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1. Introduction

In 1986 Matsui and Satz detailed in their seminal paper howJ/ψ suppression could act as
a signal for quark-gluon plasma (QGP) formation in heavy ioncollisions [1]. There is now a
significant body of experimental evidence forJ/ψ suppression and the potential picture provides an
explanatory mechanism for this observation [2]. Quarkonium suppression has also been observed in
bottomonium states [3]. Sequential suppression of heavy quarkonium states has been suggested as
a means to gauge the temperature produced in heavy ion collisions. The motivation for calculating
the charmonium potential, especially from first principles, therefore lies in the capacity for accurate
heavy quarkonium potentials to become valuable QGP diagnostic aids.

In this work the HAL QCDtime-dependentmethod, described in Section 2, was used to calcu-
late the charmonium potential [4]. This method was used in [5] but is distinct from the HAL QCD
fitting method used in [6] and [7]. In the HAL QCD fitting method, local-extended correlators are
fitted to exponentials at large Euclidean time,τ , to extract the Nambu-Bethe-Salpeter (NBS) ground
state wavefunction. The NBS wavefunction is then used, in conjunction with the Schrödinger equa-
tion, to reverse-engineer the potential. The HAL QCD fittingmethod is understood well from a
theoretical point of view since it relies on conventional fitting techniques. However, at non-zero
temperature it suffers from familiar limitations — higher excited states still contribute to the corre-
lator at the largest availableτ , making fits unreliable.

The time-dependent method provides a means to extract the potential from local-extended
correlators at moderateτ and higher temperatures, as described in the following section.

2. HAL QCD Time-Dependent Approach

The HAL QCD time-dependent approach takes local-extended correlators as input. Formally,
these are constructed from charmonium interpolators,

JΓ(x;r) = c̄(x)ΓU(x,x+ r)c(x+ r), (2.1)

wherec(x) andc̄(x) are fermion fields,Γ is a monomial of gamma matrices andU(x,x′) is the prod-
uct of gauge links which ensures the interpolator’s gauge invariance. The local-extended correlator
can then be expressed as,

CΓ(r,τ) = ∑
x
〈JΓ(x,τ ;r)J†

Γ(0;0)〉. (2.2)

The local-extended correlator can also be expressed as a sumover the eigenstates of the Hamilto-
nian,E j ,

CΓ(r,τ) = ∑
j

ψ∗
j (0)ψ j (r)

2E j

(

e−E j τ +e−E j(Nτ−τ)
)

, (2.3)

where theψ ’s are the NBS wavefunctions at the source and sink. The first step is to consider only
the forward-moving contribution to the correlator (the effect of leaving out the backward mover is
discussed later),

CΓ(r,τ) = ∑
j

ψ∗
j (0)ψ j(r)

2E j
e−E j τ = ∑

j

Ψ j(r)e−E j τ , (2.4)
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where theψ∗
j (0) and 2E j have been absorbed intoΨ j(r) since they are constant for each excited

state. The next step is to differentiate both sides w.r.t.τ ,

∂
∂τ

CΓ(r,τ) =−∑
j

E jΨ j(r)e−E j τ . (2.5)

Then, assuming charm quarks are heavy enough to be treated nonrelativistically the Schrödinger
equation is applied toΨ j(r),

(

−
∇2

2µ
+VΓ(r)

)

Ψ j(r) = E jΨ j(r). (2.6)

The reduced mass of the charmonium system is defined to be,µ = 1
2mc =

1
4MJ/ψ , wheremc is the

charm mass, andMJ/ψ is the vector channel mass. Using (2.6) in (2.5) we obtain,

∂
∂τ

CΓ(r,τ) = ∑
j

(

∇2

2µ
−VΓ(r)

)

Ψ j(r)e−E j τ =

(

∇2

2µ
−VΓ(r)

)

CΓ(r,τ). (2.7)

Finally, this can be rearranged to yield the potential,

VΓ(r) =
(

∇2CΓ(r,τ)
2µ

−
∂CΓ(r,τ)

∂τ

)

1
CΓ(r,τ)

. (2.8)

The application of (2.8) has the advantage that the correlators can be used directly to calculate
the potential, as opposed to having to fit the correlators at largeτ to extract the ground state NBS
wavefunction and then use the Schrödinger equation to reverse-engineer the potential. However,
note that (2.8) has an implicitτ dependence which must be averaged over, see Section 4.

In this study only the behaviour of the S-wave potential has been considered. This can be
expressed as:

VΓ(r) =VC(r)+s1 ·s2VS(r), (2.9)

whereVC andVS are the spin-independent and spin-dependent potentials, respectively, ands1,2

are the charm quark spins. Knowing the spin product,s1 · s2 = −3/4,1/4, for the pseudoscalar
and vector channels, respectively, allows the spin-independent and spin-dependent potentials to be
written as linear combinations of the pseudoscalar and vector potentials,VPS andVV ,

VC(r) =
1
4

VPS(r)+
3
4

VV(r), (2.10)

VS(r) =VV(r)−VPS(r). (2.11)

3. Simulation Details

The correlator analysis outlined in Section 2 was performedon five different ensembles, equiv-
alent to studying a temperature range of 0.76 - 1.27 Tc, where Tc≈ 185 MeV. Table1 lists the lattice
parameters used. Configurations with 2+1 dynamical flavors of light quarks were generated using
a Symanzik gauge action and an anisotropic clover fermion action with stout-smearing [8]. The
anisotropy of the lattices isξ = as/aτ = 3.5 with as ≃ 0.12 fm anda−1

τ ≃ 5.63 GeV. The charm
quark is also simulated with the anisotropic fermion actionand its mass is set by tuning the pseu-
doscalar effective mass to the experimentalηc value at zero temperature [9]. Gaussian smeared
sources were employed throughout this study.
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Ns Nτ T(MeV) T/Tc Ncfg

24 40 141 0.76 500
24 36 156 0.84 500
24 32 176 0.95 1000
24 28 201 1.09 1000
24 24 235 1.27 1000

Table 1: Lattice parameters used, including spatial and temporal dimension,Ns andNτ .

4. Results

In Figure 1 the local-extended charmonium correlators for all possible on-axis separations are
plotted for theNτ = 40 ensemble. As the separation of the charm quarks at the sinkincreases the
signal, being related to the NBS wavefunction, see (2.4), decreases in magnitude as expected. The
correlator for ther = 0 case is a straight line on a log-plot, even for smallτ . For the correlators
corresponding tor 6= 0, curvature at smallτ is noticeable. This is because the product of the NBS
wavefunctions is not positive-definite when the source and sink operators are asymmetric, which
means the correlator is not a sum of only positive terms. As higher excited states vanish for larger
τ , and the lowest excited state begins to dominate, all the lines become straight.

Figures 2-5 show the result of applying (2.8) to pseudoscalar and vector channel correlators.
Finite differences are taken in ther andτ directions of data sets like that shown in Figure 1, to
obtain the spatial and temporal derivative terms of (2.8). The plots have common features: i)
The potential values rapidly decrease for the largestτ . To investigate this behaviour, the ground
state backward-mover term was added to (2.4), and the analysis repeated. When the ground state
backward-mover term is present, the potential values decrease significantly less rapidly for the
largestτ . Therefore, we are confident this feature is due to the absence of the backward-mover
term in (2.4). ii) Theτ = 1 term is spurious because the finite difference taken in theτ direction at
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Figure 1: Local-extended charmonium correlators for all possible on-axis separations;Nτ = 40 ensemble.

4



Charmonium Potentials at Non-Zero Temperature P. Wynne M. Evans

0 5 10 15 20
1

2

3

4

5

6

7

V
P

S[G
eV

]

Figure 2: Pseudoscalar potential,VPS−Nτ = 40.
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Figure 3: Pseudoscalar potential,VPS−Nτ = 28.
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Figure 4: Vector potential,VV −Nτ = 40.
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Figure 5: Vector potential,VV −Nτ = 28.

0 5 10 15 20

τ/aτ

1

2

3

4

5

6

7

V
C
 [G

eV
]

Figure 6: Spin-independent potential,VC−Nτ = 40.
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Figure 7: Spin-independent potential,VC−Nτ = 28.
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Figure 8: Spin-independent potential,VC, for
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0 0.5 1 1.5

r/a
s

-0.2

-0.1

0

0.1

0.2

V
S [G

eV
]

Figure 9: Spin-dependent potential,VS, for dif-
ferentNτ .

this point includes the contact term of the correlator atτ = 0. iii) Betweenτ = 2 andτ = 7 the
potential is not stable. This is thought to be a combination of relativistic effects, lattice artifacts,
and the interplay of excited states contributing to the correlator.

Combining the pseudoscalar and vector potentials of Figures 2-5 according to (2.10) gives the
spin-independent plots shown in Figure 6 and Figure 7. We removed the non-physicalτ dependence
in the potential by performing a correlated fit toVC,S to a constant in theτ interval where it is a
plateau: Two other ensembles withNτ = 16 & 20 were available, but in these cases the largeτ
behaviour associated with the backward-mover and the smallτ behaviour overlap, and there are no
reliable plateaus in the potentials. The narrowing of the stableτ window can be seen by comparing
theNτ = 40 andNτ = 28 plots.

Figure 8 shows the final result of the analysis for the spin-independent potential. The right-
hand error bar represents the systematic uncertainty. Thisis obtained by varying the start and
end of theτ range within which fits are performed. The left-hand error represents the statistical
uncertainty. The masses of the 1S and 2SJ/ψ states are included for reference. The potential
exhibits a clear temperature dependence, flattening at large r as the temperature increases.

The spin-dependent potential can be calculated by applying(2.11), the result is shown in
Figure 9. It exhibits a clear repulsive core consistent withthe literature [10], and like the spin-
independent potential, it also exhibits a temperature dependence.

5. Conclusions

There is a significant body of theoretical work studying the interquark potential at non-zero
temperature using model, perturbative and lattice (nonperturbative) approaches. However, until
now, these lattice studies have all used the static (infinitequark mass) limit. This work improves
upon these calculations by considering quarks with finite mass, and thus represents a first-principle
calculation of the charmonium potential of QCD at finite temperature. The method we use is
based on the HAL QCD time-dependent approach which obtains the potential directly from local-
extended correlators. The temperature dependence of the spin-independent charmonium potential
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is consistent with the expectation that the potential becomes deconfining at high temperature. This
work improves upon our earlier work [5, 6] in that our lattices are finer and larger volume, and have
2+1 rather than 2 flavors.
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