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1. Introduction

In 1986 Matsui and Satz detailed in their seminal paper By suppression could act as
a signal for quark-gluon plasma (QGP) formation in heavy d¢ollisions []]. There is now a
significant body of experimental evidence o suppression and the potential picture provides an
explanatory mechanism for this observatign [2]. Quarkenawppression has also been observed in
bottomonium state$][3]. Sequential suppression of heamykguium states has been suggested as
a means to gauge the temperature produced in heavy ionaadlisThe motivation for calculating
the charmonium potential, especially from first principkberefore lies in the capacity for accurate
heavy quarkonium potentials to become valuable QGP didigreiss.

In this work the HAL QCDtime-dependentethod, described in Sectih 2, was used to calcu-
late the charmonium potentidl [4]. This method was useffib{# is distinct from the HAL QCD
fitting method used inJ6] and][7]. In the HAL QCD fitting method, loeaitended correlators are
fitted to exponentials at large Euclidean timgeto extract the Nambu-Bethe-Salpeter (NBS) ground
state wavefunction. The NBS wavefunction is then used, mjurwtion with the Schrédinger equa-
tion, to reverse-engineer the potential. The HAL QCD fittmgthod is understood well from a
theoretical point of view since it relies on conventiondiiritj techniques. However, at non-zero
temperature it suffers from familiar limitations — higheséed states still contribute to the corre-
lator at the largest available making fits unreliable.

The time-dependent method provides a means to extract tieat@b from local-extended
correlators at moderateand higher temperatures, as described in the followingasect

2. HAL QCD Time-Dependent Approach

The HAL QCD time-dependent approach takes local-extendewtlators as input. Formally,
these are constructed from charmonium interpolators,

Jr(xr) =c(X)FU (X,X+r)c(x+r), (2.1)
wherec(x) andc(x) are fermion fields[ is a monomial of gamma matrices addx, X) is the prod-
uct of gauge links which ensures the interpolator’s gaugariance. The local-extended correlator
can then be expressed as,

Cr(r,1) = 3 (3 (x,1:1)3L(0;0)). (2.2)

X
The local-extended correlator can also be expressed as aw&irthe eigenstates of the Hamilto-
nian,E;,

Cr(rm) = y O (Z)E“j“"(” (e 5 o), 23)
J

where they’s are the NBS wavefunctions at the source and sink. The feptis to consider only
the forward-moving contribution to the correlator (theeeffof leaving out the backward mover is
discussed later),

CrrT) = Z% E S Wy (e B 2.4)

J J
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where they;(0) and ZE; have been absorbed in#;(r) since they are constant for each excited
state. The next step is to differentiate both sides vr.r.t.

0

a—Cr (r,7) ZE Wi( (2.5)

Then, assuming charm quarks are heavy enough to be treateelaiwistically the Schroédinger
equation is applied t&;(r),

2
<_2D_u +Vr(r)> Wi(r) = EjWi(r). (2.6)

The reduced mass of the charmonium system is defined fo bejm; = M, wherem is the
charm mass, anMl; , is the vector channel mass. Usilg [2.6)[in](2.5) we obtain,

2 2
%Cr(r,r) =y (E—“ —Vr(r)> Wi(r)e BT = <2D—“ —Vr(r)> Cr(r,1). (2.7)

]
Finally, this can be rearranged to yield the potential,

_ (D0%Cr(r,T)  9Cr(r,1) 1
Vr(r)—< 2u ot >Cr(r,r)' (2.:8)

The application of[(2]8) has the advantage that the coomlatan be used directly to calculate
the potential, as opposed to having to fit the correlatorargelr to extract the ground state NBS
wavefunction and then use the Schrédinger equation tosewvamgineer the potential. However,
note that [2]8) has an implicitdependence which must be averaged over, see S¢ftion 4.

In this study only the behaviour of the S-wave potential hesnbconsidered. This can be
expressed as:

Vr(r) =Ve(r)+s1-sVs(r), (2.9
whereVc andVs are the spin-independent and spin-dependent potentedpectively, and;
are the charm quark spins. Knowing the spin prodsects, = —3/4,1/4, for the pseudoscalar
and vector channels, respectively, allows the spin-indéget and spin-dependent potentials to be
written as linear combinations of the pseudoscalar andw@dtentialsVps andW,,

Ve(r) = ZVes(t) + W), (2.10)

Vs(r) =W (r) —Veg(r). (2.11)

3. Simulation Details

The correlator analysis outlined in Sectidn 2 was perfororetive different ensembles, equiv-
alent to studying a temperature range of 0.76 - 1.2here T. =~ 185 MeV. Table1 lists the lattice
parameters used. Configurations with 2+1 dynamical flavbligltt quarks were generated using
a Symanzik gauge action and an anisotropic clover fermitioraavith stout-smearingJ8]. The
anisotropy of the lattices i& = as/a; = 3.5 with as ~ 0.12 fm anda; ! ~ 5.63 GeV. The charm
quark is also simulated with the anisotropic fermion acaoi its mass is set by tuning the pseu-
doscalar effective mass to the experimemalalue at zero temperaturf] [9]. Gaussian smeared
sources were employed throughout this study.
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Ns N T(MeV) T/Tc Ny

24 40 141 0.76 500
24 36 156 0.84 500
24 32 176 0.95 1000
24 28 201 1.09 1000
24 24 235 1.27 1000

Table 1: Lattice parameters used, including spatial and tempona¢dsionNs andN;.

4. Results

In Figure[} the local-extended charmonium correlators ligyassible on-axis separations are
plotted for theN; = 40 ensemble. As the separation of the charm quarks at thémsirdases the
signal, being related to the NBS wavefunction, (2.4radesses in magnitude as expected. The
correlator for ther = 0 case is a straight line on a log-plot, even for smalFor the correlators
corresponding to # 0, curvature at smalf is noticeable. This is because the product of the NBS
wavefunctions is not positive-definite when the source ankl gperators are asymmetric, which
means the correlator is not a sum of only positive terms. ghdti excited states vanish for larger
17, and the lowest excited state begins to dominate, all tles loecome straight.

Figures[Pfp show the result of applying {2.8) to pseudoscald vector channel correlators.
Finite differences are taken in theand T directions of data sets like that shown in Figﬁfe 1, to
obtain the spatial and temporal derivative terms[of] (2.8he Plots have common features: i)
The potential values rapidly decrease for the largesto investigate this behaviour, the ground
state backward-mover term was added[td (2.4), and the amagyseated. When the ground state
backward-mover term is present, the potential values dsersignificantly less rapidly for the
largestt. Therefore, we are confident this feature is due to the alsehthe backward-mover
term in (2.4). ii) Ther = 1 term is spurious because the finite difference taken i tieection at
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Figure1: Local-extended charmonium correlators for all possiblewis separationdy; = 40 ensemble.
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Figure6: Spin-independent potentidlg — N; = 40.

Figure7: Spin-independent potentidlz — N; = 28.
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this point includes the contact term of the correlator at 0. iii) Betweent = 2 andt = 7 the
potential is not stable. This is thought to be a combinatibrelativistic effects, lattice artifacts,
and the interplay of excited states contributing to theelator.

Combining the pseudoscalar and vector potentials of F&f#{$ according td (2.10) gives the
spin-independent plots shown in Fig{ife 6 and Fiflire 7. Weveohthe non-physical dependence
in the potential by performing a correlated fit\g s to a constant in the interval where it is a
plateau: Two other ensembles with = 16 & 20 were available, but in these cases the large
behaviour associated with the backward-mover and the snbahaviour overlap, and there are no
reliable plateaus in the potentials. The narrowing of tablstr window can be seen by comparing
theN; = 40 andN; = 28 plots.

Figure[§ shows the final result of the analysis for the spiependent potential. The right-
hand error bar represents the systematic uncertainty. i$tobtained by varying the start and
end of thetr range within which fits are performed. The left-hand errqresents the statistical
uncertainty. The masses of the 1S andJ2# states are included for reference. The potential
exhibits a clear temperature dependence, flattening & aag the temperature increases.

The spin-dependent potential can be calculated by appfrd]), the result is shown in
Figure[D. It exhibits a clear repulsive core consistent it literature [[10], and like the spin-
independent potential, it also exhibits a temperature ridgrEce.

5. Conclusions

There is a significant body of theoretical work studying thieliquark potential at non-zero
temperature using model, perturbative and lattice (ndogeative) approaches. However, until
now, these lattice studies have all used the static (infouerk mass) limit. This work improves
upon these calculations by considering quarks with finitespand thus represents a first-principle
calculation of the charmonium potential of QCD at finite tergiure. The method we use is
based on the HAL QCD time-dependent approach which obtagpdtential directly from local-
extended correlators. The temperature dependence ofitiéngependent charmonium potential
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is consistent with the expectation that the potential bexodeconfining at high temperature. This
work improves upon our earlier worK [B, 6] in that our latScre finer and larger volume, and have
2+1 rather than 2 flavors.
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