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Abstract. Thermocouples are one of the most widely used temperature 
measurement devices due to their low cost, ease of manufacture and robustness.  
However, their robustness is obtained at the expense of limited sensor 
bandwidth. Consequently, in many applications signal compensation techniques 
are needed to recover the true temperature from the attenuated measurements. 
This, is turn, necessitates in situ thermocouple characterisation. Recently the 
authors proposed a novel characterisation technique based on the cross-relation 
method of blind deconvolution applied to the output of two thermocouples 
simultaneously measuring the same temperature. This offers a number of 
advantages over competing methods including low estimation variance and no 
need for a priori knowledge of the time constant ratio. A weakness of the 
proposed method is that it yields biased estimates in the presence of 
measurement noise. In this paper we propose the inclusion of a signal 
conditioning step in the characterisation algorithm to improve the robustness to 
noise. The enhanced performance of the resulting algorithm is demonstrated 
using both simulated and experimental data. 
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1 Introduction 

In order to achieve high quality, low cost production with low environmental impact, 
modern industry is turning more and more to extensive sensing of processes and 
machinery, both for diagnostic purposes and as inputs to advanced control systems.  
Of particular interest in many applications is the accurate measurement of temperature 
transients in gas or liquid flows. For example, in an internal combustion engine the 
dynamics of the exhaust gas temperature is a key indicator of its performance as well 
as a valuable analytical input for on-board diagnosis of catalyst malfunction, while in 
the pharmaceutical industry precise control of transient temperatures is sometimes 
necessary in lypholisers used in drug manufacture to ensure the quality and 
consistency of the final product. These and many other applications, thus require the 
availability of fast response temperature sensors. 



2      P. Hung et al. 

Fast response temperature measurement can be performed using techniques such as 
Coherent Anti-Stokes Spectroscopy, Laser-Induced Fluorescence and Infrared 
Pyrometry [1] [2]. However, these are expensive, difficult to calibrate and maintain 
and are therefore impractical for wide-scale deployment outside the laboratory [2]. 

Thermocouples are widely used for temperature measurement due to their high 
permissible working limit and good linear temperature dependence. In addition, their 
low cost, robustness, ease of installation and reliability means that there are many 
situations in which thermocouples are indeed the only suitable choice. Unfortunately, 
their design involves a compromise between robustness and speed of response which 
poses major problems when measuring temperature fluctuations with high frequency 
signal components.  

To remove the effect of the sensor on the measured quantity in such conditions, 
compensation of the thermocouple measurement is desirable. Usually, this 
compensation involves two stages: thermocouple characterisation followed by 
temperature reconstruction. Reconstruction is a process of restoring the unknown gas 
or fluid temperature from thermocouple outputs using either software techniques or 
hardware. This paper focuses on the first stage, since effective and reliable 
characterisation is essential for achieving satisfactory temperature reconstruction.  

In an attempt to improve on existing thermocouple characterisation methods, the 
authors recently proposed a novel characterisation technique based on the cross-
relation (CR) method of blind deconvolution [3] applied to the output of two 
thermocouples simultaneously measuring the same temperature [3] [4]. This offers a 
number of advantages over competing methods [2] [5] [6] [7] including low 
estimation variance and no need for a priori knowledge of the time constant ratio. 
However, a weakness of the proposed CR method is that it yields biased estimates in 
the presence of measurement noise [8]. This contrasts with its leading competitor, the 
Generalised Total Least Squares (GTLS) based difference equation characterisation 
algorithm [2] [9], which is an unbiased estimator but suffers from high estimation 
variance. 

In this paper we propose a modification of the CR method that involves the 
inclusion of a signal conditioning step prior to the application of the CR algorithm, 
leading to improved robustness to measurement noise. The algorithm is validated 
using Monte Carlo simulations and data from an experimental test rig [10].  

The remainder of the paper is organised as follows. The two-thermocouple 
characterisation methodology and the GTLS difference equation algorithm are 
introduced in Section 2. Section 3 provides an overview of the CR characterisation 
method and its principal characteristics. In Section 4 the CR implementation that 
incorporates signal conditioning filters is developed. The performance of this new 
algorithm is compared with the conventional CR implementation and the GTLS 
algorithm for both simulated and experimental data in Section 5. Finally, conclusions 
are presented in Section 6. 
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2 Difference Equation Sensor Characterisation 

2.1 Thermocouple Modelling 

Provided a number of criteria regarding thermocouple construction are satisfied [5] 
[6], a first-order lag model with time constant τ and unity gain can represent the 
frequency response of a fine-wire thermocouple [11]. This simplified model can be 
written mathematically as 

)()()(f tTtTtT &τ+= . (1) 

Here the original liquid or gas flow temperature Tf can be reconstructed if τ, the 
thermocouple output T(t) and its derivative are available. In practice, this direct 
approach is infeasible as T(t) contains noise and its derivative is difficult to estimate 
accurately. More importantly, it is generally not possible to obtain a reliable a priori 
estimate of τ, related to their thermocouple bandwidth ωB 

Bω
τ 1= , (2) 

which, in turn, is a function of thermocouple wire diameter d and fluid velocity v 

3d
v

B ∝ω . (3) 

Hence, τ varies as a function of operating conditions. Clearly, a single thermocouple 
does not provide sufficient information for in situ estimation.  

Equation (3) highlights the fundamental trade-off that exists when using 
thermocouples. Large wire diameters are usually employed to withstand harsh 
environments such as engine combustion systems, but these result in thermocouples 
with low bandwidth, typically ωB < 1 Hz. In these situations high frequency 
temperature transients are lost with the thermocouple output significantly attenuated 
and phase-shifted compared to Tf. Consequently, appropriate compensation of the 
thermocouple measurement is needed to restore the high frequency fluctuations. 

2.2 Two-Thermocouple Sensor Characterisation 

In 1936 Pfriem [12] suggested using two thermocouples with different time constants 
to obtain in situ sensor characterisation. Since then, various thermocouple 
compensation techniques incorporating this idea have been proposed in an attempt to 
achieve accurate and robust temperature compensation [2] [5] [6] [7] [13]. However, 
the performance of all these algorithms deteriorates rapidly with increasing noise 
power, and many are susceptible to singularities and sensitive to offsets [14].  

Some of these two-thermocouple methods rely on the restrictive assumption that 
the ratio of the thermocouple time constants α (α <1 by definition) is known a priori. 
Hung et al. [2] [13] developed difference equation methods that do not require any a 
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priori assumption about the time constant ratio. The equivalent discrete time 
representation for the thermocouple model (1) is: 

)1()1()( f −+−= kbTkaTkT , (4) 

where a and b are difference equation ARX parameters and k is the sample instant. 
Assuming ZOHs and sampling interval τs, the parameters of the discrete and 
continuous time thermocouple models are related by 

aba s −=−= 1,)exp( ττ . (5) 

For two thermocouples we have 

     )1()1()( f1111 −+−= kTbkTakT  and (6) 

)1()1()( f2222 −+−= kTbkTakT , (7) 

where subscripts 1 and 2 are used to distinguish between signals from different 
thermocouples. The discrete time equivalent of the time constant ration α is then 
defined as 

1,12 <= ββ bb . (8) 

The unknown temperature Tf can be eliminated from the thermocouple models (6) and 
(7) to give an expression in terms of β, b2 and the thermocouple outputs only [2] [15], 
that is: 

1
12212

−∆+∆=∆ kkk TbTT β , (9) 

where the pseudo-sensor output kT2∆  and inputs kT1∆  and 1
12

−∆ kT  are defined as 
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For an M-sample data set (9) can be expressed in ARX vector form 

XθY = , (11) 

with .][and],[, 2
1

1212
Tkkk bβ=∆∆=∆= − θTTXTY  Here k

1T∆ , k
2T∆  and 1

12
−∆ kT  are 

vectors containing M-1 samples of the corresponding composite signals kT1∆ , kT2∆  

and 1
12

−∆ kT .  
This characterisation model, referred to as the β-formulation, can be identified 

using least squares techniques. Due to the form of the composite input and output 
signals, the noise terms in the X and Y data blocks are not independent with the result 
that conventional least squares and total least squares both generate biased parameter 
estimates even when the measurement noise on the thermocouples is independent. 
However, by formulating identification as a generalised total least squares (GTLS) 



In Situ Two-Thermocouple Sensor Characterisation      5 

problem, unbiased parameter estimates can be obtained. The resulting β-GTLS 
algorithm is more robust than other difference equation formulations [15] and 
provides superior performance to other two-thermocouple probe characterisation 
methods at low and medium noise levels [2].  

Unfortunately, the variance of β-GTLS estimates grows rapidly with increasing 
noise level, particularly when compared with conventional least squares [2]. In 
addition, the approach occasionally returns unreasonable time constant estimates at 
high noise levels, as noted in [4], due to ill-conditioning [16] and the sensitivity of the 
relationship between time constants and discrete model parameters (5) in the vicinity 
of the singularity at b=0. The cross-relation blind deconvolution approach proposed in 
[3] [4] avoids these issues.  

3 Blind Sensor Characterisation 

One of the best known deterministic blind deconvolution approaches is the method of 
cross-relation (CR) proposed by Liu et al. [17]. Such techniques exploit the 
information provided by output measurements from multiple systems of known 
structure but unknown parameters, for the same input signal.  

This new approach to characterisation of thermocouples is completely different 
from those in Section 2. As commutation is a fundamental assumption for the method 
of cross-relation, the thermocouple models are both assumed to be linear. This is 
reasonably realistic as long as the thermocouples concerned are used within well-
defined temperature ranges. Nonetheless, linearisation can easily be carried out using 
either the data capture hardware or software, even if the thermocouple response is 
nonlinear. Further, the approach requires constant model parameters, therefore the 
fluid or gas flow velocity v is assumed to be constant, such that the two thermocouple 
time constants τ1 and τ2 are time-invariant.  

3.1 Two-Thermocouple Sensor Characterisation 

By exploiting the commutative relationship between linear systems, a novel two-
themocouple characterisation scheme can be obtained as follows. Since the fluid 
temperature Tf is unknown, the two thermocouple output signals T1 and T2 are passed 
through two different synthetic thermocouples as shown in Fig. 1. These are also 
modelled by (1) and can be expressed in first-order transfer function form as: 

2
2

1
1 ˆ1

1)(ˆ,
ˆ1

1)(ˆ
ττ s

sH
s

sH
+

=
+

= , (12) 

where Ĥ  is the estimate of the thermocouple transfer function H. The unknown 
thermocouple time constant parameters can then be estimated as 1̂τ  and 2τ̂  using the 
cross-relation method, illustrated in Fig. 1. Here the cross-relation error signal, 

)()( 2112 tTtTe −=  is used to define a mean-square-error cost function 
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.ˆ,ˆ,]))()([(

][)ˆ,ˆ(

21
2

2112

2
21MSE

ττ

ττ

∀−=

=

tTtTE

eEJ
 (13) 

 

 
Fig. 1. Two-thermocouple cross-relation characterisation. 

Equation (13) is then minimised with respect to 1̂τ  and 2τ̂  to yield the estimates of 
the unknown thermocouple time constants. Clearly, the cross-relation cost function 

)ˆ,ˆ( 21MSE ττJ  is zero when 11̂ ττ =  and .ˆ 22 ττ =  In practice it will not be possible to 
obtain an exact match between T12 and T21 due to measurement noise and other factors 
such as thermocouple modelling inaccuracy and violations of the assumption that the 
two thermocouples are experiencing identical environmental conditions.  

Xu et al. [18] suggest that one of the necessary conditions for multiple finite-
impulse-response channels to be identifiable is that their transfer function 
polynomials do not share common roots. Applying this condition to the two-
thermocouple characterisation problem corresponds to requiring that the time 
constants, and hence the diameters (3), of the thermocouples are different, that is 

2121 dd ≠⇒≠ ττ . (14) 

Not surprsingly, this requirement is consistent with all other two-thermocouple 
characterisation techniques mentioned in Section 2. Thus, cross-relation 
deconvolution converts the problem of sensor characterisation into an optimisation 
one.  

3.2 Cost Function 

A 3-D surface plot and a contour map of a typical )ˆ,ˆ( 21MSE ττJ  cost function are 
shown in Fig. 2. Unfortunately, )ˆ,ˆ( 21MSE ττJ  is not quadratic and cannot therefore be 
minimised using linear least squares. More importantly, the cost function has a second 
minimum when both time constant values approach infinity. Under these conditions, 
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both low-pass filters (12) take infinite amounts of time to respond. In other words, 
they are effectively open-circuited and their differences will always be zero. The 
existence of this minimum applies regardless of the noise conditions or any violations 
of the modelling assumptions. The minimum at infinity is thus in fact the global 
minimum, while the true time constant value is located at a local minimum. In the 
absence of noise, it is noted that 0MSE =J  at both the global and local minima. 
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Fig. 2. A typical JMSE cost function for noiseless thermocouple measurements: (a) 3-D plot of 
cost function; and (b) corresponding contour map. 
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Fig. 3. A typical JNMSE cost function for noiseless thermocouple measurements: (a) 3-D plot; 
and (b) a comparison of 1-D cross sections of the MSE and NMSE CR cost functions. 

 
The narrow basin of attraction of the desired local minimum coupled with the 

global minimum at infinity has serious implications for optimisation complexity since 
search bounds have to be carefully selected to avoid divergence of gradient search 
algorithms to the global minimum. Further, with increasing noise level the local 
minima becomes shallower and shallower, and eventually disappears causing the 
optimisation problem to become ill-posed.  

As noted in [3] the ill-posed problem can be resolved by employing a normalised 
mean squared error (NMSE) cost function defined as 
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)]var()[var(5.0
]))()([(

)ˆ,ˆ(
2112

2
2112

21NMSE TT
tTtTE

J
+

−
=ττ . (15) 

A typical example of this cost function is plotted in Fig. 3(a). To highlight the effect 
of normalisation, the 1-D cross sections of both the MSE and NMSE cost functions 
along the line 21 ˆˆ τατ =  is also plotted in Fig. 3(b). Essentially, normalisation 
penalises large time constants, thereby eliminating the minimum at infinity giving a 
well conditioned convex cost function. 

A weakness of the MSE and NMSE cross-relation algorithms is that they generate 
biased estimates. In fact, a statistical analysis of the algorithms [8] reveals that the 
MSE implementation yields postiviely biased estimates, while the NMSE 
implementation results in negatively biased estimates at high noise levels, though the 
latter is less significant when temperature variation is broadband.  

4 Signal Conditioning 

One approach to reducing the noise induced estimation bias is to introduce signal 
conditioning filters (Fc(s)) prior to the CR characterisation algorithm as illustrated in 
Fig. 4. Provided the filters are identical, linear (thereby ensuring commutativity) and 
do not completely block the measured signals, the operation of the CR algorithm is 
unaffected. Within these constraints there is substantial freedom in the design of the 
filters.  
 

 
Fig. 4. Two-thermocouple cross-relation characterisation with signal conditioning  

 
Assuming white measurement noise, which has a constant power spectrum profile 

across all frequencies, the obvious choice is to match the passband of the conditioning 
filters to the bandwidth of the temperature fluctuations. However, this is not the 
optimum choice, since it does not take into account the effect of the thermocouples.  
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Consider the magnitude squared transfer function 2)( ωjG  from the input signal, Tf, 

to the cross-relation (CR) error signal, e, when 1ˆˆ
21 == HH , defined as 

2
21

2

f

212 )()(
)(

)()()( jwHjwH
jT

jTjTjG −=−=
ω

ωωω . (16) 

This is plotted in Fig. 5 as a function frequency for a typical two-thermocouple 
sensor. As can be seen in Fig. 5, 2)( ωjG  has a peak between the thermocouple cut-
off frequencies (i.e. between 1/τ2 and 1/τ1) and decays rapidly towards zero away 
from this peak. On the right hand side the decay is due to the increasing attenuation of 
the thermocouple signals at higher frequencies. On the left hand side, however, the 
decay occurs because there is less and less difference between thermocouple signals 
while moving into the passband of the lowest bandwidth thermocouple (i.e. < 1/τ2). 
 

 
Fig. 5.  Normalised Cross-relation error transfer function as a function of frequency for a two-
thermocouple probe with time constants 0.02 and 0.1 seconds respectively. 

The dynamic range of the CR error transfer function is approximately 0.1/τ2 to 
10/τ1 rad/s. Thus, the effective CR error signal bandwidth will be limited to the 
intersection of the passband of )( ωjG  and the input signal bandwidth, and as such 
will, in general, be substantially less than the signal bandwidth. Consequently, for 
optimum signal-to-noise ratio performance the signal conditioning filters should be 
band-pass filters with a lower cut-off frequency, 0 < fL ≤ max(0.1/τ2, fmin) and an 
upper cut-off frequency, 1/τ1 < fU ≤ min(10/τ1, fmax). Here, fmin and fmax are the 
minimum and maximum frequencies of the temperature fluctuations (Tf). The 
maximum frequency fmax is assumed to be greater than the bandwidth of the faster 
thermocouple (1/τ1), otherwise signal compensation would not be required. In 
general, temperature fluctuations will be low-pass, in which case fmin=0 and fmax 
corresponds to the signal bandwidth. 
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5 Performance Evaluation 

To evaluate the performance of the proposed signal conditioned CR algorithm 
(SCCR) against conventional CR characterisation (CR) and the GTLS difference 
equation approach (β-GTLS), Monte Carlo simulations were performed using data 
from a two-thermocouple probe simulated in MATLAB® and an experimental test 
rig. 

In the simulation the thermocouples were modelled as unity gain first-order low-
pass filters with time constants 8.231 =τ  and 8.1162 =τ ms, respectively, and 
connected to a common input representing the fluctuating gas or liquid temperature 
signal. Data sets were generated for a sinusoidally varying temperature profile, 

5.50)20sin(5.16)(f += ttT π , (17) 

and a band-limited white noise signal obained by low-pass filtering the output of 
MATLAB’s normally distributed random signal generator using a 125 rad/s 
bandwidth second-order butterworth filter. Samples of each signal, along with the 
corresponding thermocouple measurements are given in Fig. 6. Each data set was 
recorded after initial condition transients had decayed and consisted of 5000 points at 
a sampling interval of 2 ms.  
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Fig. 6. Simulated temperature profiles: (a) sinusoidal; and (b) random band-limited to 20 Hz. 

The test rig, depicted in Fig. 7, was specifically designed to produce periodic 
temperature fluctuations at constant fluid velocity [10]. It is supplied with air through 
a pressure regulator and a needle valve in order to obtain approximately constant mass 
flow rate. The flow is divided into two streams, one heated and the other at the 
supplied temperature. The streams are balanced using ball valves to ensure a uniform 
velocity profile across the air outlet. Both streams are then passed to isolated 
reservoirs before leaving their corresponding orifices. Finally, the warm and cool 
streams are combined in the mixing chamber before reaching the temperature probe. 
The frequency of periodic temperature fluctuations is controlled by the frequency of 
crank rotation that is connected to the rig via a linkage. The temperature probe 
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consists of two thermocouples of unequal diameters (50 and 127 µm) and a constant-
current anemometer (3.8 µm) used to provide a reference measurement. 

Using this test rig data was collected for periodic temperature fluctuations with a 
fundamental frequency of 38 rad/s at a sampling frequency of 1 kHz (Fig. 8(a)). Table 
1 shows the time constant estimates obtained with each of the three characterisation 
methods. For comparison purposes, the best estimate of the time constants using the 
anemometer signal as an approximation to the true temperature is also included in the 
table. This essentially represents a lower bound on the true time constant values.  
 

 
Fig. 7. Test rig schematic. 
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Fig. 8. Test rig data: (a) temperature profiles, and; (b) comparison of CR signals. 
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Table 1. Time constant estimates for test rig data 

Method Ref. fit β-GTLS CR SCCR 
τ1 estimate (ms) 37.9 37.4 38.0 37.7 
τ2 estimate (ms) 187.9 185.3 187.4 185.8 

 
As can be seen, the results are consistent across all methods, suggesting that the 

data has low noise contamination and is consistent with the two-thermocouple probe 
modelling assumptions.  The is further confirmed by the close fit obtained between 
the CR signals (T12 and T21 from Fig. 1) as shown in Fig. 8(b). Consequently, for the 
purposes of the Monte Carlo simulations, the 500 point test rig data set is taken to be 
essentially noise free with  381 ≈τ  and 1882 ≈τ  ms. 

For each of the three data sets 100-run Monte Carlo simulations were performed 
for zero-mean white Gaussian measurement noise added to the noise free 
thermocouple outputs.  The amount of noise added was quantified in terms of the 
noise level Le, defined as 

,2,1,%100
)var(
)var(

f
=⋅= i

T
nL i

e  (18) 

where n1 and n2 are the noises added to the thermocouple measurements. For a given 
Le, the performance of each characterisation algorithm was assessed in terms of the 
percentage error in estimating the time constants, that is:  

2,1%,100
ˆ

=⋅
−

= ie
i

ii
i τ

ττ
τ . (19) 

The means and standard deviations of this estimation error are recorded for a range 
of noise levels in Table 2 for each of the characterisation algorithms under 
consideration (SCCR, CR and β-GTLS).  In SCCR the bandwidth of the conditioning 
filters was chosen as fL=60, fU=90 rad/s for the sinusoidal data, fL=5, fU=120 rad/s for 
the random data and fL=25, fU=125 rad/s for the test rig data. Note that results for 2τ̂  
have been omitted as they show a similar pattern to those observed for 1̂τ . 

6 Discussion and Conclusions 

The results clearly show that the inclusion of signal conditioning filters has the 
desired effect. SCCR consistently has much lower bias than CR, particularly at higher 
noise levels. The picture for variance is less clear. SCCR estimates have slightly 
greater variance on average than the CR estimates for the simulated data, but 
substantially less variance in the case of the test rig data. This is currently the subject 
of further study. 

While β-GTLS is theoretically unbiased, the variance in the estimates grows very 
rapidly with noise, and the algorithm essentially breaks down for Le > 5 in the 
simulated examples and Le > 1 for the test rig data.  The substantially worse β-GTLS 
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results in the last problem are due to the higher sample rate and fewer data points in 
this problem, both of which amplify the sensitivity of GTLS to noise. In contrast, CR 
and SCCR perform very well on this problem, though the estimation variance is 
significantly higher than in the simulated examples due to the smaller number of data 
points (500 compared to 5000).  In practice, pre-filtering of the data can substantially 
improve the robustness of GTLS to noise at the expense of introducing some bias [2], 
but this has not been investigated here due to space constraints. 

The cross-relation (CR) method of blind deconvolution provides an attractive 
framework for two-thermocouple sensor characterisation.  It does not require a priori 
knowledge of the thermocouple time constant ratio α, as required in many other 
characterisation algorithms, though this information can be exploited if available. CR 
is more noise-tolerant in the sense of reduced parameter estimation variance when 
compared to the alternatives such as β-GTLS. The standard CR implementation yields 
biased estimates, but this is significantly reduced with the inclusion of signal 
conditioning filters. The resulting SCCR algorithm has been shown to be superior to 
other methods on both simulated and experimental data. 
 

Table 2. Means and (standard deviations) of 1̂τ  estimation errors (%) obtained with β-GTLS, 
CR and SCCR for each data set for a range of noise levels 

Noise Level 
(Le) 

1 3 5 7 10 15 20 

Sinusoidal simulation 

β-GTLS -0.17 
(0.69) 

-0.77 
(5.29) 

-0.57 
(13.90) 

3.14 
(26.93) 

5.47 
(60.83) 

35.85 
(318.50) 

-6.43 
(969.42) 

CR -0.13 
(0.32) 

-1.64 
(1.01) 

-3.95 
(1.56) 

-6.94 
(2.39) 

-12.10 
(3.22) 

-19.78 
(4.29) 

-26.3 
(4.43) 

SCCR -0.07 
(0.36) 

-0.36 
(1.02) 

-0.57 
(1.58) 

-1.53 
(2.41) 

-2.57 
(3.25) 

-5.68 
(4.70) 

-9.53 
(6.43) 

Random simulation 

β-GTLS -0.01 
(0.96) 

0.33 
(7.62) 

1.27 
(20.27) 

5.23 
(42.64) 

17.12 
(88.72) 

49.57 
(465.72) 

98.31 
(549.96) 

CR 0.01 
(0.21) 

-0.34 
(0.71) 

0.73 
(1.24) 

1.55 
(1.37) 

2.87 
(2.39) 

5.27 
(3.36) 

10.18 
(4.39) 

SCCR -0.04 
(0.33) 

0.22 
(0.97) 

-0.08 
(1.54) 

0.53 
(2.28) 

1.44 
(3.07) 

2.51 
(4.80) 

5.09 
(6.60) 

Test rig 

β-GTLS 0.05 
(9.76) 

20.84 
(89.11) 

-127.97 
(1237.54)

-180.31 
(1028.05)

-281.23 
(697.22)

-229.94 
(604.96) 

-168.53 
(1000.33) 

CR -1.72 
(1.29) 

-1.08 
(4.23) 

-1.21 
(6.12) 

-1.83 
(7.50) 

-4.43 
(11.50) 

-3.35 
(19.73) 

-2.51 
(31.30) 

SCCR -0.94 
(1.03) 

-0.98 
(2.89) 

-0.28 
(4.51) 

-0.59 
(5.90) 

-1.67 
(9.68) 

-1.87 
(14.59) 

1.57 
(19.74) 
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