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Streptomycin has been authorized for restricted use in the prevention of the fire blight
disease of pome fruit orchards in the EU and Switzerland. This study addresses the
important topic of the influence of the use of streptomycin in agriculture on the total
bacteria community within the soil ecosystem. Soil samples were taken from soils
under apple trees, prior to streptomycin application and 2 weeks post streptomycin
application or water application (untreated control). High throughput 16S rRNA gene
amplicon sequencing was used to generate datasets from the soils under apple trees in
apple orchards from three different locations in Switzerland. We hypothesized that the use
of streptomycin would reduce the bacterial diversity within the soil samples and enhance
a reduction in the variety of taxa present. Bacterial species such as Pseudomonas,
Burkholderia, and Stenotrophomonas are intrinsically resistant to many antibiotics and
as such it is of interest to investigate if the use of streptomycin provided a selective
advantage for these bacteria in the soil ecosystem. The application of streptomycin did
not influence the abundance and diversities of major bacteria taxa of the soils or the
Pseudomonas, Burkholderia, and Stenotrophomonas species. We also discovered that
apple orchards under the same management practices, did not harbor the same bacterial
communities. The restricted application of streptomycin in the protection of apple orchards
from the fire blight pathogen Erwinia amylovora under the guidelines in Switzerland did not

alter either the bacterial diversity or abundance within these soil ecosystems.

Keywords: Pseudomonas, QIIME, CatchAll, 16S rRNA, Burkholderia

INTRODUCTION

Antibiotics are used in plant agriculture for the control of plant
pathogenic bacteria and, although resistance selection has only
been found in the target phytopathogens (Stockwell and Dufty,
2012), they have been suggested a potential factor in the spread of
antibiotic resistance within the food chain to human pathogens
(Vidaver, 2002). Streptomycin was first used in plant agriculture
in the 1950s and has been used since then in the prophylactic
treatment of fire blight disease in apple and pear orchards. It is
also registered for the control of fire blight in Israel, New Zealand,
Canada, and Mexico (Stockwell and Duffy, 2012). Fire blight is
a destructive bacterial disease of apple and pear trees caused by
Erwinia amylovora and streptomycin remains the most reliable
and commercially effective control product available against fire
blight (Norelli et al., 2003).

Due to the perceived health and environmental risks associated
with the use of antibiotics in agriculture, the use of strepto-
mycin in plant agriculture was restricted within the EU in 2004
(Phillips, 2007). The seminal findings of Aarestrup (1995) in
the identification of a link between the use of avoparcin as an
animal growth promoter and increased vancomycin resistance
highlighted the potential link between the use of antibiotics in
agriculture and the selection for resistance (Aarestrup, 1995). The
application of manure from animals treated with antibiotics as

fertilizer has been linked to an increase in the abundance and
diversity of antibiotic resistance genes in the environment (Binh
et al., 2008). However, there is little knowledge on the ecologi-
cal impact of antibiotic use in plant agriculture on the total soil
bacterial populations.

The application of antibiotics in agriculture has been pos-
tulated to alter the overall microbial populations in natural
ecosystems, which is of particular concern regarding microor-
ganisms that co-colonize environmental and human ecosystems
(Garmendia et al., 2012). Bacteria are essential components of
a productive and healthy soil ecosystem and have many impor-
tant known functions including decomposition, nutrient cycling,
and protection against plant disease, thus it is important to iden-
tify the impacts of antibiotic application on their community
composition (Brussaard et al., 1997). We hypothesized that the
use of streptomycin would reduce the bacterial diversity within
the soil samples and result in a reduction in the variety of taxa
present. The multi-drug resistant hospital acquired pathogens
such as Burkholderia species, Stenotrophomonas species, and
Pseudomonas aeruginosa reside naturally in the soil environment
(Walsh and Duffy, 2013). As these bacteria are intrinsically resis-
tant to many antibiotics it was of interest to investigate if the
use of streptomycin provided a selective advantage for these bac-
teria in the soil. This study utilized 16S rRNA amplicon meta
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sequencing to compare the effects of the use of streptomycin in
plant agriculture on bacterial populations within soil ecosystems
of comparable, replicated streptomycin treated, and control apple
orchards.

MATERIALS AND METHODS

SAMPLING AND SITE DESCRIPTIONS

The geographical and descriptive characteristics of the ana-
lyzed agricultural soil samples are described in Table 1. Nine
soil samples were taken in total, comprising one sample from
each orchard in 2008, prior to treatment, one sample from each
orchard of a row of apple trees 2 weeks after being sprayed with
streptomycin and one sample from each orchard of a row of

Table 1 | Geographical and descriptive characteristics of the analyzed
orchard soil samples.

apple trees 2 weeks after being sprayed with water. Soil samples
consisted of eight soil cores (10 cm depth) per replicate taken
using a stainless steel corer with an internal diameter of 2.5 cm.
Soil cores were pooled for each replicate in the field. Pooling of
soil cores is standardly applied in order to obtain more represen-
tative samples for a certain field plot or a specific experimental
treatment (Milling et al., 2004). Eight separate soil core replicates
were taken per sample, each set of eight soil cores were combined
to represent the entire row of trees within an orchard under either
streptomycin or water treatment at each of the time points. The
sample in 2008 were collected on May 21st. The orchards were
sprayed with streptomycin or water in 2011 on the 15th, 20th,
and 27th of April and the samples were taken on the 11th of May.
The soil pH was determined by suspending 1 g of soil in 2.5mL
0.01 M CaCl, and measuring the pH using a glass electrode (Will
et al., 2010).

ORCHARD DESCRIPTIONS
Sample Date of Apple Elevation Latitude Longitude Three apple orchards in Widenswil, Lindau, and Giittingen
ID isolation  orchard (m) in Switzerland were used for these experiments. These apple
. h fi ial 1 ion,
FWS5 21.05.2008 Giittingen 503 476 9.2833 orchards Ygerenn(’t udsefd or Com}znema appg P;Odulcltlocrll but
. T rr T r . T T n-
FW360 (S) 11.05.2011 Gittingen 503 476 92833 “,’et edSp‘;Ci Cat 4 uie | (t’ .eseatc Iz urposes. £ac to cha C(z .
. sisted Of treatmen ots 1.e., streptomycCin Oor water, separate
FW339 (W) 11052011 Giittingen 503 476 9.2833 N et b ffp ' pl ty e W 5 Aril )
FWS4 21062008 Lindau 485 474433  8.6664 Y noz rlila ¢ D ‘11 <r rfvzs N pr f r:es lfutre . .reei
FW321(S)  11.05.2011  Lindau 485 474433  8.6664 V\iered do efl lte 1Clloust rees. Pﬁ) (lical lznbs N ds ep orrllycflln 2
ndar: Tl ral r T n -
FW330 (W) 11.05.2011  Lindau 485 474433  8.6664 s 2.1 ah agl cu u.tah tfl es we T. Sct.e ! eN aseu © aliP et. 0“.7
FWST 21.05.2008 Wadenswil 407 4724368 8.78837 f.r m%pt eno dolsy ‘.’t“ o reetapf. llc a lfonts.' Ormg. t?" appiica 1;)n '
1med-to and limited-to potential imiection conditions using rore-
FW309 (W) 11.05.2011  Wadenswil 407 4724368 8.78837 i dels. St pt P in f lati (600 g h ,1) (Sf pt
" . casting models. streptomycin rormulation gha repto,
FW312 (S)  11.05.2011  Wadenswil 407 4724368 8.78837 . . . .
W 6528, Schneiter AGRO AG) was applied using low-drift spray-
S, streptomycin treated orchard; W, water treated orchard. ing equipment.
Treatment Cultivar Orchard Row
No treatment buffer No treatment buffer No treatment buffer No treatment buffer No treatment buffer Jonagored 21
No treatment buffer 3x water treatment No treatment buffer No treatment buffer Golden 2
No treatment buffer No treatment buffer No treatment buffer No treatment buffer No treatment buffer Golden 23
No treatment buffer No treatment buffer No treatment buffer 3x water treatment Golden 24
No treatment buffer No treatment buffer No treatment buffer No treatment buffer No treatment buffer Golden 25
3x water treatment No treatment buffer No treatment buffer No treatment buffer Golden 26
No treatment buffer No treatment buffer No treatment buffer No treatment buffer No treatment buffer Diwa 27
FIGURE 1 | Schematic diagram of the three orchard sites and streptomycin or water spraying strategies.
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CALCULATION OF THE WORST CASE SCENARIO CONCENTRATION OF
STREPTOMYCIN IN THE SOIL

The amount of streptomycin sprayed was 600 g/ha, which is
60 mg/m? and 60 pug/cm?. The soil sample taken was a cylin-
der of approximately 49 cm?, the top side (directly exposed to
streptomycin) having an area of 4.9 cm?, meaning an average con-
centration of (60 x 4.9)/49 = 6 ug/cm? soil, assuming an even
distribution of streptomycin along the depth of 10 cm. In real-
ity, there probably will be a concentration gradient from top to
bottom. The spraying was performed twice, thus the highest pos-
sible concentration of streptomycin applied to the soil samples
was 12 mg/L.

DNA EXTRACTION, AMPLIFICATION OF 16S rRNA GENES, AND

LIBRARY GENERATION

The 16S rRNA gene amplification and next-generation sequenc-
ing was performed as part of the Earth Microbiome Project
(EMP) (Bunge, 2009). DNA was extracted from each sam-
ple using the MoBio™ Power Soil® DNA isolation kit (Siid-
Laborbedarf GmbH, Gauting, Germany) and modifications
according to the EMP protocols (Gilbert and Meyer, 2012). The
primers for the paired-end 16S rRNA community sequencing
were 515F (5 GTGCCAGCMGCCGCGGTAA 3') and 806R (5
GGACTACVSGGGTATCTAAT 3') (Caporaso et al., 2012). This
primer set is reported to amplify nearly all bacterial taxa with
few biases (Caporaso et al., 2012). The sequencing conditions
and parameters are described on the EMP website (http://www.
earthmicrobiome.org/emp-standard- protocols/).

STATISTICAL ANALYSIS OF 16S rRNA AMPLICON SEQUENCING DATA
Following sequencing on the Illumina MiSeq platform, the for-
ward and reverse reads were joined using fastq-join from the
ea-utils software package (Bergmann et al., 2011). The collection
of 253-bp sized sequences were then quality filtered to exclude
sequences with ambiguous (N) bases and sequences containing
base calls with less than 99% confidence (Phred score of 20).
Sequences passing these filters were then demultiplexed based on
exact matches to 12-bp DNA barcode sequences incorporated
during the PCR amplification step. The QIIME bioinformat-
ics software suite was used to subsample the resultant 105,790
sequences to an even sampling depth of 4000 reads per sample,
cluster those sequences into 97% identity operational taxonomic
units (OTU) with UCLUST (Aronesty, 2011), taxonomically clas-
sify each OTU from RDP classifier (Edgar, 2010) placement into
the GreenGenes 12_10 database (DeSantis et al., 2006), and gen-
erate the figures included with this report. All QIIME scripts were
from the 1.5.0 release and run using default parameters unless
otherwise stated.

In biology it is common to collect a sample of organisms and
sort them into taxa. In the CatchAll software program the term
“species” is used for these taxa, recognizing that this may not be
exact in some cases. The estimated total diversity of “species” was
determined using CatchAll (Bunge, 2009). CatchAll computes
several different estimates and returns a ranked comparison of
the “best” analyses for a given dataset. Data distribution was ana-
lyzed using the Student’s T-Test corrected for multiple compar-
isons using the Benjamini—-Hochberg procedure described below

to investigate relationships between sample site locations, land
use, pH, and anthropogenic effects such as antibiotic treatment.
P-Values were calculated using a two-tailed Student’s T-Test based
on the abundances of each phylogenetic group among samples.
Q-values were calculated via the Benjamini—Hochberg method to
correct for the false discovery rate arising from multiple compar-
isons by iterating over thousands of OTUs and taxa (Benjamini
and Hochberg, 1995). In this procedure, each p-value was mul-
tiplied by the number of phylogenetic groups examined, T, and
then divided by that p-value’s rank, k, among the set of p-values
(e.g., the most significant p-value was divided by 1, the second
most significant p-value was divided by 2, etc).

q-value = p-value x T/k

Only taxa abundance differences with a g-values of less than or
equal to 0.05 were considered significant.

RESULTS AND DISCUSSION

We compared and assessed the bacterial biodiversity in nine soils
sampled from apple orchard soil ecosystems (Table 1). The soils
were sampled prior to streptomycin use in 2008 (n = 3), in 2011
after streptomycin use (n = 3) and in 2011 after being sprayed
with water (n = 3).

BACTERIAL ABUNDANCE AND DIVERSITY RICHNESS

The 16S amplicon sequencing analysis using primers to amplify
the 515-806 nucleotide, V4 region, of the 16S rRNA gene is well-
suited for accurate placement of bacterial species (Liu et al., 2007).
We obtained a total of 105,790 quality bacterial sequences, with
a median amplicon length of 253bp and a range of between
4134 and 9611 amplicons per sample. One of the statistical chal-
lenges for microbiome studies are to estimate population richness
and diversity, model community structure, quantify uncertainty
and compare estimates rigorously (Caporaso et al., 2010). The
richness estimates were calculated using CatchAll to estimate
the minimum number of different “species” in each population
(Table 2). CatchAll statistical analyses defines the observed bacte-
rial population as that which would be observed if the sampling
and analysis protocols were to be performed to infinite effort
(Bunge et al., 2014).

The CatchAll analyses indicated that the estimated target pop-
ulation diversity of each sample was higher than the observed
population diversity. The number of “species” we observed from
our finite collection of reads is likely to only represent a subset of
the “species” present in the environment. The robustness of the
data was confirmed by CatchAll as the GOF5 value for all of the
samples was >0.01. The GOFS5 value represents the p-value from a
statistical hypothesis test of model fit. Smaller p-values represent
evidence against the fit of the model, and larger p-values repre-
sent evidence in favor (Bunge, 2009). The difference between the
observed and estimated richness highlights the vast array of bac-
terial species in soil. Similar orders of magnitude of difference
between the observed and the estimated richness were observed
in the analysis of phage metagenomic diversity data (Bunge et al.,
2012). The estimated populations ranged from 17124 to 59646
species. The variations between the estimated populations were
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Table 2 | CatchAll statistical analysis of bacterial 16S sequence diversity data.

Sample ID Orchard Date of Tau Observed Estimated SE Lower CB Upper CB GOF0 GOF5
isolation Sp total Sp

FWS4 Lindau 21.05.2008 1 1774 18,027 3355 12,672 26,041 0.0014 0.0538
FWS330 (W) Lindau 11.05.2011 10 2472 25,832 4802 18,161 37292 0.0007 0.0195
FWS321 (S) Lindau 11.05.2011 14 2034 17124 2392 13,119 22,589 0.0067 0.0293
FWS5 Gttingen 21.05.2008 10 2470 32,694 8160 20,453 53,322 0.0019 0.0432
FWS339 (W) Gttingen 11.05.2011 51 2263 26,338 7310 15,716 45,350 0 0.0064
FWS360 (S) Guttingen 11.05.2011 12 2942 34,112 4590 26,337 44,430 0.0003 0.0232
FWS1 Wadenswil 21.05.2008 10 2227 28,844 4929 20,802 40,376 0.0003 0.0127
FWS309 (W) Wadenswil 11.05.2011 1" 2762 48,611 15,414 26,918 89,855 0.0043 0.0444
FWS312 (S) Wadenswil 11.05.2011 9 2682 59,646 32,370 22,926 163,437 0.0003 0.0136

The results described illustrate the variations in observed and estimated “species” within each soil. This provides an analysis of the variations in diversity and
estimated diversity.

S, streptomycin treated; W, water treated.

Tau: A tau test is a non-parametric hypothesis test for statistical dependence based on the tau coefficient to measure rank correlation.

Estimated total species: estimated total diversity, which was calculated using the CatchAll model to identify the estimated number of “species” that could be
present in the soil sample.

Sp, “species”; SE, standard error; Lower and upper CB, lower and upper 95 confidence bounds, respectively.

GOFO should be regarded as a diagnostic\divergence statistic, signaling divergence from the null hypothesis (which states that the model is correct), while GOF5
represents the p-value from a legitimate statistical hypothesis test of model.

The model used was the Two Mixed Experiment model for all except sample FWS339, where the Three Mixed Experiment model was used. The Two Mixed Model
and Three Mixed Models are statistical sampling models used to analyze the data.

not associated with observed numbers of species or the treatment
(with or without streptomycin). In soil FWS321 a large number of
singletons were observed (n = 277) and a small number of very
abundant species, indicating a large number of rare species in
this soil.

ALPHA- AND BETA-DIVERSITY

The same bacterial phyla were identified in all soils, regard-
less of the influence of streptomycin (Figure2 and Table 3).
The most recent version of Greengenes has more than dou-
bled in size from 408,000 sequences in the previous version
to over 1 million (http://giime.wordpress.com/). The bacterial
diversity was examined at descending bacterial classification and
using statistical analyses in order to identify differences in the
abundances of different phyla. The most abundant phyla were
consistent across all samples and consisted of Proteobacteria,
Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes,
Gemmatimonadetes, and Planctomycetes (Figure 2 and Table 2).
Proteobacteria were the most abundant phyla with abundance
values ranging from 36.3% of the FWS309 soil population
(Widenswil orchard treated with water), to 43.7% in the
soil FWS330 population (Lindau orchard treated with water).
Acidobacteria were the second most abundant phyla in all soils.
The Acidobacteria compositions of the soil populations com-
prised between 19.8 and 26.8% in the soils FWS312 (Wadenswil
orchard treated with streptomycin) and FWS321 (Lindau orchard
treated with streptomycin), respectively. The third most abun-
dant phyla was Verrucomicrobia for all soils except FWS1, where
Actinobacteria were then third most abundant. The percentage
of population comprising Verrucomicrobia for all soils ranged
from 6.8% in FWS1 to 13.7% in FWS5 and FWS339, water

treated orchards from Widenswil and Giittingen, respectively and
averaged 10.7% for all soils. The results of this study are in con-
trast to studies of grassland and cultivated soils in Germany,
where the Verrucomicrobia were between 0 and 3.4% (Milling
et al., 2004; Shange et al., 2012). However, the Verrucomicrobia
phyla have been underrepresented in many studies, due to biases
in the PCR primers targeting 16S rRNA genes. Actinobacteria
represented between 5.4% in soil FWS360, (streptomycin treated
Giittingen) and 10% in soil FWS312, (streptomycin treated
Lindau).

The abundances of the most dominant phyla Acidobacteria,
Proteobacteria, Verrucomicrobia, Actinobacteria, and
Bacteroidetes, representing 86% of all bacteria on average, differ
from a previous study, in which Acidobacteria, Actinobacteria,
Proteobacteria, Bacteroidetes, and Firmicutes accounted for more
than 90% of the sequences in the soils examined. In our study
there us a lack of Firmicutes and presence of Verrucomicrobia.
While Firmicutes were detected in the soils in our study, they were
not represented at the same level of abundance as in previous
studies.

STATISTICALLY SIGNIFICANT VARIATIONS IN BACTERIAL ABUNDANCE
The results from Lindau, Giittingen, and Wadenswil soils were
compared to one another e.g., Lindau vs. Giittingen, Lindau vs.
non-Lindau, etc.—to identify statistically significant variations
in the taxa abundances (Table S1 in Supplementary Material).
The p-value was calculated using a two-tailed Student’s t-test
based on the sets of abundances. The “PctChange” column in
Table S1 in Supplementary Material displays the change in abun-
dance as a percentage of the total bacterial population. There
were no significant increases in the abundance of the intrinsically
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FIGURE 2 | Bacterial and archaeal community relative abundances of
the major bacterial classes in soils derived from the sampling sites.
W Archaea, Crenarchaeota, Thaumarchaeota; ll: Bacteria, Acidobacteria,
Other; : Bacteria, Acidobacteria; ' : Bacteria, Acidobacteria,
Acidobacteria; [: Bacteria, Acidobacteria, Acidobacteria-2; M: Bacteria,
Acidobacteria, Acidobacteria-5; ll: Bacteria, Acidobacteria, Acidobacteria-6;

: Bacteria, Acidobacteria, Solibacteres; ll: Bacteria, Actinobacteria,
Actinobacteria; ll: Bacteria, Actinobacteria, Thermoleophilia; ll: Bacteria,
Bacteroidetes, Sphingobacteriia; ll: Bacteria, Chloroflexi, Other;

[1: Bacteria, Chloroflexi, Anaerolineae; M: Bacteria, Chloroflexi, Bljii12;

: Bacteria, Chloroflexi, Chloroflexi; I1: Bacteria, Chloroflexi, Ellin6529;

: Bacteria, Chloroflexi, Ktedonobacteria; I Bacteria, Chloroflexi, S085;
[H: Bacteria, Chloroflexi, TK17;  : Bacteria, Chloroflexi, Thermomicrobia;
I Bacteria, Firmicutes, Bacilli; B: Bacteria, Gemmatimonadetes,
Gemmatimonadetes; Il: Bacteria, Nitrospirae, Nitrospira; ll: Bacteria,
Planctomycetes, Other; : Bacteria, Planctomycetes; : Bacteria,
Proteobacteria, Other; M: Bacteria, Proteobacteria, Alphaproteobacteria;
: Bacteria, Proteobacteria, Betaproteobacteria; : Bacteria,
Proteobacteria, Deltaproteobacteria; ll: Bacteria, Proteobacteria,
Gammaproteobacteria; : Bacteria, Verrucomicrobia, Pedosphaerae;

. Bacteria, Verrucomicrobia, Spartobacteria.

resistant bacteria belonging to the Pseudomonas, Burkholderia,
and Stenotrophomonas species associated with the use of strep-
tomycin. There were statistically significant higher abundances of
the Acidobacteria Group 6 (11% change), Acidobacteriales (10%
change), Acidobacteria (10% change), Alphaproteobacteria (9%
change), Deltaproteobacteria (8% change), Koribacteraceae (5%
change), Syntrophobacterales (5% change), Acidobacteriaceae
(4% change), and Alphaproteobacteria; Ellin 329 (4% change)
in the Lindau orchard soils in comparison to the non-Lindau
orchard soils. There were also statistically significant differ-
ences in the bacteria taxa between the Lindau orchard soils
and the Widenswil orchard soils: Acidobacteriales (11%) and
Acidobacteria (11%) were more abundant in the Lindau orchard.
The differences in taxa abundance are illustrated in Figure 2,
where the differences in the Acidobacter Group 1 and Acidobacter
Group 6 are apparent as well as differences in abundance
of Alphaproteobacteria. Differences in other bacteria abun-
dances are visible but are not statistically significant e.g.,
Betaproteobacteria and Gammaproteobacteria.

The worst case scenario concentration of streptomycin that
could have been applied to the soil was 12 mg/L, (two sprays at
a final concentration of 6 mg/L each). The breakpoint concen-
trations of clinically relevant pathogens according to the CLSI
guidelines are 16 mg/L or greater for Yersinia pestis, 8 mg/L or

greater for Brucella species and Francisella tularensis (Clinical
and Laboratory Standards Institute, 2006). The acceptable ranges
of minimum inhibitory concentration (MIC) for the control
strains Staphylococcus aureus ATCC 29213 and Escherichia coli
ATCC 25922 are between 8 and 32 mg/L (Clinical and Laboratory
Standards Institute, 2006). Thus, the final concentration of
12 mg/L could have inhibited the growth of selected clinically rel-
evant bacteria. The acceptable range of MIC for the control strain
Pseudomonas aeruginosa ATCC 27853 is between 32 and 128 mg/L
(Clinical and Laboratory Standards Institute, 2006). Therefore,
the worst case concentration of 12 mg/L would not have inhib-
ited clinical P, aeruginosa. Caution must be taken in extrapolating
the impact of streptomycin on soil bacterial population based on
the clinically relevant breakpoints of selected bacteria. We do not
know the natural concentration of streptomycin produced by the
soil bacteria Actinomycetes in these soils. We also do not know
what amount of the streptomycin is bound to soil particles and
do not interact with the bacteria, nor do we know the concen-
tration of streptomycin required to inhibit the growth of almost
all soil bacteria. Therefore, before we can discuss the relevance
of the concentration of antibiotic added to soil, we first need to
develop methods and breakpoints of relevance for this environ-
ment (Walsh, 2013). Such techniques and guidelines are vital to
assess the impact of antibiotics on the bacterial populations in
environments outside of clinically relevant pathogens.

Our study showed no significant difference due to pH for indi-
vidual taxa, including the intrinsically resistant bacteria belong-
ing to the Pseudomonas, Burkholderia, and Stenotrophomonas
species. These results are in contrast to previous 16S rRNA ampli-
con sequencing studies, where Actinobacteria and Bacteroidetes
showed correlation to high pH (Nacke et al., 2011). Our results
are also in contrast to previous studies, as Acidobacteria abun-
dances did not decrease with soil pH nor did the abundances of
Actinobacteria and Bacteroidetes positively correlate with soil pH
and the bacterial diversity was not associated with pH (Shange
et al.,, 2012). The changes in the abundance of individual taxa
due to treatment i.e., streptomycin or water and pH were not
statistically significant.

The entire communities of bacteria were analyzed for varia-
tions in bacterial abundance using ADONIS, ANOSIM, MRPP,
and PERMDISP algorithms provided by the QIIME software
suite. The results indicate no differences among streptomycin
and water treated plots (Figure3A). There are strong differ-
ences (p < 0.001) due to pH (low vs. neutral) (Figure 3B). Thus,
although the soil use and management strategies were the same
in each of the orchards, the soil pH had a stronger influence over
the bacterial population than the management practices, such as
the addition of streptomycin. The phylogenetic relationships of
the bacterial communities cluster the three Lindau soils together
and separately from the remainder of the soils (Figure 3C). The
remaining two clusters consist of the Widenswil and Giittingen
orchards together. Soils derived from identical management sys-
tems, i.e., apple orchards under the same management practices
do not necessarily harbor the same bacterial communities.

There was no significant difference in the bacterial popu-
lations associated with streptomycin use in the three orchards
over time. The bacterial populations were also stable within the
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Table 3 | Taxonomy and percentage of the bacterial phyla population abundances of the bacterial 16S rRNA gene sequences from orchard soils

treated with streptomycin in comparison to those treated with water in descending order of percentage of the population.

Taxonomy Lindau apple orchard Giittingen apple orchard Wadenswil apple orchard
FWS4 FWS330 FWS321 FWS5 FWS339 FWS360 FWS1 FWS309 FWS312
water % water % strep % water % water % strep % water % water % strep %

Bacteria; Proteobacteria 39.9 43.7 42.9 39.3 39.9 38.3 41.8 36.3 37.4

Bacteria; Acidobacteria 21.9 22.5 26.8 22.2 19.9 24.8 22.0 23.4 19.8

Bacteria; Verrucomicrobia 10.6 9.6 8.1 13.7 13.7 10.2 6.8 12.6 1.2

Bacteria; Actinobacteria 8.8 8.9 6.1 6.9 7.6 5.4 9.0 5.6 10.0

Bacteria; Bacteroidetes 4.8 4.2 4.9 5.2 7.8 5.2 4.1 4.6 4.7

Bacteria; Gemmatimonadetes 3.3 4.2 3.8 2.8 2.7 3.0 2.3 3.0 2.8

Bacteria; Planctomycetes 2.6 0.9 1.1 2.5 2.4 4.5 2.6 4.6 3.8

Bacteria; WS3 1.7 0.6 0.0 2.3 1.1 2.3 2.7 3.0 2.9

Bacteria; Firmicutes 1.5 1.0 1.4 1.4 0.5 0.6 24 1.2 1.3

Bacteria; Nitrospirae 1.3 1.0 0.5 1.0 1.2 1.1 1.9 2.6 2.1

Bacteria; Chloroflexi 1.0 1.1 0.7 0.7 1.3 0.9 1.7 0.6 1.0

Bacteria; Other 1.2 0.7 0.9 1.1 0.9 1.6 1.4 1.4 1.4

Archaea; Crenarchaeota 0.4 0.5 0.3 0.2 0.2 1.6 0.4 0.4 0.3

Bacteria; WPS-2 0.2 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0

Bacteria; Armatimonadetes 0.1 0.1 0.5 0.1 0.0 0.0 0.0 0.0 0.0

Bacteria; Chlamydiae 0.1 0.1 0.3 0.2 0.1 0.0 0.3 0.0 0.0

Bacteria; Elusimicrobia 0.2 0.1 0.3 0.1 0.2 0.2 0.1 0.2 0.4

Bacteria; Chlorobi 0.2 0.1 0.1 0.0 0.2 0.2 0.3 0.2 0.3

Bacteria; Cyanobacteria 0.2 0.2 0.1 0.3 0.2 0.0 0.2 0.0 0.1

Bacteria; FCPU426 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.0

Bacteria; TM6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1

Unclassified; Other 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bacteria; AD3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Strep, streptomycin treated orchard; Water, water treated orchard.
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FIGURE 3 | Principal component analysis (PCoA) of bacterial
communities as affected by (A) Treatment of streptomycin or water, (B)
soil pH, and (C) soil site orchard. Plots are based on Bray-Curtis
dissimilarities comparing bacterial communities according to treatment, soil

-03 x +
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PC1 - Percent variation explained 39.16%
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PC1 - Percent variation explained 39.16%
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pH or orchard. P-values were calculated using PERMANOVA. (A) Circle,
treated with streptomycin; square, treated with water; (B) circle, low pH;
square, neutral pH; (C) triangle, Guttingen orchard; circle, WWadenswil orchard;
square, Lindau orchard.

orchards over 3 years of treatment with streptomycin and thus
there was no cumulative effect of streptomycin treatment for 3
years. Previous studies on the effects of antibiotic use in agricul-
ture have frequently focused on cultured bacteria or resistance
genes (Tolba et al., 2002). Culture-based approaches are limited to

a small fraction of the entire soil bacteria and analysis of specific
resistance genes provides information on the influence of strepto-
mycin on the resistant population. However, it is also important
to identify the influence of streptomycin on antibiotic suscepti-
ble bacteria and unculturable bacteria. Our study analyzed the
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entire bacterial community within soil and compared soils from
the same orchard and same management practices to identify if
there were differences, which were associated with streptomycin
treatment.

In 2009, the American Academy for Microbiology compiled a
report discussing antibiotic resistance and the factors that influ-
ence the development and spread of resistance calling for more
information on the impact of streptomycin use in agriculture
(American Academy of Microbiology, 2009). Our study has iden-
tified that neither specific taxa abundances nor the entire bacterial
population abundances were altered by treatment with strepto-
mycin. This study has also identified that the use of streptomycin
in apple orchards did not significantly alter the bacterial diversity
in the soils and does not have an adverse effect on the bacterial
populations of treated soils. The strongest differences in entire
populations were due to pH and site. The phylogenies of the
bacterial communities from the same orchard did not necessar-
ily cluster together, suggesting that variations in soil bacterial
population were not influenced by land use. These results are in
contrast to the studies of grassland and forest land-use and dif-
ferent management strategies, which have previously been found
to influence the fungal and bacterial diversity and composition
(Birkhofer et al., 2012; Shange et al., 2012).

In contrast to previous studies, our data identified differ-
ences only in the abundances of specific phyla Acidobacteria,
Alphaproteobacteria, and Deltaproteobacteria when the Lindau
orchard soil populations, with a low pH, were compared to the
other two orchards soil populations with a neutral soil pH. No dif-
ferences in the abundances of other specific taxa were associated
with soil pH (Will et al., 2010; Nacke et al., 2011). We have how-
ever, identified strong differences in the abundances of the entire
bacterial communities due to pH indicating that the individual
taxa abundance changes are too low to be statistically significant
alone but these small changes are only noticeable at the entire
population level when taken together.

CONCLUSIONS

The use of streptomycin as part of the agricultural land man-
agement did not influence the bacterial abundance or bacterial
diversity within these soils. Our study was performed using repli-
cated treated and control orchards, which are vital for statistical
analyses. We conclude, similar to a study on the effect of strepto-
mycin on the bacterial community in apple tree leaf samples and
orchard soil samples from the US that the use of streptomycin did
not have a detrimental effect on the bacterial population of the
soil (Yashiro and McManus, 2012; Shade et al., 2013). There were
no significant increases in the abundance of the intrinsically resis-
tant bacteria belonging to the Pseudomonas, Burkholderia, and
Stenotrophomonas species associated with the use of streptomycin.
This study contributes to the increasing scientific evidence, which
suggests that the use of streptomycin in apple orchards has a low
impact on the bacterial ecosystem.
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