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1. Introduction

The measurement of fluctuations of conserved charges can probe both the thermal state of the
medium and its critical behaviour. The fluctuations are quantified by the susceptibilities, defined as
second (and higher) derivatives of the free energy with respect to the chemical potential associated
with the investigated charge. In QCD, taking into account the three light flavours, usually three
charges are studied in the literature: baryon number, electric charge, strangeness. Their suscep-
tibilities probe the actual degrees of freedom that carry such charges,i.e. quarks or their bound
states.

QCD shows a very interesting phase structure [1]. The main characteristic, at zero baryon
chemical potential (µB), is a crossover transition from a confined, chirally brokenphase at low
temperature (T) to a deconfined, chirally symmetric phase at high temperature called quark-gluon
plasma (QGP) aroundTc ≈ 150MeV. Fluctuations can be used to probe quark deconfinement [2]
by studying event-by-event fluctuations of charged particle ratios [3]. Susceptibilities show a rapid
rise in the crossover region: at low temperature they are small since quarks are confined; at high
temperature they are large and they approach the ideal gas limit.

There are many specific reasons why physicists are interested in studying these quantities; here
we recall the following:

• the QCD transition is today reproduced in the heavy ion collision experiments at BNL
(RHIC) and at CERN (LHC) where the fluctuations can be studied[4]: it is clearly very
important for our understanding of the strong interaction to compare their measurements
with lattice QCD determinations;

• susceptibilities can be seen as coefficients of the Taylor expansion of the free energy with
respect to the chemical potentials; in this form they can be used to perform numerical studies
at finite density QCD [5, 6];

• QCD may have a critical point, an endpoint of a line of first order phase transitions which
extends from theµB-axis into the (µB,T) plane. Susceptibilities can probe its presence and,
in particular, the baryon number susceptibility is expected to diverge at the critical point.
Its position can be estimated studying the radius of convergence [7] of the Taylor series
introduced in the previous paragraph;

• the susceptibilities of the conserved charges enter the study of the transport properties of the
QGP via Kubo formulae [8],e.g. the electric charge susceptibilityχQ connects the charge
diffusion coefficientD with the electrical conductivityσ : σ = χQD.

Among the available theoretical tools, lattice calculations are probably the best for calculating
the properties of QGP and in particular the susceptibilities from first principles: this approach is
followed in this work. Nearly all lattice studies of susceptibilities have so far been carried out
using staggered fermions. In this study we employ instead clover-improved Wilson fermions (for
an earlier study using Wilson fermions see Ref. [9]).
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2. Simulation details

The action that we have used is, for the gauge sector, Symanzik-improved with tree-level
tadpole-improved coefficients and for the fermion sector, a2+1 flavour anisotropic clover action
with stout-link smearing; for details see Ref. [10]. The configurations have been generated using
the Chroma Library [11] on IBM Blue Gene/P and Blue Gene/Q supercomputers.

The volumes we have used are 243×Nt, where the values ofNt , together with the correspond-
ing temperature and the number of configurations generated,are given in Table 1.

Nt 40 36 32 28 24 20 16

T [MeV] 141 156 176 201 235 281 352

Ncfg 500 500 1000 1000 1000 1000 1000

Table 1: Some simulation parameters.

We used anisotropic lattices with a physical anisotropyξ ≡ as/at = 3.5: the temporal lattice
spacing, measured usingMΩ to set the scale, isat = 0.03506(23) fm (a−1

t = 5.63(4) GeV) and
as= 0.1227(8) fm; for details see Ref. [12]. Moreover,Mπ/Mρ = 0.446(3) andMπ = 392(4) MeV,
i.e. 2.9 times bigger than the physical value.

3. Definitions and observables

Introducing the quark chemical potentialsµu,µd,µs and the chargesqu = +2
3, qd = qs = −1

3,
for each flavour (we use also here the correspondence: 1↔up, 2↔down, 3↔strange and also in
the following l → light, s→ strange) we define the following quantities:

• quark number densities:ni =
T
V

∂ lnZ
∂ µi

;

• quark number susceptibilities:χi j =
T
V

∂ 2 lnZ
∂ µi∂ µ j

.

Introducing the electric charge chemical potentialµQ, the electric chargeQ and its susceptibility
χQ are given by:

Q=
T
V

∂ lnZ
∂ µQ

=
3

∑
i=1

qini , χQ =
∂Q
∂ µQ

=
3

∑
i=1

(qi)2χii +
3

∑
i 6= j

qiq j χi j . (3.1)

We now introduce the following terms (M is the fermion matrix):

T i
1 = 〈

T
V

Tr

[

M−1∂M
∂ µi

]

〉 , T i
2 = 〈

T
V

Tr

[

M−1∂ 2M

∂ µ2
i

]

〉 ,

T i j
3 = 〈

T
V

Tr

[

M−1∂M
∂ µi

]

Tr

[

M−1 ∂M
∂ µ j

]

〉 , T i
4 = 〈

T
V

Tr

[

M−1∂M
∂ µi

M−1∂M
∂ µi

]

〉 , (3.2)

which we can be used to determine the quantities:

ni = T i
1 ; (3.3)

χii = −(T i
1)

2+T i
2 +T ii

3 −T i
4 ; (3.4)

χi j = −T i
1T j

1 +T i j
3 (herei 6= j) . (3.5)
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Note thatT i
1 = 0 for zero chemical potentials, in factni = 0 andQ= 0; therefore there is no need

to compute this quantity numerically.
The simplest quantity we can determine is the isospin susceptibility (defining µI = µd −µu):

χI =
T
V

∂ 2 lnZ

∂ µ2
I

=
1
4

T
V

[

∂ 2 lnZ
∂ µ2

u
+

∂ 2 lnZ

∂ µ2
d

−2
∂ 2 lnZ

∂ µu∂ µd

]

=
1
4

2

∑
i=1

[

T i
2 −T i

4

]

. (3.6)

We note that it depends only on the termsT2 andT4 but notT3 which, from a numerical point of
view, is the most expensive quantity to determine since it comes from a disconnected diagram.

Below we compare our results at high temperature with the expressions for free massless
fermions in the continuum limit, which read:

χI →
T2

2
; (3.7)

χQ → T2
3

∑
i=1

q2
i , (3.8)

where∑3
i=1 q2

i = 2/3.
Moreover, we also compare the susceptibilities with those obtained from free Wilson fermions,

which can be determined analytically starting from the following expression for the baryon density,
valid for Nf flavours andNc colours:

nf ree
B (µ) =

8Nf Nc

N3
sNt

∑
k4,ki

iP4sin(k4+ iµ) [1−2Ps∑i coski ]

[1−2Ps∑i coski −2P4cos(k4+ iµ)]2+4P2
s ∑i sin2ki +4P2

4 sin2 (k4+ iµ)
,

wherei = 1,2,3, ki are the discretised momenta, the coefficientsP4 andPs are given by:

P4 = νt/(m+νt +3/γ f ) , Ps= νs/ [2 ξ0 (m+νt +3/γ f )] ,

and νt = 1, νs = γg/γ f and ξ0 = γg (γg is the bare gauge anisotropy andγ f is the bare fermion
anisotropy). Note that when we compare with our data,γ f has to be replaced withξ , the physical
value. This relation was determined following the approachdiscussed in Sec. 4.2.4 of Ref. [13].

4. A few technical aspects

We estimated the traces of Eq. (3.2) usingNv noise vectorsηi ; for connected terms,i.e. T2,T4,
we used justNv = 9 noise vectors but for the disconnected term,i.e. T3, we usedNv = 200 noise
vectors forNt = 40 andNv = 100 for the others. As discussed in Ref. [14] the termT3, which
contain two traces, has a significantly larger variance thanthe other terms and therefore needs a
larger number of random vectors. It is worth noting that in this case the standard error of the mean
falls like the inverse of the number of noise vectors (not like the square root of it) so that increasing
Nv has an evident effect in the final result.

As discussed in Ref. [15] the most efficient way to determine the square of a trace is by the
following relation:

(TrA)2 =
2

Nv(Nv−1)

Nv

∑
i> j=1

η†
i Aηi η†

j Aη j , (4.1)
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i.e. the diagonal terms are not taken into account because they would introduce a bias in the final
result given by a term whose relative significance isO(1/Nv).

We tested the effect ofdilution [16, 17] in the colour and Dirac space but we did not see any
improvement in the final results. A dilution test done withNt = 40 has brought the following results:
we have noted a reduction of the errors in the real part ofT1 by a factor∼ 2, and in the imaginary
part of T2 by a factor∼ 3; in all other cases the effect of dilution has been counterproductive.
This is not a surprise because dilution has a positive effectonly if the off-diagonal elements of a
matrix dominate the diagonal ones, therefore the effect depends strongly on the observable under
consideration1.

5. Results

In this Section we present our preliminary results. In Figure 1 (Left) we present the result
for the isospin susceptibility, normalising it with respect to the continuum expectation at high
temperature, Eq. (3.7). As can be seen forT & 270MeV the value is systematically higher than
the expected one,i.e. unity, for free massless fermions living in a continuum spacetime. This is
a lattice artefact which is a consequence of combined effectof our fixed cut-off approach and the
small number ofeffectivesites in the temporal direction (Nt/ξ = 4.6,5.7,6.8, . . .). This is evident
looking at the dashed-red line which shows the same quantityfor free massless lattice fermions,
i.e. taking into account the effect of discretisation of the spacetime.

In Figure 1 (Right) we compare directly the result with that of massless free Wilson fermions.
Here the discretisation effects are clearly taken into account and forT & 250MeV the value of
χI is above 85% of the Stefan-Boltzmann value. In the figure we plot moreover the result with
two values of the fermion anisotropy: the physical one,γ f = ξ = 3.5, and the bare one,γ f = 3.4.
The importance of using the correct value for the parameterγ f to compare our results with the
Stefan-Boltzmann limit is evident.

The contribution of the different terms to the susceptibilities are shown in Figure 2 (Left). We
can see that the main contribution to the final value of the susceptibilities is given by the termsT2

andT4; note also the appreciable difference between the light andthe strange quarks.
From Figure 2 (Left) we can see moreover the contribution of the disconnected termT3. As

discussed in Ref. [14] it is expected that this term is negative, basically as a consequence of hopping
parameter expansion analysis. Hard thermal loop (HTL) perturbation theory showed a decade
ago [19] thatχi j = T i j

3 should be different from zero, showing a clear correlation between different
flavours. Recent lattice calculations [18] have shown a clear dip for the off-diagonal term (in the
crossover region). Our results, both for diagonal and off-diagonal contributions, show that it is
compatible with zero, either at low and high temperature: this is probably a consequence of our
relatively large pion mass.

The electric charge susceptibility is presented in Figure 2(Right). Here we present this quan-
tity normalised with respect to the high temperature behaviour expected for free massless fermions
living in a continuum spacetime, Eq. (3.8). The cut-off effects are clearly present at high tempera-
ture as for Figure 1 (Left). The rapid rise ofχQ, signalling the transition from the confined phase
to the deconfined phase, is evident aroundTc ∼ 150MeV.

1See Eq. (20) of Ref. [16].
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Figure 1: (Left) χI normalised using the high temperature expected behaviour (for free massless fermions
living in a continuum spacetime). For comparison the same quantity for free massless lattice fermions is
plotted. (Right)χI normalised with respect to the same quantity calculated forfree massless lattice fermions
using two values for the fermion anisotropy.

In this preliminary figure, we have included all terms of Eq. (3.2) only for a few values of the
temperature (see legend). Taking into account the results of Figure 2 (Left) and the fact that the
disconnected contribution has had little effect at those temperatures where the electric charge sus-
ceptibility has been calculated, we can infer it will also have little affect for the other temperatures.
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Figure 2: (Left) TermsT2, T4 andT3. (Right)χQ normalised using the expected high temperature behaviour
(for free massless fermions living in a continuum spacetime).

6. Conclusion and outlook

We have presented here our preliminary calculations of isospin and electric charge susceptibil-
ity in 2+1 flavour QCD on anisotropic lattices using a fixed cut-off approach to explore a range of
temperature which goes from belowTc to ∼ 2Tc. We are completing the determination of the sus-
ceptibilities on the volume 243 on all the configurations at our disposal. When this is complete, we
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plan to combine these results with the measurement of the electrical conductivity, see Refs. [20], to
determine the charge diffusion coefficientD. Moreover, by an appropriate combination of the terms
of Eq. (3.2), we will determine the other relevant susceptibilities, in particular the one associated
with the baryon number,χB.
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