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Abstract

Vector-based mapping is emerging as a preferred format in Location-based

Services(LBS), because it can deliver an up-to-date and interactive map visu-

alization. The Progressive Transmission(PT) technique has been developed to

enable the efficient transmission of vector data over the internet by delivering

various incremental levels of detail(LoD). However, it is still challenging to apply

this technique in a mobile context due to many inherent limitations of mobile

devices, such as small screen size, slow processors and limited memory. Taking

account of these limitations, PT has been extended by developing a framework of

efficient data management for the visualization of spatial data on mobile devices.

A data generalization framework is proposed and implemented in a software

application. This application can significantly reduce the volume of data for

transmission and enable quick access to a simplified version of data while preserv-

ing appropriate visualization quality. Using volunteered geographic information

as a case-study, the framework shows flexibility in delivering up-to-date spatial

information from dynamic data sources.

Three models of PT are designed and implemented to transmit the addi-

tional LoD refinements: a full scale PT as an inverse of generalisation, a view-

dependent PT, and a heuristic optimised view-dependent PT. These models are

evaluated with user trials and application examples. The heuristic optimised

view-dependent PT has shown a significant enhancement over the traditional PT

in terms of bandwidth-saving and smoothness of transitions.

A parallel data management strategy associated with three corresponding

algorithms has been developed to handle LoD spatial data on mobile clients.

This strategy enables the map rendering to be performed in parallel with a process

which retrieves the data for the next map location the user will require. A view-

dependent approach has been integrated to monitor the volume of each LoD for

visible area. The demonstration of a flexible rendering style shows its potential

use in visualizing dynamic geoprocessed data. Future work may extend this

to integrate topological constraints and semantic constraints for enhancing the

vector map visualization.
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Chapter 1

Introduction

1.1 Using maps on mobile devices

Significant development and changes are taking place in mobile technologies. The

laptops and personal computers of the last two decades have evolved into all-in-

one smartphones. Since wireless internet and mobile devices are now ubiquitous,

citizens are no longer constrained to use computing devices and services in a single

specific location. They are flexible to conduct their daily business and activities

with mobile applications from anywhere at anytime (i.e. social network, tourist

guide and road navigation). It has become increasingly popular to seek infor-

mation related to spatial characteristics. Many mobile applications have been

developed to deliver these types of location information using digital maps (e.g.

Google Maps [Google, 2012] and Mapquest [Mapquest, 2012]). The combination

of these map-based services with mobile applications are called Location- based

Services (LBS) [Steiniger et al., 2006]. In recent years LBS have obtained great

success in the global marketplace mainly because they provide citizens with a

convenient way to access location-based information using their mobile devices.

Raster-based maps are currently the most commonly-used types of maps in

current LBS. These maps are pre-rendered on the server side and are stored ex-

plicitly as digital image files in multiple scales with different resolutions. This

divides a map into small map images called “tiles”. When a user requests a map

in an LBS these tiles are delivered to the user (as shown in the right hand side
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of Figure 1.1a). When mobile users retrieve spatial information, the mobile ap-

plication will download a sequence of maps tiles corresponding to the scale and

resolution specified by the user. While this transmission method is efficient for

LBS mapping services, these pre-rendered maps do not always meet the require-

ments of all users of these services. Pre-rendered raster-based maps are provided

for a specific set of spatial scales and with a fixed cartographical style regardless

of the purposes for which the LBS is being used for. This is shown in the left hand

side of Figure 1.1a. As the popularity of LBS and mobile applications continues

to rise, new challenges and opportunities have arisen related to the techniques

and methodologies used to provide digital mapping.

1.2 Current problems with mapping in LBS

The recent development of mobile technologies has also sparked a dramatic in-

crease in the volume of geographic information being collected and being made

publicly available. This has seen the new phenomenon of volunteers forming

as “crowds” using the Internet and social media to “mash up” geographic in-

formation from various forms (e.g. GPS tracks, geocoded photographs, tracing

features from aerial imagery, social media activities) [Batty et al., 2010]. Up to

a few years ago, the only sources of spatial data and digital mapping products

were government agencies or commercial companies. Today this has completely

changed. These crowds are collecting spatial data and information themselves in

unprecedented volume and using social media and web technologies to manage,

edit, and distribute this data [Batty et al., 2010; De Longueville et al., 2010].

This “crowdsourcing” approach has rapidly gained popularity and some notable

examples exist. The built and natural environment of a rural or urban land-

scape may change dramatically, especially during natural hazards (e.g. Haiti and

Sendai Earthquakes). Volunteer geographic information (VGI) communities have

reacted spontaneously to these situations and generated vast amounts of crowd-

sourced geographic datasets in a very short time [Goodchild, 2007; Goodchild and

Glennon, 2010; Pultar et al., 2009]. For example, OpenStreetMap (OSM) [Open-

StreetMap] indicated that their volunteered mapping project in Haiti provided

the geospatial data for emergency planning for island inhabitants during the dev-
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astating earthquake of January 2010 [Heipke, 2010]. A detailed city map of the

capital city was created by the volunteers for OSM within a few days. Crucially

this map contained all of the most up-to-date spatial data. Traditional methods

of spatial data collection and management and subsequent map production would

not have been able to react or respond so rapidly. Whilst examples such as OSM

in Haiti are very impressive, the explosion of user generated spatial content in

recent years has introduced many problems related to managing and processing

these large dynamic datasets for map services. Most traditional tile-based map

services are challenged to provide up-to-date spatial information efficiently, since

they must frequently update their spatial databases and generate timely digital

map tiles. Depending on the size of these databases, these updating processes

could take hours or even days. In summary, mapping applications using pre-

rendered maps tiles may fail to capture and deliver timely spatial information for

time crucial LBS tasks such as emergency or humanitarian assistance during en-

vironmental disasters. Currently, there is a lack of effective techniques to handle

the management and visualisation of dynamic spatial data (such as VGI data)

for use in LBS applications.

Using maps in a mobile context also presents some different challenges. Visu-

alizing maps on mobile devices is fundamentally different to the standard office en-

vironment where one visualizes maps in desktop machines. For example, a tourist

is walking in a city centre and trying to find a Chinese restaurant. He/She may

use a mobile application whilst on the move and query to find spatial information

based on his/her current location. In this situation, it may be difficult for mobile

users to focus their attention on the small screen devices due to multi-tasking (e.g.

walking, avoiding other pedestrians and reading the map). Nevertheless, they still

expect to access the appropriate spatial data quickly [Burigat and Chittaro, 2005]

and potentially perform some related queries on this data. For example, selecting

all the restaurants on a street displayed on the map and retrieving correspond-

ing customer reviews. However, it is difficult to provide such interactions if the

mapping data is only presented as flat raster images [Reichenbacher, 2004].

On the other hand, vector-based mapping approaches have many distinct ad-

vantages in visualizing maps in LBS. These include flexible rendering style, more

functionality for interaction and faster delivery of timely spatial data [Reichen-
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bacher, 2004]. Vector data provides enormous potential for visualizing spatial

data. Examples of formats include: Scalable Vector Graphics (SVG) formats

[Neumann et al., 2003], XML formats [Lehto and Sarjakoski, 2005] and recently

HTML5 format s[Boulos et al., 2010]). When a user of an LBS requests a map of

a region, instead of sending the pre-rendered map tiles, the vector data itself is

transmitted to his/her mobile device where it is then rendered in a mobile client

application ( 1.1b).

However, efficiently transmitting large amounts of vector data over the In-

ternet is still a challenging problem [Antoniou et al., 2009; Buttenfield, 2002].

There have been many notable efforts made to overcome the limitations of vec-

tor data transmission for visualization purposes. Map generalization approaches

can extract map representations with significant data reduction from the origi-

nal datasets [Agrawala and Stolte, 2001; Buttenfield and McMaster, 1991; Lehto

and Sarjakoski, 2005; McMaster and Shea, 1992; Mustafa et al., 2006; Neun and

Burghardt, 2009; Oosterom, 1993]. Progressive transmission approaches have

been applied to this problem to exchange spatial data over the internet [Augusto

et al., 2009; Bertolotto and Egenhofer, 2001; Buttenfield, 2002; Follin et al., 2005a;

Haunert et al., 2009; Yang, 2005]. These approaches send data in incremental

levels of detail(LoD) so that users can efficiently access the data. Small packages

of data are transmitted with possibly the most relevant details transmitted first

[Bertolotto, 2007]. Despite of the success of progressive transmission approaches,

their main limitation is that they have mainly focused on the desktop computer

as the visualisation medium. Very few of these approaches can be applied di-

rectly to visualisation on mobile devices because of their constraints imposed by

the mobile device itself. The intrinsic hardware limitations of mobile devices, as

opposed to desktop computers, makes effective delivery of vector-based spatial

data a challenging problem. Nevertheless the approaches mentioned above can be

extremely beneficial for developing adapted approaches for use specifically in the

mobile context [Bertolotto, 2007; Bertolotto and McArdle, 2011]. These adapted

approaches will require modifications which must take account of the following

constraints:

• Small screen size: The small screen display size on the mobile device is

highly restrictive for visualization of large-scale spatial data. Users only

5



can view the map at limited resolution levels.

• Computing resources: The limited computation power on mobile devices re-

stricts the type of computation that can be performed for visualization. The

transfer of data across the telecommunications network will also consume

computational resources on the mobile device.

• Networking issues: The wireless communication network can suffer from

problems of low bandwidth or even interruption. This is often beyond

the control of the users. With low bandwidth connections mobile users

must often wait a long time to receive a full dataset of spatial data before

visualization can commence.

While advances in technology may help to overcome them, the development of

mobile applications for LBS must still take these constraints into account in order

to provide effective visualizations for the mobile user. With these constraints in

mind we now summarize the key research questions in this thesis as follows:

1. If the data source is dynamic (such as a VGI data source), can one effectively

use this source of vector data in LBS applications?

2. What are the key constraints of mobile devices which must be considered

in the design of spatial data management strategy for mobile client appli-

cations?

3. How can progressive transmission strategies be improved to provide smooth

and efficient visualization of spatial data in LBS mobile applications?

1.3 A data management strategy for the dy-

namic visualisation of maps on mobile de-

vices

With the emergence of LBS applications, many technological issues have arisen

when designing software solutions for the visualization of maps on mobile devices

6



as we discussed in Section 1.2. Efficient management of vector-based spatial data

is still a challenging problem on mobile devices. In this research, in order to

address the key challenges of visualization of dynamic spatial data on mobile

devices for LBS, we have proposed a framework to facilitate the management of

vector-based spatial data both in the server and mobile client environment. This

framework is illustrated in the flowchart in Figure 1.2. OpenStreetMap (OSM)

data, as a typical source of dynamic spatial data, is used as the case study in this

work. On the server side (corresponding to the left-hand side of Figure 1.2), we

researched and developed the following approaches to enhance data management

for dynamic data sources and deliver efficient transmission of that data:

• A data processing software application for processing spatial data in vector

format. The software can handle vector data extraction directly from a

database or spatial data, which is being streamed “live” from a dynamic

data source (e.g. OSM databases) [Ying et al., 2010b]. Data simplification

techniques are implemented in the software tool to reduce the amount of

data in the processed datasets in real time.

• A low redundancy data structure for storing and processing the spatial

data. This data structure is used by the proposed progressive transmission

scheme to organise the spatial data into increasing LoD (LoD0, LoD1, . . .,

LoDn). This data structure enables instant access to the coarsest version

of the spatial datasets (LoD0) from mobile applications. The subsequent

LoDs are then provided progressively with higher resolution until the final

full resolution LoD LoDn.

• A data selection strategy to enhance progressive transmission based on a

proposed heuristic model. The criteria of this model is based on the re-

sults of shape analysis experiments carried out as user trials [Ying et al.,

2010a, 2011]. A view-dependent progressive transmission technique [Corco-

ran et al., 2011a] is applied to deliver the suitable LoDs based on the results

of the criteria.

On the client side (corresponding to the right-hand side of Figure 1.2), a

series of data management strategies have been developed by carefully considering
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the limitations inherent in mobile devices for the task of dynamic spatial data

visualisation. We summarised these data management strategies as follows:

• A multi-threaded data management scheme has been designed in the mobile

client. It can schedule data downloading and data rendering in parallel in

order to speed up the data visualization.

• A set of algorithms have been developed corresponding to the threads in

the multi-threaded approach. These algorithms correspond to: data visu-

alization, data updating, and fetching of the next view. This algorithmic

approach is used in conjunction with a view-dependent progressive trans-

mission scheme in the client in order to decrease the amount of data trans-

mitted for irrelevant areas of the map visualisation while also avoiding the

overloading of the phone memory and disk space with spatial data.

• A user-motion capture method has been implemented to predict the screen

position where the user is most likely to move to on his/her next move

action on the map visualisation on screen. The predicted position is then

used as input to the algorithm for caching the spatial data that the user

will require next. This assists in overcoming the performance issues related

to telecommunication network latency.

• A flexible rendering approach is implemented to visualize the map dynam-

ically. The user can specify their preference in terms of map styling (for

example colour schemes).

This framework provides a comprehensive treatment to the issues of spatial

data management for the mobile client devices, including data processing, data

transmission and data visualisation. We outline the results of a number of ex-

periments which practically demonstrate its advantages (overall processing time,

data reduction and transmission, and smoothness of transmission and visualisa-

tion). This work demonstrates the practical potential of the proposed framework

that can be realised through implementation in a real-world LBS application.
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1.4 Research contributions

The overall intent and objective of this thesis was the proposal of a framework for

efficient management of the vector-based spatial data for visualization on mobile

devices. A broader objective was to develop this framework whilst working with

the constrained computing environment of mobile devices. This framework is

flexible to be applied to both static data sources (e.g. pre-setup data on a local

server) and dynamic data sources (e.g. streamed OSM data). Many existing

approaches in the literature can only manage static data, which has been pre-

computed [Bertolotto and Egenhofer, 2001; Cecconi, 2003]. Such approaches

cannot easily adapt to a dynamically updating spatial data source.

In this framework, the server application can process the requested spatial

data on the fly. For high resolution (potentially over-represented) vector data,

this framework performs data simplification processing to reduce the data vol-

ume whilst retaining the shape characteristics. Simplified initial datasets with a

suitable data representation quality are generated for immediate visualisation on

the client device. The incremental LoD data is then handled in a low redundancy

data structure for progressive transmission upon the user’s request [Follin et al.,

2005a]. The screen metric transformation is applied to transform the spatial data

for visualization on the small screen of mobile devices in required scale. Topolog-

ical consistency issues are examined in relation to the OSM datasets used in the

case-study.

The principle of progressive transmission is used in this framework for trans-

mission of vector spatial data. Based on a series of user trials and shape analysis

theory, a cost-benefit constrained model has been developed to improve the effi-

ciency of progressive transmission of large numbers of LoD refinements. A view-

dependent approach is integrated to select the LoD data within the user required

view for delivery [Corcoran et al., 2011a]. This cost-benefit constrained model

made the trade off of level-of-detail against visual importance of the shapes’ fea-

tures in the map visualisation. The novelty of this optimization process is that

this framework can maximise the use of potentially limited bandwidth to deliver

the relevant LoD for map visualisations in a smooth manner.

An automated data management strategy has been developed to enable low-
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capacity mobile clients (i.e. poor network connectivity, limited computational

resources, and low data storage budget) to visualize the spatial data effectively.

A number of algorithms have been developed to support a multi-threaded data

management strategy. This strategy can speed up visualization and prevent over-

loading data on the memory by discarding the irrelevant LoDs. The novelty of

our approach is that it uses the available computational resources more efficiently

whilst significantly reducing the overhead of memory usage for spatial data stor-

age on the device. Following on from this we successfully implemented a data

pre-fetching approach accompanied with real-time styling visualization of the

spatial information based on the user’s preference of visualisation scheme.

Overall we have identified the key challenges of managing spatial data in

mobile visualization applications. Despite the advances in mobile technologies in

the past number of years, this is still a non-trivial task. The experimental results

and the user trials demonstrated that the proposed framework can improve the

spatial data management on mobile devices whilst carefully understanding the

constraints of mobile devices. Several peer-reviewed conference papers and book

chapter articles have been published outlining the progress and results of this

research. They will be discussed and referenced, as appropriate, throughout the

proceeding chapters. This thesis work provides a comprehensive treatment of

the management of spatial data for visualization on mobile devices with useful

contributions to the current knowledge in this area. The work also provides

several opportunities for the further research work in the immediate and long-

term future.

1.5 Thesis organization

The remainder of the thesis is organised as follows:

Chapter 2 introduces the technical background and the related research work.

We discuss the issues of using spatial data in LBS and identify the key challenges

of handling spatial data for visualization on mobile devices. Then, we review a

number of current techniques related to these issues from the research fields of:

computer graphics, map generalization and progressive transmission.

Chapter 3 presents a model for processing the large quantities of vector-based
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spatial data on the application server. We describe an identification process for

the representation quality of spatial objects in a dataset and perform generaliza-

tion processing to reduce the amount of spatial data needed to represent these

objects. The experiments demonstrates that this approach preserves the overall

representation quality of the map representations in multi-resolution contexts.

The problem of small screen visualisation is dealt with by applying a screen

transformation metric.

Chapter 4 describes a software tool implementing the model from Chapter

3. In this research chapter, a software tool has been implemented to process

OSM data based on opensource tool. We demonstrate the advantages of this

approach with a comparison with the traditional mapping services. It has shown

an improved data access to dynamic data sources.

Chapter 5 designs and develops a framework for progressive transmission for

mobile clients. We use the principles of progressive transmission to organise data

into increasing LoD for transmission and subsequent visualisation. A series of user

trials are carried out to assess the usability of the generated map visualisations.

The results of these trials demonstrate the strength of progressive transmission.

For certain datasets, users do not perceive dissimilarities between the generalized

maps and the final delivered full resolution maps. We introduce a heuristic-based

approach with view-dependent techniques to arrange the delivery of the sequence

of LoD. We also describe some results which demonstrate that this approach

provides smoother transitions between sequential LoD than static approaches.

Chapter 6 presents and discusses the strategy of monitoring the spatial data

for visualization in the mobile clients. The design of this strategy considered the

limitations of network connectivity and data storage budget in the mobile devices.

A view-dependent progressive transmission approach is implemented to manage

the data delivery corresponding to the user’s current map view on-screen. A

multi-threaded data management approach is developed to deliver and visualise

the LoD efficiently in the mobile client. A predictive strategy is developed to

pre-fetch the data for the next user view within the rendering time of the current

view. The experimental results demonstrate the advances of this strategy in

managing the spatial data in the mobile client application particularly during

user interaction.
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Chapter 7 provides a summary of the work of this PhD research. We retro-

spectively evaluate the achievements in this thesis against the aims and objectives

in Chapter 1. In the evaluation, we discuss some improvements to this work in

immediate future work. The thesis closes with a discussion of the long-term vi-

sion and future direction for spatial data management and visualisation on mobile

devices.
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Chapter 2

Literature Overview and

Discussion

Location-based Services (LBS) are now emerging in a wide range of application

domains. It is crucial that these services access spatial data with appropriate

quality [Raper et al., 2007]. In practice, a data resource for an LBS could be up-

dating, at irregular intervals, extremely quickly (e.g. crowd sourcing datasets).

On the other hand, the data resource could be a relatively static dataset subject

to infrequent changes. The volume of spatial data has increased dramatically

in recent years. Traditional raster-based mapping applications are not flexible

for use in the provision of up-to-date spatial data. This is due to the poten-

tially long times required by tile generation processes. Vector-based mapping

solutions are emerging mainly because of their potential for higher quality visu-

alisation and increased user interaction possibilities. Nevertheless, vector-based

mapping applications still suffer from drawbacks that have prevented their wider

implementation and adoption. Considerable research has been carried out in re-

lated areas in recent years to address these issues related to transmission and

visualization of vector-based spatial data over the Web [Antoniou et al., 2009;

Buttenfield, 2002; Corcoran et al., 2011a; Yang, 2005; Yunjin and Ershun, 2011].

However, the ubiquitous nature of mobile devices means that challenges remain

in the management of spatial data for visualization.

In this chapter, we begin with a discussion of the characteristics of spatial
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data in LBS. This discussion has an emphasis on VGI data in Section 2.1. We

then identify the various issues of handling spatial data in LBS applications in

Section 2.2. Finally, we close this chapter with Section 2.3, which includes a

review of current solutions developed in related areas with emphasis on work

from computer graphics, map generalization and progressive transmission.

2.1 The use of spatial data in Location-based

Services

There has been an explosion of technologies allowing communication with global

computing and information infrastructures that connect billions of wireless mobile

devices. These technologies have also enabled mobile users to query the environ-

ment around them via LBS applications whilst the user is on the move. These

applications have a strong spatial component (i.e. location, proximity, distance)

and are usually associated with digital maps. LBS provide spatial information

based on the user’s current location or the locations which they intend to move to

at some later time [Krumm and Shafer, 2005]. LBS applications aim to make the

data accessible for mobile users from anywhere at any time [Ilarri et al., 2010].

This ubiquitous computing paradigm brings great convenience in terms of infor-

mation and data access. There are many popular LBS examples prevalent in

human daily activities, including: finding directions to a business or attraction,

obtaining news or information about the current location, making announcements

to contacts in one’s social networks, taking geo-located photographs or video and

among others.

The work of Raper et al. [2007] illustrates the enormous diversity of LBS

appearing and the wide range of application sectors that are represented. Along

with increasing usage of LBS in multi-disciplinary fields, these applications involve

the management of vast quantities of data. There are many different sources of

geospatial data, many of which have fundamentally different characteristics and

consequently impose a wide spectrum of requirements on the underlying LBS

applications. Steiniger et al. [2006] created an inverted pyramid for illustrating
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geospatial data usage in LBS. This is shown in Figure 2.1. General geospatial

data (e.g. weather or traffic reports) are the most commonly used geospatial data

and services in LBS. Meanwhile, there are some geospatial datasets which have

been collected specifically for LBS purposes. In the bottom of the pyramid, there

are these datasets, which could be collected for a very specific purpose such as

building data for indoor navigation (i.e. finding a conference room).

Figure 2.1: The Inverted Pyramid for geospatial data usage in LBS by Steiniger
et al. [2006]

Tryfona and Pfoser [2005] distinguished data in LBS according to its seman-

tics and intended use. The data consists of 3 principal components. These are

outlined as follows:

1. Domain Data: including spatial and temporal attributes (i.e. location

coordinates, spatial objects).

2. Content Data: describing LBS related contents (i.e. tourism attractions).
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3. Application Data: consisting of the user profile and the services provided

by the LBS (i.e. user preference data).

Mooney et al. [2010] catalogues geospatial data according to broader requirements

for LBS. They state that data for Points of Interest Queries (POI), routing and

navigational assistance, and other related services are the most popular. There

are many more classifications from different points of view, but they overlap in

many ways and often involve many of the same spatial query operations.

Recent advances in geoposition-enabled mobile devices and the emergence of

the geoweb have now empowered citizens to collect geographic information or, at

a minimum, annotate their content with geographic location information. This

information is stored in online databases. Some of these online spatial databases

not only provide derived maps for use in LBS, but also enable users to contribute

spatial data using LBS applications. The new forms of crowd-sourced spatial data

are being created through an increasing number of LBS activities. These activi-

ties include check-ins with location geotags using Foursquare [FourSquare, 2012]

or using GPS-enabled mobile phones which share the locations and movements

with friends on Facebook [Facebook, 2012]. Motivating individuals to act volun-

tarily is far cheaper than any alternative, and its products are almost invariably

available to all [Goodchild, 2007]. Moreover, these contributions are characterized

by locality (users contribute local knowledge) and by a very wide scope of con-

tent (pictures, restaurant reviews, jogging tracks, citizen gathered environmental

measurements, and so on). As Elwood [2008]) mentioned, the local knowledge of

these crowds is a very important factor in retrieving geographic information and

in documenting and mapping both spatial and non-spatial elements of a place.

The abundant spatial data from local contributors has the potential to be a very

useful data source for location based services [Goodchild, 2009].

This growing phenomena of citizens collecting geographic information has now

reached a critical mass and is deserving of a research focus as a fully fledged field

of inquiry within GIScience [Elwood, 2008; Weiner et al., 2002]. The research

term for this phenomena was “Volunteered Geographic Information”(VGI) and

was coined by Goodchild [2007] and Sui [2008]. VGI technologies and practices

are dramatically altering the contexts of geospatial data creation and sharing.

The proliferation of VGI has enabled many Internet users to contribute to the
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construction of rich and increasingly complex spatial datasets. For example,

as one of the most successful VGI projects, OpenStreetMap(OSM) is a collab-

orative project striving to create a free editable spatial database of the whole

world [Mooney and Corcoran, 2012b; Neis et al., 2011]. OSM contributors from

all around the world are encouraged to collect and collaboratively contribute

geographic information to the OSM online spatial databases. More recently,

OSM has begun to be used in commercial products (such as Nestoria, Mapquest,

Foursquare). OSM data and maps are now widely used in many domains of LBS.

OSM provides a new dimension to allow users to participate in accessing, editing,

and sharing up-to-date spatial data under a free and open data license. We use

OSM as it is currently the best example illustrating the process of how crowds of

citizens can contribute VGI data to an online database and how a successful VGI

project can share this data for use by LBS applications. A general logical frame-

work is depicted in Figure 2.2. In the left hand side of the figure, the contributors

are allowed to upload their VGI data in different formats to the online database.

The formats for crowd sourced VGI data are varied. Component 1, as seen in the

Figure 2.2, includes GPX lines from GPS devices and image data [Turner, 2006].

There are also numerous editor software packages (component 2) available such

as JOSM (Java for OSM) [JOSM, 2012]. These packages allow the preparation of

new data for OSM and the editing of current OSM data from desktop computers.

The user of these packages can then transmit this data to the OSM database

(component 3) through an API (Application programming interface).

As mentioned above, many commercial map services are now using OSM data

as a source to provide spatial information for LBS applications, as shown in the

right hand side of this figure. In a traditional tile-based map application environ-

ment, VGI data would be rendered in advance (offline) using a fixed style before

use in LBS (such as the Mapnik style [Mapnik, 2012])(component 4 in Figure 2.2).

When users perform a spatial query via these LBS applications, the map service

will automatically deliver a sequence of corresponding map tiles associated with

spatial information. This pre-rendering process may be time-consuming. More-

over, it is not flexible for delivery of up-to-date spatial information from frequently

updating VGI databases. As VGI data is an emerging trend in recent years, the

discussion will be heavily influenced by VGI data, there are still practical prob-

19



lems restricting the use of vector-based spatial data in LBS applications. Many

of these issues arise in handling vector-based spatial data in the map services.

We will now discuss these issues and challenges in the next section.

2.2 Spatial data handling issues for LBS

The increasing use of LBS results in a range of issues of data management. As

stated by Jiang and Yao [2006], “Geospatial data are one of the key components of

LBS, as in essence LBS are a kind of data or information services”. LBS provides

and delivers information or data to its users in a highly selective manner, by taking

the user’s past, present, or future location and other contextual information into

account. However, Tryfona and Pfoser [2005] argue that “data involved in LBS

have not been really examined in depth”. Mooney et al. [2010] also argue that if

geospatial data is not available which are fit for the purpose of the intended LBS

then it is unlikely that the LBS will be a success among users. The constraints

of mobile environments, the spatial property of location-dependent data, and

the movement patterns of mobile users also pose great challenges for the data

provision of location-based services to mobile users.

From the point view of mobile users, LBS applications must provide up-to-date

spatial data since location-based information often change frequently (e.g. newly

established bus stops, traffic diversions, shop relocation, etc). The maps in LBS

must be presented efficiently and accurately. This becomes crucially important

when these maps are being used for personal navigation. When users are using

LBS applications, they usually need to interact with spatial objects on the map

in order to query the related information (e.g. click a shop building on the map,

which represented as a polygonal object on the map, and pop up a customer

review about the shop).

Considering the dynamic characteristics of VGI data, there may be a require-

ment to adapt some methods of data management to process VGI data for LBS.

Moreover, there are some real-world examples already partially implemented us-

ing VGI like MapQuest. Mooney et al. [2011] argues that the VGI data and

information used by LBS for applications in urban environments must exhibit

the following characteristics:
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• be up-to-date and timely,

• be spatially accurate to such an extent that it is useful for most non-mission

critical type applications,

• be of high quality in terms of other characteristics such as semantics and

associated metadata.

Thus, several issues arising when using VGI in LBS mobile applications will be

discussed in the next subsections. We will take OSM as a case study to illustrate

these issues as follows:

• The large volumes of VGI data (section 2.2.1).

• Problems associated with the quality and precision of VGI data (section 2.2.2).

• The dynamic, real-time characteristics of VGI data. (section 2.2.3).

• The formats that VGI data can be transmitted in (section 2.2.4).

• Considerations of the mobile context within which the VGI data is being

used (section 2.2.5).

2.2.1 Large volume of spatial data

The availability of large amounts of spatial data has significantly increased. This

is essentially due to both the increasing number of different devices collecting

such data (i.e. remote sensing systems, environmental monitoring devices and, in

general, all devices linked to location-aware technologies) and the development of

distributed computing infrastructures (e.g. Web 2.0 [Anderson et al., 2007]) as

platforms to share and access any location-based information. This is significantly

different with centralized systems [Hudson-Smith et al., 2009]. In ubiquitous com-

puting environments, the online database acts as a central service or can be built

from the bottom up in a decentralised fashion. The data is produced mostly by

the user for the user. Some photo-sharing applications, such as Flickr [Flickr,

2012], allow users to publish and share photos with spatial information embed-

ded, namely “geo-tags”. These Photo-sharing Web applications emerged around
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Figure 2.3: The increase in OSM data from 2005 until 2012
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2004. Their social impact along with the phenomenon of user generated contents

and the increased presence of VGI data have motivated researchers to consider

them as a source of geographic information. Currently, the Flickr Website hosts

more than 4 billion photos [Yahoo!2009, 2009] where more than 300 million of

these are geo-tagged. The rise in contributions to OpenStreetMap is shown in

Figure 2.3 [Stats, 2012]. There are millions of crowd-sourced VGI data items

collected and contributed to OpenStreetMap’s online database. The volume of

data has increased by many orders of magnitude over the last few years. How-

ever, internet delivery of large scale data is often problematic due to the large

size of such files, combined with a general lack of Internet bandwidth of mobile

devices. Moreover, as these services grow in breadth and depth, the complex

issues of accessing a sometimes messy landscape of location data will present re-

searchers with more attractive challenges [Hudson-Smith et al., 2009]. However,

there are still no particular infrastructures for the mobile devices to access these

large spatial databases [Carboni et al., 2002].

2.2.2 Data quality issues

Geographical data usually corresponds to datasets collected and integrated from

different sources (private or public institutions), produced by different processes

(e.g. social, ecological, economical) over a geographical area, at different times

(e.g. every 10 years), possibly using different devices. Limitations are imposed

on the overall geographic data quality at all stages of the data lifecycle: from

capture, through to input, manipulation, spatial analysis, to the final presen-

tation of results [Worboys, 1998]. Given that the majority of VGI is collected

by individuals, who may not have experience in professional collection and man-

agement of spatial data, it is inevitable that data quality issues will arise. The

quality of data obtained using approaches such as the crowd-sourcing model in

VGI can vary spatially and temporally. This is mainly due to differences in skills,

equipment, and information technology tools used by those who contribute data

[Flanagin and Metzger, 2007]. Additionally, the data capture equipment often

has inherent limitations and this can lead to erroneous readings. Goodchild [1993]

states that data quality is crucial and that each data entity should carry informa-
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tion describing its quality with each operation on the data having an associated

error tracking procedure. Goodchild stresses that systems should contain quality

control mechanisms as standard. Worboys [1998] also states “without a careful

treatment of spatial resolution and consequent imprecise data representations, it

is difficult to approach the correct scale and generalisation”.

It is necessary to know the representation quality of the spatial data in order

to be able to use it effectively. Haklay and Weber [2008] and Kounadi [2009]

performed comparisons of VGI data with authoritative datasets and stated that

VGI data is “fairly accurate”. Similarly, Coleman et al. [2009] explain that as

there is a considerably wide range of motivations for users participating in the

creation and sharing of spatial content on the Web. As a result, the quality of

these data contributions can vary significantly. According to these authors, the

understanding of the participants’ motivation and experience can give valuable

insight into the resulting content quality. However, almost all of the information

that we possess about the real world is neither complete, nor precise. One of the

most common representation problems of spatial data is regarding the number

of nodes used to represent a polygon or polyline feature in a dataset. For exam-

ple, in OSM database, some lines and polygons are over-represented (too many

nodes) while others are under-represented (too few nodes given the complexity

of the real-world feature the polygon represents). For example, the two polygons

on OSM maps have been shown in Figure 2.4a and Figure 2.5a. The polygon

in Figure 2.4a is of relatively high resolution and the shape in question in Fig-

ure 2.4b is over-represented with a large number of nodes in its data structure.

On the other hand, the polygon in Figure 2.5b contains a lower level of detail

and potentially the shape in question is poorly represented by the polygon in

Figure 2.5a. This under-represented polygon could be selected as a candidate for

immediate transmission. This polygon could not undergo any further reduction

in the number of nodes used to represent it. However, delivery of all of the data in

Figure 2.4a may not be necessary as this polygon could potentially undergo some

form of generalisation and then be transmitted to the user device represented by

a reduced number of nodes. For these over-represented spatial datasets, we feel

that simplification can take place before this data is sent to a mobile device for

visualization.
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Figure 2.4: a. This is the original raster representation of the polygon on an
OpenStreetMap tile layer. b. This is an example of a polygon which is over
represented in terms of spatial detail with 647 nodes. The K̄ is small being 0.01.
More details of K̄ are given in section 3.2

Figure 2.5: a. This is the original raster representation of the polygon on an
OpenStreetMap tile layer. b. This is an example of a polygon which is under-
represented. This means that there are too few nodes in the polygon to describe
its structure and spatial detail adequately. The polygon has 51 points of data.
The K̄ is also relatively high at 0.486. More details of K̄ are given in section 3.2
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2.2.3 The dynamic nature of updates to spatial databases

A particularly valuable characteristic of crowdsourced data is the limited time

needed in the general data collection process, and even more importantly, the

time needed to publish this data on the Web (and thus be accessible to everyone).

The whole data production cycle is much more flexible and faster than traditional

spatial data collection and publishing procedures. The field of VGI is constantly

growing and has an immense potential for mapping, mainly due to two reasons:

(a) the technology is mature and is there to stay, (b) other means of mapping

may be too slow (e.g. for car navigation systems or disaster mapping) or may

be too expensive (e.g. updating the United States Geological Survey (USGS)

1:24.000 map scale on a countrywide basis) [Heipke, 2010]. The importance of this

characteristic is paramount when it comes to emergency situations where early

warnings are needed. For example, Yates and Paquette [2011] gave a detailed

overview of how collaborative technologies and social media were used during the

Haiti earthquake of 2010. In such a natural disaster, as shown in Figure 2.6, the

availability of immediate responses from the local people on the ground for data

collection is of high importance in the delivery and coordination of help from

response units (i.e. the case of Hurricane Katrina in U.S.A. where coordination

was poor and sporadic). Other sources of spatial data (e.g. satellite images) might

not be at hand for a substantial period especially in the immediate aftermath of

such an event [Goodchild, 2007].

This up-to-date geographical data can be used by different users to support

their proper decision making. For example, firefighters and first-responders can

use accurate geographical information to manage the impact of disasters, take de-

cisions to evacuate residents, change management tactics and inform other crews

by updating the set of available data on the disaster. Ecologists can employ geo-

graphical data to determine the best location to perform observations of animal

or plant species and collect data about individuals. Utilities maintenance person-

nel may accurately locate equipment in the field and update information about

their status. More importantly, the characteristics of location-based information

is that the richest and most accurate content is local (i.e. specific to a given re-

gion, city, or county); therefore, much of it is best maintained locally. The more
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local content providers there are the better the information content [Schiller and

Voisard, 2004]. All these activities require users to gain access to geographical

data visualizations in the field as well as to manipulate them by modifying fea-

tures and collecting new data. VGI allows all of these tasks to be performed on a

continuous 24-7 basis. There are no official release cycles for VGI data - as soon

as it is contributed or edited it is available for access by other users.

In most commercial mapping systems, these spatial data are stored as large

amounts of tile based maps. It becomes a significant problem to provide timely

spatial information in this format because of the time consuming compiling pro-

cess for the generation of the tiles. This is especially true in cases where the up-

dates might be small (changes of metadata) but spread over a large geographical

area: When the data in this database changes, the set of tiles must be regener-

ated. For large areas, such as countries or cities with multiple levels of resolution

this can result in millions of tiles. For small areas, there can be several hundred

tiles. As shown in Figure 2.6, this static tile based approach is not suitable for

dynamic datasets like VGI, which changes quickly over time during the natural

disasters. It is crucial for this situation to have open standard interfaces by which

users can instantly publish data and others can consistently access this content.

Figure 2.6: Figure (a) shows the original map of Haiti before the Earthquake.
Figure (b) shows the OpenStreetMap only a few days after the Earthquake
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2.2.4 Transmission format

There have always been discussions about data formats in relation to the de-

velopment of LBS. In the early stage of LBS development, when mobile phones

were client-end devices, raster based formats were widely used in map repre-

sentation due to limitations of the client-end: poor data storage capability, low

computing power and non-open operation systems.Furthermore, the raster based

map is easy to implement in most spatial infrastructures [Plewe, 1997]. Most

map services (i.e. Mapquest, Bing Maps and Google Maps) actually make use of

powerful server farms generating raster map tiles in imagery formats (i.e. PNG

(Portable Network Graphics), JPG (Joint Photographic Experts Group image

format)). These pre-computed maps are then stored into multi-scale tile reposi-

tories and defused to the Web by using WMS (Web Mapping Services). Since the

imagery format of raster data can be readable by most browsers and visualization

softwares, raster-based maps are widely accepted as the data provision of map

services.

However, recent research has shown some drawbacks of using this format for

map representation [Boulos et al., 2010]. As he comments, the map area is cut

up (to some degree) into arbitrary tiles, which means that cell boundaries usually

have no bearing to the real world phenomena that are represented. When using

raster maps, the semantic objects are reduced to an incoherent bunch of pixels

if there is a rich set of attributes corresponding to the spatial data (i.e. location

coordinates, review rates, local names and links). Effective user interaction re-

quires that the individual elements of an object’s representation are responsive

[Neumann, 2004]. Therefore, an extra overhead of network latency and server

processing is added to any request relating to the semantic content of the maps.

Furthermore, the pre-computed method also suffers from the necessity of deciding

on a single map style, as tiles cannot be generated in real time without a powerful

server cluster or cloud system. Thus, map visualization is somewhat constrained

by raster-based map tiles, because the style of such pre-rendered maps cannot

be changed once it is sent to the mobile users, which makes most raster maps

“static” in this sense.

Andrienko and Andrienko [1999] suggest that maps are not only a commu-
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nication medium, but also act as tools “to support visual thinking and decision

making”. As discussed in the previous subsection, an increased level of interactiv-

ity has positive effects on user engagement in many aspects. Vector-based maps

are emerging, mainly because of the higher quality visualisation and interaction

possibilities available [Reichenbacher, 2004]. There were some vector-based maps

available even though the early version of HTML Web browsers did not natively

support the vector format. Some researchers like Steiner et al. attempted to use

flash 5.0 as a plug-in for rendering dynamic spatial data. However, from the de-

veloper’s perspective, the fact that Flash is a proprietary format makes investing

or committing to such a format not always a wise option. Cecconi and Galanda

[2002] introduced the SVG format for adaptive zooming in cartography. Dunfey

et al. [2006] then created a framework for using SVG as an effective means of

rendering GI data. In Lehto and Sarjakoski [2005], the authors use XML gen-

erlization for real-time encoding of the spatial data. These XML-based formats

did not manage to gain widespread acceptance mainly because of Microsoft’s re-

fusal to natively support it in its browser. Upon the emergence of HTML5, some

researchers (such as Boulos et al. [2010]) have begun using the canvas element

in HTML5 (a new version of the WC3 standard) to natively support the render-

ing of vector data in web browsers. Figure 2.7 provides an example of a vector

map rendered by the canvas of HTML 5. As shown in this figure, the graphic

representation of HTML 5 provides a high quality and customised map visual-

ization which could be used in LBS. As stated in [Reichenbacher, 2004] there

are many advantages of using vector formats for representing the map. We have

summarized these advantages as follows:

• Context-linked spatial data: This data format explicitly describes the

geometry of geographic features. This allows linking between spatial data

and its attributes. After users download the data with its attributes, they

can perform local queries on the map features without relying on the con-

nection to the server.

• More interactivity: The vector data can be made receptive to user inter-

action such as changes in focus, mouse clicks, scrolling or zooming the map

and the other document events (i.e. viewing the reviews of a shop nearby).
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• Resolution independence: The visualization of vector based data is res-

olution independent. This is because the vector format consists of a fixed

set of shapes while the raster map is composed of a fixed set of pixel dots.

Scaling the raster map involves a higher resolution image, which will re-

quire more refreshing to update the current map. Scaling the vector map

preserves shapes without the need for refreshing.

• Customized rendering: Vector data can be rendered in a style specified

by users rather than pre-defined on the server side. The ability to store

some data on the client device potentially enables the use of real-time gen-

eralization of maps. Thus, there is no need to keep the client always online

with the server when moving.

• Timely information: Since vector datasets can be directly extracted from

the raw datasets in the server, they can be consistent with the most up-to-

date information collected (such as with VGI data).

Within the development of mobile technologies, the mobile devices has in-

creased data storage capability and more powerful computing abilities. More and

more devices are using vector data to represent spatial data in maps, including

Android and iOS [Apple, 2012]. Given a vector based dataset stored on a device

it is feasible to render a map locally on mobile devices by applying the rules of

feature tagging in OSM ([OpenStreetMap, 2012]). Vector-based maps can poten-

tially be used in an LBS mobile application to visualise spatial data. However,

there is still no standard way to handle this data format for visualizing maps in

mobile devices. Studies in this direction are still at an early stage [Bertolotto,

2007].

2.2.5 Development within a mobile context

When mobile users make use of the location information to conduct LBS tasks

they usually require information and services on the move. This is different to

fixed office environments. The mobile context is significantly different. This is

due to a number of external events that should be considered and to which one

often has to respond (e.g. consider being in an airport waiting for a flight) or
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to activities that are carried out in parallel (e.g. walking, talking with your

friend). Reichenbacher [2004] state that “the interaction styles with mobile de-

vices are different from stationary PCs”. It is difficult for users to focus their

attention fully on the devices. Consequently, users have less cognitive resources

available, and using the device becomes a secondary rather than a primary task.

The presence of an interactive map is an intuitive way to enable users to inter-

act with this content. Crampton [2002] catalogues the interactive functions of

maps and argues that a highly interactive map provides many of theses functions

whereas a non-interactive map (e.g. a scanned raster map) does not offer any

interaction possibilities. Vector-based data can natively support interactivity,

but also provides serious obstacles when it comes to mobile environments. There

are many limitations of the mobile device that must be considered for providing

vector-based interactive maps for LBS. These limitations will now be outlined as

follows:

1. Screen Size: The small screen and resolution issues of the display on

mobile devices strongly restrict the data representation and visualisation

capabilities of the mobile device. Generalization is necessary to reduce

information content in the spatial data. Suitable LoD are delivered to the

mobile device for users to perform specific tasks under the knowledge that

some data transformations have taken place.

2. Network Connectivity Performance: Communication over the Internet

for mobile devices is often slow (e.g. 170 kbps in GPRS), expensive, and

unreliable (e.g. frequent disconnections) [Ilarri et al., 2010]. Ilarri et al.

comments that the latency of network communication heavily constrains

the size of geospatial data that can be delivered to the end user. Ilarri et al.

also argues that there is an urgent need for more efficient transmission of

spatial information as the quantity of spatial data being used and generated

by LBS and mobile devices continues to increase.

3. Device Specifications: The available memory, processing, and storage

specifications of most mobile devices restrict the amount of spatial data

that can be processed locally on mobile devices for real-time performance.
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This also places restrictions on the types of algorithms which can be used

to perform the processing. Consequently some computationally expensive

algorithms are not acceptable on a mobile device.

4. User Interactions: The types of user interaction with user interfaces of

applications on mobile devices can be complex. Unlike web-based mapping

applications, there can be a significant number of zoom in/out and pan

operations on mobile devices . As Reichenbacher [2004] states these are

“tedious and cognitively complicated due to the global context loss”. Many

users expect “instant information access” using these interfaces. It is there-

fore necessary to deliver understandable and flexible geospatial information

to mobile users for instant access.

2.2.6 Summary of issues illustrated with a case study of

OSM

The VGI movement has shown significant potential to provide data for Location-

based Services (LBS) [Goodchild, 2009; Mooney and Corcoran, 2012b; Mooney

et al., 2010]. As a leading source of VGI data, OSM also has started to pro-

vide spatial data for LBS applications. Commercial products include MapQuest

[Mapquest, 2012] and the US-based Cloudmade [Cloudmade, 2012]. OSM is freely

available under an “Open Database License”. The data is available in vector

formats (SHP, XML) at the highest resolution possible including all spatial at-

tributes for all geographical features [Ciepluch et al., 2009]. This allows develop-

ers to use geospatial attributes representing most features of OSM. The full list

of features are available for viewing on the OSM Map Features page [Features,

2012]. As a typical VGI data source OSM data has all of the natural characteris-

tics of VGI data and we use OSM data as a case study in this thesis. Using OSM

as the specific example, we summarise the existing challenges of using dynamic

crowd-sourced data in LBS as follows:

• VGI data is stored in large online accessible databases: The amount

of data in these databases has grown dramatically in recent years. The

OSM data is also published as complete dumps of the database in XML
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and Binary format on a weekly basis. The size of the data in OSM is

staggering. Event the compressed XML file of the whole world is over 16

Gigabytes in size. Similar to other authoritative sources of vector datasets

such as National Mapping Agencies the size of vector datasets for regions,

countries, and continents can be extremely large. It is simply not feasible

to provide a map service directly from this data without an efficient data

management strategy in place. There are still great challenges in providing

a proper data infrastructure for mobile devices. Remote transmission of

large amounts of OSM data is also very slow because of the effects induced

from a potentially low bandwidth wireless connection. Only a few of these

LBS applications attempt to handle raw spatial data at the mobile client

side.

• VGI is created in various representation qualities: As in any vec-

tor dataset real world phenomena are also represented by points, lines,

and polygons in the OSM database. While OSM is created and managed

by a worldwide group of volunteers, there is no specific subgroup of these

volunteers who provide quality assurance and quality control of the new

data contributed data. The number of options (devices and software) avail-

able to OSM volunteers to add, edit, and contribute to the OSM database

means that there are differences in the representation quality of lines and

polygons. Some lines and polygons are over-represented (too many nodes)

while others are under-represented (too few nodes) given the complexity of

the real-world feature the polygon represents.

• The VGI data in OSM is dynamically changing and is updated

frequently. This characteristic of VGI and OSM is different to National

Mapping Agency data, for example, which usually apply much more rigid

and well-defined update and change cycles to their commercially available

datasets. Large amounts of crowd-sourced data are generated during times

of natural disasters and political unrest over a short period [Pultar et al.,

2009]. For example, in the hazard of the Tsunami in Northern Japan in

2011, Tokyo-based OpenStreetMap volunteer teams provided round-the-

clock crisis mapping support. The landscape and infrastructure of the
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disaster area was changing unusually quickly. Consequently, when such

environmental or political situations occur, it can be difficult for traditional

mapping services to provide up-to-date information and data. With rigid

update and release cycles, infrastructure damage and landscape changes

caused by natural disasters for example will not be visible in commercial

datasets until the next update/release stage. In some cases, this could be

only every six months.

• Transmitting vector-based VGI data to mobile devices for visual-

izations: The OSM data available for download or online access is of the

highest resolution possible. This is often over-detailed for visualization on

the small screens of mobile devices. Users in LBS access OSM data for a

variety of reasons. Different users may be satisfied with the differing levels

of variations and representations of the same OSM map. A proper data

generalization process is necessary to select and deliver the dynamic data

such as OSM which meets with the user’s preferred representation quality.

2.3 Overview of current technologies for improved

spatial data handling in LBS

With the rapid development of spatial data capture technologies and spatial data

modelling methods, the size and accuracy of spatial databases have increased

dramatically [Mok and Shea, 2004]. Relatively high quality data might be over-

detailed in representation with regard to the small screen display of mobile de-

vices. There are many limitations to accessing geographic information in wire-

less Internet environments and handling large amounts of spatial data efficiently.

Moreover, because of the highly dynamic nature of the data, traditional infor-

mation management techniques are not well suited for LBS. Zhou et al. [2002]

indicates “data management in mobile computing environments is especially chal-

lenged by the need to process information on the move, to cope with resource

limitations, and to deal with heterogeneity (different formats)”. In this section,

we discuss some related work in different disciplines and describe various solution

approaches in regards to these issues. We first review issues of rendering vector

35



data in low-specification clients. This has been a long-term problem in the com-

puter graphics research domain. We then provide some discussion of existing map

generalization techniques, which are used to simplify and adapt map visualiza-

tions to a lower resolution screen display. Progressive transmission techniques are

lastly discussed for the delivery of map data over limited bandwidth networks.

2.3.1 Contributions from the computer graphics domain

The issues of handling, transmitting and visualizing massive volumes of vector

data in low-end clients have been studied for many years in the field of computer

graphics. Some of these proposed approaches could provide valuable research

results for us towards providing solutions for similar data handling problems

with spatial data. Highly detailed geometric models were usually represented

by meshes of triangles in computer graphics [Foley et al., 1996]. The massive

graphical data for representing complex objects are expensive to store, transmit,

and render. Hoppe [1996] pointed out the practical problems of handling data in

multiple resolutions. He also explored the key issues of using progressive meshes

to represent complex graphical objects with a sequence of continuous decreas-

ing LoD. We have summarized and outlined the key procedures for the efficient

display of meshes as follows:

• Simplification process: Automatically generalize the meshes and use

approximations for efficient rendering. The simplified mesh (M0) can be

represented by a subset of the vertices in the original mesh (Mn) after a

number of edge collapse (ecol) operations: Mn
ecoln→ . . .

ecol1→ M1
ecol0→ M0;

• Multiple representation process: It is common to represent the meshes

in multiple representations using a LoD approximation. Since the edge

collapse is invertible, a progressive mesh (PM) can be transformed into

successive resolutions with a number of vertex split operations (vsplit)

M0
vsplit0→ . . .

vsplitn−1→ Mn−1
vsplitn→ Mn and the vertex hierarchy structure;

Hence, a detailed mesh can be used when the object is close to the viewer,

and coarser approximations are substituted as the object recedes from the

viewer.
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• Progressive transmission process: When a mesh is transmitted over a

network one would like to show progressively better approximations to the

model as new data is incrementally received. Thus, M0 will be sent first

and follow with a sequence of refinements vsplit0, vsplitn−1, . . .,vsplitn

• Compression process: To minimize the storage space some approaches

use digital encoding (compression) techniques to store the progressive meshes.

• Selective refinement process: When users change their view port they

require high detail in a different region. Thus, it is only necessary to select

the LoD within these visible areas for transmission.

A complex data model can be efficiently displayed by a much simpler ap-

proximation with the help of continuous refinements of LoD. These processes are

significantly beneficial to the 2D vector-based spatial data visualization when

visualizing a large amount of complex spatial objects.

However, for low-specification client side devices it is difficult to reconstruct

the PM in LoD because of constraints on the resource budget. Luebke and Erik-

son [1997] used hierarchical dynamical simplification methods which only main-

tained a list of visible polygons for rendering. Schmalstieg and Gervautz [1996]

proposed an on-demand geometry transmission approach that combined several

techniques, including LoD, progressive refinement and graceful degradation to

deliver the data “just in time” over the network to the rendering application.

However, performing LoD tree traversal locally is also expensive (in terms of

memory and processing resources) for low capacity clients. Southern et al. [2001]

presents a view-dependent transmission scheme for the stateless client without

reconstructing the multi-resolution hierarchy on the client by utilizing frame-to-

frame coherence [Luebke and Erikson, 1997] and client caching. In this scheme,

there is more time to render a higher resolution version of the entire dataset.

To avoid the impact of the network latency they divided the view-dependent

tree into blocks so that the mesh updates are transmitted on a per-block ba-

sis and the client can cache a fraction of the view-dependent tree in the form

of blocks. Cheng and Ooi [2008] described the progressive transmission of LoD

using receiver-driven approaches, which is a solution for interactive delivery by
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estimating the visibility and visual contributions of the refinement. Zheng et al.

[2008] proposed an interactive approach for view-dependent rendering by intro-

ducing a look-ahead strategy to predict the user’s view movement and handle

frame updating. These view-dependent LoD rendering principles can potentially

be applied in a similar situation in LBS applications. This enables spatial data

transmission to low-end mobile clients in an on-demand fashion. These types of

pre-fetching data strategies are useful in situations where there are low-capacity

mobile clients. For such devices, it is also necessary to manage the data in a

selective manner for efficient visualization. In summary, the strategies outlined

above, for efficient data management for meshes. could be useful as the starting

point for solutions to the problem of handling large scale spatial data on mobile

systems.

2.3.2 Map generalization for small screen display

While spatial data grows larger and more detailed, the screen size of mobile ap-

plications has not changed very much. While tablet PCs are becoming popular

in the current market, these devices are not in a position yet to replace a smaller

sized mobile phone devices. Mobile device users usually have limited screen space

to display high quality digital maps which are intended for desktop computers.

For example, when users access some tourist photos on a map based on their

current location, the server can return many unrelated results. Users that submit

popular types of queries such as “search a hotel nearby” are usually overloaded

with additional ‘pop-ups’ which display all hotels in the city. The principal prob-

lem in displaying such a map on a small screen is that an unrefined visualization

design will emphasise the unnecessary data thereby making it extremely difficult

to read or understand because the screen is too small to show everything in detail

[Mac Aoidh et al., 2012]. Therefore, map generalization process is necessary to

reduce the complexity of the map to give easier access to the spatial information

and provide a more user-friendly map interface.

Before displaying complex spatial information, it is necessary to perform a

generalization and filtering of the information to obtain suitable maps to fit the

small screen of mobile devices whilst exhibiting appropriate map usability. Many
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Figure 2.8: An example of the display of a more effective route map for the small
screen mobile devices from the work of Agrawala [2002]

generalization techniques attempt to generate various LOD to adapt to the users’

requirements [Buttenfield and McMaster, 1991; McMaster, 1987]. McMaster and

Shea [1992] provided an overview of different map generalization techniques (e.g.

Simplification, Smoothing, Aggregation, Enhancement). However, some complex

generalizations take a longer time to generate the required map representations

whilst others simpler approaches may not provide high quality cartographical

maps. Cecconi [2003] have summarized these approaches into three groups of ap-

proaches: On-the-fly mapping approaches, On-demand mapping approaches, and

combined on-the-fly and On-demand mapping approaches. On-demand mapping

is a prime driver in adapting spatial data to user requirements [Edwardes et al.,

2003]. Crampton [1999] defines this as “the creation of a cartographic product

upon user request to its scale and purpose”. This point is reinforced by the work

of Reichenbacher [2004]. Cecconi et al. [2002] and Cecconi and Galanda [2002]

implemented on-demand mapping in a multi-scale database. The on-the-fly ap-

proach can only afford to perform basic generalization processing. Harrie et al.

[2002] implemented a method in which real-time generalization operators were

used for displaying building polygons on small mobile devices. As this happens
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in real-time, it relies on on-the-fly generalisation. This approach uses fish eye

techniques to display the map feature and always give high detail in the central

place on the map. However, this approach has the limitation of causing distor-

tion of the actual shape features and it assumes the users are always focusing

on the central place of the map. This can have the knock-on effect of causing

unrecognisable map features in the other areas of the map.

The EU-project GiMoDig developed methods for delivering geospatial data to

the mobile user [Hampe and Sester, 2001]. One part of this project dealt with real-

time data integration and generalisation. Apart from that project, the on-the-fly

generalization approach proposed by Lehto and Sarjakoski [2005] uses the XSLT

transform for XML-based vector data. The authors claim that this allows empha-

sis of user requirements and works well for multi-scale data in real time. Similarly,

the Cartogen project, by Boulos et al. [2010], provides dynamic map styling with

the canvas element in HTML5. Cartogen allows the user to customise the vector

data styles for display. Corcoran et al. [2011b] states that visualization of vector

data can be achieved using the new methods of inline-SVG and the HTML Can-

vas. Corcoran et al. also demonstrated the effectiveness of HTML5 for vector

data delivery by implementing new HTML5 features (i.e. WebSocket and Canvas

APIs) in vector data transmission and visualization. Cecconi and Galanda [2002]

proposed adaptive zooming approaches to perform on-the-fly generalization on

individual LoD. This approach provides a combination of the on-the-fly general-

ization and the on-demand generalization. Agrawala [2002] gives another good

example of on-the-fly and on-demand mapping. This approach generalized route

maps in real time whilst improving map usability to meet specific user require-

ments for personal navigation tasks(as shown in the Figure 2.8). He also points

out that cartographic data is not only adapted to the usability requirements of

the user-interface in the mobile context, but also adapted to the limited nature of

mobile devices in terms of their technological environment [Agrawala and Stolte,

2001]. As a consequence, and because of the nature of mobile device displays par-

ticularly on the smaller mobile devices, one cannot simply rely on the techniques

designed for traditional web or desktop applications. Arrie et al. [2002] states

that “ideally, the user should have a large-scale map of his immediate vicinity for

choosing the right direction at an intersection, for example. At the same time,
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the user requires a small-scale overview map where he can see his destination”.

Sester and Brenner [2004] proposed a model to visualize only the information on

the screen which adequately fits the current resolution.

Thus, understanding user behaviour and information preferences is important

for map generalization in LBS Li [2006]. Oulasvirta et al. [2011] conducted a

study regarding the perceptual-interactive search people perform when using 2D

and 3D maps on mobile devices. They state that mobile map applications should

be friendly and with good usability. The visualization of multi-scale maps on

mobile devices should also exhibit high usability. The problems of displaying a

map on mobile devices are exacerbated by the nature of spatial data where a

large information space needs to be presented and manipulated on a small screen

[Tonder and Wesson, 2009]. In Lavie et al. [2011] the authors carried out trials

of maps for in-vehicle navigation systems. The found that maps with minimal

detail produced best performances and highest user evaluations. Cartographic

aesthetics were also rated highly by their study participants. In map usability

tests carried out by Kratz et al. [2010], the authors found that users preferred map

zooming to map panning and scrolling. They comment that the map navigation

tasks require users to view large features of the map (in a zoomed-out state) in

order to locate the point of interest they are interested in. In [Harrie and Stigmar,

2010] the authors provide some measures of map information that can be used as

constraints for the selection of data layers and in real-time generalisation. Harrie

and Stigmar [2010] found that using some measures had better correspondence

with human judgement than object areas alone, including the number of objects,

the number of points, and the object line length. However, their results are only

restricted to the building objects.

Furthermore, Arrie et al. [2002] argue that the user should have a fairly simple,

non-detailed, map to start with. However, when they continue to work further

with the task with the maps, they will need progressively more detail where they

will zoom in to their area of interest and potentially interact with the spatial data

behind the features on the map. This provides the opportunity to progressively

transmit data to the mobile device and build up the detailed map the user requires

in carefully managed increments. The next section discusses this strategy of

building a map visualisation using this incremental approach called progressive
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transmission.

2.3.3 Progressive transmission

Transmitting large volumes of spatial data over the internet is difficult. As the

scale of spatial data becomes larger, it becomes increasingly difficult to pre-

distribute these datasets to mobile applications. Transmission overheads increase

significantly when delivering the data from the server to mobile clients. Instead of

downloading a complete copy of the spatial data for offline usage these datasets

could be managed in a distributed fashion for on-demand access. This would

provide significant savings in network bandwidth as much less data would be

transferred between the clients and the servers. As we have discussed, this con-

cept was inspired from techniques well known in the computer graphics domain

which were described in section 2.3.1. Progressive transmission of spatial data

essentially combines several techniques including multiple representation(LoD),

progressive refinement, and on-demand delivery to send large amounts of spatial

data “just in time” over the network to the rendering process. These techniques

allow the applications to “operate on a tight resource budget” which is useful if

an LBS application being used in mobile applications constrained by: the small

screen size, the limited bandwidth and device storage. As shown in the Fig-

ure 2.9, the user can download the initial datasets with coarser resolution for

instant access [Arrie et al., 2002] where they can gain an overview of the geo-

graphic information. This coarser map is then refined by a series of LoD. This

progressive improvement can be stopped at any intermediate level of detail when

the user is satisfied with current refinements. This results in a resource saving to

the user in terms of both download waiting time and bandwidth usage.

Progressive transmission approaches are widely implemented in imagery trans-

mission over the Internet [Sherwood and Zeger, 1997]. The lowest resolution of the

raster data is transmitted as the initial dataset. This initial transmission is then

refined with additional pixels. Other approaches use high-rate data compression

techniques to gain considerable data size reduction in image using approaches

such as JPEG formats [Committee, 1999]. More complex approaches to data

compression are provided by Jacquin [1992] who uses fractal theory or the use of
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Figure 2.9: An example of the progressive transmission delivery of a spatial
dataset to a mobile device user

wavlet decomposition by Grossmann and Morlet [1984]. Tile servers are now very

common, it is reasonably easy to deploy imagery approaches to most applications.

However, the nature of pixel-based datasets means there is no direct correspon-

dence with issues related to spatial data elements. One of the biggest problems

of imagery-based approaches is that there is little scope for interaction with the

underlying spatial data. Special overlays (ironically mostly vector-based formats)

would need to be provided to provide the user with an interactive experience.

In comparison to purely imagery-based raster approaches, vector-based spatial

datasets are more suitable for mobile users to access spatial data instantly and

dynamically in LBS applications. Vector-based spatial data progressive transmis-

sion has many advantages, which include: the transmission of smaller data sizes,

faster response times, and possibly the transmission of only the most relevant de-

tails from a spatial dataset [Bertolotto, 2007]. Yang and Weibel [2009] states that

the progressive transmission of vector data is beginning to receive more attention

as it provides a very promising solution for improved efficiency of data delivery

in the web-based environment. The last few years have seen a revolution in how

GIS and spatial-data mapping is performed with a serious move away from fixed
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desktop approaches to web-based applications and spatial data services [Burigat

and Chittaro, 2005; Dunfey et al., 2006]. It becomes a common place where ex-

tensive research on vector data progressive transmission has been documented in

the literatures over the last decade or so.

Bertolotto and Egenhofer [2001] provided a formal model for progressive trans-

mission based on a distributed computing architecture. Bertolotto and Egen-

hofer’s work is one of the key pieces of literature in this area. Their approach

based on a simple client-server architecture and initially provides coarser LoD for

instant access. This map is then iteratively refined through the transmission and

integration of further spatial data related to the user request. The user can imme-

diately perform analysis using the coarser map and terminate further downloads

when the map approaches their desired LoD. An example of Bertolotto and Egen-

hofer’s progressive transmission approach is shown in Figure 2.10. The LoD0 is

the simplified version and can be transmitted to the user immediately. Following

LoD0 the increasing LoD (LoD1, LoD2, LoD3, . . ., LoDn) are transmitted.

Figure 2.10: A sample of four distinct Levels-of-Detail (LOD) for a set of polygons
transmitted to a user device as proposed in the work of Bertolotto and Egenhofer
[2001]

Buttenfield [2002] implemented line generalization techniques to pre-compute
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the series of LoD for faster transmission. This approach subdivided the polyg-

onal objects by using a modified Douglas Peuker (DP) algorithm [Douglas and

Peucker, 1973] and stores the data into a strip tree data structure in the server

for delivery to the user upon request. Follin et al. [2005b] proposed a model for

managing multi-resolution spatial data in mobile systems. However, there are no

performance evaluations shown in these works. Haunert et al. [2009] used a tGAP

(topological Generalized Area Partitioning) structure to enable efficient retrieval

and query of required LoD, but this approach only restrict the polygonal objects.

Zhang et al. [2011] presented a solution for progressive transmission, where the

topological relationships are maintained during the simplification by removing a

Voronoi diagram’s self-overlapped regions. These approaches have taken account

of topological consistency in the process of progressive transmission. However,

due to the complex computation involved in topology consistency checking, these

approaches can only perform the generation of LoD by pre-computation offline.

This approach is suitable to spatial datasets of any size which are not changing

very frequently. However, these approaches are not suitable for using dynamic

data such as VGI as it is updating frequently and the process of topological

consistency checking may need to be rerun after each update.

As the volume and resolution of VGI spatial data increases, it is not possible

to transmit complete vector datasets over the Internet. Because of the limitations

of mobile devices, it is important to implement efficient transmission techniques

for quick responses and reduced storage. To overcome the limitations of mobile

devices (as described in section 2.2.5) efficient data management techniques are

required. Firstly, transmitting these large files over the internet to the mobile

device is difficult in practice. Alternatively the mobile device owner would have

to download the file at some other location and move it to their mobile device

memory card. This would probably require some advanced computing skills and

would be beyond many users’ capabilities. Investigation of how the data in the

dataset is represented could lead to dramatic reductions in the size of the dataset.

Douglas and Peucker [1973] and Ramer [1972] described the “Douglas-Pueker”

algorithm commonly used for line simplification and well known amongst most

GIS practitioners. Line features in GIS datasets are usually of high resolution.

These lines may represent linear real-world features such as highways or pedes-
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trian paths. The Douglas-Pueker algorithm is often applied to such objects to

remove (simplify) unnecessary nodes. This will be discussed in greater detail in

Section 3.2. Zhou and Bertolotto [2004] introduce a new data structure used to

encode representations obtained by applying Saalfeld’s modified DP algorithm

[Saalfeld, 1999]. Zhou and Bertolotto’s approach not only provides an efficient

generalization process for progressive transmission, but also prevents the self-

intersections occurring during generalization. This could happen where polygon

shapes have nodes removed with causing their shape structure to induce an ille-

gal self-intersection. Kolesnikov [2007] provided a solution for compressing vector

maps using polygon approximation and quantization to encode the data into a

much smaller volume. Oosterom [1993] proposed a topological data structure

for a variable scale representation of an area partitioning without redundancy of

geometry.

Since the screens of mobile devices are small, from the viewpoint of visual

cognition, the delivery of smooth progressive map visualizations for LBS users

is crucially important. Fatto et al. [2008] conducted a survey concerning spatial

factors affecting a user’s perception in map simplification. These types of pop-

ping effects did cause users to negatively percieve the delivered visualisations.

One must manage the visual impact of multi-resolution maps. Progressive maps

should serve their intended purpose while providing user control for map cus-

tomisation. It is not acceptable that users of LBS services using a progressive

transmission approach are presented with ’jumps’ or ’pops’ between sequences

of LoDs. An ideal progressive transmission would be undetectable to the user.

For maps containing many polygons and lines, a methodology for determining a

globally suitable generalization is required as the display capabilities of mobile

devices are more restrictive than the traditional desktop machine. Sester and

Brenner [2004] proposed an approach for generalization of vector data tailored

specifically for mobile devices with limited screen resolution. Kjeldskov and Gra-

ham [2003] stated that more research was required to understand the usability of

LBS and desktop applications using progressive transmission approaches. This

research should be focused from a user-perspective and not a purely theoretical

viewpoint. In recent work Ying et al. [2011] concluded that some heavily sim-

plified or under-represented spatial objects might display significant “popping
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effects” between levels if the transition effects are not adequately smooth. Ai

[2010] mentions the “granularity requirement” of progressive maps which means

that only when the change between two transmitted datasets is small enough

can the human eye experience the effects of continuous or gradual animation

of the data. Otherwise, features might “pop” into existence as an effect of the

transition from one LoD to the next. To guard against this effect authors such

as Yunjin and Ershun [2011] successfully applied advanced techniques such as

Integer Wavelet Transformations in vector data compression. Other approaches

implement multiple resolutions for generating proper LoDs.

Finally, because there is limited main memory on mobile devices it is nec-

essary to manage the data in a selective manner to avoid overloading data in

main phone memory. Augusto et al. [2009] developed a Web-based prototype

to manage multiple resolutions using quadtrees. This approach focused on the

data management for client interactions with maps and it reduces the irrelevant

LoDs when the user is frequently changing their map views. As a user zooms

out on a map the scale of the map decreases allowing the user to make sense of

the global context. To display a map on a very small scale most of the geometric

objects in a map are retrieved and displayed. However, attempting to transmit

too many objects will impair the user’s viewing of the relevant information. In

some cases, large objects, such as national roads, highways and national forests

with several hundred segments may occupy only a single pixel on the display.

Previous approaches transmit all of these segments from the server side and then

draw them onto the client screen. Indeed, most users only require a section of the

object, thus, transmitting the complete object is a waste of CPU and memory

resources. This problem becomes more serious for applications that view a large

scale map in real-time. Corcoran et al. [2011a] classified View-and-Scale based

progressive transmission. Antoniou et al. [2009] proposed tile-based vector maps

for transmission of spatial data. These view dependent approaches can signif-

icantly reduce the amount of data one must store on mobile devices and also

simplify the computation complexity of large amounts of spatial objects. More-

over, Mustafa et al. [2006] has proposed an approach to perform the look ahead

policy and prefetch the data of the user’s next view whilst rendering the user cur-

rent view. This strategy can overcome the latency of the network, however, there
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is no evidence reported from this work. From this discussion of the literature, we

can summarise that the application of progressive transmission for visualisation

on mobile devices still has many challenges due to these limitations.

2.4 Chapter summary

In Chapter 2, we began with a discussion of the use of spatial data in LBS and

also described how VGI had emerged as a new form of spatial data. VGI has

grown rapidly and now must be considered as a source of data for LBS. We

then identified the challenges of handling spatial data in LBS with emphasis on

visualization. OSM data, as a good example of VGI data, is used as a case study in

this work. We conducted a detailed analysis of some of the issues related to using

VGI in section 2.2. These issues include: dynamic data updates, large volumes

of data, and data quality issues. In order to provide high quality and interactive

maps, it is promising to use vector-based maps as an alternative solution to

more traditional approaches such as tile-based mapping. It is also necessary to

take account of the limitations of mobile devices while handling vector-based

data. To overcome these issues and limitations we provided a review of current

techniques in related fields. In research fields such as computer graphics, several

useful and classical techniques of progressive meshes are studied and a number of

insights are obtained from the rendering techniques employed for use in low-end

clients. Various map generalization techniques are investigated. The implications

for map production are also discussed. Progressive transmission of vector-based

spatial data provides a promising solution for efficiently transmitting data from

the server side to client side. The principle of progressive transmission is suitable

for application to a dynamic source of spatial data such as VGI. However, very

few of these existing approaches can satisfactorily address the challenges of VGI

data. This provides us with an opportunity to provide a comprehensive overview

of approaches to managing spatial data for visualization on mobile devices. In

the following chapters, we attempt to address these shortcomings and provide a

framework to manage spatial data for visualization on mobile devices.
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Chapter 3

A framework for vector based

spatial data processing

Traditionally, mobile mapping processes was carried out on the server side. How-

ever, pre-computed map tiles are not very flexible in responding to the vari-

ous user requirements of modern map services. Recent developments in mobile

graphics hardware technologies enable vector data to be rendered locally by the

client-side. Examples include the Android and iOS mobile operating systems.

Visualizing vector data on mobile devices is now feasible. It is a promising way

for the mobile users to interact with spatial datasets in a more efficient and

context-responsive manner.

However, delivering large volumes of spatial datasets over low bandwidth net-

works is often difficult and leads to a frustrating user experience. We have all

experienced the frustration of being unable to use Internet applications on the

mobile devices due to poor Internet connectivity. High resolution spatial datasets

are stored in spatial databases. Very often these data are too detailed to be dis-

played appropriately at the scale available due to screen size[Ying et al., 2010a] on

most client mobile devices. Additionally these datasets can contain much more

data than is required for the task and not necessary for transmission particularly

in cases of low bandwidth networks. From the point of view of the user’s visual

perception it is better to simplify the map to a certain level of representation.

This simplification should meet with user specifications, result in a reduction of
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the amount of data required for transmission, and not compromise the usability

and context of the map. From the user’s point of view, this approach will also

provide a faster response to the user’s spatial queries and interactions.

In this chapter, we will begin by describing some of the characteristics of

vector data. We shall emphasize some of the characteristics of the emerging VGI

data. We have chosen a well-known example of VGI OpenStreetMap data as a

case study. The use of OpenStreetMap allows us to explain the main practical

problems with handling large quantities of vector-based spatial data. We then

propose a framework for processing large quantities of vector data. This is realised

by streaming the data to our application server and processing the spatial data to

identify the features of the datasets, which need to undergo simplification. Within

this framework, we apply several shape representation metrics to best understand

which features should undergo simplification. Finally, we generate the LoD data,

which then can be transmitted to the user’s mobile device application using a

progressive transmission scheme.

3.1 Vector data generalization

In this section, we attempt to establish several shape metrics for exploring the

data representation of OSM spatial objects. These shape metrics are applicable

to any vector data source. When we apply these shape metrics to our OSM data

we compute the values of these metrics on the objects in the dataset and identify

the candidate objects for “data generalization” and then marking other objects

“ready for delivery” to LBS applications. As shown in Figure 3.1, this process

starts to take the OSM objects (extracted from a OSM XML) as input. We will

provide a more detailed description of OSM XML in Chapter 4. We use open

source software approach, which can extend to consume other vector data formats

(e.g. ESRI Shapefiles and GeoJSON).

A pre-defined error threshold is set to control the granularity at which we

select objects from the data. The process automatically checks the representa-

tion of an object by applying shape metrics. Using the results of these metrics

we determine if the object must undergo a set of further processing procedures.

The “under-represented” objects are selected as “LBS ready” candidates for im-
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mediate delivery to the client device while the “over-represented” ones must be

subjected to a series of simplification processes. The workflow of the data gener-

alization processing framework is outlined in Figure 3.1. When all of the “over-

represented” data objects have been processed they must be organised in an

efficient data structure. For this purpose, a tree based data structure is used to

handle generalized LoD datasets for the progressive transmission. The general-

ized data is adapted to the screen visualization within the proposed projection

constraints. We also discuss the issues of topology in regard to the OSM relations.

The theoretical foundations for this framework in the remaining sections are

outlined as follows:

• the selection of objects for simplification and generalization

• multi-scale simplification

• the computation of error metrics and adaption of the generalized data ob-

jects for the small screen mobile client display and visualisation; the data

structures for storage of the LoD

• topological preservation during the simplification and generalization pro-

cesses.

We begin with the identification of data objects for simplification and gener-

alisation.

3.2 Identifying data objects for simplification

and generalisation

Many OSM datasets are generated by the volunteers using GPS-enabled mobile

devices. Those datasets are usually recorded at a high resolution. There are

often more data points than is necessary for visualization in LBS map services.

Redundant data points will decrease system performance in terms of transmission

and subsequent visualization. For example, as stated by Meratnia and de By

[2004], if data is collected at 10 second intervals, the total amount of data will
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Figure 3.1: The workflow of the data generalization processing component in the
data processor component as illustrated in Figure 4.3 in Chapter 4 on page 83
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reach 100Mb to request only 400 objects in a typical day of data collection. Very

often, there are high resolution straight line features (such as roads and highways)

or regular shaped features such as parks, artificial waterbodies. It is difficult to

predict in advance without processing, if a given region of OSM will exhibit large

numbers of over or under-represented features [Mooney and Corcoran, 2012b].

However, it is not always the case that features are over-represented. For a variety

of reasons (VGI data collection using tracing of aerial imagery, lower resolution

GPS-enabled data collection and editing by other users) features can also be

under-represented. This was shown and discussed in Figure 2.5. For processing

OSM data with variable levels of representation quality, we first need to identify

spatial objects that are over-represented as simplification candidates; otherwise,

they are selected as “ready for LBS” datasets for delivery immediately. This is

described in the flowchart of Figure 3.1. The over-represented spatial objects

must undergo simplification and be represented as an LoD data structure and

simplified down to the given threshold.

A polygon should undergo simplification, if the removal of a subset of the

polygon’s vertices can be performed without affecting the overall shape, to such

an extent that it is not recognized as its original form. It has been shown in the

literature that significant visual parts of shapes are somehow related to convexity

[Basri et al., 1998]. Only insignificant vertices can be considered for removal

during simplification. Latecki and Lakamper [1999] proposed convexity evolution

methods and the following metric K determines the significance of each vertex

to the overall shape of the polygon in question. As outlined by Barkowsky et al.

[2000] it “is in accordance with our visual perception of these shapes”. Suppose

for some vertex v in the polygon p with incident edges on v called s1 and s2 then

the K metric for significance is given by:

K(s1, s2) =
β(s1, s2)l(s1)l(s2)

l(s1) + l(s2)
(3.1)

In equation 3.1, the variables are explained as follows: l is the length function

normalized with respect to the total contour length of the polygon, while β (s1, s2)

is the turning angle at the vertex in question as shown in Figure 3.2. Informally

this metric in Equation 3.1 will determine vertices with a greater turning angle
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and adjacent edges of a greater length as being more significant to the contour

of the polygon. We assume that the vertex with the larger both relative lengths

(i.e. x2x3 and x3x4)and the total turn of the angle (i.e. turning angle v2), the

greater is its contribution to the overall shape of a curve (i.e. visual part 2 is

greater than visual part 1). Thus, the cost function K is monotonically increasing

with respect to the relative lengths and the total curvature. Significant vertices

are assigned a high K value with insignificant vertices assigned a low K value in

equation 3.1. The main accomplishment of this discrete curve evolution process,

described in this section, is that it allows for automated simplification of polygonal

curves. Importantly for map display and visualization this allows us to neglect

minor distortions while preserving the perceptual appearance [Barkowsky et al.,

2000]. Examples of this metric are shown in Figure 3.3. To assess the overall

representation quality of polygonal objects p, a threshold λ is given to identify

if the object requires further simplification. To determine the significance K of

each vertex from a given polygon p the following steps are performed:

1. For each vertex with adjacent edges i and j, we determine its corresponding

significance by evaluating K(i, j).

2. Calculate
∑
K which represents the sum of K over all polygon vertices

3. For each polygon vertex calculate KS(i, j) which represents the significance

of that vertex to the overall polygon shape:

KS(i, j) =
K(i, j)∑

K
(3.2)

4. The mean of the KS values is K̄S, it then calculated over all KS(i, j). K̄S

has a range between 0 and 1.0.

The establishment of the λ parameter (through a process of experimentation

with different threshold values and outlined in previous work Ying et al. [2010a])

allows the simplification of all polygons P within this threshold. The polygons

with K̄S higher than λ will be assigned to “LBS ready” candidates for immediate

delivery. In Figure 2.5 a polygon identified as “LBS ready” data from the test set
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as it has K̄S = 0.468 which is a high value. With K̄S = 0.468 this corresponds

to this polygon shape having many large turning angles with long incident edges.

As a result, most of the vertices in the polygon are highly significant and this

polygon should not undergo simplification. Alternatively in Figure 2.4 K̄S is

small value(less than 0.01), which represents a very low value. This indicates

that overall there are small turning angles with short incident edges at these

vertices. Given that there is a large number of vertices representing the polygon,

some of these vertices could be removed by simplification but the overall structure

and visual significance of the shape will not be compromised or lost. Equation 3.2

is easily calculated for all of the vertices in the polygon object.

Figure 3.2: Each vertex xi with the adjacent edge xi−1xi and xixi+1 is the turning
angle B. The visual part which is the area representing the overall contribution
of this vertex.

3.3 Multi-scale data simplification

It is necessary to consider multiscale data simplification in the context of LBS

applications on mobile devices. Crowd-sourced data is a real-time data resource

55



Figure 3.3: The relevance measure K from equation 3.1 of Latecki and Lakamper
[1999] is highlighted in bold arcs. The example shows figure d has higher K value
than figure a as the vertex has bigger turning angle and longer edges. As outlined
by Barkowsky et al. [2000] it “is in accordance with our visual perception of these
shapes”
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for LBS and can be used in numerous application domains such as: traffic man-

agement, navigation, environmental monitoring, and so on. However, this and

other data are collected and stored in the OSM database with only one resolu-

tion. Usually this is of the highest detail possible as it is extremely rare and

unlikely that the contributors to OSM simplify or generalise the data in any way

before upload to the OSM database. The narrow bandwidth often available to

mobile devices makes the transmission of large datasets very difficult. Transmis-

sion of large chunks of datasets can usually mean that more data than needed is

delivered to the small screen devices. To avoid this scenario, spatial data sim-

plification becomes particularly important in order to speed up the transmission

and spatial operations for mobile users of the LBS. To respond to the users’ real

time requests, a fast data simplification strategy is proposed which must achieve

the following goals:

1. It should perform real time data simplification to generate multi-resolution

LOD

2. It should obtain high quality representations of data features, which are

appropriate to the resolution and scale. This ensures that the usability of

the rendered maps is not affected.

3. The data structure, which organizes the LOD should allow for easy retrieval

of the required LOD and with minimum redundancy.

There are many types of data simplification and compression methods. Compres-

sion of data is a well studied problem in Computer Science and compression of

spatial data is a popular research problem in GIS and Geocomputation. Typically

data can be converted and compressed to another file requiring less storage space

used such as ZIP [PKWARE, 2012], RAR [RARLAB, 2012] and so on. These

universal methods can achieve good rates of compression without losing any in-

formation. Very often GIS datasets are transmitted in bulk in ZIP formats as

there can be significant reductions in overall file size. This is especially useful in

the case of static and non time dependent transfer. In the case of dynamic LBS

applications compressing the data using ZIP or RAR is not practical. In partic-

ular, in the case of dynamic VGI datasets, the extracted data would need to be
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compressed and then uncompressed on the client device. The VGI dataset could

be changing very quickly and the compression may need to consider changes to

the dataset before transmission. Additionally compression of the dataset would

not solve the issue of the mixture of under and over-represented objects within

the dataset. More commonly for scenarios involving more dynamic and real-time

contexts simplification is applied to the actual vector data itself.

Algorithmic approaches to simplification

Probably the most famous approach to the simplification of vector data is the

DouglasPeucker (DP) algorithm [Douglas and Peucker, 1973]. DP is an algorithm

for reducing the number of points in a curve or polygon that is approximated by

a series of points. The simplified curve consists of a subset of the points that

defined the original curve. There are a number of other “fast but sub-optimal

methods that can achieve the data simplification with time complexities ranging

from O(N) to O(N2)” [Rosin, 1997]. These are mostly heuristic approaches for

the approximation problem within the simplification and are summarised by: split

methods (as outlined in the original DP algorithm in Douglas and Peucker [1973]

and subsequently in Shu et al. [2002]), merge methods such as those described in

M. and J.D. [1993]; Pikaz and Dinstein [1995] and Latecki and Lakamper [1999],

split and merge methods such as those described in Pavlidis and Horowitz [1974];

Xiao et al. [2001], and also dominant points detection as described by Masood

[2008]. Most of these methods can achieve up to 80% accuracy compared with

optimal solutions. Optimal algorithms include approaches involving dynamic

programming algorithms such as that of Kolesnikov and Franti [2005] and the

genetic algorithms of Yin [1999]. These optimal approaches can achieve high

quality approximation. However, their disadvantage lies mainly in the increased

cost in terms of time and space complexity from (O(N2) to O(N3)). The time

and space complexity is only suitable for a small number of vertices and is not

acceptable for the proposed issues. One must also consider the unpredictable

nature of the representation of our OSM datasets. One cannot easily predict

the representation of the objects in a given OSM datasets. Consequently the

worst case complexity of O(N3) could be realised in areas of high resolution
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representation such as urban centers, highway centerlines and university campus

maps.

In the OSM test datasets, the over-represented polygons will undergo more

steps of simplification than other more suitably represented polygons. Given a

set of polygons P the following algorithms are applied to each polygon p in the

set.

• The DP algorithm has a hierarchical structure starting with a crude initial

guess by selecting the vertex at greatest distance from the line segment

defined by the first and last point. Then the remaining vertices are tested

for proximity to that edge. If the distance dist is greater than a specified

tolerance ε, then the farthest vertex is added to the previously simplified

polyline. Using recursion, this “split based” process continues for each edge

until all vertices of the original polyline arc lie within an error allowance ε .

• The proposed modified algorithm (Algorithm 1) is derived from the work

of [Latecki and Lakamper, 1999] and uses a merge-based approach to it-

eratively estimate the insignificant vertices with low KS values. The KS

value for each vertex computation requires a fixed number of operations per

vertex (line 2). The elimination of a vertex requires the update of the KS

values of only the current vertex’s immediate neighbours. The algorithm

has a stopping rule based either on the number of dropped vertices or on the

current error-value (line 3). At the beginning of the algorithm, the errors

are expected to fluctuate around small values when we estimate the vertex

with smallest KS. During the iterative process, several levels of error are

expected with the potential for noticeable jumps. In the experiments, a

practical way to choose a threshold was using some initial runs of the algo-

rithm on the test datasets in order to choose an adequate level of threshold

value.

• The dynamic programming algorithm was given in Salotti [2001] and rep-

resents an optimal solution to approximate the vector data with overall

minimum distortion of the shape but with O(n3) time complexity. There-

fore it is not acceptable for this approach, but the optimal solution can be
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used to check the performance and the quality of the proposed algorithm.

These approaches use global error metrics to determine the simplification

a stopping condition. Given a polygon P ={p1,p2, . . . ,pN} = {(x1,y1), . . .
(xN ,yN)}. The error of the approximation of the curve segments from pi

to pj of polygon P with the corresponding line segment (qm, qm+1) of Q is

defined here as the sum of squared Euclidean distances from each vertex of

pi; . . . ; pj to the corresponding line segment (qm, qm+1) as illustrated in

Figure 3.4.

e2(qm, qm+1) =

j−1∑
k=i+1

l2k (3.3)

The total approximation error e2(qm, qm+1) of the input polygonal curve P

by the output polygonal curve Q is the sum of the errors of approximating

each segment pi to pj of P by the corresponding line segment (qm, q(m+1))

of Q. The optimal approximation of P is then the set of vertices (q2, . . .,

qM) that minimizes the cost function E:

E = min
M∑

m=1

e2(qm, qm+1) (3.4)
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Figure 3.4: The global error for the curve qm and qm+1 is the sum of the l which
is the vertex pk to the line segment pi to pi+ 1
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Algorithm 1: Data simplification process for merge-based approach

Data: Polygon p with vertex array p[]

Result: A simplified Polygon p′ with a new vertex array p′[]

1 Data initialization: Let k be the number of vertices to be removed. or: Let

ε be the threshold. N = p.length() ;

2 Calculate K(i, j) for each vertex p[i] and put all vertices K values in the

PriorityQueue (O(n) operations);

3 for i := 1 to k (or: repeat until the KS of vertex p is greater than a given

ε) do

4 1.Estimate the p[i] with minimal SKi value in the

PriorityQueue(O(log n) operations);

5 2.Compute the error-values of p’s two neighbors, say q and r. O(1)

operations ;

6 3.Update the K for adjacent vertices p[i− 1],p[i+ 1] (O(log n)

operations);

7 4.N = N − 1 (O(1) operations);

8 end

This algorithm is implemented in the software tool which we shall describe

in Chapter 4. We will now provide a short discussion of the application of this

algorithm to some real-world data. We applied the simplification process to some

OSM data. Three datasets were chosen from OSM data of different areas with

various numbers of nodes as shown in the Figure 3.5. The performance of the

simplification process is shown in the Figure 3.8. The results show that the

proposed algorithm and DP algorithm can significantly reduce the data within a

short time. The DP algorithm is slightly quicker in general. Since the proposed

algorithm and the DP algorithm are both suboptimal solutions, when we are

applying this simplification automatically, we need to know that the simplification

maintains the visual appearance compared to the optimal solution. In order to

evaluate the quality of these sub-optimal algorithms, Rosin [1997] introduced a

measure known as fidelity (F ). It measures how good a given sub-optimal solution

is with respect to the optimal approximation in terms of the approximation error.

The Fidelity measure F is given in Equation 3.5:
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fidelity =
Eopt

Esub

× 100% (3.5)

Figure 3.5: test datasets:1.Erne River in Ireland(OSM id:31025269);2.Finn
River in Ireland(OSM id:177922060); 3 A boundary of Howth in Ireland (OSM
id:42137400)

Figure 3.6: The Douglas Peuker algorithm will estimate this vertex within the
threshold. However, the proposed approach recognizes that it is significant as it
has a large turning angle and then long adjacent edges
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Figure 3.7: Fidelity (F) of solutions for the test shapes by proposed Merge based
approach and Douglas- Peucker (D-P) algorithms. The results are for 5 consec-
qutive LoDs.

Figure 3.8: The time complexity of processing simplification of given datasets by
the proposed Merge based approach and Douglas-Peucker (D-P) algorithms
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Figure 3.9: This is the interface of the demonstrating application. It compares
the difference of three algorithms: the proposed algorithm (in red line), DP al-
gorithm(in green line) and optimal solution(in yellow line) with respect to the
original map (in black line). The preserved nodes have been shown with corre-
sponding processing time. The red drag bar on the top allows the user to adjust
the error thresholds.

65



The results in Figure 3.7 show that the proposed algorithm is better at pre-

serving the visual features of the map compared to the DP algorithm according

to this fidelity measure. This is because in some cases, like Figure 3.6, The DP

algorithm will estimate the vertex with the threshold without observing the large

turning angle. As shown in Figure 3.9, the simplified polygons generated by these

three algorithms demonstrate the different performance of preserving visual fea-

tures, the line produced by this algorithm lies between the other two algorithms.

Given a full resolution polygon P with level LN , at each level from LN down to

L0, the lowest level of simplification, the nodes with the minimum K(i, j) are re-

moved by this approach with time performance O(N logN). This is better than

the DP algorithm which has a worse case complexity of O(N2). Moreover, for

use in progressive transmission, this algorithm can automatically generate the

sequence of simplification by putting the most insignificant vertex in another Pri-

orityQueue (Q2) when it is estimated from the list iteratively. This PriorityQueue

can be used to prepare LoD for the progressive transmission process.

We have dealt with preserving the overall visual appearance and contour of

polygons and polylines which must undergo simplification, we must also consider

how to display of these simplified shapes on a small screen. The next section deals

with the development of error metrics for small screen display of the simplified

shapes.

3.4 Error metric transformations for small screen

displays

When users zoom a map or when there are changing resolutions of the display

this can usually lead to the granularity of presented spatial objects changing. For

smooth presentation, we must make projections and mappings of the coordinates

systems between screen scale and the real data scale. This provides for the

adaptation of the error threshold of simplification to the corresponding scale.

This is shown in Figure 3.10.

Given each vertex vi of a polygon p = v1 . . . vn with its positional coordinates

(Xi,Xi) in the OSM data, the AOI (Area of Interest) is selected by user with
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scalem (Xl,Xr,Yt,Yb) in OSM where Xl, Xr, Yt, Yb is the boundary of left, right,

top, bottom of the scale respectively. The user specified error threshold in the

mobile screen is defined as ε. The following function is defined to transform the

coordinates from screen scale to the scale of AOI for the simplification of OSM

data.

Figure 3.10: The coordinates in mobile screen are (125,300) in 640 * 400 res-
olution, the actual coordinate in OSM is (54.0624, -7.0562) within the bounds
(-7.0572(l),-6.9712(r),54.0634(t),54.0284(b))

P (X, Y ) = f(X, Y, scalea); (3.6)

The equation 3.6 shows this concept in mathematical notation where P (X, Y )

is the positional projection of the vertex v (X, Y ) on mobile devices. To derive

P (X, Y ), we use the following constraints for the projection:

1. Suppose the scales of AOI on mobile devices are (scale1, scale2, . . . , scalen)
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as illustrated in Figure 3.11. In this image scale1 > scale2, > . . . ,> scalen.

2. The projection fi of v (X, Y ) on the mobile display will be ṽ (x̃,ỹ) in scalei

fi = (
scalei
scalea

); (3.7)

The projection coordinates of v on mobile device can be calculated by the

following equations

x̃ = f × (x− xl); (3.8)

ỹ = f × (y − yb); (3.9)

The error allowance of AOI in screen area can be translated to the error

metric of the actual OSM map data using the following equation:

3.

E =
ε

fi
; (3.10)

Figure 3.11: In this figure three different scales are presented. The same map is
displayed at different scales on the same mobile device screen

E is the error threshold for the OSM data simplification under fi. When

the user is continuously zooming to a given level of resolution, E is derived by

the constraints above, so features are represented at the appropriate quality, the
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screen projection coordinates can be calculated. For example, given an AOI scale

scalea of 1km2 and a screen scale scalei of 400 × 400 pixels resolution where 1 dot

pixel is the error allowance ε for the mobile user with this screen resolution, we

calculate that E is within 2.5m2 (ε×1000/400) for the threshold of simplification

of this vector data.

3.5 Data model for handling incremental LoD

After the data has been generalized with the simplification process, it is nec-

essary to generate the incremental LoD. Several other authors have described

efficient transmission strategies for large amounts of data using multi-resolution

approaches. The best known of these include Real-Time Generalization (RTG)

by Oosterom [1993] and Lehto and Sarjakoski [2005], and the LoD approach by

Cecconi and Galanda [2002] and Sester and Brenner [2004]. As the data we are

dealing with is usually over-detailed with respect to the user’s mobile computing

needs there have been a few different works which have focused on methods to

transmit the resolution of data which is specifically adapted to the user’s query in

a mobile or web-based context [Follin et al., 2005b]. Cecconi [2003] used a mixed

approach which can compute the intermediate states between LoDs. Bertolotto

and Egenhofer [2001] and Zhou and Bertolotto [2004] proposed a model for struc-

turing multi-resolution vector data in a hierarchical tree structure. Sester and

Brenner [2004] proposed a continuous generalization strategy based on the incre-

mental transfer of generalization operators gi.

A formal expression of the progressive transmission of the incremental LoD

representation Pn of a polyline into its coarser one Pm is outlined as follows:

P ≡ Pn ≡ Pi0
g0−→ Pm (3.11)

Given a polygon P with a set of vertices v1, v2 . . . vn we then perform the

simplification approach as outlined above and generate LoD. Given an ε, it can

generate a corresponding LoD. If it performs the continuous generalization on the

data and generate the multi-resolution within different ε such as ε0, ε1 . . . ,εm(ε0 >

ε1 . . . ,> εm and εm = 0), then it results in a set of LoD which can be represented
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as l0, l1 . . . lm (m < n). Level 0 is the most simplified version while level m is

the full version of the map data. So the vertices of the lower version of LoD li

(0 < i < m) are the subset of the full version lm. If performed with continuous

generalization and iteratively remove a number of vertices within the ε in each

li, the difference between the levels is defined as a set of vertices Vi. As the

OSM is a single scale dataset, the incremental LoD for progressive transmission

is formalised as follows:

l0
V0→ l1

V1→ l2 . . .
Vm−1→ lm; (3.12)

For split-based approaches such as the DP algorithm mentioned above the

simplified dataset can be organized by using a Binary Line Generalization Tree

(BLG tree) as described by Oosterom [1990]. The BLG is an efficient scaleless

data structure for a single polyline object. The BLG stores the results of the

simplification as a binary tree and consequently there is no need for further sim-

plification processes to display the multi-resolution data. Figure 3.12 illustrates

the procedure for generating a BLG tree from the DP algorithm and the resulting

hierarchical tree structure. It is easy to understand the hierarchy of the polyline

nodes in terms of their position in the binary tree. This approach by Oosterom

[1990] has several practical advantages. These are summarised as follows:

1. This approach requires a diminishing number of calls to the DP algorithm

2. This approach is flexible to changing the number of points on the line and

generalising the map data according to different scale requirements;

3. The whole approach can be speeded up by retrieving a line at a specific

scale;

4. This approach maintains the topology of spatial data.

For the proposed merge-based approach, a Priority Queue is a more efficient

data structure for handling the vertices with various importance values when

they are characterised by priority level [Becker et al., 1991]. Higher importance

can be characterised by a high KS value ( 3.2) being assigned as high priority.

This implies that a geometric object appears on a map only if its priority is high
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enough. The object is represented only by those of its defining vertices that have

sufficiently high priority. Figure 3.13 shows an example of this implementation.

Each priority level will be given a priority index number. Lower index numbers

correspond to the smaller scale maps while higher index numbers belong to larger

scale maps. For each scale object, those that have higher priority values than the

priority corresponding to the map’s scale will not be retrieved. In general, the

Priority Queue tree is a height-balanced tree. This is where the PR-Tree has a

great advantage over the BLG-Tree, because the BLG-Tree can become grossly

unbalanced.

Figure 3.12: This example illustrates the procedure for generating a BLG tree
using the Douglas Peuker algorithm. The resulting hierarchical tree structure is
also shown

Both of these techniques allows us to perform efficient retrieval of the data in

a multi-resolution context. Generalization of the OSM vector data is performed

on the fly when a user requests a specific geographic area from the OSM dataset.
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Figure 3.13: All of the nodes in this polyline are arranged into priority levels
based on their KS values. One can see from the illustration that the first and
last node and two of the intermediate nodes have the highest priority
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As discussed above the simplification of polygons can adversely affect the overall

shape of polygons contours and geometrical structure. Only insignificant vertices

can be considered for removal during simplification. As shown in Figure 3.14 the

most significant nodes will be promoted to a higher level while the unnecessary

nodes will be demoted to a lower level for transmission later. These unnecessary

nodes will not enhance the visual structure of the object for immediate viewing

and visualisation on the client device. This process continues until all of the

nodes are stored in a special data structure. This data structure maintains a

priority sorted order on the nodes by ranking them by which level of detail they

belong to. The highest LoD level 0 which provide the lowest representation

will be delivered immediately for quick rendering and visualization. The lower

LoD, which corresponds to higher resolution will be sent incrementally then to

refine the previous LoD. However, when the user moves around the screen area,

the method will accelerate this refinement process in the original user-specified

region to enhance the visualization quality rather than in regions outside of this.

The processing related to the framework above is performed on the server

machine(s). The server machine could have a local mirrored copy of the OSM

database which is updated using frequent “diff” applications to the database to

ensure that it always has the most up-to-date OSM data. Alternatively the server

machines could download OSM data over the Internet. However, this approach

is a little error prone due to high traffic on the OSM servers. The data structure

for organising the vertices and the polygons in the OSM dataset are shown in

Table 3.1 and Table 3.2.

3.6 Topology preservation during data process-

ing

Topological consistency is a practical problem for vector data simplification ap-

plications [Bertolotto, 1998; Corcoran et al., 2012; Poorten et al., 2002; Zhou and

Bertolotto, 2004]. The solution to the problem is not trivial and it is a time

consuming task [Kolesnikov, 2007]. A common topological problem is the one of

processing that causes self intersections to occur in a polygon. Some approaches
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Figure 3.14: This is an example of the concept of LoD. The nodes are estimated
according to the significance to the shape. In the figure, the most insignificant
vertices are removed from the objects first, which has been shown in the nodelist
of Full detail level and the corresponding shape. The removal nodes will be put
into the Priority Queue in the lower level(Ln− 1, Ln− 2 ,. . ., LoD0). The earlier
the node is put into the Queue, the later the node is being used since it is more
insignificant as shown in L0.
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Data Name Data Type Description
(Lat,Lon) Geographic Coordinates Location Information
Next,Prev Vertex ID pair Previous and Next Vertices
Error Double Approximation error for

this vertex
NodeId int Unique id for this vertex
Removed Boolean Vertex accepted as a candi-

date for removal
KLevel Integer List The level of details (LoD)s

this vertex appears in

Table 3.1: This table shows the key variables in the data structure containing all
of the vertices in a dataset

Data Name Data Type Description
Polygon ID Integer ID The unique ID of the poly-

gon
Vertex List List of Vertices (Vertex IDs) List of Integers representing

vertex IDs
CompSim Double The similarity score com-

pated with the original
shape of this polygon

Inside Boolean If there is a self intersection
or another object inside this
polygon

Table 3.2: This table shows the key variables in the data structure containing all
of the polygons in a dataset. The data structure for the vertices in the dataset is
given in Table 3.1
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can avoid self-intersections occurring during each step of simplification by using

Voronoi diagrams [Mustafa et al., 2006]. Other approaches can preserve “un-

removable points” in an object [Barkowsky et al., 2000; Saalfeld, 1999] whilst

one can also remove vertices guided by some simple constraints [Yang, 2005] to

achieve topological consistency during the simplification process. However, effi-

cient topology checking is still an open question in this area.

OSM data contains various topological relationships, which are expressed in

the relation element. The relation element of OSM data will be described in more

detail in the next chapter. Relations, in OSM, are logical groupings or arrange-

ments of OSM objects (points, lines, polygons) and some rules specifying their

topological relationships. The sample OSM code in Code Snippet 4.4 shows one

building with two inner rooms which is then visualised with the illustration in

Figure 4.5. This is a very typical relation description in OSM data (expressed

in this case in OSM-XML). The polygon contains “inner rings”. During the

simplification process, we must check that the simplification process is correctly

preserving these types of topological relationships in the data. This approach to

preserving topological relationships must be consistent. An inconsistent approach

can lead to unpredictable or undesirable results. In OSM data, many contribu-

tors attempt to represent the geographical reality as accurately as possible in the

OSM database. This can include large polygons acting as ’containers’ for other

polygons. For example, a building polygon includes many small inner polygons

which represent rooms. Implementing procedures to check for topological con-

sistency during data processing is reasonably straight-forward. However, these

procedures are time consuming and must be managed correctly as they could

cause degradation in performance of delivery of the map data to the user device.

Most geometry processing libraries contain highly efficient and optimised routines

for checking topological relationships such as self-intersections and overlaps.

3.7 Chapter summary

In this chapter, we have provided a mathematical description of a framework

for processing vector-based spatial data with OSM as a case-study. The chapter

discussed the unique characteristics of OSM as a spatial data source. We detailed
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the mathematics of shape simplification, which identifies the insignificant nodes

removal will not have a detrimental effect on the overall shape of the polygon

or polyline. We also discussed the transformation of the data for display on a

small screen device. The data structures used to store the LoD are described

so that the simplified data can be stored and retrieved efficiently. The chapter

closed with a short discussion of the issue of topological preservation during data

processing.

The next chapter will outline a software tool we developed to process the OSM

data and implement the shape processing techniques outlined in this chapter. As

stated in this chapter OSM data is primarily exchanged between the OSM servers

and clients in OSM-XML format. Many GIS practitioners are a little hesitant in

handling XML data. The development of software should carefully encapsulate

the details of the XML data processing in the spatial data processing component

of the software. We will also provide some details on the way spatial data is

represented within the OSM-XML data format but it can be extended to any

well known vector based spatial data formats.
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Chapter 4

A software tool for processing

vector based spatial data

In this chapter, we implement a software tool based on the framework we have

described in Chapter 3. This software tool resides on the server machine. The

tool performs the spatial data processing required to respond to client requests.

It delivers the spatial data using progressive transmission schemes to the mobile

device. This chapter examines various features in the OSM XML data format

and proposes an XML processing algorithm based on opensource. We discuss

how we process the data with this software tool. Finally, we provide a summary

of the key components in this software tool.

4.1 Understanding OSM-XML data

We decided to use Java as the implementation language. In addition to this

Java has a wide range of libraries for XML processing, file input-output, net-

working, which are efficient and easily used. Primarily this tool has been de-

veloped using open-source components. Using the Geotools tool-kit (http:

//www.geotools.org/) this software can easily adapt to the most popular

vector-formats (such as Shapefiles, geoJSON, and KML) with minimal reconfig-

uration of this software. However, the emphasis from this point will be on the

processing of OSM data. As we attempt to access the most up-to-date data
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from OSM, this software tool is configured to process the OSM-XML data for-

mat. OSM data can be downloaded and accessed in two ways. Sources such

as Geofabrik (http://www.geofabrik.de/) offer OSM data in OSM-XML

and ESRI Shapefile formats. Geofabrik updates these files every three hours and

conveniently cut the world OSM file into country and regional extracts. These

files are easier to work with than the entire world OSM file particularly when

one is only interested in a small area or region. For networking applications

OSM raw data is freely available for accessing, querying and editing by using a

RESTful API [API, 2012] which returns OSM data in OSM-XML format. Users

can send HTTP requests to download up-to-date data from the OSM database.

This approach downloads OSM data using the REST API to ensure that we have

access to the most up-to-date data possible from the OpenStreetMap project.

Developers of applications using OSM also have the option of hosting their own

local network mirror of an OSM database. The OSM-XML file can be down-

loaded from Geofabrik and imported into a spatial database management system

such as PostgreSQL PostGIS. This approaches offers the benefit of local network

access to OSM data. However, this data can very quickly become ‘stale’ and

out-of-date. Software options are available to apply “diff” patches to the spatial

database to update the OSM data in the database by the minute, hour or day.

The OSM XML file usually has a clear human readable structure. The XML

represents a list of OSM data primitives (nodes, ways, and relations) that are

the architecture of the OSM model. We illustrate below a general OSM XML

file example for representing a spatial object in a real world map. The Science

building of NUI Maynooth is shown in Figure 4.5 and the associated OSM XML

is explained as follows:

• OSM (An example is shown in Listing 4.1) . An OSM element has been

included in the XML file. The OSM element contains the version of the

API and the generator that created this file (e.g. an editor tool).

1 <osm ve r s i on=” 0 .6 ” generator=”CGImap 0 . 0 . 2 ”>

2 <bounds minlat=” 53.3826430 ” minlon=”−6.6015530” maxlat=”

53.3834170 ” maxlon=”−6.5996000”/>
3 // inc lude ‘ ‘way ’ ’ , ‘ ‘ node ’ ’ and ‘ ‘ r e l a t i o n ’ ’ here

4 . . .
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5 </osm>

Listing 4.1: OSM request is wrapped as an osm element

• Node (An example is shown in Listing 4.2). A list of nodes represent

geographic points with a latitude and longitude. The element contains

coordinates under the commonly used WGS84 reference system. Other

editing information is included such as who created the dataset (“user”)

and when the changes happen (“timestamp”).

1 <osm>

2 <node id=”391294644” l a t=” 53.3829170 ” lon=”−6.6013797” user=”

Blaz e j o s ” uid=”15535” v i s i b l e=” true ” ve r s i on=”1”

3 changeset=”1095229” timestamp=”2009−05−06T10 : 5 0 : 5 4Z”/>
4 . . .

5 </osm>

Listing 4.2: An example OSM file with the node elements highlighted

• Way (An example is shown in Listing 4.3). This is a spatial object entity

with a block of vertices (“nd”) which use “ref” to link to it’s nodes (“node”)

and their nodes ids (“id”) in the list 4.2. Depending on whether the first

reference equals the last one a way is called closed or open. Closed ways

represent polygons while open ways represent polylines.

1 <osm>

2 <way id=”34128421” user=”mikeg88” uid=”587314” v i s i b l e=” true ”

ve r s i on=”11” changeset=”10435974” timestamp=”2012−01−19T11
: 0 2 : 4 9Z”>

3 <nd r e f=”391294644”/>

4 <nd r e f=”391294645”/>

5 . . .

6 <nd r e f=”391294664”/>

7 <nd r e f=”391294644”/>

8 <tag k=”amenity” v=” pub l i c bu i l d i n g ”/>

9 <tag k=” bu i l d i ng ” v=” un i v e r s i t y ”/>

10 <tag k=”name” v=” Sc i ence Bui ld ing ”/>

11 </way>

12 </osm>
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Listing 4.3: An example OSM file with way elements highlighted

• Relation (example in Listing 4.4). A relation in OSM is a logical grouping

of node, way and potentially some other relation as its member with its

non-spatial feature notations tag. This is where the OSM database can

form multi-polygons as complex objects with relations. Each entity partic-

ipating in a relation must play a certain role in it. Relations can represent

geographic features such as large cities. More commonly relations are used

to create logical geographical groupings such as housing estates, adminis-

trative districts in cities, and groups of water features.

1 <osm>

2 <r e l a t i o n id=”1078860” user=”B laz e j o s ” uid=”15535” v i s i b l e=”

true ” ve r s i on=”1” changeset=”5269515” timestamp=”2010−07−20
T11 : 0 1 : 2 1Z”>

3 <member type=”way” r e f=”34128421” r o l e=” outer ”/>

4 <member type=”way” r e f=”34765096” r o l e=” inner ”/>

5 <member type=”way” r e f=”34765097” r o l e=” inner ”/>

6 <tag k=” bu i l d i ng ” v=”yes ”/>

7 <tag k=”name” v=” Sc i ence Bui ld ing ”/>

8 <tag k=”name : ga” v=”Foirgneamh na nEola iochta ”/>

9 <tag k=” type” v=”mult ipolygon ”/>

10 </r e l a t i o n>

11 </osm>

Listing 4.4: An example OSM with relation elements highlighted

As shown in the Figure 4.1, the abstract structure of OSM data can be

expressed in the understandable form of OSM-XML. We take one OSM dataset

as an example: the Listing 4.1 defines a bounding box of the area in an OSM

map which is shown as an actual map in Figure 4.4. It represents a science

building with two rooms in this building (denoted with yellow lines), thus the

Relation for these spatial objects is: Science Building is an “outer” object while

the other two rooms are “inner” objects within OSM. We do not focus heavily on

Relations in the OSM XML in this work. Relations are the most complex form of
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Figure 4.1: This is the structure of OSM XML (OSM 4.1), which has included
multi-objects(Way 4.3) in the Relations (Relation 4.4) with their nodes (Node
4.2)

Figure 4.2: This graphic shows the actual rendered image of the OSM data
displayed in the Listing 4.1 and subsequent listings to Listing 4.4
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Figure 4.3: This flowchart shows the four principal components in this software
tool for processing the vector datasets and implementing the mathematical foun-
dations of the framework described in Chapter 3

the spatial representation in OpenStreetMap. Many contributors to the project

avoid creating relations for a number of reasons including poor software support

for relation editing and a general lack of understanding amongst contributors in

what relations represent.

4.2 Description of components in the software

tool

The principal motivation behind the development of a specialised software tool for

preparing OSM-XML data (and indeed extending to other vector data formats) is

that mobile devices cannot handle large spatial datasets efficiently for on-the-fly

visualisation and other spatial functionality. For most mobile devices (which are

Location-based Service (LBS) aware) it is still reasonably difficult to efficiently

handle such vector based geospatial data expressed in XML while providing quick

responses to user requests and efficient rendering. Most vector datasets only have
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one scale and it contains all feature data information at the highest quality in

the XML file. As outlined in Section 2.2.2, many features are represented with

very high resolution. Subsequently, it is necessary to perform pre-processing to

extract the user required features for efficient delivery of mobile visualization.

These types of considerations and the concepts from Chapter 3 are integrated

into the workflow of the overall framework flowchart which was presented in

Figure 1.2 in the Chapter 1.1. In the left side of this figure the workflow must:

process the vector data, perform generalisation, organise the generalised data into

increasing LoD and prepare these LOD for progressive transmission. Crucially, in

terms of processing the XML in networked environments, this software tool can

process the OSM XML vector data by file streaming techniques. The software can

then apply generalization processing in real time to the data in the stream. As

stated in Section 2.2.6, this approach can also be extended to process other vector

data in other well known formats such as Shapefiles, Geo-JSON and KML. We

describe the software tool in more detail. The four components of this workflow

of the software are illustrated in Figure 4.3 on page 83. There are four key

components: (1) the data input component, (2) the data extractor, (3) the data

processor, and (4) finally the data transporter. These components shall now be

described as follows:

1. The Data Input Component : The data input component responds to

the user request and takes vector data as input. For the purposes of the

testing and case-study, we allowed the specification of a bounding rect-

angle of geographic coordinates. The user request can be composed as

a HTTP GET request for the data from the OSM API. The request is

formed as a URL such as http://www.openstreetmap.org/api/0.

6/map?bbox=L,B,R,T where L and R are the western and eastern sides

(longitudes) of the bounding rectangle while B and T are the southern and

northern sides (latitudes) of the bounding rectangle. This request is then

sent to the OSM API. Rather than downloading the entire file containing

the data from the request, this software can process the data in real-time

using a streaming of the XML. All polygon features inside this bounding

box are streamed to the server and processed. However, this could be eas-

ily extended to other geospatial data formats such as ESRI Shapefiles or
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imported from geospatial databases (i.e. PostgreSQL) by using GeoTools.

The GeoTools package [GeoTools, 2012] is written in Java and enables this

software to read a number of different vector data formats such as GPX and

ESRI Shapefile. It is an extensive library and has reached de-facto industry

standard status.

2. The Data Extractor : We have implemented this generic algorithm to

process the streaming vector data as shown in the example algorithm in

Algorithm 2 for typical OSM XML data. It takes XML stream input from

OSM (line 2) and use polygonlist to record the objects and nodehashmap

to record the nodes. The“polylist” is a list which maintains a collection of

polygonal objects, which includes all the spatial information. The “node-

hashmap” is a hashmap with a list of (“key”, “value”) pairs for retrieval of

the location information( as “value”) of the nodes by using a reference id (as

“key”). It iteratively checks the elements in XML and identifies the key ele-

ments such as “osm”(line 9 - 11), “node”(line 12 -14) and “way” (line 15 -17)

and then extracts the spatial information and adds to the polygonlist and

nodehashmap when it comes to the end of the element (line 19 - 33). This

component is based on the Stax XML Java toolkit [Tutorial, 2012]. Stax is

an opensource tool which has many advantages including the availability of

cursor level access to the OSM XML data. Compared to other XML tools,

such as XMLBean, Stax is more efficient in fetching the geospatial data from

XML formats [Tutorial, 2012]. Using Stax we can move the cursor pointer

forward, skipping to the specified geographic features, and then extracting

the spatial objects from XML without requiring large memory consump-

tion. This Java XML processing approach means that this software will

run on most Java-enabled servers allowing real time data processing. The

geographic objects (nodes, polygons, polylines) are then bound directly to

Java objects for a further processing.

3. The Data Transporter : All vector datasets are embedded into a geo-

graphic coordinate system. OSM data is presented in WGS84 (Latitude-

Longitude) coordinates, so it is necessary for accurate area and distance

calculations that the data be transformed to a meter-based coordinate sys-

85



tem. The UTM (UniversalTransverseMercator) is used. The key func-

tion of the “Data Transporter” is to translate OSM XML data to the screen

resolution coordinate system while maintaining the functionality of spatial

calculations (ie. calculate the distance between two locations). This enables

the calculation of error metrics by transforming the coordinates between a

mobile screen and the OSM data (see more details in Section: 3.4)

4. The Data Processor : In this component we apply the shape analysis

metrics discussed in the paper Ying et al. [2010a]. An overall score will

be assigned to each spatial object in the vector data and the work of the

“Data Processor” is to compute whether the geographic features are ready

for direct delivery for LBS applications or whether there is a need to per-

form further generalization processing. If this score is smaller than an error

allowance threshold, then the corresponding spatial object is marked as

“LBS-Ready” for an immediate delivery. This threshold definition was ex-

plained in Section 3.2. Otherwise, this software checks if there are any

topological conflict issues [Ying et al., 2010b] or over-representation issues.

If there are issues, it suggests further processing.
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Algorithm 2: The procedure of processing a typical OSM XML file

1 XMLeventReader initialization and Open a new XML stream;

2 PolygonList←− ∅; nodehashmap←− ∅;
3 while eventReader.hasNext 6= ∅ do

4 e ← eventReader.nextevent;

5 if e.isStartElement 6= ∅ then

6 element S ← the start element tag;

7 if S is “osm” then

8 Start to extract spatial objects from element < osm >;

9 end

10 if S is “node” then

11 Read nodes and extract key element: “id”,“lat” and “lon” from

element < node >;

12 end

13 if S is “way” then

14 Start to extract spatial objects from element < way > and

Extract element “nd” and get the location reference from

nodehashmap;

15 end

16 end

17 if e.isEndElement 6= ∅ then

18 element E ← the end element tag;

19 if E is “osm” then

20 End the extraction work at < osm>;

21 end

22 if E is “node” then

23 Add the node into the nodehashmap at < node>;

24 end

25 if E is “way” then

26 Add the spatial object into PolygonList at < way>;

27 end

28 end

29 end
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Figure 4.4: Three different approaches for map visualisation. The traditional
method of map tiles and raster visualisation is shown at the top. This approach
then can be implemented with dynamic or static datasets.
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4.3 Key benefits offered by this software tool

Given the framework presented in Chapter 3 , in order to provide a service for the

requirements of Progressive Transmission in Chapter 5, we have developed the

software tool described in this chapter to the exact specifications of this frame-

work. There is also the advantage that we can then more precisely arrange the

parameters of this framework in order to prepare LoD data in a proper form.

We have described the computational aspects of the data processing tool, we

will outline some of its advantages. Compared to the traditional tile-based map-

ping systems, such as Google Maps, this approach provides a dynamic processing

framework for vector based data using OSM data as the case-study. As shown

in Figure 4.4 the software implementation can stream OSM-XML directly from

OSM. This data is then processed on the fly. The simplified data is then packaged

into prioritised LoD and then transmitted to the client device. The key differ-

ence with this approach, as illustrated in Figure 4.4, is that we do not rely on

the server to generate raster map tiles. We are not tied to a single representation

style or server-rendered zoom levels. Multiple map datasets can be processed and

displayed simultaneously and the map can have dynamic styles by performing the

rendering process on the mobile client. This will be discussed in greater detail

in Chapter 6. This allows us to create more aesthetically pleasing map visuali-

sations with customised appearances for spatial objects depending on their type.

Users can dynamically perform queries on the data (if this functionality is made

available to them). The visualisation builds smoothly rather than having ’jumps’

or ’gaps’ as each level of detail is delivered and integrated into the visualisation.

The LoDs are computed such that the appearance of the objects does not change

drastically between sequential LoDs. All of these advantages combined make this

software more flexible for map display on mobile clients than using the traditional

approach of raster map tiles. Moreover, because we do not rely on a pre-rendering

process of map tiles, this software can handle the dynamic OSM data. This is

crucial given the rate at which the OSM database is changing.
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Implementation Example

Before the conclusion of this chapter, we provide an implementation example to

illustrate the key benefits offered by this software tool. In this example, we are

using vector data from OSM and raster map tiles from OSM to highlight the

differences of three approaches: (a) the proposed approach implemented in the

software tool outlined in this chapter, (b) alternative vector approaches using

OSM data sources (such as Cartegan by Cartegan [2010]) and (c) tile-based ap-

proaches (which corresponds to the first implementation in Figure 4.4 on page 89).

We have not generated the tiles in (c) ourselves. However, we could easily have

done this using the Mapnik software toolkit (http://wiki.openstreetmap.

org/wiki/Mapnik). Mapnik is used by OSM to generate the map tiles for the

OSM website and associated map applications. The stylesheets and style config-

urations used on the OSM website are freely available.

Figure 4.5 shows the three corresponding maps generated by these three ap-

proaches using the same map area from OSM. Figure 4.5a is a simplified version

of vector map by the proposed approach using the same area as the raster map

in Figure 4.5c. As outlined in Table 4.1, the raster approach is provided with the

highest resolution (non-simplified) vector OSM dataset. Table 4.1 summarises the

differences in these three approaches. It assists us in emphasising the advantages

of using our proposed approach for vector data transmission and visualization

over the other two approaches. As shown in this table, we use the simplified

JSON format for transmission which is smaller than OSM (in the ’Size’ row of

the table). However, this is more flexible than tiles (in the ’dynamic or static’

row of the table). The output map from three approaches shows that the pro-

posed approach can generate appropriate visualization quality. Since the input

data to our visualisation is at lower detail in this approach, we benefit from faster

transmission and efficient visualization of the maps compared to the high detail

input maps in approaches 2 and 3. The proposed approach and approach 2 can

stream the spatial data from a dynamic data source and process this data on the

fly. This is much more efficient than the generation process of pre-computed tiles.

In summary, the proposed approach can offer faster interactions with the maps

whilst reducing the amount of data required for the map visualisation. When
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users require more details, the additional refinements can be transmitted to them

by progressive transmission, which is the technique proposed and explained in

the next chapter.

Figure 4.5: This figure provides screenshots of the output of the three types of
mapping approaches for the same OSM input dataset. (a) shows the proposed
approach; (b) shows an alternative vector approach; (c) shows the output of a
raster tile-based approach. Details of these approaches are outlined in Table 4.1

4.4 Chapter summary

This chapter has described a software tool which can process vector-based data

efficiently and provide generalized datasets for LBS mobile applications. The

focus of our analysis is on vector data collected in the OSM project. As the OSM

project manages VGI data, there are problems in the representation of geographic

features, which must be addressed before generalization can be performed. This
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Map Charac-
teristic

Approach 1 Approach 2 Approach 3

Source of Data Vector Vector Raster
Data Format JSON (simplified

data)
OSM XML Image tiles

Dynamic or
Static

Dynamic Dynamic Static

Overall Size 300kb 2mb 120kb (combined
size of tile im-
ages)

Visualization
quality

Good Good Good

Detail Low High Standard
Generation
Speed

Reasonably fast
(2 seconds)

Fast (< 1 second) Very slow: pre-
computed in the
server, served
over Internet
quickly

Transmission
speed

Fast (< 1 second) Slow (5 seconds) Fast (< 1 second)

Rendering
speed

Fast (< 1second) Slower (10sec-
onds)

Fast (< 1second)

Interaction
flexibility

Interaction possi-
ble

Interaction possi-
ble

No interaction
possible with-
out additional
functionality

Scalable Yes Yes Fixed scale

Table 4.1: This table summarises all of the aspects of computational performance
of the three mapping approaches: 1) our proposed approach, 2) other vector
approaches - in this case Cartagen, and 3) the standard tile-based approach
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chapter has proposed the first step in the server-side framework for dynamic

processing of vector-based data. It has also described the preparation of data

for progressive transmission in the next chapter. We conclude this chapter by

summarising that it is more flexible to process this VGI vector data on the fly.

This results in a significant reduction of the data load for transmission while

still maintaining a appropriate visual appearance for visualisation of the maps on

small mobile display screens. The next chapter will describe the steps necessary to

deliver the LoD to the client device for incremental refinement and visualisation

in our proposed progressive transmission scheme.
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Chapter 5

Progressive transmission of

vector-based spatial data

In the previous chapter, we described a framework of processing vector-based

spatial data and a subsequent implementation of these in software. In this chap-

ter, we describe the actual progressive transmission of this vector-based spatial

data. Increasing LoDsth of a selected dataset are progressively transmitted for

incremental refinement and visualisation on the client device. We first describe

a progressive transmission scheme to generate LoD for the given OSM data and

gradually refine the simplified coarsest map with equivalent increasing LoD. A

user study is conducted to survey the user satisfaction with these generated maps

at the different resolutions. The study shows that users are generally satisfied

with the highly detailed maps but not with those of lower resolution. We then

discuss complexity metrics for shape similarity measurements and conduct addi-

tional user trials. We attempt to quantify some intuitive measures of dissimilarity

in maps from the user’s point of view. A clustering method is employed to assist

in finding obvious intuitive measures such as area importance and shape complex-

ity. These measures are used as heuristic metrics to identify the dissimilarity of

spatial objects when progressively refining the maps for visualisation. To achieve

better user perception of these maps, we then propose a selective progressive

transmission strategy using these metrics to minimise the “popping effect”(i.e.

sudden significant visual changes) during progressive transmission.
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5.1 Description of the progressive transmission

scheme

In many LBS applications, it is necessary to exchange spatial data over the net-

work and visualize it as soon as possible and with the highest quality [Paolino

et al., 2011]. For example, a geoscientist may need to conduct a mapping activity

with a mobile device, while viewing and accessing the spatial data. Remote access

to high quality spatial data via a mobile network is difficult in such situations

due to slow or obstructed network communications and the potentially large data

volumes involved. Users usually can view the data only after the entire dataset

has been fully downloaded. This is commonly experienced on the Internet when

one downloads video or audio files without streaming. The entire file must be suc-

cessfully downloaded before playback can be performed. In order to mitigate the

issue of downloading dataset, a data processing framework was proposed in chap-

ter 3. As one can recall from the previous chapter, over-detailed OSM datasets

are selected for further simplification. Users are allowed to access the simplified

datasets immediately and perform interactive spatial operations directly on the

spatial objects in the dataset. However, a coarser version of spatial datasets

produced by this process may not be sufficient for detailed viewing, for instance,

when the user zooms into a specific area and wants to obtains more detail for that

area. The simplified datasets might not be of sufficient detail to provide the fine

resolution required for many spatial reasoning tasks. Consequently, a progressive

transmission scheme is described to gradually refine the map dataset by transmit-

ting incremental LoD refinements until an acceptable detail is reached. The users

can wait until the final LoD has been delivered (full resolution) or may choose to

stop the progressive transmission process at any given intermediate LoD.

It is necessary to first transmit the most significant map details, due to con-

straints imposed by screen resolution and network bandwidth. Subsequent trans-

missions can transmit additional detail until the entire spatial dataset has been

delivered successfully. Progressive transmission has many advantages including

the transmission of smaller data sizes, quicker response times, and possibly the

transmission of only most relevant details [Bertolotto, 2007]. Progressive trans-

mission approaches generally provide users with a map at a coarser LoD initially.
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This map is then iteratively refined through sequential transmission and the in-

tegration of further data [Augusto et al., 2009; Bertolotto and Egenhofer, 1999,

2001; Zhou and Bertolotto, 2004]. The user can immediately perform analysis us-

ing the coarser map and terminate further downloads when the map approaches a

desired LoD. The maps of varying LoD, received by the user, are generally created

using map generalization methods. Some results in Zhou et al. [2005] indicate

that the progressive transmission strategy provides users with faster access to the

initial datasets and obtain LoD within a reasonable time period.

In this work, the constraints of mobile applications must be specially con-

sidered and integrated into this progressive transmission scheme. The system

architecture follows a classical client-server architecture. The server side man-

ages the data processing and data access computation. This includes LoD data

retrieval and management of dynamic data sources. The client manages the data

visualization process. This includes communication with the server and perform-

ing map rendering. In this chapter, we focus only on the management of the

progressive transmission of required LoD refinements for effective access to the

spatial data. The main goal of this work is to design a framework which delivers

the optimum LoD to a user within the limited bandwidth. The framework is

shown in Figure 5.1 which illustrates the key steps in the progressive transmis-

sion process. An example of the progressively transmitted data, rendered as map

visualisations, is then shown in Figure 5.2. Figure 5.1 operates with the following

steps.

• When the user interacts with a map and selects a geographic area, this

generates a request using screen parameters which is sent to the software

running on the designated database/spatial data server. This is in turn

transformed into a data request to the original vector data server. In the

experiments, we performed this in the form of an OSM API request direct

to the OpenStreetMap servers. However, this is easily changed to a request

to a local database, a network data store, or indeed a locally mirrored copy

of the OpenStreetMap database.

• When the request has completed, a vector dataset is downloaded. This

software takes the vector data as input and performs several steps to identify
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and simplify the over-detailed features. Then the LoDs from L0 to LN

are generated and handled by a tree-based data structure as described in

Chapter 3.

• We then initiate the data management strategy to select the most suitable

LoDs within a group of polygonal objects which are visible in the user’s

viewable area. These objects are marked (or qualified) as delivery can-

didates. The potential for a limited bandwidth network is considered. A

limited number of LoD datasets are selected for inclusion in each subsequent

data package transmission.

• The application software on the server begins the transmission process from

L0 which contains the most generalised and lowest level of detail. When L0

has been transmitted successfully, the nodes (and polygon structure infor-

mation) for L1 are prepared for transmission. This process is repeated until

the final nodes of the original dataset are transmitted with LN . GeoJSON

objects are generated for each Li.

• The nodes transmitted during L0 can be considered to be the most signifi-

cant nodes or vertices in the overall shape structure of the polygons within

the original dataset. The nodes transmitted during LN can be considered

the most insignificant nodes. The user may decide that they are satisfied

with the map representation at one of the map levels Lj and can choose to

stop transmission; Otherwise, the full detail maps will be sent to users. If

they choose to terminate the transmission, the visualisation remains on the

mobile device screen as the data up to this Lj now resides on the mobile

client.

While there is a great merit in the development and implementation of a

progressive transmission scheme, the crucial yardstick to measure the success of

this scheme is related to the usability of the maps and how they are evaluated by

potential users. In the next section, we will discuss the issue of the usability of

the maps generated by a progressive transmission approach.
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Figure 5.1: The client sever architecture is illustrated. The processing steps
employed for the input OSM data is shown on the server (left). The increasing
LoD are then prepared and transmitted to the client (right) where a thread-based
approach to visualisation and rendering of the data is applied.
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Figure 5.2: This is an example of the framework progressively generating LoD
(most simplified coarse version at the left and highest resolution to the right).
Users can stop receiving the incremental LoD when they are satisfied with the
current map representation presented to them

5.2 Map usability issues in progressive maps

Regardless of what computation and data processing happens behind the scenes,

one of the keys to the success of any client application is whether the user is able

to use the application and that the application is fit-for-purpose. As Teo et al.

[2003] remarks, it is now very important to deliver applications which meet the

expectations of user satisfaction, as this is now critical “in the competitive market

place”. The software tool can generalize the map data and generate LoD by ap-

plying simplification at different reduction tolerances. However, this introduces

the issue of selecting the proper tolerance values to apply. An incorrect tolerance

value might result in a very poor generalization. Normally users must decide on

a suitable tolerance on a case-by-case basis or from their own experience as very

little automation of this decision-making is available. This may lead to unstable

results. For instance, if users assign a tolerance to the current map and this pro-

duces an unrecognisable map it can mean that there will be no significant visual

improvement in receiving the next set of points. The generated map is neither

usable nor is it acceptable for its intended purpose. Jenks [1981] demonstrated

that reductions of less than 40% of the total number of nodes in a set of objects

does not produce a significant visual impact. Therefore, when implementing a

progressive transmission strategy, it is important to perform generalization to

obtain output maps, which are suitable and exhibit good “map usability”. As

outlined by Paolino et al. [2011], users usually match their perception of the real

world with the displays on the map to affirm their current positions or their
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understanding of the geography of the regions.

Since map services are increasingly used in LBS for information presentation,

finding and using the best means of adapting maps for a small screen is an im-

portant research challenge. Methods from the domain of computer vision may be

used to perform map simplification in an evolutionary manner, which preserves

a contour’s overall shape across LoD as mentioned in Chapter 3. However, such

a local criteria for a single map feature cannot be used to determine a suitable

evolution for a collection of map features. For maps containing multi-polygonal

objects, a methodology for determining a globally suitable generalization is re-

quired. The display capabilities of mobile devices are more restrictive than the

traditional desktop machine. This is a major difference and must be kept in mind

during the development of mobile applications.

Sester and Brenner [2004] proposed an approach for the generalization of

vector data tailored specifically for mobile devices with a limited screen resolution.

Kjeldskov and Graham [2003] stated that more research is required to understand

usability from a user perspective as many assumptions are made by researchers on

what users actually want from map-based displays. The visualization of multi-

scale maps with multiple objects on mobile devices should also exhibit better

quality with regarding to user perception.

The problems of the map display on mobile devices are exacerbated by the

nature of spatial data where a large information space needs to be presented and

manipulated on a small screen [Tonder and Wesson, 2009]. Ying et al. [2011]

carried out trials of maps generated by progressive transmission. They found

that maps with moderate LoD produced the best map quality and highest user

evaluations. In map usability tests carried out by Kratz et al. [2010] the authors

found that users preferred map zooming to map panning and scrolling. The

authors comment that tasks such as map navigation require users to view and

classify larger features of the map (in a zoomed-out state) in order to locate the

point of interest they are interested in. Harrie and Stigmar [2010] provided some

measures of map information that eventually should be used as constraints for the

selection of data layers and in real-time generalisation. They found that measures

such as the number of objects, number of points, and object line length had better

correspondence with human judgement than object area alone. Paolino et al.
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[2011] also conducted an empirical user study to evaluate user object recognition

on progressive maps with different LoDs. Yang et al. [2011] proposed a model

to handle the multi-resolution visualization of buildings in urban environments

when considering the thresholds sequence in LoDs.

Overall most scholars in this domain agree that maps must be adapted for

mobile screen display while considering potentially limited network bandwidth.

They cannot be a straightforward extension of map-based applications for desk-

top machines and screens. As an increasingly large number of map users are

accessing cartographic products through mobile and position-enabled devices, re-

searchers have shown that users appear to find maps with less, rather than more,

information to be useful and usable. The user satisfaction with different aspects

of the map is important to analyse the usability of the map. This leads us to the

next section, where we describe some empirical studies that we carried out to as-

sess the satisfaction of users with maps generated by the progressive transmission

strategy.

5.3 User satisfaction with maps generated by

the progressive transmission scheme

In the area of geographic information management, simplification of lines is a

generalization process that aims to eliminate unnecessary map details [Fatto et al.,

2008]. As they stated, the simplification process is currently addressed as a

solution to several research issues in the field of spatial data management such

as: faster map transmission, plotting time reduction, storage space reduction and

faster data processing. When users are not satisfied with the initial simplified

maps, further incremental LoD should be sent to refine the coarsest version of

maps until the user is satisfied with the map representation. He argues that

this task is more complex than simplifying map data. Any LoD will cause the

changes which can affect the overall map visual perception as each subsequent

LoD adds more data and information to the map. Selecting the most suitable

LoD is a difficult task, but yet one which is important to the overall success of

approaches. In this section, we will outline a number of user trials we performed
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where several participants were asked to evaluate their user satisfaction with the

LoD in maps generated by the progressive transmission scheme. The goal of this

experimental analysis is to understand the usability issues related to the use of

LoD. It attempts to find if there are differences in different users’ perception of

LoD. This analysis could help us to quantify a suitable solution for transmitting

specific LoD in a user preferred manner.

5.3.1 Experimental design

We designed an empirical study aimed at determining if there was a relationship

between the data reduction and the user satisfaction for given LoD. We used

the OSM datasets as this case study. In order to test user satisfaction with

these progressively generated maps, we recruited 10 users to take part in this

user trial. All users had a GIS background. They were given an explanation of

the progressive transmission process and an outline of how the experiment was

designed. We ran the progressive transmission software for 10 input datasets.

The users were provided with datasets with 5 pre-determined distinct levels:

• L5 the full version with no reduction in data size,

• L4 the original reduced by 20% (called r20%),

• L3 a further 20% reduction (called r40%),

• L2 a further 20% reduction (called r60%),

• L1 a final 20%, which represented an 80% reduction (called r80%) on the

original map dataset.

These LoDs are generated by reversing the order of our simplification process.

The map datasets used in the trials were chosen as follows. We chose 10 case-

study areas in OSM for map datasets as shown in the Table 5.1. In maps with

multi-objects, all objects will have an equivalent level of detail. The scale is

set at 1 : 50000. To carry out this evaluation of this model, we omitted line

features. The 10 datasets selected include single polygon datasets and multi-

polygon datasets. There are 4 datasets with one polygon: c42 (211 nodes), d14
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(309 nodes), r16 (46 nodes), r50 (51 nodes). The remaining 6 datasets are multi-

polygon and have between 277 nodes (n6) and 2172 nodes (n7). An example of

this progressive transmission process applied to the N3 map dataset is shown in

Figure 5.4.

A mobile phone running the Android OS was used. The delivery of the geospa-

tial data to the rendering application on the client mobile device occurred in the

order L1 through to L5. As recommended by Li and Nakano [2007] the screen

display was kept simple and uncluttered. A screenshot of one of the map displays

on the Android device is shown in Figure 5.3. Like the polygon in this figure,

we selected test data with minimal overlap between polygonal objects and also

removed the effect of color on map recognition. The test started with the user

clicking the maps on the mobile screen. The size of the maximum bounding rect-

angle from which the map datasets were generated was limited in our study to 2

square kilometres. For urban areas in OSM, this can contain a large volume of

data [Mooney and Corcoran, 2012a].

Results of the user trials were collected as follows. The users can click through

a series of options to display the 10 map datasets and fill a questionnaire on paper

to express their satisfaction. A ten point Likert scale [Matell, 1971] was used in

the questionnaire given to each subject with answers ranging from (1), which

corresponds to a “strong dissatisfaction with map”, to (10) which corresponds

to a “strong satisfaction with map”. This broad scale provides users with a

wide range of possible answers to correctly express their opinion. Table 5.2 (on

page 106) shows the mean user scores for each progressively generated map for

each dataset while Table 5.3 (on page 108) shows the corresponding standard

deviation. Figure 5.5 summarises all of the results of the survey for all users.

The legend indicates the rating that the users gave to each map. The downward

trend (decreasing levels of satisfaction) with R60 and R80 is evident from this

graphic.

5.3.2 Discussion of results

In the experiments, we attempted to quantify how satisfied users were with the

progressively generated maps. We also attempted to quantify if they were also
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Figure 5.3: This is a screenshot of the mobile device interface upon which user
trials were performed. This is the Android operating system
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Dataset Name Object Description Nodes
c42 Single Polygon 211
d14 Single Polygon 309
n1 Multi-polygon 825
n2 Multi-polygon 1631
n3 Multi-polygon 278
n4 Multi-polygon 1351
n6 Multi-polygon 277
n7 Multi-polygon 2172
r16 Single Polygon 46
r50 Single Polygon 51

Table 5.1: The table details of the ten study areas used in the trials. The first
column represents the name of the study area. The second column specifies
whether the study area contains a single or multiple polygons. The third column
represents the total number of polygon and line vertices in the study area. For
example, the Figure 5.4 corresponds to example code n3 in this table

Set Final R20 R40 R60 R80
C42 8.5 7.6 7.9 4.4 3
D14 8.6 7.2 5.3 3.9 3
N1 8.6 8. 5 6.5 4.1 4.2
N2 8.2 7.3 5.9 3.8 3.2
N3 8 7.7 5.9 3.7 3.2
N4 7.9 8 8.2 8.1 8.1
N6 6.3 6.2 5.1 3.9 3.1
N7 7.9 7.9 8 6.4 3.9
R16 6.1 6.2 4.9 3 2.2
R50 6 4.7 4.1 3.2 2.3

Table 5.2: Users were asked to rate their satisfaction with the presented map at
a given Level of Detail. The ratings were on the scale of 1 (strong dissatisfaction
with map) to 10 (strong satisfaction with map). This table shows the mean of
user scores for each LoD and the final version of the map.
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Figure 5.4: An example of the progressive transmission process where the user
views five intermediate versions or LoD of the same map.
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Set Final R20 R40 R60 R80
C42 1.27 1.9 1.37 1.58 0.94
D14 1.07 1.23 2.06 1.85 1.15
N1 0.97 1.18 1.35 1.45 2.04
N2 1.03 2.11 0.32 1.69 1.14
N3 1.25 0.48 0.99 1.7 1.99
N4 2.02 1.83 1.75 1.91 1.91
N6 2.26 2.04 1.2 1.37 2.08
N7 0.74 0.57 0.67 1.96 1.52
R16 1.52 1.75 1.37 1.83 1.14
R50 1.83 1.89 1.66 1.87 2.06

Table 5.3: Users were asked to rate their satisfaction with the presented map at
a given Level of Detail. The ratings were on the scale of 1 (strong dissatisfaction
with map) to 10 (strong satisfaction with map). This table shows the standard
deviation of user scores for each LoD and the final version of the map.

Figure 5.5: This chart shows the user satisfaction scores over the five LoD of the
progressively transmitted maps for the ten study areas
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satisfied with the simplified data and what the difference was between individual

user scores for the same map at the same levels. From the experimental results,

we concluded our analysis as follows :

• Result 1. In the Figure 5.5 and the corresponding table in Table 5.2 the

results showed that user satisfaction has a non-linear positive relationship

with data reduction size in general. Satisfaction only diminishes slightly

when the data is reduced by 20% or 40% (as expected from work such as

[Jenks, 1981])(i.e. n1 and d14 in the table). However, satisfaction reduces

sharply for the further simplified versions (60% and 80%) for most cases.

• Analysis 1. The sharply decreasing users scores in the 60% and 80%

reduced LoD maps indicate that some of the most simplified versions are not

looked upon favourably by users whilst highly detailed maps are preferred

by users in general. There are shapes which are under-represented and can

cause significant “popping effects” between levels, such as the example n1

in Figure 5.6 demonstrates. This might be the source of the disagreements

amongst individual users in their satisfaction with these particular maps

• Result 2. Some over-represented examples (i.e. N4 with 1351 nodes in the

table Figure 5.1) exhibit greater user satisfaction at greater data reduction

percentages while under-represented map examples (i.e. R16 with 46 nodes

in the Table 5.1) represent low user satisfaction over the maps with higher

simplification rates (60% and 80%). When one calculates other metrics

for the dataset and the study areas, we can gain further insights from the

results. Datasets r16 or r50 have Kmean = 0.413 and 0.468 respectively

(referring to the definition of Kmean in Section 3.2 on 51), but also have

lower user satisfaction levels and are considered as under-represented maps.

• Analysis 2. Users do not recognize additional refinements to the map

during the progressive transmission even after a sufficiently good shape

representation has been obtained as the example N4 in Figure 5.7 indicates.

The results indicate that if a polygon is over-represented, simplification is

possible to reduce the data size before transmission to a mobile device with

limited capabilities.
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• Result 3. The satisfaction amongst users of the single polygon examples

(D14, R16) is very positive for the full version and r20, but quickly degrades

for other versions. It can be seen in the standard deviation table (Table 5.3)

of user satisfaction scores that most users agree with each other about

the score (with a low standard deviation of approximately 1 for R80 for

example). However, we find that in the multi-polygon maps such as (N2,

N7), the users have expressed greater satisfaction with the low LoDs as

seen in the Figure 5.5 and the Table 5.2.

• Analysis 3. For the map represented by a single polygon object, it may

be easier for users to observe the difference when progressive updates are

applied to map visualisation with LoDs. However, in the situation of multi-

polygon objects, the changes of a single object or a few can be less ob-

vious with regarding to the overall map characteristics. Users may not

easily identify the difference when being shown a series of similar progres-

sive LoDs. This is an interesting problem, but somewhat outside the scope

of our research. Identification of subtle differences between a series of sim-

ilar progressive LoDs may be heavily influenced by users’ spatial reasoning

and cartographic understanding skills.

This study increased the need to find suitable solutions to the issue of pro-

viding smooth transmission of LoD whilst attempting to ensure that users are

satisfied with the results. We investigated single polygon examples. However,

almost exclusively, in reality the map usually consists of a set of polygons. It is

often the case that there are variations in representation amongst the polygon-

s/polylines in VGI data. For VGI datasets such as OSM, this is certainly the

case. This brings us to the position where we can introduce the problem for the

next chapter. The experimentation above considered a rigid selection of LoD (at

the specific percentage reductions in spatial detail). In practice ’jumps’ from the

original map datasets L5 to L4 (with 20% of detail removed) are not common.

However, depending on the representation of the objects in the datasets the move

between intermediate levels between L5 and L4 could display some ’popping’ ef-

fects or significant visual changes. How do we choose suitable LoD to maintain a

smooth transmission effect and keep map changes under control? Motivated by
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this we develop an enhanced strategy called “selective progressive transmission”

in the next section to address this issue.

Figure 5.6: For under-represented examples the users did not like over-simplified
maps (with 80% reduced data). Significant “popping” effects are easily seen
between the LoD chosen for the experiments here
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Figure 5.7: For over-represented examples, the user satisfaction ratings show
similar satisfaction opinions over the progressive transmission. In this example,
the mean user score was high for three different LoD

112



5.4 Selective progressive transmission

Map visualisations help users to explore the spatial information in a geographic

region. Transmitting high quality map data to mobile devices constrained by the

low bandwidth network is difficult. When sending this map to mobile users in

increasing LoDs by using progressive transmission, users may not be satisfied with

the simplified versions. We have seen results of this in the experimental analysis in

the previous section. In a dataset such as OSM, as we discussed in Section 2.2.2,

there are issues of non-homogeneous representation of the geographic features

[Mooney et al., 2010]. In a small geographic area there could well be some features

which are over-represented and other features which are under-represented. If we

consider simplification and then subsequent rebuilding of these features, the over-

represented objects will retain their shape characteristics (before and after) whilst

any detail removed from under-represented features is replaced quickly.

To obtain the best quality map representation when user are interacting with

LBS applications, it is necessary to select the most suitable candidate objects

for an immediate delivery and visualization of the maps on client devices. The

non-selective progressive transmission strategy introduced earlier is simply a re-

versal of generalisation and simplification. This is reasonably straightforward to

understand and it works well in our implementation. However, it considers that

all objects are similar (in characteristics and user perception of these objects).

This is not an accurate reflection of cartographic or geographic reality. In this

section, we introduce an extension to this progressive transmission scheme called

’selective progressive transmission’.

We first perform another user survey of the OSM maps by assessing the gen-

eral complexity of the map objects contained. We then develop a set of metrics

to quantify the dissimilarity of map objects. These perceptual metrics are used

to derive our selection strategy which is used to adjust LoDs adaptively among

complex multi-polygons. This will help to maintain a uniform data rate in trans-

mission and will provide a smoother progressive transmission. ’Complex’ objects

will be given priority over non-complex objects. Higher priority objects will be

supplied with spatial detail in LoD earlier than non-complex objects.
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5.4.1 Preparing for selective progressive transmission

Transmitting large-scale LoDs for each requested scale is time consuming. From

a user’s perspective, it is not always necessary if zoom and pan interactions are

needed, for example, to navigate to an area of interest (AOI). As this task does not

require a map at the highest resolution, it is reasonable to send less detailed maps

first. In order to define these representations, such that characteristic features are

preserved, automatic guidance methods are needed. During a line simplification

process, the user’s perception of differences may change remarkably [Paolino et al.,

2011]. To obtain smooth progressive maps, a simplification algorithm is needed

to select a subset of vertices which best represents the geometric properties of a

polyline while eliminating the remaining points [Fatto et al., 2008]. The generated

LoD from the simplification should maintain some optimality between successive

levels of resolution [Marteau and Menier, 2009].

The idea of continuously refining low-resolution vector data in Internet and

mobile applications has been discussed by some researchers during the last decade.

Buttenfield [2002] described a method to refine the maps based on the DP al-

gorithm which are topologically consistent. Ai et al. [2005] proposed a “changes

accumulation model” to describe the incremental details as additional change

patches are applied to successive LoDs. In this way, as Ai et al. explains, how

the difference between each scale can be described as an accumulation of changes

and could be easily reversed. Follin et al. [2005b] built a multi-resolution model

by applying metric and topological operators. These maps usually consisted of

several polygonal objects. However, given a certain number of vertices to refine

the simplified version of this map, one cannot simply reverse the process of sim-

plification to each polygonal object, as the representation quality is variable for

different spatial objects in an area. There are many scenarios encountered with

inhomogeneous representations found in datasets such as OSM.

In this section, we describe how we have integrated a measure of the polygon

shape complexity of features into the progressive transmission scheme. This is

extended to selective progressive transmission. Features which are designated as

’complex’ are ’selected’ and provided with more detail as the increasing LoD are

assembled in sequence. ’Simple’ objects (usually those which are over-represented
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or those represented by simple shapes from Euclidean geometry such as circles,

squares, rectangles, etc) are not selected early in the LoD process. These ’simple’

objects are only provided with additional detail later in the sequence of LoD.

Before introducing formal mathematical notation for measurements in the shape

complexity, we describe a user trial to understand a map-user’s perception of

’complex’ and ’simple’ objects.

5.4.2 Human perception of shape complexity

In this section, we will discuss a small experiment we carried out to assess map-

users’ perceptions of ’complex’ and ’simple’ objects. The results of a user study

on the shape complexity features of OSM datasets are discussed. The idea behind

this experimentation is to lay the foundations for using shape complexity as a

dissimilarity measurement to describe the changes of shapes features during the

progressive transmission process.

Human visual perception can identify complex polygons very quickly when

presented with a cartographic representation of the polygons [Corcoran et al.,

2010]. More generally, the human eyes can determine that a shape is either

“simple” (i.e. a circle, a triangle, a rectangle) or “complex” (a multi vertex

polygon) quickly. When we look at buildings without any other information

except our visual perception, we can say ’that is a very simple design’ (for maybe

a bungalow) whilst ’that is a very complex and intricate building’) (for a medieval

castle or modern office block).

We designed the experiment by providing users with a specially selected set

of 65 individual polygons from OpenStreetMap. These 65 were drawn randomly

from a larger set of individual polygons using a self-weighting sample approach

EPSEM (Equal Probability of Selection Method). This was then used as a

ground-truth training set required to establish rules on how to automatically

distinguish shapes based on the characteristic of being “simple” or “complex”.

Some examples are shown in Figure 5.8. The polygons are taken from Open-

StreetMap for Ireland and Wales. This set contains a good overall distribution of

different types of polygons representing different natural phenomenon. As stated

the final set of polygons P were chosen from a larger set of polygons Q. The set
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Q comprises all qualifying polygons in Ireland and Wales. For a polygon to be

a member of set Q, it must represent a water feature (lakes, ponds, reservoirs),

a natural feature (forests, parks, open space, green areas), or a mixture of these

two features (reclaimed land, quarries) and it must have an area greater than

0.25km2.

Ten people were chosen as test subject participants and were required to

indicate their visual evaluation of the shape. The ten people chosen for this task

comprised of: six researchers in the current research group, another person who

is an expert in GIS, and finally three people with no GIS or IT backgrounds.

All participants were shown the 65 shapes in the same order on a smart-phone

and were asked to indicate if they thought the shape was “simple” or “complex”.

When all ten people had taken part in the experiment, the majority vote for each

polygon was taken. So for each polygon pi in the set of polygons P a value of

1 indicated if pi was deemed “complex” otherwise a value of 0 indicated that pi

was “simple”. In the 65 shapes, 34 were voted as “complex” while 31 were voted

as “simple”.

Using the results of the user trials, we can apply the shape metrics to the

“complex” and “simple” objects and try to cluster the shapes based on the val-

ues of various shape complexity metrics. We will describe some mathematical

formulations of shape complexity, which can be implemented computationally in

the next section.

5.4.3 Automation of shape complexity assessment

In the previous work [Ying et al., 2010a], we implemented a number of shape

description measures (related to characterstics such as Area, Perimeter, Number

of nodes and so on) in an attempt to identify the polygons with specific features

for use as input for testing generalisation algorithms. The shape complexity

measures we used attempted to calculate characteristics for each polygon. These

quantitative characteristics can then be used to give an overall measurement

of the complexity of a polygon. This allows automatically description of the

complexity of a polygon without human visual evaluation [Rosin and Mumford,

2006]. Obviously, the process is quicker if we do not have to rely on human visual
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Figure 5.8: Examples of the polygons taken from OSM which were used in the
user trials. For the 65 shapes 34 were voted as “complex” while 31 were voted as
“simple” by our user participants
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evaluation. As all polygons in the training set represent real-world geographic

objects, it is important to focus on shape description measures which exploit the

spatial characteristics of the shape itself [Brinkhoff et al., 1995]. Each polygon p in

the set of polygons P extracted from the OSM XML has n vertices labelled 0...(n−
1). A number of shape complexity measures are calculated for each polygon pi

in the test set within which we will outline each of the complexity measures.

This approach attempts to compute a measure of the polygon complexity in the

smallest number of steps which are outlined as follows. For these steps, we choose

Circularity Cp and Area Ratio Ar.

Circularity Cp is important shape characteristic [Brinkhoff et al., 1995; Žunić

and Hirota, 2008]. It is very well known and is easy to calculate. The value of

Cp is normalized to the range of [0 . . . 1]. The equation for Cp is given as follows:

Cp =
4π × Ap

Pr

(5.1)

where Ap is the area of the polygon shape and Pp is the perimeter.

The second important shape complexity metric we chose was the well known

Area Ratio Ar. Ar is a little more difficult to compute as we need to have

knowledge of convex hull of the polygon p. The convex hull of a set of points

(or polygon) in N dimensions is the intersection of all convex sets containing the

polygon. In 2−D geometry the convex hull is easily interpreted as the smallest

convex set containing that polygon object. One way to think of the convex hull

is as follows: stretch an elastic band to make a giant circle, so big that the entire

polygon fits inside. Now allow the elastic band to shrink until it just contains

the polygon. The outline of the elastic band marks the boundary of the convex

hull [Costa and Cesar, 2000]. Ar investigates the relationship between the size of

a polygon and the size of its convex hull and is expressed as a ratio:

Ar =
Acp − Ap

Acp

(5.2)

where Acp is the area of convex hull of the polygon and Ap is the area of polygon.

The convex hull of a polygon can be computed using several different approaches

[Chen, 1989]. We used the Quick Hull algorithm. In Figure 5.7 (on page 112)
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a “complex” shape is displayed. The area ratio for this shape is 0.442 while

the circularity measure is 0.092. The area ratio measure is high indicating that

the convex hull has a very large area in comparison to the area of the polygon

itself. The circularity value is almost 0 indicating that the polygon has no circular

characteristics.

In section 5.4.2, we described the results of a visual analysis of 65 polygons.

The values of Circularity Cp and Area Ratio Ar corresponding to the polygons in

the user trials were computed and these values are displayed in the scatter plot

in Figure 5.9.

Figure 5.9: Results from the test-set of polygons are plotted (Circularity Cp and
Area Ratio Ar). Two distinct clusters of polygons are evident. We have labelled
the polygons as classified by the user trials with different colours representing
simple and complex shapes.

In Figure 5.9, the polygons in P that were classified as “Simple” by the ten

test participants are shown with an asterisks while polygons in P that were clas-
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sified as “Complex” are shown with a circle. Two clear clusters are evident from

the datasets. The combination of Ar and Cp provides us with an accurate classifi-

cation of how our human test participants classified the polygons into “complex”

and “simple”. Consequently we can use these results as a ground truth dataset.

Using the two clusters formed here, we classified a larger set of different test

polygons using a nearest neighbour classification algorithm [Zhang et al., 2006].

The means of both clusters in Figure 5.9 are taken: for “simple” polygons this

is (xsi, y
s
i) and for complex polygons this is (xci, y

c
i). Then, for some unknown

polygon k with (Circularity Cp and Area Ratio Ar) values (xk,yk) we used the

Euclidean distance formula to estimate which cluster mean that (xk,yk) is closest

to. On the test set P , this algorithm achieved classification accuracy of over 90%

(the p value for statistical significance is p < 0.05) which is more than sufficient

for the requirements of this project. Similar results are reported in the work of

Brinkhoff et al. [1995].

5.4.4 Using shape complexity for decision making during

simplification

Many approaches have been proposed to measure the dissimilarity between shapes.

Rosin [1997] surveyed many polygon approximation techniques and used the mea-

sure of integral square error(ISE) to measure the difference of the original polygon

and approximating polygon. He also showed that when adding more detail to a

shape it makes the shape much smoother and closer to the original shape feature.

[Cheung and Shi, 2004] has proposed a model to handle positional uncertainty

in the process of line simplification by using a shape dissimilarity measure. This

approach uses the sum of the length of the vertices and the turning angle as a

parameter to measure the changes to the shape. Similar approaches can be seen

in work such as Latecki and Lakamper [1999] who use an approach called tangent

space measurement.In this approach, we are using the results directly from our

experiments to model the metrics of user perception, which are designed for the

recognition of map representation and changes in those representations.

When one of our test OSM datasets k is submitted to the simplification process

it generates a sequence of LoD { l0 , l1, . . . , ln }. We use the complexity (ci,ai)
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(where ci= Circularity Cp and ai = Area Ratio Ar) to measure the complexity

of the LoD after the ith simplification step where n − i � 3 and i < n. We

then use the distance Dist to measure the dissimilarity between the LoD li and

li−1 with the pair of (ci,ai) and the original shape in ln with (cn,an). We label

this as the cost distance for the refinements. It gives us a measure of how the

overall complexity of the shape is changing between sequential levels of details.

The dissimilarity function Dist1i of the LoDs LoDi and the original map LoDn

is formulated as follows as a Euclidean distance metric:

Dist1i =
√

(xi − xn)2 + (yi − yn)2 (5.3)

Brinkhoff et al. [1995]’s complexity measurements are also used where the compos-

ite expression for complexity is Comp: Brinkhoff et al.’s complexity measurement

is established also using ground-truth datasets and the computation of Comp is

reasonably straightforward.

Comp = 0.8× Pr ×Nr + 0.2× Ar (5.4)

where Pr is Perimeter ratio, which is defined as Pr = Pa−Pc

Pa
where Pa is the

perimeter for the polygon and Pc is the perimeter for the convex hull of this

polygon. Ar is the Area ratio as in the previous subsection. Nr is the Notch

ratio which was introduced by Brinkhoff et al. after extensive empirical testing.

A notch is any non-convex part of a polygon. Nr is given as follows: Nr =

16 × (N − 0.5) × 4 − 8 × (N − 0.5) × 2 + 1. where N is the normalized notch

number and is expressed as N = notch
vertices−3 . One must iterate over the chain of

vertices in a polygon to calculate the number of notches. Comp can be used as a

complexity measurement for the LoD pairs. The complexity of each LoD can be

represented as compi and the dissimilarity function of Dist2t between the current

LoD li and original shape ln is

Dist2i = compi − compn (5.5)

We evaluated these approaches on four different datasets. The generated sim-

ilarity distances Dist2t and Dist1t for these two measurements are shown in
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Figure 5.11 for the progressive refinements of one example shape from the Fig-

ure 5.10. Similar results were observed with other over-represented test features

in the datasets. We found that the simplified map has a very large dissimilarity to

the original map which has the longest Dist. After a few steps of refinements, the

polygon is now shaped with more significant features (possibly more non-convex

features) during the progressive refinements where the shape is more similar to

the original shape which has smaller Dist. The method of Brinkhoff et al. Dist2

has similar results with the approach, but does not show the changes in shape

representation as explicitly as our measurements do. Using these measurements

we can potentially describe the changes of the shape during progressive transmis-

sion where the shape can obtain the most relevant details in the early refinement

steps and then obtain less significant refinements after this as shown in the figure

5.11. In this case, the two similarity distances Dist2t and Dist1t will begin to

converge and tend towards zero dissimilarity.

Figure 5.10: This is the sample original polygon shape to which progressive trans-
mission was applied
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Figure 5.11: This figure shows the two similarity measurements performance over
the progressive transmission based on shape complexity of the polygon shape
shown in Figure 5.10 on page 122
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5.4.5 Enhancing selective progressive transmission

When mobile users use their mobile devices to view spatial information on maps,

transmitting a large amount of vector data through low bandwidth networks is

challenging. One of the many challenges is due to the file size increasing unpre-

dictably depending on the complexity of feature geometry Buttenfield [2002]. It

is important to attempt to keep the amount of spatial data for delivery relatively

constant. Because of network constraints, sending too much spatial detail could

cause problems due to low bandwidth. However, transmitting too few details

to mobile users might cause the slow down of visualization during user interac-

tions and lead to an unsatisfying user experience. In this case the LoD sent by

a progressive transmission scheme should be delivered “on - demand” [Cecconi

et al., 2002]. However, there is always a trade-off between download speed and

generalization quality when a user requests a map or map data from a server

[Cecconi and Galanda, 2002]. The pre-computed application may fail in the case

of sending desired details on the fly due to the complex generalization process

[Bertolotto and Egenhofer, 1999] while other real time approaches may find it

difficult to provide users with all of the data and information that matches their

request specifications. In simple terms, we would like to send the user as much

spatial data and information as possible based on their selection or viewing area

on the map. However, we should only send spatial data which closely corresponds

to the area of interest on the mobile visualisation of the early LoD which the user

can see. The selective progressive transmission approach described above sought

to provide “complex” objects with more spatial data than “simple” objects. The

“complex” objects were given priority in the early stages of the selective pro-

gressive transmission process. As the LoD li begin to approach, ln (the original

dataset with full resolution) then spatial data is added more frequently to “sim-

ple” objects.

In the next subsection, we propose an extension to selective progressive trans-

mission using a heuristic strategy to provide a good balance for these scenarios.

We provide a cost-benefit function as a heuristic to guide the selection strategy.

This heuristic selection strategy will help us to adapt and balance amongst the

amount of LoDs to be transmitted to the client device and the visual contour
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details which need to be enhanced and in which priority occurs. We call this ex-

tension “view-dependent progressive transmission”. Spatial indexing techniques

are used to restrict the delivery of the spatial data which is within the user’s

current viewing or request area on the visualisation on the device.

5.4.6 Using heuristics for selection of objects for selective

progressive transmission

When users interact with maps, the complexity of the portion of the large scale

map visible to mobile users can be highly variable. Depending on screen size,

zoom position, pan position, etc there might be tens of thousands of vertices

simultaneously visible from one user’s selected view whereas a relatively small

number of vertices can be seen from another user’s view. There are very often

examples of variation of the data representation quality from region to region

and potentially within the same urban area in spatial data. Location-based Ser-

vices applications that simply render all potentially visible polygons with some

predetermined quality may generate frames at highly variable rates. There is no

guaranteed upper bound on any single frame delivery time. In this case, progres-

sive transmission smoothness or absence of “popping effects” is a vital goal. In

order to provide smooth transitions between LoDs, we perform a constrained opti-

mization routine that selects a level of detail to render containing each potentially

visible object. This approach will produce the map within a specified number of

LoD as a good representation as possible despite possibly being constrained by

the network bandwidth. We will now specify this concept more formally.

We can define a spatial object as a tuple (P,L, T ) which is the spatial object

P , provided at LoD L within the transmission process T . We then define two

heuristics for this object Cost(P,L, T ) and Benefit(P,L, T ). The Cost heuristic

estimates how many more LoDs remain before delivering the full resolution spa-

tial object in tuple (P,L, T ). The Benefit heuristic estimates the dissimilarity

between the current generalized map and the original full resolution map. We

define S to be the set of objects which contains the tuples that are to be deliv-

ered. To take the network bandwidth restrictions into consideration, we set an

upper threshold on the amount of data which can be successfully transmitted in
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a frame. This is represented as SDS. Using these formalised approaches, the

choice of LoD and subsequent transmission for each potentially visible object (in

the mobile user’s current) can be stated as follows:

Maximize: ∑
S

Benefit(P,L, T ) (5.6)

Subject to: ∑
S

Cost(P,L, T ) ≤ SDS (5.7)

The equation 5.6 attempts to quantify the benefit (or reward) of sending a

specific set of objects during this transmission. Then equation 5.7 attempts to

optimise the contents of this set of object tuples by ensuring that we do not

exceed the specified data threshold limit represented by SDS. This selection

formulation can be used to derive the best progressive transmission strategy given

the current circumstances and deliver the best quality LoDs. The limitation of

bandwidth is taken into account by the contraint of SDS so that the formulation

should deliver the LoDs as fast as possible within the limited bandwidth. The

maximisation of equation 5.6 is designed to ensure that even objects with varying

levels of data representation quality are combined to ensure that a consistent rate

of data flow is maintained and transmitted over the network. The formalisation

is an optimisation problem. Each time we select the most valuable configuration

of objects in the LoD as the next candidate candidate for transmission. This

will prevent excessive waiting time for generalization to complete while retaining

good quality map visualisation. The user’s request for increased detail in their

map visualisation is also responded to as quickly as possible.

A good combination of Cost and Benefit for the evaluation of the map trans-

mission based on this heuristic approach should exhibit two key features. Firstly

their formulation should ensure that we can easily identify the map changes dur-

ing the transmission. These changes to the map during transmission should

ensure that the visual quality of the generated maps improve over the transmis-

sion period. To control the rate of map changes we choose the Dist as one key

parameter for Benefit. This measure can determine whether a single spatial

object obtains enough representation details during the progressive transmission
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of LoD refinements. However, other Benefit factors have been identified in the

literature and can be considered and integrated into this approach such as: the

area importance [Haunert et al., 2009; Oosterom, 1993], or semantics, color and

so on. In the experiments, for simplicity and efficiency of the computation we

have only chosen the most relevant factors as the factors to derive Benefit. This

is outlined in equation 5.8 which represented by a multiplication of Area by Dist.

This reflects a possible reduction in the object tuple benefit to the overall area.

Equation 5.8 is then represented as follows with the overall Benefit heuristic a

product of the two selected factors:

Benefit = Area×Dist (5.8)

The concept of equation 5.8 is easily explained. Larger and more complex

objects are given higher values of Benefit. These objects, when they are refined,

will lead to a greater contribution to the perception of the map by the user.

A Cost measure can be the remaining transmission time or the data amount

required to achieve the full resolution of the shape. For example, if the spatial

object obtained from the OSM data is over-represented it is unlikely be refined.

This polygon object will use up large amounts of data Cost. However, its overall

Benefit to the process of visualisation will be small. The additional LoDs will

contribute very little Benefit to the overall map. This constraint strategy can be

very useful when integrated with progressive transmission. This is because it will

enhance the selection process of a group of spatial objects by iteratively selecting

the most important area in the dataset to deliver the LoD until all areas have

sufficient representation.

Practically this constrained optimization solution is a NP-complete problem.

It is the Continuous Multiple Choice Knapsack Problem and has been well studied

in the literature [Pisinger, 1994; Sinha and Zoltners, 1979]. It is a well known

knapsack problem, in which one chooses the optional elements from participated

options to put into a knapsack K and maximize the value of profit while still

keeping the overall weight under or equal to a given threshold. The problem

in our case is to select the objects that have the maximum visual contribution

benefit but whose transmission cost fits into the constraint of potentially limited
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bandwidth (the threshold of SDS). We have implemented a greedy approach to

this problem, where we chooses the object with highest V = (Benefit
Cost

). This will

run with complexity O(n log n) where n is the number of objects. We maintain

the spatial objects in a heap data structure (sorted by the V criteria). The

highest values of V are at the top of the heap. When the user is interacting with

the map and moving around the map viewing area, there is a requirement for

frame-to-frame coherence during user interaction with maps. If the user changes

their viewing area, there will be new visible objects assigned to the lowest LoD.

Some existing objects will be assigned to the higher levels of LoD.

In this situation, we can have two options for delivery of additional spatial

details. The first option is that we could send the LoDs required to refine the

existing objects and include many insignificant nodes (the scenario here is higher

Cost with lower Benefit). The second option is that we could decide to send the

spatial detail to the new objects. Because these LoDs are positioned early in their

overall sequence of LoDs, any additional spatial detail to these new objects will be

a significant addition to this shape (the scenario here is higher Benefit with lower

Cost). In this cost-benefit model, we direct the optimization approach to choose

the objects which will maintain the higher Benefit with lower Cost. In the case of

the visualisation on mobile devices, it is necessary to provide a sufficient number

of refinements to lower resolution maps. Because of the requirements of frame-to-

frame coherence, when the map is visualised and displayed, the approach outlined

here provides a good selection of refinements for the low detail maps. However,

for a larger scale map, it costs more, in terms of time, to perform the selection

of candidates from a larger set of polygons. It is necessary then to reduce the

number of selections and restrict selection to the set of objects within the users’

current view.

5.4.7 View-dependent progressive transmission approach

in context

In the previous section, we described an optimisation model for the view-dependent

progressive transmission approach. Rather than the crude simplistic approach of

sending LoDs for the entire area requested by the user our, view-dependent ap-
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proach optimises LoDs for the area of viewing. When the user is viewing the map

on their mobile device they can pan around the map freely. We track the AOI

that the user is moving through. As proposed in the section 2.2.6 the OSM server

stores vector based maps composed of OSM objects that have various represen-

tation quality. The OSM database is very large and very dynamic. In the OSM

database, some regions may contain hundred of objects and it is not possible

to transmit all the objects to the mobile client immediately. Even for standard

desktop-based web browsing of the OSM website, it has constraints placed on the

number of objects that can be displayed on web-based maps. When one views

live objects on the OpenStreetMap, ’data view’ part of the OSM map most web-

browsers become overwhelmed if more than a few hundred objects are requested

for display. The user must then zoom in to a more specific area or cancel the

requested operation. However, in practice, a user usually needs to only view a

small portion of data in detail rather than the entire dataset (i.e. when looking

for a bus station beside a national motorway). When we move from the desktop

to the mobile, the storage capacity in the browser is even less. The data storage

facility in mobile devices is limited, it is necessary to restrict maintenance to

only the spatial objects within the visible area. We discard any irrelevant spatial

objects outside of this area. In our example of the bus station, we only deliver

the detail of objects connected to the national motorway object for the region.

Other superfluous objects to this specific query are omitted.

We feel that this approach is well placed within the state of the art in the

literature. Multi-resolution LoD approaches are favourable techniques “used to

bridge between complex spatial datasets and low-capacity client side visualiza-

tions” [Follin et al., 2005a; Hamid and Ahmed, 2010; Li, 2009; Yang, 2005; Zhou

and Bertolotto, 2004]. These approaches send the coarsest datasets as initial

datasets to the mobile clients when the user begins to interact with the map.

The users can download the simplified datasets at level LoD0 (Base map) very

quickly at a reasonable resolution to view and understand the global context

before performing any further queries or requesting more detailed spatial inter-

action. The server progressively transmits LoD refinements to reconstruct the

map with the user-specified scale. In simplistic approaches the generalized maps

are transmitted to the client in the opposite order to which they were created [Ai
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et al., 2005]. This transition between scales is achieved through a process of re-

finement which transmits only the additions required to compute the current scale

from the previous [Corcoran et al., 2011a]. He also stated that such a scale-based

progressive transmission approach introduces major inefficiencies when the client

requests only a small region of a large map. For the mobile devices with limited

screen size, users usually only can view a small area of the map. A scale-based

approach may cause an “information over-load” by loading excessive amounts of

data into memory.

As described in Section 5.4.5 and section 5.4.6 above view-dependent progres-

sive transmission is a technique to transmit the data depending on where the

user is currently viewing on the map visualisation. It has been implemented in

raster-based map tiles [Tanner et al., 1998]. The idea for view dependent progres-

sive transmission is also widely used in the computer graphics field for efficiently

rendering progressive meshes [Cheng and Ooi, 2008; Hoppe, 1997; Luebke and

Erikson, 1997]. In computer gaming, for example, rendering complex geometric

models at rates which support interactive game-play, the most serious restriction

is the bottleneck of bandwidth of the network. To avoid sending irrelevant data,

only the LoDs of visible spatial objects will be selected and sent to the client

for rendering. The view-dependent strategy selectively transmits the LoD and

refines the view according to changing view parameters [Hoppe, 1997].

In many Web mapping applications, view-dependent strategies can be achieved

by introducing spatial indexing techniques. Several well-known spatial index-

ing techniques have been used in many GIS applications to generate hierarchical

structure for representing spatial objects, such as R-Tree [Guttman, 1984], Quad-

trees [Samet, 2005], Octree [Meagher, 1982] and gap tree [Oosterom, 1993]. In

Augusto et al. [2009] the authors use Quad-trees to select the spatial objects in-

tersecting the query windows and progressively send the LoD updates for refining

the user viewing area. Antoniou et al. [2009] proposed tile-based approaches for

dividing the map into tiles and only those tiles contained within the user’s view are

transmitted. Corcoran et al. [2011a] integrated the R-tree technique to maintain

the topological consistency of the spatial objects only within the user’s current

view to reduce the computational expense. For mobile client, mapping applica-

tions integrating such spatial indexing techniques results in significant savings
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in data transmission and storage for a client without generating any noticeable

visual differences for the map which the user is currently viewing.

For the purposes of illustration in Figure 5.12, we see two polygons in a large

region. The user starts to zoom in and pan. The standard scale-based approach

sends LoD for refining all of these polygons (tab 2 in the illustration). The

view-dependent approach selects the visible polygon(s) for refinement (tab 3 in

the illustration). The later approach leads to a significant reduction of the LoD

data volume while there is no difference in the actual user screen view. In this

work, for the purposes of accuracy and ease of implementation, we have used an

Octree to organize the spatial objects in the map and facilitate the progressive

transmission of a group of vector based spatial objects within the query window

(or AOI). The level LoD0 (Base map) is sent to mobile clients with a larger

scale. Then the objects only within the user’s current view are refined with

subsequent LoDs. Therefore, the window query performed, based on the user

actions, selects polygonal objects intersecting with the query window. These

objects are extracted from the relevant datasets for delivery “on demand”.

5.5 Implementation example and discussion

We now illustrate an implementation example of this cost/benefit optimization

approach for the proposed view-dependent progressive transmission scheme. The

key requirement of this approach is to generate a more uniform size of delivered

datasets, which takes network bandwidth issues into account. The spatial data

“load” is spread more evenly across all of the LoD from L0 (Base map) to the full

resolution dataset Ln. For this example, we conduct a test run to simulate the

user interaction with a real-world mapping application on a mobile device. Within

the software code, we placed timing points and collected information about the

data structures and the current state of the processing of the LoD from L0 . . . Ln.

We implemented the three approaches in the application as follows:

1. Full scale progressive transmission: This is the simplest approach

which sends the datasets to the map with large scale by reversing the gen-

eralization process. This process sends the details from a low LoD L0 to
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Figure 5.12: This is a simple example of the view-dependent approach where
selection of the visible LoD to refine objects within the user viewing area is
performed instead of sending LoD at full scale for all of the objects in the viewing
window area
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high level of detail (towards Ln) until all details of the entire map are sent.

If the user moves to a different area of the map, outside the current viewing

window, then this entire process must be repeated.

2. View dependent progressive transmission:. This approach sends the

lowest level of detail to the full scale map. After L0 the decision making

process ensures that only objects within the user’s current window view can

be selected for additional LoDs for incremental refinement.

3. Optimization approach: This is proposed optimised version of the view

dependent progressive transmission. This approach, as outlined above,

transmits the LoD based on the Benefit (i.e. Dissimilarity between LoD)

and the Cost (i.e. data transfer based on the network characteristics).

Those objects with a higher profit (greater Benefit) are chosen provided

that they can be transmitted at a reasonably low Cost.

The implementation of these transmission techniques for the OSM vector

datasets are performed over the Internet to mobile devices on a standard mobile

broadband connection. All software was written in Java and the client mobile

device was an Android-based mobile device. The datasets were chosen to ensure

that it was complex enough (total size is 8.56MB) to be sent in a limited band-

width of 100 kb per second. This is also small enough for the phone to reside

entirely in main memory so as to eliminate the effects of memory management in

this test. Figure 5.14 shows the dataset from the map in Figure 5.13. The user

interaction follows the path as shown in Figure 5.15 with the red dashed line.

The user begins browsing the map at region A and keeps on moving to right from

region B to C. This is the typical panning behaviour of user interactions with

LBS maps. The 3 regions in the map are chosen for the following reasons. “A”

has a large and complex polygon, “B” has a few small and simple polygons, while

“C” is the place the user is moving towards with a similarly complex polygon as

in the region “A”.

The Figure 5.14 shows a simplified version of the map in the Figure 5.13. We

send this map to user as the base map (L0) to start browsing and visualisation.

The users could follow the path in Figure 5.15 on page 136 to browse the map. We

use purple colors to render the high detail objects and use green colors to render
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Figure 5.13: This an OSM map of the example spatial dataset used for the
illustrations in this Chapter. The map shows the region of Aghavannagh, Co.
Wicklow, Ireland
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Figure 5.14: This test dataset, from Figure 5.13, has 71 polygons with varying
complexity and area sizes. This dataset is used to illustrate the implementation
of our optimised view-dependent progressive transmission approach. The total
number of nodes in this dataset is 6649. When simplification has been performed,
this is reduced to 1733 nodes.
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Figure 5.15: The red line crossing the map is the simulated path of the user’s
interaction with the map. The user starts their interaction with the map from
region A. The user then moves to region B and finally stops in their target re-
gion C. This path is used in the tests for all of the three models. The original
visualisation of this spatial dataset is shown in Figure 5.14
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Figure 5.16: This figure shows the full scale transmission which transmits the
data from Figure 5.14 with high detail (in purple color)
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Figure 5.17: This figure illustrates the concept of the view dependent transmis-
sion. In this case, we only send the spatial data corresponding to the user required
regions. Only the polygons within the path of interaction (with purple color) will
obtain the refinements and additional data. The polygons with green coloring,
which are not in this path, receive no additional refinements. As before the map
data corresponds to Figure 5.14
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Figure 5.18: This figure shows the visualisation of the transmission provided by
the proposed optimization approach. In this approach, we only send the data
to regions required by the user. In the path, only the polygons with high value
(that is high Benefit with low Cost shown with purple color) are assigned the
highest priority to obtain more refinements. Other polygons with lower value
(low Benefit but with high Cost shown in yellow color) may obtain additional
refinements if there is enough bandwidth available. As before, in Figure 5.17
the polygons of green color, which are not in the path, receive no additional
refinements.

139



F
ig

u
re

5.
19

:
T

h
is

fi
gu

re
sh

ow
s

th
e

re
su

lt
s

of
th

e
ov

er
al

l
ti

m
e

an
d

d
at

as
et

si
ze

p
er

L
oD

fo
r

th
e

th
re

e
m

o
d
el

s
ou

tl
in

ed
ab

ov
e

in
th

is
se

ct
io

n
(

5.
5)

.
(a

).
F

u
ll

sc
al

e
p
ro

gr
es

si
ve

tr
an

sm
is

si
on

.
(b

).
V

ie
w

-d
ep

en
d
en

t
p
ro

gr
es

si
ve

tr
an

sm
is

si
on

.
an

d
(c

).
O

p
ti

m
iz

at
io

n
p
ro

gr
es

si
ve

tr
an

sm
is

si
on

140



the low detail objects in the map for clarity for these examples. The objects

with intermediate level of detail will be rendered in a yellow color. The full scale

transmission will send the LoD refinements to the objects in the full scale of the

map without considering the user’s viewing path. This map is then refined with

a large amount of vertices with high detail (in purple color). The view-dependent

transmission only sends the LoD refinements to those objects within the user’s

visible area as shown in the Figure 5.17 on page 138. However, in situations of

low bandwidth, our optimization approach can select the objects, which have high

visual contribution value (high Benefit with low Cost) within the user visible

area. These objects are given higher priority to transmit additional data. In the

limited bandwidth situation, we take these objects as priority candidates to refine

the map. However, we make the best usage of the available bandwidth. We also

send details to the other objects within the user’s visible area if it is estimated

that there is additional bandwidth available.

Figure 5.19 shows three plots of time against data size of the LoD for the three

approaches above. The full scale progressive transmission (Figure 5.19a) sends

the data from L0 onwards which at first contains small data quantities. As the

map visualisation approaches, full resolution larger volumes of data are delivered

towards Ln. There is a greater overall data burden on this approach. While the

view-dependent approach, as seen in the Figure 5.19b, can significantly reduce

the data amounts transmitted by sending the data within the user view area.

The first peak in the time series relates to the data needed as the user moves

through region “A”. As the user moves to the region “B”, where some simple

and small polygons on the map, the size of data in the LoD is greatly reduced.

Finally as the user moves from “B” to “C”, the rates of data transmission is

increased as the user is viewing more complex objects with larger areas. In the

full scale transmission, we send all LoD with 6, 649 nodes. In the view dependent

transmission we only send 3, 386 nodes, but there is no real visual difference to

the user when they are browsing the map. In the optimization approach, we send

3, 313 nodes and obtain very similar visualization quality. Figure 5.19c gives the

time series results of the optimization approach which selectively sends the data

within a uniform data transfer rate. The trend of this time series line is very

different to that in (a) or (b) in the Figure. The rate of data transfer is very
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consistent for our optimisation approach.

The optimization approach is a very positive development. It provides the

user with a satisfactory representation quickly. Full scale progressive transmis-

sion is slower than the latter two approaches and has the longest waiting time.

The proposed optimisation method generates appropriate LoD and fully utilises

the available bandwidth with maximum benefit in order to improve the map

representation and visualisation on the client device. As a result, the data trans-

mission is performed at a uniform rate and can be rendered in a more predictable

frame time. However, what if the user moves around the map frequently and in

particular moves over complex geographic regions? The spatial data transmitted

to the mobile devices will require increased usage of the client device’s on-board

memory if this process is not well managed. This brings us to the introduction

of the next chapter where we will discuss the data management at the client side

in more detail.

5.6 Chapter summary

This chapter has introduced progressive transmission, selective progressive trans-

mission, view dependent progressive transmission, and then finally an optimised

view dependent progressive transmission scheme. The goal of the optimised ap-

proach is the balance out the trade-off between a high resolution map representa-

tion on the mobile device against the constraints of the network bandwidth. We

have provided mathematical formulations for these approaches and for the shape

complexity measures we have implemented and used. The chapter ended with a

discussion of an implementation example of these schemes.

In the next chapter, we discuss the processes behind the rendering of the map

visualisations on the mobile device. This involves a discussion of the framework

for the storage of the spatial data on the mobile device, the access to this spatial

data, and the rendering of the spatial data into a cartographical representation.

We also describe an enhancement to our optimised view-dependent progressive

transmission scheme where we include a ’user prediction’ component. Based on

the movement of the user within the current map view can we predict where the

user will move to next? If we can predict this with a high degree of certainty,
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the framework for the application could pre-fetch LoD for the predicted area in

anticipation of the user moving their AOI to that region of the map.
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Chapter 6

Rendering and visualisation of

progressively generated maps

In the previous chapter, we provided a rigorous outline of progressive transmis-

sion schemes for spatial data. This discussion involved three parts: full scale

progressive transmission, view dependent progressive transmission, and finally a

scheme to optimise the amount of spatial data transmitted for each LoD to en-

sure an optimal cost-benefit approach to the progressive transmission. Up to this

point in this thesis we have focussed almost entirely on the delivery of the spatial

data to the mobile client device. There has been little discussion regarding how

the spatial data is visualised on the client device except for some brief examples

in the form of screenshots. The formulation of the structures for preparing and

then delivering the LoDs have been the subject of our focus.

In this chapter, we move to the client device and discuss the issue of render-

ing and visualising the spatial data received from the progressive transmission

scheme. We have argued that the progressive transmission of LoD provides a

solution that enhances a user’s experience when accessing large scale geospatial

information and data, and in particular dynamic data such as VGI. The user

always has access to the most up-to-date data. There are issues that must be

addressed in terms of ensuring that the user’s experience of using these maps and

these applications is good. When users are interacting with maps on mobile de-

vices, they may switch the spatial context frequently. The resulting overhead in
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terms of mobile device rendering, on-board memory usage, and network latency

are major obstacles to achieving optimal map interactivity. On slower Internet

connections, we have all had experiences of using tile-based mapping systems

such as Google Maps and waiting for some time until all of the tiles download

completely. In this chapter, we describe the development of a multi-thread based

data management strategy for visualisation in the mobile client with regard to

these constraints.

A client view-dependent updating approach is proposed to maintain the data

in the mobile device memory during continuous user interaction. This prevents

repeated downloading of irrelevant datasets into memory to support the visuali-

sations of the user’s current view. We also describe the synchronizing mechanism

and dynamic adjustment mechanism to enhance the visualization process. The

data query processing run in parallel to offset the effects of any potential network

latency. This synchronization mechanism is implemented using a “look-ahead

model” to pre-fetch the datasets of the user’s view area for the next frame while

the user is still visualizing the current view. An experimental study is presented

to outline the performance of this parallel approach. The findings indicate that

there are benefits to using this strategy in managing the data in mobile clients.

6.1 Introduction

Visualization of spatial data in mobile clients can help users perform analysis

and decision-making in LBS. When one reflects on the last decade, it is only a

few years since Google Maps appeared on desktop-browsers and many in GIS

and the IT industry knew that a major turning point in web-based cartogra-

phy had been reached. Google’s mapping and direction-finding services were a

stunning improvement upon any other systems available. The maps were aes-

thetically pleasing and readable. Using Javascript and AJAX technologies they

filled as much with the screen (or the printed page) as the user provided them.

Scrolling the map worked in the most natural way by dragging the image. With

the mobile device revolution of the last few years, much of the effort of industry

and research is focussed on “maps on mobile devices”. The development of these

technologies have brought a revolution in respect to the widespread online access
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to geographic data through map-based interfaces [Wilson et al., 2008]. People

can use their mobile devices to access maps anywhere at any time. Many of these

LBS applications are often characterized by high interactivity and strong end-

user participation. For example, user can quickly browse a map area and select

a restaurant to obtain corresponding review information. Such tasks, associated

with rapid map context switching, usually require large volumes of data exchang-

ing and updating between the client and server. Comparatively slow network

transmission is considered as a constrained resource of the system for remotely

accessing data [Schmalstieg and Gervautz, 1996]. This is where a progressive

transmission scheme is best applied: to deliver the LoD of the multi-resolution

data to the mobile clients resulting in faster visualization and resource savings

for the mobile application. In mobile clients when multi-resolution datasets are

used the application must regulate the amount of spatial detail delivered to the

client.

However, as indicated in the Section 2.2.5, the visualization of spatial data

is challenged by the constraints of low-end mobile clients. They usually have

a very tight budget in computing resources and data storage. It is not always

necessary to maintain the data with high LoD in the several scales in the mobile

device, since the majority of the high-resolution datasets are not always used

during user interactivity. One must carefully manage the data to deliver it “on-

demand” [Foerster, 2010] to the mobile clients. Increasing the amount of data on

the client device will cause problems of overloading with respect to data storage

[Schmalstieg and Gervautz, 1996]. Each time a user changes their area of interest

on the map the contents of the client memory must be updated by requesting

relevant data from the server and discarding any unnecessary information already

residing there [Augusto et al., 2009].

The graphical rendering component is a unique resource in the mobile client,

which must render the maps after all the newly received LoDs are integrated cor-

rectly. Multi-resolution approaches in mobile clients may keep updating the map

representation when continuously receiving the incremental LoDs datasets from

the server. We believe that it is possible to schedule the rendering and trans-

mission of the spatial data in parallel to deliver a speed-up in the visualization

process. This will also allow us to manage the graphical resources in the client.
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We aim to provide a sophisticated data management framework for visualiza-

tion of LoDs on the mobile device whilst dealing with constrained computational

resources on the mobile clients. We begin our discussion with a description of

interactive rendering of the spatial data from LoDs in the mobile client device. In

particular we focus on the three principal components for interactive rendering:

rendering itself, updating the map data, and then the pre-fetching of the next

LoDs.

6.2 Interactive rendering of spatial data in mo-

bile client

In the interactive rendering model we propose here, the selection and transmission

of suitable LoD updates to the client are based on a selective progressive trans-

mission scheme. The client has three components, which are working together in

parallel for performing efficient map visualization on the mobile device. These

components include: the Rendering component (R), the Updating component

(U), and the Prefetching component (P ). R handles the user interactivity and

associated events and sends parameter requests to the server. R also renders the

map in the “canvas” which is a graphic API available in most smartphone client

devices. U manages the reconstruction of the spatial objects while continuously

receiving the LoD updates from the server and deciding upon the correct render-

ing according to the map features (e.g. a lake should be rendered using a blue

colour whilst an object with type park should be rendered in green). P will check

whether there are any reusable datasets in the client and attempts to predict

future user motion for the next area of interest. Pre-fetching, as performed by

P , can help to reduce the effect of network latency by essentially having spatial

data “ready” before the user actually formally requests it (by moving to the area

P predicts they will move to).

This sequential approach is shown in Figure 6.1. All tasks are processed se-

quentially, where the client sends the request and waits to receive the updated

LoD response before refining the initial maps with LoD and finally displaying the

newly rendered map. At the points where the user moves the map or interacts
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with the map in some way this sequential process is then repeated. Similar ap-

proaches have been proposed in the early computer graphics literature. Floriani

et al. [2000] considered the problem of transmitting huge triangle meshes in the

context of a Web-like client-server architecture. Floriani et al. compute approxi-

mations of the original meshes which are transmitted by applying selective refine-

ment operators. To et al. [1999] present an efficient multi-resolution method that

allows progressive and selective transmission of multi-resolution models. This is

achieved by reducing the neighboring dependency to a minimum. They allow

visually important parts of an object to be transmitted to the client at higher

priority than the less important parts and progressively reconstructed there for

display. These works, as is the case with our work, used the earlier work of Hoppe

[1996] on rendering progressive meshes as a platform for further work. Progressive

meshes define a lossless, continuous-resolution representation of arbitrary meshes,

and support scalable rendering.

In Figure 6.1, the sequential approach begins with the initialization step. The

client P sends a query for a map area to the server. The server then streams

and simplifies a map within this bounding rectangle from the OSM database

and sends the coarsest map L0 in this scale as the base map. When the user is

presented with map visualisation of L0 this interaction triggers the P to send the

view parameters of the map to the server with incremental LoD update requests.

The application software code on the server then traverses the multiresolution

hierarchy for this request and produces a stream of refinements according to the

received view-window parameters. As outlined in Figure 5.1, a GeoJSON format

object is used as a light weight data exchange format in our data transmission

process. There will be more discussion on this later in the section. The updated

LoDs for each polygon are sent to the client and subsequently reconstructed in

the client by U . The selected visible datasets are sent to R and drawn on to the

“canvas” component of the graphic API. The updated map is then displayed to

the user.

In terms of the client, the process of displaying one frame of the map to the

user includes 3 major component procedures:

1. Query processing: This component includes sending requests and retriev-

ing the spatial data from the server responses;
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2. Update processing: This component involves the reconstruction of the

spatial data in a graphical representation on the mobile device and integra-

tion into the existing rendered map;

3. Rendering: This component is where the software on the mobile device

invokes the graphic API such as “canvas” to draw the spatial data contained

in the on-board memory. The graphic API in mobile device only allows the

“canvas” to be updated once all the update LoDs in one frame are fully

integrated.

To formally introduce the concept of a sequence of operations which occur as

the user interacts with the map and the server is performing Query and Update

processing, let Tq be the time for the “Query process”, let Tu be the time for

updating the LoD of the map and Tr the time required for rendering. In this

sequential formulation, the overall frame time is T = Tq +Tu+Tr. This sequential

approach is very easy to understand. It also mirrors the way traditional client-

server interactions are performed.

The problem with this sequential approach is that the waiting time is too

long and can compromise the interactivity on the client side. Using a selective or

view-based progressive transmission approach or the cost-benefit approach from

section 5.4.6 means that the “Query process” time used by the server has been

minimized. In summary, the sequential approach is not efficient. Its individual

parts are efficient, but when we consider a summation of these, in sequential order,

there is a detrimental effect on the overall performance. In the next section we

will introduce an enhancement to this sequential approach with a parallel strategy

for the interactive rendering.

6.3 A parallel strategy for monitoring interac-

tive rendering

In many client-server system applications, the server interacts with the client

without taking account of the resource budget available to the client. Most LBS

are time critical tasks where the user requires the services be of acceptable rep-
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Figure 6.3: The is an example of one of the OSM datasets we have used for
development of this strategy
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resentation quality. The low memory capacity of mobile devices will have to be

managed correctly in order to achieve these goals. The progressive transmission

schemes we proposed in the previous chapter (for example section 5.4.6) manage

efficient transmission in terms of the time and the data sizes. It goes without

saying that it will take a longer time to update and render the spatial data in

the mobile client when the mobile client has limited computing resources. Since

the time required by the “Query process” is mainly a function of the waiting

time for the server response, it does not have a significant resource competition

with the other two processes. The updating process occurs in memory and the

rendering process relies on the performance of the graphics component. Conse-

quently there exists the potential to improve the overall running time by using

an asynchronous rendering strategy. This asynchronous rendering strategy can

be used to parallelize the “Query process” for the next frame and the other two

processes of updating and rendering for current frame. The run times of these

procedures can be overlapped to achieve a better overall frame rate. The time

cost of the “Query process” can be greatly diminished and the mobile client will

still receive the necessary LoD updates in advance for the next AOI (Area of

Interest) the user will view. In this way, the previous T = Tq + Tu + Tr will

now change to the total cost of the frame time as T = Tu + Tr. This parallel

strategy is highlighted in the schematic in Figure 6.2. One should clearly see

that the strategy is different to that of the sequential approach illustrated earlier

in Figure 6.1.

We will now discuss the operation of this parallel strategy Figure 6.2. The

sequential method in the previous section sends the parameters for the current

view to the server as in the sequential method. In this parallel strategy, before

each frame is rendered, the client attempts to predict the view parameters for

the next frame when the user will interact with the map. These predicted view

parameters are sent to the server as part of the next LoDs update request. (The

user motion prediction, which determines the AOI the user will examine at the

next step during their interaction, will be explained in the next section.) Receiv-

ing the LoD updates for the next frame is handled by the rendering component of

the current frame. The improvement provided by this strategy becomes apparent.

When the next frame is required for rendering, the necessary LoD updates will
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have already been delivered to the client and are ready to be integrated.

The updating and rendering processes are explained in: the Rendering Pro-

cess in Algorithm3,4 and 5. The QueryProcess is designed to send the current

view parameters to the server and to receive the LoDi updates after the base

map LoD0. In the Rendering Process instead of setting the view parameters to

the current view, we use predictview for the currentview and the map will be

rendered after all data is updated. We use “NOT APPLIED” to check if all the

updates from the server have been performed before rendering the map (in Algo-

rithm 3). The Query Process uses “NOT SENT” (line 3 in 4) to ensure that all

of the view parameters are sent to the server only once.

As stated above, we have used a modified view-dependent strategy to manage

the data in mobile clients for the UpdatingProcess in Algorithm 5. However,

the modifications make this approach slightly different to the one outlined in

Section 5.4.5. As shown in Algorithm 5 we use a priority queue to organize the

temporary LoD datasets received from the server (lines 1 − 2 in Algorithm 5).

The priority queue is used to manage the spatial data in memory. We are not

increasing the LoD in the user’s current viewing area. However, as the user moves

around the map area, we are decreasing the spatial detail in irrelevant areas. If

the object Pi is in the screen area, we apply the “increasing LoD” process (lines

3−5 in 5). Otherwise, we will decrease the details which are now considered to be

irrelevant data (lines 9−11 in Algorithm 5). Meanwhile, this process will continue

to check that the spatial data stored in the memory are still necessary. This step

seeks to maintain the spatial data in the limited storage available. If there is the

data, which is seen as unnecessary, then it is removed from memory storage. By

using these checks, we can achieve an efficient usage of system resources while

speeding up the overall rendering process.

We provide an example of this process in operation in Figure 6.4. The example

in Figure 6.4 uses real data from OSM as shown in the screen shot of the map

in Figure 6.3. The generalized map L0 is shown in Figure 6.4A. In Figure 6.4B,

we see the sequence of operations on the map where the user’s current viewing

area is outlined (receiving increasing LoD). The previous view is being updated

to remove some of the now unrequired data in some of the objects. Using this

user motion prediction, the data for LoD for the next view are being pre-fetched.
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The “previous view” will decrease detail by applying UpdatingProcess when

users are looking at “current view” where the LoD are being increased. The

Pre − fetchingProcess is now fetching new spatial data from server for the

“next view” which currently is still rendered in low resolution.

Algorithm 3: This is the algorithmic procedure for the rendering thread

working in the mobile client application as the user interacts with the map

visualisation

1 Map initialization: receive basemap (LoD0);

2 Calculate currentview of the map;

3 set view ← currentview;

4 repeat

5 interact;

6 if Updates NOT APPLIED then

7 set view ← predictview;

8 apply updates U ;

9 end

10 render the map;

11 until;

Algorithm 4: This is the high level algorithm for the 3 components working

in parallel: sending, receiving, and updating

1 q = ∅ (q is a priority queue for storing LoD) ;

2 repeat

3 if view NOT SENT then

4 send view;

5 receive LoD;

6 set q ← updateLoD;

7 end

8 until ;
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Algorithm 5: The algorithm describes the “updating” where the decision

is made to increase or decrease LoD and to discard objects which are no

longer relevant

1 while q 6= ∅ do

2 Dequeue q;

3 if Pi within currentview and Li is lower than FullLoDi then

4 Increase LoD;

5 end

6 else

7 Discard Pi;

8 end

9 if Qi not within currentview and Li is higher than L0 then

10 Decrease LoD;

11 end

12 end

As discussed above and depicted in Figure 6.4, our approach on the client

attempts to predict where on the map the user will move to next. If we can

predict with satisfactory accuracy, the location the user is most likely to move

to next then the prefetching process can begin to download increasing LoD to

enhance the base-map L0 for that area. The strategy for user motion prediction

will now be described.

6.4 User motion prediction and prefetching of

updated LoDs

When the users browse online maps, they usually have own favourite ways to move

around the map. Some users prefer to use the controls on the map container to

pan and zoom to a specific area of the map. Others prefer to take advantage

of the “slippy” map and slide and drag the map around. However, when we

are performing a task such as locating a specific building on a web-based map

or trying to plan a route along a set of roads our movements are usually much

slower and carefully planned. In this section, we take advantage of this behaviour
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Figure 6.4: This example shows that after the user received a generalized map
as a L0 (in A), they can move the view from the “previous view” to the “current
view” (as in B). The RenderingProcess is rendering the current view at this time.
In parallel the UpdatingProcess is decreasing the LoD in the “previous view”.
The PrefetchingProcess is requesting the data for the “next view” according to
the prediction of the next location that the user will move to
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in attempting to predict the motion of the user movement of the mobile map.

Given the user’s current AOI, there is a great benefit to be obtained in predict-

ing their next movement and then pre-fetching the spatial detail required for the

corresponding area on the map. As most interaction is performed with the mouse

(excluding the increasing number of touch-pad interfaces), authors such as Tahir

et al. [2011] have studied the movement of the user’s mouse during spatial tasks.

They automatically identify and validate a number of spatial tasks forming com-

plex mouse trajectories. Using these trajectories Tahir et al. speculate that these

could help in enhanced map personalization.

In our implementation, when a user interacts with the map on the mobile

client, the client software sends a request to the server with view parameters view.

These parameters are encoded in JSON format. The view parameters typically

include screen position, view direction, the zoom level, and the screen-space error

allowance. Since each zoom level has a different scale corresponding to a fixed

error allowance (see section 3.4 for an explanation of the error transformation),

we only consider the parameters for screen position and view direction in this

section. These two parameters are constantly changing when the user interacts

with the mobile map. The mobile screen can refresh once per second or faster

when rendering the map data. This is usually called the “framerate” in computer

graphics [Funkhouser and Séquin, 1993]. The interaction pattern of viewing a

mobile map can be approximated as a piecewise set of straight lines connected by

halts and abrupt changes in movement of speed or direction. Within a very short

time (several frames), the interaction pattern can be approximated as uniform

motion in a straight line. The display for future frames can be extrapolated

based on the screen view of the current frame and that of the previous frame.

This method is adapted from the first-order dead-reckoning algorithm used in

distributed simulations for digital environments [Chan et al., 2001, 2005; Duncan

and Gracanin, 2003]. The formulation which has been adapted from the work of

Chan et al. [2001, 2005] is outlined as follows.

Fview = Cview + (Cview − Pview) (6.1)

The next future view Fview can be calculated by the first order dead-reckoning
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algorithm with the direction from the previous view Pview to the current view

Cview. Due to temporal coherence this prediction algorithm works well for regular

movement patterns during interaction [Scherzer et al., 2011]. Temporal coherence

(TC) is the correlation of contents between adjacent rendered frames, it exists

across a wide range of scenes and motion types in practical real-time rendering.

By taking advantages of TC, we attempt to save redundant computation and

improve the performance of the rendering task significantly, even if there is an

abrupt change in speed or viewing direction resulting in a large prediction error,

this error will be corrected in the next few frames as long as the proceeding

changes in the view parameters stay relatively stable for a few frames. Dix et al.

[2003] demonstrates that this is usually the case in human interaction with digital

environments. Additionally, equation 6.1 is easy to calculate and it provides a

good trade-off for resource constrained mobile clients.

The traversal constraint on the LoD update in each frame can limit the influ-

ence of any large prediction errors. When interaction is quick, the view-dependent

progressive refinement/simplification caused by the error of the predicted view

parameters will be limited. The human vision system cannot resolve small de-

tails changing during very fast motion [Luebke et al., 2002]. Figure 6.5 shows

an example of this user motion prediction. In the figure, the user is currently at

position 2. This was an abrupt change from their previous position 1 and the

predicted screen position (position 2 as a square icon) deviates from the actual

position. However, the prediction accuracy increases in the following frames as

the screen position changes steadily. This type of user interaction is handled well

by this simple predictive model.

In this section, we have described a user motion prediction model. Earlier in

the chapter we also described in detail our parallel approach to prefetching LoD

and also removing irrelevant objects from the memory of the client device. In

the next section, we will outline some examples of how this interactive rendering

approach of using a multi-threaded architecture works in practice and what the

actual quantitative benefits are.
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Figure 6.5: This is a viewpath example for the prediction of the user motion
interaction path. This is the practical implementation of the view prediction
model outlined in equation 6.1. In the figure, user movement starts at 1 and
moves towards position 5.
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6.5 Practical evaluation of this approach

In this section, we provide a practical evaluation of the performance of the strat-

egy proposed in Section 6.3. The first experiment is designed to compare the

sequence approach and the parallel strategy in terms of overall map rendering

time. In the second evaluation, we will show an example of data usage in the

client side view-dependent approach when the updating component is in oper-

ation. This will demonstrate the efficient data management strategy employed

and we will discuss the amounts of data received by the client.

Our implementation setup is the same as was described and used in the pre-

vious chapter (see section 5.5 on page 131). The server runs on a Pentium 2GHz

PC and the client runs on an Android 2.2 HTC Desire smart mobile phone. The

client and the server are set up on a wireless network with a 100 kb per second

connection. The OSM datasets are extracted as specified in a rectangular bound-

ing box and we have set n = 3 steps for LoD. This is visible on the x−axis of

the graph, as shown in the Figure 6.12. The corresponding OSM dataset used is

displayed in Figure 6.6. A mobile visualization example for this map is shown in

the Figure 6.14.

We use the same example map dataset to help illustrate the step-by-step

concept of our rendering approach in a consistent manner. The initial map in

Figure 6.8 on page 165 is simplified from original datasets (in Figure 6.7 on

page 164). This map is sent to the mobile user to start the interaction. The

data is transmitted by the progressive transmission approach which we proposed

in the previous chapter (Chapter 5). The user starts to browse the map from

the top left of the map as shown in Figure 6.9, on page 166, and follow the pre-

set path. The panning interaction is finished at the right bottom of the map

and there are two turns or changes in the direction during the time the user is

following this path. As shown in the Figure 6.9, on page 166, additional spatial

detail is sent to the user’s area of interest along the path. Along this path,

the corresponding polygons obtain significant refinements when they in this area

visible to the user. However, as long as the user’s interacting with the map, the

data is being received continuously. The amount of this data is increasing in the

main memory of the mobile device as these additional refinements are received.
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This is where the proposed approach can more efficiently manage the LoD. As

shown in the Figure 6.10, on page 167, when the user begins to pan and move

around in the map area, this approach not only increases the spatial data in the

user’s current view, but at the same time, decreases or removes spatial data from

the old or previous view. In this way increasing LoD will not cause an overload

of the main memory when the user performs multiple interactions with the map

visualisation. Moreover, this approach discards the refinements of LoD in the

historical path if it is sufficiently far from the user’s viewing area as shown in

the Figure 6.11 on page 168. Overall this approach can significantly enhance the

efficiency with which data management is carried out in low-end mobile clients.

In this practical example, the overall processing time is measured against

the total amount of data (in terms of nodes). This is plotted and illustrated in

Figure 6.13 on page 170. It is clear in this illustration that the removal of LoD

from areas now considered irrelevant has a very beneficial effect. These areas

are no longer required at high detail because the user has moved to a different

area on the map. The rate of change of data caused by user movement means

that the client side of our view dependent approach must maintain the data in

memory. In Figure 6.12, on page 169, the frame sequence is plotted against the

overall time to process the frame for both the sequential default method and

then the parallel rendering method. This plot shows that the parallel strategy

can render a frame in a much shorter time during progressive transmission while

the sequential method requires a longer frame processing time. It is clear from the

plot that the parallel method takes less overall time to render the frames than

the sequential method. The progression of the LoD increases from the server

when there is interaction from the user changing their context on the map screen

view (such as performing a panning operation like Figure 6.4 on page 157). The

sequence method must wait for the complete download of the LoD to complete.

The parallel method can prefetch the datasets potentially within the next view.

This allows the forward prefetching of data meaning that the data for the next

frames the user requires will be delivered and ready for user viewing.
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Figure 6.6: This is a screenshot of the OSM area used for the analysis in Fig-
ure 6.12 and Figure 6.13
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Figure 6.12: In this plot, we see a comparison of the sequential method of LoD
delivery against the parallel method of prefetching data for the predicted area
that the user will eventually move (pan) to in the next few frames.
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Figure 6.13: This figure shows a plot of the overall data consumption rates against
the overall time required for rendering. There are two user movement direction
changes in the example where the user moves to another area of the map. In this
case, the resolution of now irrelevant areas is decreased.
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Figure 6.14: This is an example of the actually rendering process running on a
real mobile device. This photograph is of the implementation of this approach
for map of in Figure 6.13 on page 170
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6.6 Styling the map visualisation

As shown in Figure 6.6 the map is a simple map in terms of the types of features

involved. The most frequently occurring features in Figure 6.6 are green spaces,

agricultural fields, and forestry. There are also some water features. These fea-

tures are coloured ’green’ and ’blue’ respectively. We can easily access the seman-

tics with the OSM data. For each object in OSM, there are ’tags’ or attributes

attached to the spatial data describing that object. These tags can be used to

add specific styles to the map by changing the colouring of features. This is based

on the rules generated by analysing the types of features contained in the map

dataset.

In our software implementation, the the complete collection of data features

in OSM data is transmitted in JSON formats. JSON format is a common stan-

dard for structured data, which is more compact than XML. However, it is a

light-weight data format for exchanging data between clients and servers in web

applications using Javascript. GeoJSON allows geographic data to be stored

in a human-readable way. GeoJSON generators and parsers are available for

most leading databases and programming languages. This enables the applica-

tion server to send spatial data and associated semantic metadata in this format

extracted from the features in the OSM XML (see Figure 6.15 on 174). Fig-

ure 6.15 shows a very simple piece of OSM XML transformed to JSON which

is then transformed and bound to Java objects. The main features of the OSM

data contained in this example include: way id (polygon or polyline), location

information, OSM feature and name. The rendering function in the mobile clients

will convert this format directly to Java objects for integration into our Java code

for the reconstruction of the map in visualisation on the mobile clients. As the

simple OSM example in Figure 6.15 shows the data in OSM, in the left hand

side, is transferred (after the generalisation) to JSON formatted objects. The

JSON is then sent to the client and rendered in the mobile client’s visualisation

application software.

All the spatial information encoded in the JSON objects will be converted, or

bound, to Java objects. The attributes of the features of the map are encoded

into the JSON object. As discussed these are available in the form of tags in
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the OSM XML which are expressed in value pairs such as k = ’amenity’ and

v=’public building’(discussed in Section 4.1 in Chapter 3). These attributes be-

come attributes of the objects in Java. The proposed software tool then uses

these attribute values to perform rule-based rendering to the corresponding fea-

tures (i.e. “Lake” should be rendered in a blue color). However, the focus of this

work is not to generate very aesthetically-pleasing map visualisations. There are

many freely available style layers available which could be used to make this vi-

sualisations “look-and-feel” like an OpenStreetMap map rending. We have used

a reasonably simple rule-based rendering approach which can be easily extended

if necessary. An example of two different methods of map styling is shown in

Figure 6.16.

6.7 Discussion and potential applications

Up to this point in this thesis our primary concern was the delivery of the spatial

data from a source (dynamic database or Internet API) to the server for further

processing. On the server, the processing is performed to prepare the selected data

package for progressive transmission to the client. This chapter has focused on the

client side rendering techniques as the end point for the progressive transmission

of the spatial data from the dynamic database or Internet API. We introduced an

efficient strategy for the parallel rendering of the map visualisation in the client

while at the same time progressively transmitting data for the next LoD or next

area of interest. This parallel strategy involved the development of a prediction

algorithm to determine, with high accuracy, where on the map the user was likely

to move to next. This concept was illustrated in Figure 6.5 and its evaluation was

discussed in Section 6.5. This parallel scheduling process was used with a view-

dependent progressive transmission. It was shown to have similar performance to

a scale based approach while reducing the amount of data sent in each frame. This

makes this approach very suitable for the visualisation of large spatial datasets

in low capacity mobile clients. In Section 6.6, we outlined methods to style the

map visualisations by accessing the attribute information of the spatial features

transferred to the mobile client during the progressive transmission process.

In Chapter 7, we will outline a summary of the contents of thesis. We will
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Figure 6.16: This is an example of flood analysis in the city river of Girona Spain,
which is visualised using (a.) dynamic visualization with customised styling and
(b.) pre-computed visualization with tile-based maps
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investigate how we have successfully delivered the research contributions outlined

in the first chapter in section 1.3. This will allow us to put these results in the

context of the current state of the art in the literature. We close the thesis by

outlining some opportunities for the further research work on this topic for the

immediate and long-term future.
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Chapter 7

Conclusions and discussions

In this thesis, we developed a framework to facilitate the management of vector-

based spatial data both in server and mobile clients for the visualization in LBS.

The development of this framework has taken account of the constraints inherent

in mobile devices (e.g. low network communication, limited storage, small screen

display). Our framework focusses on dynamic spatial data sources such as VGI

data. In Chapter 1, we have outlined the key research questions related to the

visualization of dynamic spatial datasets in mobile applications. To address these

questions, we have conducted a series of research includes:

• Identified the key challenges related to managing dynamic spatial data (e.g.

VGI data) in LBS and investigated current solutions related to vector based

map visualisation in chapter 2;

• Proposed a server side data processing framework to handle the vector data

in incremental LoD in Chapter 3;

• Implemented an opensource software based on the data processing frame-

work of Chapter 3 and used OSM datasets as a case study in Chapter 4;

• Developed a selective progressive transmission strategy based on a heuristics

model in Chapter 5; Also integrated the view-dependent technique to obtain

a smoother transmission of suitable LoD refinements;

• Developed multi-thread-based data management strategy associated with
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the algorithms to speed up the data visualization and to prevent the over-

load of the irrelevant data in low-end mobile client in Chapter 6.

In this chapter, we will summarise the main achievements of this thesis and

provide some insights from user trials and experimental evaluations. The limita-

tions of this work are also discussed. Finally, we outlook the future work with a

number of interesting research directions.

7.1 Overview of research achievements

The vector-based spatial data visualization as an alternative solution to tra-

ditional tile-based solutions is emerging in LBS applications. Dynamic crowd

sourcing data sources (e.g. VGI data) are potential data resources to provide

timely and accurate spatial information for LBS. However, for most mobile users,

it is still difficult to access the large amount of online spatial data due to many

constraints of mobile devices. In order to address these issues, this thesis has

developed a server- client data management framework for handling the vector

data as LoD on both server and client side. The main contributions of this work

can be described as follows:

1. A framework for spatial data processing: Our framework provides

an improved solution for processing vector-based spatial data on an ap-

plication server. Processing vector data is a complex process comprising

of many steps and components. We subdivided this complex process into

individual components to perform: spatial data simplification; coordinate

transformation; general data handling, and consistency checking. We ap-

ply “on-the-fly” data representation checking and data simplification. By

carefully considering the representation of the spatial data, it applies data

simplification only if necessary. This results in significant reductions in the

data volumes. This also provides users with access to their chosen spatial

datasets without an unacceptable reduction in the overall quality of those

datasets. To ensure that the visualization of these datasets on the mobile

device screen is of acceptable cartographical standard we apply scale trans-
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formation metrics to transform these datasets to the mobile screen coordi-

nate system. These metrics formularized the transformation between the

error threshold in data simplification and the user’s visual error allowance

within the available mobile screen area. To support this framework, a low

redundancy data structure was designed to handle the spatial data in incre-

mental LoD. A priority queue is used in the management of LoD after data

simplification. Crucially for multi-layer datasets, our framework supports

the integration of topology consistency checking which ensures enhanced

data accuracy after generalization processing [Corcoran et al., 2012; Zhou

et al., 2005].

2. An implementation of the software tool: A software architecture is

described in the implementation the data processing framework. The soft-

ware can handle vector data extraction directly from a database or spa-

tial data which is being streamed “live” from a dynamic data source (e.g.

OSM databases). Data simplification techniques are implemented in this

software to reduce the amount of data in the processed datasets. The geo-

graphical data features in the datasets are examined by this software tool.

In the example of using OSM data, this software tool can extract the spa-

tial information of the OSM dataset “on-the-fly”. This approach is generic,

which allows one to use vector data of other formats such as: geoJSON,

ESRI Shapefile, KML, etc. A comparison with traditional tile-based map

processing demonstrates the advantages of this software tool for handling

spatial data on the application server without the requirement to manage

extra caching of map tiles. The software provides a solution to enable quick

access to dynamic vector datasets.

3. Selective progressive transmission: We proposed and implemented this

progressive transmission scheme based on a series of user studies. We con-

ducted user trials based on the user’s satisfaction ratings with maps trans-

mitted by a progressive transmission technique. This progressive transmis-

sion technique was a straightforward reversal or unwrapping of the order of

which generalization had processed the map dataset. Many authors in the

literature show that human vision plays a very important role in map us-
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ability. The users satisfaction results in user trials demonstrated that there

was potential to improve the map visualisation during progressive trans-

mission by performing a selection on the set of LoD. A number of shape

complexity metrics were investigated in the user trails of OSM datasets in

order to be able to automatically assess the complexity and representation

of the dataset before transmission. To extend this approach, we reviewed

various techniques from the literature and attempted to optimize the pro-

gressive transmission process. We developed a view-dependent progres-

sive transmission approach based on efficient spatial-indexing techniques

to select and deliver spatial data within the user’s requested view area.

This approach significantly reduces resource consumption on both client

and server when compared to full scale progressive transmission [Corcoran

et al., 2011a]. Building on this view-dependent approach, we then described

and implemented a cost-benefit heuristic model by altering our approach

based on shape complexity metrics and the view-dependent technique. The

cost-benefit approach optimizes the LoD data delivery by sending the most

significant map features with priority in a limited bandwidth situation.

The cost-benefit approach attempts to maximise the smoothness of transi-

tion between LoD whilst minimising the amount of data to be transmitted.

An experimental test is conducted in the context that user is viewing the

area with many complex spatial objects with various representations. The

experimental results demonstrated the advantages of this approach over

other types of progressive transmission when delivering spatial data over

low bandwidth communication networks.

4. A parallel strategy for data management on the client mobile de-

vice: The design of this client-side data management strategy has taken ac-

count of the limitations of low-end mobile clients (e.g. limited data storage

capacity, tight computational resource budget and low network bandwidth).

To overcome the tight computational resource budget, the sequence of pro-

cesses involved in visualization are optimized into a multi-threaded parallel

approach. This multi-threaded data management scheme has been designed

for the mobile client to schedule data downloading and data rendering in
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parallel in order to achieve improved processing time for data visualization

on the client. A set of algorithms have been developed corresponding to the

threads in this multi-threaded approach. These algorithms correspond to:

visualization, data updating, and fetching data of the next LoDs. This algo-

rithmic approach is used in conjunction with a view-dependent progressive

transmission scheme in the client in order to decrease the amount of data

transmitted for irrelevant areas of the map visualisation while also avoid-

ing the overloading of the phone memory and disk space with spatial data.

The pre-fetching thread helps overcome network latency while also speed-

ing up the data visualization process. The updating thread maintains the

relevant LoD in memory. This prevents the overload of memory resources

when continuously downloading the increasing LoDs. The rendering thread

can handle user interactions and render maps based on user preference on

the fly (e.g. customization of the color style). This multi-threaded parallel

approach can be potentially applied to many geoprocessing applications to

visualize dynamic geoprocessing data effectively.

7.2 Suggested improvements

In practice, the LBS applications will be operated in more complex scenarios and

the mobile users are performing many parallel tasks rather than just looking at

the maps [Steiniger et al., 2006]. It is difficult to satisfy all the requirements

in many dimensions of user requirements. For this thesis work, we only focus

on development of a framework for facilitating the data management for visual-

ization in mobile devices. This work provides an enormous opportunity to use

vector based data as a data resource to derive more complex and interactive LBS

applications. Nevertheless, this research work has the following limitations:

In this work, we proposed a framework for efficient processing of vector-based

spatial data (Chapter 3). There are four main constraints of generalization: shape

constraints, semantic constraints, metric constraints, and topological constraints

Weibel [1996]. We have made efforts to balance the trade off of the visual impor-

tance of the shape of features (shape constraints) and the simplification algorithm
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performance (metric constraints). We have not considered other complex data

generalization techniques such as those involving semantic intelligence with the

semantic process of Kulik et al. [2005] being one such example. This is because

there are different types of vector data sources, the semantic rules for performing

generalization according to the non-spatial attributes (metadata) are very much

unique to each dataset. Consequently these semantic rules must be considered on

a case-by-case basis depending on whether the data source is OSM or a National

Mapping Agency or a sensor network. We have examined the semantic features

of OSM in metadata. Other authors have also looked at this problem as Ballatore

and Bertolotto [2011] finds that the rich non-spatial features are very complex.

This makes having a uniform generic strategy in map generalization according to

a specific semantic attribute or feature difficult.

In the mobile contexts, users may not be able to focus on the maps and

the resolution of the screen is reasonably low. We performed data simplification

to reduce data volume, which allows users to access the data more efficiently

on the understanding that it might not be the highest quality resolution. This

was shown to work effectively. However, we discussed topological consistency

issues arising in generalization. Efficient topological consistency checking is still a

difficult question in this research area [Bertolotto and Egenhofer, 2001; Han et al.,

2004]. In the development of the selective progressive transmission approach

(Chapter 6), we examined a number of criteria (e.g. area importance, semantic

importance, etc). In the end, we choose the metrics of shape complexity as the

criteria for the heuristic model. We considered that these features can directly

affect the user’s experience and perception of the map particularly during the

transmission of complex spatial objects. We could consider more potential criteria

to improve the map usability based on different user preferences in the future.

The proposed mobile client data management strategy has considered the

many limitations of mobile devices. However, there are more constraints, which

must be considered in practice for devices operating in a ubiquitous computing

environment [Franklin and Wilhelm, 2000]. To achieve better visualization results

our user’s motion prediction scheme could potentially consider more complex

gestures (e.g. multi-touch, grab, etc). A user-friendly interface could be design

to assist the user to navigate to the area of interest efficiently.
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7.3 Conclusion and future work

In this thesis, a framework has been developed to better manage vector-based

spatial data for the visualization in LBS applications on both the server and

client side. Our framework is examined and assessed with real-world datasets

from OSM. Our experimental analysis indicate that the framework works very well

with low-end mobile clients. We feel that this research work has made valuable

contributions in the area of managing dynamic vector data in the server side and

LBS mapping and visualisation on the client side. Despite the discussion of the

achievements of this work, there are some areas which will require future research

work.

In this thesis, our data reduction techniques focus on the geographical objects

and their shape analysis. However, data reduction techniques could be extended

to include the personalization of spatial contents by taking user profiles and user

interactions into account [Mac Aoidh et al., 2012]. Irrelevant spatial contents

could be omitted before the transmission which would also result in a more effi-

cient generalization process [Bertolotto and McArdle, 2011]. In VGI, metadata

contains various non-spatial information (e.g. names, tags, etc). The data simpli-

fication process could be extended to provide a personalization solution allowing

the selection of spatial objects matching user preferences before transmission.

For example, tourists require maps which highlight landmarks and the points of

tourist interests on maps. A personalized map could deliver more readable spatial

contents in this types of context [Agrawala and Stolte, 2001]. These personaliza-

tion techniques should be integrated into the generalization process to provide

more relevant spatial contents to the mobile users in LBS while also benefiting

from improved performance.

In chapter 5, we investigated a number of shape analysis metrics and we

selected the metrics, which are most closely related to the human visual system

as the criteria for the selective progressive transmission. More complex user

studies could be designed to examine the more complex metrics.

As we discussed in chapter 6, mobile client applications associated with our

framework could potentially work with spatial data which is generated in real

time such as that from a geosensor network. Our real time rendering mechanism
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can provide customized rendering styles for the different features. A user inter-

face could be developed in the future to allow users to configure their preferences.

This approach could be operated in real world geoprocessing applications to assist

in development of more meaningful and interactive spatial information. HTML5

has shown its potential, as a cross-platform technique, to visualize vector-based

spatial data effectively in the web browser of any mobile devices [Boulos et al.,

2010; Corcoran et al., 2011b]. As 4G Internet becomes widespread, the mobile

visualization of spatial data is predicted to offer more interaction with semanti-

cally rich spatial data. As a consequence, the data generalization processes on

the server will also become more complex to adapt to these changes. In our work

here we emphasised that visualisation of spatial data on mobile devices was fun-

damentally different to the same task on desktop computers and in GIS. The new

generation of tablets such as the iPad have a relative larger screen and much high

specifications than smartphones. This must be considered in the future work,

where client devices will come with a variety of different screen sizes.

With the continued success of geovisualization in LBS, vector-based mapping

techniques are becoming a very popular solution. These techniques have many

advantages over the traditional mapping techniques for providing interactive and

high quality spatial information. This work has achieved a framework to address

several key issues related to the visualization of vector-based spatial data in LBS.

This thesis provides a strong treatment of this topic, discusses promising research

results, and outlines future research directions for the topic. Research efforts

should continue in the provision of solutions for visualization of spatial data LBS

as the technology of client devices changes rapidly for the better.
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