactions would facilitate the functional diversification
of paralogs, for example, through tissue specialization or that
highly connected proteins would be required in higher dos-
ages (Liang and Li 2007).

Consistent with previous observations in the human
genome (Liang and Li 2007; D’Antonio and Ciccarelli 2011),
we found that primate genes that duplicated in any branch of
the species tree tend to be more central than singleton genes
(supplementary table S4, Supplementary Material online, and
fig. 2). According to the dosage balance hypothesis, duplica-
tion of a gene would be deleterious unless its interacting
partners underwent co-duplication soon after or before
(Papp et al. 2003). An extreme example of co-duplication is
whole genome duplication (WGD), which maintains the rel-
ative dosage of all balanced sets (Veitia 2004, 2005). Therefore,
the high content of ohnologs (i.e., genes resulting from the
two WGD events that occurred in early vertebrate evolution;
Wolfe 2000) in mammalian genomes (Nakatani et al. 2007;
Makino and McLysaght 2010) might potentially provide an
explanation for the lack of a negative association between
duplicability and centrality in mammals. Indeed, when the
relationship between duplicability and centrality was analyzed
separately for genes duplicated in each branch of the phylog-
eny, we found that genes that duplicated in the ancestral
branch to all studied species (branch 6; fig. 1), which include
ohnologs, tend to be more central than genes that did not
duplicate at that branch (supplementary table S4,
Supplementary Material online, and fig. 2). However, we
also observed the same pattern in most of the other branches
of the phylogeny (all of them post-WGD): Duplicated genes
encode more central proteins than nonduplicated genes
(supplementary table S4, Supplementary Material online,
and fig. 2). This indicates that the preferential duplication
of central genes is an ongoing process that can be observed
in relatively recent branches (e.g., the macaque branch, which
encompasses the last#23.5 My; Benton et al. 2009; figs. 1 and
2) and not solely the result of WGD.

Unexpectedly, the opposite relationship between duplic-
ability and centrality is observed in the external branch lead-
ing to humans and in the internal branches subtending the
human/chimpanzee (branch 1) and the human/chimpanzee/
gorilla (branch 2) clades, with statistically significant differ-
ences for the human branch and branch 1 (fig. 1). That is
to say, in contrast to the overall trend, genes that duplicated
in these lineages tend to occupy more peripheral positions in
the network than nonduplicated genes (supplementary table
S4, Supplementary Material online, and fig. 2), resembling the

3569

Duplicability in the Primate Protein Network . doi:10.1093/molbev/mss165 MBE
 at N

ational U
niversity of Ireland, M

aynooth on M
arch 7, 2013

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss165/DC1
http://mbe.oxfordjournals.org/


pattern observed in E. coli, yeast, and fly (Hughes and
Friedman 2005; Prachumwat and Li 2006; Makino et al.
2009). Therefore, the relationship between duplicability and
centrality seems to have undergone a reversal during the
evolution of great apes, revealing that this relationship is
highly dynamic.

D’Antonio and Ciccarelli (2011) recently showed that the
particular relationship between duplicability and centrality
observed in humans is the result of the high content of the
human genome in genes that arose late in evolution. Human
genes of ancient (premetazoan) origin exhibit the same pat-
tern as observed in E. coli, yeast, and fly (duplicated genes are
less central), whereas human genes of more recent origin
(those that originated within the metazoans) exhibit the op-
posite trend (duplicated genes tend to be more central). This
contrasting pattern observed among ancient and new human
genes could potentially provide an explanation for the differ-
ent relationship between centrality and duplicability that we
observe in the different branches of the phylogeny if duplica-
tions in the human branch and internal branch 1 involved
preferentially ancient genes. However, we found that the pro-
portion of ancient genes among genes that duplicated in
these branches (9.49–17.32%) is generally lower than for
genes that duplicated in the other branches of the phylogeny
(table 1) (qualitatively similar results are obtained when the
analysis is restricted to genes represented in the human inter-
actome; table 1), indicating that the different age of genes that
duplicated in the different branches of the phylogeny is not
the factor responsible for the heterogeneity in the relationship
between duplicability and centrality observed here.

Genes Encoding Interacting Proteins Exhibit
Correlated Tree Topologies and Duplication Histories
To gain further insight into the relationship between the
structure of the primate PIN and the duplicability of its com-
ponents, we then considered whether genes encoding inter-
acting proteins exhibit tree topologies that are more similar
than expected from a random pair of proteins. We found that
interacting genes exhibit phylogenetic trees with a higher
similarity than expected from a random PIN (fig. 3). This
tendency is not the result of the enrichment of the human
interactome in self-interactions and interactions among para-
logs (Ispolatov et al. 2005; Pereira-Leal et al. 2007; Alvarez-
Ponce and McInerney 2011) or the clustering in the
genome of genes encoding interacting proteins (Lee and
Sonnhammer 2003; Makino and McLysaght 2008). Our ob-
servations contrast with those by Kelly and Stumpf (2010).
They found only negligible evidence for pairs of yeast inter-
acting proteins presenting phylogenetic trees topologically
more similar than random pairs of proteins. At least three
possible reasons might account for the different results
obtained in both studies. First, they analyzed the yeast inter-
actome, whereas we focused on primates; therefore, it might
be possible that both interactomes would exhibit a different
trend. Second, the datasets used by Kelly and Stumpf
(2,528–5,109 proteins and 5,728–21,283 interactions) were
remarkably smaller than the one used here, which could

have limited statistical power in their analyses. Finally, they
inferred phylogenetic trees from 1:1 orthologous sets, whereas
we used entire gene families. Although computationally con-
venient, using 1:1 orthologous sets removes the effect of du-
plication and loss events in the tree topologies. Therefore, the
different results obtained in the analysis by Kelly and Stumpf
(2010) and our analysis may also potentially be the result, at
least partially, of interacting genes exhibiting similar patterns
of duplication and/or loss.

We found that the number of interactions between genes
that underwent duplication at any branch of the phylogeny is
higher than expected from a random network. This observa-
tion indicates that duplicated human genes tend to interact
with each other in the PIN (supplementary fig. S2,
Supplementary Material online), lending support to the hy-
pothesis that duplication of a gene may increase the likeli-
hood of duplication of its interacting partners (Fryxell 1996).
This trend holds true when genes that duplicated in each
particular branch of the phylogeny are analyzed separately
(supplementary table S5 and supplementary fig. S2,
Supplementary Material online). Although the significance
vanishes for most of the branches when self-interactions
and interactions among paralogs are removed, the trend re-
mains significant for four of the branches (the external
branches leading to gorilla, marmoset, and mouse and inter-
nal branch 6; supplementary table S5 and supplementary fig.
S2, Supplementary Material online). Interestingly, these
branches include the three longest branches in the phylogeny
(the external branches leading to mouse and marmoset and
internal branch 6; see fig. 1), suggesting that perhaps the lack
of significance in the remaining branches may be the result of
reduced statistical power in the shorter branches.
Alternatively, the absence of significance in these branches
might be a consequence of the reduced efficiency of selective
mechanisms favoring the co-duplication of interacting genes
in the same branches of the phylogeny. Indeed, we might
expect that the selective advantage of duplicating the inter-
acting partner of a protein would be often small.
Furthermore, changes in gene dosage can be compensated
by mechanisms different from complementary gene duplica-
tion, such as changes in expression levels, or may even be
accommodated by stochastic variation in levels of protein
expression. Therefore, the tendency of interacting genes to
co-duplicate in the same branches of the species tree may be
observed in organisms only in which natural selection is highly
efficient. Primates have a lower effective population size than
rodents, which is thought to involve a reduced efficiency of
natural selection (Ohta 1973; Lynch 2007); therefore, evolu-
tionary forces promoting the co-duplication of genes encod-
ing interacting proteins may be less efficient in primates.

Conclusion
Taken together, our analyses indicate that the position of
proteins in the primate PIN has an effect on the patterns of
duplication of their encoding genes, indicating that the
network imposes constraints on the fate of genes encoding
its components. First, gene duplicability depends on the cen-
trality of the encoded products in the network, although,
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interestingly, the relationship between centrality and duplic-
ability has varied during primate evolution. Second, interact-
ing proteins exhibit similar duplication histories, tending to
co-duplicate in the same branches of the phylogeny.
Furthermore, we observed that interacting genes exhibit to-
pologically similar phylogenetic trees, possibly owing to these
correlated duplication histories.

Although separate analysis of individual genomes repre-
sents a valuable tool to provide a first glance at the patterns of
gene duplication, this approach only allows a binary classifi-
cation of genes as singleton or duplicated, thus providing only
an aggregate overview. A more comprehensive characteriza-
tion of duplication events can be gained by including multiple
genomes in the analysis. This comparative approach allows,
for instance, assigning duplication events to particular
branches in the species tree. When applied to a relatively
small selection of mammals, this approach allowed us to ob-
serve a dynamical relationship between the structure of the
PIN and the patterns of duplication of genes encoding its
components. Future work is warranted to understand how
the structure of the PIN has influenced gene duplicability in
other lineages. In particular, it will be interesting to see the
relationship between duplicability and network position in
organisms with effective population sizes that are larger
than those for mammals. In addition, we note that a limita-
tion of our analysis is that currently available interactomic
data are highly incomplete and subject to a high rate of false
negatives (Bader et al. 2004; Deeds et al. 2006). The future
availability of more complete and accurate interactomes will
allow a deeper understanding of the relationship between
duplicability and centrality.

Supplementary Material
Supplementary tables S1–S5 and figs. S1 and S2 are available
at Molecular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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