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Abstract

One of the principal aims of robotics is to develop robots that are capable
of long term autonomy in unstructured and unknown environments. Such
autonomy will only be achieved through algorithms that permit robots
to perceive, interpret, and interact with the world they inhabit. The
foundation to such algorithms is the ability to build and maintain a map of
the environment and to estimate the robot’s location relative to that map.
This problem is referred to as Simultaneous Localisation and Mapping (or
SLAM ).
Over the past 25 years considerable progress has been made on the SLAM
problem with a large number of solutions being reported in the literature.
Although the majority of earlier systems depended on active ranging and
proprioceptive sensors, more recently multiple approaches have been re-
ported that rely purely on visual sensors. Visual sensors provide much
richer measurements of the environment and bring with them a wealth
of techniques from the field of computer vision in areas such as feature
detection, tracking, and image matching. However, despite substantial
recent progress in visual SLAM [103], many issues remain to be solved
before a robust, general visual mapping and navigation solution can be
widely deployed.
Central among these issues is persistence - the capability for a robot to
operate robustly for long periods of time. As a robot makes repeated
transits through previously visited areas, it cannot simply treat each mis-
sion as a completely new experiment, not making use of previously built
maps. However, nor can the robot treat its complete lifetime experience
as “one big mission”, with all data considered as a single pose graph and
processed in a single batch optimisation. In this thesis this problem is ad-
dressed through the development of a framework that achieves a balance
between these two extremes, enabling the robot to leverage off the results
of previous missions, while still adding in new areas as they are uncovered
thereby improving its map over time.
The contribution of this thesis is the development of system for perform-
ing real-time multi-session visual mapping in large-scale environments.
Multi-session mapping considers the above problem i.e. combining the
results of multiple simultaneous localisation and mapping (SLAM) mis-
sions performed repeatedly over time in the same environment. The goal
is to robustly combine multiple maps in a common metrical coordinate



system, with consistent estimates of uncertainty. Our work employs in-
cremental smoothing and mapping (iSAM) as the underlying SLAM state
estimator and uses an improved appearance-based method for detecting
loop closures within single mapping sessions and across multiple sessions.
A critical issue is how to pose the state estimation problem for combin-
ing the results of multiple mapping missions efficiently and robustly. We
solve this problem by keeping each mission in its own relative frame of
reference and employ spatial separator variables, called anchor nodes, to
link together these multiple relative pose graphs.
The system architecture consists of a separate front-end for computing
visual odometry and windowed bundle adjustment on individual sessions,
in conjunction with a back-end for performing the place recognition and
multi-session mapping. We provide a comprehensive quantitative anal-
ysis of the system’s performance, demonstrating real-time multi-session
visual mapping. The experimental datasets were captured using wheeled
and handheld cameras and include indoor, outdoor, and mixed sequences
captured over large-scale environments.
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CHAPTER 1

Introduction

One of the principal aims of robotics is to develop robots that are capable of long term

autonomy in unstructured and unknown environments. Such autonomy will only be

achieved through algorithms that permit robots to perceive, interpret, and interact

with the world they inhabit. The foundation to such algorithms is the ability to build

and maintain a map of the environment and to estimate the robot’s location relative

to that map. This problem is referred to as Simultaneous Localisation and Mapping

(or SLAM ).

1.1 Motivation for Multi-Session Visual Mapping

In a wider context mapping and localisation is a critical component in the develop-

ment of situational awareness in any mobile computational system. Although sit-

uational awareness refers to a broad set of spatiotemporal cognitive capabilities, it

can be identified with the ability to perceive the structure and state of the envi-

1



1.1. MOTIVATION FOR MULTI-SESSION VISUAL MAPPING

(a)

(b)

(c) (d)

Figure 1.1: Example platforms with the potential to benefit from long-term SLAM.
(a) PR-2 wheeled robot from WillowGarage1. (b) Astec Firefly unmanned aerial
vehicle (UAV) from Ascending Technologies2. (c) Talos Land Rover LR3 autonomous
vehicle MIT’s entry in the DARPA Urban Grand Challenge3. (d) ATLAS humanoid
robot from Boston Dynamics Incorporate (BDI)4, currently one of three platforms in
the DARPA Robotics Challenge5

ronment and to predict its future state. It is such capabilities within humans that

permit intelligent interaction with one’s environment. The benefits of emulating this

capability in computational systems such as assistive robots, autonomous vehicles,

security applications, etc. is immediately obvious.

The raw material of any SLAM algorithm is data captured from a sensor moving

through the environment. Whether the sensor is a handheld camera carried by a user,

or a laser scanner mounted on a mobile robot, mapping an environment involves using

its data for both the determination of the scene structure and the motion of the sensor

over time. As the robot explores the environment new areas are uncovered with the

resulting local structure being added to the global map thereby providing the robot

with an ever increasing representation of the world. The difficulty with the above
1http://www.willowgarage.com/pages/pr2/overview
2http://www.asctec.de/uav-applications/research/products/asctec-firefly/
3http://grandchallenge.mit.edu/index.shtml
4http://www.bostondynamics.com/robot_Atlas.html
5http://www.theroboticschallenge.org/

2

http://www.willowgarage.com/pages/pr2/overview
http://www.asctec.de/uav-applications/research/products/asctec-firefly/
http://grandchallenge.mit.edu/index.shtml
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http://www.theroboticschallenge.org/


1.1. MOTIVATION FOR MULTI-SESSION VISUAL MAPPING

is that sensor data are prone to noise from multiple sources resulting in errors in

both the map and the motion estimation process. Over time these errors accumulate

resulting in drift in the estimated position and hence unbounded global error in the

map.

The solution to this problem relies on data association between the sensor and

the map. In fact data association occurs as two levels in the SLAM pipeline: locally

and globally. As each new frame of measurements is acquired the motion relative

to the map is typically computed by refining the estimated location such that the

residual between the predicted and measured sensor data is minimised (based on some

cost). In order to compute this residual we must first identify a mapping between the

sensor data and the map. For odometry estimation we can assume a bounded motion

between consecutive sensor acquisitions and hence the data association problem can

be considered as a local search.

To correct for drift an alternative data association strategy must be employed

whereby the system must first recognise when the robot revisits a previously mapped

region, referred to as a loop closure. The significance of loop closures is that they

constitute measurements of the global error. Here the location of the sensor can

be computed relative to the immediate region of the map (i.e. through the above

odometry estimation), and also relative to the region of the map due to the previous

traversal of the region. Taking the difference between both estimates provides a

measure of the drift. Alternatively the regions of the maps themselves can be aligned

directly. In both cases instances of the data association problem arise.

The output of the above process is a set of positions and orientations, or poses,

linked via constraints derived from the odometry and loop closure estimation. This

graphical structure where the poses correspond to the nodes and the constraints

correspond to edges between the nodes is referred to as a pose graph and leads to

what has become the dominant paradigm for optimisation in the SLAM community.

3



1.1. MOTIVATION FOR MULTI-SESSION VISUAL MAPPING

The pose graph encodes a probability density function over the set of poses with

the optimal trajectory typically computed as the maximum likelihood or maximum

a-posteriori estimate of the model. Given that the map itself is computed from sensor

data acquired in the frame of reference of the robot, computation of the global map

is achieved by reprojecting the local structure at each pose into the optimised frame

of reference.

SLAM is a long studied problem, starting with the work of Smith and Cheeseman

[130]. Although the majority of earlier systems depended on active ranging and

proprioceptive sensors, the past decade has seen a focus on approaches that rely

purely on visual sensors. Visual sensors provide much richer measurements of the

environment and bring with them a wealth of techniques from the field of computer

vision in areas such as feature detection, tracking, image matching, and recognition.

Given the above, strong arguments have been put forward that SLAM can now be

considered a solved problem [46]. However, despite substantial recent progress in

visual SLAM [103], many issues remain to be solved before a robust, general visual

mapping and navigation solution can be widely deployed.

Central among these issues is persistence - the capability for a robot to oper-

ate robustly for long periods of time. As a robot makes repeated transits through

previously visited areas, it cannot simply treat each mission as a completely new

experiment, not making use of previously built maps. However, nor can the robot

treat its complete lifetime experience as “one big mission”, with all data considered

as a single pose graph and processed in a single batch optimisation. In this thesis

this problem is addressed through the development of a framework that achieves a

balance between these two extremes, enabling the robot to leverage off the results

of previous missions, while still adding in new areas as they are uncovered thereby

improving its map over time.

The overall problem of persistent visual SLAM involves several difficult challenges

4



1.1. MOTIVATION FOR MULTI-SESSION VISUAL MAPPING

not encountered in the basic SLAM problem. One issue is dealing with dynamic envi-

ronments, requiring the robot to correct for long-term changes, such as furniture and

other objects being moved, in its internal representation. Another critical issue is how

to pose the state estimation problem for combining the results of multiple mapping

missions efficiently and robustly. In this thesis we concentrate on this this latter issue,

referred to as multi-session mapping. In particular the central contribution of this

thesis is the development of a system for performing real-time multi-session visual

mapping in large-scale environments. Specifically the term multi-session mapping

refers to combining the results of multiple simultaneous localisation and mapping

(SLAM) missions performed repeatedly over an extended period of time in the same

environment. The goal is to robustly combine multiple maps in a common metrical

coordinate system, with consistent estimates of uncertainty.

Cummins defines the multi-session mapping problem as “the task of aligning two

partial maps of the environment collected by the robot during different periods of

operation [19].” We consider multi-session mapping in the broader context of life-long,

persistent autonomous navigation, in which we would anticipate tens or hundreds

of repeated missions in the same environment over time. As noted by Cummins,

the “kidnapped robot problem” is closely related to multi-session mapping. In the

kidnapped robot problem, the goal is to estimate the robot’s position with respect to

a prior map given no a priori information about the robot’s position. In multi-session

SLAM, in conjunction with this global localisation problem the robot should begin

mapping immediately and upon localisation the map from the current session should

be incorporated into the global map from previous sessions.

Also closely related to the multi-session mapping problem is the multi-robot map-

ping problem. In fact, multi-session mapping can be considered as a more restricted

case of multi-robot mapping in which there are no direct encounters between robots

(only indirect encounters, via observations made of the same environmental struc-

5



1.2. IS SLAM SOLVED?

ture). On the other hand multi-session mapping may be considered a more general

case of multi-robot mapping in that it does not require direct robot encounters and

does not depend on any form of explicit collaboration between the sessions.

1.2 Is SLAM Solved?

Over the past 25 years considerable progress has been made on the SLAM problem

with a large number of solutions being reported in the literature. State-of-the-art ap-

proaches have been demonstrated for a wide variety of sensors including sonar [140],

lidar [85], radar [6], cameras [92, 26, 67, 93, 136], and even pedometers [2]. They have

included systems that are capable of operating in indoor, outdoor, and mixed envi-

ronments, attached to stable smooth moving platforms or highly dynamic handheld

systems. Solutions exist for areas ranging in scale from small room sized environ-

ments [26, 67], to tens of kilometres [127].

In fact, some consider the development of accurate and robust solutions to the

SLAM problem as one of the outstanding achievements of the robotics community

over the past two decades [32]. The tremendous progress in SLAM, especially in the

past decade, has lead some to claim that SLAM is now well-understood, with the

remaining issues to primarily relating to implementation.

In 2010, Frese published a debate between Thrun and Neira to discuss the question

“is SLAM solved?” [46]. While the initial response of Thrun was that “SLAM for

static environments is solved, as far as basic research is concerned” it is clear from

the conversation that there is a considerable gap between such systems and the type

of SLAM systems required for long-term autonomy in real-world environments.

Neira emphasised the fact that current systems do not adequately address issues

such as dynamics, semantics, and real-time operation over large environments. In

fact on closer consideration both Thrun and Neira are in close agreement in the

6



1.2. IS SLAM SOLVED?

debate. Thrun argues that the “real goal is to impact the world through robotic

technology”. By this argument we can assess whether SLAM has reached maturity

by considering the level of adoption of SLAM in real-world robotic systems. By

any measure this is still quite low, however the demand is ever growing given the

push towards autonomous vehicles, assistive robotics, etc. Our position is that it is

precisely these limitations, such as those identified by Neira, that are the barrier to

SLAM achieving this goal. In the past five years, much of the research in SLAM has

shifted to addressing many of these issues. To achieve long-term autonomy algorithms,

the key challenges are:

Scalable Representations As the size of the environments of operation have

increased a number of research groups have focussed on the development of scal-

able representations for performing SLAM. Perhaps the earliest principled approach

to handling the issue of scale was due to Bosse et al. [9] where he developed a

sub-mapping technique modelling the environment through a set of interconnected

submaps. Such a representation allows a divide-and-conquer approach to optimisation

allowing tractable mapping over large scales. Klein and Murray [67] used a similar

approach in their parallel tracking and mapping visual SLAM algorithm, although

the resulting system is only applicable in small scale environments. An alternative

set of approaches make the choice of discarding metric information and focus on com-

puting topological maps of the environment [20, 21]. Although such algorithms can

operate over vast scales, the lack of a geometric model of the environment restricts

their applicability in many situations. More recently Sibley et al. [125] presented the

relative bundle adjustment (RBA) algorithm which permitted a trade-off between the

requirement for global consistency and computation through the use of an adaptive

windowed approach to optimising the map. In [127] Sibley et al. demonstrated this

technique over what they refer to as vast scales. Johannsson et al. [58] address the

7
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scale issue by only introducing poses into the pose graph if they differ in the position

and orientation of pre-existing poses by a set threshold. Results are shown over a

dataset consisting of tens of hours of video spanning the interior of multiple floors of a

building. The resulting system operates in real-time and produces globally consistent

metric maps.

Robustness Although scalability in terms of computation time is the most imme-

diate consequence of the requirement for large scale autonomy, an equally important

issue arises from the fact that as the scale of the mapping task increases in both

space and time, so too does the potential for invalid measurements. Of particular

importance here is the potential for outlier pose-to-pose constraints, for example,

from the place recognition system. Recently a number of groups have been address-

ing this problem through the development of robust estimation techniques including

the switchable constraints approach of Sünderhauf and Protzel [138, 139], the max-

mixture model of Olson and Agrawal [112], and the realizing, reversing, recovering

(RRR) algorithm of Latif et al. [78].

Dense Mapping & Semantics Even with the advances in SLAM over the last

25, years until recently we were still at a point where the resultant maps typically

consisted of low-level geometric primitives and/or appearance based models derived

directly from images. For example most visual SLAM systems, that use passive sen-

sors, including the one presented in this thesis, produce sparse feature based represen-

tations of the environment. In order to create truly semantic maps of the environment

researchers have recently begun focussing on dense mapping techniques. Newcombe

et al. [105, 106] developed a dense visual SLAM system for desktop scale environ-

ments that exploited the programmability and massive parallelism of modern GPUs

to compute a dense volumetric representation of the environment. More recently the

advent of consumer-level RGBD sensors has allowed researchers to side step the chal-
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lenges of monocular vision by directly measuring depth. Furthermore RGBD sensors

can measure depth in featureless environments, and compute the depth through an

on-board system-on-a-chip (SoC), thereby relieving the CPU of disparity estimation,

and more importantly permitting the use of far more pixels in the image for odometry

estimation and mapping. In [104] Newcombe et al. presented KinectFusion which has

now become a landmark technique for dense mapping with an RGB camera. Build-

ing on this work the author’s own group has addressed a number of limitations of

the KinectFusion algorithm so as to allow it to be used over extended scale envi-

ronments [149], incorporating visual odometry to overcome areas of low geometric

texture [150], and solving the loop closure problem [151]. The importance of these

approaches is that the resulting maps provide a far richer representation of the en-

vironment, and hence are more amenable to object discovery and segmentation [41],

and hence higher-level processing. In the debate between Thrun and Neira, one of the

comments made by Thrun was “what would really be exciting is a semantic under-

standing of the individual objects in the environment, their relationship to each other,

and their characteristics.” Recently Salas-Moreno et al. [122] presented a new object

oriented 3D SLAM paradigm which they call SLAM++. Here they utilise an a-priori

database of object categories to recognise, segment and track objects in an RGBD

sequence. As objects are detected they become variables within an graph of both

objects and camera poses where the edges encode camera-object and object-object

pose constraints. Given such a representation allows SLAM at the object level.

1.3 Thesis Scope

The goal of this thesis is to create a real-time multi-session visual SLAM system to

enable persistent operation of autonomous mobile robots. Of the large literature now

published in SLAM discussed above, two prior contributions exemplify the goals of
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this thesis investigation: (1) The work of Konolige and Bowman [70] on lifelong visual

mapping and (2) Kim et al.’s work on multiple relative pose graphs for cooperative

mapping [66]. Konolige and Bowman write:

“The typical SLAM mapping system assumes a static environment and
constructs a map that is then used without regard for ongoing changes.
Most SLAM systems, such as FastSLAM, also require a single connected
run to create a map. In this paper we present a system of visual map-
ping, using only input from a stereo camera, that continually updates an
optimised metric map in large indoor spaces with movable objects: peo-
ple, furniture, partitions, etc. The system can be stopped and restarted
at arbitrary disconnected points, is robust to occlusion and localisation
failures, and efficiently maintains alternative views of a dynamic environ-
ment. It operates completely online at a 30 Hz frame rate.” [70]

Our work shares similar goals but adopts a somewhat different formulation, based

on the anchor node representation, combined with iSAM, as previously developed in

two dimensions by Kim et al.. Our work is the first example of an anchor node based

SLAM system that (i) uses vision as the primary sensor, (ii) operates in general 6-DOF

motion, (iii) includes a place recognition module for identifying inter and intra-session

loop closures in general environments, and (iv) derives 6-DOF pose constraints from

those loop closures within these general environments (i.e. removing the need for

fiducial targets, as were used in [66]).

Our system architecture for achieving these goals is shown in Fig. 1.2 and con-

sists of a separate front-end for computing visual odometry and windowed bundle

adjustment on individual sessions, in conjunction with a back-end for performing the

place recognition and multi-session mapping. The modularity of the architecture al-

lows the user to efficiently swap different components with minimal effect on other

components.

As part of this thesis we introduce the use of homogeneous point representation to

iSAM allowing the smoothing to take advantage of distant scene points tracked over

long baselines. In fact in the seminal work of Triggs et al. [146] the authors argue
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Figure 1.2: Multi-session visual SLAM system architecture. The major components
of the system include: (A) 2-D feature tracker [153]; (B) dense stereo disparity es-
timation [10]; (C) stereo odometry [42, 109]; (D) windowed bundle adjustment us-
ing iSAM [61]; (E) local map representation; (F) visual place recognition [13]; (G)
loop-closure pose estimation; (H) pose graph optimisation using iSAM; and (I) multi-
session map pose graph representation.

11



1.4. THESIS STRUCTURE

that the natural geometry and error model for visual reconstruction is projective rather

than affine, and as such failure to use a projective representation can be disastrous

for distant points. In conjunction with the above, to represent the 6-DOF motion of

the camera we employ a quaternion based representation of rotations.

Incorporating both homogeneous points and quaternions into the least squares

optimisation of iSAM requires dealing with the over-parameterisation of the repre-

sentations. In both cases we employ a minimal local parameterisation of the spaces

through the use of an exponential map. That is, given that both representations can

be identified with the unit sphere in R4 we can locally parameterise the optimisa-

tion in the tangent space R3 which can then be mapped to an update of the global

parameterisation through the same exponential map.

We provide a comprehensive quantitative analysis of the system’s performance,

demonstrating real-time multi-session visual mapping. The experimental datasets

were captured using wheeled and handheld cameras and include indoor, outdoor, and

mixed sequences captured over large-scale environments.

1.4 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 provides a general

introduction to SLAM, starting with a formulation of the SLAM problem. Following

on from this the chapter will provide a discussion of the three principal paradigms:

extended Kalman filtering (EKF), particle filtering, and smoothing approaches. The

chapter ends with a review of some of the relevant related approaches to visual SLAM.

Visual odometry, the capability to extract motion constraints directly from visual

data, is central to any visual SLAM system. Chapter 3 provides an overview of

the main components involved in stereo based visual odometry including: camera

modelling and pose estimation, robust model fitting, feature detection and tracking,
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and windowed bundle adjustment.

Chapter 4 describes the core contribution of the thesis – the design and imple-

mentation of a visual SLAM algorithm using iSAM and anchor nodes to achieves

multi-session operation. A modular system design is presented, including a discus-

sion of the design decisions taken to arrive at the component based architecture. Each

component is treated in turn starting with the stereo odometry front-end, followed by

the iSAM optimisation system, the place recognition system employed for loop closure

detection and handling, and extension to incorporate multiple mapping sessions.

Chapter 5 provides an experimental evaluation for the system, documenting its

performance for both single session and multi-session operation. Experimental results

are provided for both wheeled robot and man-portable data collection. An analysis

of the system’s performance is provided, demonstrating the capability of the system

to achieve real-time performance.

Chapter 6 reviews the contributions of the thesis and identifies future directions

for the research. In particular the contributions are placed in the context extend-

ing SLAM for long-term autonomy and real-world applications, with a number of

synergies between contemporary research identified and discussed.
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CHAPTER 2

Simultaneous Localisation and Mapping

As was introduced in Chapter 1, SLAM poses the problem of computing a map of an

unknown environment whilst simultaneously localising the sensor platform relative

to the map. Visual SLAM (vSLAM) refers to the particular case of using camera(s)

as the input sensor. In fact the SLAM problem predates the research efforts of

the robotics community with earlier research in photogrammetry, where it is termed

bundle adjustment, and more recently in the computer vision community [146], where

it is termed structure from motion (or SfM ). Although from an abstract point of

view each of these terms refers to the same problem, there are key differences in the

approaches and contributions made by each community. What differentiates the work

of the SLAM community, at least initially, was the focus on online solutions to the

problem. This paradigm stems from the fact that, as part of mobile robotics, SLAM

typically focusses on situations where the sensor is mounted on a mobile robotic

platform where the constructed map and the current location of the platform relative

to that map forms part of a larger perception system. Hence batch approaches are
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not applicable since at all points in time the robot requires a current estimate of the

environment in order to complete its task.

A central element of the SLAM problem is the representation and quantification

of uncertainty. This is due to the fact that the physical world in which the robot

exists is inherently unpredictable and hence contains elements and events that are

outside of the system’s world model, or modelling capability. Furthermore given that

sensors provide the link between the robot and the physical world, data from those

sensors will inevitably be perturbed by measurement noise. Developing autonomous

robots capable of dealing with such issues requires a probabilistic approach whereby

both the map, M, and the location of the robot over time within the map, Xt , are

modelled as random variables governed by some underlying joint density function.

p(Xt ,M) (2.1)

In this context, the SLAM problem becomes one of estimation of this distribution.

This chapter provides both a brief survey of the current state of the art of SLAM

techniques and an introduction to the mathematics of the SLAM problem. Section 2.1

begins by providing details of the general probabilistic formulation of the SLAM prob-

lem. Next, Section 2.2 reviews the genesis of research into the SLAM problem and

provides a historical review of the main milestones since that time. In particular

this section will begin by reviewing EKF based approaches highlighting both the

strengths and limitations of the earlier systems. Extensions to ameliorate these is-

sues will be also reviewed. Aside from the EKF solutions, two other paradigms have

received greatest attention in the literature: particle filtering (a.k.a. Monte-Carlo

methods), and graph based approaches. Both of these approaches will be reviewed

with the former focussing on the FastSLAM algorithms. The general graphical SLAM

formulation will be presented of which there are now numerous algorithms. These ap-
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proaches model the problem through the use of probabilistic graphical models where

poses of the robot at discrete intervals and features of the environment are treated

as latent variables, with measurements from sensors (e.g. odometry, visual features,

laser returns, etc.) providing constraints between these variables. Such approaches

have become predominant over the last decade and have been demonstrated in very

large scale environments. Given that the SLAM method used in this thesis is the in-

cremental smoothing and mapping (iSAM) approach of Kaess et al. [61], the section

will focus on iSAM’s graphical formulation both in terms of the underlying factor

graph representation, and in terms of the optimisation approaches employed to per-

mit incremental operation. The chapter completes by reviewing the visual SLAM

problem.

2.1 Mathematical Formulation

As mentioned above, the SLAM problem aims to estimate the joint density of the

map and trajectory of the robot as defined in Eq. 2.1. This estimation process is

achieved through incremental integration of data from the robot platform including

odometry control inputs, U, and sensor measurements, Z. We denote the dependency

between all of these variables by rewriting Eq. 2.1 as the posterior:

p(Xt ,M|Ut ,Zt) (2.2)

where, the evolution of the problem over time is highlighted by the temporal index, t,

for each of the variables Xt , Ut, and Zt . Note here the assumption that the environ-

ment is static and hence the lack of the subscript on M. Here, Xt = {x0,x1, . . . ,xt},

represents all poses of the robot, Ut = {u1,u2, . . . ,ut}, represents the control inputs,

and Zt = {z0, z1, . . . , zt}, represents the measurements at each time step.

Technically Eq. 2.2 represents the full SLAM problem due to the fact that it
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Figure 2.1: Bayesian network illustrating the structure of the SLAM problem.

includes both the current pose, xt, and all previous poses, x0:t−1. This is differentiated

from the online SLAM problem where only an estimate of the current pose, xt, is

maintained at each time step.

p(xt ,M|Ut ,Zt) (2.3)

Note that the term online is somewhat of a misnomer and is used due to the fact that

historically only batch solutions to the full SLAM problem were available. A number

of the real-time incremental solutions to the full SLAM problem now exist.

Estimating either of the above posteriors becomes tractable through the use of

both the product rule and Bayes rule resulting in a factorisation into a set of condi-

tionally independent motion and measurement models. Here the measurement model,

p(zt|xt,M), provides a distribution over the measurement space given the current pose

and the map estimates. The motion model, p(xt|xt−1,ut), on the other hand charac-

terises the uncertainty in the position of the robot at time t, given the previous pose

and the control input applied at that time. This factorisation is illustrated in the

Bayesian network shown in Fig. 2.1.
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Figure 2.2: Bayesian network highlighting relationship between landmarks and mea-
surements. Note that the landmarks are conditionally independent given the path.

2.1.1 Landmark-based SLAM

Although the above model is generic from the point of view of the map representa-

tion, a common representation (and the representation used throughout this thesis)

is to consider the map as consisting of a set of landmarks, M = {l0, l1, . . . , lN}. Each

measurement then corresponds to an observation of a particular landmark from a

particular pose. Hence instead of collecting all sensor data at time t into a single

measurement, zt, we associate multiple measurements with each pose; one for each

landmark observed. To make this distinction explicit we now denote measurements,

zi. This landmark based SLAM model is shown in Fig. 2.2. Note that although the

most common approach is for each landmark to correspond to a single point loca-

tion, this model does support more generic landmarks e.g. lines, or other geometric

features.

From the structure of the Bayesian network shown in Fig. 2.2 we can immediately

write the factorisation of Eq. 2.2 :

p (Xt ,M|Ut ,Zt) ∝ p (x0)
N−1∏
t=1

p (xt|ut,xt−1)
K∏
i=1
p (zi|xti , lji) (2.4)

Solving the SLAM problem in this context now corresponds to computing the maxi-
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mum a-posteriori (MAP) estimate of Xt and M, given the measurements,

[X∗t ,M∗] = arg max
Xt,M

{p (Xt ,M|Ut ,Zt)} (2.5)

In all cases in this thesis we will assume both the motion and measurement models

to be Gaussian as follows:

xt = g(xt−1,ut) + ωt (2.6)

p(xt|xt−1,ut) ∼ N (g(xt−1,ut),Ωt) (2.7)

∝ exp
(
−1

2 (xt − g(xt−1,ut))T Ω−1
t (xt − g(xt−1,ut))

)
(2.8)

zi = h(xti , lji) + σt (2.9)

p(zi|xti , lji) ∼ N (h(xti , lji),Σt) (2.10)

∝ exp
(
−1

2 (zi − h(xti , lji))
T Σ−1

i (zi − h(xti , lji))
)

(2.11)

where, g(xt−1,ut) and h(xt, lj) are the deterministic motion and measurement func-

tions and ωt and σt are an additive noise terms which are taken to be Gaussian with

zero mean and covariances Ωt and Σt, respectively.

2.1.2 Data Association

Reviewing Eq. 2.9 we note that each measurement, zi, can be considered as a con-

straint between a landmark, lji , and a pose, xti . Computing these constraints requires

solving the data association problem; one of the most important and challenging prob-

lems in SLAM [102]. In simple terms the data association problem involves identifying

correspondences between measurements acquired at different time instances (i.e., so

as to permit collection of all measurements for each landmark into separate subsets).
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Often it is useful to consider the data association problem as three separate sub-

problems. The first is to identify corresponding measurements between consecutive

poses (or poses that are close in time). The second is to identify new landmarks

i.e. which have not been previously observed. And finally the third is to identify

correspondences between measurements when an area is revisited.

The benefit of distinguishing along these lines is that the first two here are typically

handled by a separate feature detection and tracking system that takes advantage of

the spatial proximity of features between poses in the sensor frame of reference. An

example of this is that of tracking a visual feature in a video sequence captured from

a moving camera. Assuming an adequately high frame rate, the induced motion of

a feature due to the motion of the camera should be such that the features detected

in a given frame should have a bounded displacement in the subsequent frame. Fur-

thermore given the modelling of uncertainty, a visual SLAM system should be able to

make an informed decision of the bounds on this displacement on a feature-by-feature

basis.

This leads to the second task of identifying new features. A common approach

to solving this problem is to take features that do not fall within these uncertainty

bounds as being new features [31]. This test is normally coupled with a geometric or

visual descriptor matching step to ensure robustness.

When revisiting a previously mapped area the accumulated drift can be significant

and as a result the above approaches do not apply. Instead the approach is normally

to first perform a global recognition step whereby the current sensor data is matched

against a database of previously visited areas [20]. This process may identify a number

of putative matches. Each of these matches is then compared against the current

sensor data in order to derive a set of local correspondences. The output of this latter

process is used to provide a measure of confidence in each of the matches. The final

match is selected as the one with the highest confidence that is above a predefined
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threshold, which is typically set quite conservatively to avoid false positives.

2.2 EKF Approaches

The earliest work on the SLAM problem within the robotics community is typically

credited to Smith and Cheeseman [130] where they addressed the representation of

uncertain spatial relationships through what they defined as approximate transfor-

mations (AT ’s). AT’s characterised the transformations between coordinate frames

as random variables which they estimated through their mean and covariance. Im-

portantly here the covariance matrix provided a measure of the uncertainty over the

variables of the transformation.

In [131] Smith et al. built on their previous work by defining the stochastic map

which captured the relationships between all spatial variables (e.g. the structure

of the environment, and, the location of the sensor) in a single state vector. This

representation allowed the definition of a probability density function over this state

space, again estimated through the mean and covariance of the vector. Critically the

covariance matrix models not only the variance in the individual variable estimates

but also the correlations between the variables.

As the vehicle moves, uncertainty in the motion accumulates resulting in drift in

the global pose estimate. Given that measurements are represented relative to the

vehicle frame their global uncertainty is correlated with that of the vehicle and hence

grows in tandem. This network of correlations is effectively what is captured by the

stochastic map.

As explained in [32], successive sets of measurements result in greater and greater

correlations between variables. From a representational point of view this is quantified

in the off diagonal elements of the covariance, and as result, over time, the covariances

becomes fully dense requiring accurate modelling in order to avoid inconsistencies [18].
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Another important contribution of Smith et al. [131] was an EKF approach to

incrementally constructing and updating the map which constituted the first solution

to the SLAM problem. This work signalled the start of a period of intense activity

into filtering solutions to SLAM problem. A thorough review of the chronology of

developments during this period can be found in Durrant-Whyte and Bailey [32].

Although the EKF approach to SLAM has received considerable focus, and in fact

was the first paradigm employed in vSLAM ([26]), it does suffer from a number of

limitations. Principal amongst these is that although the state vector grows linearly

with the map, the covariance grows quadratically as does both the space and compu-

tational complexity. This means that EKF SLAM systems are limited in the scale of

the areas over which they can operate.

Dealing with this issue was a key driver for early SLAM research. Early approaches

to mitigate this issue include the compressed filter algorithm developed by Guivant

and Nebot [49], sequential map joining developed by Tardos et al. [140], and the

constrained local submap filter developed by Williams et al. [152]. Each of these

three approaches reduced the computational burden by a constant factor but still

had quadratic complexity. Estrada et al. [35] improved on this by achieving linear

complexity with their Hierarchical SLAM algorithm.

One of the key shortcomings of EKF based approaches is that as measurements

accumulate all of the variables in the map become completely correlated and hence

the covariance becomes dense. An alternative set of approaches is based on using the

inverse form of the covariance, also known as the information matrix [143, 36, 148].

The benefit of using the information matrix is that whilst the covariance becomes

dense over time, the information matrix maintains its sparsity as long as the entire

robot trajectory is maintained in the state vector. In fact this key insight is also

exploited in pose graph methods (see Section 2.4). Eustice exploited this insight to

realise the exactly sparse delayed state filter, which was applied to underwater camera

22



2.3. PARTICLE FILTERING

data to reconstruct the wreck of the Titanic [36]. Walter developed the exactly sparse

extended information filter (ESEIF) which discarded selected odometry measurements

to maintain sparsity whilst performing landmark based SLAM.

An issue with both the EKF and EIF approaches, as shown by Julier and Uhlmann

[59], is that over extended timescales, the state estimates are guaranteed to become

inconsistent. Furthermore, the representation employed assumes a unimodal distri-

bution which can be adequately approximated through the mean and covariance.

This limitation means that the approach is unable to cater with ambiguity and alias-

ing within the environment and hence is unsuitable for global localisation, (e.g. the

kidnapped robot problem), which often involve a number of distinct hypotheses [144].

2.3 Particle Filtering

Montemerlo et al. [98] present the FastSLAM algorithm that uses a non-parametric

particle filter representation which permits approximation of multimodal distributions

and is therefore much more robust to problems such as the above. FastSLAM repre-

sents the joint density (see Eq. 2.1) over the path and the map as a set of particles.

Each particle consists of an estimate of the path and a series of independent Gaussian

estimates of the locations of each of the landmarks within the map. More specifically

at time t the posterior is defined as a set of sampled particles, St =
{
S0
t , . . . ,SK−1

t

}
.

Here the ith particle is defined as, Sit =
{
Xi
t,
(
µit,1,Σi

t,1

)
, . . . ,

(
µit,N ,Σi

t,N

)}
, where Xi

t

is the full path estimate and
(
µit,j,Σi

t,j

)
are the mean and covariance of landmark j.

An important aspect of the FastSLAM algorithm is the use of Rao-Blackwellization

whereby the path is estimated using a modified particle filter and the landmarks are

estimated in closed-form using a set of independent Kalman filters. A complete it-

eration of the algorithm therefore consists of a path update step followed by a map

update step. The path update step first involves using the known control input, ut, to
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predict the latest pose for each particle by sampling from motion model, p(xt|xt−1,ut).

An important point to note is that although the particles within FastSLAM repre-

sent the full trajectory, the algorithm is still a type of filtering in that only the most

recent pose is used in prediction step. An importance weight is then computed for

each resulting particle by evaluating the likelihood of the measurements, p(zt|xt,m).

These weights are then used in a resampling step to generate a new set of particles by

sampling with replacement from the current set, where the probability of sampling a

given particle is given the by normalised importance weight.

Given an updated path each of the landmarks become independent and hence

can be estimated separately (see Fig. 2.2). This is achieved by a set of NK Kalman

filters (i.e. N KF’s for each of the K particles) which update the
(
µit,j,Σi

t,j

)
vectors.

Note that unlike EKF SLAM, here the Kalman filters operate over a much lower

fixed dimension and therefore are computationally efficient. Given that a weakness

of particle filters lies in the fact that the number of particles required to approximate

the distribution grows exponentially with the number of dimensions, this combina-

tion of conditional independence with Rao-Blackwellization is critical to making the

FastSLAM algorithm tractable. Furthermore, although the above suggests a update

complexity of O (NK), this is reduced to O (N logK) through the use of a tree based

data-structure in the management of the map [98].

2.4 Smoothing Approaches

Despite the considerable breath of approaches based on filtering, a fundamental issue

with applying filtering approaches in the context of the non-linear SLAM problem is

that they have been shown to be inconsistent [59]. An alternative SLAM paradigm,

sometimes referred to as smoothing [28], is to represent the problem as a graph of

non-linear constraints where nodes in the graph represent the latent variables and
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edges correspond to soft constraints between the variables e.g. due to measurements

or odometry information.

Such a representation was first introduced by Lu and Milios [84] where they de-

fined the pose graph as a series of poses connected via pose relations, which were in

turn derived by alignment of the sensor scan data of poses involved in the relation-

ship. In this work the authors did not represent the scene structure explicitly and

instead restrict the estimation problem to the pose graph. Two types of edges be-

tween pose nodes are identified: (i) odometry constraints between consecutive poses,

and, (ii) loop-closure constraints due to revisiting a previously mapped region of the

environment. On computation of the smoothed pose graph the map is constructed

by projecting each lidar scan into the local frame of the corresponding pose.

Since then a considerable collection of graph based approaches have been reported

in the literature [50, 28, 113, 75, 72]. In fact over the last decade such graphi-

cal approaches have become the predominant method in large scale SLAM systems,

demonstrating mapping solutions at much greater scales than those shown by filtering

approaches.

The reason for this is that with graphical approaches the optimisation is performed

over the current pose and all previous poses, and hence solves the full SLAM problem.

Maintaining all poses in this fashion results in a sparsity in the underlying matrix

representation of the graphical structure which can in turn be exploited through the

use of sparse matrix optimisation techniques [25]. Although initially only batch solu-

tions were available, more recently real-time online solutions that exploit incremental

solvers have recently been presented in [61, 63].

Although many graphical representations have been used in formulating the SLAM

problem, given the focus of this thesis on incremental smoothing and mapping (iSAM),

we will follow the approach of Dellaert and Kaess [29] and use the factor graph rep-

resentation (see Chapter 8 of Bishop [8] for an excellent tutorial introduction).
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Figure 2.3: Factor graph of the SLAM problem corresponding to the Bayesian network
shown in Fig. 2.2.

A factor graph is a bipartite graph consisting of two types of nodes: variable

nodes and factor nodes. Edges in the factor graph connect variable nodes to factor

nodes, where a factor node represents a function over all of the variables to which

it is connected. A factor graph then represents a factorisation of a joint distribution

over the variables, x, as the product of all of the factors [8],

p(x) =
∏
s

fs (xs) (2.12)

where, xs, is the subset of variables in s associated with the factor fs. So, whereas

other graphical models, such as Bayesian networks, represent the factorisation of the

joint distribution as a product of conditional probability distributions, with factor

graphs the factors are general functions and hence permit more general factorisations.

Furthermore by making the factors explicit (i.e. as nodes), factor graphs can include

multiple separate factors involving the same subset of latent variables.

In order to derive the graphical formulation of the SLAM problem using factor

graphs we start with the general formulation provided in Section 2.1 and in particular

equations 2.4 and 2.5. The factor graph for the SLAM problem is shown in Fig. 2.3
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(corresponding to the Bayesian network shown in Fig. 2.2) where,

p (Xt ,M|Ut ,Zt) =
∏
s

fs (xs) (2.13)

= f
(
x0; p0

)N−1∏
n=1

f (xn,xn−1; un)
K∏
k=1

f (xik , ljk ; zk) (2.14)

As can be seen from the figure three factor types are shown; measurement factors,

f(xik , ljk ; zk), pose-to-pose factors, f(xn,xn−1; un), and an anchor factor, f(x0; p0),

that acts as a prior on the position of the initial pose. Each of these factors is a

function of the unknown variables, parameterised by the measurements. Note that

the pose-to-pose factors are constructed by both incremental motion constraints (i.e.

between poses from neighbouring time instants) and from loop closure constraints

(not shown in the figure).

Assuming the Gaussian motion and measurements models from equations 2.7 and

2.10 we can use the standard technique of recasting Eq. 2.5 as minimising the negative

log likelihood as

[X∗t ,M∗] = arg min
Xt,M

[
− log

(∏
s

fs (xs)
)]

(2.15)

= arg min
Xt,M

N−1∑
n=1

[
(xn − g(xn−1,un))T Ω−1

n (xn − g(xn−1,un))
]

+
K∑
k=1

[
(zk − h(xik , ljk))T Σ−1

k (zk − h(xik , ljk))
]

(2.16)

Equation 2.16 corresponds to the maximum likelihood (ML) SLAM estimate which

can be estimated using non-linear optimisation techniques such as Gauss-Newton or

Levenberg-Marquardt [89]. Such approaches involve iterating the process of linearis-

ing around the current estimate and then solving for an update to the estimate that

reduces the cost. This iterative update of the current estimate continues until a

minimum is reached (or some other stopping criteria is met).
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The remainder of this section provides a summary of the approach used by iSAM.

More details can be found in Kaess [60], Kaess et al. [61] and Dellaert and Kaess [29].

Taking θn = (xn, ln) as the combined poses and landmarks we can linearise Eq. 2.16

about the current estimate to arrive at a cost function of the form

C(δθ) =
N−1∑
n=1
‖Gn−1δxn−1 − δxn + g(x̂n−1,un)− x̂n‖2

Ω (2.17)

+
K∑
k=1
‖Hkδxik + Jkδljk + h(x̂ik , l̂jk)− zk‖2

Σ

where ‖x‖2
Γ = xTΓ−1x corresponds to the squared Mahanalobis distance, δθ =

(δx, δl) is the combined update to the poses and the landmarks, and x̂, l̂ denotes the

current estimates. Gn−1 is the Jacobian of g with respect to xn evaluated at x̂n−1.

Whilst Hk and Jk are the Jacobians of h with respect to xik and ljk , respectively,

again evaluated at the current estimate.

Both terms in Eq. 2.17 can be simplified and combined to form a standard least

squares cost function

C(δθ) = ‖Aδθ − b‖2 (2.18)

Here the measurement Jacobian, A, has a block structure collecting together the G,

H, and J , matrices, and b is a column vector of residuals between measurements

and the estimates. Hence the measurements (or factors) correspond to contiguous

blocks of rows of A whilst the variables correspond to contiguous blocks of columns.

Note that in Eq. 2.18 we have absorbed the covariances into the Jacobian matrix and

residual vector. This is achieved as follows: if we take the Mahanalobis distance for

a given variable x to be given by ‖x‖2
Σ = xTΣ−1x, then by the change of variables

x′ = Σ−T
2 x we have ‖x‖2

Σ = ‖x′‖2.

The key to efficient solutions to Eq. 2.18 is to exploit the sparse structure of A.

For example the factor graph shown in Fig. 2.3, will result in the block matrix form
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Figure 2.4: Measurement Jacobian of the SLAM problem corresponding to the factor
graph shown in Fig. 2.3.

Figure 2.5: Example of a more complex synthetic SLAM scenario with the corre-
sponding measurement Jacobian where the sparse structure of odometry followed by
feature measurement constraints is clearly visible.
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shown in Fig. 2.4. Here the separation of the odometry versus the feature constraints

shows two differing sparsity patterns. A more complex simulated example is shown

in Fig. 2.5 where this sparse structure becomes even more pronounced. Here the

system consists of 100 poses, 7 landmarks, and 177 measurements. Given the poses

are 3D variables, whilst the landmarks are 2D, the resulting measurement Jacobian

has dimensions (100 ∗ 3 + 177 ∗ 2)× (100 ∗ 3 + 7 ∗ 2) = (654× 314).

The standard approach to computing δθ is to set the derivative of C with respect

to δθ equal to zero, resulting in the well-known normal equations

ATAδθ∗ = ATb (2.19)

Solving for δθ∗ is typically achieved via Cholesky decomposition of ATA. The

Cholesky decomposition results in a factorisation of the form ATA = RTR, where R

is a right upper-triangular matrix. Given this decomposition we solve for δθ∗ by first

solving Ry = ATb followed by RTδθ = y.

Alternatively, and as is the case in iSAM, one can apply QR-factorisation directly

to the measurement matrix A = Q

 R

0

, where Q is an orthogonal matrix. Here

the solution to Eq. 2.18 is given by [60]:

Rδθ∗ = QTb (2.20)

where δθ∗ is computed through back-substitution.

A key innovation of Kaess’s PhD thesis research was to develop an efficient and

exact solution for incrementally updating the QR factorisation, recalculating only

the matrix entries that actually change [60]. Periodic variable reordering is used to

prevent unnecessary fill-in in the factor matrix due to when loops get closed. Kaess

et al. also developed efficient algorithms to access the estimation uncertainties of
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interest based on the factored information matrix [61]. More recently, the iSAM2

algorithm was developed, which uses the Bayes Tree data structure to perform fluid

relinearisation and periodic variable reordering [63].

Two open source iSAM implementations are currently available – Kaess’s iSAM

library implemented at MIT and the GTSAM library made available in 2012 by

Dellaert’s group at Georgia Tech. This thesis uses the former implementation, which

has also been deployed for a wide range of applications [39, 66, 38, 40, 147, 58, 4,

65, 64, 76]. A variety of other packages for pose graph optimisation are available, for

example at http://www.openslam.org. At present the most widely used alternative

to iSAM or GTSAM is likely the g2o graph optimisation algorithm developed by

Kümmerle et al. [75].

An important extension of pose graph SLAM is to perform mapping with multiple

robots. Notable examples include Fox et al. [45, 71], Howard [56], and Cunningham et

al. [22, 24]. While most of the multi-robot SLAM literature has been focussed on land

robots using lidar, multi-robot visual SLAM systems have recently been created [154,

43]. Multi-robot SLAM is highly relevant to the multi-session SLAM investigated in

this thesis, and will be discussed in more detail in Chapter 4.

2.5 Visual SLAM

Although early SLAM systems mainly used active sensors such as sonar, radar, and

lidar, over the last 15 years the principal focus has been on the development of visual

SLAM systems. This effort started with the work of Davison [27] where he developed

an active stereo based SLAM system capable of building a consistent sparse map

of landmark features, using an actively steered stereo camera system. A key aspect

of this work was maintaining the full covariance matrix for the Kalman filter state

estimates of camera and landmark locations. This was not performed in previous

31

http://www.openslam.org


2.5. VISUAL SLAM

approaches, such as the work of Ayache and Faugeras [3]. In subsequent work, Davison

and colleagues achieved real-time SLAM with a monocular camera [26] and introduced

the highly effective inverse depth parameterisation [99]. Concurrently, a wider group

of visual SLAM algorithms and systems emerged [103].

A key milestone in the evolution of visual SLAM was the creation of visual map-

ping systems that could achieve real-time operation for extended input sequences

in limited scale environments Klein and Murray [67], Eade and Drummond [33],

and Davison [26], Strasdat et al. [135]. Klein and Murray’s system is highly repre-

sentative of this work, and is targeted at the task of facilitating augmented reality

applications in small-scale workspaces (such as a desktop). In this approach, the

processes of tracking and mapping are performed in two parallel threads. Mapping

is performed using bundle adjustment. Robust performance was achieved in an envi-

ronment as large as a single office. While impressive, these systems are not designed

for multi-session missions or for mapping of large-scale spaces (e.g., the interior of a

building).

One exception to this has been the extension to PTAM developed by Castle et al.

[16] to permit several cameras to work in multiple maps, both separately or simul-

taneously. Here the approach to dealing with large scale environments is to permit

the user to decide what regions to map. Each map is bounded in size and operates

independently of other maps in the system. To switch between maps the current

frame is matched against a set of subsampled keyframes from all existing maps. The

authors provide impressive results of the technique’s operation in a building scale en-

vironment. A key difference between this approach and our work is that the system

does not estimate the transformation between the submaps and therefore does not

provide a global estimate of the environment.

There have also been a number of approaches reported for large-scale visual map-

ping. Perhaps the earliest of these was the work of Nistér et al. [111] on stereo
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odometry. In the robotics literature, large-scale multi-session mapping has been the

focus of several recent efforts, including Sibley et al. [126, 127], who used relative

bundle adjustment combined with FABMAP for appearance-based loop closing, and

Konolige et al. [69, 70, 73] who developed the FrameSLAM system for large-scale and

lifelong mapping.

The research in this thesis is most closely related to the work of Konolige et al. [73],

but has several differences. A crucial new aspect of our work is the method we use for

joining the pose graphs from different mapping sessions. In the view-based mapping

approach, Konolige et al. employ the Toro incremental optimisation algorithm to

allow for real-time performance. Due to the fact that Toro requires that all poses are

connected in a single graph, at the beginning of each new session the new pose-graph

is immediately connected to the last pose from the previous session through what

they refer to as a "weak link". The weak links are added with a very high covariance

and subsequently deleted after place recognition is used to join the pose graphs[73].

In our approach, described in Chapter 4, we use anchor nodes [66] as an alternative

to weak links. Here each session is represented initially as a disjoint pose-graph with

each pose stored relative to that pose-graph’s anchor node. When the place recog-

nition system identifies an encounter between two separate sessions, the encounter

induces a constraint between the two associated poses and the anchor nodes of the

associated pose-graphs. Since the pose-graphs are each represented relative to the an-

chors nodes, their use provides a more efficient and consistent way to stitch together

the multiple pose graphs resulting from multiple mapping sessions. In addition, our

system has been applied to hybrid indoor/outdoor scenes, with hand-carried (full 6-

DOF) camera motion. To our knowledge, the multi-session mapping results published

by [70] are restricted to planar motion.
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2.6 Summary

This chapter has reviewed the literature in SLAM, describing the three main tech-

niques for SLAM state estimation and providing a review of some of the key ap-

proaches to visual SLAM. The capability to extract motion constraints directly from

visual input is at the heart of any visual SLAM system. The next chapter, focusses

on this problem, describing each of the components of a visual odometry system,

including camera modelling, camera pose estimation, feature detection and tracking,

robust estimation, and windowed bundle adjustment.
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CHAPTER 3

Visual Odometry

The aim of this chapter is to provide an overview of the main components involved in

the visual odometry processing with a particular focus on the approaches involving

stereo based camera systems. One of the main contributions of this thesis is the

development and evaluation of a state-of-the-art visual SLAM system. The front-

end of the system consists of a set of modules for the computation of stereo based

visual odometry. Hence this chapter provides the necessary background for placing

the design of this aspect of the system in the context of other systems reported in the

literature and, to assist the reader in understanding the basis of the design decisions

taken during its development.

3.1 Introduction

The goal of any visual SLAM system is to estimate a robot’s motion through an envi-

ronment whilst simultaneously building a map of that environment. This is achieved
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through a combination of local motion constraints between consecutive poses (or

keyframes) and global loop closure constraints. The separation of these two types of

constraints is important for two reasons: (i) they each employ different methods to be

computed, and, (ii) they each play a different role in the overall computation. In par-

ticular, local constraints permit the incremental estimation of the motion and map,

whilst loop closure constraints correct for accumulated drift and hence are critical in

achieving global consistency.

In this chapter the process of estimating local motion constraints by computing the

ego-motion of the sensor platform is discussed. In particular we address the situation

where only camera sensors are used. From the point of view of the SLAM estimator

the output of this process is akin to that of wheel odometry, and hence it is referred

to as visual odometry (VO). The term itself was first coined in the seminal work by

Nistér et al. [111], however the problem had been studied for many years previously

by Moravec [100], Matthies [90] and others (see Scaramuzza and Fraundorfer [123]

and the references therein for a comprehensive historical review of the field).

The significance of Nister’s work is that it is considered the first VO system that

could operate robustly in real-time over large distances (i.e. of the order hundreds of

meters). The approach was demonstrated in both monocular and stereo platforms,

where the latter was shown to be more accurate and reliable due to the determination

of scale from knowledge of the baseline distance. A secondary benefit of the stereo

based approach was the fact that no special handling was required in the cases of

little or no motion, which in the monocular case is ambiguous with situations where

all features are at a large distance from the camera. It is also worth noting that since

estimation in the monocular case is only possible up to a scale factor, intermittent

failures in the processing will result in reinitialisation and hence an unknown relative

scale factor. Again given the known baseline this problem does not occur in the case

of stereo.
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In essence, from the point of view of visual odometry, the differences between

monocular versus stereo cameras is that the former is a bearing-only sensor whereas

the latter provides both bearing and range. For monocular sensors this raises the

problem where a single measurement of a feature point does not provide sufficient

information for landmark initialisation. This problem has received much attention in

the monocular visual SLAM community. A consequence of the fact that the problem

does not occur in stereo (at least within a limited range [133]) is that fields of stereo

vs. mono based approaches have been investigated somewhat independently over the

years.

3.2 Rigid Body Transformations

In order to simplify the notation, we will use the homogeneous representation of the

rigid body (i.e. Euclidean) transformations between two frames,

pB = TBA pA (3.1)

where, pi ∈ R4 are homogeneous vectors, the subscript on the vector identifies the

coordinate frame in which the point is represented, and the subscript and superscript

on the transformation, TBA , identifies that the transformation is from coordinate frame

A to coordinate frame B. For any given matrix R representing a rigid body rotation

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1} and translation vector t ∈ R3, the

corresponding homogeneous transformation matrix T is given by

T =

 R t

0 0 0 1

 (3.2)

From Eq. 3.5 on page 39 it can be seen that for a calibrated camera, visual odom-
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etry seeks to recover a series of camera poses relative to some chosen world coordinate

system, W , one for each image frame, It, taken at time t, from the given input se-

quence. However, rather than compute the set of absolute transformations, TWt , most

systems will instead compute a series of incremental transformations either between

each consecutive pair of image frames (i.e. T t−1
t ) or between the current frame and

the most recent keyframe, ki (i.e. T ki
t ). The use of keyframes reduces the number of

poses represented in the final pose graph by only adding a pose, or keyframe, when the

translational or rotational motion of the sensor exceeds a predefined threshold (or in

some systems when the number of features successfully tracked from previous frames

drops below a predefined threshold). The approach of using keyframes is discussed

in Chapter 4.

Given the above, the absolute motion of the camera in the world coordinate system

can be recovered by,

TWt = TWt0 T
t0
t1 . . . T

t−1
t (3.3)

In most cases and without loss of generality we choose the world coordinate system

as the coordinate system of the camera at t0, (i.e. TWt0 = I) and so,

Tt = T t0t1 . . . T
t−1
t (3.4)

where the absence of the superscript on the left hand side is taken to imply that the

matrix represents the absolute pose of the camera.

Many parameterisations of the set of rotations SO(3) exist [74] including the ex-

plicit matrix representation (as used above), Euler angles (e.g. pitch-yaw-roll triples),

rotation vectors [30] (closely related to axis-angle representation), quaternions of unit

norm [55], and exponential coordinates [87]. Since the number of degrees of freedom

of Rt is greater than the rotation that it represents, estimating it directly requires

extra constraints to ensure that the resulting matrix is orthogonal. Instead it is typ-
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ical to use one of the above more compact representations in the estimation process.

Hence this leads to an important choice in any visual odometry system.

The main differences between the various parameterisations are the number of

parameters used and the constraints to ensure that points within the parameterisation

lie on the manifold SO(3). Given that the intrinsic dimensionality of the manifold

is 3 this corresponds to the minimum dimensionality of any parameterisation. Many

SLAM systems have historically used Euler angles to parameterise rotation due to the

fact that their parameterisation is both minimal and intuitive. However such global

parameterisations suffer from singularities and as such can cause problems within

minimisation procedures [141]. Instead a more appropriate approach is to perform

the optimisation by computing updates in the local tangent space of SO(3) at the

current estimate and then to map the resulting update back into the manifold. In this

thesis we develop such an approach utilising quaternions, detailed in Section 4.2.3,

thereby avoiding the problems with singularities.

3.3 Camera Models

Camera estimation refers to the process of estimating the projection effected by a

camera transforming scene points, represented in some world frame, to image points,

represented in the image retinal plane. Throughout this thesis this transformation is

modelled using the standard perspective projection model,

x = KTCWp = K
(
R t

)
p (3.5)

Here, p = (x , y, z , 1 )T ∈ R4, is a homogeneous 3D world point, and x = (u, v,w)T ∈

R3 is the homogeneous coordinate corresponding to the inhomogeneous 2D image

point, x̃ = (u/w, v/w)T ∈ R2. R ∈ SO(3) and t ∈ R3 are the rotation matrix and

inhomogeneous translation vector defining the transformation between the world and
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camera coordinate system. The matrix, K ∈ R3×3, is the camera projection matrix,

K =


fx 0 uc

0 fy vc

0 0 1

 (3.6)

where fx and fy are the focal length in the x and y directions, and p̃c = (uc, vc)T

is a vector of the inhomogeneous coordinates of the principal point of the camera

i.e. point intersection between the principal ray of the camera and the image plane.

It should be noted that real cameras suffer from radial and tangential distortions

which are not modelled in the above expression. Instead it is assumed that standard

preprocessing steps have been applied to calibrate and remove these distortions [54].

As can be see from Eq. 3.5 the projection of a camera is defined by a 3 × 4

projective matrix,

P = K
(
R t

)
. (3.7)

To invert this projection we may use the (right) pseudo-inverse P † = PT
(
PPT

)−1
.

In the case when the world and camera coordinate systems are the same (i.e. R = I

and t = (0, 0, 0)T ),

P † =

 K−1

0 0 0

 (3.8)

and P †x =

 K−1x

0

 =

 x′

0

. Here x′ is referred to as the normalised image

coordinates which can be thought of as the projection of the original scene point

by a camera where K = I. More importantly however we see that multiplication

of the original image point by the camera inverse results in a homogeneous vector

D =

 x′

0

with 0 as its fourth coordinate. Such vectors represent points at infin-

ity and correspond to the direction of the back projected ray through the camera
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centre. Hence given a single calibrated camera viewing a scene, we may consider it

geometrically as a bearing only sensor.

3.3.1 Stereo Imaging and 3D Reconstruction

In order to recover both bearing and range of features within an image therefore

requires two or more images of the corresponding scene points taken from different

perspectives. Given two such views the geometric relationship between the images

of the scene is defined by the epipolar geometry (see Figs. 9.1 and 9.2 of [54]). The

importance of the epipolar geometry is that it provides a constraint between the two

views such that points in one view are constrained to lie on the corresponding epipolar

line in the other view. This means that when we detect a feature point in one view

for which we wish to find the correspondence in the other view, the number of points

searched is reduced from O(n2) to O(n).

The most straightforward stereo camera configuration is when the pair of cameras

are frontal-parallel, that is, where the transformation between the two sensors is

restricted to a translation in the horizontal direction by a distance, b, known as

the baseline distance. Here the epipoles (i.e. the projection of the left and right

camera centres in the alternative camera view) are at infinity, and as a consequence

the epipolar lines become horizontal. In this situation the left- and right-imaging

systems are governed by the following projection equations,

xl = K

 I

0

0

0

X xr = K

 I

b

0

0

X (3.9)

where it can be seen that in normalised image coordinates the xl = λ(x, y, 1)Tand

xr = λ(x − d, y, 1)T i.e. the points only differ by a shift in the horizontal direction
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known as the disparity.

Recovery of the homogeneous coordinates of a 3D scene point from a pair of

corresponding features can be achieved using the following reprojection matrix ([10,

pp. 435]),

Q =



1 0 0 −uc

0 1 0 −vc

0 0 0 f

0 0 −1/b 0


(3.10)

as follows,

pC = Q



x

y

d

1


. (3.11)

3.4 Camera Pose Estimation

Camera pose estimation is the problem of determining the position and orientation

of a camera based on a known scene or object. Solutions to this problem have a wide

variety of applications in areas including augmented reality, model-based tracking,

visual servoing, photogrammetry, and of course, visual odometry.

In the context of visual odometry the majority of approaches are based around de-

tecting and matching, or, detecting and tracking features across frames. Although we

may estimate camera motion purely based on 2D-to-2D correspondences (e.g. via the

essential matrix), it is more common to use 3D-to-3D or 3D-to-2D correspondences.

In the monocular case this implies that at least 3 images are required, however with

stereo odometry 3D features may be directly computed via the disparity between the

image pair and hence only a set of feature correspondences from a pair of views is

required.
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Solving each of the above scenarios requires very different approaches. The prob-

lem of estimating the pose of a calibrated camera given n 2D image points correspond-

ing to n known 3D world points is a specific class of the pose estimation problem,

known as the Perspective-n-Point (or PnP) problem. Given the significance of the

PnP problem in both computer vision and photogrammetry, numerous solutions have

been reported in the literature. These solutions can be categorised based on the value

of n i.e. the number of correspondences that they require. The minimum number of

correspondences in order for the problem to be well-posed is n = 3.

Solutions to the PnP problem can be divided into direct or iterative approaches.

Iterative solutions have been shown to be the most accurate [83] but are slower than

direct methods [79] and only applicable when a good initial value is available. In

photogrammetry this is typically provided manually at a level of accuracy that is

sufficient for iteration to the correct solution. In computer vision however this is not

the case and so some automatic initialisation is required.

Direct approaches as their name suggests provide closed form solutions to the

problem and hence are typically more computationally efficient than iterative ap-

proaches. The first direct solution in the computer vision community is due to Fis-

chler and Bolles [42], however Haralick et al. [52] identify solutions from the field of

photogrammetry dating back as far as Grunert [48].

A common geometry for the direct solution to the P3P problem is shown in

Fig. 3.1(a). Here we see the tetrahedron formed by the perspective projection of three

known world points, {X1,X2,X3}, the camera centre, C, and the rays joining each of

the three world points to the camera centre. In this case both the back-projected rays,

{
−→

Cx1,
−→

Cx2,
−→

Cx3}, of each of the image points and the distances between the world

points, {R12, R23, R13} are known. The problem is now to first determine the dis-

tances |CXi|, and therefore the coordinates of the three world points in the camera’s

coordinate system. Using the 3D coordinates of the three points in both coordinate
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(a) (b)

Figure 3.1: Geometry of the P3P problem.

systems, computing the pose of the camera can be found by solving for the absolute

orientation [55].

Haralick et al. [52] compare six direct P3P solutions all of which start by taking

each possible pair of world points, Xi and Xj. Combining the chosen points with the

camera centre, C, results in the triangle shown in Fig. 3.1b, where by the cosine rule,

s2
i + s2

j − 2sisj cos(αij) = R2
ij (3.12)

Each combination of points yields such a constraint between the corresponding side-

lengths si and sj. Next a change of variables is applied which results in two of the

si’s being cast as scalar multiples, u and v, of the remaining value, sj. For example

Fischler and Bolles [42] use

s2 = us1 and s3 = vs1 (3.13)

The approach is then to first solve for the multiplicative factors, u and v, which allows

the value of sj to be recovered, which in turn allow the si’s to be computed. The

principal differences between the approaches is the order in which they combine the
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tetrahedron side lengths and the techniques used to solve for u and v.

One of the most commonly used solutions due to Fischler and Bolles [42] starts

with the change of variable shown in Eq. 3.13 and successively eliminates the variables

to arrive at a quartic equation in u,

4∑
i=0

aiu
i = 0 (3.14)

where, each of the ai’s are functions of the knowns listed above. In general, Eq. 3.14

has a maximum of four different solutions. In practice to overcome this ambiguity

four points are used in combinations of triples, where each triple generates up to

four solutions. The correct solution is identified as the one that is common to each

solution set.

Exact solutions to the PnP problem, such as those outlined above, only exist for

cases involving a maximum of four point correspondences. Using more than this min-

imal number of correspondences results in solutions that are more robust to noise due

to the fact that the systems are overdetermined. In these situations the most obvious

approach is to employ nonlinear optimisation techniques such as Gauss-Newton (GN)

or Levenberg-Marquardt (LM) algorithms to minimise the reprojection error (i.e. the

error between the projected world point and the measured image point). However

their performance is very much dependent on suitable initialisation.

Lu et al. [83] present the Orthogonal Iteration (OI ) algorithm based on object-

space collinearity equations which measure the collinearity between the camera centre,

image point, and object point (i.e. C, xi, and Xi) for each pair of correspondences.

For a measured image point (in normalised image coordinates), vi = (u, v, 1)T , and

a corresponding inhomogeneous world point, pi, the object space collinearity error is

given by,

ei = (I − Vi)(Rpi + t) (3.15)
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where, R and t are the estimated camera rotation matrix and translation vector, and

Vi = vivTi
vTi vi

(3.16)

is the line-of-sight projection matrix. Taking the sum or the square of these error

terms the OI algorithm alternates between minimising for the translation vector and

rotation matrix. Importantly they prove that the algorithm is globally convergent

and show empirically that the true pose is returned for a wide range of initial guesses.

As demonstrated by [79] the OI algorithm is one of the most accurate algorithms

available and is fast when compared with other iterative methods.

Moreno-Noguer et al. [101], Lepetit et al. [79] provide an non-iterative approach

to the PnP problem for n ≥ 4, known as the efficient PnP (ePnP) algorithm that,

rather than directly estimate the depths of individual world points, recovers a set of

four virtual control points. These virtual control points provide a coordinate system

in which all other points are represented as weighted combinations of the control

points. More specifically, if the control points are denoted as cj, j = 1 . . . 4, then any

point pi may be represented through the weighted combination,

pi =
4∑
j=1

αijcj (3.17)

Since the αij’s are invariant to Euclidean transformations the same set of weights

will represent the points in either the world or camera coordinate system. Hence the

ePnP algorithm, given the control points, cWj , represented in the world coordinate

system, aims to recover their representation in the camera coordinate system, cCj . A

major advantage of their technique is that it is an O(n) non-iterative solution, and

also that it can be applied with values of n ≥ 4.
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3.5 Robust Model Fitting

One of the central issues in applying pose estimation algorithms such as P3P solutions

in real-world scenarios is dealing with noise in the measurements. Given the resolution

of the imaging sensor, the number of features output by a feature detector will be

at least of the order of hundreds and therefore results in a highly overdetermined

problem.

In the standard non-linear least squares (NLSQ) formulation [88] the cost function

to be minimised is given by,

x∗ = arg min
x
{F(x)} (3.18)

where,

F(x) = 1
2
∑

i
(fi(x))2 (3.19)

Such a cost function provides the maximum likelihood (ML) estimate of the param-

eters under the assumption of Gaussian noise.

In the case of camera pose estimation fi measures the reprojection error of indi-

vidual points such that given a set of correspondences, pi ↔ Pi,

fi(x) = ‖Π(x,Pi)− pi‖Σi
(3.20)

where, Π(x,P) is the projection of a 3D point P into a camera of given 3D pose x,

and Σi represents the covariance on the measurement.

Although the use of a least-squares approach aims to compensate for Gaussian

perturbations in measurements it does not cater for outliers in the data. Such mea-

surements deviate arbitrarily from the correct model and are not modelled via the

standard normal distribution assumed in the least-squares paradigm. In particular,

given that in Eq. 3.19 F (x) increases quadratically as a function of the deviation
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of the data from the model, outliers will have an unduly large influence on the cost

function and the resulting estimate.

Common sources of outliers in visual odometry are objects moving within the

scene (e.g. pedestrians) or incorrect matching of features between frames due to

failure of the feature tracking algorithm or the disparity estimation process. In the

former case we can view the data as consisting of multiple separate populations each

satisfying its own motion model. On the other hand, in the latter case we have a

population of inliers drawn from a single model and a separate population of outliers

which do not agree with any underlying model.

Robust estimation techniques aim to overcome this problem by fitting models to

data under the assumption that the data contains outliers. The assumption is that

data can be segmented into one or multiple inlier sets each of which can then be

modelled independently. The two main approaches to robust estimation used in the

computer vision literature are hypothesise-and-test methods and M-estimators [134].

3.5.1 Hypothesise-and-test methods

Perhaps the most common approach to dealing with outliers is the random sampling

consensus method, or RANSAC, due to Fischler and Bolles [42]. Where previous

methods to model fitting started by fitting the model to all the data, with the intention

of smoothing out the noise, RANSAC takes the opposite approach. In the first step

of RANSAC, known as the random sampling step, a model is estimated by fitting

to a randomly sampled minimal set of data points. The second step, known as the

consensus step, evaluates the resulting model by checking its consistency with the

remainder of the data. The result of this second step is to segment the data into

inlier and outlier sets relative to the estimated model. The decision as to whether to

accept the model is based on the number or percentage of data points in the inlier set.

These two steps are iterated until a set of points are sampled that results in a model
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Algorithm 3.1: Random Sampling Consensus (RANSAC)
Input: x = {x0 . . .xn} set of sampled data points

τ inlier residual threshold
C consensus threshold
N maximum iteration threshold

Output: ζ model parameters
do

k ← 0
nmax ← 0
repeat

xs ← choose_minimal_sample(x)
ζs ← fit_model(xs)
n← 0
x′ ← ∅
foreach xi do

if ‖fζs(xi)‖ < τ then
x′n ← xi
n← n+ 1

if n > nmax then
xmax ← x′
ζmax ← ζs
nmax ← n

until n < C and k ≤ N
ζ ← refine_model(xmax, ζmax)

end

with a high consensus, or until a maximum number of iterations are reached. Given

the resulting inlier set the model is refined through the use of a standard model fitting

approach (e.g. NLSQ-estimation). Algorithm 3.1 provides a pseudo-code listing of

the standard RANSAC algorithm.

When applying RANSAC the user must choose values for τ , C, and N . Fischler

and Bolles [42] provide a discussion on each of these parameters. For choosing, τ , the

tolerance on deviation from the model for deciding between inliers and outliers, they

suggest determining via an empirical procedure. To choose C requires that the value

is high enough to both ensure that the algorithm does not detect the incorrect subset

of the data and that the final model fitting step is sufficiently over-determined. The

number of iterations, N , required for a given success rate can be determined by the
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expression

N = log (1− p)
log (1− (1− ε)s) (3.21)

where, p is the desired probability of success, ε is the percentage of outliers in the

data, and s is the number of points required to compute the model hypothesis.

Since its original publication RANSAC has been used widely throughout the field

of computer vision and has received considerable further investigation with many

variants being reported in the literature. Choi et al. [17] provide a comprehensive

comparative study of a large number of these algorithms, categorising approaches

along seven different attributes. For example one family of approaches use guided

sampling where rather than sampling from the data set uniformly, a-priori knowledge

or heuristics are used to guide the search, thereby reducing the number of iterations

required. Another family of approaches attempt to reduce computation time by ter-

minating the consensus evaluation early through the use of either preliminary test or

by monitoring the evaluation online. For example Preemptive RANSAC due to Nistér

[109] permits model fit under time constraints by considering multiple hypothesis in

parallel with a preemption scheme for terminating low scoring hypothesis early in the

consensus evaluation.

The approach used by RANSAC to choose between different hypothesis can be

considered as comparing a total cost based on a sum of responses of a cost function

for each of the samples in the dataset. The chosen hypothesis is then the one with

the lowest cost. For the original RANSAC algorithm this cost function simply at-

tributes a cost of zero to inliers and one to outliers i.e. the total cost is equal to

the total number of outliers. A number of approaches attempt to enhance the per-

formance of RANSAC through the use of alternatives to this binary cost function.

For example Torr and Zisserman [145] presented two such techniques. Firstly MSAC

(M-estimator sample and consensus) used the square of the residual as cost for inliers

(i.e. residuals less than τ) and a constant cost of τ 2 for outliers. MLESAC (maximum
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Figure 3.2: Comparison of robust cost functions.

likelihood consensus) builds on this idea by treating the data as being drawn from a

mixture of two Gaussians and then uses expectation maximisation (EM) to compute

the segmentation into inliers and outliers with the highest likelihood.

3.5.2 Robust Cost Functions

M-estimators replace the fi(x) in Eq. 3.19 with a robust cost function, ρi(x), that

increases sub-quadratically as a function of the deviation of the data from the model.

This is based on the idea that outliers are drawn from much wider tailed distributions.

Many robust cost functions are available from the literature. For a comprehensive

list and comparison the reader is referred to Hartley and Zisserman [54, Appendix

A6.8]. A subset of those covered in [54] are shown in Fig. 3.2, where the squared cost

is the non-robust cost of Eq. 3.19.

The Corrupted Gaussian makes the assumption that the data is drawn from a

mixture of two Gaussians; one that accounts for the inliers, and a second with a

much larger standard deviation. This leads to a cost function of the form,

C(δ) = −log(α exp(−δ2)) + (1− α) exp(−δ2/w2)/w (3.22)

where, α is the ratio inliers to outliers, and w is the ratio of the standard deviations

of the outlier and inlier distributions. The advantages of this cost function is that it
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is based on a PDF, however it results in a non-convex cost function.

The L1 cost function is based on a scaled L1-norm and is given by

C(δ) = 2b|δ| (3.23)

where b is a positive scale factor. This cost gives less weight to outliers than the square

cost, with the interesting property that the minimum corresponds to the median of the

data. The principal disadvantage of this cost function is that it is non-differentiable

at the origin.

The Huber cost function evaluates to the squared cost function for small residuals

(i.e. inlier) but evaluates to the L1-type cost when the residual goes above a threshold.

It is given by

C(δ) =


δ2 if d < b2

2b|δ| − b2 otherwise
(3.24)

The advantage of the Huber cost function is that it is C1 differentiable. Both the L1

and Huber costs are convex and therefore does not have any local minima.

Incorporating a robust cost function into non-linear least squares optimisation

turns out to be quite straight forward once the cost function is defined. In particular

it corresponds to computing a standard non-linear least squares optimisation but

where the residuals are weighted by an attenuation function

w =

√√√√C(‖δ‖)
‖δ‖2 (3.25)

From the above it can be seen that the attenuation function attenuates the influence

of points whose robust cost is lower than the standard squared cost function.
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3.6 Feature Detection and Tracking

Given the above discussion, the motion estimation process of VO requires an ability to

identify correspondences across frames in the input image sequence. Although meth-

ods do exist for dense correspondence estimation, referred to as optical flow, these

approaches require significant computational resources and typically only provide

real-time processing in constrained circumstances. With this said, recent approaches

have begun to address this issue through the use of general-purpose computing on

graphics processing units (GPGPU) implementations [150].

Due to these computational requirements considerable effort has been focussed on

the development of methods for computing correspondences based on salient features,

where saliency is evaluated over a local region of the image. These methods typically

divide the task into three steps. Firstly, the feature detection step identifies locations

that have a characteristic structure amenable to matching across views. Next, the

feature description step computes a feature vector that describes the local appearance

at each of the feature locations. Finally the feature matching step uses the resulting

features vectors to match features across views. Often this last step is replaced by a

feature tracking step which, rather than independently detect features in the second

image, instead performs a local search in the region of the features detected in the

previous frame for points where the local image appearance matches. This approach is

particularly suitable in areas such as VO where high frame rates result in neighbouring

frames having similar view points.

3.6.1 Feature Detection

One of the earliest feature detectors was due to Moravec [100], as part of one of

the first efforts in visual navigation of a wheeled robotic platform. Here he defines a

feature as “conceptually a point in the three-dimensional world . . . that can be located
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unambiguously in different views of a scene”. The requirements on such points are that

they be inhomogeneous in appearance and that they contain regions of high contrast

(e.g. textured regions, or regions with edge features in multiple directions). Moravec

hypothesised that such regions were characterised as having low self-similarity with

neighbouring regions and proposed a detector based around this principle. To measure

self similarity the detector computed the sum-of-squared (SSD) differences between

a neighbourhood of pixels around the current pixel and the immediately adjacent

neighbourhoods in the horizontal, vertical and diagonal directions. The final feature

score was chosen as the minimum SSD along each of the four directions. Local maxima

of this measure were identified as distinctive and hence classified as features.

A weakness of the Moravec detector is that it is directionally biased due to the

four directions along which the comparisons are performed. Harris and Stephens [53]

improved on Moravec’s approach through the introduction of the structure tensor

(or the second moment matrix) which is related to the auto-correlation function.

In particular they formulate the Moravec operator as detecting features that locally

maximise the minimum value of the following expression over a local neighbourhood

of x and y.

E(x, y) =
∑
u,v

w(u, v) |I(x+ u, y + v)− I(u, v)|2 (3.26)

In the Moravec detector w(u, v) is a binary valued function having value one in the

rectangular region of the window and zero elsewhere. Harris and Stephens approxi-

mate Eq. 3.26 through a Taylor series expansion as,

E(x, y) =
[
x y

]T  〈I2
x ⊗ w(u, v)〉 〈IxIy ⊗ w(u, v)〉

〈IxIy ⊗ w(u, v)〉 〈I2
y ⊗ w(u, v)〉


 x

y

 = xTAx (3.27)

where, Ix and Iy are the first derivatives of the image in the x and y directions,

respectively, and 〈·〉 denotes averaging over the spatial window. Here the terms of
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the central matrix, A, are averages over the pixel neighbourhood weighted by the

window function w(u, v). By choosing a circularly symmetric window function such

as a Gaussian the response of the Harris filter becomes isotropic.

The key to the Harris detector is that corners in the image correspond to locations

where both eigenvalues of this matrix are large. Given the relationship of this matrix

to the second moment matrix, this corresponds to locations where the gradient re-

sponse is high in two separate directions. The basis of the Harris detector is that such

locations can be repeatedly and accurately localised under varying viewpoints. To

avoid the complexity of explicitly calculating both eigenvalues Harris and Stephens

suggest thresholding the following measure,

Mc = λ1λ2 − κ (λ1 + λ2)2 = det (A)− κ (trace(A))2 (3.28)

Shi and Tomasi [124] start by addressing the feature tracking problem by devel-

oping a six degree-of-freedom affine model of image motion. This model provides a

more accurate means of comparing features over larger displacements than the simple

translational model offered by previous approaches. However over small displacements

estimation of the full 6 parameters of this more general model is unstable, and there-

fore they use the displacement model for frame to frame tracking. This reduces to

solving a linear system involving the matrix A from Eq. 3.27 [7].

Given that the purpose of detecting features is to allow them to be tracked, they

define good features as those that are amenable to tracking and hence A must be well

conditioned (i.e. both eigenvalues should be large and should not vary by several

orders of magnitude). Given that both eigenvalues are bounded due to the finite

range of permitted gray values in an image, they use a criteria whereby the minimum

eigenvalue is greater than some threshold λ,
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min (λ1, λ2) > λ (3.29)

Förstner and Gülch [44] also make use of the second moment matrix for feature

detection, however they introduce a second step to localise the feature within the

detection window, which they point out is not in general located at the window

centre. This second step is achieved by finding the point in the window with the

minimum perpendicular distance to all of the lines in the neighbourhood.

Smith and Brady [132] defined the Smallest Univalue Segment Assimilating Nu-

cleus (SUSAN) framework for low-level image processing. Here a circular window is

centred on the pixel of interest with a measure of similarity computed between the

gray value of the centre pixel and all other pixels within the window. Thresholding

the resulting measure at different levels allows the identification of edges or corners.

Furthermore thresholding on the similarity allows control over resilience to noise vs.

false detection and rejection rates.

Rosten et al. [119, 120] take a similar approach to SUSAN by analysing the simi-

larity between a pixel of interest’s value and those of a surrounding Bresenham circle

of 16 pixels. Their detector, known as FAST (Features from Accelerated Segment

Test), defines a feature as any pixel with more than n pixels in this circle that are

all brighter or all darker by a threshold, t. In order to accelerate the test, the FAST

algorithm employs a machine learning approach that derives a decision tree that can

be implemented as a series of if-then-else statements, which in turn are compiled

and tuned using reordering optimisations. To train the detector a set of images from

the training domain are collected and processed using a brute force algorithm. The

resulting features are then used as input to the ID3 algorithm which uses an entropy

based measure to order the tests of each location on the Bresenham circle. Finally,

since the segment test does not provide a response function non-maxima suppression

is achieved through the use of the sum-of-absolute-differences (SAD) between the
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pixels in the contiguous arc and the centre pixel.

Scale Invariance

In order for a feature detector to be effective it must be robust to variation in the

underlying image data due to changes in the extrinsic and intrinsic parameters of the

camera. Such variations result in a hierarchy of transformations in the image plane

known as the Klein hierarchy [54]. In particular we can consider feature detectors in

terms of their robustness to (i) changes in scale and rotation, (ii) affine transforma-

tions, and (iii) projective transformations. The Klein hierarchy shows how each of

these is a sub-group of the next. Hence invariance to projective transformations im-

plies invariance to affine transformations, which in turn implies invariance to changes

in scale and rotation. It is common to model the scene as locally planar and as a

consequence if we only consider local image operators it is sufficient to only cater for

variations up to the affine group (i.e. (i) & (ii) above).

In his now seminal work [81], Lindeberg argued that in understanding and describ-

ing the appearance of the world a multi-scale representation is crucial. Over the years

a number of multi-scale representations (e.g. pyramids, wavelets, etc.) have played a

key role in the development of scale invariant feature detection and matching. Multi-

scale pyramids take each input image which they recursively blur and sub-sample

resulting in a representation where different levels of detail become apparent at dif-

ferent levels of the pyramid. Hence applying a fixed sized operator (e.g. a 11 × 11

filter) at each level corresponds to detecting features at each scale represented in the

pyramid.

The most common type of pyramid is the Laplacian pyramid due to Burt and

Adelson [12]. To generate an octave pyramid the original image is blurred and then

subsampled by a factor of 2. Repeating this process generates what is known as a

Gaussian pyramid. The final Laplacian pyramid is then created by taking each layer
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of the pyramid, Gi−1, from the second layer up, upsampling it to the resolution of

the layer below, Gi, and computing the Laplacian image, Li = Gi− ↑ Gi−1, where

↑ G denotes the upsampled version of G. Note that the image at the top of the

pyramid corresponds to a low resolution version of the original image. If we think of

the Gi’s as low-pass filtered images then the Li’s are band-passed images, hence each

level captures the features at a specific spatial frequency range in the original image.

Since any Gi can be reconstructed as Gi = Li+ ↑ Gi−1 recovery of the original image

from the Laplacian pyramid can be achieved by recursively applying this operation

starting at the top of the pyramid.

Both of these pyramids have been used in different ways in addressing the problem

of scale invariant feature detection and matching. For example Brown et al. [11] detect

Harris features at every level of an image’s Gaussian pyramid. Here the matching is

applied across feature points detected at the same levels (i.e. scales). So although it

does attempt to characterise the image in a scale invariant manner it is only effective

in situations where both images have a small variation in the imaging parameters.

Lindeberg [81] argues that the correct approach is for the detector to simultane-

ously detect interest points that are localised both spatially and in scale by localising

extrema in the scale space of the image. He uses a principled approach to show that

in order to achieve true scale invariance that such extrema are found as zero crossings

of the scale normalised Laplacian of Gaussian (LoG). Lowe [82] proposed the use of

the Difference of Gaussian (DoG) as an alternative which can be computed more effi-

ciently. To avoid weak features a post-processing step is applied where only features

with high contrast and edge responses in multiple directions are selected. The re-

sulting framework for detecting and matching features across wide baselines is known

as the Scale Invariant Feature Transform (SIFT) and has had a dramatic impact

on the field of computer vision since its publication (with almost 20,000 citations1

1Source: Google Scholar (26th July 2013)
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since 2004.). Mikolajczyk and Schmid [94] define the Harris-Laplace operator that

combines the scale selection provided by the Laplacian with the reliable localisation

provided by the Harris detector. They also investigate the use of the determinant of

the Hessian matrix, which detects blob-like structures, as an interest point detector.

Specifically they detect these interest points at all scales (similar to Brown et al. [11])

but only keep those corners that occur at extrema in the Laplacian.

Bay et al. [5] proposed the Speeded Up Robust Feature (SURF) transform to

detect points in both location and scale where the determinant of Hessian matrix

is maximum. To speed up the computation the Hessian is approximated through

the use of box filters that can be computed efficiently through the use of the integral

image. The resulting maxima are reduced and refined through the use of non-maxima

suppression and scale-space interpolation, respectively. SURF features possess many

of the strengths of SIFT-type features with the advantage that they are significantly

cheaper to compute. Given their robustness in matching across wide-baselines they

have been used extensively in many visual SLAM systems, including the system

described in Chapter 4, for detecting and handling loop closures.

Agrawal et al. [1] identify a drawback of scale space approaches that detect ex-

trema using an image pyramid in that the resulting features can suffer from poor

localisation, which can have a significant impact on visual odometry estimation.The

reason for this is that features at a larger scale are detected higher up in the pyramid

and therefore at a lower resolution. To overcome this problem they define the Centre

Surround Extrema (CenSurE) detector which attempts to efficiently compute features

of all scales at the full input image resolution.They maintain efficiency at all scales

the approach uses a set of integral images in conjunction with either a difference of

boxes or octagonal approximation of the Laplacian.
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Affine Invariance

Although the above detectors provide a greater level of robustness to viewpoint change

than the earlier detectors of Moravec, Harris, etc. they still only model a sub-group of

the geometric transformations induced on an image patch. In a VO setting where we

employ a tracking approach (i.e. matching features between consecutive frames) this

level of robustness is typically adequate. However in situations where keyframes are

employed and therefore we wish to match features over larger changes in viewpoint, we

then require detectors (and descriptors) that are invariant to affine transformations.

Mikolajczyk et al. [96] provide a comparative evaluation of a number of popular

such detectors. For example, in [97] they extend their earlier work on Harris-Laplace

and Hessian-Laplace detectors to affine transformations by using the eigenvalues of

the second moment matrix to measure the shape of the affine region for a given

interest point. Here an iterative procedure is applied where each iteration warps the

region until both eigenvalues become equal. The resulting region can be considered

affine covariant and should result in the same image patch across viewpoints.

3.6.2 Feature Description, Matching, and Tracking

As mentioned in the introduction to this section, the purpose of detecting features in

frames is that it provides the raw material for computing correspondences which in

turn provide constraints for the visual SLAM system. This involves either detecting

features in both images and then matching them, or, detecting features in one of the

images and then tracking in the next frame. In both cases we require some local

model of the appearance of the image around each feature. The key difference here is

that the matching of independent features in two images is potentially more computa-

tionally intensive than tracking which consists of a local search. The advantage of the

matching approach is that it tends to be more robust to large inter-frame motions and

can exhibit less drift over long feature tracks. In this section we first address common
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approaches to feature tracking and then deal with the issue of feature matching.

A common approach to the tracking problem is to first define a motion model in

the image space. For example if we assume a translational image motion model this

leads to the following sum of squares (SSD) cost function for a region [86],

C(d) =
∑

x
(I1(x + d)− I0(x))2 (3.30)

where the summation is evaluated over the local neighbourhood of the feature point of

interest. Lucas and Kanade [86] solve for d by first approximating I1(x+d) by a first-

order Taylor expansion around x. Substituting this into C and then differentiating

and setting it equal to zero results in an expression which can be used to solve for d.

For each point of interest in the image this is achieved by first computing the spatial

and temporal derivatives in the neighbourhood of the point, Ix, Iy and It, respectively.

These are then used to construct the following linear least squares system in d


∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

d =


∑
IxIt∑
IyIt

 (3.31)

Shi and Tomasi [124] extended the work of Lucas and Kanade through the use

of an affine motion model which is more robust to the warping induced on image

patches over long feature tracks. In their algorithm they track from frame to frame

using the standard translation model but also use the full affine model to evaluate the

change in the neighbourhood between the current frame and the initial frame in which

the feature was detected. When this latter change exceeds a threshold the feature

is discarded. This algorithm has become known as the Kanade-Lucas-Tomasi (KLT)

tracker which, when combined with a pyramidal approach for robustness to large

frame-to-frame displacements, has been used in many visual odometry and camera

tracking applications. A GPU based KLT tracker due to Zach et al. [153] is used in
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the visual SLAM system developed in this thesis as described in Chapter 4.

3.6.3 Feature Matching

The alternative to tracking is to match independently detected features between pairs

of frames. Feature matching requires (i) a local description of the image in the

region of the detected feature, (ii) a matching metric to evaluate the similarity of two

features, and (iii) a strategy for computing a set of consistent matches between the

feature sets of a pair of frames.

For example, Nistér et al. [111] use a simple 11 × 11 pixel window of grayscale

values centred at the feature as a descriptor which they match using normalised

cross correlation (NCC). They employ a matching strategy where features are first

matched only to features in the other image within a region 10% of the resolution of

the image. Final they apply a mutual consistency filter where the matching procedure

is first carried out from both the first image to the second image, and then carried

out in reverse. This leads to each feature in the first image having a preferred match

in second image, and vice-versa. Only those matches that agree in both directions

are accepted as correspondences.

The disadvantage of using correlation windows such as the above is that they are

not robust to distortions induced by image motions. A large number of researchers

have addressed this problem through the development of feature descriptors that

posses varying levels of invariance to such distortions. Perhaps the most famous of

these is the SIFT feature descriptor developed by Lowe [82].

SIFT computes its descriptor by first computing an intrinsic scale and orientation

independently for each feature. The scale is determined during the feature detection

step by the level of the extrema position in the image scale-space (see Section 3.6.1).

This level is determined at a sub-pixel accuracy. Next a histogram of gradient di-

rections is computed with the peak. Finally a feature descriptor is computed over a
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64× 64 pixel window at the computed position, scale, and orientation. The descrip-

tor consists of a set of histograms of gradient orientations over 8 directions, with a

separate histogram computed for 16 separate 4 × 4 pixel sub-windows. This results

in a 16× 8 = 128 dimensional vector known as the SIFT-descriptor.

Although a simple Euclidean metric can be applied for matching SIFT vectors,

Lowe [82] suggests the use of a ratio test which measures the distinctiveness of a

match. This works by computing the ratio of the best match for every feature to

the next best match. Empirically they show that only accepting matches where the

ratio is less than 0.8 eliminates 90% of false matches and whilst maintaining 95% of

true matches. Mikolajczyk et al. [96], Mikolajczyk and Schmid [95] compare SIFT

with a large number of local region descriptors, and found that SIFT was superior to

alternatives in a majority of cases.

The SURF approach [5] defines a feature descriptor similar to, and inspired by, the

SIFT descriptor but based on the response of Haar wavelets in the x and y directions.

The benefit of the use of Haar wavelets is that they can be computed efficiently

through the use of the integral image used in the SURF feature detection step. The

resulting 64-dimensional descriptor is more compact than the SIFT descriptor and as

a consequence can be more efficient in the matching step. Furthermore, Bay et al. [5]

provide experimental evaluation that demonstrates greater robustness.

In Chapter 4 we use SURF descriptors both for place recognition in the KLT-

tracking process. Although SURF is considerably faster than SIFT, CPU imple-

mentations are not suitable for real-time processing at standard video frame rates.

To overcome this issue a public GPU based implementation is available through the

OpenCV library [115].

Since their introduction researchers have investigated methods for reducing the

matching times and the storage requirements involved in using both SIFT and SURF

features descriptors. Typical approaches involve either the application of dimension-
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ality reduction techniques or quantisation of the descriptors to reduce the number of

bits required for each feature value. A demerit of these techniques is that they first

involve the computation of the full size descriptor.

Calonder et al. [15] define the Binary Robust Independent Elementary Features

(BRIEF) descriptor that take an alternative approach to computing an efficient de-

scriptor directly from the image data. The approach taken is to use a fixed but

random selection of pixel pairs in the neighbourhood, each of which is involved in an

ordered binary test. The test simply evaluates whether the first graylevel is less than

the second; evaluating to 1 if it is and 0 if it is not. Concatenating the outcomes

results in a n-bit binary descriptor vector. The first advantage of this descriptor is

that it is compact, with a second advantage that it can be efficiently compared using

the Hamming distance. Experimental results show that BRIEF-64 (consisting of 512

bits) out performs both rotationally and non-rotationally invariant versions of SURF

on a number of standard benchmarks.

Rublee et al. [121] extend on the work of Calonder et al. by first defining a variant

of FAST that computes both the position and orientation of each image keypoint.

This allows them to compute an oriented BRIEF feature descriptor. They call this the

combined Oriented FAST detector and Rotated BRIEF descriptor ORB. The Binary

Robust Invariant Scalable Keypoints (BRISK) of Leutenegger et al. [80] also aims to

deal with BRIEF’s sensitivity to image distortions by defining a scale space keypoint

detector using a variant of the FAST detector in both space and scale dimensions.

The development of feature detector and descriptors shows little sign of abating

with new algorithms being published every year. As this research progresses visual

odometry systems are benefiting from a wider array of choices in terms of the detector

/ descriptor combination to employ. The criteria along which this choice is made

involves issues such as invariance, speed of computation, storage size of the resulting

detector, localisation accuracy, repeatability, to name a few.
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3.7 Windowed Bundle Adjustment

The material that has been presented in this chapter has focussed on estimating

camera motion between pairs of frames. The first step in that process is to detect a

set of keypoints and then using the stereo configuration of the camera estimate their

3D positions. Computing correspondences of these keypoints provides the basis for

visual odometry. This is achieved by using the camera pose estimation techniques in

conjunction with model fitting techniques such as those presented in sections 3.4 and

3.5 to adjust the estimated extrinsic parameters of the camera so as to minimise the

reprojection error (see Eq. 3.20).

The difficulty with the above approach is that it assumes precise knowledge of the

3D positions of the points. Of course given that these positions are computed from

uncertain measurements in the image space this assumption is not valid. To cater for

the assumption that there are errors in both the camera and scene estimates Eq. 3.20

can instead be optimised over both of these parameter sets. Such an optimisation

process is referred to as Bundle Adjustment (BA) as is the process used in computer

vision for solving the structure-from-motion (SfM) problem [146].

The advantage of BA is that it provides a ML estimate of the structure of the

scene and the motion of the camera, taking all uncertainties into account. Solving

the BA problem involves the use of non-linear estimation techniques such as Gauss-

Newton or Levenberg-Marquardt optimisation. A particular property of the problem

that makes it tractable over large sets of camera and structure variables is its natural

sparsity. This is due to the fact that cameras do not interact directly with other

cameras and points do not interact directly with other points. As such the optimiser

that is employed should directly exploit the resulting sparsity.

Application of BA in visual odometry systems is typically achieved through a

windowed approach [34] where as each frame is acquired the techniques from the

previous sections are used to provide a first estimate of the camera motion and new
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scene structure. A sliding bundle adjustment window due to the previous n − 1

frames is then augmented with this new camera and the associated structure. Further

discussion of the use of windowed bundle adjustment in visual odometry is provided

by Scaramuzza and Fraundorfer [123].

3.8 Conclusions

In this chapter each of the steps required for the computation of a stereo visual

odometry were reviewed. As can be seen from the material covered, creating a visual

odometry involves a considerable number of components, and as a consequence the

designer must make a number of important choices at each stage. In Chapters 4

and 5 we draw on the material covered in both this chapter and Chapter 2 in the

development and evaluation of a real-time stereo visual SLAM system.
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CHAPTER 4

Multi-Session Visual SLAM

4.1 Introduction

In this chapter we describe the main contribution of this thesis : the development

of a real-time 6-DOF multi-session visual SLAM system for use in large scale en-

vironments. The chapter focusses on the design and implementation of the system

with a comprehensive quantitative evaluation presented in Chapter 5. The contents

of both these chapters have been published in two separate papers. Initial results

were presented in McDonald et al. [91], while the full system implementation with

the complete set of experimental results were presented in McDonald et al. [92].

The design and implementation of a visual SLAM system is a significant challenge

both from a scientific and engineering perspective. Given that the central focus of

this thesis was the extension and application of the anchor nodes formulation to real-

time 6-DOF multi-session visual SLAM, the approach taken was to first develop a

single session visual SLAM system as a foundation. This system was then extended
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4.2. SYSTEM OVERVIEW

Figure 4.1: Multi-session visual SLAM system architecture. The major components
of the system include: (A) 2-D feature tracker [153]; (B) dense stereo disparity es-
timation [10]; (C) stereo odometry [42, 109]; (D) windowed bundle adjustment us-
ing iSAM [61]; (E) local map representation; (F) visual place recognition [13]; (G)
loop-closure pose estimation; (H) pose graph optimisation using iSAM; and (I) multi-
session map pose graph representation.

to permit multi-session processing.

As such this chapter is divided into two halves. In Section 4.2 a detailed descrip-

tion of the overall system architecture and the operation of each of the individual

components is presented from the perspective of single session operation. Section 4.3

then introduces the multi-session and multi-robot mapping problem, reviews the an-

chor node approach to the problem, and finally, describes the extension of the system

to cater for multi-session operation.

4.2 System Overview

A schematic of the system architecture is shown in Fig. 4.1. This includes a stereo

visual SLAM front-end, and a multi-session back-end incorporating a place recogni-
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tion system for detecting single and multi-session loop closures, and a multi-session

state-estimation system. The system uses a sub-mapping approach in conjunction

with a global multi-session pose graph representation. Optimisation is performed by

applying incremental and batch SAM to the pose graph and the constituent submaps,

respectively. Each submap is constructed over consecutive sets of frames, where both

the motion of the sensor and a feature based map of the scene is estimated. Once the

current submap reaches a user defined maximum number of poses, 15 in our system,

the global pose graph is augmented with the resultant poses.

In parallel to the above, as each frame is processed, the visual SLAM front-end

communicates with a global place recognition system for intra and inter-session loop

closure detection. When a loop closure is detected, pose estimation is performed on

the matched frames, with the resultant pose and frame-id’s passed to the multi-session

pose graph optimisation module.

Algorithm 4.1 provides a detailed specification of the steps involved in the front-

end processing. Here the input consists of a set of rectified stereo images, the current

bundle adjustment window (i.e. the local map and poses), and the current number of

poses in the window. For each input image the stereo odometry system computes the

motion of the camera, however only if the motion is above a set threshold is it added

as a new keyframe to the bundle adjustment window. Each keyframe is forwarded

as input to the place recognition system as it arises, with the set of poses from each

bundle adjustment window being forwarded when the window reaches it’s maximum

size. Algorithms describing the operation of the back-end are presented and discussed

in Section 4.3.3.
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Algorithm 4.1: Single session vSLAM front-end
Input:

〈
ILt , I

R
t

〉
Left and right rectified stereo frames

W current bundle adjustment window
ws current number of poses in W

Output: W updated bundle adjustment window
ws updated number of poses in W

Data: Pt current pose, Dt current disparity map, Ft current 2D features
Mt current 3D (i.e. 〈x, y, disparity〉) features
wmax maximum window size
Lt list of 〈x, y, disparity〉 feature and 3D landmark correspondences

do1

Dt ← computeDisparity(ILt , IRt )2

Ft ← detectFeaturesAndTrack(ILt )3

Mt ← ∅4

foreach f in Ft do // Compute 3D features5

if Dt[f.x, f.y] > disparity threshold then6

Mt ←Mt ∪ 〈f,Dt[f.x, f.y]〉7

Pt ← 08

if ws = 0 then // initialise first window9

W.keyframe0 ← 〈Pt,Mt〉10

else11

if ws ≥ wmax or loop_detected then // publish and reset window12

publish poses from window W // send poses to back-end13

keyframe← W.keyframews14

W ← ∅15

W.keyframe0 ← keyframe16

ws ← 117

Lt ← ∅18

foreach measurement x in Mt do // assemble correspondences19

if landmarkExists (x) then20

Lt ← Lt ∪ 〈x,findLandmark(x)〉21

〈Pt, num_inliers〉 ← computeMotion(Lt)22

if num_inliers < inlier threshold then // insufficient inliers23

Pt ← recoverFromOdometryFailure()24

else if movementTest(Pt) = false then // insufficient motion25

return26

W.keyframews ← 〈Pt,Mt〉 // add keyframe27

publish keframe W.keyframews // send keyframe to back-end28

optimise(W ) // iSAM based WBA29

ws ← ws + 130

end31
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4.2.1 Stereo Odometry

Within each submap the inter-frame motion and associated scene structure is esti-

mated via a stereo odometry front-end. The most immediate benefit of the use of

stereo vision is that it avoids issues associated with monocular systems, including

the inability to estimate scale and indirect depth estimation. The stereo odometry

approach we use is similar to that presented by [111].

Our stereo odometry pipeline tracks features using a standard robust approach,

followed by a pose refinement step. For each pair of stereo frames we first track a

set of Shi-Tomasi corners in the left frame using the KLT tracking algorithm. The

resulting tracked feature positions are then used to compute the corresponding fea-

ture locations in the right frame. Approximate 6-DOF pose estimation is performed

through the use of a RANSAC based 3-point algorithm [42]. The input to the motion

estimation algorithm consists of the set of tracked feature positions and disparities

within the current frame and the current estimates of the 3D locations of the corre-

sponding landmarks. In our work we have found that ensuring that approximately

50 features are tracked between frames results in a reliable pose estimate through the

3-point RANSAC procedure. Finally, accurate pose estimation is achieved by identi-

fying the inliers from the estimated pose and using them in a Levenberg-Marquardt

optimisation that minimises the reprojection error in both the left and right frames.

In our stereo odometry implementation we use a GPU-based KLT tracker [153].

This minimises the load on the CPU (by delegating the feature detection and tracking

to the GPU) and exploits the GPU’s inherent parallel architecture to permit process-

ing at high frame rates. In parallel to this we compute a disparity map for the frame

using the dense block matching algorithm provided by OpenCV [10]. The output

of the disparity estimate is then combined with the results of the feature tracker,

resulting in a set of stereo features.

In order to maintain an adequate number of features we detect new features in
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every frame whilst at the same time setting a minimum inter-feature distance in the

KLT tracker. A consequence of this approach is that the system tries to ensure that

there is a good distribution of features over the entire frame.

4.2.2 Single Session Visual SLAM

Deriving a pose graph representation from the stereo odometry system involves two

levels of processing. The first of these optimises over the poses, features and 3D

structure within a local bundle adjustment window. As each new frame is added

iSAM can be configured to either perform a full batch optimisation or to use incre-

mental optimisation. The benefit of the full batch approach is that it is more robust

to the non-linearities involved, whereas the incremental approach provides a more

computationally efficient solution.

The second step transfers optimised pose constraints from the current window to

the pose graph once the window reaches a fixed maximum number of frames. Here we

compute a set of odometry constraints between consecutive poses within the bundle

adjustment window by marginalising out the landmarks between those poses. These

constraints are then used to extend the pose graph structure maintained by the back-

end, which contains no point features and can be optimised efficiently even for a large

number of poses.

As each bundle adjustment window reaches its maximum number of poses, the

front-end initialises the next window, Wn+1, using the last pose from the current

window, Wn. This step corresponds to lines 12 − 17 of Algorithm 4.1. Specifically

the estimates of both the last pose and all the landmarks that are visible from that

pose in window Wn, provide the first pose and initially visible landmarks for window

Wn+1. Since the back-end pose graph is constructed through a chain of odometry

constraints, this approach ensures the first constraint from each window provides a

pose graph constraint between that window and the last pose in the current pose
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Figure 4.2: Structure of the bundle adjustment factor graph used in modules D & E
of Fig. 4.1.

graph. Furthermore this approach has the effect that landmarks can traverse many

windows thereby taking wide baseline constraints into account.

We apply smoothing in combination with a homogeneous point representation to

the local window to improve the pose estimates obtained from visual odometry. In

contrast to visual odometry, smoothing takes longer range constraints into account,

which arise from a single point being visible in multiple frames. The homogeneous

representation provides a principled mechanism for dealing with points at infinity,

see [146] or [54]. Points close to or at infinity cannot be represented correctly by the

conventional Euclidean parameterisation.

After removing the over-parameterisation of both rotation and homogeneous point

representations (see 4.2.3), the optimisation problem is solved with a standard least-

squares solver. We use the iSAM library [62] to perform the smoothing with Powell’s

Dog-Leg algorithm [118]. As discussed in Chapter 2, iSAM represents the optimisa-

tion as a factor graph, a bipartite graph containing variable nodes, factor nodes and

links between variables and factors. Factor nodes (or factors) represent individual

probability densities

fi(Θi) = fi(xji ,pki
) ∝ exp

(
−1

2 ‖Π(xji ,pki
)− zi‖2

Σi

)
(4.1)
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where Π(x,p) is the stereo projection of a 3D point p into a camera of given 3D pose

x, yielding the predicted stereo projections (uL, v) and (uR, v), zi = (ûL, ûR, v̂) is

the actual stereo measurement, and Σi represents the Gaussian image measurement

noise. iSAM then finds the least-squares estimate Θ∗ of all variables Θ (camera poses

and scene structure combined) as

Θ∗ = arg max
Θ

∏
i

fi(Θi) (4.2)

In order to reduce the computational requirements of the approach we employ

a pose decimation scheme, whereby a threshold is applied on the translational and

rotational motion of the sensor between poses (lines 25−26 of Algorithm 4.1). In our

current implementation the first pose of each session corresponds to the first frame of

the input sequence and is initialised to the 6-DOF origin for that session. Subsequent

to this each new pose corresponds to the first frame where the inter-frame motion is

at least 0.2m or 0.2rad from the last pose. The effect of this is to reduce the total

number of poses within the pose graph, whilst maintaining the accuracy of the final

trajectory and map estimates. A secondary but important advantage of this approach

is that it also decreases drift, in particular when the sensor is stationary.

When the smoothing window reaches a maximum size or when a loop closure is

detected all poses and associated odometry are transferred to the current session’s

pose graph, and a new local window is initialised. By including all poses from a

window, as opposed to just the first or first and last pose (as is the case in other

approaches) we ensure that we can represent loop closures between arbitrary frames

within the pose graph. Full details of the loop closure handling are provided in

Sections 4.2.4 & 4.3.1. As mentioned above, to initialise a new window we use the

last pose of the previous window in conjunction with all landmarks that correspond

to features that are tracked into the current frame. Note that within the window
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the first pose is always set to the origin to avoid optimisation issues with the bundle

adjustment when cameras are far from the origin (see Section 4.2.3).

The pose graph is again optimised using the iSAM library [62], where we use

the incremental iSAM algorithm [61] to efficiently deal with large pose graphs. In

particular we apply the incremental algorithm when dealing with consecutive pose

constraints, and apply the batch algorithm for loop closure constraints (i.e. to cater

for the fact that such constraints can require more significant updates to the current

estimate). In contrast to the stereo projection factors fi in the smoothing formulation

above, we now use factors gi

gi(Θi) = gi(xji ,xj′
i
) ∝ exp

(
−1

2
∥∥∥(xj′

i
	 xji)− ci

∥∥∥2

Ξi

)
(4.3)

that represent constraints ci with covariances Ξi between pairs of poses as obtained by

local smoothing or by loop closure detection. We use the notation xd = xb	 xa from

Lu and Milios [84] for representing pose xb in the local frame of pose xa (xb = xa⊕xd).

4.2.3 Quaternions and Homogeneous Points

The projective representation of point features as well as the quaternion representa-

tion of rotations that we use here result in over-parameterisations that can be resolved

in much the same way.

The unit sphere S3 = {q ∈ R4 : ‖q‖ = 1} can be identified with the set of unit

quaternions which form a 3-dimensional Lie group under quaternion multiplication.

There is a two-to-one covering map from S3 onto SO(3) (antipodal points are identi-

fied because q represents the same rotation as −q). The matrix Lie algebra of SO(3)

is so(3), the set of skew-symmetric matrices, see Hall [51]. Because they have three

parameters they provide a minimal local parameterisation of rotations through an

exponential map (typically evaluated using Rodrigues’ formula). The elements of the
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Lie algebra of S3 can be identified with the tangent space R3 at the identity. Many

mappings exist from R3 to S3, here we use the following one from Grassia [47]:

exp
(

d
2

)
=

 1
2sinc

(
1
2 ‖d‖

)
d

cos
(

1
2 ‖d‖

)
 (4.4)

where d ∈ R3 coincides with the axis/angle representation of a rotation. As for ev-

ery minimal representation of rotations there are singularities, here at multiples of

2π, though they can be avoided by forcing d to fall into the range (−π, π], while

still allowing for all possible rotations. An existing quaternion q is updated by an

increment d using quaternion multiplication q exp
(

d
2

)
. This then provides the neces-

sary machinery for incorporating the minimal representation within the least-squares

optimisation, whereby the parameter updates are first computed in the minimal rep-

resentation, and then applied through the use of the exponential map.

We show that the projective parameterisation in 3D is isomorphic to unit quater-

nions, allowing the use of the same exponential map. The projective parameterisa-

tion uses homogeneous four-vectors p = (x, y, z, w)> ∈ R4\{0} with the zero vec-

tor excluded. A Euclidean point (x, y, z) is written in homogeneous coordinates as

λ(x, y, z, 1) for λ ∈ R\{0}, while points at infinity satisfy w = 0. In this real projec-

tive space RP3, points along lines through the origin are equivalent by the relation

p ∼ λp, λ ∈ R\{0}. The set of homogeneous points p ∈ R4, ‖p‖ = 1 with unit norm

spans the 3-sphere S3 and provides a double cover of this real projective space (an-

tipodal points are identified). Therefore, the same exponential map as for quaternions

is applicable to normalised homogeneous points.

An alternative map is presented in Hartley and Zisserman [54, Appendix 6.9.3]

that uses Householder transformations instead of quaternion multiplication. Both are

valid, and we have not seen a major difference in their convergence. Note that both

methods only work well for bundle adjustment as long as the cameras are near the
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origin, which is easy to satisfy for our windowed bundle adjustment. Intuitively, the

parameterisation becomes more nonlinear for cameras with centre far from the origin.

4.2.4 Place Recognition

Place recognition is an important component in the context of large-scale, multi-

robot and multi-session SLAM, where algorithms based on visual appearance are

now widely used. Central to the performance of these algorithms has been the de-

velopments in invariant interest point detection and feature descriptors as discussed

in Section 3.6. Although these approaches detect and describe local patches in the

image, in 2003 Sivic and Zisserman [128] developed a global descriptor and matching

scheme analogous to techniques previously developed in the text retrieval community.

The bag-of-words (BoW) approach first builds a visual vocabulary in the feature de-

scriptor space by clustering descriptors computed over a large training set of images.

The resulting clusters become words in the vocabulary. Given this vocabulary a

global BoW descriptor can be formed for an image by first computing the feature

descriptors which are then mapped to corresponding words in the vocabulary. The

BoW descriptor consists of a vector of weighted word frequencies, where the weighting

is known as “term-frequency-inverse document frequency” (tf-idf). The effect of the

tf-idf weighting is to increase the importance of words that occur frequently in a given

image, but at the same time decrease the importance of words that occur frequently

across the training set. Fast retrieval is achieved through the use of an inverted file

structure which maps each word in the vocabulary to all occurrences of that word in

the image dataset.

Nistér and Stewénius [110] built on the work of Sivic and Zisserman [128] through

the use of a hierarchical approach leading to vocabulary tree structure. This has

the effect of permitting much larger vocabularies with consequent improvement in

retrieval rates. Furthermore the use of the vocabulary tree results in far fewer images
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from the database being considered during each look-up thereby allowing searches

over millions of images.

In this thesis we have used a place recognition software module provided by Cesar

Cadena based on his recent work [13, 14], which has been demonstrated to have robust

and reliable performance. Although this work does not form part of the contributions

of this thesis, the technique is briefly summarised here for completeness and to explain

the parameters that were used in the experiments described in Chapter 5. The key

to the performance of Cadena’s approach is the use of two separate stages. As each

new image is presented to the system it is first assessed by a BoW appearance based

matcher [128], which is implemented using the hierarchical approach of Nistér and

Stewénius [110]. The output of this stage is a normalised similarity score, ηc, that

computes the ratio between two matches

ηc(t, t′) = s(t, t′)
s(t, t− 1) (4.5)

where, s(t, t′) is the matching score between the input and the best matched candi-

date, and s(t, t−1) is the match between the current input and the previous input to

the system. Matches where ηc ≥ 0.8 are output as loop closure candidates. Matches

where ηc ≤ 0.15 are rejected.

Matches where 0.15 < ηc < 0.8 are input to a more computationally intensive

second stage evaluation utilising a Conditional Random Field (CRF) based matching

strategy. The use of the CRF-based approach permits the combination of both visual

and 3D geometric information (derived from the stereo data), thereby permitting

more robust matching. The approach taken is a CRF-based algorithm proposed

for matching 2D laser scans [116] and for matching image features [117]. In [13]

CRF-Matching was extended to reason in 3D space about the association of data

provided by a stereo camera system in order to verify loop closures hypothesis. This
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verification stage was improved in [14] taking into account the distant information i.e

the remaining information in the image without 3D information.

They compute the negative log-likelihood ΛGt,t′ from the maximum a posteriori

(MAP) association between the current scene in time t against the candidate scene

in time t′. Loop closure candidates are output from this stage only if the normalised

similarity scores assert η3D ≤ β3D ∧ ηIm ≤ βIm, with:

ηG =
ΛGt,t′

ΛGt,t−1
(4.6)

where G indicates the graph, 3D or Im. βG is a control parameter that defines the

level of similarity we demand for (t, t− 1) in terms of close range β3D, and far range

βIm. Where smaller values for β means a higher demand. In the system described in

this thesis the values of β3D = βIm = 2 were used.

For each session a new image is added to the database whenever the sensor’s

motion exceeds a threshold of 0.2m or 0.2rad based on the output from the front-

end’s motion estimation. All loop closure candidates are input to a pose estimation

module which also acts as geometric filter to validate the candidates. Full details of

this process are provided in Section 4.3.1.

4.3 Multi-session and Multi-Robot Mapping

Operating over larger spaces and timescales raises a number of separate but related

challenges for SLAM algorithms and systems. As the timescale of the mapping pro-

cess increases to weeks or months, carrying it out in a single contiguous traversal

through the environment becomes impractical. As a consequence the assumption

that the input consists of a single contiguous data stream becomes invalid. Instead

such scenarios typically consist of repeated visits or traversals through an environment

possibly with the acquisition platform being shutdown and moved in the interven-
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Multi-robot Mapping
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Figure 4.3: (a) Requirements for, and (b) applicability of single-session single-robot,
multi-session, and multi-robot mapping over varying spatial and temporal scales.
Increasing the spatial and temporal scales of the mapping process makes capturing
all of the data in a single contiguous capture session impractical. As a consequence
multi-robot and multi-session mapping becomes a more pertinent issue.

ing periods. Hence, multi-session mapping algorithms assume the input consists of

a number of possibly unordered distinct sessions with no assumptions being made

regarding the relationship between those sessions.

Similarly, as the scale of the domain increases so too does the requirement to use

multiple robots in a distributed or collaborative approach [114]. Both of these situ-

ations are closely related (e.g. many multi-robot approaches deal with the unknown

initial relative pose [142, 68]), however there are some subtle differences. In partic-

ular multi-session mapping is more amenable to centralised approaches due to the

fact that they have less stringent bandwidth requirements. One of the advantages of

multi-robot systems is that they can scale to large spaces whilst keeping the compu-

tation time bounded through the inherent parallelism of using multiple robots. The

cost of running multiple front-ends in parallel is higher communication bandwidth

requirements. Furthermore in order to achieve truly scalable multi-robot algorithms

requires fully decentralised processing which makes maintaining global consistency

more difficult [22, 23, 24]. Conceptually, the relationship between the applicability
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of single-session (single-robot), multi-session, and multi-robot mapping systems in

terms of spatial and temporal scales is illustrated in Fig. 4.3. Of course any multi-

robot algorithm can be used for multi-session mapping which in turn can be used

for single-session mapping. Furthermore, given the standard architecture of dividing

SLAM systems into separate front-end and back-end optimisation modules, assuming

the bandwidth limitations of the infrastructure are not reached, most multi-session

SLAM algorithms can be applied in multi-robot situations.

4.3.1 Multi-session mapping with iSAM and anchor nodes

For multi-session mapping we use one pose graph for each robot/camera trajectory,

with multiple pose graphs connected to one another with the help of “anchor nodes”,

as introduced in Kim et al. [66] and Ni and Dellaert [108].

In this work we distinguish between intra-session and inter-session loop closures.

Processing of loop closures is performed firstly with each frame corresponding to a new

pose being input to the place recognition system (see Section 4.2.4). These candidate

frames are matched against previously input frames from all sessions. On successful

recognition of a loop closure the place recognition system returns the matched frames’

session and frame identifiers. The SURF features for both images in the image pair are

matched using the Fast Library for Approximate Nearest Neighbour, which computes

the matches based on a k-nearest neighbour search resulting in a set of stereo feature

correspondences between the two frames. These feature sets consist of lists of SURF

feature locations and stereo disparities. Note that since these features are already

computed and stored during the place recognition processing, their use here does not

place any additional computational load on the system.

These feature sets serve as input to the same camera orientation estimation system

described in Section 4.2.1. Here the disparities for one of the feature sets are used

to perform 3D reconstruction of the points in the scene. These 3D points are passed
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with their corresponding 2D features from the second image into a 3-point algorithm-

based RANSAC procedure. Finally the estimated orientation is iteratively refined

through a non-linear optimisation procedure that minimises the reprojection error in

conjunction with the disparity.

Inter-session loop closures introduce encounters between pose graphs correspond-

ing to different visual SLAM sessions. An encounter between two sessions s and s′ is

a measurement that connects two robot poses xsj and xs′
j′ . This is in contrast to mea-

surements between poses of a single trajectory, which are of one of two types: The

most frequent type of measurement connects successive poses, and is derived from

visual odometry and the subsequent local smoothing. A second type of measurement

is provided by intra-session loop closures.

The use of anchor nodes [66] allows at any time the combination of multiple pose

graphs that have previously been optimised independently. The anchor node ∆s for

the pose graph of session s specifies the offset of the complete trajectory with respect

to a global coordinate frame. That is, we keep the individual pose graphs in their own

local frame. Poses are transformed to the global frame by pose composition ∆s ⊕ xsi

with the corresponding anchor node.

In this relative formulation, the pose graph optimisation remains the same, only

the formulation of encounter measurements involves the anchor nodes. The factor

describing an encounter between two pose graphs will also involve the anchor nodes

associated with each pose graph. The anchor nodes are involved because the en-

counter is a global measure between the two trajectories, but the pose variables of

each trajectory are specified in the session’s own local coordinate frame. The anchor

nodes are used to transform the respective poses of each pose graph into the global

frame, where a comparison with the measurement becomes possible. The factor h
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(a) Hypothetical environment including
starting point for each robot mapping
session.

(b) Areas of environment covered by each
session with regions where encounters occur
highlighted at A, B, & C.

(c) Pose graphs of each of the individual sessions, represented as factor graphs,
registered with the corresponding region of the environment. Here the poses
involved in encounters are those that coincide with regions A, B, & C. For
example assuming the sessions occur sequentially and in numerical order, the
first encounter occurs between Session 1 and Session 2 at region A. From the
above pose graphs it can be seen that this encounter involves the fifth and fourth
poses from Session 1 and Session 2, respectively.

Figure 4.4: Hypothetical multi-session mapping scenario consisting of three sepa-
rate sessions, where (a) shows the environment to be mapped, (b) shows the regions
mapped by each session, and (c) show the individual pose graphs for each of the
sessions (excluding encounter constraints). Subsequent figures show the complete
multi-session pose graph. Note that although in this scenario we assume the sessions
occur sequentially, there is no inherent requirement for this to be the case when using
anchor nodes. On the contrary, the anchor node framework can be used to com-
bine concurrent mapping sessions and makes no assumption regarding inter-session
ordering or timing.
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Figure 4.5: Multi-session factor graph incorporating sessions 1 and 2 (see Fig. 4.4(c)),
and the encounter at location A (see Fig. 4.4(b)). Note that the factor graph for
session 1 has been laid out linearly to simplify the illustration. Here each pose graph
is represented using a relative coordinate frame anchored using the priors on the first
poses. Although these can be set arbitrarily, typically we set them to the origin.
Also shown are the anchor nodes for each session which are used to estimate the pose
of the respective session relative to the global reference frame. In this example the
encounter between the two poses in the region A induces a constraint between those
poses and the anchor nodes. This constraint is captured by the encounter factor
shown in purple.

Figure 4.6: Following on from Fig. 4.5, this figure shows the multi-session factor graph
incorporating sessions 1, 2, and 3 (see Fig. 4.4(c)), and the encounters at locations
A and B (see Fig. 4.4(b)). Again, each pose graph is represented using a relative
coordinate frame anchored using the priors on the first poses. Just as with sessions
1 and 2 in Fig. 4.5, session 3 is augmented with an anchor node for estimating its
pose in the global reference frame. This figure also adds the encounter between the
two poses in region B inducing a constraint between those poses and the associated
anchor nodes. This constraint is captured by the encounter factor shown in green.
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Figure 4.7: Complete factor graph for scenario described in Fig. 4.4, including relative
pose graphs for each of the individual sessions, anchor nodes for estimating the global
poses of each session, and encounter constraints due to encounters at locations A
(purple), B (green), and C (blue) shown in Fig. 4.4(b).

describing an encounter ci is given by

h(xsj ,xs
′

j′ ,∆s,∆s′) ∝ exp
(
−1

2
∥∥∥((∆s ⊕ xsj)	 (∆s′ ⊕ xs′

j′))− ci
∥∥∥2

Γ

)
(4.7)

These inter-session constraints are incorporated into the cost function defined in

Eq. 4.2 in the same way as the other measurements. Figs. 4.4 – 4.7 provides a

graphical example of this process. The concept of relative pose graphs generalises

well to a larger number of sessions, with the number of anchor nodes depending only

on the number of sessions.

4.3.2 A 1-D example of multi-session SLAM

In his PhD thesis, Nico Sünderhauf [137] provides an intuitive example of solving a

trivial 1-D SLAM problem in order to provide a comprehensive view of all the steps

involved. This section aims to do the same but extends the example to multi-session
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Figure 4.8: Example 1-D multi-session SLAM scenario. Here two pose graphs are
built in the same environment where Session 1 is displaced relative to Session 0.
Inter-session loop closure constraints, c1 and c2, occur between poses x0

0 and x1
0, and,

x1
1 and x0

3, respectively.

SLAM. In particular the example highlights the effect of the use of anchor nodes in

terms of estimating the global frames of each of the sessions whilst permitting the

use of a relative representation within each of the sessions. Also it shows the effect

of the anchor nodes in terms of the variables being estimated, the Jacobian, and the

information matrix.

In this example we define two sessions each containing four poses separated by unit

increments and joined by two inter-session encounters. A factor graph representation

of the example is shown in Fig. 4.8, with the associated data for the example provided

in Table 4.1.

To solve the above system we first need to compute the elements of the normal

equations as given in Eq. 2.19. In the case of the simple 1D motion model, and

assuming unit time steps between pairs of poses, the odometry factors (see Eq. 2.14)

are given by,

f(xi, xj;uj) = ‖xi + uj − xj‖2
Σ (4.8)

Similarly the encounter factors are given by,

h(xsj , xs
′

j′ ,∆s,∆s′) = ‖((∆s + xsj)− (∆s′ + xs
′

j′))− c‖2
Γ (4.9)

Note here that these factors actually result in a linear least squares problem, however

we still take a non-linear approach to highlight the steps involved when using non-
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Session 0
pose ground

truth pose
measured
odometry

estimated
pose

x0
0 0.0 0.9 0.0
x0

1 1.0 1.0 0.9
x0

2 2.0 1.1 1.9
x0

3 3.0 - 3.0
(a)

Session 1
pose ground

truth pose
measured
odometry

estimated
pose

x1
0 1.0 1.1 0.0
x1

1 2.0 1.1 1.1
x1

2 3.0 0.9 2.2
x1

3 4.0 − 3.1
(b)

Inter-Session Loop Closures
encounter pose 1 pose 2 ground truth

constraint
measured
constraint

c0 x0
0 x1

0 1.0 0.9
c1 x0

3 x1
1 −1.0 −0.8

(c)

Table 4.1: Example 1-D multi-session SLAM scenario.
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linear motion or measurement models.

Given the above factors the residual vector is constructed by stacking the residuals

for each of the individual sessions followed by the residuals for the encounters as

follows,

f(x) =



x0
0 + u0

0 − x0
1

x0
1 + u0

1 − x0
2

x0
2 + u0

2 − x0
3

x0
0 − 0

x1
0 + u1

0 − x1
1

x1
1 + u1

1 − x1
2

x1
2 + u1

2 − x1
3

x1
0 − 0

((∆1 + x1
0)− (∆0 + x0

0))− c0

((∆1 + x1
1)− (∆0 + x0

3))− c1

∆0 − 0



⇒ f(x0) =



0
0
0
0
0
0
0
0
0
−0.9
−1.1

0



(4.10)

Note here that the fourth, eight and eleventh elements here are due to the priors

on the origin poses of the two sessions and on the first session’s anchor nodes. Since

the system includes encounters between the two sessions, no prior is required on

the second session’s anchor node. As can be seen in the above, since the estimated

positions are initialised from the measured odometry (i.e. through dead-reckoning)

all of the residuals are zero within the individual sessions. However due to the fact

that the anchor nodes have both been initialised to zero when in fact there is a unit

translational shift between the sessions, the residuals on each of the inter-session loop

constraints are non-zero.
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From Eq. 4.10 the Jacobian is given by

J =



1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0 −1 1
0 0 0 −1 0 1 0 0 −1 1
0 0 0 0 0 0 0 0 1 0



(4.11)

where the blocks due to Session 1, Session2, and the anchor nodes have been high-

lighted in bold.

Finally, taking the covariance on all odometry and loop closure measurements to

be 0.01 and the covariance on the priors to be 0.001 leads to the following information

matrix

Ω = Σ−1 = diag
(

0.01, 0.01, 0.01, 0.001, 0.01, 0.01, 0.01, 0.001, 0.01, 0.01, 0.001
)−1

(4.12)

= diag
(

100, 100, 100, 100, 1000, 100, 100, 100, 1000, 100, 100, 1000
)
(4.13)

As shown in Eq. 2.19 the normal equations allow us to solve for an update vector,

ATAδθ∗ = ATb (4.14)

JTΩTJδθ∗ = JTΩT f (4.15)

Taking the left hand side, the system information matrix, which is typically taken as
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an approximation to the Hessian, H = JTΩTJ , is given by

H =



1200 −100 0 0 −100 0 0 0 100 −100
−100 200 −100 0 0 0 0 0 0 0

0 −100 200 −100 0 0 0 0 0 0
0 0 −100 200 0 −100 0 0 100 −100
−100 0 0 0 1200 −100 0 0 −100 100

0 0 0 −100 −100 300 −100 0 −100 100
0 0 0 0 0 −100 200 −100 0 0
0 0 0 0 0 0 −100 100 0 0

100 0 0 100 −100 −100 0 0 1200 −200
−100 0 0 −100 100 100 0 0 −200 200


(4.16)

while the right hand side, b = JTΩT f , is given by

b =
(

90 0 0 110 −90 −110 0 0 200 −200
)T

(4.17)

As discussed in Section 2.4, Eq. 4.14 can be solved using either Cholesky or QR-

factorisation which results in an update,

δθ∗ =
(

0 −0.033 −0.067 −0.1 0 0.033 0.033 0.033 0 0.933
)T

(4.18)

where, as expected, the most significant change is applied to the anchor node for

Session 2. The updates to the individual sessions on the other hand are due to the

relative residuals introduced by the inter-session encounters, as opposed to the global

displacement between sessions.

4.3.3 Multi-session implementation

The complete multi-session visual SLAM system follows the architecture shown in

Fig. 4.9. Here each input image sequence constitutes a separate session and is pro-

cessed independently by a dedicated vSLAM front-end. The output of each front-end
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Figure 4.9: Multi-session visual SLAM architecture

is processed by the multi-session back-end which is responsible for multi-session place

recognition and pose graph estimation.

The two events that update the multi-session pose graph are (i) when the front-

end outputs the latest set of poses from the windowed bundle adjustment process,

and, (ii) when the loop closure system outputs a new intra or inter-session loop

closure. Algorithms for handling both of these events are shown in Algs. 4.2 and 4.3,

respectively.

Algorithm 4.2 takes as input a window from the front-end and a session identifier

specifying the session that published the window. If the session is new, the algorithm

first creates a new pose node and attaches a prior factor to this node, where the factor

causes the pose node to be initialised to the origin. Next an anchor node is created

for the session and also attached to a factor that results in an initialisation to the

origin.

The algorithm then proceeds to iterate through the input window computing

the odometry between each pair of consecutive poses. For each pose, starting with

the second pose, a new pose node is created. Next an odometry factor between

the new pose node and the previously added pose node is created to encode the

odometry measurement. As each pose node or factor is created they are added to the
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multi-session pose graph which is then optimised using the multi-session formulation

described in the previous sections.

Algorithm 4.3 details the steps involved in incorporating new loop closures into

the existing multi-session pose graph. The algorithm takes as input a multi-session

loop closure constraint consisting of (i) session identifiers and pose indices within

the sessions for the two poses involved in the loop closure, and, (ii) a 6-DOF pose

constraint between the two poses. Intra-session constraints are identified when the

two session identifiers are equal resulting in a loop closure factor within that session.

These factors are parameterised by the two poses and the 6-DOF pose constraint.

Inter-session constraints on the other hand result in encounter factors linking the

respective sessions. These factors are parameterised by the anchor nodes and poses

from each session, and the 6-DOF pose constraint.

One point to note is that although the PR system currently returns only the best

match, it is possible to employ other strategies. For example the current architec-

ture could be extended to allow the PR system to return multiple candidates (e.g.

between more than two sessions simultaneously). Here, each candidate would then

be processed independently, i.e. by performing the consistency check, etc., prior to

being integrated into the pose graph.

The internal components of the front-end and back-end (as shown in Fig. 4.1)

are implemented as a set of loosely coupled processes that communicate using the

Lightweight Communications and Marshalling (LCM) robot middleware system [57].

This permits straightforward parallelism between the components of the system,

hence minimising the impact on all modules due to fluctuations in the load of a

particular module (e.g. due to place recognition deferring to CRF processing). Fur-

thermore the overall architecture can be transparently reconfigured for different setups

(e.g. from single CPU to multi-core or distributed processing).

An important additional benefit of using LCM was the rich toolset developed
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Algorithm 4.2: Multi-session back-end: Add pose window
Input: PL Pose List: list of poses {P0 . . .PN}from step 13 of Alg. 4.1

S session identifier associated with PL
Data: PG Multi-session pose graph {(∆0, PG0) , . . . , (∆N , PGN) , c0, . . . , cm}

∆i Anchor node for session i
PGi Relative pose graph for session i
ci Inter-session loop closure constraint

do1

if ¬exists(PGS) then // init new session2

create pose node N03

add N0 to PGS4

create pose P← 05

create prior pose factor F0(N0,P)6

add F0 to PGS7

create anchor node ∆S8

add ∆S to PG9

create pose factor DS(∆S,P)10

add DS to PG11

n← numPoses(PGS)12

Nc ← PGS.Nn−1 // set Nc to last node of pose graph13

for i=1 to N do14

create new pose node Nn15

add Nn to PGS16

create odometry factor Fi(Nc, Nn,Pi 	Pi−1)17

add Fi to PGS18

Nc ← Nn19

optimise(PG)20

end21

around the library for logging, playback, visualisation, and integration of data ac-

quired from a wide variety of sensors (e.g. lidar). The system developed in this thesis

utilises many of these features in particular for the experimental evaluation and for

visualisation of the system during operation. A screenshot of the system is shown

in Fig. 4.10. The system is built on top of a multimodal visualisation application

developed at MIT as part of the DARPA Urban Challenge.

The figure shows the system during operation where two session have been pro-

cessed, with the map for the first session shown in green, and the map for the second
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Algorithm 4.3: Multi-session back-end: Add loop closure
// Add loop closure constraint δ between pose nodes Nni

and Nnj

of sessions Ssi
and Ssj

, respectively
Input: c = {si, ni, sj, nj, δ} Multi-session loop closure constraint
Data: PG Multi-session pose graph {(∆0, PG0) , . . . , (∆N , PGN) , c0, . . . , cm}

∆i Anchor node for session i
PGi Relative pose graph for session i
ci Inter-session loop closure constraint

do1

if si = sj then2

create odometry factor F (PGsi
.Nni

, PGsi
.Nnj

, δ)3

add F to PGsi
4

else5

create odometry factor F (PGsi
.Nni

, PGsi
.Nnj

,∆si
,∆sj

, δ)6

add F to PG7

optimise(PG)8

end9

Figure 4.10: Screenshot of the multi-session visual SLAM system developed as part
of this thesis.
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session shown in blue. The corresponding trajectories are also shown in red and pur-

ple, respectively. Loop closures between the two sessions are displayed by the pink

lines in the region where the two trajectories meet. The top left hand corner of the

window shows the current frame, where the features from the GPU KLT module are

overlaid on the left frame. The lower left corner provides timings for each of the

components of the system including: the feature tracker (FT), stereo odometry (SO),

windowed bundle adjustment (WBA), place recognition (PR), and multi-session pose

graph optimisation (MS). The right hand side shown a number of controls provided

by the viewer that allow different parts of the visualisation to be reconfigured.

The figure also shows an LCM log player window which is part of the LCM suite

of utilities, and allows playback of previously captured LCM log files. The log file

shown here is part of the dataset collect during this thesis and described further in

the next chapter. As can be seen from the figure, the log file being processed includes

a number of separate data channels including odometry information from the B21

robot platform, a raw stereo image channel captured using a Point Grey Bumblebee

stereo camera, and two SICK lidar scanners. In this instance the system subscribes to

the BUMBLEBEE2_RAW channel to receive the stereo image data feed. Due to the

modularity provided by LCM, from the system’s perspective such a log playback is

indistinguishable from a live camera feed and as such provides an excellent framework

for experimental evaluation and system development.

Fig. 4.12 shows a second graphical tool provided by LCM, called the Sheriff,

which provides an efficient interface for managing and executing multiple cooper-

ating processes. The figure shows the setup used in Chapter 5 for coordinating

the multi-session mapping experiments. Finally, Fig. 4.13 shows the stereo pro-

cessing pipeline developed using the Camunits image acquisition library (https:

//code.google.com/p/camunits/).
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Figure 4.11: Example multi-session loop closures taken from the mapping sessions
shown in Fig. 4.10
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Figure 4.12: Screenshot of the LCM Sheriff utility for coordination and execution
of system modules

Figure 4.13: Screenshot of the Camview based stereo processing pipeline
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CHAPTER 5

Experimental Results

In this chapter we provide both a qualitative and quantitative assessment of the per-

formance of the system described in Chapter 4 using a number of different datasets.

In Sections 5.1 and 5.2, we assess the performance of our system in a variety of scenar-

ios, using a dataset that was collected at the Ray and Maria Stata Center at MIT over

a period of months (see Fig. 5.1). This building is known for its irregular architecture

and provides a good testing ground for visual SLAM techniques in general.

The dataset includes indoor, outdoor, and mixed sequences captured using robotic

and manually wheeled platforms and a handheld camera with full 6-DOF movement

(e.g. ascending and descending stairs, etc.). All image sequences were captured using

a Point Grey Bumblebee colour stereo camera with a baseline of 11.9cm and where

both lenses had a focal length of 3.8mm. The sensor resolution of each camera was

1024 × 768 pixels which we subsampled to 512 × 384 pixels prior to processing. As

can be seen in the figure the wheeled platforms also included horizontally mounted

2D lidar scanners. Although we do not use the lidar sensors in our system, the

98



(a) (b) (c)

Figure 5.1: Experiments carried out in Sections 5.1 and 5.2 are performed using
a dataset collected in (a) the Ray and Maria Stata Center, MIT over a period of
months. The images in the dataset were acquired using a colour Point Grey Bumble-
bee stereo camera and were captured using (b) manually wheeled, (c) robot mounted,
and handheld configurations.

accompanying laser data allows us to compare the performance of our technique

to that of a laser-based scan matcher in restricted wheeled platform scenarios (see

Section 5.1 for details). Note all processing is performed in full 6-DOF mode without

any assumptions on the structure of the scene e.g. using a ground-plane model.

The quantitative assessment is based on three separate experiments; one which

assesses the system in a single-session scenario and two which assess the system in

multi-session scenarios. Details of the datasets used in each of the experiments are

provided in Table 5.1. For each of the experiments processing was carried out on an

Intel R© CoreTM i7 940 2.93GHz based machine with 8GB of RAM and an nVidia R©

GeForce R© 9800 GT graphics card.

To permit a comparison of the performance of the system developed in this thesis

with other systems, Sections 5.3 and 5.4 provide experimental results using two pub-

licly available robotics datasets. Section 5.3 provides both single and multi-session

results using the Oxford New College Dataset [129]. Section 5.4 provides quantitative

results on the accuracy of the system using a separate Stata Center dataset [37] that

provides ground truth information for the trajectory of the robot.
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Experiment 1 Experiment 2 Experiment 3
Indoor/Outdoor Indoor Indoor Outdoor
Num. sessions 1 4 3
Seq. length 20.3 min 45 min 4.7 min
Num. poses 883 1562 1406
Intra-session 112 4 0
Inter-session 0 260 13

Table 5.1: Description of experimental datasets.

5.1 Visual SLAM Results

In this section we provide results from a number of single session SLAM experiments.

To do this we have applied the system in single session mode (i.e. only running a

single front-end) across a variety of sequences from the Stata Center dataset. The

results show that the system is capable of operating over extended sequences in both

indoor, outdoor and mixed environments with full 6-DOF motion.

For example, two feature-based maps for outdoor sequences are shown in Fig. 5.2.

Here, for 5.2(a), the underlying grid is at a scale of 10m, where the trajectory is

approximately 100m in length. An example image from the sequence is shown in the

inset with the GPU KLT feature tracks overlaid on the left frame. Fig. 5.2(b) shows

a similar scale sequence that includes full 6-DOF motion, where the user has carried

a handheld camera up a stairs.

To evaluate the accuracy of the front-end we compare its trajectory estimate to

that of a scan-matching algorithm applied to the corresponding lidar data. In the

absence of loop closures we have found the system to have drift of approximately

1%-3% in position during level motion (i.e. without changes in pitch angle). To

demonstrate this, Fig. 5.3 shows two maps with two trajectories, both taken from

the same sequence. The black contour shows the 2D lidar scan-matcher based map.

The scan-matcher’s estimated pose is shown by the blue trajectory, which can be

seen more clearly in the lower right-hand inset. The distance between grid lines in

the figure is 2m. From the figure the horizontal displacement of the final poses is

100



5.1. VISUAL SLAM RESULTS

(a) Wheeled sequence involving principally 3-DOF motion.

(b) Handheld sequence over two levels including ascending amphitheatre steps

Figure 5.2: Single session visual SLAM processing with full 6-DOF motion.
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Figure 5.3: Comparison of drift in single session visual SLAM (green poses) against
2D lidar scan-matcher (blue poses) over a 20m trajectory. The grid scale is 2m. The
inset in the lower right corner shows a zoomed view of the final poses where the
discrepancy is approximately 60cm.

approximately 60cm with a total trajectory of approximately 20m.

An example of the accumulated error in position due to drift is shown in Fig. 5.4.

Here the dataset consists of an image sequence taken over an indoor area within in

the Stata Center. The grid is at a scale of 5m with the sequence taken by travelling

on a large loop over a space of approximately 35m×15m. The image at the top shows

the result of the motion estimate in the absence of a loop closure. The majority of

the drift in this example is due to the tight turn approximately two-thirds of the way

through the sequence, where the divergence between each traversal of the hallway can

be seen.

The right-hand figure shows the result of the correction applied to the pose graph

due to a sequence of loop closures occurring at the area highlighted by the red box.

Here it can seen that the sections of the pose graph showing the traversals of the hall-

way are much more coincident and that the misalignment in corresponding portions
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(a) (b)

Figure 5.4: Single-session dataset containing a large loop. Here the grid scale is
at 5m. (a) Map and pose graph prior to loop closure showing drift in position and
structure. (b) Map and pose graph showing correction in the position and structure
due to a series of loop closures in the area shown by the red square. Background
image shows ground truth CAD floor-plans of the environment.
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Figure 5.5: Textured version of the single-session dataset containing a large loop
shown in Fig. 5.4(b).
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of the map is reduced considerably. The figure also shows the accuracy of the map

relative to the ground truth CAD floor-plan.

As mentioned in the previous section, in order to measure the computational

requirements of the system we evaluated the processing times of each component

based on three sets of sequences, each drawn from the Stata dataset. The output map

and trajectory for Experiment 1: the single session indoor sequence (see Table 5.1) is

shown in Fig. 5.6. In total the input sequence was 20.3 minutes in length (i.e. 24360

frames). Also shown in the table is the final number of poses in the pose graph,

and the number of intra-session loop closures. As can be seen from the results, the

pose decimation scheme described in Section 4.2.2 significantly reduces the number

of poses, in this case to 883. It is important to point out that the ratio of poses to

frames in this example is low due to the fact that the camera is mounted on a B21

robot which is moving slowly through the environment. As will be seen in the next

section, when the camera moves quickly such as with handheld sequences this ratio

is approximately an order of magnitude higher.

Table 5.2 provides summaries of the run-times for the principal modules of the

system, where the first two columns provide the mean and variance for Experiment 1.

Note that the times for feature tracking and stereo odometry modules correspond to

the computational cost for each frame of the input sequence. However given that each

of the iterations of the windowed bundle adjustment and place recognition modules

only occur on each new keyframe (i.e. pose), the times provided are per keyframe.

Finally since the pose graph updates only occur when the front-end window reaches 15

poses or whenever a loop closure occurs, the times shown in this row are per window.

Given that each of the modules runs as a separate process, with communication

handled via LCM, each task is handled by a separate core of the CPU.

Figures 5.7-5.8 provide plots of the computation time for each iteration of the

windowed bundle adjustment, place recognition, and pose graph iSAM, respectively.
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Figure 5.6: Top-down orthographic projection of the results for the experiment
1 single session dataset described in Table 5.1. Here the map is overlaid on an
architectural floor-plan for comparison with ground-truth. The reference grid is shown
at a scale of 5m. Images A–D displayed above the map show sample frames from the
sequence with their approximate location highlighted on the map. Further details
can be found in Section 5.1.
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Experiment 1 Experiment 2 Experiment 3
Single Session Indoor Multi-session Indoor Multi-session Outdoor
Mean(s) Variance(s) Mean(s) Variance(s) Mean(s) Variance(s)

Feat. track. 0.0309 3.29× 10−5 0.0315 4.90× 10−5 0.0374 4.8× 10−5

Stereo odom. 0.0084 1.61× 10−4 0.0083 1.62× 10−4 0.0021 5× 10−5

WBA 0.0755 0.0048 0.0665 0.0029 0.0611 0.0026
Place recog. 0.1703 0.0832 0.1794 0.0792 0.1049 0.0148
iSAM 0.0996 0.0040 0.1960 0.0242 0.1242 0.0170

Table 5.2: Mean runtimes and variances for each iteration of each module of the
system for each of the experiments reported in the thesis. Feature tracking and
stereo odometry are executed for each frame of the input sequence. Windowed bundle
adjustment (WBA) and place recognition are executed for each pose. Incremental
updates to the pose-graph are computed via iSAM once for each window.

As can be seen from Fig. 5.8 the total number of updates to the pose graph is ap-

proximately 160 with a total of 883 poses in the final pose graph. Also, from this

graph it is possible to see, (i) the increase in computation time as the size of the pose

graph grows, and, (ii) the impact due to loop closures.

Figures 5.9(a) and 5.9(b) provide plots of the cumulative computation time as a

function of processed input sequence time for each of the modules in the front-end

and back-end respectively. Given that each of these modules runs in parallel, each

on a separate core of the CPU, it is clear from this graph that the overall system is

capable of running in real-time.

Finally, in order to assess the drift of the system, Figure 5.10 shows a number of

visualisations of the variation in the estimated height of the sensor over the single

session dataset. Given that there is no ground plane estimation, the original map

is output in the frame of reference of the initial camera pose. Hence to create these

figures we first computed the plane of best fit to the poses and centered the data

around the resulting Z direction (i.e. a mean Z value of 0m). Figure 5.10(a) shows a

plot of the resulting data where the X and Y position of the sensor has been manually

aligned to the building floorplan. The alignment process only varied the orientation

and translation in the plane, and the overall scale. Figure 5.10(b), shows a plot
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Figure 5.7: Processing times per keyframe for Experiment 1: single session indoor
sequence. Per keyframe processing times for (a) iSAM based windowed bundle ad-
justment and (b) place recognition.
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Figure 5.8: Experiment 1 processing times for the iSAM based pose graph optimisa-
tion. Note that the timings are per window where the purple diamond data points and
blue circle data points distinguish between windows with and without loop closures,
respectively.
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Figure 5.9: Cumulative processing times for Experiment 1: single session indoor
sequence. These two plots show the total processing time for (a) the front-end, and,
(b) the back-end, both as a function of the total input sequence length in seconds.
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Figure 5.10: Single session Stata Center elevation estimate. Figure (a) shows a plan
view of the resulting trajectory. Figure (b) shows the variation in Z as a function of
X position. Figure (c) shows the variation in Z as a function of distance travelled.
Finally, Figure (d) shows a histogram of the Z values.

of the X and Z position where the plot is aligned to Figure 5.10(a). Note that in

Figure 5.10(b) the scale on the Z-axis is from −1m to +1m, and hence as can be seen

from the figure there is minimal drift in the Z-direction. Figure 5.10(c) shows a plot

of the Z position as a function the distance travelled, whereas Figure 5.10(d) provides

a histogram of the distribution of the Z-values. Here the total distance travelled is

131.5m, where the median Z-value is −0.0147m, and the standard deviation of the

Z-value is 0.0809m.
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5.1.1 Odometry Failure

Although the odometry system has shown to be robust over maps of the order of

hundreds of meters, two failure modes for the system are due to tracker failure during

(i) high-speed motion, and (ii) low-texture or low contrast environments, which can

also cause errors whereby the disparity estimation fails over a large set of features.

In the current system we address this through reinitialising the tracker and inserting

a new pose where the motion relative to the previous pose is set to zero with large

covariance. Hence we keep the two sections of the pose graph (i.e. at either side of

the failure) topologically connected whilst capturing the high degree of uncertainty

between them. This is done with the intention that future loop closures between the

sections will provide adequate constraints to correct for this uncertainty.

A frame where such an odometry failure occurred in Experiment 1 is shown in

the right-most frame at the top of Fig. 5.6 (i.e. image D). Here lack of texture in

the environment results in a low feature count and hence an inability to estimate

the camera’s motion. Fig. 5.6 also highlights the location of the frame in the map.

At the point in the sequence where this failure occurs the map diverges, however a

subsequent loop closure close to point C in the map corrects for this drift. As can

be seen from comparison, the final estimated structure is in close agreement with the

ground truth floor plan.

We note that the above approach can be avoided for short term tracking failures

by incorporating inertial sensors [58]. For longer tracking failures, an alternative

approach that we are currently investigating is the possibility of using multi-session

SLAM as a solution to this problem, whereby odometry failure results in the creation

of a new session with a weak prior on the initial position. This disjoint session is

treated the same as any other session. When a new encounter does occur, the session

can be reconnected to the global pose graph.
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5.2 Multi-session Visual SLAM Results

To evaluate the multi-session performance of the system we tested it on the Experi-

ments 2 and 3 datasets detailed in Table 5.1. The rationale for choosing the datasets

was that the Experiment 2 dataset contains, as a subset, the single session dataset

from Experiment 1, and therefore allows a direct comparison to be made between

the system’s single- and multi-session operation. The sequences used in Experiment

3 differ from the other datasets in that they were captured using a handheld Bum-

blebee camera in an outdoor environment and contain sub-sequences where the user

ascends and descends stairs. Hence Experiment 3 involves a much larger and more

erratic range of motions in all 6-DOF.

Figs. 5.11–5.14 provide a number of different views of the output of the system

for the Experiment 2 dataset. Figs. 5.11 – 5.12 show the results for the individual

sessions including trajectories and maps. Fig. 5.13 shows the trajectories where the

elevation increases with time and the purple links between the trajectories correspond

to the intra and inter-session loop closures. Finally, Fig. 5.14 shows the complete

multi-session pose-graph and map including all four sessions aligned to the building

floorplan.

As reported in Table 5.1, in this experiment the input dataset consisted of 4

separate sessions, which, when combined, corresponded to a total of 45 minutes of

video at 20 fps. The final multi-session pose graph contains 1562 poses and spans

an area of approximately 75m × 25m. Comparing the output to that of Experiment

1, the ratio of the number of poses in the final trajectory to the length of the input

video sequence is of the same order. Timings for each of the modules of the system

for this dataset are given in columns 3 and 4 of Table 5.2.

Figs. 5.15–5.17 provides a set of plots for the module execution times for Ex-

periment 2 equivalent to those shown for Experiment 1 in the previous section (see

Figs. 5.7–5.9). As can be seen from the multi-session results, each of the modules
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(a) Session 1

(b) Session 2

Figure 5.11: Experiment 2: Sessions 1 & 2 of Stata Center multi-session second floor
dataset. The underlying grid is set at a 5m scale in all figures. See Section 5.2 for
further details.
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(a) Session 3

(b) Session 4

Figure 5.12: Experiment 2: Sessions 3 & 4 of Stata Center multi-session second floor
dataset. The underlying grid is set at a 5m scale in all figures. See Section 5.2 for
further details.
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Figure 5.13: Experiment 2: Detected loops within and between pose graphs in the
Stata Center multi-session second floor dataset. Here the Z-axis increases with time
with loop closures shown by the purple links between the pose graphs. See Section 5.2
for further details.

except for the multi-session iSAM module have similar mean execution times to the

single-session operation. The reason for the difference in iSAM is due to the fact that

the complexity of the optimisation is a function of the number of poses in the pose

graph.

Fig. 5.18 shows the estimated map and trajectory for the Experiment 3 dataset,

where again the grid is at a scale of 5m. Fig. 5.18(a) shows a plan view of the map,

where it can be seen that the total area covered by the 3 sessions is approximately

110m × 80m. A side view of the map where the 6-DOF motion of the camera is

apparent is shown in Fig. 5.18(b). Given that the sequences in this dataset are taken

from a handheld camera the motion of the sensor is at much higher velocities and as

a consequence the ratio of the number of poses to the number of frames processed is

an order of magnitude higher than in the two previous experiments. In particular,

although the total length of the image sequences is 4.7 minutes compared to the 45

minutes of the indoor multi-session experiment, the number of poses are within 10%

of each other.
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Figure 5.14: Experiment 2: Combined multi-session map and pose graph for Stata
Center multi-session second floor dataset including four separate sessions captured
over a 75m × 25m area. The underlying grid is set at a 5m scale in all figures. See
Section 5.2 for further details.
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Figure 5.15: Processing times per keyframe for Experiment 2: multi-session indoor
dataset. Per keyframe processing times for (a) iSAM based windowed bundle adjust-
ment and (b) place recognition.
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Figure 5.16: Experiment 2 processing times for the iSAM based pose graph optimisa-
tion. Note that the timings are per window where the purple diamond data points and
blue circle data points distinguish between windows with and without loop closures,
respectively.
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Figure 5.17: Cumulative processing times for Experiment 2: multi-session indoor
dataset. These two plots show the total processing time for (a) the front-end, and,
(b) the back-end, both as a function of the total input sequence length in seconds.
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(a)

(b)

Figure 5.18: Multi-session results for outdoor datasets from Experiment 3 including
3 sessions. (a) shows a plan view where the grid is at a scale of 5m. (b) shows
an orthographic side view where the full 3D structure is apparent, in particular the
stairs. See Section 5.2 for further details.
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Figure 5.19: Processing times per keyframe for Experiment 3: multi-session out-
door handheld dataset. Per keyframe processing times for (a) iSAM based windowed
bundle adjustment and (b) place recognition.

122



5.2. MULTI-SESSION VISUAL SLAM RESULTS

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Multisession iSAM

window

ti
m

e
 (

s
)

Window with loop closures

Window w/o loop closures

Figure 5.20: Experiment 3 processing times for the iSAM based pose graph optimisa-
tion. Note that the timings are per window where the purple diamond data points and
blue circle data points distinguish between windows with and without loop closures,
respectively.
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Figure 5.21: Cumulative processing times for Experiment 3: multi-session outdoor
handheld dataset. These two plots show the total processing time for (a) the front-
end, and, (b) the back-end, both as a function of the total input sequence length in
seconds.
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Columns 5 and 6 of Table 5.2 provide details of the timings for Experiment 3.

Two important differences with the outdoor dataset were that the appearance of

the scene was far more textured and as such the disparity estimation and 3D feature

tracking was more reliable. The effect of this can be seen in the speed up of the stereo

odometry computation which was principally due to significantly less iterations of the

RANSAC procedure. Detailed plots of the timings for Experiment 3 are shown in

Figs. 5.19– 5.21.

One issue encountered during the outdoor sequences was intra-frame aliasing of

SURF features (e.g. due to the repeated red bricks). This resulted in a number of

true positive loop closures from the place recognition system being rejected due to

a failure of the geometric consistency test, which was in turn due to a failure of the

SURF correspondence estimation. For example in experiment 3 the total number of

loop closures was 13. This is the reason why, although the total number of poses is

similar to Experiment 2, the iSAM processing time is lower.

5.3 New College Dataset Experiments

In this section we provide results for a similar set of experiments to the previous

sections but using the Oxford New College Dataset [129]. This dataset is a public

dataset widely used in benchmarking of SLAM systems. The dataset consists of data

collected from multiple sensors mounted on a Segway based robot (see Figure 5.22(a)),

including lidar, stereo and omnidirectional imagery. As described in Smith et al.

[129], the dataset is divided into three epoch’s, A (Campus), B (Parklands), and C

(Campus & Parklands) as shown in Figure 5.22(b).

To evaluate the performance of the system over this dataset both single session

and multi-session experiments were performed. For the single session experiment the

system was run on the Epoch A component of the dataset. The results of this exper-
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(a) (b)

Figure 5.22: Overview of the New College Dataset from Smith et al. [129]. (a) Segway
robotic sensor platform. (b) Aerial view of New College showing the trajectory of the
robot for epochs A-C.

iment are shown in Figure 5.23, where a set of plots similar to those in Figure 5.10

are provided. Here, however the platform moves at a much higher velocity which

results in a significant increase in the average number of keyframes per second. As a

consequence over the ~1000s of log data the result pose graph contains 4334 poses.

Figure 5.23(a) shows an overhead view of the map where the same plane fitting pro-

cess that was used in Figure 5.10 has been applied to the trajectory. Figures 5.23(b)

and 5.23(c) provide two plots of the X and Z coordinates of the trajectory. Here

both axes are at the same scale in Figure 5.23(b), showing that the variation in Z is

low compared to the scale of the trajectory. In Figure 5.23(c) the scale on Z-axis is

zoomed to highlight the structure of the variation in Z. Finally Figures 5.23(d) and

5.23(e) show the variation in Z as a function of distance travelled and a histogram of

the Z values, respectively. Here the total distance travelled is ~967m with a median

variation in Z of 0.0261m and a standard deviation of 0.2056m.

To evaluate the multi-session operation of the system using the New College

dataset, the complete dataset, including all three epochs, was divided into 5 sep-
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Figure 5.23: Single session Oxford New College experimental results. Figure (a)
shows a plan view of the resulting trajectory. Figure (b) shows the variation in Z as
a function of X position. Figure (c) shows the same data as Figure (b) with the scale
on the Z axis scaled to highlight the variation in Z. Finally, Figure (d) shows the
variation in Z as a function of distance travelled, whilst Figure (e) shows a histogram
of the Z values.
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arate sessions in a similar manner to the experiments in Section 5.2. The outputted

maps from each of the sessions are shown in Figure 5.24, with the full multi-session

map shown in Figure 5.25. This map consists of 11032 poses, 177 intra-session loop

closures, and 15 inter-session loop closures, and hence contains an order of magnitude

more poses than in the experiments from the previous section.

One area of obvious drift in the map is towards the end of the Session 4 trajectory.

This was caused by an odometry failure at the top of the map (relative to its orienta-

tion in Figure 5.24(d)) resulting in a local angular error which in turn resulted in an

accumulating translational error. Failure of the place recognition system to identify a

loop closure in this region of the pose graph meant that no constraints were available

to correct for this error.

Figures 5.26 - 5.28 provide plots for the same set of processing times as the multi-

session experiments from the previous section. Note that given the larger number of

keyframes, in this case Figures 5.26(a) and 5.26(b) show histograms of the running

times for the windowed bundle adjustment and place recognition modules, respec-

tively.

Figure 5.28 shows the cumulative processing times for the front-end and back-end

processing. Given the speed of motion and the fact that the system is operating in an

outdoor setting (i.e. with highly textured imagery), as would be expected, the plots

show that the system exhibits a performance profile similar to the handheld 3-session

experimental results from Section 5.2.

5.4 Stata Ground Truth Dataset Experiments

A number of the experiments reported throughout this chapter have addressed the is-

sue of accuracy by quantifying the variation in the height of the sensor in the wheeled

datasets, of by visually comparing the resulting maps to building floor plans. In fact
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(a) Session 1 (b) Session 2

(c) Session 3 (d) Session 4

(e) Session 5

Figure 5.24: Individual sessions of New College multi-session experiment.
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Figure 5.25: New College multi-session map including five separate sessions
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Figure 5.26: Distribution of processing times per keyframe for New College multi-
session indoor dataset. Per keyframe processing times for (a) iSAM based windowed
bundle adjustment and (b) place recognition.
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Figure 5.27: Multi-session New College processing times for the iSAM based pose
graph optimisation. Note that the timings are per window where the purple diamond
data points and blue circle data points distinguish between windows with and without
loop closures, respectively.
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Figure 5.28: Cumulative processing times for the multi-session New College experi-
ment. These two plots show the total processing time for (a) the front-end, and, (b)
the back-end, both as a function of the total input sequence length in seconds.
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this has been the approach used throughout the research community in the assess-

ment of the majority of large scale visual SLAM systems. Although such an approach

is useful in terms of providing a qualitative (or limited quantitative) assessment of

the accuracy of SLAM systems, direct comparison of the performance of different

approaches requires the availability of datasets that provide ground truth pose infor-

mation for the platform. A number of groups have published such datasets, however

they typically employ expensive motion tracking systems that only operate over a

limited space. As a consequence capturing benchmark datasets for large scale SLAM

systems cannot exploit such systems.

Recent work by Fallon et al. [37] takes an alternative approach whereby they

captured a multi-sensor dataset using a PR2 robot over the 10 floors of the Stata

Center at MIT. The dataset was captured over a number of years and currently

consists of 38 hours of data with a total trajectory length of 42 kilometres. An

important aspect of this dataset is that a large component of it contains ground

truth pose information for each frame of the data. This information was computed

by manually aligning batches of consecutive lidar scans from the dataset with as-built

floor plans of the building. The authors report that the ground truth has a typical

accuracy of 2 cm. The entire dataset is available at http://projects.csail.mit.

edu/stata/.

In this section we present a comparison of the output of the visual SLAM system

developed in this thesis with the ground truth for log 2012-01-25-12-14-25. This log

consists of 18.6 mins of data covering a trajectory of ~964m from the second floor of

the Stata Center. The results use only the visual data from the dataset and make no

use of the wheel odometry, etc.

Figure 5.29 shows the ground truth trajectory and the trajectory estimated using

the visual SLAM system, which are overlaid on the building floor plan. As can be

seen from the figure, both trajectories are in close agreement, except for a segment at
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Figure 5.29: Comparison of system to ground truth for log 2012-01-25-12-14-25 of
the Stata Ground Truth Dataset.

the right hand end of the map. This drift in the trajectory was due to an odometry

failure at the right angled turn at the beginning of the segment resulting in a local

angular error, which in turn results in an accumulating translational error.

The distribution of absolute position errors between each pose of the estimated

trajectory and the corresponding ground truth pose is shown in Figure 5.30. Fig-

ure 5.30(a) shows the distribution for the full trajectory. In order to assess the impact

of the of the above drift, Figure 5.30(b) shows the absolute error distribution between

the ground truth and a cropped version of the estimated trajectory where the poses

due to the spur at the right hand end of the map have been removed.

Finally Table 5.3 provides summary statistics for both the full and cropped tra-

jectories. As can be seen from the table the full trajectory has a median error of

~52cm, whereas the mean is ~57cm due to the outliers from the drift. The statistics

for the cropped trajectory, however, show a much lower error and fewer outliers with

the result that there is less disparity between the median (~38cm) and mean (~39cm).
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Figure 5.30: Error distributions for Stata Ground Truth experiment shown in Fig-
ure 5.29. Here (a) shows the distribution for the full trajectory where the errors due
to the drift caused by an odometry failure at the right hand end of the map are ap-
parent. To show the effect of this error on the distribution, (b) shows the distribution
for a cropped version of the red trajectory, where this component of the trajectory
has been removed.

Trajectory Median Mean Std. Dev. Num. Poses
Full 0.5180m 0.5721m 0.3536m 2024
Cropped 0.3841m 0.3949m 0.1675m 1793

Table 5.3: Stata Ground Truth Dataset error statistics.
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CHAPTER 6

Conclusions

6.1 Thesis Contributions

This thesis presented a 6-DOF multi-session visual SLAM system. The principal

contribution of the thesis is the integration of all the components required for a multi-

session visual SLAM system using iSAM with the anchor node formulation [66]. In

particular this is the first example of an anchor node based SLAM system that (i)

uses vision as the primary sensor, (ii) operates in general 6-DOF motion, (iii) includes

a visual place recognition module for identifying encounters in general environments,

and (iv) derives 6-DOF pose constraints from those loop closures within these general

environments (i.e. removing the need for fiducial targets, as were used in [66]).

We have demonstrated this system in indoor and outdoor environments using

both wheeled and handheld sensors as input. We have presented examples of single

and multi-session pose graph optimisation and map construction, and provided a

comprehensive quantitative assessment of the system’s performance in a number of
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different scenarios.

At the outset of this thesis the goal was to extend the previous work of Kim

et al. [66] to a full multi-session visual SLAM framework. At that time, although the

field of visual SLAM was being pursued by many researchers [103], no visual SLAM

system designed for operation in large scale environments was publicly available;

systems such as PTAM [67], which had been released as open source were targeted at

small scale environments. Hence, for this thesis investigation, it was first necessary

to develop a complete single-session visual SLAM system capable of operating over

extended spatial scales. This aspect of the thesis proved to be one of the most

challenging requiring the development of a complete modular visual SLAM front-

end and back-end. For the front-end these developments included (i) the integration

of many components from a diverse set of libraries, (ii) the extension of iSAM for

windowed bundle adjustment, (iii) the implementation of a complete stereo visual

odometry module, and (iv) the development of a number of utilities for simplifying

the stereo processing, visualisation, message passing, etc. The back-end required (i)

integration of a visual place recognition, (ii) computing pose constraints for the loop

closure candidates, and (iii) management and optimisation of the resultant multi-

session pose graph using iSAM.

An early design decision was to utilise a modular framework in order to minimise

the dependencies between the components of the system. Central to achieving this was

the use of the Lightweight Communications and Marshalling (LCM) library [57] which

provided an efficient messaging framework where modules operate using a publish-and-

subscribe paradigm. Using LCM means that the only explicit dependencies between

the modules are the message formats for encoding their inputs and outputs with

each module implemented as a stand-alone process. Such a decoupled architecture

is very suitable for modern multi-core CPU’s where each module can execute quasi-

independently on a separate core. This was a key element in achieving real-time
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Package Name Link
camunits https://code.google.com/p/camunits/
cholmod http://www.cise.ufl.edu/research/sparse/cholmod/
DBOW http://webdiis.unizar.es/~dorian/index.php?p=31
eigen http://eigen.tuxfamily.org/index.php?title=Main_Page
iSAM http://people.csail.mit.edu/kaess/isam/
GPU-KLT http://www.inf.ethz.ch/personal/chzach/opensource.html
lcm https://code.google.com/p/lcm/
levmar http://users.ics.forth.gr/~lourakis/levmar/
libbot2 https://code.google.com/p/libbot/
OpenCV http://opencv.org/
pods http://sourceforge.net/p/pods/home/Home/
viewer http://grandchallenge.mit.edu

Table 6.1: Open source software packages used in the multi-session visual SLAM
system.

operation for the system.

In total the system involved approximately 20K lines of code (excluding external

libraries). A list of the external libraries used in the system is provided in Table 6.1.

One of the goals for the future work after this thesis is to provide an open source

release of the multi-session visual SLAM system to permit use by other researchers.

An ultimate goal is to enable future roboticists to simply issue the command apt-get

install vslam and to be able to download and operate a robust and computationally

efficient visual SLAM system that provides persistent multi-session operation for a

wide range of application domains.

6.2 Future Directions

Although multi-session visual mapping can provide part of the solution to long-term

persistent localisation and mapping other issues must also be addressed. The most

pertinent of these issues were introduced in Section 1.2 including a description of

work published by a number of researchers for addressing them. In this section we

revisit these issues and highlight opportunities that exist for combining the work of
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this thesis with these advances.

An assumption of the current system is that only true positive loop closures are

introduced into the pose graph. Although this assumption holds true for the exper-

iments carried out in Chapter 5, in general, and especially in situations involving

long-term autonomy, false positive loop closures will occur. Avoiding this situation

can only be achieved by introducing more and more conservative thresholds on the

loop closure detection process resulting in increasing rejections rates for valid loop

closures, discarding valuable information in the estimation process.

An alternative approach is to start from the assumption that false positive loop

closures do occur and to develop methods that are robust to such outliers. Recently

significant progress has been made in this area by Sunderhauf and Protzel [138], Olson

and Agrawal [112] and Latif et al. [78, 77]. Of particular relevance here is the work

of Latif et al. [78, 77] who directly address the multi-session mapping problem in the

context of outliers pose constraints.

A second issue with long term autonomy is the scalability problem. Using the

anchor node formulation as the number and length of the sessions increases so too will

the size of the pose graph in an unbounded fashion. As mentioned in the introduction

the anchor node formulation is directly related to the base node formulation used in

T-SAM due to Ni et al. [108]. The principal difference here is that T-SAM is a

batch approach focussed on enabling out-of-core estimation where only a subset of

the factor graph needs to be in memory at any one time. We consider the anchor node

formulation to be complementary to this approach where a T-SAM type sub-division

could be applied for scalability whilst the anchor node formulation could be employed

for combining multiple sessions within each of the “plates”.

An alternative approach to achieving scalability is presented by Johannsson’s re-

duced pose graph representation to achieve temporal scalability [58]. Here although

new measurements are continually used to improve the pose graph, a new pose node
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is only introduced if it is located outside of what is referred to as the “active region” of

existing pose nodes. In this way the number of nodes in the pose graph is a function

of the scale of the space mapped.

Independently of this thesis the author has been involved in the development of

the Kintinuous mapping algorithm for dense mapping methods over extended scale

environments [149, 150, 151]. Initially this focussed on development of a shifting

scheme based on a cyclic buffer framework. This allowed continuous KinectFusion

type mapping beyond the original confines of the technique imposed by the limits of

the GPU memory [149]. Further research improved the robustness of the odometry

system by incorporating dense visual methods [150]. An example map of our earlier

work is shown in Fig. 6.1(a).

More recently we have also developed a solution to the global consistency problem

for dense mapping systems [151]. Here the underlying camera trajectory is modelled

using a pose-graph and is optimised using iSAM. The solution provides a method for

smoothly mapping corrections from the pose graph to the dense map. An example

of a globally aligned map is shown in Fig. 6.1(b). Here the insets show regions of

the map where loop closures have occurred. These areas consist of regions computed

during separate passes of the environment, showing the effectiveness of the alignment

process.

As can be seen from the figure, the density and quality (both geometric and

photometric) of the resultant maps are far richer than those produced by the previous

generation of feature based visual SLAM systems. Such systems are opening up new

possibilities in SLAM where the maps are providing the foundations for reasoning

about the environment at a semantic level [41, 122].

The capability of combining multiple dense mapping sessions is equally relevant

in the context of long term autonomous operation. Furthermore given their reliance

on RGBD sensors, which have limited applicability in outdoor settings, multi-session
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mapping provides a suitable paradigm for multi-sensor approaches. For example

creating metrically aligned dense maps of multiple indoor spaces could be achieved

by first utilising the stereo mapping approach presented in this thesis to map the

adjoining outdoor spaces. Fusing the resulting dense and sparse sessions could then

be achieved using the presented multi-session back-end.

In summary, returning to the key themes identified in Chapter 1: (1) Scalable

Representations, (2) Robustness, and (3) Dense Mapping & Semantics – the hope

is that the anchor node multi-session framework described in the thesis can be ex-

tended in all three directions. The anchor node formulation has the potential to

dovetail nicely with Johannsson’s reduced pose graph representation to achieve tem-

poral scalability [58]. Multi-session operations can also operate in concert with new

robust pose graph optimisation approaches, such as Sunderhauf and Protzel [138],

Olson and Agrawal [112] and Latif et al. [78, 77]. Finally, the multi-session approach

should apply equally well to dense mapping methods such as Kintinuous [150].
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(a) Textured dense map computed using the Kintinuous mapping algorithm
incorporating both geometric and dense visual odometry. For further details
see Whelan et al. [150]

(b) Globally consistent extended scale dense map computed using Kintinuous.
For further details see Whelan et al. [151]

Figure 6.1: Examples of dense mapping with Kintinuous. Whelan et al. [149, 150,
151].
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