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Abstract—To perform simultaneous localization and mapping
(SLAM) in dynamic environments, static background objects must
first be determined. This condition can be achieved using a priori
information in the form of a map of background objects. Such an
approach exhibits a causality dilemma, because such a priori in-
formation is the ultimate goal of SLAM. In this paper, we propose
a background foreground segmentation method that overcomes
this issue. Localization is achieved using a robust iterative closest
point implementation and vehicle odometry. Background objects
are modeled as objects that are consistently located at a given
spatial location. To improve robustness, classification is performed
at the object level through the integration of a new segmentation
method that is robust to partial object occlusion.

Index Terms—Background–Foreground segmentation, light de-
tection and ranging (LIDAR).

I. INTRODUCTION

R ECENTLY, several researchers have started to develop si-
multaneous localization and mapping (SLAM) algorithms

for complex outdoor environments [1], [2]. One of the main
challenges presented by such environments is dealing with large
numbers of moving objects, such as people and other vehicles.
SLAM assumes that the environment is static with moving
objects treated as noise. It has been shown that the removal
of such foreground objects leads to improved performance
and is a necessity in busy outdoor environments [2], [3]. This
condition can be achieved using a detection and tracking of
moving objects (DTMO) system. On the other hand, DTMO
requires the removal of static background regions so that dy-
namic objects can be identified and tracked. To achieve this
goal, a map of such regions may be constructed using SLAM.
Based on this discussion, it should be clear that DTMO and
SLAM are strongly coupled and should not be implemented in
isolation. Wang et al. [3] refers to such a system as SLAM with
DTMO and showed that its implementation requires that sensor
measurements can first be decomposed into stationary and mov-
ing objects. This step has received significantly less research
focus than the development of SLAM techniques. A number
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of papers propose to use a priori information in the form of the
actual map created by SLAM to discriminate between static and
dynamic objects [4], [5]. This approach represents a causality
dilemma. To have such a priori information, static and dynamic
objects must first be discriminated [6]. In the context of object
tracking, discriminating between static and dynamic objects
based on whether the objects in question are currently tracked
has been proposed [7]. This approach is also subject to the same
causality dilemma, because static and dynamic objects must be
discriminated to initialize and update tracks. Another disadvan-
tage is assuming that objects always remain static or dynamic,
which is not the case. The occupancy grid approach proposed
by Weiss et al. [8] is subject to the same issue. Kondaxakis et al.
[9] propose to overcome this issue by periodically refresh-
ing the map of static objects. Zhao et al. [2] uses a similar
strategy and also integrates object size features to improve
classification. Diego et al. [10] proposed to determine static
and dynamic objects by clustering points from two consecutive
scans. This approach was not evaluated in the context of SLAM.
Hahnel et al. [6] proposed to determine dynamic locations using
the expectation–maximization (EM) algorithm. The expecta-
tion step computes a probabilistic estimate with regard to which
measurements may correspond to static objects. The maximiza-
tion step uses these estimates to determine the robot localization
and map. This process is iterated until no further improvement
can be achieved. Because classification is performed at the point
level, this technique does not consider the likelihood that neigh-
boring points will be of the same class. Pietzsch et al. [11] also
proposes a strategy that performs static/dynamic classification
at the point level. Zhao et al. [12] proposed a light detection
and ranging (LIDAR) background–foreground segmentation
algorithm. Their method assumes a nonmoving scanner.

We propose a new background–foreground segmentation
method that improves upon the aforementioned techniques.
This technique overcomes some of the limitations of previous
approaches by integrating a new object segmentation technique
with a static/dynamic point classification algorithm. Robustness
to noise is improved by performing a final static/dynamic classi-
fication at the object level. The segmentation method proposed
is a region-growing algorithm that builds upon the algorithm
proposed by Hwang et al. [13]. The occlusion of one object by
another can cause incorrect oversegmentation of the occluded
object [14], [15]. Oversegmentation can also occur if an object
contains a break or hole. The space between two legs of a pedes-
trian is one common example. The segmentation method of
Broggi et al. [16] and Gidel et al. [17] cluster points using only
proximity, without considering possible breaks. Mendes et al.
[14] propose to overcome this problem by postprocessing the
segmentation result. The segmentation method proposed here
accounts for such cases, and no postprocessing is required.
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We model background objects as objects that are consistently
located at a given spatial location. Initially, a background–
foreground pointwise classification of the LIDAR data is
performed. Next, the proposed region-growing segmentation
algorithm is applied, which returns a set of objects. Finally,
based on the percentage of background points contained within
each object, we classify each object as either background or
foreground. This method does not require an a priori map and
is robust to objects that change state. Because classification
is performed at the object level, it is more robust to noise.
Localization is achieved using a robust iterative closest point
(ICP) implementation, which filters association due to moving
objects. This approach was originally proposed by Rodriguez-
Losada et al. [18]. Kondaxakis et al. [9] also used ICP to
achieve localization for background–foreground segmentation
but did not filter associations due to moving objects.

This paper is organized as follows. In the following section,
we briefly introduce the LIDAR data set used within this
paper and present our background–foreground point classifica-
tion method. Section III describes the proposed segmentation
and object classification methods. Results are presented in
Section IV. Finally, in Section V, we draw the conclusions.

II. BACKGROUND–FOREGROUND POINT CLASSIFICATION

Conceptually, our algorithm operates as follows. For each
LIDAR point i in the current scan at time t, we attempt
to find a correspondence between this point and point(s) in
consecutive previous scans. If correspondences are found, we
infer that an object has always been situated at this location and,
consequently, has a high probability of being static. If such cor-
respondences cannot be found and the corresponding location
was visible in previous scans, we infer that an object has just
appeared at this location and has a high probability of being
dynamic. To relate spatial locations between scans, an estimate
of vehicle pose is required. This condition is obtained using
a robust ICP implementation, which ignores associations that
do not explain the main motion of the scan and will therefore
filter association due to moving objects. The initial alignment
of the data is achieved using vehicle odometry. Greater details
concerning this technique can be found in [18].

LIDAR measurements can be described in the following two
ways: 1) the local coordinate system of the vehicle in question
and 2) the global coordinate system in which the vehicle is
situated. All measurements are initially made in terms of polar
coordinates relative to the local coordinate system of the vehi-
cle. To relate measurements between different scans, we must
do so through the global coordinate system. At each time t,
when a new scan is encountered, we update the vehicle position
in this coordinate system. For each LIDAR point i at time t, we
determine whether a correspondence between this point and a
point at time t − 1 can be made as follows. We transform point
i at t from its local polar coordinate system to its local Cartesian
coordinate system and then, in turn, to the global Cartesian
coordinate system. We next determine the location of this point
in terms of the local Cartesian coordinate system defined by the
vehicle pose at time t − 1. We then convert this local Cartesian
coordinate to a local polar coordinate, where the variables eβi

t−1

Fig. 1. Polar coordinates of the point i relative to the vehicle pose at time
t − 1 are estimated to be eβi

t−1 and eri
t−1.

and eri
t−1 represent the corresponding estimated angle and

radius, respectively. For example, consider the illustration in
Fig. 1, where the vehicle at time t measures the location of the
point i relative to its current pose. The polar coordinates of this
point relative to the vehicle pose at time t − 1 are estimated to
be eβi

t−1 and eri
t−1.

Let the variable Ci
t−1 represent if a correspondence between

the point i in the scan at time t and any point in the scan at time
t − 1 can be obtained. Let the variable V i

t−1 represent if the
point i in the scan at time t was visible to the scanner at time
t − 1 and no correspondence could be obtained. If this variable
evaluates to true, this case represents that no object occluded
the view of the location of the point in question.

The evaluation of V i
t−1 and Ci

t−1 are determined using
Algorithm 1, which we now describe. Both variables take the
value 1 when evaluated to true and 0 when evaluated to false. If
eβi

t−1 is not within the scanners view at time t − 1 because it is
behind the vehicle, V i

t−1 and Ci
t−1 are evaluated to be false (see

line 2 in Algorithm 1). If the point i is not within the scanner’s
maximum range at time t − 1, again, V i

t−1 and Ci
t−1 evaluate to

false (line 4 in Algorithm 1). If point i is within the scanner’s
view and not beyond its range at time t − 1, we read the mea-
sured radius value at the angle eβi

t−1 in the scan at time t − 1
and call this value mri

t−1. Subsequently, Ci
t−1 and V i

t−1 are
evaluated using the equations on lines 6 and 7 in Algorithm 1.
CT is a correspondence threshold, which specifies how similar
eri

t−1 and mri
t−1 must be for a correspondence to be obtained.

V T is a visibility threshold, specifying how much smaller than
eri

t−1 the point at angle eβi
t−1 in scan time t − 1 must be for it

to be determined an object that blocks the view of the required
location.

Algorithm 1: Determine correspondence and visibility.
1: if eβi

t−1 is outside the view then
2: Ci

t−1 = 0, V i
t−1 = 0

3: else if eri
t−1 is outside the range then

4: Ci
t−1 = 0, V i

t−1 = 0
5: else
6: Ci

t−1 = (|mri
t−1 − eri

t−1| < CT )
7: V i

t−1 = (mri
t−1 − eri

t−1 > V T ) ∧ ¬Ci
t−1

8: end if

In reality, eβi
t−1 will rarely equal an angle for which we have

a measurement but will fall between two angles for which we
have measurements. To address this issue and allow for uncer-
tainty in position estimation, we repeat the calculation of Ci

t−1
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and V i
t−1 for the two closest angles at either side of this angle.

We then perform logical OR for the two Ci
t−1 results and logical

AND for the two V i
t−1 results. The motivation for the OR opera-

tion is that, if it is possible to make a correspondence, we do so,
whereas the motivation for the AND operation is that we do not
declare a point to be visible if there is a possibility that it is not.

The aforementioned method describes how we can determine
if point i at time t was visible at time t − 1 and if a cor-
respondence exists. To conclude with confidence that a point
is static or dynamic, it is important to examine more than a
single previous scan. We therefore calculate the following two
statistics from the previous n scans:

CP i =
1
n

n∑

j=1

Ci
t−j

V P i =
1
n

n∑

j=1

V i
t−j . (1)

The term CP i represents the correspondence percentage,
which is equal to the percentage of times that a correspondence
can be found for the point i with previous scans. The term V P i

represents the visible percentage and is equal to the percent-
age of times that the point i is visible in previous scans but
no correspondence could be found. Using the aforementioned
statistics, we derive a background–foreground classification for
each point i, which are denoted as BF i, as follows. If point i is
beyond the maximum scanner range, we classify it as so. If V P i

exceeds a threshold known as V PT , we classify it as dynamic.
If CP i is greater than a threshold known as CPT , we classify
it as static. Otherwise, we classify it as possibly dynamic. The
pseudocode for this method is given in Algorithm 2.

Algorithm 2: Static–Dynamic point classification.
1: if art

i ≥ max scanner range then
2: BF i = beyond range
3: else if V P i ≥ V PT then
4: BF i = dynamic
5: else if CP i ≥ CPT then
6: BF i = static
7: else
8: BF i = possibly dynamic
9: end if

To produce accurate results, this background-subtraction
algorithm requires an estimate of vehicle position, which is
obtained from odometry. Due to inherent inaccuracies in equip-
ment and effects such as slippage, position estimates that were
obtained in this manner will never be entirely accurate and
can suffer from cumulative error. This effect is minimized in
our algorithm, because only relative measurements between a
small number of consecutive scans are made. The global error
in position will not affect the result.

III. BACKGROUND–FOREGROUND OBJECT

SEGMENTATION AND CLASSIFICATION

The proposed region-growing segmentation algorithm is pre-
sented in Algorithm 3 and is outlined as follows. Each point in a

given scan has a corresponding angle, radius, and background–
foreground class (see Algorithm 2), which are denoted as βi, ri,
and BF i, respectively. Each point is assigned an index i for i =
0 . . . 360 such that points are ordered by the increasing value of
βi. The list ga represents the group assignment of each point,
and all elements in this list are initially assigned the value 0.
The variable groupSize represents the number of groups cur-
rently found and is initialized to the value 0.

For each point i not previously assigned a group and with a
BF i class not equal to Beyond Range, the following steps are
performed. First, the point is assigned to a new unique group
(see lines 3 and 4). A region-growing segmentation method
is then started at the point in question (see line 5). The seg-
mentation method overcomes the problem of oversegmentation
caused by the occlusion of one object by another as follows.
The region-growing method searches OT (occlusion threshold)
points beyond a boundary for a continuation of the current
object that it is attempting to grow. This method first attempts
to grow the region on one side (see lines 10–14) and then the
other side (see lines 15–19).

For an object to successfully be grown from a point i to
include a point i + j, the following two conditions must be
satisfied: 1) The absolute difference, which is represented by
the variable AD between ri and ri+j must be less than a
boundary threshold represented by the variable BT (see lines
10 and 11), and 2), the point in question must not be previously
assigned to a group (line 11). The same two conditions must
be satisfied if the object will successfully be grown from a
point i to include a point i − j. If the region is successfully
grown to include a particular point, this point is assigned to
the corresponding group (see lines 12 and 17), and the region-
growing function is recursively called (see lines 13 and 18). Fol-
lowing the successful completion of this algorithm, all points
that correspond to a particular object will have a unique ga[i]
value > 0.

Algorithm 3: Object segmentation.
1: for i = 0 to 360 do
2: if (ga[i] == 0) ∧ (BF i �= beyond range) then
3: groupSize++
4: ga[i] = groupSize
5: regionGrow(i)
6: end if
7: end for
8: function regionGrow(i)
9: for j = 1 to OT do
10: AD = |ri − ri+j |
11: if (ga[i + j] == 0) ∧ (AD ≤ BT ) then
12: ga[i + j] = ga[i]
13: regionGrow(i + j)
14: end if
15: AD = |ri − ri−j |
16: if (ga[i − j] == 0) ∧ (AD ≤ BT ) then
17: ga[i − j] = ga[i]
18: regionGrow(i − j)
19: end if
20: end for
21: end function
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We individually classify each object returned by Algorithm 3
as a background or foreground object. For each object, we
calculate the percentage of points within this object classified
as static by Algorithm 2. If this percentage is above a specified
threshold, we classify the object in question as background;
otherwise, we classify it as foreground. Such a percentage-
based approach is important, because, due to vehicle move-
ment, part of a background object may come into view, although
the remainder of the object may have been visible. LIDAR
points that correspond to such previously nonvisible areas will
be classified as possibly dynamic, although the remainder of
the object points are classified as static. On the other hand,
due to different parts of a moving object that is located at the
same position over time, a foreground object may contain points
classified as static.

IV. RESULTS

All data that were used in this paper are publicly available
and were originally captured by Wang et al. [19]. Using a
SICK LMS 221 LIDAR scanner and an omnidirectional camera
positioned at the front of a vehicle, the data were captured in the
city of Pittsburgh, PA. Suitable parametrization of the proposed
algorithm is important. In the background–foreground point
classification in Algorithm 2, the most important parameter
is n, which is equal to the number of previous scans with
which the correspondence and visibility of a given point are
determined using Algorithm 1. Very few previous scans will
mean that results will be less accurate due to classifications
that were made over a short time window. If too many previous
scans are used, the probability that static objects are correctly
classified decreases. The reasons for this case are given as
follows. For a given static object, the further back in time that
we look, the greater the probability that part of or the whole
object was not visible due to the following three cases: 1) It
is beyond the visible range; 2) it is not within the viewing
angle; or 3) it is occluded. Consequently, there is less chance
that the necessary correspondence is obtained for classification
as static. The worst-case situation is when the vehicle both
moves forward and turns, causing the view to change by two
degrees of freedom. By evaluating multiple values, it was
found that n = 4 gave the best results. In the same algorithm,
we found that the parameter values CT = 30 cm and V T =
50 cm gave the best results. Setting CT too low resulted in
static objects to be determined dynamic. Although setting CT
too high resulted in dynamic objects to be determined static,
slow dynamic objects cannot accurately be classified when the
distance moved between scans is smaller than the uncertainty
in vehicle localization, object localization, or sensor accuracy.
The percentage parameters V PT and CPT in Algorithm 2
must be set reasonably high. This approach ensures that all
points that were classified as static or dynamic have a high
probability of being so. We found that the values V PT =
0.75 and CPT = 0.75 gave the best results. For the object
segmentation in Algorithm 3, it was found that the parameter
values of OT = 7 and BT = 150 cm were suitable for object
segmentation. The percentage of static points that an object
must contain for it to be classified a static object was set to

Fig. 2. Image center is enhanced and displayed within the black box on the
left.

Fig. 3. Each point is classified as static (red), dynamic (green), or possibly
dynamic (blue). This scan corresponds to the image in Fig. 2.

75%. This value was found to give good results and minimize
misclassification.

To determine the performance of each algorithm, in a qualita-
tive manner, we visually inspected the plotted output and cross
validated this output against the corresponding camera imagery
for a number of test cases (see Fig. 2). This strategy is used
in several similar works [15], [20]. Fig. 3 displays the result
of background–foreground point classification for the scene in
Fig. 2. LIDAR points that correspond to the sole vehicle directly
in front of the scanner are classified as possibly dynamic. This
case is because, at each time step, the vehicle in question
moves in a northerly direction in the figure and therefore moves
into an area that was previously hidden by itself. This case
highlights the ability of the algorithm to correctly deal with
uncertainty due to the lack of visibility. In this image, we also
see that the algorithm correctly classifies the vast majority of
points that correspond to background buildings as static. One
section of the building on the right is incorrectly classified as
possibly dynamic. This case is because this section has only just
come into view, and therefore, the algorithm cannot determine
if it is background or foreground. Fig. 5 displays the result
of background–foreground point classification for the scene in
Fig. 4. In this example, the vehicle takes a right turn and is not
traveling in a straight line as in the previous example, which
represents an important test case. There is a vehicle that moves
in a southeasterly direction just below and to the right of center,
as shown in Fig. 5. The front of this vehicle moves to an area
that was previously visible and unoccupied; therefore, points
that correspond to its front are classified as dynamic. In the
same figure, the majority of points that correspond to buildings
are classified as static. Just to the left and above the center, there



CORCORAN et al.: BACKGROUND FOREGROUND SEGMENTATION FOR SLAM 1181

Fig. 4. Image center is enhanced and displayed within the black box on the
right.

Fig. 5. Each point is classified as static, dynamic, or possibly dynamic. This
scan corresponds to the image in Fig. 4.

Fig. 6. Object segmentation of the scan that corresponds to the image in
Fig. 2. Each object is represented by a different color.

are a few points that correspond to a building and are classified
as possibly dynamic. This case is because these locations were
occluded in previous scans, and therefore, the algorithm cannot
determine if they are static or dynamic.

The results achieved by the proposed object segmentation
method in Algorithm 3 were very positive. Fig. 6 displays
the segmentation of the scene in Fig. 2. The algorithm ac-
curately segments both background objects such as buildings
and foreground objects such as vehicles. The building on the
right illustrates the capability of our segmentation algorithm to
overcome the issue of oversegmentation caused by occlusion.
Although the building is occluded by small static objects,

Fig. 7. Background–Foreground segmentation of the objects in Fig. 6. All
points that belong to objects that were classified as background and foreground
are represented by the colors red and blue, respectively.

Fig. 8. Object segmentation of the scan that corresponds to the image in
Fig. 4.

the segmentation algorithm correctly represents it as a single
object. The result of classifying each object in this segmentation
as background or foreground, based on the percentage of static
points contained within each object, is displayed in Fig. 7. We
can see in this figure that most building objects are classified as
background, whereas the moving vehicle at the figure center is
classified as foreground. Part of the building in the upper right
of this figure is classified as foreground for the reason discussed
earlier. Fig. 8 displays the segmentation of the scene in Fig. 4,
which highlights the ability of the algorithm to segment both
background and foreground objects. The result of classifying
each object in this segmentation as background or foreground
is displayed in Fig. 9. The algorithm correctly classifies the
majority of background and foreground objects, including the
two moving vehicles to the left and right of the figure center
and the buildings.

To perform a quantitative evaluation of our background–
foreground segmentation and classification algorithm, we con-
structed the ground truth of all vehicles and buildings in a
subset of LIDAR scans through the visual inspection of the
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Fig. 9. Background–Foreground segmentation of the objects in Fig. 8.

Fig. 10. Classification performance matrix.

LIDAR and corresponding imagery. We then computed the
classification performance matrix by comparing the result with
the ground truth using this test set. The subset of scans used
consisted of every 50th scan, i.e., scans 1, 50, 100, and 150.
This approach resulted in a test set of size 74. The resulting
classification performance matrix is displayed in Fig. 10. In
this matrix, we can see that all moving vehicles in the test
set were correctly classified as foreground. More than three
fourths of the building was correctly classified as background,
and three fourths of static vehicles were correctly classified as
background. Due to vehicle movement, new buildings and static
vehicles constantly come into view. No correspondence with
previous scans can be established for such objects, and they
will automatically be classified as foreground. Thus, obtaining
100% classification accuracy is not possible. To evaluate per-
formance in the context of a complete SLAM algorithm, we
implemented the ICP-based SLAM approach of Wang et al. [4].
Fig. 11(a) and (b) show a subsection of the resulting maps, cor-
responding to the area in Fig. 2, with and without background
foreground segmentation performed, respectively. The map that
was created using the proposed preprocessing step is less noisy,
resulting in trees and building walls more clearly represented.

V. CONCLUSION

In this paper, a background–foreground object segmentation
and classification method that can form the initial step in a
SLAM with DTMO system has been proposed. The results
achieved by a qualitative and quantitative evaluation of this
method are very positive. The algorithm correctly segments and
classifies the majority of background and foreground objects.
When used as a preprocessing step to SLAM, the proposed
technique has been shown to generate a more accurate map.

Fig. 11. Partial map generated by ICP SLAM (a) with and (b) without
background–foreground segmentation performed.
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