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Abstract

The anti-fungal activity and mode of action of a range of silver(I)–coumarin complexes was examined. The most potent silver(I)–cou-
marin complexes, namely 7-hydroxycoumarin-3-carboxylatosilver(I), 6-hydroxycoumarin-3-carboxylatosilver(I) and 4-oxy-3-nitrocoum-
arinbis(1,10-phenanthroline)silver(I), had MIC80 values of between 69.1 and 4.6 �M against the pathogenic yeast Candida albicans. These
compounds also reduced respiration, lowered the ergosterol content of cells and increased the trans-membrane leakage of amino acids. A
number of the complexes disrupted cytochrome synthesis in the cell and induced the appearance of morphological features consistent
with cell death by apoptosis. These compounds appear to act by disrupting the synthesis of cytochromes which directly aVects the cell’s
ability to respire. A reduction in respiration leads to a depletion in ergosterol biosynthesis and a consequent disruption of the integrity of
the cell membrane. Disruption of cytochrome biosynthesis may induce the onset of apoptosis which has been shown previously to be trig-
gered by alteration in the location of cytochrome c. Silver(I)–coumarin complexes demonstrate good anti-fungal activity and manifest a
mode of action distinct to that of the conventional azole and polyene drugs thus raising the possibility of their use when resistance to con-
ventional drug has emerged or in combination with such drugs.
©  2007 Published by Elsevier Ltd.
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UNCO1. Introduction

Coumarin is a a benzopyrone and a naturally occurring
constituent of many plants and essential oils, including
tonka beans, sweet clover, woodruV, oil of cassia and laven-
der. Antibiotics containing the coumarin nucleus, such as
novobiocin, clorobiocin, and coumermycin A1 produced by
a number of the Streptomyces species, were identiWed over
forty years ago. The use of these antibiotics has been lim-
ited due to their poor water solubility, low activity against
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Gram-negative bacteria and the rapid emergence of resis-
tance (Lewis et al., 1996; Laurin et al., 1999). However,
renewed interest in these antibiotics has arisen following
the discovery that they are potent catalytic inhibitors of
DNA gyrase. Additionally, these antibiotics have been
shown to be active against Gram-positive bacteria, espe-
cially against methicillin-resistant Staphylococcus aureus
(MRSA) (Laurin et al., 1999). Further derivatisation of
novobiocin, clorobiocin, and coumermycin A1 has allowed
for the production of novel coumarin antibiotics displaying
excellent inhibition of DNA supercoiling by DNA gyrase B
and good antibacterial activity against vancomycin, tei-
coplanin and novobiocin resistant Enterococci species
(Laurin et al., 1999).
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Candida albicans is pathogenic yeast which is consis-
tently the most frequently isolated etiological agent of can-
didosis in humans (Coleman et al., 1998). Candidosis is the
commonest invasive fungal infection in patients with malig-
nant haematological disease and in bone marrow trans-
plant recipients (Warnock, 1998). Nosocomial infections
due to opportunistic fungal pathogens are a common cause
of mortality among hospitalised patients (Micheal, 1995).
The development of azole-based anti-fungal drugs has rev-
olutionized the treatment of many fungal infections, but
therapy may still necessitate application of the highly toxic
drug amphotericin B or a combination of drugs.

Plant extracts containing coumarin derivatives demon-
strate anti-fungal activity (Tiew et al., 2003) and some syn-
thetic coumarin derivatives are also active against the yeast
C. albicans (Zaha and Hazem, 2002). The presence of phe-
nolic, hydroxy and carboxylic acid groups on the coumarin
nucleus has been considered necessary for antimicrobial
activity (Kawase et al., 2001). Coumarin derivatives are
able to coordinate a transition metal ion via the oxygen of
the carbonyl group on the lactone ring (Irena et al., 2001)
which raises the possibility that coordinating metals to cou-
marin may potentiate its anti-microbial toxicity.

The aim of the work presented here was to investigate
the anti-fungal activity of some coumarin derivatives and
also the silver(I) complexes of these derivatives.

2. Materials and methods

2.1. Culture conditions

C. albicans ATCC 10231 (obtained from the American
Type Culture Collection, Maryland, USA) was maintained
on YEPD agar [2% (w/v) glucose (Sigma–Aldrich Chemical
Co Ltd. Dublin, Ireland), 2% (w/v) bactopeptone (Difco
Laboratories, Detroit, USA), 1% (w/v) yeast extract (Oxoid
Ltd., Basingstoke, England), 2% (w/v) agar] plates, sub-cul-
tured every 6–8 weeks and stored at 4 °C. Fresh cultures
were grown at 30 °C in YEPD broth (as above but without
agar). All cultures were grown to the stationary phase
(approximately 1£ 108 cells/ml) overnight in 50 ml Antibi-
otic Medium 3 (Oxoid Ltd.) broth at 30 °C and 200 rpm.

2.2. Synthesis of coumarin derivatives

Coumarin-3-carboxylic acid (CcaH), 4-hydroxy-3-nitro-
coumarin (hncH) and 7-hydroxy-4-methyl-8-nitrocoumarin
(hmnc), were purchased from Sigma–Aldrich Co. (Dorset,
UK) and used without further puriWcation. The synthesis of
the ligands, 6-hydroxycoumarin-3-carboxylic acid (6-OHC-
caH), 7-hydroxycoumarin-3-carboxylic acid (7-OHCcaH),
8-hydroxycoumarin-3-carboxylic acid (8-OHCcaH), and
the silver(I) complexes, coumarin-3-carboxylatosilver(I)
[Ag(Cca)], 6-hydroxycoumarin-3-carboxylatosilver(I)
[Ag(6-OHCca)], 7-hydroxycoumarin-3-carboxylatosilver(I)
[Ag(7-OHCca)], and 8-hydroxycoumarin-3-carboxylatosil-
ver(I) [Ag(8-OHCca)], have been described previously (Cre-
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aven et al., 2006). The synthesis of the silver(I) complexes of
hncH and hmncH, namely 4-oxy-3-nitrocoumarinsilver(I)
[Ag(hnc)] and 4-methyl-8-nitro-7-oxycoumain silver(I)
[Ag(hmnc)] togetehr with the 1,10-phenanthroline (phen)
complex, 4-oxy-3-nitrocoumarinbis(1,10-phenanthroline)
silver(I) [Ag(phen)2(hnc)] have been described (Creaven
et al., 2005). The crystal structure of [Ag(phen)2(hnc)] is dis-
played in Fig. 1. The structure of all other complexes and
ligands are displayed in (Creaven et al., 2005 and 2006).

2.3. Anti-fungal susceptibility test

Yeast cells were grown overnight to the stationary phase
in 50 ml Antibiotic Medium 3 (Oxoid) at 30 °C and
200 rpm. Cell density was determined using an haemocy-
tometer and adjusted to 1£106 cells/ml, by dilution with
Antibiotic Medium 3. Cells were added to each well of a 96-
well plate containing the test compound, diluted in medium
using serial dilutions from 100 to 0.25 �g/ml. Plates were
incubated at 30 °C for 24 h, and the optical density (OD)
was determined at 450 nm using a MRX spectrophotometer
(Dynex Technology). MIC80 was determined to be the low-
est concentration of drug required to reduce cell growth by
80% relative to the control.

2.4. Measurement of oxygen uptake

Stationary phase cells (approximately 1.5£ 108 cells/ml)
grown in YEPD broth at 30 °C overnight were harvested,
washed with 0.025 M phosphate buVered saline (PBS, pH
7.2) and resuspended in 0.025 M phosphate buVer (pH 7.2)
at a cell density of 5£ 108/ml. Oxygen uptake measure-
ments were made at 30 °C using a Clark-type oxygen elec-
trode. Oxygen uptake rates were calculated as �moles of
oxygen consumed/60 s/108 cells.

2.5. Cytochrome analysis

Yeast cultures were supplemented with speciWc concen-
trations of each drug and incubated for 18–24 h at 30 °C.
Cells (2£ 1010) were harvested by centrifugation at 3000g
for 5 min, washed twice with PBS and divided into two

Fig. 1. Crystal structure for [Ag(phen)2(hnc)].
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75

76
77
78
79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
action of coumarin and silver(I)–coumarin complexes against the
016/j.tiv.2007.01.022
100
101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130

131

132
133
134
135



B. Thati et al. / Toxicology in Vitro xxx (2007) xxx–xxx 3

TIV 1619 No. of Pages 8; Model 5+
ARTICLE IN PRESS

21 February 2007 Disk Used
UNCORREC

equal volumes. One half of the sample was oxidised by sus-
pending in 0.2% (w/v) sodium hypochlorite solution fol-
lowed by harvesting by centrifugation and then
resuspended in 50% (v/v) glycerol. The remaining half sam-
ple was resuspended in 50% (v/v) glycerol and reduced by
adding a few crystals of sodium-dithionate. The reduced
and oxidised cytochrome diVerential spectrum was immedi-
ately recorded using a double beam UV–Visible spectro-
photometer at 500–650 nm (Cary IE Varian).

2.6. Sterol extraction and quantiWcation

Yeast cells were grown in the presence of half MIC80 of
test agent until cells reached the late exponential phase
(approximately 1£ 107/ml, and typically for 18–24 h) in
Antibiotic Medium 3 at 30 °C in an orbital incubator. Yeast
cells (2£ 109 cells) were harvested and washed with PBS.
Cells were resuspended in 1.5 ml of a solution containing
20% (w/v) potassium hydroxide and 60% (v/v) ethanol and
placed in a shaking water bath at 90 °C for 1.5–2 h. Heptane
was added to this solution and vortexed for 10 s. The upper
layer containing sterols was removed according to the
method of Arthington-Skaggs et al. (2000).

Sterol analysis was determined by using a double beam
UV–Visible spectrophotometer (Cary IE Varian) over the
range 240–320 nm. An ergosterol standard curve was con-
structed over the range 100–0.25 �g/ml. Sterol concentra-
tions were also determined using a gas chromatographic
system (Hewlett Packard 5890, Series 11) with a Xame ioni-
sation detector and a Chromopack capillary column (Chro-
mopack International BV, Middleburg, The Netherlands)
operated isothermally at 300 °C. Injector and detector tem-
peratures were 320 °C and the carrier gas was N2.

2.7. Evaluation of membrane leakage

Stationary phase cells (1£ 1010 in total) were harvested
by centrifugation, washed with PBS and resuspended in
10 ml PBS. Test agents were added to this suspension at a
Wnal concentration of half MIC80. Samples of cell suspen-
sion were recovered after 4 h and assayed for the presence
of amino acids using the ninhydrin method (Reeves et al.,
2004). The Wltrate was passed through a 0.45 �M syringe
Wlter (Sartorius, AG Goettingen, Germany) and free amino
acid was measured as described. The amino acid concentra-
tion was expressed in terms of aspartic acid and glutamic
acid which were used as standards. Ninhydrin (Sigma Ald-
rich) solution (200 �l of 0.35 g/100 ml ethanol) was added to
each sample (1 ml) and the mixture heated to 95 °C for
4 min. After cooling to room temperature in an ice bath, the
OD at 570 nm was recorded on a UV–Visible spectropho-
tometer (Beckmann, DU 640).

3. Electron microscopy

Yeast cells were grown to the stationary phase in the
presence of half-MIC80 levels of each test agent. Primary
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Wxation of yeast cells was carried out in a 3% (v/v) solution
of glutaraldehyde in 0.1 M phosphate buVer for 2 h. Sec-
ondary Wxation was achieved in 0.2% (w/v) osmium tetrox-
ide in 0.1 M phosphate buVer for 1 h. Samples were
dehydrated in graded alcohol solutions of 10, 30, 50, 75, 95,
and 100% (v/v) for 15 min. Samples were embedded in Agar
100 resin (Agar ScientiWc Ltd., UK) and viewed with a Hit-
achi H-7000 transmission electron microscope operating at
100 kV accelerating voltage.

4. Extraction of DNA from C. albicans

Yeast cells were grown in the presence of test agent at a
concentration equivalent to half MIC80, in Antibiotic
Medium 3 at 30 °C and 200 rpm, using an orbital shaker.
DNA was extracted from cells (4£ 109) as described earlier
(Coyle et al., 2004). The integrity of extracted DNA was
determined by agarose gel electrophoresis as described
(Coyle et al., 2004). Samples were loaded onto an agarose
gel and electrophoresed at 80 V for 1 h. DNA bands were
visualised by irradiation at 300 nm and photographed using
a Pharmaciae 3D imaging system.

5. Statistical analysis

All experiments were performed on three independent
occasions and results are the mean§SEM. Statistical anal-
ysis was performed using the non-parametric Mann–Whit-
ney test at a 95% conWdence interval.

6. Results

6.1. EVects of coumarin derivatives on fungal cells

A series of novel coumarin ligands and their silver(I)
complexes (Table 1) were screened for their anti-fungal
activity. The MIC80 of each compounds was determined
over a concentration range of 500–0.25�M. Results indi-
cate that both the number and position of functional
groups along with the presence of silver on the coumarin

Table 1
Anti-fungal activity of coumarin derivatives

Anti-fungal activity of coumarin derivatives screened against C. albicans
following continuous incubation in the presence of drug for 24 h, using
micro-dilution assay.
Results are mean of three independent experiments § SEM. All values
were statistically diVerent when compared to the control (compound 1) at
p < 0.05.

Compound no. Compounds screened MIC80 (�M)§ SEM

1 CcaH 332.00§ 1.75
2 [Ag(Cca)] 163.40§ 2.44
3 [Ag(8-OHCca)] 270.00§ 1.46
4 [Ag(7-OHCca)] 69.30§ 0.95
5 [Ag(6-OH-Cca)] 34.10§ 0.58
6 [Ag(hmnc)] 246.00§ 2.24
7 [Ag(hnc)] 222.00§ 1.82
8 [Ag(phen)2(hnc)] 4.60 § 0.75
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nucleus, greatly aVected the fungistatic capacity of the cou-
marin derivatives. This is evident from the MIC80 values
presented in Table 1 and include: [Ag(8-OHCca)] (270�M),
[Ag(hmnc)] (246 �M), [Ag(hnc)] (222 �M), [Ag(Cca)]
(163 �M), [Ag(7-OHCca)] (69.30 �M) and [Ag(6-OHCca)]
(34.10 �M). Phenanthroline has previously been shown to
be a potent anti-fungal agent against C. albicans (Coyle
et al., 2003). In the this study, the 1,10-phenanthroline was
combined with coumarin–silver complex to yield
[Ag(phen)2(hnc)]. This compound was the most potent anti-
fungal agent screened, with an MIC80 of 4.60 �M (Table 1).

Aromatic nitration and hydroxylation of coumarin lead
to the production of derivatives with improved anti-fungal
activity. This is particularly true in the case of [Ag(6-
OHCca)], which had an MIC80 value of 34.1 �M. Therefore,
oxygenation particularly at the sixth position with a car-
boxylic group at third position leads to the production of
the most active silver–coumarin derivative. However, when
this coumarin derivative was complexed with phenanthro-
line to form [Ag(phen)2(hnc)], the MIC80 value was seen
to decrease further from a value of 332 �M to 4.6�M
(Table 1).

6.2. EVect of coumarin derivatives on cellular respiration

Previous studies have shown that fungal respiration is
aVected when cells are exposed to metal-based drugs (Coyle
et al., 2003; Eshwika et al., 2004; McCann et al., 2004).
Therefore, the respiration rate of cells exposed to each of
the diVerent coumarin–silver complexes was determined.
The results presented in Table 2 clearly demonstrate that
cells pre-grown in the presence of coumarin-3-carboxylic
acid and the various silver(I)–coumarin complexes show
reduced consumption of oxygen. Those coumarin deriva-
tives which caused the greatest decrease in oxygen con-
sumption were [Ag(Cca)] (48.24�mol), [Ag(6-OHCca)]
(47.61 �mol oxygen/108 cells) and [Ag(phen)2(hnc)] (42.47
�mol oxygen/108 cells). These results clearly indicate that
Please cite this article in press as: Thati, B. et al., Mechanism of 
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cells pre-grown in the presence of the coumarin derivatives,
demonstrated a 20–50% reduction in oxygen consumption,
relative to the control (Table 2). Additionally, [Ag(6-
OHCca)] and [Ag(phen)2(hnc)] were previously shown to
be the most active anti-fungal agents (Table 1), and the
results presented here indicate that they have a signiWcant
impact on cellular respiration.

6.3. Cytochromes proWles of coumarin–silver complex-
treated C. albicans cells

Previous work has indicated that impairment of cyto-
chrome synthesis and/or function leads to a reduction in
respiration rates in cells following exposure to metal-based
drugs (Coyle et al., 2003; Geraghty and Kavanagh, 2003).
The cytochrome proWle of control cells indicates the pres-
ence of cytochromes aa3 (602 nm), b (564 nm) and c (550–
554 nm) (Fig. 2a and b). However, cytochrome spectro-
scopic proWles were altered when cells were exposed to
selected silver(I)–coumarin derivatives at concentration
equivalent to half their MIC 80 values. In particular, the

Table 2
Oxygen consumption by C. albicans cells exposed to complexes

Oxygen consumption was measured using a Clark-type oxygen electrode
and expressed as �mol oxygen consumed/108 cells/min. All values are the
mean of three independent determinations § SE. All values were statisti-
cally diVerent when compared to the control at p < 0.05.

Compound
no.

Compounds
screened

Consumption of oxygen
(�mol) § SEM

1 CcaH 75.45 § 2.57
2 [Ag(Cca)] 48.24 § 1.46
3 [Ag(8-OHCca)] 62.94 § 2.94
4 [Ag(7-OHCca)] 56.02 § 2.86
5 [Ag(6-OH-Cca)] 47.61 § 0.85
6 [Ag(hmnc)] 68.32 § 1.86
7 [Ag(hnc)] 72.59 § 1.24
8 [Ag(phen)2(hnc)] 42.47 § 1.78

Control 82.38 § 2.21
UNCO

Fig. 2. Cytochrome proWle of C. albicans following exposure to various silver–coumarin complexes. Fungal cells were treated with coumarin derivatives at

concentrations equivalent to half their MIC80 value for 12 h.
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cytochrome aa3 peak was severely disrupted in cultures
treated with half MIC80 of both [Ag(Cca)] and [Ag(hnc)].
The peaks associated with all three cytochromes (aa3, b,
and c) were reduced when cells were treated with
[Ag(phen)2(hnc)], as shown in Fig. 2b. This result suggests
that when silver and phenanthroline were added to couma-
rin, a reduction in cytochrome synthesis was achieved.
However, cytochrome peaks were not disrupted when cells
were treated with [Ag(hmnc)], [Ag(8-OHCca)], [Ag(7-
OHCca)] and [Ag(6-OHCca)] (data not shown).

Disruption of the mitochondrial cytochrome content of
a cell has the potential to reduce its respiratory eYcacy, and
this is evident when cells were treated with several of the
novel silver-based coumarin derivatives. [Ag(Cca)] and
[Ag(hnc)] reduced cytochrome aa3, which is an important
component of the mitochondrial electron transfer chain.
This may have caused respiratory deWciency in C. albicans.
[Ag(phen)2(hnc)] produced the greatest reduction in all
three cytochrome peaks, which may also explain the reduc-
tion (50%) in oxygen consumption compared to control
cells.

6.4. Determination of ergosterol content of C. albicans cells

Fungal cells require oxygen in order to synthesise the
membrane sterol ergosterol, and so either a reduction in
respiratory eYciency or an inability to respire leads to
reduced levels of this sterol (Parks and Casey, 1995).
Reduction in the ergosterol content in C. albicans has been
identiWed previously as a mechanism for increased growth
in the presence of amphotericin B (Kelly et al., 1997; Gera-
ghty and Kavanagh, 2003). The requirement for a func-
tional mitochondrion in ergosterol biosynthesis is well
characterised and arises from the provision of NADPH for
squalene dimerisation (Parks and Casey, 1995).

In order to elucidate the mechanism of action of the
most potent coumarin–silver agents including CcaH,
[Ag(Cca)], [Ag(hnc)], [Ag(hmnc)], [Ag(8-OHCca)], [Ag(7-
OHCca)], [Ag(6-OHCca)] and [Ag(phen)2(hnc)], it was
decided to investigate their eVects on ergosterol synthesis.
Concentrations of test agent used here were equivalent to
half MIC80 and ergosterol was quantiWed spectrophotomet-
rically by scanning over the wavelength range of 240–
330 nm using a dual beam spectrophotometer. Results
indicate that treatment with [Ag(Cca)], [Ag(hnc)] and
[Ag(7-OHCca)] leads to a reduction in ergosterol content
(Table 3). Also, the greatest reduction was seen following
treatment with [Ag(phen)2(hnc)], indicating that this is the
most potent of all of the derivatives studied.

6.5. Assessment of membrane leakage in coumarin–silver 
complex-treated cells

Reduced levels of ergosterol can adversely aVect mem-
brane integrity and lead to increased membrane permeabil-
ity. In order to ascertain the eVect of depleted ergosterol on
membrane integrity, leakage of amino acids across the
Please cite this article in press as: Thati, B. et al., Mechanism of a
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plasma membrane was measured when cells were exposed
to the coumarin compounds for a period of 4 h. The results
(Fig. 3) indicate that exposure of stationary phase cells to
[CcaH)] lead to the release of 15�g amino acids per 1010

cells. Exposure of cells to each of the silver–coumarin deriv-
atives signiWcantly increased this leakage, with the greatest
seen following incubation with [Ag(hnc)]. These results
indicate that the addition of silver to coumarin serves to
increase the leakage of amino acids from C. albicans, a phe-
nomenon which may be due to the depletion of the ergos-
terol levels which renders the membrane unstable. Leakage
of amino acids together with other small molecular weight
compounds from the cell would serve to damage the cell’s

Table 3
Ergosterol content of C. albicans cells

Fungal cells were treated with coumarin derivatives at a concentration
equivalent to half their MIC80 value for 12 h. Ergosterol was extracted and
quantiWed according to the method of Arthington-Skaggs et al. (2000).
Results are the mean of three independent determinations § SE. All val-
ues were statistically diVerent when compared to the control (compound
1) at p < 0.05 except the values for compound 3 and 6 which were not
deemed statistically signiWcant.

Compound
no.

Compounds
screened

Ergosterol content
(�g/ml) § SEM

1 CcaH 45 § 2.45
2 [Ag(Cca)] 30 § 1.58
3 [Ag(8-OHCca)] 50 § 1.46+

4 [Ag(7-OHCca)] 40 § 1.53
5 [Ag(6-OH-Cca)] 20 § 0.75
6 [Ag(hmnc)] 60 § 2.24+

7 [Ag(hnc)] 32 § 1.82
8 [Ag(phen)2(hnc)] 15 § 0.75

Control 50 § 1.45

Fig. 3. Amino acids release from C. albicans. Membrane leakage was
quantiWed following treatment of stationary phase cells with test agent for
4 h and measuring the escape of amino acids as described. Assay was per-
formed on three independent occasions and results are the mean § SE.
*p < 0.05, **p < 0.01 and ***p < 0.005 with respect to the control. Com-
pound number refer to the complexes listed in Table 1.
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ability to respire and grow and thus may ultimately con-
tribute to their death.

6.6. Electronmicrographic analysis of cell morphology

Exposure of C. albicans cells to metal-phenanthroline
complexes induces many of the morphological characteris-
tics of apoptosis (programmed cell death) (Coyle et al.,
2004; McCann et al., 2004). In particular, there was evi-
dence of ruptured cell walls, withdrawal of the cytoplasm
from within the cell wall and the presence of large distended
nuclei. In some cases distinct nuclear fragments were also
apparent (Coyle et al., 2004). In the work presented here
TEM was used to examine the internal morphology of cells
grown in the presence of each of the test compounds. Con-
trol cells showed normal cellular morphology, including a
distinct cell wall, an intact nucleus and numerous membra-
nous organelles (Fig. 4a). In contrast, cells exposed to CcaH
showed evidence of nuclear crescent formation and loss of
membranous organelles. In addition, cells exposed to
[Ag(Cca)] or [Ag(hnc)] also showed evidence of nuclear
crescent formation but furthermore demonstrated nuclear
fragmentation, features which are consistent with the
induction of apoptotic cell death (Fig. 4b–d). In parallel
with this analysis DNA was extracted from cells exposed to
test agents and separated by agarose gel electrophoresis.

Fig. 4. Electronmicrographs of C. albicans cells exposed to coumarin and
coumarin–silver derivatives.
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The results indicate extensive degradation of DNA from
those cells exposed to [Ag(8-OHCca)], [Ag(7-OHCca)] and
[Ag(6-OHCca)] (Fig. 5) – a feature consistent with the
apoptotic induced fragmentation of DNA in yeast (Coyle
et al., 2004).

7. Discussion

The work presented here indicates that while CcaH and
[Ag(Cca)] demonstrate anti-fungal activity, derivatising
these agents with the inclusion of a hydroxy, nitro or phe-
nanthroline ligand, serves to signiWcantly increase their
anti-fungal potency. Most of the silver(I)–coumarin deriva-
tives appear to reduce the respiration rate of C. albicans,
possibly by disrupting the synthesis of cytochromes in the
mitochondrion. Disruption of the mitochondrial cyto-
chrome content of a cell has the potential to reduce its
respiratory eYcacy, while restoration of respiratory func-
tion following transfer of mitochondria by protoplast
fusion has the capacity to restore, partially or completely,
respiratory status (Ferenczy and Maraz, 1977). In our
study, all three cytochromes were reduced by [Ag(phen)2-
(hnc)] which may explain why this complex caused the
greatest diminution in oxygen consumption by C. albicans.
Reduced respiration has previously been shown to lead to a
reduction in the synthesis of ergosterol, a sterol essential for
maintaining membrane integrity (Kelly et al., 1997; Gera-
ghty and Kavanagh, 2003). Synthesis of ergosterol is depen-
dent upon a functional mitochondrion to provide NADPH
for one of the steps in its biosynthesis. Previous work has
demonstrated that cells which have reduced levels of ergos-
terol are more tolerant of the anti-fungal eVects of agents
such as amphotericin B which acts by binding ergosterol
and forming pores in the cell membrane (Geraghty and
Kavanagh, 2003). Cells treated with the coumarin deriva-
tives demonstrated increased membrane leakage, as evident
by the increased leakage of amino acids. A similar eVect has
been shown previously with the fungus Aspergillus fumiga-
tus when treated with either amphotericin B or DMSO. In
both cases, increased membrane permeability was observed
(Reeves et al., 2004). Additionally, cells exposed to speciWc
silver–coumarin derivatives demonstrated non-speciWc
cleavage of DNA and many of the morphological features
of programmed cell death.

The current work demonstrates that the anti-fungal activ-
ity of coumarin–silver(I) complexes is mediated by the dis-
ruption of respiration which leads to increased membrane
leakage due to the depleted synthesis of ergosterol. A further
eVect is the appearance of morphological features consistent
with the induction of the apoptotic death pathway. In mam-
malian cells, the key event in the induction of apoptosis is
loss of cytochrome c from the mitochondrion which triggers
the apoptotic cascade (Green and Kroemer, 1998). It is spec-
ulated that the critical event in the anti-fungal activity of the
compounds studied here, is the disruption of cytochrome
synthesis. This would lead to the inhibition of respiration,
reduced ergosterol biosynthesis and the increased membrane
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permeability. In addition, loss of cytochrome c (or depletion
of its levels within the cell) may trigger an apoptotic
response in the cell leading to DNA cleavage and the
appearance of features (eg. crescent formation, nuclear frag-
mentation) consistent with this mode of cell death.

While coumarins have well characterised anti-neoplastic
properties (Thornes et al., 1982; Thornes 1983; Ebbinghaus
et al., 1997; Finn et al., 2002, 2004, 2005) the results pre-
sented here demonstrate that coumarin-3-carboxylic acid
and the various silver(I)–coumarin complexes exhibit
strong anti-fungal activities which are mediated through
the disruption of respiratory function and the induction of
apoptosis. In recent years, there has been an increase in the
number of fungal isolates manifesting resistance to conven-
tional anti-fungal agents (Kontoyiannis and Lewis, 2002).
In light of this, there has been an intensive search for new
drugs designed either to circumvent resistance or
target alternative cellular targets to the existing range of
drugs. While polyene anti-fungals bind ergosterol in the
fungal cell membrane and azoles inhibit ergosterol biosyn-
thesis, the compounds described here demonstrate a diVer-
ent mode of action and consequently may have potential
applications in the treatment of infections caused by fungi
that are resistant to conventional drugs. Due to the prob-
lems of drug resistance among pathogenic fungi, it is possi-
ble that the agents described here could be employed either
alone or in combination with existing agents in order to
treat speciWc infections (Antonella et al., 2003).
Please cite this article in press as: Thati, B. et al., Mechanism of a
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