
1 
 

 

Investigations into novel signalling pathways in the 

response to viral and bacterial infections. 

Enda J. Shevlin BA (Mod.) 

Department of Biology  

 

 

 

Thesis submitted for the degree of Doctor of Philosophy 

National University of Ireland, Maynooth 

October 2013 

 

Head of Department: Prof. Paul Moynagh 

Supervisor: Dr. Sinead Miggin 

 



2 
 

Contents 
  

Declaration .......................................................................................................................................... 7 

Publications ......................................................................................................................................... 8 

Poster Presentations ........................................................................................................................... 8 

Acknowledgements ............................................................................................................................. 9 

Abstract ............................................................................................................................................. 10 

List of Abbreviations ......................................................................................................................... 12 

Chapter 1 ............................................................................................................................................... 20 

Introduction .......................................................................................................................................... 20 

1.1 Innate Immunity and Toll-like receptors .................................................................................... 21 

1.1.1 TLRs ...................................................................................................................................... 21 

1.1.2 TLR adaptor proteins ............................................................................................................ 23 

1.1.3 MyD88 .................................................................................................................................. 25 

1.1.3.1 MyD88 mediated signalling .............................................................................................. 26 

1.1.4 MAL ...................................................................................................................................... 28 

1.1.4.1 MAL Localization ............................................................................................................... 29 

1.1.4.2 Mal and TLR4 Signalling .................................................................................................... 29 

1.1.4.3 MAL and TLR2 Signalling ................................................................................................... 30 

1.1.4.4 Modulators of MAL Functionality ..................................................................................... 31 

1.1.5 TRIF ....................................................................................................................................... 32 

1.1.5.1 TRIF Localisation................................................................................................................ 33 

1.1.5.2 TRIF and TLR3/4 Signalling ................................................................................................ 33 

1.1.5.3 TRIF and TLR5 Signalling .................................................................................................... 34 

1.1.5.4 TRIF and Cytosolic dsRNA Detection ................................................................................. 35 

1.1.5.5 Negative Regulation of TRIF .............................................................................................. 35 

1.1.6 TRAM .................................................................................................................................... 38 

1.1.6.1 TRAM localisation and involvement in TLR4 signalling ..................................................... 38 

1.1.6.2 Negative Regulation of TRAM ........................................................................................... 39 

1.1.7 SARM .................................................................................................................................... 40 

1.1.7.1 SARM and TLR3/4 Signalling ............................................................................................. 40 

1.1.7.2 SARM in the central nervous system ................................................................................ 41 

1.1.8 Negative Regulation of TLR Signalling by TLR Adaptors....................................................... 41 

1.2 Proteomics and its applications in immunology ......................................................................... 43 

1.2.1 Technique and Evolution ..................................................................................................... 43 



3 
 

1.2.1.1 2D PAGE and 2D DIGE ....................................................................................................... 44 

1.2.2 Applications to immunology and disease ............................................................................ 49 

1.3.1 Bordetella genus .................................................................................................................. 51 

1.3.2 B. pertussis: initial isolation and description ....................................................................... 51 

1.3.3 Pathogenesis of B. pertussis ................................................................................................. 53 

1.3.4 Immune Response to B. pertussis ........................................................................................ 53 

1.3.5 Vaccination ........................................................................................................................... 55 

1.3.6 Application of proteomics to the study of B. pertussis ........................................................ 56 

1.4.1 Human rhinovirus ................................................................................................................ 58 

1.4.2 Structure of HRV .................................................................................................................. 58 

1.4.3 HRV Replication .................................................................................................................... 59 

1.4.4 HRV Pathogenesis ................................................................................................................ 61 

1.4.5 Immune Response to HRV ................................................................................................... 61 

1.4.6 Application of proteomics to HRV infection studies ............................................................ 62 

1.3 Project Aims ................................................................................................................................ 64 

1.3.1 Project Aim 1 ........................................................................................................................ 64 

1.3.2 Project Aim 2 ........................................................................................................................ 65 

Chapter 2 ............................................................................................................................................... 66 

Materials and Methods ......................................................................................................................... 66 

2.1 General methods: ....................................................................................................................... 67 

2.1.1 Mamalian cell culture techniques ........................................................................................ 67 

2.1.2 Cell stock freezing and resuscitation ................................................................................... 67 

2.1.3 Transformation of competent cells ..................................................................................... 68 

2.1.4 Preparation of plasmid DNA ................................................................................................ 68 

2.1.5 Plasmid glycerol stock preparation ...................................................................................... 69 

2.1.6 Transfection of cells with plasmid DNA: .............................................................................. 69 

2.1.9 B. pertussis culture and infection......................................................................................... 71 

2.1.10 HRV16 infection ................................................................................................................. 71 

2.1.11 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) ...................... 72 

2.1.12 Western blot ...................................................................................................................... 72 

2.1.13 RNA isolation ...................................................................................................................... 73 

2.1.14 First-strand cDNA synthesis ............................................................................................... 74 

2.1.15 Polymerase chain reaction (PCR) ....................................................................................... 75 

2.1.16 Quantitative real time-PCR (qRT-PCR) ............................................................................... 76 



4 
 

2.1.17 Reporter assays .................................................................................................................. 78 

2.1.18 Enzyme-Linked Immunosorbent Assay (ELISA) .................................................................. 78 

2.1.19 Nuclear Extraction .............................................................................................................. 79 

2.2 Methods in Proteomics: 2D-DIGE and LC/MS ............................................................................. 80 

2.2.1 Sample lysis .......................................................................................................................... 80 

2.2.2 Sample Clean-up .................................................................................................................. 80 

2.2.3 Protein Quantification.......................................................................................................... 81 

2.2.4 DIGE Labelling ...................................................................................................................... 81 

2.2.5 IPG strip rehydration ............................................................................................................ 82 

2.2.6 1st Dimension isoelectric focusing (IEF) ................................................................................ 82 

2.2.7 Gel Casting ........................................................................................................................... 82 

2.2.8 2nd Dimension Gel Electrophoresis ...................................................................................... 83 

2.2.9 Image Acquisition ................................................................................................................. 83 

2.2.10 Image Analysis .................................................................................................................... 84 

2.2.11 Protein Visualisation .......................................................................................................... 84 

2.2.12 Spot Excision ...................................................................................................................... 85 

2.2.13 Gel Destaining .................................................................................................................... 85 

2.2.14 In-gel Trypsin Digestion...................................................................................................... 86 

2.2.15 LC/MS/MS .......................................................................................................................... 86 

2.3.16 Protein Identification ......................................................................................................... 87 

2.3 Methods in Proteomics: Label Free Quantitative Mass Spectrometry (LFQ MS) ....................... 88 

2.3.1 Sample Clean-up .................................................................................................................. 88 

2.3.2 Sample Quantification ......................................................................................................... 88 

2.3.3 Sample Acetlyation and Trypsin Digestion .......................................................................... 88 

2.3.4 Peptide Purification.............................................................................................................. 89 

2.3.5 Label-Free Mass Spectrometry ............................................................................................ 89 

2.3.6 LFQ analysis .......................................................................................................................... 90 

2.4 Statistical analysis ....................................................................................................................... 91 

Chapter 3 ............................................................................................................................................... 92 

The TIR-adaptor TRAM is required for maximal TLR7 mediated RANTES and type-I IFN production .. 92 

3.1: Introduction ............................................................................................................................... 93 

3.1.1 TRAM Structure .................................................................................................................... 93 

3.1.2 TLR7/8 and TLR9 evolution and structure ........................................................................... 93 

3.1.3 TLR9 signalling ...................................................................................................................... 95 



5 
 

3.1.4 TLR7/8 signalling .................................................................................................................. 97 

3.1.5 Chapter aim .......................................................................................................................... 98 

3.2: Results ........................................................................................................................................ 99 

3.2.1 Confirmation of TRAM deficiency in TRAM -/- immortalised bone marrow derived 

macrophages (iBMDMs). .............................................................................................................. 99 

3.2.2 Comparison of TNFα production in WT and TRAM -/-  iBMDMs ......................................... 101 

3.2.3 Comparison of RANTES and type-I IFN production in WT and TRAM -/- iBMDMs ............. 101 

3.2.4 Comparison of rantes, and tnfα and ifnα gene expression iBMDMs derived from WT and 

TRAM -/- mice ............................................................................................................................... 104 

3.2.5 Expression levels of tram in response to TLR7 and TLR9 activation .................................. 107 

3.2.6 R848 and CpG stimulation of iBMDMs causes TRAM dependent activation of IRF3 ........ 110 

3.2.7 R848 stimulation of iBMDMs causes TRAM dependent nuclear translocation of IRF3 ..... 113 

3.2.8 IκBα degradation is unaffected in TRAM -/- cells in response to R848 and CpG ................ 116 

3.2.9 TLR7/8 and TLR9 ligand preparations are incapable of activating TLR4 ............................ 118 

3.2.10 Screening human cell lines for broad TLR responsiveness: PMA differentiated, THP1 

macrophages respond to ligand binding to TLR7/8, TLR3, TLR4, TLR9 and to HRV16 infection 121 

3.2.11 Knockdown of endogenous human TRAM using siRNA ................................................... 126 

3.2.12 Suppression of TRAM impairs R848 and HRV16 mediated rantes, ifnβ and cxcl10 gene 

expression ................................................................................................................................... 128 

3.2.13 A TRAM mutant inhibits TLR7 mediated gene reporter activation ................................. 131 

3.2.14 TRAM and MyD88 physically interact upon activation of TLR7 ....................................... 132 

3.3 Discussion .................................................................................................................................. 138 

Chapter 4 ............................................................................................................................................. 142 

Investigations into respiratory cell proteome changes in response to infection with the respiratory 

pathogen Bordetella pertussis ............................................................................................................ 142 

4.1 Chapter Aim .............................................................................................................................. 143 

4.2 Results ....................................................................................................................................... 144 

4.2.1 B. pertussis activation of BEAS-2B cells.............................................................................. 144 

4.2.2 Proteomic response to B. pertussis infection – common trends and functional annotation 

of protein hits obtained by 2D-DIGE / MS .................................................................................. 146 

4.2.3 Verification of protein hits from B. pertussis infection. ..................................................... 153 

4.2.4 2D DIGE Protein Hit Verification: DJ-1 ............................................................................... 154 

4.2.5 2D-DIGE Protein Hit Verification: GSTO1 ........................................................................... 157 

4.2.6 2D-DIGE Protein Hit Verification: Stathmin 1 .................................................................... 160 

4.2.7 2D-DIGE Protein Hit Verification: PPP1Cα ......................................................................... 163 

4.2.8 2D-DIGE Protein Hit Verification: Triosephosphate Isomerase ......................................... 166 



6 
 

4.2.9 2D-DIGE Protein Hit Verification: NLRP12 ......................................................................... 168 

4.2.10 Proteomic response to B. pertussis infection – common trends and functional annotation 

of protein hits obtained by LFQ MS ............................................................................................ 171 

4.2.11 Verification of LFQ MS derived protein hits from B. pertussis infection. ........................ 178 

4.2.12 Verification of LFQ MS protein hit: Superoxide Dismutase ............................................. 178 

4.2.13 Verification of LFQ MS protein hit: Ferritin ..................................................................... 181 

4.2.14 Selection and expression knockdown of selected protein hits........................................ 184 

4.2.15 Cytokine production after gene knockdown in response to B. pertussis and TLR4 

activation .................................................................................................................................... 186 

4.2.16 Examination of stathmin 1’s and PPP1Cα’s ability to drive NFκB/AP-1 activation .......... 190 

4.3 Discussion .................................................................................................................................. 192 

Chapter 5 ............................................................................................................................................. 195 

Investigations into respiratpry cell proteome changes in response to infection with the respiratory 

pathogen human rhinovirus 16. ......................................................................................................... 195 

5.1 Chapter Aim .............................................................................................................................. 196 

5.2 Results ....................................................................................................................................... 197 

5.2.1 Optimisation of HRV16 infection protocol ......................................................................... 197 

5.2.2 Proteomic response to HRV16 infection – common trends and functional annotation of 

protein hits obtained by 2D-DIGE with MS ................................................................................. 199 

5.2.3 2D-DIGE protein hits common to both HRV16 and B. pertussis infection ......................... 201 

5.2.4 Verification of protein hits from HRV16 infection. ............................................................ 206 

5.2.5 Verification of HRV16 protein hit:  Nucleoside diphosphate kinase (NME1-NME2) ......... 206 

5.2.6 Verification of HRV16 protein hits:  DJ-1 and stathmin 1 .................................................. 209 

5.2.7 Verification of HRV16  protein hits:  TPI and SOD ............................................................. 209 

5.2.8 HRV16 and poly(I:C) mediated cytokine production post knockdown of stathmin 1 and DJ-

1 expression in BEAS-2B cells ...................................................................................................... 214 

5.3 Discussion .................................................................................................................................. 217 

Chapter 6 ............................................................................................................................................. 220 

General Discussion .............................................................................................................................. 220 

6.1 Discussion .............................................................................................................................. 221 

6.2 Future work ........................................................................................................................... 230 

Chapter 7 ............................................................................................................................................. 233 

Bibliography ........................................................................................................................................ 233 

Appendix ............................................................................................................................................. 256 

 



7 
 

Declaration 

I hereby declare that the contents of this thesis are entirely my own work and that it has not 

been previously submitted as an exercise for a degree to this or any other university. The 

work and information of others have been acknowledged and cited in the text. 

 

 

 

 

Signed:                                                                                                    Date: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



8 
 

Publications  
 

Shevlin, Enda and Miggin, Sinéad M. 'Toll-like receptor adaptor proteins'. Encyclopedia of 

Signaling Molecules Sangdun Choi (Ed.) Springer (2011) 

 

Ahmed S, Maratha A, Butt AQ, Shevlin E, Miggin SM. 'TRIF-mediated TLR3 and TLR4 

signaling is negatively regulated by ADAM15' The Journal of Immunology 190 pp 2217-

2228 (2013) 

 

 

Poster Presentations 
 

Shevlin, E. and Miggin SM. ‘Broad functional characterisation of the roles of TRIF and 

TRAM in TLR signalling’. Toll 2011 Meeting - Decoding Innate Immunity, 2011, Riva del 

Garda, Italy. 

 

Shevlin, E. and Miggin SM. ‘TLR7 signalling in macrophages activates IRF3 and is 

dependent on the adaptor TRAM’. 15
th

 International Congress of Immunology 2013, Milan, 

Italy. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



9 
 

Acknowledgements 
 

I would like to thank Sinead for allowing me to work in her lab for the past three years.  Her 

ability to explain complex procedures in a simple language is a rare talent as is her ability to 

describe as “beeeeautiful”, results which one might have thought were disheartening. Thanks 

to Edel, Suaad, Ashwini and Aisha from the lab for protocols and essential advice whenever I 

asked for it. I owe a debt of gratitude to the friends I’ve made here: Ruaidhri, Ronan, Marc, 

Eoin, Dave and Anthony. I would also like to thank my parents, Sean and Mary for their ying 

and yang presence throughout my time here. My sister Karen too deserves a mention for 

stoically putting up with my ‘PhD blues’. Finally, a special thanks to Pamela who has been 

there through the darkest days. We made it! 

 

This work was funded by the Health Research Board in Ireland under Grant No. 

PhD/20007/9 

 

 

 

 

 

 

 

 

 



10 
 

Abstract 
 

Our current understanding of the host response to pathogenic insult is in constant flux. The 

long term goal is to better understand the host response so as to design better therapeutics 

with higher efficacies and less side effects. Thus, the current work sought to increase our 

understanding the immune response to viral and bacterial perturbation of host signalling 

pathways. The TIR-domain containing adaptor TRAM is a relatively understudied protein 

with regard to TLR signalling, particularly with respect to type-I inferferon production. A re-

evaluation of the role of TRAM in TLR7 signalling showed that TRAM is required for 

maximal levels of TLR7 mediated RANTES, CXCL10 and IFNβ cytokine secretion but not 

TNFα production. TLR7 signalling was shown to activate IRF3 and NFκB in murine bone 

marrow derived macrophages. However, while TLR7 mediated IRF3 activation was TRAM 

dependent, NFκB activation was not. TRAM was also shown to mediate signalling via a 

physiological activator of TLR7, human rhinovirus 16 (HRV16). TRAM’s role in TLR7 is 

hypothesised to be dependent on its ability to membrane localise as overexpression of a 

TRAM myriostoylation mutant which is incapable of membrane localisation dose 

dependently inhibited  TLR7 mediated activation of RANTES, IFNβ, IFNα but not NFκB 

reporter genes. Furthermore, TRAM was shown to co-immunoprecipitate with the TLR7 

adaptor molecule MyD88 upon TLR7 activation.  This is first time that either IRF3 or TRAM 

has been shown to play role in TLR7 signalling. The second part of this project focused on 

the characterisation of the proteomic response to two respiratory pathogens, HRV16 and 

Bordetella pertussis (B. pertussis) in a lung epithelial cell line using mass spectrometry. 

Significant alternations were observed in the host proteome in response to both pathogens 

with proteins involved in the immune response, redox signalling, cancer related pathways, 

metabolism and DNA binding being particularly well represented. There was also a 

significant overlap between proteins identified in response to both infections with immune 
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response proteins being responsible for a third of the overlap. Supression of endogenous 

levels of a number of protein hits prior to infection with either HRV16 or B. pertussis did not 

affect levels of cytokine secretion. However, suppression of two proteins, the microtubule 

regulator stathmin 1 and the protein phosphatase PPP1Cα led to a significant decrease in 

TLR4 mediated IL-6 production.  Thus the current work has indicated novel roles for a 

number of proteins in the host response to pathogen challenge.  TRAM is required for 

maximal TLR7 mediated anti-viral cytokine secretion and both stathmin 1 and PPP1Cα are 

required for maximal TLR4 mediated IL-6 production. 
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1.1 Innate Immunity and Toll-like receptors 
The innate immune system encompasses an array of systemic defences whose principle role 

is to clear an infection or, failing that, to keep it in check until the pathogen can be recognised 

and cleared by the adaptive immune response. These defences range from relatively simple 

yet effective physical barriers such as the body’s epithelia or the respiratory tract’s cilia to 

those at the molecular level such as the production of nitric oxide by macrophages to degrade 

phagocytosed pathogens [1]. It is at this molecular level of innate immunity where an 

explosion of research has occurred over the past fifteen years allowing for the discovery and 

characterisation of several intrinsic classes of proteins and their associated signalling 

pathways in exquisite detail [2]. Toll-like receptors (TLRs) are one such class.  Belonging to 

an evolutionary ancient molecular recognition and signalling system, these type 1 

transmembrane glycoproteins represent a link between the innate and adaptive immune 

responses [3].  

 

1.1.1 TLRs 

The transmembrane Toll protein was first discovered in the fruit fly Drosophila melanogaster 

and was originally known only for its function in embryogenesis [4]. It took over a decade for 

proof of its role in defence against fungal and bacterial infections in the fruit fly to become 

apparent [5, 6]. A similar role in the mouse was also discovered where defects in the bacterial 

cell wall component lipopolysaccharide (LPS), mediated immune responses were attributed 

to mutations in the tlr4 gene [7]. TLRs have since been described in insects and vertebrates 

including humans and the chicken [8-10]. Structurally similar proteins which include the 

functionally crucial toll/interleukin-1 receptor (TIR) domain and leucine-rich repeats (LRR) 

(Figure 1.1A) have also been reported in plants [11], emphasising their broad conservation 

throughout evolution and thus their fundamental importance in defence against pathogens.   

http://en.wikipedia.org/wiki/Drosophila_melanogaster


22 
 

TLRs function by recognizing conserved structural motifs, or pathogen associated molecular 

patterns (PAMPs) which are inherent to infectious organisms and rarely found in the host. 

These are unique to pathogens and allow the host immune system to distinguish non-self 

from self and thus initiate an intracellular signalling cascade which can bring about the 

appropriate innate and adaptive immune response (Figure 1.1B).  

There are 10 functional human TLRs, each with their own particular ligand(s) specificity and 

effector function. For example, TLR2 can heterodimerise with either TLR1 or TLR6 to 

recognise triacylated or diacylated lipopeptides respectively [12]. TLR4 recognises the gram-

negative bacterial cell wall component LPS, whereas TLR3 and TLR9 recognise signature 

double stranded RNA (dsRNA) and unmethylated -cytosine-phosphate-guanine- (CpG) 

motifs respectively [13]. TLR5 senses flagellin, a component of bacterial flagella [14] and 

TLR 7 and TLR8 sense viral single stranded RNA (ssRNA) [15]. Mysteries remain however, 

as the ligand for TLR10 has yet to be discovered [16]. TLRs are also activated by host 

derived, sterile inflammatory mediators known as danger-associated molecular pattern 

(DAMPs), for example hyaluronan - an extracellular matrix fragment [17]. Thus each 

member of the TLR family senses different PAMPs and DAMPs, leading to the activation of 

TLR signalling.   
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Figure 1.1: Basic TLR structure and signalling. (A) The divergent ligand binding 

ectodomain of all TLRs consists of multiple leucne rich repeats (LRRs) interspersed with 

cysteine-rich regions. There is a short transmembrane domain linking the ectodomain to the 

highly conserved intracellular TIR domain which bears close resemblance to the IL-1R 

intracellular domain. (B) Recognition of a conserved pathogen associated molecular pattern 

(PAMP) by TLR4 causes TLR activation, typically by dimerisation and subsequent TIR-TIR 

domain interactions and autophosphorylation. This induces a downstream signalling process 

involving a MyD88 dependent or MyD88 independent pathway which culminates in the 

transcription of inflammatory and anti-viral cytokines. Adapted from [15, 18]. 

 

1.1.2 TLR adaptor proteins  

The downstream dissemination of TLR signalling involves the recruitment of appropriate 

adapter proteins which bind to the cytoplasmic TIR-domain of the TLRs via their own 

intrinsic TIR-domains. There are four activating TLR adaptor proteins: myeloid 

differentiation factor 88 (MyD88), MyD88 adaptor-like (MAL); also known as Toll-IL-1 

adaptor protein (TIRAP), TIR-domain-containing adaptor inducing IFN-β (TRIF; also known 

as TICAM-1) and TRIF related adaptor molecule (TRAM; also known as TICAM-2 and 

TIRP) [12]. These adapter proteins couple to downstream protein kinases that ultimately lead 

to the activation of transcription factors such as nuclear factor-κB (NF-κB) and members of 

the interferon (IFN)-regulatory factor (IRF) family. The critical domain common to all five of 

the TLR adaptors as well as to the TLRs themselves is the TIR domain. This is located on the 

cytoplasmic portion of all TLRs and allows binding to the reciprocal TIR-domain on the 

A B 
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exposed surface of the adaptor molecule. The IL-1 receptor (IL-1R) also contains a TIR-

domain hence the existence of the TLR/IL-1R superfamily [13]. Despite the TLRs having 

somewhat similar signal transduction pathways, there is specificity with regard to their 

adaptor usage (Figure 1.6) [19]. MyD88 is the common downstream adaptor that is recruited 

by all TLRs, except TLR3 [20]. MAL is required for TLR4, and to a lesser extent, TLR2 

signalling [21, 22]. TRIF mediates TLR3 and TLR4 signalling [23]. Finally, TRAM mediates 

TLR4 signalling exclusively, acting as a bridging adaptor to recruit TRIF to the TLR4 

complex [23, 24]. In addition, an inhibitory TLR adaptor protein called sterile alpha and TIR 

motif-containing protein (SARM) has also been identified which negatively regulates TRIF 

mediated signalling (Figure 1.6) [25].  

TLR4 is the only TLR whose activation utilises all five TLR adaptor proteins and as a result, 

its signalling is split into two broad categories according to its use of the MyD88 adaptor. 

The ‘MyD88 dependent’ pathway is used by all TLRs except TLR3.  TLR3 utilises TRIF 

only (Figure 1.6) [12]. However, loss of MyD88 does not completely abolish TLR4 

signalling as is the case with other TLRs. The ‘MyD88 independent’ pathway uses the 

adapters TRAM and TRIF in the case of TLR4 signalling to activate anti-viral and late-stage 

inflammatory responses. Thus, the function of the adaptor proteins is to provide specificity to 

TLR signalling in order to tailor the resulting cytokine profile to best defend against the 

infectious agent. To summarise, TLR engagement in response to a PAMP or DAMP 

instigates the recruitment of the relevant TLR adaptor protein(s) which provides a docking 

platform for downstream effector signalling molecules. This culminates in the production of 

proinflammatory cytokines, chemokines, and antimicrobial type I IFNs (IFN-β and IFN-α) 

which serve to trigger an inflammatory and/or antimicrobial immune response to limit the 

infectious agent. The remainder of this section will provide a more detailed discussion of the 

functionality of each of the TLR adaptors. 



25 
 

1.1.3 MyD88 
 

 

Figure 1.2: Schematic illustrating domain segmentation of MyD88. MyD88 is 296 amino 

acids (aa) in length and contains two domains. At the C terminus (aa 1–110) is the death 

domain (DD) and at the N terminus (aa 155–296) is the TIR domain. Adapted from [26]. 
 

Human myeloid differentiation factor 88 (MyD88) was first identified in 1990 as the 88 th 

gene that was induced during the terminal differentiation of myeloid precursor cells in 

response to IL-6 [27]. It is 296 amino acids (aa) in length and contains three domains: an N-

terminal death domain (DD) which enables interactions with downstream DD containing 

proteins, an interdomain, and a C-terminal TIR domain which facilitates homotypic 

interaction with other TIR-containing proteins (Figure 1.2) [28]. Early studies indicated that 

its 5’ upstream sequences contained an interferon regulatory factor 1 (IRF-1) binding site and 

in 1997, it was identified as an adaptor in the IL-1R complex that was required for IL-1 and 

IL-18 signalling [29-32]. Almost immediately after these discoveries, the fundamental 

importance of MyD88 in an immunological setting was becoming evident as mice deficient 

in the protein were shown to be unresponsive to the bacterial cell wall component endotoxin, 

a critical mediator of septic shock [33, 34]. It was eventually shown to be the master adaptor 

molecule in mediating TLR2 signalling and subsequently also in TLR4, TLR5, TLR7/8, 

TLR9, TLR13 but not TLR3 [35-42].  
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1.1.3.1 MyD88 mediated signalling 

MyD88 exists primarily in the cytoplasm of resting cells wherein it is thought to exist in a 

weak and reversible oligomerised form [43, 44].  Upon TLR activation and consequent TIR-

dimerisation, MyD88 binds to the TLR complex via its TIR-domain, thus stabilising its 

oligomeric form to provide a platform for downstream molecules to bind via DD-DD 

interactions. Interleukin-1 receptor-associated kinase 4 (IRAK4), is the critical molecule 

downstream of MyD88, being absolutely required for MyD88 dependent signalling and for 

the recruitment of further downstream molecules, IRAK1 and IRAK2 (Figure 1.3) [45]. A 

crystal structure has been generated of the MyD88, IRAK4, IRAK2 DD complex which has 

shown that a left-handed helical oligomer is formed consisting of 6 MyD88, 4 IRAK4 and 4 

IRAK2 molecules [43]. Complex formation is hierarchical whereby MyD88 first recruits 

IRAK4. This complex, but not its individual parts, is required to recruit IRAK2 or the related 

IRAK1. The resulting structure has been termed the Myddosome and serves to bring the 

kinase domains of the IRAK molecules into close proximity to drive their 

autophosphorylation [43, 44]. Phosphorylation of the IRAKs recruits the E3 ubiquitin ligase, 

TNFR-associated factor -6 (TRAF6) which ubquitinates itself [46]. TRAF6 utilises its E3 

ubiquitin ligase activity to ubiquitinate a scaffolding protein, NFκB essential modulator 

((NEMO) [47] (Figure 1.3). The combination of TRAF6 mediated ubiquitin chain formation 

and NEMO functions to recruit TGF-β activated kinase 1 (TAK1) which itself recruits the 

TAK-1 binding proteins 1 (TAB1) and TAB2. TAK1 phosphorylates IKKβ as well as 

initiating a MAP kinase cascade leading to activation of the transcription factor CREB. IKKβ 

phosphorylates the inhibitors of κB (IκB) α and IκBβ leading to NFκB release and nuclear 

translocation to bind the promoter regions of pro-inflammatory cytokines such as TNFα and 

IL-12 (Figure 1.3).  
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Figure 1.3: MyD88 dependent TLR signalling pathway. MyD88 binds to the intracellular 

protion of a TLR via TIR-TIR domain interactions. Upon TLR activation, IRAK-1, IRAK-4 

and TRAF-6 are recruited to the receptor causing MyD88-IRAK-1 interactions via death 

domain (DD) interactions. IRAK-4 phosphorylates IRAK-1 which phosphorylates TRAF-6. 

TRAF-6 then dissociates and interacts with TAK1, TAB1, and TAB2 which in turn recruits 

Ubc13 and Uev1A. This induced TAK1 activation which in turn activates the IKK complex 

consisting of IKKα, IKKβ and IKKγ/NEMO. The MAP kinase JNK is also activated. These 

then activate the transcription factors NFκB and AP-1 respectively which induce pro-

inflammatory gene expression. Adapted from [48].       
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1.1.4 MAL 
 

 

 

Figure 1.4: Schematic illustrating domain structure of MAL. Mal is 256 aa long. At the N 

terminus, there is a PIP2-binding domain (aa 15–35). This is followed by the TIR domain (aa 

86–188) and a TRAF6 domain (aa 188–196). There are two phosphorylation sites at positions 

86 and 187. Located at position 180 is the serine/leucine site linked to the genetic 

susceptibility to several diseases including TB and malaria. At position 198 is the aspartic 

acid indicating the presence of the caspase-1 cleavage site. Adapted from [26]. 

 

 

 

MAL, or TIRAP, the second TLR adaptor to be identified, was simultaneously discovered by 

two independent labs in 2001 [22, 49]. Having observed late stage NF-κB and Jun N-terminal 

kinase (JNK) activation in MyD88 deficient mice, Fitzgerald and colleagues [22], speculated 

that another, as yet unidentified TIR domain-containing adaptor protein was mediating this 

effect. High-throughput sequencing of a human DC expressed sequence tag cDNA library 

identified MAL – a TIR domain-containing protein, 235 aa in length (Figure 1.4), that was 

capable of activating NF-κB (via IRAK2) and JNK as well as extracellular signal-regulated 

kinase (ERK) -1 and -2. MAL was shown to homodimerise and heterodimerize with MyD88. 

It was also shown that a dominant-negative form of Mal inhibited TLR4 (but not IL-1R or IL-

18R) mediated NF-κB activation [22, 49]. It is generally accepted that MAL acts a bridging 

adaptor between MyD88 and TLR4 and TLR2 [15]. 
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1.1.4.1 MAL Localization 

MAL is localised primarily to the plasma membrane, although MAL-positive, actin-negative 

vesicles can be found throughout the cell [50]. MAL is concentrated at the leading edge of 

murine embryonic fibroblasts (MEFs) and in macrophages, MAL is localised to discrete 

regions of the plasma membrane called membrane ruffles which are biochemically similar to 

the leading edge of fibroblasts [50]. MAL interacts with the TIR domain of TLR2 and TLR4. 

This association is facilitated by the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding 

domain contained within the N-terminal region of MAL. This allows MAL to target to PIP2-

rich regions of the plasma membrane which contain high levels of TLR2 and TLR4, thus 

facilitating their association with MAL [12, 50]. Notably, MAL is not involved in the 

recruitment of MyD88 to other compartments, including endosomal compartments devoid of 

PIP2. Further, in MAL/MyD88 double-deficient cells, transfection of a mutant construct 

which incorporates a PIP2 binding site to the C-terminus of MyD88 directs MyD88 to the 

plasma membrane and restores lipopolysaccharide (LPS) signalling via TLR4 [50]. Surface 

charge distribution models of MAL, MyD88, and TLR4 have shown that the TIR domains of 

TLR4 and MyD88 are electropositive – and would thus be expected to repel each other under 

normal circumstances. However, the TIR domain of MAL is electronegative which would 

facilitate binding of TLR4 to MyD88 in order to transduce TLR4 signalling [12, 51]. 

Moreover, molecular docking experiments have suggested that MAL binds to a homodimer 

of TLR4 and that MAL binds to the same region of the TLR4 dimer interface [52]. 

 

 1.1.4.2 Mal and TLR4 Signalling 

Ligand engagement of TLR4, for example, binding of LPS via MD-2 and cluster of 

differentiation 14 (CD14), causes TLR4 dimerisation and nonexclusive interaction with MAL. 

Docking experiments have predicted that the MAL (and TRAM) interaction surfaces on the 

TLR4 dimer interface are at either side of the structure rather than at the top, a region that 
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would be sterically hindered by the membrane [52]. The TLR4 dimer:MAL complex 

provides a platform allowing MyD88 to bind which then facilitates the recruitment of IRAK1 

and IRAK4. Tumour necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) is 

subsequently recruited and activated via an oligomerisation/auto-ubiquitination event. 

Activated TRAF6 then recruits transforming growth factor activated kinase 1 (TAK1) and 

TAK1 binding protein 2 (TAB2). This complex interacts with the inhibitor of NF-κB kinase 

(IKK) complex, which consists of IKKα, IKKβ, and IKKγ (also known as NEMO), leading to 

the activation of NF-κB and subsequent activation of NF-κB-dependent genes, including the 

proinflammatory cytokines IL-1β, IL-6 and TNFα (Figure 1.6) [53]. 

 

1.1.4.3 MAL and TLR2 Signalling 

The role of MAL in TLR2 signalling is complicated by the fact that TLR2 can heterodimerise 

with both TLR1 and TLR6 to recognize tri- and diacylated lipopeptides, respectively. 

Overexpression studies have shown that MAL interacts with TLR1 and TLR2, but not TLR6 

[21]. Although MAL was originally suspected to be essential for TLR2 signalling, more 

recent studies have shown that MAL plays a lesser role here when compared to TLR4 [21, 

49]. Specifically, whilst MAL is required for TLR2 signalling when exposed to low levels of 

Salmonella typhimurium (S. typhimurium), MAL is redundant at high concentrations of 

ligand or in response to high levels of S. typhimurium [21]. This suggests that the 

physiological role of MAL in the context of TLR2 signalling is to prime or amplify low 

strength bacterial signals. 
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1.1.4.4 Modulators of MAL Functionality 

Additional levels of specificity and control are added to TLR signalling by virtue of the fact 

that the TLR adaptors themselves are subject to a myriad of regulatory mechanisms. MAL 

contains a proline, glutamic acid, serine, and threonine (PEST) domain, located at amino 

acids 32–72 in human MAL [54]. PEST domains are found in short-lived proteins which 

undergo phosphorylation, polyubiquitination of lysine residues, and subsequent degradation 

via the 26S proteasome. The presence of a PEST domain in MAL would therefore suggest 

that it may be a target for degradation. Interestingly, suppressor of cytokine signalling 1 

(SOCS-1), has been shown to inhibit LPS signalling by ubiquitinating MAL and thus 

targeting it for proteosomal degradation [55] . The ubiquitination of MAL is facilitated by 

Bruton’s tyrosine kinase (Btk) – a protein which is the case of MAL, performs two important 

functions. Specifically, Btk induces tyrosine phosphorylation of MAL, thus potentiating 

TLR2/4-driven NF-κB signalling [56]. However, the same phosphorylation event provides a 

platform for the aforementioned SOCS-1 mediated ubiquitination/degradation of MAL – thus 

serving to limit the over-activation of the inflammatory immune response [12]. IRAK1 and 

IRAK4 have also been shown to phosphorylate MAL, thereby facilitating its TLR4-ligand-

mediated ubiquitination and degradation; IRAK1 and IRAK4 inhibitors blocked this effect 

[57]. MAL has also been shown to interact with caspase-1, with cleavage of MAL by 

caspase-1 being required to modulate MAL functionality [58]. A number of studies have been 

carried out on a variant of MAL that contains a leucine at position 180 instead of a serine [59-

61]. It has been reported that MAL Ser180Leu does not associate with TLR2 and confers a 

protective phenotype in malaria and tuberculosis by inhibiting the inflammatory response. 

Other groups dispute this claim [28]. Overall, the studies to date indicate an association 

between heterozygosity at MAL Ser180Leu and protection against multiple infections. 
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1.1.5 TRIF 

Initially, MAL was thought to mediate the MyD88-independent pathway following TLR4 

engagement, leading to IRF3 activation and delayed activation of NF-κB [12]. However, 

given that MAL was instead shown to act as a bridging adaptor in the MyD88-dependent 

pathway which was activated following TLR4/TLR2 engagement, it remained unclear how 

TLR4 might mediate the MyD88 independent production of IFN-β [12]. In 2003, a third TLR 

adaptor, TRIF, also known as TICAM-1, was identified by two separate groups. One 

employed a database screen to identify novel TIR-domain containing proteins with the other 

employing a yeast two-hybrid screen using TLR3 as bait [41, 62]. It was found that 

overexpression of TRIF, 712 aa in length (Figure 1.5), leads to the induction of the IFN-β 

promoter. In TRIF-deficient mice, whilst impaired TLR3 and TLR4 mediated IRF3 activation 

and concomitant IFN-β induction was observed, TLR2, TLR7 and TLR9 signalling were 

unaffected [63]. Notably, TLR4 mediated NF-κB activation is completely abolished in cells 

deficient in both MyD88 and TRIF and a germline TRIF mutation in mice termed Lps2 

confirmed TRIF’s essential role in mediating ‘MyD88-independent’ pathway [28, 63, 64].  

 

Figure 1.5: Schematic illustrating domain segmentation of TRIF. TRIF is 712 aa in 

length. It consists of a TRAF6-binding domain (aa 230–235), the TIR domain (aa 380–530) 

and a receptor-interacting protein (RIP) homotypic interaction motif (RHIM) (aa 661–699). 

Adapted from [26]. 
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1.1.5.1 TRIF Localisation 

TRIF is expressed at low levels in most tissues and cells and is diffusely localised in the 

cytoplasm of resting cells [65].  When endosomal TLR3 is activated by dsRNA, TRIF 

transiently colocalises with TLR3 and then dissociates from the receptor forming speckled 

structures that localise with downstream signalling molecules. Upon stimulation of TLR4 

with LPS, TRIF is activated by endosomal TRAM, which associates with the internalised 

TLR4 complex [65]. Thus, TRIF is indirectly recruited to TLR4 via TRAM (Figure 1.6). 

Also, overexpression of TRIF leads to homo-oligomerisation through the TIR-domain and the 

C-terminus, forming a complex called the TRIF signalosome [28, 65].   

 

1.1.5.2 TRIF and TLR3/4 Signalling 

TRIF has consensus TRAF-6 and TRAF-2 binding motifs in the N-terminal region as well as 

a C-terminal receptor-interacting protein (RIP) homotypic interaction motif (RHIM) domain 

[12, 65]. The TIR domain of TRIF is essential for binding to the TIR domain of TLR3 [62]. 

These domains serve to facilitate TRIF-mediated signalling, with each domain playing a 

distinct role. The N-terminal region of TRIF participates in IRF3/7 activation by recruiting 

the IRF3-activating kinases, TANK-binding kinase 1 (TBK1), and inhibitor of NF-κB kinase 

ε (IKKε, also known as IKKi) [12]. NAK-associated protein 1 (NAP-1) forms part a kinase 

complex activating IRF3 and also serving to facilitate the association of TRIF with TBK1 and 

IKKε (Figure 1.6) [66]. Upon TBK1/IKKε-mediated phosphorylation of the IRF3/7 complex, 

the IRFs homo and heterodimerise followed by their translocation to the nucleus. Here, they 

bind to both the IFN-β enhanceosome and the IFN-stimulated response elements (ISREs) to 

induce the transcription of responsive genes including the type-I IFN and RANTES, 

otherwise known as CCL5, genes [67]. TRAF3 plays a crucial role in TLR3 signalling as 

various independent studies show that TRAF3 forms a complex with NAP-1 and TRIF 

(Figure 1.6) [68, 69]. Two separate NF-κB activation pathways bifurcate from TRIF, and 
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these map to distinct sites at the N- and C-termini. The binding motifs in the N-terminal 

region of TRIF serve to recruit TRAF6, although its role in TRIF signalling remains 

controversial [12]. Studies suggest that the participation of TRAF6 in TRIF-mediated NF-κB 

induction is cell type specific as TRAF6 is essential for NF-κB activation in mouse 

embryonic fibroblasts (MEFs), whereas TLR3 induced NF-κB activation is not impaired in 

TRAF6-deficient macrophages [70, 71]. There is a separate route to NFκB activation 

involving the RHIM domain of TRIF which facilitates the recruitment of both RIP1 and RIP3 

through this domain (Figure 1.6) [72]. Adding credence to the importance of RIP1 and RIP3 

in TRIF signalling is the fact that poly(I:C)-induced NF-κB activation is completely blocked 

in RIP-1-deficient MEFs [73]. In contrast, RIP3 has been shown to negatively regulate the 

TRIF–RIP1–NF-κB pathway [72]. TRIF also mediates the induction of apoptosis through 

TLR3 and TLR4. This is facilitated by direct recruitment of RIP1 to the C-terminal RHIM 

domain of TRIF, and involves activation of a complex containing TNFR1 associated death 

domain protein (TRADD), Fas-associated protein with death domain (FADD), and caspase-8 

(Figure 1.6) [74]. This apoptotic pathway is believed to be responsible for bacterial-induced 

apoptosis of infected DCs [12]. 

  

1.1.5.3 TRIF and TLR5 Signalling 

Although it was thought that TRIF mediated TLR3 and TLR4 signalling only, a number of 

recent studies have shown that TRIF also plays an important role in TLR5 signalling (Figure 

1.6) [75, 76]. Stimulation of human colonic epithelial cells with the TLR5 ligand flagellin, 

allows TLR5 and TRIF, but not TRAM, to interact and mediate TLR5-induced NF-κB and 

mitogen-activated protein kinase (MAPK) activation in intestinal epithelial cells (IEC). 

TRIF-deficient IECs stimulated with flagellin exhibit decreased inflammatory cytokine 

expression compared to their wildtype counterparts. Furthermore, TRIF deficient mice are 

resistant to flagellin-mediated exacerbation of colonic inflammation and dextran sulphate 
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sodium–induced experimental colitis [75]. In contrast, studies by the same group have shown 

that TRIF-induced caspase activity causes the degradation of TLR5 indicating that TRIF can 

participate in the proteolytic modification of TLR functionality at the posttranslational level 

[76]. These recent findings therefore suggest that TRIF plays an important role in regulating 

host-microbial communication via TLR5 in the gut epithelium.    

 

1.1.5.4 TRIF and Cytosolic dsRNA Detection 

A further role for TRIF in innate immune signalling, independent of the TLRs, has recently 

been identified whereby TRIF appears to be an essential component of a novel dsRNA 

sensing pathway in DCs [77]. Specifically, the RNA helicases DEAD box helicase 1 (DDX1), 

DDX21, and DEAH box helicase 36 (DHX36) form a complex which enables the 

sequestration of cytosolic dsRNA. This complex then binds to TRIF to initiate the production 

of type I IFN and inflammatory cytokines. It has been shown that DDX1 binds dsRNA via its 

helicase A domain, with DHX36 and DDX21 binding to TRIF via their HA2-DUF and PRK 

domains respectively. The resulting complex triggers the innate antimicrobial response [77]. 

 

1.1.5.5 Negative Regulation of TRIF 

Numerous strategies exist to curtail TRIF signalling, either directly, or via inhibition of 

downstream signalling molecules.  A number of molecules have been identified that directly 

inhibit TRIF. For example, the inhibitory TLR adaptor protein SARM contains a TIR domain 

and serves to inhibit TRIF mediated signalling. SARM has been shown to interact with TRIF 

and both the TIR and SAM domains of SARM are vital for SARM’s functionality in this 

regard. While the exact mechanism of inhibition has not been elucidated, it is suspected that 

SARM and TRIF interact via their TIR domains, thus preventing the binding of downstream 

effector molecules such as RIP1 (Figure 1.6) [25]. Alternatively, the SAM domain of SARM 

may facilitate recruitment of an as yet unidentified inhibitory molecule. Consistent with a role 
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for TRIF in restricting viral replication through type I IFN induction, at least two viruses have 

been shown to contain proteins that antagonize TRIF. Vaccinia virus (VACV) encoded 

proteins, A46R and A52R, differentially affect TRIF signalling. A46R interacts directly with 

TRIF and inhibits TRIF mediated TLR3 signalling. Notably, A46R also interacts with the 

other TLR adaptors and also inhibits TLR4 signalling [78]. In contrast, A52R acts 

downstream of the adaptors by targeting TRAF6 and IRAK2-containing complexes to inhibit 

TLR4, TLR2 and TLR5 signalling [79]. Hepatitis C virus (HCV) contains a serine protease 

NS3-4A that causes the proteolysis of TRIF. The cleavage of TRIF by NS3-4A inhibits both 

NF-κB and IRF3 activation by TLR3, thus disabling the innate immune response to the virus 

[80]. These examples illustrate the importance of TRIF in mediating the anti-viral signalling 

pathway such that specific inhibition by VACV and HCV confers an advantage to the viruses 

in vivo. 
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Figure 1.6: Overview of TLR signalling the role of the TIR-domain containing adaptors. MyD88 is the central adaptor in TLR signalling, 

capable of transducing signals mediated by all TLRs except TLR3. MyD88 does however negatively regulate TLR3-induced IRF3 activation. 

Regarding TLR1/2, TLR2/6, TLR4, and TLR5 signalling, MyD88 interacts with the each TLR though their TIR domains (red). IRAK4 is then 

recruited to the complex which in turn recruits IRAK1 and/or IRAK2 via death domain (DD) interactions. TRAF6 is then recruited to activate 

TAK1, leading to subsequent activation of MAPK and NF-κB. In the case of TLR7/8/9 signalling, the MyD88 complex can also recruit TRAF3 

which activates IRF7. TRIF is the sole adaptor involved in TLR3 signalling and recruits NAP1 and TRAF3 to activate the noncanonical IKKs, 

TBK1, and IKKε. These in turn phosphorylate IRF3 and IRF7 causing their translocation into the nucleus where they bind to the type I IFN 

(IFNα and IFNβ) gene promoters. TRIF is also required to mediate maximal TLR5-induced NF-κB and MAPK activation by binding directly to 

TLR5. As part of a suspected negative feedback loop, TRIF can also mediate caspase-dependent TLR5 degradation. MAL acts as a bridge to 

allow TLR4 and to a lesser extent TLR2, to signal via the MyD88 pathway. MAL also negatively regulates TLR3-mediated IRF7 activation. 

TRAM, like MAL, is another bridging adaptor and links TLR4 to the TRIF pathway. The Mal-MyD88 and TRAM-TRIF complexes facilitate 

bifurcation of the TLR4 pathway to allow for the synthesis of both inflammatory cytokines and type I IFN, respectively. The fifth adaptor 

SARM interacts with TRIF and impairs TRIF signalling 
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1.1.6 TRAM 

In 2003, the fourth TIR-domain-containing adaptor, TRAM, 235 aa in length, was identified 

following a bioinformatic search of the human genome database [23, 81]. It was initially 

thought that TRAM was involved in both TLR and IL-1R mediated NF-κB activation, but not 

IFN-β induction [81]. Subsequently, a more definitive description of TRAM showed that it 

interacts with TLR4 and TRIF to regulate TLR4-mediated IRF3 and IRF7 activation [23]. 

TRAM deficient cells have impaired TLR4-mediated cytokine production and B cell 

activation, as was observed with TRIF [24]. It is now accepted that TRAM acts as bridging 

adaptor between TLR4 and TRIF in the ‘MyD88-independent’ pathway [12].   

 

1.1.6.1 TRAM localisation and involvement in TLR4 signalling 

TRAM exclusively mediates TLR4 signalling. It activates the ‘MyD88-independent’ pathway 

by facilitating the association of TRIF with TLR4 - similar to the way in which MAL links 

TLR4 and MyD88 (Figure 1.6). To date, it serves no other known role in TLR signalling [15]. 

Regarding localisation, the N-terminal region of TRAM is constitutively myristoylated on its 

glycine at position two, which facilitates its association with the plasma membrane. Indeed, 

mutation of TRAM’s myristoylation motif abolishes its ability to signal [82]. A distinct 

requirement for TRAM signalling to occur is its phosphorylation on serine 16 by protein 

kinase C epsilon (PKCε) [83]. TRAM has also been shown to contain a bipartite sorting 

signal that modulates its trafficking between the plasma membrane and the endosomes. In 

fact, TRAM must be delivered to the endosomes in a complex with TLR4 to facilitate the 

activation of IRF3 [84]. Thus, activation of TLR4 sequentially induces two signalling 

pathways from two different cellular locations. The ‘MyD88-dependent’ pathway is induced 

from the plasma membrane, whereas the ‘MyD88-independent’ pathway is induced from 

endosomes (Figure 1.6).  
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1.1.6.2 Negative Regulation of TRAM 

VACV is capable of modulating TRAM functionality. An 11-aa-long peptide derived from 

the VACV protein A46R, termed viral inhibitor peptide of TLR4 (VIPER), has been shown 

to interact with TRAM (and MAL), towards inhibiting TLR4 signalling. Mechanistically, it 

has been postulated that masking of the critical binding sites on MAL and TRAM by VIPER 

specifically inhibits their ability to interact with the cytoplasmic TIR-domain of TLR4 - thus 

inhibiting its signalling [85]. A splice variant of TRAM, termed TRAM adaptor with Golgi 

dynamics (GOLD) domain (TAG), has been shown to competitively bind TRAM and 

displace TRIF during LPS signalling, leading to decreases in RANTES cytokine production 

without affecting NF-κB activation [86]. A second related protein, transmembrane emp24 

domain-containing protein 7 (TMED7), which sits next to TRAM and TAG on chromosome 

five, is also a TRAM inhibitor and thus a negative regulator of TLR4 signalling. Is it is 

believed that TMED7 interacts with both TAG and TRAM and is required for TAG’s ability 

to displace TRIF from TRAM [87]. 
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1.1.7 SARM 

Figure 1.7: Schematic illustrating domain segmentation of SARM. SARM is 690 aa in 

length and is made up of several domains. There are two SAM motifs between amino acid 

375 and 515 followed by the TIR domain between 515 and 660. Adapted from [26]. 

 

SARM was initially identified in 2001 as a human gene conserved across multiple taxa [88]. 

Structurally, SARM is 690 aa in length and contains two sterile alpha motifs (SAM) domains 

as well as a HEAT/Armadillo repeat motif (ARM) domain. Both the SAM and ARM 

domains are known to be involved in the formation of protein complexes [88]. It was initially 

shown that the Caenorhabditis elegans SARM homologue, TIR1, was important in the 

efficient immune response against fungal and bacterial infection [89]. However, in human 

cells, it was shown that unlike the other TIR-domain adaptors, overexpression of SARM 

failed to induce NF-κB or activate IRF3-dependent reporter genes and in fact inhibited their 

activation and expression [25]. In contrast, a later study showed that macrophages from 

SARM knockout mice responded normally to TLR3, TLR4, and TLR9 ligands, suggesting 

that mouse SARM has a redundant role in regulating macrophage responses to these TLR 

ligands [28]. Further research must be undertaken to definitively assign a role for SARM in 

TLR signalling. 

 

1.1.7.1 SARM and TLR3/4 Signalling 

Although disputed, it appears that in humans, SARM inhibits TRIF-mediated TLR3 and 

TLR4 signalling by selectively targeting TRIF. In unstimulated cells, SARM and TRIF are 

weak interactors, but stimulation with LPS or poly(I:C) induces SARM protein expression 

and enhances the interaction between SARM and TRIF [25]. SARM overexpression serves to 

inhibit TRIF-dependent, but not MyD88- or MAL dependent NF-κB activation. SARM also 
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inhibits poly(I:C)-mediated RANTES and IFN-β promoter activity (Figure 1.6). The exact 

mechanism utilized by SARM to impair TRIF functionality requires further investigation, 

however it is speculated that SARM may use its TIR domain to bind TRIF and use its SAM 

domains to recruit an as-yet-unidentified inhibitor. Alternatively, SARM may competitively 

block the ability of TRIF to directly interact with downstream signal transducers such as 

TBK1, RIP1, and TRAF6 [25]. 

 

1.1.7.2 SARM in the central nervous system 

A study conducted in SARM deficient mice has indicated a role for SARM in protection from 

death after central nervous system (CNS) infection with vesicular stomatitis virus (VSV) [90]. 

This was associated with reduced CNS injury and significantly reduced inflammatory 

cytokine production which would suggest that at least in the murine CNS, SARM is in fact a 

positive regulator of the innate immune response. Moreover, a seperate study conducted in 

SARM -/- mice also indicated its requirement for inflammatory cytokine production in the 

reponse to infection with West Nile virus (WNV) [91]. WNV replication was increased 

specifically within the brain stem of SRAM deficient mice compared to WT and this was 

associated with decreased levels of TNFα, decreaeed microglia activation and increased 

neuronal death [91]. 

 

1.1.8 Negative Regulation of TLR Signalling by TLR Adaptors 

A number of recent studies have highlighted the role of the TLR adaptors themselves in the 

curtailment of TLR signalling. For example, MyD88 has been shown to negatively regulate 

TLR3-TRIF-induced corneal inflammation through a mechanism involving JNK 

phosphorylation, but not p38, IRF3, or NF-κB and to inhibit TLR3-dependent IL-6 induction 

[21, 92]. MyD88 has also been shown to inhibit TLR3-dependent phosphorylation of IRF3 

and thus curtail TLR3-mediated IFN-β and RANTES production [93]. Furthermore, MAL 
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has been shown to inhibit TLR3 dependent IFN-β production through a mechanism that is 

distinct from MyD88, instead inhibiting TLR3 mediated IRF7 activation [94]. As already 

stated, SARM has been shown to inhibit TRIF-dependent TLR3 and TLR4 signalling (Figure 

1.6) [25]. 
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1.2 Proteomics and its applications in immunology 
The ability to compare the different functional states of a biological system has led to many 

major biological discoveries, a prime example being ubiquitination, having resulted from 

comparisons between stressed and normal cells [95]. Comparative genomics has fulfilled this 

need for the past decade and indeed led to many seminal discoveries particularly in genomic 

medicine [96].  However, proteins are typically the effector entities in biological systems and 

transcript analysis often poorly predicts the level of mature, activated protein [97]. A typical 

example is the inflammatory protein IL-1β whose function is dependent upon a bi-phasic 

regulatory process. An initial signal, termed signal 1, induces initial IL-1β mRNA 

transcription and subsequent translation to produce a zymogenic form called pro-IL-1β. A 

second signal is required to cleave pro-IL-1β into its active, secreted form [98]. Reliably 

defining the levels of this secreted, bioactive form of IL-1β would be impossible to detect by 

monitoring transcription levels alone. Therefore, proteomics can provide insights into key 

biological processes from a different and ultimately more functional perspective.   

By definition, proteomics is the global study of organismal proteins and can include their 

structure, isoforms, modifications, interactions, ordering and in essence, anything relating to 

proteins that is post-genomic. Genomics is however, of central importance in proteomics as it 

provides the blueprint of possible gene products from which we can readily identify and 

comprehend the proteome [99].  

 

1.2.1 Technique and Evolution 

Mass spectrometry is an analytical technique that measures ionised molecules in a gas phase 

in order to qualitatively and quantitatively study proteins and their modifications. At its core, 

a mass spectrometer (MS) consists firstly of an inlet system, for example, liquid or gas 

chromatography which performs an initial separation of complex protein mixtures prior to 

injection into the MS. Immediately prior to their entry into the MS, the samples are ionised 
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by what is known as an ion source. Sample ionisation is critical for analysis as MS mediated 

protein identification essentially occurs by measuring the mass:charge ratio (m/z) of 

incoming molecules and these sample molecules must therefore be charged or ionised for this 

to occur. Biological samples such as proteins and peptides are thermolabile and are thus best 

suited to soft ionisation techniques such as electrospray ionisation (ESI) and matrix-assisted 

laser desorption/ionisation (MALDI). Non thermolabile samples can be ionised using 

electron impact or chemical ionisation. ESI ionises the proteins from solution and is therefore 

easily combined with liquid chromatography for complex sample analysis. MALDI uses laser 

pulses to first sublimate and then ionise samples from a dry crystalline matrix and is more 

suited to analysis of less complex sample mixtures. The contribution of sample ionisation 

techniques such ESI and MALDI to mass spectrometry is illustrated by the awarding of the 

2002 Nobel Prize in Chemistry for their development. ESI was used exclusively in the 

current project.   

There are many different types of mass analyser with the most used being ion trap, time-of-

flight, quadrupole and Fourier transform ion cyclotron and orbitrap. Ion-trap and orbitrap 

were used in the current study. 

 

1.2.1.1 2D PAGE and 2D DIGE 

The study of proteomics was originally based upon two-dimensional polyacrylamide gel 

electrophoresis whereby protein lysates, solubilised from a cell population, tissue or 

biological fluid, are separated first according to their isoelectric point (first dimension) and 

secondly according to their molecular mass by SDS-PAGE (second dimension). Resolved 

proteins are then visualised by silver staining and the protein spot size between different gels 

(representing different biological conditions) could be visually, or as the technology matured, 

electronically compared. Protein spots with significant variations in expression between 
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biological conditions are then excised, destained, fragmented into peptides and analysed by 

mass spectrometry (MS) to identify the parent proteins based on peptide-protein databases 

(Figure 1.8). Problems with this technique included the large volumes of protein required (a 

particular drawback when analysing clinical samples), inter-gel variability which plagued 

reliability and most pressingly, the relatively limited cross-section of proteins visualised – 

typically consisting of only highly abundant proteins. Resolution was increased by 

fractionating the proteins over a narrower pH range in the first dimension thereby increasing 

resolution, albeit at the expense of proteins outside the pH. This advance was aided by the 

introduction of precast immobilised pH gradient (IPG) strips for the first dimension 

seperation in which the pH gradient is fixed within the acrylamide matrix.  A further 

innovation was the development of a technique termed differential in-gel electrophoresis 

(DIGE) which utilised highly sensitive, fluorescent labelling of protein samples with up to 

three independent dyes to enable multiple biological samples to be subjected to 

electrophoresis on a single gel (Figure 1.9). This effectively eliminated the problem of inter-

gel variability and greatly reduced the amount of sample required.  2D-DIGE was used 

extensively in the current work. 
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Figure 1.8: Schematic outlining 2-dimensional gel electrophoresis (2-DE). Protein is 

solubilized in rehydration buffer. The proteins are then immobilized on IPG strips of different 

pH ranges depending on the requirement of the experiment. In the first-dimension, the 

proteins are separated on the basis of their isoelectric points (pI) and are further resolved 

according to their molecular weight in the second-dimension. Finally, protein spots of interest 

are excised and subjected to tryptic digestion followed by MS. Adapted from [100]. 

 

 

Figure 1.9: Schematic outlining 2D-DIGE experimental procedure. Whole cell lysates are 

from unstimulated and stimulated samples are labelled with different fluorophores (Cy 3 for 

sample 1, Cy 5 for sample 2, and Cy 2 for the pooled internal standard). All samples are 

resolved on the same 2D gel (this eliminating gel-to-gel variation) followed by protein spot 

pattern detection by scanning the gel at the wavelength corresponding to each Cy dye. The 

images are analyzed for significantly up or down regulated proteins which are then excised 

from the gel, trypsin digested and identified by MS. Adapted from [100]. 
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1.2.1.2 SILAC and label-free quantitation 

In the past 10-20 years, major advances have occurred in mass spectrometer instrumentation, 

sample preparation and computational analysis that have rapidly enabled proteomics to 

realise at least part of its potential and put it on a more equal footing with genomics in terms 

of scientific impact. Novel protocols have emerged enabling the use of much smaller amounts 

of biological samples whilst extracting more information and this, combined with the 

entwining of MS fragmentation spectra and sequence databases has greatly accelerated 

protein identification [97]. Quantitatively speaking, both labelled and label-free protein 

quantitation have allowed for the measurement and thus comparison of protein levels 

between samples [100]. Label-based, gel-free protein quantitation involves the differential 

labelling of separate biological conditions with stable isotopes. The most widely used method 

incorporating this strategy is termed stable isotope labelling by amino acids in cell culture 

(SILAC) [101]. Proliferating cells in culture, representing different biological states, are 

metabolically labelled with either light or heavy isotope versions of essential, stable amino 

acids. Labelled cells are then lysed, combined in a 1:1 stoichiometric ratio and trypsin 

digested followed by MS analysis. Assuming that isotopes are incorporated with equal 

efficiency across the different biological states, differences in isotopic incorpororation into 

particular proteins, again measured by the m/z ratios, must be due to differnces in abundance 

of these proteins between different biological states (Figure 1.10). In vivo labelling is also 

possible by feeding mouse populations with either natural or light isotope-lysine labelled 

food over four generations. Benefits of quantitative labelling such as SILAC include high 

accuracy and low error rate. However, it cannot be applied to human tissue and reagents are 

expensive [100] 

Label-free quantitation (LFQ) is based on the assumption that the area of a peptide peak on a 

MS chromatogram is proportional to its concentration [102]. LFQ MS can be applied in 
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different forms: spectral counting and signal intensity. Spectral counting logs the number of 

spectra obtained between biological samples for a given peptide and integrates these into the 

total numbers of peptides detected for a given protein in each sample. Signal intensity 

determines the relative intensities of the extracted ion chromatograms to generate correlating 

protein intensities which can then be statistically compared between biological samples. The 

advantages of LFQ are many. It is considerably less cumbersome than label-based techniques 

and can provide robust and highly sensitive protein quantitation at a very low cost. 

Limitations include redundancy in detection as some peptides are shared between proteins. 

Moreover, this approach is not as accurate and therefore measurements of protein fold 

changes in lower with lower values are not as reliable and thus require repeat analysis. LFQ 

MS was used in the current study. 

 

Figure 1.10: Schematic overview of SILAC. Cells are grown in medium containing light 

and heavy versions of essential amino acids for 6 generations to achieve maximal 

incorporation. Protein is extracted from both populations of cells and mixed in equal 

proportion and subjected to either in-gel or in-solution digestion. Relative abundance of the 

digested peptides is determined from the ratio of heavy to- light peptide signals as obtained 

by MS. Adapted from [100]. 
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1.2.2 Applications to immunology and disease 

Historically, the application of proteomics has been directed more frequently towards the 

identification of disease biomarkers rather than pure immunology.  This approach primarily 

relied on the combination of 2D-PAGE with MS and later, on 2D-DIGE with MS. Despite 

the aforementioned limitations of these technologies, some successes were achieved, for 

example, in the classification of leukaemia subsets [103]. Online data troves of myocardial 

proteins associated with human heart failure similarly allowed researchers to establish 

standards to classify the myriad of pathological conditions associated with heart disease, 

particularly regarding onset [104-106]. 2D-DIGE has identified potential biomarkers of 

oesophageal carcinoma [107]. Proteomics has also been applied to the study of infectious 

pathogens. The arrival of increasing numbers of antibiotic resistant strains of bacteria has 

hastening research into prophylactic and remedial therapy [108].  Again, the genome 

sequencing of a particular pathogen is key to providing the blueprint for subsequent 

proteomic analysis, an example being the malaria parasite, Plasmodium falciparum. 

Comparative proteomic studies on both the parasite’s innate proteome and life-cycle 

proteome have produced a number of novel drug and vaccine targets [109-111]. Indeed, the 

applications of proteomics to pathogen study are varied, as summarised in table 1.1. 

Table 1.1: Proteomic approaches to the study of pathogenic organisms. Adapted from 

[104]. 

 

 

Despite these successes, proteomics has, until very recently, consistently remained in a 

distant second place when compared to the state-of-the-art advances and measurable 
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achievements associated with genomics [112-115]. Only in the past 5-6 years have radical 

new technologies encompassing both labelled and label free quantitation combined with MS 

become available to push immunologically-based proteomics into the top-tier scientific 

journals [97, 116, 117]. Notably, a recent study analysed the protein secretome of LPS 

stimulated, primary wild-type (WT), MyD88 deficient (
-/-

) and TRIF 
-/-

 macrophages using 

LFQ on an Orbitrap MS [117]. The time-resolved release of 775 proteins was detected with 

low picogram sensitivity from only 1.5x10
5 

cells per condition. Fold changes in protein 

abundance upon stimulation ranged up to 10,000. A separate study utilised a similar approach 

to characterise differences in the proteome between different subsets of conventional 

dendritic cells (cDCs). Newly developed, quantitative algorithms permitted proteomic 

sequencing across subsets to an average depth of 5000 proteins with 99 % certainty in 

identification. Identification was also reliable across biological replicates with correlations 

between normalised protein intensities between 0.84 and 0.96 [116]. This study assigned key 

viral recognition abilities to CD4
+
 and CD4, CD8 double negative cDC subsets but not to 

CD8α
+
 cells. Moreover, relatively few cells were required to achieve accurate reliable results 

(approximately 1.5x10
6
/condition), equivalent to a 1-5 micrograms of protein. Studies such as 

these foretell the potential application of proteomics towards the expansion of our knowledge 

base in areas such as immunology, disease pathologies, drug development and many other 

fields. 

 

 

 



51 
  

1.3.1 Bordetella genus  

B. pertussis is a gram negative coccobacillus from the Bordetella genus of proteobacteria. It 

is the best known member of the Bordetella genus which consists of eight other members: B. 

ansorpii, B. avium, B. bronchiseptica, B. hinzii, B. holmesii, B. parapertussis, B. petrii and B. 

trematum [118].  

B. parapertussis, B. bronchiesptica and B. pertussis are known as the ‘classical’ Bordetella 

species as they were the first to be successfully isolated and were therefore the defining 

members of the Bordetella family. They are also closely related morphologically, 

physiologically and antigenically and as such are referred to as a subspecies or as a strain of 

one species, known as the B. bronchiesptica cluster [118]. There are several similarities 

between the three. Infection occurs in the respiratory tract of humans, the resulting disease is 

whooping cough, or a variation of, with pathology resulting from infection and killing of 

ciliated tracheal epithelial cells [119]. Their genome contains a GC content of approximately 

67 % with optimal growth for each occurring at a temperature between 35 °C and 37 °C 

(Table 1.2) [118]. 

 

1.3.2 B. pertussis: initial isolation and description 

B. pertussis is aerobic, non-motile and is the cause of pertussis or whooping cough in humans. 

It is not known to infect any other species and as a result, humans are its sole reservoir 

[120]. It was first isolated in 1900 by Jules Bordet and Octave Gengou from a child upon 

which it was described it as a “small ovoid gram negative bacterium” [121]. Their first 

publication on the method of isolation was published six years later in 1906 [122].  Indeed 

the genus name Bordetella is derived from its cofounder, Jules Bordet [123]. The bacterium, 

whilst difficult to isolate from patients, (possible only within a very short timeframe during 

the initial period of infection called the catarrhal phase) was found to grow well on a medium 

consisting of blood, potato extract and glycerol, created by Bordet and Gengou and since 
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termed Bordet Gengou (BG) medium [121]. Transfer and subculture of the bacterium causes 

it to change both morphologically and physiologically turning from a bright yellow colour 

(Figure 1.11A) to white (Figure 1.11B) whilst also causing it to lose its haemolytic ability 

[121, 124].  

 

Table 1.2: Individual characteristics of members of the Bordetella family.  Adapted 

from [118]. 

 

 

 

Figure 1.11: Bordetella pertussis on Bordet-Gengou medium. (A) Freshly isolated B. 

pertussis isolate. (B) Subcultured isolate. Adapted from [121].  

 

B 

A 
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1.3.3 Pathogenesis of B. pertussis 

Initially, B. pertussis was considered an exclusively extracellular pathogen whose 

pathogenesis was derived from its secretion of several potent toxins. Local cytotoxic effects 

helped derive systemic metabolic disturbances which combine to generate characteristic 

symptoms [125, 126]. However, following several hints that B. pertussis could reside 

intracellularly [127-129] it was definitively shown that it could infect HeLa cells and that this 

was dependent to varying degrees on the presence of virulence factors such as filamentous 

hemagglutinin (FHA) and cell bound pertussis toxin (PTx) in the bacterium as well as host 

microfilament mediated phagocytosis [130]. It is generally accepted that there are four main 

factors pertaining to B. pertussis infection and disease which are: attachment, host defence 

evasion, local damage and systemic damage [131].  B. pertussis bacteria attach to cilia of the 

upper respiratory tract via adherence factors such as FHA, fimbriae, PTx and pertactin (PRN) 

[132-135]. FHA is the major adhesin expressed on the cell surface and its role in mediating B. 

pertussis binding is believed to involve host upregulation of intracellular adhesion molecule-

1 (ICAM-1) [136]. It initiates host phagocytosis by binding to and activating leukocyte 

integrin complement receptor 3 on multiple cell types [137]. Once inside the cell, the 

majority of bacteria are destroyed by the cells defence mechanisms, particularly by 

endosomal acidification [138]. However, approximately 25 % of bacteria taken up into the 

cell survive by residing in non-acidic compartments and begin to replicate. It is believed that 

this process occurs by inhibiting endosomal maturation and thus acidification [138]. The 

ability of B. pertussis to exist within the host’s cells is believed to play a key role in its ability 

to evade the host’s immune response for extended periods [139].  

1.3.4 Immune Response to B. pertussis 

Respiratory infection of mice with B. pertussis drives a large inflammatory cell infiltration 

into the lungs and particularly to the alveolar spaces with large numbers of macrophage, 

neutrophils and lymphocytes taking up residence (Figure 1.12) [140]. Resident macrophages 
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and DCs are first to arrive, followed by neutrophils, natural killer cells and T cells (Figure 

1.12) [139]. Lymphocyte populations are composed primarily of CD4+ T cells with a smaller 

number of CD8+ cells [141]. Infiltration of small populations of gamma delta (γδ) T cells has 

also been noted in both animal models and in the very early stages of infection in children 

(Figure 1.12) [141]. 

 

 

Figure 1.12: Time dependent kinetics of innate and adaptive immune cell recruitment to 

lungs following B. pertussis infection. Relative cell numbers are indicated by hypothetical 

curves. CD4 T cell: recruitment of CD4
+
 T cells to lungs and response to B. pertussis 

antigens. IgG: anti-B. pertussis immunoglobulin G in serum. IgA: anti-B. pertussis 

immunoglobulin A in in lungs. Bp CFU: B. pertussis burden in lungs. DC: dendritic cells. 

Mac: macrophage. NK: natural killer cell. γδ: gamma-delta T cells. Adapted from [139]. 

 

 

Macrophages, whilst internally harbouring populations of bacteria, are also required for 

protection as depletion of resident airway macrophages enhances B. pertussis infection. They 

can be induced to kill intracellular bacteria by T-cell derived cytokines such as IFN-γ and IL-

17 [142, 143]. Neutrophils reach the lungs of infected mice approximately five days post 

infection (Figure 1.12). Like macrophages, neutrophils are capable of phagocytosing and 

killing of intracellular bacteria but are considered unlikely reservoirs due to their relatively 
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short half-life [139]. NK cells are the early providers of the crucial cytokine IFN-γ which 

ensures macrophage mediated bacteria killing and promotes TH1 responses. Depletion of NK 

cells results in bacterial escape from the lungs to the liver [144]. Specific antibody responses 

take much longer to develop in mice after B. pertussis challenge, only appearing in 

significant amounts when most bacteria have been cleared approximately five weeks post-

infection. This would indicate that they are not of major importance the clearance of a 

primary infection however antibodies are important in vaccine-induced adaptive immunity to 

B. pertussis [139]. 

 

1.3.5 Vaccination  

Vaccines using inactivated whole B. pertussis organisms followed by acellular pertussis 

vaccines have been in use since the 1940s and have led to a marked decline in resulting 

disease [145]. Being an exclusively human pathogen, the introduction of wide-spread 

vaccination programs have been twinned with the expectation of disease eradication, at least 

in industrialised countries. However, despite significant investment and high uptake, many 

first world countries have experienced a striking resurgence in the past decade, particularly 

amongst older children and adults [146, 147]. In Europe, a surveillance programme termed 

EUVAC-NET recorded a 115% increase in incidence rates in children over 14 between 1998 

and 2002 [148]. An approximate doubling in incidence has also been reported in the US 

between 2001 and 2003 [145].  Possible explanations for the current epidemiology of B. 

pertussis infection include:  

1. Waning immunity and shorter protection following vaccination: Duration of 

protection resulting from whole cell pertussis (wP) vaccination ranges from 4-14 

years and between 5-6 years for acellular B. pertussis (aP) vaccination. 

2. Strain polymorphism: Studies have indicated that certain strains of B. pertussis have 

adapted to express PT and PRN different from that contained within current vaccine 
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preparations with suspected links to observed reductions in vaccine effectiveness in 

The Netherlands and Finland [145, 149].  

3. Increased diagnosis and reporting: It is generally accepted that improved awareness 

and diagnostic methodology are responsible for some, but not all of the increases in 

incidences. For example, a significant increase in observed disease Canada in 2006 

was associated with a similarly significant increase in the number of tests carried out 

[145]. 

 
 

1.3.6 Application of proteomics to the study of B. pertussis 

Several proteomic studies have been carried out on the B. pertussis bacterium in order to 

monitor its response to various infection relevant scenarios as well as to characterise potential 

novel antigens for future vaccine design. For example, one study utilised 2D gel 

electrophoresis combined with MALDI-TOF MS to profile protein expression in both whole 

cell lysates and outer membrane fractions of bacteria grown in either iron starvation or iron 

excess conditions [150]. Iron starvation is a common obstacle to overcome by many bacteria 

including B. pertussis during an infection and protein signatures linked to its ability to 

scavenge host iron are believed to be critical to its survival and therefore a source of potential 

therapeutic targets. The study identified multiple iron dependent proteins, four of which 

reacted strongly with sera from infected individuals and one which was highly immunogenic 

in vivo thus providing a potential vaccine target [150]. A further 2D gel electrophoresis study 

examined the protein signature of B. pertussis bacteria upon biofilm formation [151]. 

Biofilms allow pathogens to exhibit phenotypic traits that allow for increased resistance to 

host defences and antibiotics. It is also believed that adults carrying B. pertussis biofilms act 

as infection reservoirs by periodically shedding active bacteria [131]. The study identified 

significant alternations in proteins involved in cell attachment and bacterial virulence 
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indicating the impact biofilm formation likely has on B. pertussis pathogenesis [151]. Clinical 

isolates have also been examined using similar proteomic techniques [152]. To date however, 

despite a slew of proteomic studies having been conducted on the B. pertussis bacterium 

itself, a proteomic study as yet to be conducted which examines the response of host cells to 

B. pertussis infection. Evaluation of this host proteomic response to infection is important for 

a number of reasons. One is that studying the proteome itself, as opposed to the genome is a 

more reliable method of detecting crucial host effector mechanisms engaged to fight the 

infection as proteins, not genes, are responsible for this. Another is that novel host proteins 

subverted by the bacterium to acquire resources, for example transferrin for iron scavenging 

[150], could be identified and whose expression again, may not be detected by genetic studies. 

Identification of host protein signatures specific to certain functions or even cellular 

compartments could shed new light on B. pertussis infection and resilience strategies and in 

turn uncover multiple new targets for perturbation of the host immune response when the 

need to treat pathogenesis resulting from an acute inflammatory response arises.  

To this end, it was decided to conduct a comparison of the proteomes of B. pertussis infected 

and uninfected lung-epithelial cells (BEAS-2B cells). 2D-DIGE combined with LC/MS as 

well as LFQ MS were used to identify and quantify dynamic regulation of proteins resulting 

from whole cell lysates from different cell treatments. Protein hits of interest were selected, 

verified by western blot and subjected to further analysis of their role in the host immune 

response to B. pertussis infection. 
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1.4.1 Human rhinovirus 

Human rhinoviruses (HRVs) were first discovered in 1956 and were immediately associated 

with clinical disease in humans with symptoms almost identical to that of the common cold 

[153]. They are a member of the genus enterovirus within the picornavirus family and as 

such, exhibit characteristics synonymous with picronaviruses such as being non-enveloped, 

positive-sensed and single-stranded RNA viruses. To date, 102 serotypes have been 

documented and they are believed to be the major cause of common cold symptoms in adult 

humans [154, 155]. The serotypes can be organised into three ‘receptor groups’ based on the 

cellular receptor they bind to. These are classified as the major group, which bind to 

intracellular adhesion molecule-1 (ICAM-1) and account for 91 of the serotypes; the minor 

group, which bind to members of the low density lipoprotein receptor (LDLR) family and 

account for 10 serotypes; and finally, the remaining serotype, HRV87, which does not attach 

to receptors of the major or minor group and attaches to an unknown glycoprotein that unlike 

any other serotype, requires the presence of sialic acid [156].  

 

1.4.2 Structure of HRV 

Rhinoviruses are composed of sixty copies of each of four viral capsid proteins (VPs) which 

are arranged such that they form an icosahedral shell surrounding a single stranded RNA at 

the centre (Figure 1.13). VP1-3 are external whilst VP4 lines the internal surface and is 

therefore thought to contact the packaged RNA (Figure 1.13) [157]. Amino acid differences 

across these capsid proteins confer the antigenic differences between the HRV serotypes with 

VP1 exhibiting the greatest sequence variability and VP4 responsible for the least [158].  

VP1 contains a hydrophobic pocket, often referred to as a canyon which serves as the binding 

site for ICAM-1 in the case of the major group of HRVs (Figure 1.13) [159]. Whilst still not 

completely understood, it is believed that during the initial stages of viral infection, HRV 

binds ICAM-1 followed by a loss of the viral capsid with VP4 first being externalised and 
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VP1 being lost next. This process ultimately leads to viral RNA internalisation via 

endocytosis or macropinocytosis through the host cell’s plasma membrane [160-162]. 

 

Figure 1.13: HRV structure. RV is a non-enveloped virus consisting of a protein shell 

surrounding the naked RNA genome. The protein capsid is composed of four polypeptides, 

viral capsid protein 1 (VP1), VP2, VP3 and VP4 in an icosahedral structure. A hydrophobic 

canyon exists within VP1 which is believed to contain the ICAM-1 binding site. VP4, unlike 

the other VPs, is contained within the viral internal surface. Adapted from [163].  

 

 

 

1.4.3 HRV Replication 

The picnoravirus genome is comprised of a single stranded RNA which itself consists of 3 

distinct regions. At the 5’ end is a single untranslated region (UTR), followed by an open 

reading frame (ORF) encoding the structural VPs 1-4 and non-structural proteins such as 

proteases and finally a short 3’UTR and poly(A) tail (Figure 1.14) [164]. Upon entry into the 

cell, HRVs follow a similar replication strategy to other picornaviruses. The previously 

packaged RNA functions as an mRNA and is translated by the host’s translation machinery 

into a large polypeptide which is cleaved to yield mature viral proteins (Figure 1.15). The 

viral RNA is then transcribed into a negative sense complementary RNA which in turn serves 

as a template to transcribe complementary positive sense RNA and thus complete one cycle 

of replication (Figure 1.15).  
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Figure 1.14: HRV genomic structure. HRV is 7.2 kb in length with a single open reading 

frame linkned to a 5’ untranslated region (5’UTR). Protein P1 is translated into the HRV 

capsid. P2 and P3 are translated into VPg, protease and RNA-dependent RNA polymerase 

(RDRP). Adapted from [162]. 

 

 

 

 

Figure 1.15: HRV replication in tracheal epithelial cells. Virus uptake can occur via 

clathrin-dependent endocytosis or macropinocytosis. Lowering of pH leads to viral uncoating. 

Negative strand RNA is replicated and translated into structural and non-structural proteins. 

Virions are packaged prior to export via cell lysis. LDLR, low density lipoprotein receptor; 

ICAM1, intracellular adhesion molecule 1. Adapted from [162]. 
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1.4.4 HRV Pathogenesis 

HRV is believed to preferentially infect and replicate in the upper respiratory tract of non-

asthmatic individuals [163]. Although other respiratory viruses such as influenza and 

respiratory synthetical virus are associated with the destruction of airway epithelial cells, 

HRV is not, with nasal biopsies from patients both naturally and experimentally infected 

showing intact epithelial cell linings [165, 166]. However, HRV has been shown to disrupt 

epithelial cell tight-junctions thus reducing barrier function and allowing transmigration of 

bacteria [167]. Lower respiratory infections typically occur in those with pre-existing asthma 

or chronic lung disease [163] and are known to exacerbate asthma symptoms [168]. 

Rhinorrea (nasal filling with mucous) and consequent nasal obstruction are common 

symptoms of upper respiratory tract infections and are associated with a neutrophilic 

inflammatory response causing increased vascular permeability and mucus secretion [163]. 

 

1.4.5 Immune Response to HRV 

HRV ssRNA , once internalised is known to be endosomally recognised by TLR7 and TLR8 

[162]. During its replication cycle, dsRNA is generated which can then be recognised by 

cytosolic RIG-I and MDA5 (Figure 1.16) [169, 170]. The engagement of these PRRs leads to 

secretion of IFN-β, IFN-γ, RANTES, IL-6, TNF-α and IL-8 (Figure 1.16) [162]. Levels of 

IL-8 have been shown to correlate with HRV induced rhinorrea and nasal obstruction in 

experimentally inoculated individuals [171]. The vasodilators bradykinin and lysylbradykinin 

are also released in significant quantities upon HRV infection however histamines are not, 

which would suggest that basophils and mast cells play no role in HRV pathogenesis [172]. 

The humoral response is also important as evidenced by the observation that those with 

hypogammaglobulinemia, a condition in which levels of immunoglobulins are abnormally 

low, suffer from increased recurrence and severity of HRV infections [173]. Infection of 

patients with HRV is followed by generation of serotype specific neutralising IgG and IgA 
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antibodies with 1-2 weeks [174]. T cell infiltration of the airway epithelium and submucosa 

has also been observed [175].  

 

Figure 1.16: HRV recognition by various PRRs and signal transduction. HRV dsRNA 

and ssRNA in the endosome are recognised by TLR3 and TLR7/8 respectively to drive NFκB 

and IRF activation. This increased production of pro-inflammatory and anti-viral cytokines. 

TLR3 activation also upregulates expression of cytosolic PRRs RIG-I and MDA5 which 

sense cytosolic HRV ssRNA and dsRNA respectively. These PRRs also drive pro-

inflammatory and anti-viral cytokine production. These cytokines can further act on T and B 

cells to activate the adaptive immune response. Adapted from [162]. 

 

 

1.4.6 Application of proteomics to HRV infection studies 

Similar to B. pertussis, there has been no previous attempt to characterise the changes in a 

cell’s proteome upon infection with any serotype of HRV. This therefore leaves a 

considerable gap in our knowledge about how HRV’s modulate the host’s intracellular 

environment and also how the host itself responds to infection. It was therefore decided to 

conduct a proteomic study examining the changes induced in the host cellular proteome in 

response to HRV infection. To achieve this aim, HRV serotype 16 (HRV16) was used as it is 

a member of the major group of ICAM-1 sensing HRVs and thus a good indicator of how the 

majority of known HRV serotypes modulate the cell. Also, as HRV16, like B. pertussis is 

primarily a respiratory pathogen, the same cell line, BEAS-2B, was used for the infection. 
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These cells have been used previously as an in vitro model for studying HRV infection in 

respiratory cells [93, 176, 177] but also carry the additional advantage in this case of allowing 

a comparison between the proteomes of a virally infected cell (HRV16) and a bacterially 

infected cell (B. pertussis). As in our opinion, the 2D-DIGE – B. pertussis study produced 

more hits that were of interest to an immunological setting compared to the LFQ MS, it was 

decided to also analyse the HRV16 infection proteome by 2D-DIGE also.  
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1.3 Project Aims 

 

1.3.1 Project Aim 1 

The current state of our knowledge of TLR signalling is in constant flux with systems that 

seemed impressively simple less than a decade ago, becoming increasingly complex. Taking 

the TIR-domain containing adaptors as an example, the current accepted dogma is that 

MyD88 is involved in signalling from all TLRs except TLR3, that TRIF is required for only 

TLR3 and TLR4 signalling or that MAL mediated only TLR2 and TLR3 signalling [15]. 

These claims, whilst once true, have been shown to be in need of updating. MAL and MyD88 

negatively regulate TLR3 mediated type-I IFN production, whilst TRIF is required for TLR5 

signalling [21, 75, 76, 93, 94]. TRAM, whose only known cellular function was to mediate 

TLR4 signalling, has been shown to also mediate IL-18R signalling and is believed to play a 

role in TLR2 signalling [178, 179].  With this is mind, we questioned whether there were 

additional unknown roles for the adaptor molecules in TLR signalling, with a focus on 

TRAM. A factor in the dissemination of the initial characterisation data from knockout mice 

specific to TRAM is a lack of strenuous controls that eliminate the role of TRAM in 

alternative TLR pathways. For example, whilst cells from TRAM deficient mice have had 

NFκB dependent pathways from multiple TLRs examined, not once have IRF mediated 

cytokines been examined apart from those mediated by TLR3 and TLR4 [23, 24]. A major 

aim of the current work was therefore to:  

Characterise the role of the adaptor TRAM in both NFκB and IRF mediated pathways 

derived from multiple TLRs. 
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1.3.2 Project Aim 2 

The advances in proteomics technology discussed herewith have made the direct study of the 

proteome pre and post infection faster and cheaper as well as bringing increased protein 

identification accuracy, reliability and depth [97]. Characterisation of the proteome following 

infection with human-relevant pathogens remains an understudied field of study. Whilst there 

have been reports of the application of transcriptomics to the field [180, 181], the application 

of proteomics is still lacking. Two pathogens of relevance to human health, both currently 

and historically, are the human rhinoviruses and the gram negative bacterium, Bordetella 

pertussis (B. pertussis). Proteomic profiling of the cellular response to infection with these 

two respiratory pathogens has never been completed and therefore represents a missing link 

in our knowledge of what proteins are involved in tailoring and modulating the immune 

response to these significant human health pathogens.  

Therefore, the second major aim of the project is to define the proteome of lung epithelial 

cells following infection with two pathogens of significance to human health, namely human 

rhinovirus 16 and B. pertussis. 
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Chapter 2 

 

 

Materials and Methods 
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2.1 General methods:  

 

2.1.1 Mamalian cell culture techniques 

All mammalian cells were maintained in a humidified atmosphere, with 5 % CO2 at 37 °C. 

Wild-type (WT), TRAM 
-/-

 and MAL 
-/-

 immortalised bone marrow derived macrophage 

(iBMDM) cell lines, human embryonic kidney 293 (HEK293) cells stably transfected with 

human TLR3 (HEK293-TLR3), HEK293-TLR4, HEK293-TLR7, HEK-Blue™ TLR4 and 

bronchial epithelial cells, strain AS-2B (BEAS-2B) were grown in Dulbecco's Modified 

Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), 1 % (v/v) 

penicillin/streptomycin  solution and 1% (v/v) sodium pyruvate.  Difficulties were 

experienced using the iBMDM cell lines with differing growth rates and unreliable 

phenotypes often observed. Efforts were made to source primary cells direct from WT and 

TRAM 
-/-

 mice however the cells did not survive the international shipping process. HEK293-

TLR3 and HEK-Blue™ TLR4 cells were additionally supplemented with blasticidin (25 

μg/ml). HEK293-TLR4 and HEK293-TLR7 cells were additionally supplemented with G418 

(250 μg/ml).  HEK-Blue™ IFN-α/β cells and the human leukemic monocyte cell line, THP-1 

were grown in Roswell Park Memorial Institute 1640 (RPMI 1640) medium supplemented 

with 10 % (v/v) FBS, 1% (v/v) penicillin/streptomycin solution and 1% (v/v) sodium 

pyruvate. HEK-Blue™ IFN-α/β cells were additionally supplemented with Normocin™ (100 

μg/ml) and Zeocin™ (50 μg/ml). Adherent cell monolayers were detached from tissue culture 

flasks using trypsin/ ethylenediaminetetraacetic acid (EDTA) upon 90% confluency and re-

cultured at a 1:5 or 1:10 dilution depending upon growth rate. Non-adherent cells were 

similarly re-cultured upon 90% confluency at a 1:5 or 1:10 dilution.  

2.1.2 Cell stock freezing and resuscitation 

Adherent cells were trypsinised, re-suspended in complete growth medium, and centrifuged 

at 306 g-force (g) for 5 min. Pelleted cells were re-suspended in freezing medium (90 % (v/v) 

http://www.invivogen.com/hek-blue-ifn-ab
http://www.invivogen.com/hek-blue-ifn-ab
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growth medium, 10 % (v/v) DMSO) and aliquoted into cryovials. Typically, a confluent 

T175 flask would be split into 3 cyrovials with 1ml per vial. Cryovials were stored at -80 °C 

in a NALGENE™ Cryo 1 °C Freezing Container to achieve a -1 °C/min rate of cooling for a 

minimum of 4 hours before long-term storage in liquid nitrogen.  

To resuscitate cells, cryovials were removed from liquid nitrogen storage and rapidly thawed 

in a water bath heated to 37 °C. Cells were immediately re-suspended in complete growth 

medium before centrifugation at 306 g for 5 min. Medium containing DMSO was removed 

and the cell pellet was re-suspended in complete growth medium and transferred to a T75 

culture flask in the appropriate incubation conditions (see section 2.2.1).  

 

2.1.3 Transformation of competent cells  

Plasmid DNA (1-2 μl corresponding to 100-800 ng) was added directly to 20 μl of thawed E. 

coli DH5α competent cells (Invitrogen) and incubated on ice for 30 min. Thereafter, cells 

were heat shocked for 20 sec at 37 °C before being immediately returned to ice for a further 2 

min. Cells were re-suspended in 0.5 ml lysogeny broth (LB) and agitated in a shaker at 10 g 

and at 37 °C for 1 hour. Approximately 100 μl of the transformed bacteria were plated out 

onto LB-agar plates supplemented with antibiotic to select for plasmid containing bacteria. 

Plates were inverted and incubated at 37 °C overnight. 

 

2.1.4 Preparation of plasmid DNA  

Note: All centrifugations carried out chilled at 4,503 g. Single colonies were inoculated into 

100 ml of LB (preheated to 37 °C) supplemented with appropriate antibiotic and incubated at 

37 °C with gentle shaking for approximately 16 hr. Bacterial cells were subsequently pelleted 

by centrifugation for 30 min. DNA was extracted from the cells using a QIAGEN Plasmid 

Midi Kit as described by the manufacturer.  Briefly, the bacterial pellet was resuspended in 4 
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ml Buffer P1, followed immediately by 4 ml Buffer P2, inversion 5 times and incubation for 

5 min at RT. Chilled buffer P3 was added, the bacteria inverted 5 times and incubated on ice 

for 15 min followed by centrifugation for 30 min. Supernatant containing plasmid was 

removed, transferred to a fresh tube and re-centrifuged, chilled for 15 min. The supernatant 

was then applied to an equilibrated QIAGEN-tip 100 and allowed to empty by gravity flow. 

The tip was washed twice with 10mls of Buffer QC before elution into a fresh falcon with 

5mls Buffer QF. DNA was precipitated using 3.5 ml 100% isopropanol, mixed and 

centrifuged for 30 min. The supernatant was discarded and the DNA pellet washed with 2 ml 

70 % ethanol, before centrifugation for 10 min.  

The DNA concentration determined in ng/μl using the NanoDrop 2000 spectrophotometer 

(Thermo Scientific). Note that centrifugations were carried out at 4,503 g at 4 °C. 

 

2.1.5 Plasmid glycerol stock preparation 

A 500 μl aliquot of transformed cells was mixed with 500 μl of 50 % glycerol and stored at       

-80 °C. A ‘stab’ of this secondary culture was used to inoculate 100 ml liquid cultures as 

necessary. 

 

2.1.6 Transfection of cells with plasmid DNA:  

On day 1, confluent cells were plated in complete growth medium in a 6-well plate at a 

density of 0.4x10
6
 cells/ml (3 ml/well) and incubated for 24 hr at 37 °C. On day 2, a solution 

of plasmid DNA was prepared containing DNA in a maximum of 250 μl Opti-MEM® 

Reduced Serum Medium (hereafter referred to as Opti-MEM®). Separately, a solution 

containing 1 μl lipofectamine/μg DNA was prepared in a total volume of 250 μl Opti-MEM®. 

Solutions were the incubated for 5 min at RT before combining, mixing and incubating for a 

further 20 min at RT. At this point, 1 ml of medium was removed from each well in the cells 
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plated previously. After 20 min, the DNA-lipofectamine-Opti-MEM® solution was added 

drop-wise to the cells and the tissue culture plate was incubated for 24 hr at 37 °C. 

 

2.1.7 Transfection of cells with siRNA: 

On day 1, confluent THP1 monocytes were plated in complete growth medium in a 12-well 

plate at a density of 0.7x10
6
 cells/ml (2 ml/well) containing 40 nM Phorbol 12-myristate 13-

acetate (PMA)/well and incubated for 48 hr at 37 °C. On day 3, separate solutions of human 

TRAM (200 nM) or scrambled siRNA (200 nM) were prepared in total volume of 125 μl of 

Opti-Mem®. In a fresh eppendorf, a solution containing 4 μl lipofectamine/sample was 

prepared to a total volume of 125 μl Opti-MEM®. Solutions were incubated for 5 min at RT 

before adding 125 μl lipofectamine solution to each individual siRNA mix followed by 

incubation for 20 min at RT. At this point, 250 μl of medium was removed from each well in 

the cells plated previously. After 20 min, the individual siRNA-lipofectamine-Opti-MEM® 

solutions were added drop-wise to the cells and the tissue culture plate was incubated for 48 

hr at 37 °C. 

 

2.1.8 Transfection of cells with esiRNA: 

On day 1, confluent BEAS-2B cells were plated in complete growth medium in a 6-well plate 

at a density of 0.4x10
6
 cells/ml (1 ml/well) and incubated for 24 hr at 37 °C. On day 2, 

separate solutions of target specific esiRNA (200 ng) or negative control GFP esiRNA (200 

ng) were prepared in a total volume of 250 μl Opti-Mem®. In a fresh eppendorf, a solution 

containing 3.5 μl lipofectamine/sample was prepared in a total volume of 250 μl with Opti-

MEM®. Solutions were incubated for 5 min at RT before adding 250 μl lipofectamine 

solution to each individual esiRNA mix followed by incubation for 20 min at RT. After 20 
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min, the individual esiRNA-lipofectamine-Opti-MEM® solutions were added drop-wise to 

the cells and the tissue culture plate was incubated for 24 hr at 37 °C. 

2.1.9 B. pertussis culture and infection 

Pre-warmed, Bordet-Gengou (BG) agar plates (3 % (w/v) BG agar base, 1 % (v/v) glycerol, 

17 % (v/v) defibrinated horse blood), containing 100 μg/ml streptomycin, were inoculated 

with a streptomycin resistant, B. pertussis Tohama I derivative strain (BPSM) using a sterile 

spreader and incubated inverted at 37 °C for 72 hr. Using a sterile inoculation loop, colonies 

were harvested and transferred to a sterile, 200 ml conical flask containing 100 ml of pre-

warmed Stainer and Scholte (S&S) medium (per 500 ml: 10.72 g L-Glutamic acid, 0.24 g L-

Proline, 2.5 g NaCl, 0.5 g KH2PO4, 0.2 g KCl, 0.1 g MgCl2.6H2O, CaCl2.2H2O) and 1 ml 

supplement medium (per 90 ml: 0.1 g iron sulphate, 0.2 g ascorbic acid, 0.04 g nicotinic acid, 

1 g glutathione and 0.4 g L-Cysteine). The flask was then placed in a 37 °C shaker for a 36 hr 

at 9 g. 100 μl of the liquid culture was removed, placed in a quartz cuvette and the number of 

colony forming units (CFU)/ml was estimated by spectrophotometry at 595 nm. Typically, an 

OD of 1 equalled approximately 2x10
10

 CFU/ml. BEAS-2B cells were infected by directly 

pipetting the required volume of bacterial liquid culture into the mammalian cell culture 

media to achieve an MOI of 200. Cells were incubated for 12 hr before harvesting.  

 

2.1.10 HRV16 infection 

Human rhinovirus 16 (HRV16) containing stock solution was removed from -80 °C storage 

and rapidly thawed in a 37 °C incubator. Mammalian cells were infected by pipetting the 

HRV16 containing solution directly into the mammalian cell culture medium (MOI of 3). 

Cells were incubated at 33 °C for 72 hr to permit infection and viral replication to occur.  
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2.1.11 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed based on the Laemmli method [182] and carried out using the 

mini-gel system (Bio-Rad). Polyacrylamide gels were cast in two layers with a lower, 

resolving layer containing 10 % acrylamide and an upper, stacking layer containing 5 % 

acrylamide.  After solidification, gel plates were transferred from the casting rig to the 

electrophoresis chamber (Bio-Rad) which was filled with 1x SDS running buffer (25 mM 

Tris-Base, 192 mM Glycine, 0.1 % SDS (w/v)). Samples to be analysed were mixed with 5x 

Laemmli sample buffer (300 mM Tris-HCl, 50 % (v/v) Glycerol, 10 % (w/v) SDS, 0.02 % 

(w/v) Bromophenol Blue, 10 % (v/v) β-Mercaptoethanol, 20 %), followed by boiling at 

100 °C for 5 min. Samples and standard protein marker (Bio-Rad) were loaded into 

individual wells and electrophoresis was performed at 90 V for the first 30 min followed by 

100 V for approximately 1 hr.  

 

2.1.12 Western blot  

Proteins were transferred to polyvinylidene difluoride membrane (PVDF; Santa Cruz), using 

a wet transfer apparatus (Owl VEP-2, Thermo Scientific). Briefly, PVDF membranes were 

cut to the required size and activated by soaking in 100 % methanol for 1 min followed by 

washing in 1x transfer buffer (25 mM Tris-HCl (pH 7.6), 192 mM glycine, 20% methanol) 

for a further 1 min. A transfer sandwich was assembled as follows: one sponge, two pieces of 

Whatman™ chromatography paper, gel containing electrophoresed samples, PVDF 

membrane, a further two pieces of Whatman™ chromatography paper and a final sponge. 

The transfer sandwiches were then clamped, placed in the transfer chamber containing 1x 

transfer buffer and transferred at 100 V for 70 min at 4 °C. At this point, the PVDF 

membrane was blocked in either 5 % (w/v) fat free dry milk or 5% (w/v) bovine serum 

albumin (BSA) in 1x TBST for a minimum of 50 min at RT. Primary antibodies against the 

target protein were appropriately diluted in 5 % (w/v) fat free dry milk in 1x TBST or 5 % 
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(w/v) BSA in 1xTBST and incubated on the membrane overnight at 4 °C with gentle 

agitation. Following this, membranes were washed three times with 1x TBST, before addition 

with a horseradish peroxidase (HRP)-conjugated secondary antibody raised against the 

appropriate species, diluted 1:2500 in 5 % (w/v) fat free dry milk in 1x TBST for 1 hr. 

Unbound antibody was removed by washing the membrane three further times with TBST 

before visualisation of immunoreactive bands protein bands by electrochemiluminescence 

(ECL). Visualised bands were recorded using autoradiography film (Santa Cruz) which was 

exposed in developer solution (Devalex M™, Champion Photochemistry), washed in H2O, 

fixed (Fixaplus™, Champion Photochemistry) and washed again prior to electronic image 

scanning.  

 

2.1.13 RNA isolation  

The medium was removed from experimental cells followed by washing in ice-cold 

phosphate buffered saline (PBS) and centrifugation at 161 g for 5 min. Supernatant free 

pellets were lysed in 0.5 ml of TRI Reagent (Sigma) and left for 5 min at RT.  Next, 100 μl of 

100 % chloroform was added, followed by mixing and incubation for 3 min at RT. Samples 

were centrifuged at 16,464 g for 15 min at 4 °C to separate the lysates into three phases: an 

upper, aqueous phase containing the RNA, a DNA containing interphase and a lower organic 

phase containing proteins. The upper aqueous phase was pipetted into a fresh eppendorf, to 

which 250 μl of 100 % isopropyl alcohol was added and incubated for 10 min at RT to 

precipitate the RNA. Samples were centrifuged at 16,464 g for 10 min at 4 °C at which point 

the supernatant was removed and 500 μl of 70 % ethanol added to the RNA pellet. The 

samples were subjected to centrifugation at 16,464 g for 5 min at 4 °C, after which, the 

ethanol was removed and the pellet air dried for 10 min at RT. The RNA pellet was 

resuspended in 25-50 μl RNAase free water (Fisher), depending upon the original number of 

cells. Samples were heated at 59 °C for 10 min to aid RNA resuspension and immediately 
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placed on ice. The RNA concentration was determined using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific). Samples were stored at -80 °C until required for first 

strand cDNA synthesis.  

2.1.14 First-strand cDNA synthesis  

Total cellular RNA was used as a template for first stand cDNA synthesis. Additional 

reagents and volumes used are summarised in Table 2.1. All samples and reagents were kept 

on ice unless otherwise indicated. Final reaction volume was 25 μl in 0.2 ml PCR grade 

eppendorfs (Corning). Upon preparation, the samples were placed in a thermocycler 

(Eppendorf) and cDNA synthesis was performed according to the cycling conditions in Table 

2.2.  

 

Table 2.1: Reagents and volumes required for first-strand cDNA synthesis  

Component Volume (μl) 

RNA X μl equivalent to 1 μg 

Random hexamer primers (500 ng/μl) 3 

H2O Make to 17 

70 °C for 5 min followed by pulse centrifuge 

5x Buffer 5 

dNTP (10 mM) 1.3 

Reverse Transcriptase (200 units/μl) 0.5 

RNase Inhibitor (40 units/μl) 0.5 

Gentle mix and centrifuge 

 

 

 

 

Table 2.2: Thermal cycler conditions for first-strand cDNA synthesis 

Temperature (°C) Time (min) 

85°C – Lid 

37 40 

42 40 

80 10 

4 ∞ 
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2.1.15 Polymerase chain reaction (PCR) 

Template cDNA was diluted 1:5 in nuclease-free H2O (Fisher). To 0.2ml PCR grade 

eppendorfs (Corning), additional reagents were added as per Table 2.3. Samples were gently 

mixed, pulse centrifuged and loading into a thermal cycler (Eppendorf) and ran according to 

the conditions in Table 2.4. 

 

Table 2.3: Reagents for PCR 

Component Volume (μl) 

cDNA 1 

Forward primer (4pM) 1 

Reverse primer (4pM) 1 

dNTP (10nM) 2 

Taq DNA Polymerase (5 units/μl) 0.2 

10x Buffer A 5 

Nuclease free H2O 15.8 

 

 

 

 

 

Table 2.4: Thermal cycler conditions for PCR 

Step Temperature (°C) Time (min) 

Lid 100 

1 95 3 

2 94 1 

3 60 0.5 

4 72 1 

Repeat steps 2-4 for 35 cycles 

5 72 7 

6 80 10 

7 4 ∞ 
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2.1.16 Quantitative real time-PCR (qRT-PCR)  

Template cDNA was thawed, diluted 1:25 in nuclease free H2O (Fisher) and set aside. 

Additional reagents were aliquotted into eppendorfs to make master-mix solutions as per the 

required target gene, according to Table 2.5.  

 

Table 2.5: qRT-PCR reagents and volumes. 

Component Volume per sample (μl) 

Nuclease free H2O 1.25 

Forward primer (4pM) 1.25 

Reverse primer (4pM) 1.25 

SYBR® Green JumpStart™ Taq ReadyMix™ 5 

Template cDNA (1:25) 1.25 

 

 

Samples were loaded in duplicate into a FrameStar™ LC half-skirted, 96 well plate and 

sealed with an optically clear adhesive cover (Rainin Instrument, LLC). Plates were pulse 

centrifuged to ensure complete sample collection within wells. QRT-PCR was performed 

using a Roche Lightcycler® 480 system according to parameters specified in Table 2.6. 

Table 2.6: Cycler conditions for qRT-PCR 

Step Temperature (°C) Time (min) 

1 94 2 

2 94 0.25 

3 60 1 

Repeat steps 2-3 for 40 cycles 

4 65-95 10 
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Table 2.7: Primer sequences for qRT-PCR 

Primer Sequence 

Murine TNF-α Forward 5’-CATCTTCTCAAAATTCGAGTGACAA-3’ 

Murine TNF-α Reverse 5’-TGGGAGTAGACAAGGTACAACCC-3’ 

Murine RANTES Forward 5’-GGAGATGAGCTAGGATAGAGGG-3’ 

Murine RANTES Reverse 5’-TGCCCATTTTCCCAGGACCG-3’ 

Murine GAPDH Forward 5’-GCACAGTCAAGGCCGAGAAT-3’  

Murine GAPDH Reverse 5’-GCCTTCTCCATGGTGGTGAA-3’ 

Human IFN-β Forward 5’-AACTGCAACCTTTCGAAGCC-3’ 

Human IFN-β Reverse 5’-TGTCGCCTACTACCTGTTGTGC-3’ 

Human TNF-α Forward 5’-CACCACTTCGAAACCTGGGA-3’  

Human TNF-α Reverse 5’-CACTTCACTGTGCAGGCCAC-3’ 

Human RANTES Forward 5’-TGCCTGTTTCTGCTTGCTCTTGTC-3’ 

Human RANTES Reverse 5’-TGTGGTAGAATCTGGGCCCTTCAA-3’ 

Human TPI Forward 5’-TGGTTTGTGCTCCCCCTACT-3’ 

Human TPI Reverse 5’-CACAGCAATCTTGGGATCTAGCT-3’ 

Human SOD1 Forward 5’-GGTGTGGCCGATGTGTCTAT-3’ 

Human SOD1 Reverse 5’-CCTTTGCCCAAGTCATCTGC-3’ 

Human NME2 Forward 5’-CCATGGCCAACCTGGAG-3’ 

Human NME2 Reverse 5’-CTTCAGGTGTTCTTCAGAGGC-3’ 

Human TRAM Forward 5’-AAGGAAGACAGAAAAGCCGC-3’ 

Human TRAM Reverse 5’-ATCCAAGGCAGAAGAGGAAAACT-3’ 

Human Ferritin HC Forward 5’-GCCAGAACTACCACCAGGACT-3’ 

Human Ferritin HC Reverse 5’-GCCACATCATCGCGGTCAAA-3’ 

Human Ferritin LC Forward 5’-CAACCTCCGGGACCATCTTC-3’ 

Human Ferritin LC Reverse 5’-TGGGAGCTCATGGTTGGTTG-3’ 

Human IL-6 Forward 5’-AGCCACTCACCTCTTCAGAACGAA-3’ 

Human IL-6 Reverse 5’-CAGTGCCTCTTTGCTGCTTTCACA-3’ 

Human IFNα Forward 5’-GAAATACTTCCAAAGAATCACTCT-3’ 

Human IFNα Reverse 5’-GATCTCATGATTTCTGCTCTGACA-3’ 

Human CXCL10 Forward 5’-ATTATTCCTGCAAGCCAATTTTG-3’ 

Human CXCL10 Reverse 5’-TCACCCTTCTTTTTCATTGTAGCA-3’ 

Human NLRP12 Forward 5’-TGTTGGTGCAGCTCAGACCAG-3’ 

Human NLRP12 Reverse 5’-ATCAGTGTGAGAATCCAGCA-3’ 

Human DJ-1 Forward 5’-CTGTTGGCTATGAAATAGG-3’ 

Human DJ-1 Reverse 5’-GTGTAATGACCTCCATTCATC-3’ 

Human STMN1 Forward 5’-AGATGTACTTCTGGACTCAC-3’ 

Human STMN1 Reverse 5’-GATCAGACCAGGTAATCAATG-3’ 

Human GSTO1 Forward 5’-GGTGGCAATTCTATCTCTATG-3’ 

Human GSTO1 Reverse 5’-GTGGTCTACACACTCATTTACA-3’ 

Human PPP1Cα Forward 5’-TGCTGGCCATAAGATCAAG-3’ 

Human PPP1Cα Reverse 5’-CTTGCACTCATCGTAGAAAC-3’ 
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2.1.17 Reporter assays  

HEK293-TLR7 cells were seeded into 96 well plates (2x10
5
 cells/ml – 200 μl/well). After 48 

hr, cells were transfected with vectors encoding a reporter gene for either the IFNα promoter 

(p125), IFNβ, NF-κB, or RANTES promoters (60 ng/well) and co-transfected with either 

empty vector (EV) or increasing amounts of an expression vector encoding mutated versions 

of the human TLR adaptors TRAM (TRAM G2A), TRIF (TRIF ΔCΔN), or MAL (MAL 

P126H) using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. 

A total of 20 ng/well Renilla-luciferase reporter gene was transfected simultaneously to 

noramlise transfection efficiency. After 24 hr, cells were stimulated with 5 μg/ml of CLO97 

for an additional 24 hr. Thereafter, cell lysates were prepared and reporter gene activity was 

measured using the Dual-Luciferase Assay system (Promega). Data were expressed as the 

mean fold induction relative to the control.  

2.1.18 Enzyme-Linked Immunosorbent Assay (ELISA)  

Appropriate capture antibody was plated onto Maxisorp 96-well plates (NUNC) (1 μg/ml for 

TNFα and RANTES, 2 μg/ml for IL-6) overnight at RT. The following day, plates were 

washed four times with wash buffer (sterile 1x PBS containing 0.05 % (v/v) Tween-20) 

followed by blocking with blocking buffer (PBS containing 1 % (w/v) BSA) for minimum 2 

hr. The plates were then washed four times with wash buffer. Next, serial dilutions of the 

standards (ranging from 0 to 4000 pg/ml; 100 μl/well) and samples were added (100 μl/well) 

followed by incubation at 4 °C overnight. Plates were washed again four times with wash 

buffer followed by the addition of the appropriate biotinylated detection antibody (0.2 μg/ml 

for IL-6, 0.25 μg/ml for RANTES and 0.5 μg/ml for TNFα) for 2 hr at RT. Plates were 

washed four times with wash buffer followed by the addition of Avidin-HRP conjugate 

(1:2000 for RANTES, TNFα and IL-6) for 30 min. Thereafter, plates were washed five times 

with wash buffer followed by addition of citric acid substrate buffer (100 μl/well) 

supplemented with o-Phenylenediamine (Sigma) and 30 % hydrogen peroxide (Sigma). 
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Plates were incubated in the dark with gentle shaking with the absorbance measured at 

various intervals at 490 nm using a spectrophotometer (BioTek). 

 

 

2.1.19 Nuclear Extraction  

Cellular nuclear extracts were prepared according to the manufacturer’s instructions (Nuclear 

Extraction Kit, Cayman Chemical). Briefly, experimental cells were washed in ice-cold PBS, 

harvested and pelleted by chilled centrifugation in PBS. Cell pellets were resuspended in 

PBS/Phosphatase Inhibitor Solution and re-centrifuged. This was repeated once, after which, 

250 μl Hypotonic Buffer solution was added to the pellets, mixed gently by pipetting, 

transferred to a fresh, chilled eppendorf and incubated for on ice for 15 min. Next, 50 μl 

Nonidet P-40 Assay Reagent was added to lyse the plasma membrane and the samples were 

pulse centrifuged at 16,464 g for 30 sec. The supernatant was discarded and the nuclear pellet 

was resuspended in Complete Nuclear Extraction Buffer, vortexed for 15 sec and incubated 

on ice with gentle shaking for 15 min. Samples were vortexed again for 30 sec and incubated 

on ice with gentle shaking for an additional 15 min. Samples were centrifuged at 16,464 g for 

a final 10 min and the nuclear fraction-containing supernatant was removed to a fresh 

eppendorf and stored at -80 °C.    
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2.2 Methods in Proteomics: 2D-DIGE and LC/MS 
 

2.2.1 Sample lysis 

Experimental cell culture samples were washed in 10 ml ice-cold PBS, harvested and 

subjected to centrifugation at 4°C for 5 min at 161 g. Pelleted samples were then lysed in 2D 

lysis buffer (7 M Urea, 2 M Thiourea, 100 mM DTT, 4% (w/v) CHAPS, 1% (v/v) Triton X-

100, 0.06 % (v/v) ampholytes pH4-7, 0.06 % (v/v) bromophenol blue) with repeated pipetting 

until all cell clumps were solubilised. Samples were incubated on ice for a further 30 min 

with frequent pipetting to aid lysis before chilled centrifugation at 16,464 g for 10 min. 

Whole cell lysate-containing supernatants were removed to fresh, chilled eppendorfs and 

frozen at -80 °C prior to a ‘clean-up’ step to remove impurities.  

 

2.2.2 Sample Clean-up 

Sample clean-up was undertaken using a 2D Clean-Up Kit according to the manufacturer’s 

instructions (General Electric (GE) Healthcare). Briefly, to each sample, 300 μl precipitant 

was added, followed by vortexing and incubation on ice for 15 min. A further 300 μl of co-

precipitant was then added, followed by mixing. Samples were centrifuged at 16,464 g for 8 

min followed by removal of the supernatant (Note: all centrifugation steps were carried out at 

4 °C.) Next, 40 μl of co-precipitant was added to the sample followed by incubation on ice 

for 5 min and centrifugation at 16,464 g for 5 min. Supernatants were removed and 25 μl 

distilled H2O was added followed by sample vortexing to disperse the pellet. Next, 1 ml ice-

cold wash buffer, containing 5 μl wash buffer additive, was added followed by vortexing for 

30 sec every 10 min for a total of 40 min. Samples were then centrifuged at 16,464 g for 5 

min after which, the supernatant was removed. The samples were allowed to air dry for 5 min 

on ice. Approximately 100 μl 2x DIGE labelling buffer (8 M urea, 30 mM Tris, 4% CHAPS, 

pH 9) was then added followed by pipetting and water bath sonication to aid resuspension.  
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2.2.3 Protein Quantification  

Proteins were quantified using a Bradford assay [183]. Protein standards ranging from 0 – 2 

mg/ml were prepared by diluting a BSA stock (5 mg/ml) in 0.1 M HCl, 2D lysis buffer and 

dH2O in 4 ml polystyrene cuvettes (Sarstedt). In separate cuvettes, samples were prepared by 

mixing 10 μl whole cell lysate with 10 μl 0.1 M HCl plus 80 μl dH2O. To both samples and 

standards, 3.5 ml of Protein Assay solution (Bio-Rad) (diluted 1:4 with dH2O) was added and 

incubated at room temperature for 5 min. The protein content of both standards and samples 

was measured by spectrophotometric analysis at 595 nm. A standard curve was plotted 

according to the known standards and the line equation calculated. Sample protein 

concentrations were calculated by inputting their spectrophotometric readings into the line 

equation. 

 

2.2.4 DIGE Labelling 

Quantified protein samples were labelled with CyDye DIGE Fluor minimal dyes according to 

the manufacturer’s instructions (GE Healthcare). Briefly, Cy2, Cy3 and Cy5 DIGE dyes were 

reconstituted to a concentration of 1 mM in fresh dimethylformamide (DMF) (Sigma) and 

stored at -20 °C when not in use. Stock dye solutions were then further diluted to a working 

concentration of 400 μM using DMF immediately prior to labelling. Next, 50 μg of protein 

from each unstimulated and stiulated biological replicate was quantified and minimally 

labelled with 400 pmol of Cy3 and Cy5 working solution respectively. A further 25 μg of 

protein from unstimulated and stimulated samples corresponding to each  biological replicate 

were pooled and minimally labelled with 400 pmol Cy2 as the internal standard. Samples 

were immediately mixed, pulse centrifuged and incubated on ice in the dark for 30 min. 

Labelling was quenched by adding 1 μl of 10 mM lysine with mixing and incubation for 10 

min in the dark on ice. At this point, labelled samples corresponding to each biological 

replicate were pooled in single eppendorfs. For example, Cy2, Cy3 and Cy5 labelled labelled 
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samples from biological replicate one were pooled into one eppendorf followed by gentle 

mixing and centrifugation. To this mix, an equal volume of 2x lysis buffer (7 M urea, 2 M 

thiourea, 4 % CHAPS, 0.04 % bromophenol blue) was added and made to 450 μl with 

rehydration buffer (8 M urea, 2 % CHAPS, 0.5 % IPG 4-7 buffer, 0.002% bromophenol blue). 

 

2.2.5 IPG strip rehydration 

Each sample was pipetted into a re-swelling tray (Amersham Bioscience) and overlaid with 

individual, 24 cm linear pH 4-7 IPG strips (GE Healthcare). The IPG strips were overlaid 

with 3 ml of mineral oil (Sigma) per strip. The re-swelling tray was then placed in darkness at 

RT for a minimum of 14 hr to allow passive strip rehydration to occur.  

 

2.2.6 1
st
 Dimension isoelectric focusing (IEF) 

Rehydrated IPG strips were loaded gel-side up on an Amersham Ettan IPG-phor manifold 

and overlaid in mineral oil in order to keep the IPG gel matrix moist and aid conduction. 1
st
 

dimension IEF was performed in darkness using the Amersham IPG-phor IEF system 

according to table 2.8.  

 

Table 2.8: 1
st
 dimension IEF running conditions.  

 Step Voltage (V) Time 

1 Hold 250 3 hr 

2 Gradient 8,000 4 hr 

3 Hold 8,000 80,000 Vhr 

4 Hold 500 24 hr 

 

2.2.7 Gel Casting 

Acrylamide gels (250 x 200 x 1 milimetre (mm), 10 % acrylamide) for 2
nd

 dimension SDS-

Page were prepared 24 hr prior to running to allow time for complete gel polymerisation. Gel 

composition was as follows: 10% Acrylamide, 0.38 M Tris-HCl pH 8.8, 0.1 % SDS (v/v), 

APS 0.05 % (v/v) and TEMED 0.04 % (v/v). Gels were poured to 98 % capacity, overlaid 
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with 30 % isopropanol and allowed to set at RT overnight. Immediately prior to IPG strip 

loading, the 30% isopropanol was removed. 

 

2.2.8 2
nd

 Dimension Gel Electrophoresis 

Following 1
st
 dimension IEF, proteins within the IPG strips were reduced by overlaying with 

DTT equilibration solution (6 M urea, 30 % (w/v) glycerol, 2 % (w/v) SDS, 100 mM DTT) 

for 15 min at RT with gentle agitation. This solution was removed and the proteins were 

alkylated by overlaying with iodoacetamide equilibration solution (6M urea, 30 % (w/v) 

glycerol, 2 % (w/v) SDS, 100 mM DTT, 0.25 M iodoacetamide) for a further 15 min, again 

with gentle agitation. The IPG strips were briefly washed in 1x SDS running buffer and 

applied, gel-side out, to the resolving gels. The interface between the IPG strip and the 

resolving gel was sealed with melted 0.5 % agarose sealing solution (25 mM Tris base, 192 

mM glycine, 0.1 % SDS, 0.5 % agarose, 0.002 % bromophenol blue) and allowed to solidify 

at RT for 5 min. Sealed glass plates were then loaded into an electrophoresis tank (Ettan 

DALTtwelve Separation Unit, GE Healthcare) and filled to 75 % capacity with 7 L of 1x SDS 

running buffer. Remaining slots were filled with artificial plates and the tank was topped off 

with 2 L of 2x SDS running buffer. For 2
nd

 dimension separation, electrophoresis was 

performed in darkness at 0.5 watt/gel for 1 hr followed by 1 watt/gel until the tracking dye 

reached the bottom of the plate. 

2.2.9 Image Acquisition 

Gel images were scanned using the Typhoon Trio Variable Mode Imager (Amersham 

Biosciences/GE Healthcare). The photomultiplier tube (PMT) voltage values for gels 

analysed were between 500 V and 700 V and the maximum pixel volume was between 

85,000 and 95,000. Scanning was performed at 50 mm resolution and saved in the .gel file 

format.  
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2.2.10 Image Analysis  

Gel images were analysed using Progenesis Same Spots software version 3.2.3 (NonLinear 

Dynamics). Images were categorised according to their label: Cy3 (unstimulated), Cy5 

(stimulated) and Cy2 (internal standard) for later protein abundance comparisons and 

normalisation. To ensure correct protein spot alignment between replicate gels, all images in 

an experiment were virtually overlaid through a combination of manual and automatic 

alignments against a manually determined ‘reference gel’ that displayed optimal spot 

separation across all dimensions. Spots were automatically detected and filtered to eliminate 

false detections (typically by size exclusion). Next, the images were separated into control 

and stimulated groups and individual spots were analysed to detect changes in abundance 

between the two sets and across their biological replicates. A spot list was generated 

displaying those with significant protein abundance fold changes between biological 

conditions. Only spots with a fold change <1.3 and a P value less than 0.05 were taken into 

consideration. Further manual analysis was carried out to eliminate false detections. Spots 

that met these criteria were subsequently visualised, excised and prepared for LC/MS.  

 

2.2.11 Protein Visualisation 

As DIGE labelled spot patterns are invisible to the human eye, the proteins must be visualised 

to facilitate manual excision. Therefore, the reference gel was subjected to silver staining in 

order to visual the proteins within the gel. Briefly, the reference gel was removed from its 

plate and gently placed in 500 ml fixing solution (30 % ethanol, 10 % glacial acetic acid) and 

gently rocked for 60 min. This step was repeated once with fresh fixing solution. The fixing 

solution was removed and the gels were sensitised using 250 ml sensitising solution (30 % 

ethanol, 0.2 % (w/v) sodium thiosulphate and 6.8 % (w/v) sodium acetate for 2 hr. Sensitising 

solution was removed and gels were washed 5 x 8 min in Milli-Q water. Gels were 

impregnated with silver by addition of 250 ml silver solution (0.25 % silver nitrate) for 1 hr. 
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Silver solution was removed and gels were washed 4 x 1 min in Milli-Q water. Developing 

solution (2.5 % sodium carbonate, 0.08 % (v/v) of 37 % (w/v) formaldehyde) was then added 

for approximately 5-10 min until protein spots became visible. Before high background 

development, the developing solution was removed and replaced with fixing solution (4 % 

Tris, 2 % acetic acid) for 10 min. Finally, gels were washed for 2 x 30 min in Milli-Q water 

and stored in plastic film at 4 °C in 5 % acetic acid solution prior to spot excision. 

 

2.2.12 Spot Excision  

Protein spots selected for mass spectrometry analysis were manually excised from the silver 

stained gel using a cut pipette tip and transferred to a 1.5 ml eppendorf tube. 

 

2.2.13 Gel Destaining 

Silver stained gel pieces were destained using a standard lab protocol. Briefly, 10 ml each of 

30 mM potassium ferricyanide and 100 mM sodium thiosulphate were freshly prepared and 

mixed.  Next, 50 μl of this solution was added to each excised gel piece and incubated at RT 

with gentle shaking until the brown, silver nitrate residue disappeared from the gel. The gel 

pieces were washed with Milli-Q water until the yellow potassium ferricyanide residue was 

removed. Gel pieces were incubated in 100 μl of 200 mM ammonium bicarbonate (Ambic) 

for 20 min with gentle shaking. The solution was then removed and 100 μl of a 2:3 ratio of 

200 mM Ambic/100 % acetonitrile was added and placed at 37 °C for 10 min. The solution 

was removed and 100 μl of 50 mM Ambic added to each tube and placed at 37 °C for 10 min. 

This solution was removed and 100 μl of 100 % acetonitrile was added and placed at 37 °C 

for 10 min.  This final solution was removed. The gel piece was now ready for trypsin 

digestion. 
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2.2.14 In-gel Trypsin Digestion 

Following de-staining of the individual gel plugs, protein digestion was performed as per 

Mann et al., [184]. Briefly, the trypsin digestion solution was prepared by resuspending 20 µg 

sequencing grade trypsin (Promega) in 1.5 mL 10mM Ammonium Bicarbonate containing 

10 % (v/v) acetonitrile. Next, 50 µl of trypsin solution was incubated with each gel piece on 

ice for 2 hr followed by the layering of 10 µl of a 10 mM AmBic, 10 % Acetonitrile solution 

on top of the gel pieces to prevent drying out. At this point, gel pieces were incubated at 37 

o
C overnight. Peptides were extracted from the gel plugs using 100 µl extraction buffer (1:2 

(v/v) 5% formic acid (FA)/acetonitrile) followed by incubation at 37
 o

C for 15 min with 

shaking. The solution containing the extracted peptides was then removed from each sample 

and placed in a fresh eppendorf. Samples were vacuum dried using a concentrator (Eppendorf) 

and stored at -20 °C prior to MS analysis. 

 

2.2.15 LC/MS/MS  

All peptide identifications were carried out using the Ion Trap 6340 LC/MS/MS system 

supplied by Agilent. Digested samples were resuspended in 20 µl 0.1 % (v/v) trifluroacetic 

acid (TFA) in Milli-Q water. Samples were then filtered in 0.22 μm spin filters (Corning) and 

5 µl of the trypsin digested sample was loaded onto a C18 chip (G4240-62006) (Agilent) at a 

rate of 0.6 µl/min in 0.1 % FA. The mobile phases were aqueous solutions of 0.1 % (v/v) FA 

and an acetonitrile solution of 0.1 % (v/v) FA. A 10 min gradient was carried out to increase 

the acetonitrile concentration to 100 % linearly. Charged ions were generated using an 

electrospray ionisation source. Spray voltage was set to 2000 V. 
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2.3.16 Protein Identification 

All peptides were submitted to the Mascot search engine (Matrix Science) to identify proteins. 

All peptides were searched in both the NCBinr and Swiss-Prot databases. The enzyme used 

was selected as trypsin and up to 2 missed cleavages were allowed. Peptide mass tolerance 

was set at ±2 for precursor ions and a tolerance of ±1 for fragment ions. Variable 

modifications allowed for were carboxymethyl (C) and oxidation (M). Taxonomy was 

selected as mammalian. When using the NCBinr database individual ion scores >54 indicate 

protein identity or extensive homology. Only peptides matched with an ion score above 54 

were accepted as significant. When using the Swiss-Prot database individual ion scores >40 

indicate protein identity or extensive homology. Only peptides matched with a score >40 

were accepted as significant.  
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2.3 Methods in Proteomics: Label Free Quantitative Mass Spectrometry 

(LFQ MS) 
 

2.3.1 Sample Clean-up 

Protein samples were cleaned and desalted using a 2D clean-up kit (GE Healthcare, UK) 

according to the manufacturer's instructions. Protocol was carried out as per section 2.2.2 

with one modification: the final protein pellet was resuspended in 300 μl of resuspension 

solution (50 mM Ambic, 1 mM calcium chloride (CaCl2)). 

2.3.2 Sample Quantification 

Cleaned protein samples were quantified for protein concentration using the Qubit® Quant-

IT™ Protein Assay Kit (Invitrogen, UK) on a Qubit® flourometer v.2.0 according to the 

manufacturer’s instructions. Briefly, three protein standards equivalent to 0 ng/μl, 200 ng/μl 

and 400 ng/μl were prepared by diluting the supplied protein reagent (10 μl) in Qubit® 

Protein Buffer (190 μl). Equivalent volumes of Protein Buffer were also mixed with the 

samples to be analysed followed by incubation of both samples and standards at RT for 15 

min. Finally, the fluorometer was calibrated using the prepared standards before measuring of 

the samples. 

2.3.3 Sample Acetlyation and Trypsin Digestion 

Following sample quantification, 50µg from each was pipetted into a fresh 1.5 ml 

microcentrifuge tube.  Next, 10 µl of 200 mM dithiothreitol (DTT) suspended in 100 mM 

Ambic solution was added to each sample followed by incubation at 95 °C for 15 min. 

Protein acetylation was performed by adding 4 µl of 1 M iodoacetamide (IAA) suspended in 

100 mM Ambic to each sample followed by incubation at 25 °C for 45 min. The acetylation 

reaction was stopped by adding 20 µl of 200 mM DTT with incubation at 25 °C for 45 min. 

Samples were quantified again for protein concentration and 10 µg was removed from each 

sample and transferred into a fresh 1.5 ml microcentrifuge tube. To these, 0.5 µl of 0.5 µg/µl 
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trypsin was added. To ensure maximal tryspin digestion, samples were incubated at 37 °C 

overnight followed by speed vacuuming to concentrate the peptide preparation.  

 

2.3.4 Peptide Purification  

Lyophilised, trypsin digested protein peptides were further purified for MS using the ZipTip 

procedure (Millipore) according to the manufacturer’s instructions. Briefly, trypsin digested 

peptides were resuspended in 20 µl Resuspension Buffer (0.5 % TFA in LC/MS grade H2O). 

The protein samples were sonicated for 2 min to aid resuspension followed by a pulse 

centrifugation. The ZipTips were wetted by aspirating and dispensing 10 µl of Wetting 

Solution (0.1 % TFA in 80 % acetonitrile) five times. Tip equilibration was carried out by 

aspirating and dispensing 10 µl Equilibration Solution (0.1 % TFA in LC/MS grade H2O) 

five times. To bind the peptides, 10 µl of each sample was aspirated and dispensed into the 

ZipTips. This was repeated a further 9 times, each time aspirating and dispensing into the 

same eppendorf. The sample containing tips were then washed by aspirating and dispensing 

10 µl of Washing Solution (0.1 % TFA in 80 % acetonitrile) from the tip to waste five times 

in total. Elution of the peptide samples was achieved by aspirating and dispensing 10 µl of 

Elution Solution (0.1 % TFA, 60% acetonitrile) from the tip into a 1.5 ml eppendorf tube five 

times. The resulting peptide solution was speed vacuumed and resuspended in 12 µl of 

loading buffer (0.05 % TFA, 98 % LC/MS grade H2O, 2 % LC/MS grade acetonitrile). 

Finally, samples were transferred to MS compatible vials ensuring no bubbles were present in 

the solution.  

 

2.3.5 Label-Free Mass Spectrometry 

Peptide samples were run on a Thermo Scientific Q Exactive mass spectrometer connected to 

a Dionex Ultimate 3000 (RSLCnano) chromatography system in the University College 

Dublin, Conway Institute of Biomolecular and Biomedical Research, Mass Spectrometry 

Resource unit. Each sample was loaded onto Biobasic Picotip Emitter (120 mm length, 75 
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μm ID) packed with Reprocil Pur C18 (1.9 μm) reverse phase media and was separated by an 

increasing acetonitrile gradient over 43 minutes at a flow rate of 250 nL/min. The mass 

spectrometer was operated in positive ion mode with a capillary temperature of 220 °C and 

with a potential of 2000 V applied to the frit. All data were acquired with the mass 

spectrometer operating in automatic data dependent switching mode. A high resolution 

(70,000) MS scan (300-2000 Dalton) was performed using the Q Exactive to select the 15 

most intense ions prior to MS/MS analysis using higher-energy collisional dissociation 

(HCD).  

 

2.3.6 LFQ analysis 

Protein identification and LFQ analysis was conducted using MaxQuant (version 1.3.0.5; 

http://maxquant.org/). The Andromeda database search engine was used to correlate MS/MS 

data against the IPI Human FASTA protein database provided by MaxQuant version 1.3.0.5.  

Protein identification was performed according to the search parameters specified in Table 

2.9. 

 

Table 2.9: Search parameters for protein identification on Andromeda protein database. 

Search Parameter Parameter used 

Precursor-ion mass tolerance 1.5 Da 

Fragment ion mass tolerance 6 parts per million   

Fixed modification Cysteine carbamidomethylation 

Variable modifications Protein N-acetylation                   

Methionine Oxidation  

Missed Cleavage Sites Max 2 missed cleavage sites  

False Discovery Rates  0.01 (peptides and proteins) 

Min. peptide length considered for 

identification 

6 aa 

Min. peptides for protein identification 2 peptides 
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Differentially expressed proteins among experimental groups were determined by LFQ using 

MaxQuant and Perseus (version 1.2.0.17). Peptides were matched across samples based on 

mass to charge ratio, elution time (within a 2 min boundary) and spectral features. Protein 

intensities were determined using unique and razor (those most likely to have originated from 

a protein based on the principle of parsimony) peptides. Protein intensities were normalised 

across runs to account for variation in sample loading and pair-wise ratios of all peptides of a 

particular protein group were calculated across all samples and the protein intensities were 

corrected in order to reflect the median peptide ratios. The final data matrix was generated 

containing the normalised intensities (presented as LFQ intensities) for each individual 

sample where imported into Perseus for quantitative analysis. LFQ intensities measured for 

individual runs were grouped based on their experimental treatment, log2 transformed and an 

analysis of variance (ANOVA) (p<0.05) was performed to identify variation. A qualitative 

assessment of differential expression was also conducted. This involved the identification of 

proteins that were completely lacking from a specific treatment. Proteins that were 

completely missing from all replicates of a particular group but present in other groups were 

determined manually from the data matrix. These proteins are not considered statistically 

significant as the values for absences are given as NaN (not a number) which is not a valid 

value for an ANOVA analysis. However the complete absence of a protein from a group may 

be biologically significant and these proteins were reported as qualitatively differentially 

expressed.  

 

2.4 Statistical analysis 
Statistical analysis was carried out using the unpaired Student’s t test. P-values of less than or 

equal to 0.05 were considered to indicate a statistically significant difference where * 

indicates p<0.05, ** indicates p<0.005 and *** indicates p<0.001.  
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3.1: Introduction 
 

3.1.1 TRAM Structure 

In contrast with TRIF, TRAM is both the smallest adaptor protein (235 aa) and the least 

functionally diverse, mediating TLR4 and IL-18R signalling only (Figure 3.1) [12, 23]. 

 
 

Figure 3.1: Schematic illustrating domain segmentation of TRAM. TRAM can be divide 

into three separate regions: an N-terminal region containing a myriostoylation site; a central 

domain containing a phosphorylation site and the C-terminal TIR-domain. Adapted from [26]. 

 

 

Amino acids 1-7 at the N-terminus contain a myristoylation site which is believed to allow 

TRAM to target to the plasma membrane [82]. Serine 16 can be phosphorylated by protein 

kinase CΣ (PKCΣ) and this may serve to release TRAM from the plasma membrane upon 

activation, allowing it to transduce further signals downstream (Figure 3.1). Impairment of 

this phosphorylation inhibits TRAM signalling [83]. 

 

3.1.2 TLR7/8 and TLR9 evolution and structure 

The endosomal TLRs, TLR3, TLR7, TLR8 and TLR9 are part of an evolutionary cluster 

believed to have arisen via an X-linked duplication event approximately 150 million years 

ago [10, 185]. TLR7/8 and TLR9 are considered a subfamily within the TLRs for a number 

of reasons. Each contains an extracellular domain greater than 800 aa compared to the TLR1 

subfamily for example, which is less than 600 aa [10]. Unlike other TLRs, they each 

recognise pathogen derived nucleic acids [186] and also share structural similarities that 

classes them as phylogenetic neighbours [185]. Within the subfamily, crystal structures are 

currently available for TLR3, bound to its cognate ligand double-stranded RNA (dsRNA) 

[187] and also for TLR8, bound to its synthetic activators, CL097, CL075 and R848 [188] 
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(Figure 3.2). Under basal conditions, TLR8 exists as a homodimer [188]. Ligand binding 

causes a structural rearrangement in which the LRR-LRR interactions, which normally ensure 

monomer-monomer binding, are rearranged to cause an ‘opening-up’ of the TLR8 structure 

by 15Å on its upper face to allow efficient ligand recognition. The resulting rearrangements 

also cause the two C-termini to come into close proximity from approximately 53 to 30Å 

(Figure 3.2). Critically, this leads to binding of the cytoplasmic TIR domains which are 

essential in transducing a downstream signal to the nucleus [188].  

 

Figure 3.2: Conformational change adopted by TLR8 upon agonist binding. (A) TLR8 

exists in dimeric form basally with the C-termini directionally opposed to each other (B) 

Agonist binding causes a hinge-like conformational change in which the C-termini are 

brought closer together. This in turn brings the opposing TIR-domains into contact thus 

transmitting the activation signal. Adapted from [188]. 

 

Although the crystal structure for TLR9 has not been determined, its structure has been 

inferred from various biochemical studies [189, 190] and it would appear that the mechanism 

of activation is similar to that of TLR8. Like TLR8, TLR9 also exists basally in an inactive 

dimeric form [190]. In this form, TLR9 is capable of binding both stimulatory and inhibitory 

DNA but critically, only stimulatory DNA causes conformational changes in the TLR9 

homodimers which results in the association of the cytoplasmic TIR-domains [190].  Subtle 

differences within the nucleotide ligand appear to dictate vastly different responses from 

A B 
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TLR9 possibly indicating an evolutionary strategy to recognise non-host derived nucleotides 

preferentially.  

3.1.3 TLR9 signalling 

TLR9 was originally shown to recognise DNA of bacterial origin, specifically unmethylated 

CpG motifs, a distinction which is much rarer in mammalian DNA than in bacterial or viral 

DNA [38]. TLR9 can also recognise double stranded DNA containing viruses such as herpes 

simplex virus 1 and 2 [191, 192]. Synthetically produced CpG containing oligonucelotides 

are commonly used to specifically activate TLR9 and indeed specific sequence modifications 

are believed to tailor the cytokine response [193]. However, more recently it has been shown 

that the endosomal targeting of DNA is the determining factor in TLR9 activation rather than 

the particular sequence or even the origin of the DNA [194]. This would agree with 

observations that TLR9 in some cases can recognise self-nucleic acids as well as non-self 

[195]. TLR9 localises within intracellular compartments particularly the endoplasmic 

reticulum, endosome and lysosomes [196]. This strategy helps to isolate TLR9 from self-

nucleotides which are usually, but not always, excluded from these compartments. For TLR9 

to become activated however, it must traffic to the endolysosome where essential 

acidification occurs [197]. Trafficking is itself a highly regulated process with chaperones 

including gp96 and UNC93B1 being essential for TLR7/8 and TLR9 to traffic from the ER to 

the endolysosome. Once in the endolysosome, TLR9’s ectodomain is cleaved by cathepsins 

and this has been shown to increase its affinity for CpG DNA - however it is not essential 

[186]. Cleavage is however required for TLR9 to bind its downstream adaptor molecule 

MyD88 and to transmit a signal [198, 199].  

Recruitment of MyD88 to TLR9 can lead to both NFκB mediated pro-inflammatory and 

IRF7 mediated type-I IFN production [200]. N-terminal death domains (DD) on MyD88 

interact with and recruit IL-1R associated kinase-4 (IRAK4) via its own DDs [45]. This 
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causes downstream phosphorylation and activation of kinases IRAK1 (which is dispensible 

for TLR9 mediated NFκB but not IRF7 activation [201]) and IRAK2 which in turn 

phosphorylate and activate TNF receptor-associated factor 6 (TRAF6) [202]. TRAF6 utilises 

its E3 ubiquitin ligase activity to ubquitinate a scaffolding protein, NFκB essential modulator 

(NEMO) [47]. The combination of TRAF6 mediated ubiquitin chain formation and NEMO 

functions to recruit TGF-β activated kinase 1 (TAK1) which itself recruits the TAK-1 binding 

proteins 1 (TAB1) and TAB2. TAK1 phosphorylates IKKβ as well as initiating a MAP 

kinase cascade leading to activation of the transcription factor CREB. IKKβ phosphorylates 

the inhibitors of κB (IκB) α and IκBβ leading to NFκB release and nuclear translocation to 

bind the promoter regions of pro-inflammatory cytokines such as TNFα and IL-12. Other 

members of the IRF transcription factor family are also believed to be involved such as IRF5 

and IRF8 with IRF5 associating with MyD88 and TRAF6 (Figure 3.3) [203, 204].  

While the above pathway holds true for many classes of cells including macrophages and 

conventional dendritic cells, an additional pathway exists in plasmacytoid dendritic cells 

(pDCs). The exact details of this pathway have not been elucidated to the same extent as the 

pro-inflammatory pathway above, however it involves initial MyD88, IRAK4, IRAK1 and 

TRAF6 recruitment, as per the NFκB pathway, followed by engagement of TRAF3, IKKα 

and IRF7. The kinases IRAK1 and IKKα are believed to phosphorylate IRF7 leading to the 

production of large quantities of type-I IFN [200, 205]. It has been suggested that 

engagement of TLR9 in the early endosome leads to preferential activation of the IRF7 signal 

cascade whereas binding of TLR9 in the late endosome favours the activation of the NFκB 

pathway (Figure 3.3) [206]. 
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3.1.4 TLR7/8 signalling 

Both TLR7 and TLR8 were originally shown to sense synthetic antimicrobial 

imidazoquinoline derivatives such as imiquimod, an approved treatment for external genital 

warts, and its more powerful derivative, resiquimod (R848) [40]. Sensitivity to these ligands 

was abolished in both TLR7 and MyD88 deficient mice indicating that MyD88 was also a 

critical adaptor molecule in TLR7 signalling. Expression of both human and mouse TLR7 but 

only human TLR8 in HEK293 cells dose dependently conferred responsiveness to R848. 

Expression of murine TLR8 did not confer responsiveness and this combined with the 

observation that TLR7 deficient mice did not respond to R848 despite the presence of TLR8 

has led to the suggestion that murine TLR8, unlike its human counterpart, is non-functional 

[40, 207]. A role for the endosome and lysosome in TLR7 and TLR8 signalling was 

suspected early on as inhibition of their maturation or acidification inhibited TLR7, TLR8 

(and TLR9) mediated signalling and abolished MyD88’s endosomal translocation [208, 

209].  Further studies confirmed or suggested roles for IRAK1, IRAK4, IRF5, IRF7 and 

TRAF6 in TLR7/8 signalling and that for the most part, the signalling process involved 

replicated that of TLR9 (Figure 3.3) [200, 201, 210-212]. Consistent with their endosomal 

location and signalling similarities with TLR9, the physiological ligand for TLR7/8 was also 

found to be nucleotide based [213]. Specifically, guanidine (G) and uradine (U) rich ssRNA 

derived from viruses such as human immunodeficiency virus-1 (HIV-1), VSV, influenza 

virus as well as non-viral RNA were found to mount a prolific innate response in a TLR7/8 

dependent manner [214-216]. TLR7/8 can also sense bacterially derived RNA [217]. TLR8 is 

expressed in many tissues including the placenta, lung, spleen, lymph node and peripheral 

blood with TLR7’s expression confined to the placenta, lung and spleen [218]. 
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Figure 3.3: Overview of TLR7/8 and TLR9 signalling. Both TLRs from active dimer 

complexes within the endolysosomal membrane and transmit their downstream signal into 

the cytosol via MyD88. The inflammatory response from both TLR7/8 and TLR9 is mediated 

by an MyD88-IRAK1-IRAK2-TRAF6-TAK1 signalosome complex. This can then activate 

the AP-1 and NFκB transcription factors which bind promoter regions of proinflammatory 

cytokines in the nucleus. Anti-viral or type-I IFN signalling from both TLRs is mediated by a 

MyD88-IRAK4-IRAK1-TRAF3/6-IKKα signalosome complex. This serves to recruit and 

activate IRF7 which binds to the  promoter regions of IFNα/β in the nucleus. Adapted from 

[210]. 

 
 

3.1.5 Chapter aim 

The aim of this chapter is to re-evaluate the role of the TIR-domain containing adaptor 

TRAM in mediating the downstream signalling of multiple TLRs.   
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3.2: Results 
 

3.2.1 Confirmation of TRAM deficiency in TRAM 
-/-

 immortalised bone marrow 

derived macrophages (iBMDMs). 

Prior to initiation of phenotype studies and characterisation of signalling abnormalities as a 

consequence of TRAM loss in macrophages, qRT-PCR was used to test for the expression of 

the tram gene in TRAM deficient cells compared to WT cells. As expected, expression of 

tram was completely abolished in TRAM 
-/-

 cells compared to WT cells (Figure 3.4). Based 

on this result, it was decided to characterise the phenotype of WT and TRAM deficient cells 

in response to various TLR ligands.  

It should be stated at this point that major difficulties were experienced during initial 

optimisation studies using WT and TRAM 
-/-

 iBMDMs. The different cell lines often grew at 

notably different rates, with TRAM deficient cells growing faster and more reliably than WT 

cells. Moreover, the ability to replicate previous findings that would serve to phenotypically 

confirm TRAM’s absence from TRAM 
-/-

 cells, such as loss of TLR4 mediated signalling, 

often proved difficult with many attempts required, often requiring different vials of cells to 

be brought up from cryogenic storage. This led to a situation where the generation of reliable 

figures, particularly those relating to cytokine induction, took an extraordinarily long period 

of time. This was because a higher level of confidence, beyond what would be  needed when 

using normal cells, had to be ensured before moving on to the next experiement. 
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Figure 3.4: Confirmation of the absence of tram gene expression in TRAM deficient 

iBMDMs. WT and TRAM deficient iBMDMs were plated at a density of 1.3x10
6
 cells/ml in 

a six-well plate and incubated for 24 hr at 37°C. Cells were then harvested, total RNA 

isolated and from this, cDNA was synthesised. The cDNA was then used as a template for 

qRT-PCR using forward and reverse primers specific to either murine tram. Fold changes 

were compared to the level of the housekeeping gene gapdh. Graph is representative of two 

independent experiments.  
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3.2.2 Comparison of TNFα production in WT and TRAM 
-/- 

 iBMDMs 

Studies to date indicate that TRAM and TRIF mediate ‘late-stage’ NFκB activation and 

TNFα secretion upon ligand binding to TLR4 [219]. However, the role of TRAM in TNFα 

secretion following activation of the other TLRs, namely TLR1/2, TLR2/6, TLR3, TLR7 and 

TLR9, has not been adequately addressed. To this end, WT and TRAM 
-/-

 iBMDMs were 

stimulated with various TLR ligands. After 24 hr, cell free supernatants were removed and 

analysed for the presence of TNFα. It was found that ligands corresponding to TLR1/2, 

TLR2/6 and TLR7 (Pam3CSK4, Pam2CSK4/MALP-2 and R848 respectively) strongly 

induced the expression of TNFα activated in both WT and TRAM deficient iBMDMs. 

Ligands corresponding to TLR3, TLR4 and TLR9 (poly(I:C), LPS and CpG respectively) 

drove a weaker response (Figure 3.5A). Comparable levels of TNFα secretion was observed 

in   TRAM 
-/-

 cells compared to WT cells upon stimulation with almost all ligands tested 

(Figure 3.5A). TRAM has been shown to be a critical adaptor in TLR4 signalling [24] and as 

expected, reduced TNFα secretion was observed following stimulation of TRAM 
-/- 

cells with 

LPS when compared to WT cells (Figure 3.5A). The LPS phenotype would be expected as 

TRAM has been shown to be a critical adaptor molecule in TLR4 signalling. These data 

suggest that TRAM is not required for TNFα production following stimulation of cells with 

TLR1/2, TLR2/6, TLR3, TLR7 and TLR9 ligands. TRAM’s role in TNFα prodcution appears 

to be limited to the TLR4 pathway which is in line with previous studies [24].  

3.2.3 Comparison of RANTES and type-I IFN production in WT and TRAM 
-/-

 

iBMDMs  

Next, TLR mediated production of the chemokine RANTES was examined in WT and 

TRAM deficient cells. Cells were again stimulated with various ligands and it was found that 

TLR1/2, TLR2/6, TLR4, TLR7 and TLR9 ligands all induced RANTES secretion (Figure 

3.5B). As expected, reduced RANTES secretion was observed upon stimulation of TRAM 
-/-

 

cells with LPS when compared to WT cells. Interestingly, the loss of TRAM caused a 
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significant reduction in TLR1/2, TLR2/6, TLR7 and TLR9 mediated RANTES secretion 

(Figure 3.5B). The loss of function was expected in response to TLR4 activation but not for 

TLR2, TLR7 or TLR9 responses. As a negative control, RANTES secretion upon TLR3 

activation was unchanged in TRAM deficient cells compared to WT cells (Figure 3.5B). As 

TRAM has not been shown to play a role in TLR3 signalling [24], this precludes the 

possibility that TRAM 
-/- 

cells are unable to produce RANTES at a global level when 

compared to WT cells.  These data support a hypothesis that TRAM may have a specific role 

to play in RANTES production through selected TLRs. While no role for TRAM has 

previously been shown in the context of TLR7 or TLR9 signalling, a previous study 

suggested it may play a role in the TLR2 mediated response to the gram negative pathogen 

Francisella tularensis [178]. Indeed, the study demonstrated that TRAM co-

immunoprecipitated with TLR2 following TLR2 activation in macrophages [178].  

Next, levels of secreted type-I IFN were determined in supernatants from WT and TRAM 
-/-

 

cells stimulated with various TLR ligands (Figure 3.5C). In all cases, the levels of secreted 

type-I IFN was minimal such that only Pam3CSK4, poly(I:C), R848 and CpG induced the 

production of type-I IFN when compared to unstimulated control cells (Figure 3.5C). As 

expected, levels of TLR3 mediated production of type-I IFN were comparable between 

TRAM deficient cells and WT cells. Interestingly, levels of type-I IFN were significantly 

impaired in TRAM 
-/- 

cells following stimulation with R848 and this correlates with previous 

date showing suppressed RANTES secretion in TRAM 
-/-

 compared to WT cells (Figure 3.5C, 

3.5B). Again, this data contrasts with the unchanged levels of TNFα secretion observed 

between WT and TRAM deficient cells when stimulated with the same TLR ligands (Figure 

3.5A). 
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Figure 3.5: TNFα, RANTES and type-I IFN production in WT and TRAM 
-/-

 iBMDMs 

in response to various TLR ligands. WT and TRAM deficient iBMDMs were plated at a 

density of 1.3x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37°C. Individual 

wells were then either left unstimulated or stimulated with ligands specific to various TLRs: 

Pam2CSK4, (TLR2:TLR6 heterodimer) – 1 μg/ml, Pam3CSK4 (TLR1:TLR2 heterodimer) – 1 

μg/ml, poly(I:C) (TLR3) – 25 μg/ml, LPS (TLR4) – 100 ng/ml, R848 (TLR7) – 1 μg/ml and 

CpG-C (TLR9) – 5 μg/ml for 4 hr. Cell free supernatants were removed and assayed for 

levels of murine TNFα (A) and RANTES (B) by ELISA. Type-I IFN levels (C) were detected 

using B16-Blue™ IFN-α/β cells. * p<0.05, ** p<0.01 and *** p<0.001. Graphs are 

representative of at least four independent experiments.  

A 
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3.2.4 Comparison of rantes, and tnfα and ifnα gene expression iBMDMs derived from 

WT and TRAM 
-/- 

mice 

Initial studies indicated that TRAM may be required for TLR2, TLR7 and TLR9 mediated 

RANTES production. TRAM also appears to have a role in TLR7 mediated type-I IFN 

production (Figure 3.5). However, the potential role of TRAM may be at either the 

transcriptional or translational level. To examine this further, the genetic expression of rantes, 

tnfα and ifnα was studied in WT and TRAM deficient cells upon stimulation with various 

TLR ligands for 4 hr. It was found that all TLR ligands tested caused upregulation of both 

tnfα and rantes gene expression (Figure 3.6A-F). As very little type-I IFN was detected in 

Figure 3.5C, it was decided not to check for ifn-α or ifn-β gene expression. 

Interestingly, Pam3CSK4, MALP-2, LPS, R848 and CpG mediated RANTES mRNA 

expression was significantly reduced in TRAM 
-/-

 cells when compared to WT cells (Figure 

3.7). In contrast, no significant differences in TNFα mRNA expression were observed in 

TRAM deficient cells upon TLR ligand stimulation (Figure 3.6). The pattern of TNFα mRNA 

expression replicated that of TNFα protein expression except in the case of LPS stimulation 

where no change in the expression of TNFα mRNA was observed between WT and TRAM 
-/-

 

cells (Figure 3.6D). This finding correlates with a previous study by Wang et al., [220] where 

they showed that TRAM is required for TNFα translation but not transcription in BMDMs in 

a process dependent on the regulatory kinase MK2. However, the same study showed that in 

peritoneal macrophages, TRAM is required for both transcription and translation [220]. Thus 

TRAM’s exact role in TLR4 signalling therefore appears to be cell-type specific. That TRAM 

deficient macrophages are significantly attenuated in their response to TLRs 2, 7/8 and 9 at 

the transcriptional level indicates that TRAM may mediate its effects upstream of gene 

transcription and therefore agrees with the physiological roles of the other adaptor proteins in 

TLR signalling. 
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Figure 3.6: TNFα mRNA expression in WT and TRAM 
-/-

 iBMDMs in response to 

various TLR ligands. WT and TRAM deficient iBMDMs were plated at a density of 1.3x10
6
 

cells/ml in a six-well plate and incubated for 24 hr at 37°C. Individual wells were then either 

left unstimulated or stimulated with ligands specific to various TLRs: (A) Pam2CSK4, 

(TLR2:TLR6 heterodimer) – 1 μg/ml, (B) Pam3CSK4 (TLR1:TLR2 heterodimer) – 1 μg/ml, 

(C) poly(I:C) (TLR3) – 25 μg/ml, (D) LPS (TLR4) – 100 ng/ml, (E) R848 (TLR7) – 1 μg/ml 

and (F) CpG-C (TLR9) – 5 μg/ml for 4 hr. Cells were then harvested and total RNA was 

isolated and used as a template for first strand cDNA synthesis. The cDNA was then used as 

a template for qRT-PCR using forward and reverse primers specific to murine tnf-α and 

gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. Graphs are representative 

of at least four independent experiments.  
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Figure 3.7: RANTES mRNA expression in WT and TRAM 
-/-

 iBMDMs in response to 

various TLR ligands. WT and TRAM deficient iBMDMs were plated at a density of 1.3x10
6
 

cells/ml in a six-well plate and incubated for 24 hr at 37°C. Individual wells were then either 

left unstimulated or stimulated with ligands specific to various TLRs: (A) Pam2CSK4, 

(TLR2:TLR6 heterodimer) – 1 μg/ml, (B) Pam3CSK4 (TLR1:TLR2 heterodimer) – 1 μg/ml, 

(C) poly(I:C) (TLR3) – 25 μg/ml, (D) LPS (TLR4) – 100 ng/ml, (E) R848 (TLR7) – 1 μg/ml 

and (F) CpG-C (TLR9) – 5 μg/ml for 4 hr.  Cells were then harvested and total RNA was 

isolated and used as a template for first strand cDNA synthesis. The cDNA was then used as 

a template for qRT-PCR using forward and reverse primers specific to murine rantes and 

gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. Graphs are representative 

of at least four independent experiments.  
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3.2.5 Expression levels of tram in response to TLR7 and TLR9 activation  

Levels of TRAM mRNA expression have previously been examined in response to LPS 

simulation with the finding that TRAM’s mRNA levels remained stable over multiple time 

points in HEK293-TLR4 cells despite its known role in TLR4 signalling [86]. Currently, it is 

not possible to measure the levels of endogenous TRAM protein expression despite the 

testing of over thirteen commercially available and self-raised antibodies towards the 

detection of endogenous TRAM expression [86]. Therefore, whilst the levels of TRAM gene 

expression remain unchanged, the possibilities that TRAM protein levels flux upon TLR4 

activation cannot be precluded. With this in mind, it was decided to measure TRAM mRNA 

expression in iBMDMs in response to TLR7, TLR9 and TLR4 activation over multiple time 

points.  

Results showed that levels of TRAM mRNA were decreased within 15 min of stimulation 

with TLR4 and TLR7 ligands, reaching their lowest levels upon TLR4 activation at 1.5 hr 

and at 2 hr upon TLR7 activation (Figure 3.8). Levels of TRAM mRNA had decreased 

approximately 40 % and 20 % respectively at these times. Levels of TRAM mRNA were 

largely unaffected by TLR9 activation over similar time points (Figure 3.8). The finding that 

decreased TRAM mRNA expression is evident upon both TLR4 and TLR7 activation is 

novel. In contrast, a previous study showed that levels of TRAM mRNA remained stable 

following LPS stimulation of HEK293-TLR4 cells. The disparity may be due to the different 

cell lines used – iBMDMs in the current study vs. HEK292-TLR4 cells in [86]. Levels of 

TRAM mRNA were consistently lower in response to both LPS and R848 stimuli and may 

indicate the presence of a TRAM dependent negative feedback loop in both TLR4 and TLR7 

signalling whereby activation of either pathway may cause suppression of TRAM mRNA so 

as to prevent an overactive immune response. Such intracellular feedback loops are indeed 

common in cell signalling [221]. The rebounding of TRAM’s expression at 4 hr consequently 
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might indicate to the cell that a PAMP is still present and that the immune response must be 

sustained (Figure 3.8). However, confirmation of this hypotheis would need to be undertaken 

by analysing TRAM protein levels. 

That TRAM’s mRNA undergoes dynamic patterns of expression in response to TLR 

activation provides further support for the hypothesis that TRAM plays a role within this 

pathway. The lack of an apparent change in TRAM mRNA in response to stimulation with 

the TLR9 ligand CpG may be due to CpG being a weaker driver of signalling compared to 

R848 and LPS as could be observed in Figure 3.5. This may in turn affect activation of 

downstream pathways including any changes in adaptor expression.  
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Figure 3.8: Expression of TRAM mRNA in response to TLR7, TLR9 and TLR4 ligand 

activation. WT iBMDMs were plated at a density of 1.3x10
6
 cells/ml in a six-well plate and 

incubated for 24 hr at 37°C. Individual wells were then either left unstimulated or stimulated 

with LPS (100ng/ml), R848 (1 μg/ml) and CpG-C (5 μg/ml) for various time points as 

indicated. Cells were then harvested and total RNA was isolated and used as a template for 

first strand cDNA synthesis. The cDNA was then used as a template for qRT-PCR using 

forward and reverse primers specific to murine tram with murine gapdh acting as a 

housekeeping gene for fold-change comparison. Graph is representative of two independent 

experiments.  
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3.2.6 R848 and CpG stimulation of iBMDMs causes TRAM dependent activation of 

IRF3  

Previous results indicated that RANTES and type-I IFN secretion were impaired in TRAM 
-/-

 

cells compared to WT cells when following stimulation with TLR7 and TLR9 ligands (Figure 

3.5). Further studies indicated that TRAM exerts its effects at the transcriptional level (Figure 

3.7). It was therefore hypothesised that TRAM may be required for transcriptional activation 

of TLR7 and TLR9 signalling. NFκB and the IRFs are key transcription factors involved in 

the TLR7 and TLR9 response [15]. In unstimulated cells, NFκB is sequestered in the 

cytoplasm by a group of inhibitory proteins called inhibitor of κBs (IκBs), the best studied of 

which is IκBα. IκBα binds to the NFκB subunits and masks its nuclear localisation sequences 

[222]. Activation of the cell, for example via TLRs, causes activation of the IKK complex 

which phosphorylates serine residues on IκB proteins causing their ubquitination and 

subsequent proteosomal degradation. Loss of IκB frees NFκB thus permitting it’s 

translocation into the nucleus where it can bind to the promoter regions of target genes [223]. 

Monitoring of IκBα degradation is therefore a model of NFκB activation. IRF5 and IRF7 

have been shown to be involved in both TLR7 and TLR9 pathways [205, 212] however, 

commercial phospho-IRF5 antibodies are not available and endogenous levels of IRF7 are 

generally low in macrophages [224] thus making the detection of activated IRF5 and IRF7 

technically difficult. It was therefore decided to measure IRF3 activity by immunoblot 

analysis using phospho-specific IRF3 antibodies following stimulation of WT and TRAM 

deficient iBMDMs with R848 and CpG.  

WT and TRAM 
-/-

 iBMDMs were stimulated with R848, CpG, poly(I:C) and LPS for 30, 60 

and 120 min after which whole cell lysates were collected and subjected to immunoblot 

analysis to detect endogenous levels of phospho-IRF3 (p-IRF3) and IκBα with total IRF3 and 

β-actin as loading controls respectively.  
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Stimulation of cells with R848, CpG, poly(I:C) and LPS resulted in activation of IRF3 in WT 

cells as evidenced by its increased phosphorylation in comparison to unstimulated controls 

(Figure 3.9). There appeared to be a pattern of slightly increased levels of basal IRF3 

phosphorylation in WT cells compared to TRAM deficient cells (Figure 3.9 A,B). R848 

appeared to drive maximal activation in WT cells at 30 min and 60 min with activation 

beginning to decrease at 120 min (Figure 3.9A). LPS strongly activated IRF3 at 30 min and 

60 min when compared to the other ligands tested (Figure 3.9A). Both poly(I:C) and CpG 

stimulation induced maximal IRF3 phosphorylation at 120 min of stimulation with activation 

steadily increasing at time points prior to that (Figure 3.9B,C).  When comparing IRF3 

phosphorylation in WT and TRAM deficient cells, poly(I:C) served as a negative control. As 

expected, poly(I:C) mediated levels of IRF3 activation in TRAM 
-/-

 cells were comparable to 

that detected in WT cells (Figure 3.9C). As a positive control, levels of IRF3 phosphorylation 

were abolished in TRAM deficient cells compared to WT following treatment of cells with 

LPS (Figure 3.9A). These results further confirm that TRAM is involved in TLR4 signalling 

but not TLR3.    

Next, IRF3 phosphorylation was determined in TRAM 
-/-

 cells following stimulation with 

TLR7 and TLR9 ligands. It was found the phosphorylation of IRF3 was abolished in TRAM 

deficient cells following stimulation with R848 when compared to WT cells (Figure 3.9A). 

Similarly, phosphorylation of IRF3 was abolished in TRAM 
-/-

 cells in response to CpG 

stimulation when compared to WT cells (Figure 3.9B). That reduced levels of activation were 

apparent across all time points tested indicates that IRF3 activation upon TLR7 and TLR9 

activation in completely dependent on TRAM at both early and late time points. Equitable 

levels of total IRF3 confirmed equal loading of protein across all lanes (Figure 3.9A-C). As a 

control to confirm that the phenotype observed was adaptor specific, it was examined 

whether the adaptor MAL also played a role in the TLR7 pathway using WT and MAL 
-/-
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iBMDMs. It was found that comparable IRF3 activation were detected in MAL deficient cells 

and WT cells (Figure 3.9D). Together, these data suggest that TRAM is required for TLR7 

and TLR9 mediated IRF3 activation. 

 

 

 

 

Figure 3.9: R848 and CpG stimulation activates IRF3 in a TRAM dependent manner. 
WT and TRAM 

-/- 
(A-C)

 
and MAL 

-/- 
(D)

 
iBMDMs were seeded in a 6-well plate at a density 

of 1.3x10
6
 cells/ml and incubated for 24 hr at 37°C. Thereafter, cells were stimulated with 

either R848 (1 μg/ml), CpG-C, (5 μg/ml) or poly(I:C) (25 μg/ml) for 30, 60 and 120 min. 

Cells were then harvested and each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell 

debris was removed by centrifugation with the remaining whole cell lysates mixed with 30 μl 

5x Laemmli loading buffer and boiled for 10 min. Proteins were separated by SDS-PAGE 

and subjected to immunoblot analysis using anti-p-IRF3 and anti-IRF3 antibodies. Results 

represent a minimum of three (WT vs TRAM 
-/-

) and two (WT vs MAL
-/-

) independent 

experiments.  
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3.2.7 R848 stimulation of iBMDMs causes TRAM dependent nuclear translocation of 

IRF3  

Like NFκB, unactivated IRF3 exists within the cytosol. However, serine phosphorylation by 

the upstream kinases TBK-1 and IKKε leads to conformational changes that cause 

homodimerisation and binding to nuclear trafficking proteins such as CREB-binding protein 

(CBP) and p300. This leads to nuclear translocation and accumulation of IRF3 and upon 

which it binds to DNA targets [225-227]. Therefore, an alternative approach to monitor the 

activation of IRF3 is to examine its accumulation in the nucleus following TLR activation.  

To this end, WT and TRAM 
-/-

 iBMDMs were stimulated with R848, CpG and poly(I:C) for 

30, 60 and 120 min upon which, cells were lysed and the nuclear fraction purified and 

subjected to immunoblot analysis using an anti-IRF3 antibody. Nuclear translocation of IRF3 

was observed following stimulation with R848, CpG and poly(I:C), correlating with the IRF3 

phosphorylation (Figure 3.9A, 3.10A).  Regarding CpG, the overall response appears to be 

weak compared to the other TLR ligands tested (Figure 3.10C). Whilst poly(I:C) mediated 

nuclear accumulation of IRF3 was unchanged between WT and TRAM 
-/-

 cells, R848 and 

CpG mediated accumulation of IRF3 appeared reduced or abolished in TRAM deficient cells 

compared to WT cells (Figure 3.9A-C). The nuclear pore protein Lamin A/C was used to 

confirm equal loading of protein across all lanes (Figure 3.9A-C).  

The observation that R848 induced the activation and nuclear translocation of IRF3 in 

iBMDMs may be cell type specific as a previous study conducted using HEK293 cells 

showed that overexpressed IRF3 did not translocate to the nucleus upon R848 stimulation 

[212]. In the same study, endogenous phosphorylation of IRF3 in RAW264.7 macrophages 

was not detected following stimulation with R848 [212]. Indeed, discrepancies in the 

modulation of the IRFs between macrophage cell lines have been noted previously [224] 

Herein, it is clearly demonstrated that IRF3 is both phosphorylated and translocated into the 

nucleus following stimulation of iBMDMs with R848 and CpG. Moreover, it is shown that 
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this process is dependent upon the presence of the TLR adaptor protein, TRAM. The role for 

TRAM in TLR7 and TLR9 signalling is strikingly similar to that of TRAM’s role in TLR4 

signalling post LPS stimulation whereby TRAM is also required for the activation of IRF3 

[228].  
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Figure 3.10: R848 and CpG mediated IRF3 nuclear translocation is TRAM dependent.                  
WT and TRAM 

-/- 
iBMDMs (A-C) were seeded in a 6-well plate at a density of 1.3x10

6
 

cells/ml and incubated for 24 hr at 37°C. Thereafter, cells were stimulated with either (A) 

R848 (1 μg/ml), (B) poly(I:C) (25 μg/ml) or (C) CpG (5 μg/ml) for 30, 60 and 120 min. Cells 

were then harvested and each sample subjected to nuclear extraction using a Nuclear 

Extraction Kit (Cayman Chemical). Nuclear Extracts were mixed with 30 μl 5x Laemmli 

loading buffer and boiled for 10 min. Proteins were separated by SDS-PAGE and subjected 

to immunoblot analysis using anti-IRF3 and anti-Lamin A/C antibodies. Results represent a 

minimum of two independent experiments.  
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3.2.8 IκBα degradation is unaffected in TRAM 
-/-

 cells in response to R848 and CpG 

Despite the loss of IRF3 activation following stimulation of TRAM 
-/-

 cells with R848 and 

CpG compared to WT cells, concurrent RANTES and type-I IFN secretion is evident, albeit 

at reduced levels compared to WT cells (Figure 3.5 C,D). It is plausible to speculate that 

while TRAM dependent IRF3 activation is required for maximal TLR7 and TLR9 dependent 

cytokine production, TLR7 and TLR9 dependent activation of alternative transcription 

factors such as NFκB may be TRAM independent.  

With this in mind, the degradation of IκBα in response to R848 and CpG was monitored by 

Western blot. In WT iBMDMs, IκBα was degraded in response to R848 stimulation at 15 min 

and was almost completely degraded at 30 min before rebounding fully by 60 min (Figure 

3.11A). Interestingly, in contrast to IRF3 phosphorylation, degradation of IκBα was 

comparable in WT and TRAM deficient cells (Figure 3.11A). It would therefore appear that 

TRAM’S role in TLR7 signalling is IRF3 dependent and NFκB independent. The kinetics of 

CpG mediated IκBα degradation difficult to detect as degradation of IκBα was not evident at 

any of the timepoints selected (Figure 3.11B).  
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Figure 3.11: R848 and CpG mediated IκBα degradation in WT and TRAM 
-/-

 cells.                  
WT and TRAM 

-/-
 iBMDMs were seeded in a 6-well plate at a density of 1.3x10

6
 cells/ml and 

incubated for 24 hr at 37°C. Thereafter, cells were stimulated with either (A) R848 (1 μg/ml) 

or (B) CpG (5 μg/ml) for 30, 60 and 120 min. Cells were then harvested and each sample 

lysed in 100 μl H.S. buffer for 20 min on ice. Cell debris was removed by centrifugation with 

the remaining whole cell lysates mixed with 30 μl 5x Laemmli loading buffer and boiled for 

10 min. Proteins were separated by SDS-PAGE and subjected to immunoblot analysis using 

anti-IκBα and anti-β-Actin antibodies. Results represent a minimum of three independent 

experiments.  
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3.2.9 TLR7/8 and TLR9 ligand preparations are incapable of activating TLR4 

It is well documented that endotoxin in the form of LPS is known to drive IRF3 

phosphorylation in a TLR4 dependent manner [229-231]. Unfortunately, endotoxin 

contamination of immune cell activator preparations has also been a problem for immune 

researchers [232, 233]. All TLR ligands used in the current study were commercially sourced 

from respected suppliers (see Materials and Methods) and preparations were resuspended 

with supplied endotoxin free water as verified by limulous amoebocyte lysate (LAL) testing. 

However, it is still conceivable that despite these stringent precautions, endotoxin may still be 

present in our preparations [233, 234]. Therefore, ligand preparations were additionally tested 

for endotoxin contamination by examining whether they were capable of specifically 

activating TLR4. To this end, HEK-293 cells stably transfected with human TLR4, the MD-

2/CD14 coreceptors and a secreted embryonic alkaline phosphatase (SEAP) reporter gene 

were used (HEK-Blue™ TLR4 cells). The SEAP gene is under the control of an IL-12p40 

promoter fused to five NFκB and AP-1 transcription factor binding sites. Contaminating LPS 

in the ligand preparations would bind TLR4 and thus activate NFκB and AP-1 which in turn 

drive production and secretion of SEAP into the culture medium. The presence of SEAP in 

medium therefore indicates the original presence of LPS and can itself be detected using a 

colourimetric alkaline phosphatase detection medium, commercially known as QUANTI-

Blue™.   Therefore, to account for possible endotoxin contamination of the TLR7/8 ligands 

(R848 and CLO97) and the TLR9 ligand (CpG) preparations,  HEK-Blue™ TLR4 cells were 

stimulated with increasing concentrations of R848, CLO97, CpG and LPS and TLR4 

activation with the presence of SEAP in the culture medium monitored. Addition of 50ng/ml 

of LPS induced detectable SEAP secretion and this dose-dependently increased with 

increasing concentration (Figure 3.12). Critically, neither R848, CLO97 or CpG induced 

detectable SEAP production despite addition of ligand corresponding to ten times the original 

concentrations used in our previous iBMDM assays (Figure 3.12). It was therefore concluded 
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that the TLR7/8 and TLR9 ligand preparations were incapable of activating TLR4 and that 

the results observed in assay’s involving these ligands were specifically due to their ability to 

activate their corresponding TLR and not due to non-specific TLR4 activation.  

Post submission script: It has been noted that as iBMDMs can respond to LPS concentrations 

as low as 0.1 ng/ml, the observed LPS sensitivity of the HEK-TLR4 Blue cells 

(approximately 50 ng/ml) is not sensitive enough to reliably detect LPS contamination in 

ligand preparations. A more suitable assay in this case would be a LAL test. 
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Figure 3.12: R848, CLO97 and CpG ligand preparations are incapable of activating 

TLR4. HEK-Blue™ hTLR4 cells were plated at a density of 1.4x10
5
 cells/ml in a 96 well 

plate and incubated for 24 hr at 37 °C. Cells were then stimulated with either endotoxin free 

H2O or increasing amounts of LPS (50ng/ml, 100ng/ml and 500ng/ml), R848 (1 μg/ml, 5 

μg/ml and 10 μg/ml), CLO97 (1 μg/ml, 5 μg/ml and 10 μg/ml) and CpG-C (5 μg/ml, 10 

μg/ml and 50 μg/ml) for a further 24 hr. 20 μl of cell supernatants were then transferred to a 

separate 96 well plate containing 180 μl/well of pre-warmed QUANTI-Blue™ detection 

medium and incubated at 37 °C for approximately 2 hr. Induced colour changes in the 

detection medium were then detected and quantified by spectrophotometry at 630 nm. 

Results are representative of three independent experiments.   
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3.2.10 Screening human cell lines for broad TLR responsiveness: PMA differentiated, 

THP1 macrophages respond to ligand binding to TLR7/8, TLR3, TLR4, TLR9 and to 

HRV16 infection 

Data collected thus far indicate a role for TRAM in the transcriptional control of TLR7 and 

TLR9 mediated RANTES production in an IRF3 dependent, NFκB independent manner. 

However, these experiments were conducted exclusively in murine iBMDMs and are 

therefore relevant only to murine TRAM and the murine TLR7 and TLR9 pathways. Whilst 

the use of murine models has long been an acceptable method of elucidating signalling 

pathways and in assigning function to many proteins, murine protein functionality does not 

always correlate with that of human protein function [235]. It was therefore decided to extend 

the previous observations on the role of murine TRAM to that of human TRAM. Also, in 

order to focus more directly on a single signalling pathway and reduce lengthy optimisation 

procedures, it was decided to concentrate on the role of TRAM in TLR7/8 signalling only in 

future experiments.  

In order to replicate the previous experimental model in a human setting, a human cell line 

capable of responding efficiently to TLR3, TLR4 and TLR7/8 stimulation was required. The 

response of multiple available cell lines, namely BEAS-2B lung epithelial cells, HeLa cells, 

A549s, CD14-U373s, THP1 monocytes and THP1 macrophages was assayed to monitor their 

ability to drive cytokine gene expression in response to activation of the above TLRs. BEAS-

2B cells responded well to poly(I:C) with rantes, cxcl10 and ifnβ expression all upregulated 

(Figure 3.13A). LPS stimulation also drove expression of rantes and cxcl10 but not ifnβ. 

R848 and CpG on the other hand, drove comparatively little rantes expression and almost no 

cxcl10 and ifnβ expression (Figure 3.13A). As weak responders to TLR7/8 and TLR9 

simulation, BEAS-2B cells were therefore considered unsuitable. HeLa cells responded 

relatively well to poly(I:C) stimulation causing an approximately 30-fold increase in rantes 

production but successively less cxcl10 and ifnβ (Figure 3.13B). LPS was a poorer activator 
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inducing an increase only in ifnβ expression. R848 and CpG did not any increase in cytokine 

production (Figure 3.13B). HeLa cells were therefore also considered unsuitable. A549 cells 

were extremely poor and responded only weakly to LPS and CpG causing a respective 2 and 

1.5 fold increase in ifnβ expression. No other ligand was capable of driving a response to any 

of the cytokines tested (Figure 3.13C). CD14-U373 cells likewise responded only to LPS 

which drove expression of large amounts of all cytokines tested (Fig 3.13D). CD-14 U373s 

were therefore also considered unsuitable.  

THP1 monocytes can be differentiated into highly sensitive macrophages by the addition to 

the culture media of nanomolar quantities of PMA. PMA has an analogous structure to 

diacylglycerol which can activate protein kinase C to drive intracellular calcium release and 

multiple downstream signalling cascades. These cascades, in THP1 monocytes, ultimately 

result in various cellular morphological changes including adherence and spreading, as well 

as physiological changes such as increased CD14 expression and increased cytokine 

expression [236]. PMA differentiated THP1 macrophages (PMA-THP1s) were therefore also 

tested with the aforementioned ligand panel. PMA-THP1s responded to all ligands tested 

(Figure 3.13A). Poly(I:C), LPS and R848 all drove rantes, ifnβ and cxcl10 expression. Fold 

changes compared to unstimulated cells were typically in the 5-fold range although LPS 

mediated a 150-fold increase in rantes expression (Figure 3.13A). As PMA-THP1s appeared 

to be broadly responsive to a broad panel of ligands, they were subsequently tested for their 

ability to respond to infection with the ssRNA virus, and physiological TLR7/8 ligand human 

HRV16.  

PMA differentiated THP1 cells were stimulated with HRV16 for 72-80 hr at 37 °C. Again, 

rantes, cxcl10, type-I IFN genes and tnfα were all upregulated in response to HRV16 

predominantly around 70-96 hr post-infection (Figure 3.13B). HRV16 transcripts were also 

analysed which showed that intracellular levels of the virus were increasing at similar time 
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points (Figure 3.13 left panel). Based on these results, it was concluded that PMA-

differentiated THP1 cells were suitable for the study of TLR3, TLR4, TLR7/8 and TLR9 

activated pathways.  
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Figure 3.13: BEAS-2B, HeLa, A549 and U373-CD14 cell lines are unsuitable for 

simultaneous study of TLR3, TLR4, TLR7/8 and TLR9 signalling. (A) BEAS-2B, (B) 

HeLa, (C) A549 and (D) U373-CD14 cells were plated at densities ranging from 0.7x10
5
-

1x10
6
 cells/ml in six well plates and incubated for 24 hr at 37°C. Each cell line was then 

either left unstimulated or simulated with poly(I:C) (25 μg/ml), LPS (100 ng/ml), R848 (1 

μg/ml) or CpG (5 μg/ml) for 5 hr. Cells were then harvested and total RNA was isolated and 

used as a template for first strand cDNA synthesis. The cDNA was then used as a template 

for qRT-PCR using forward and reverse primers specific to murine rantes, cxcl10, ifn-β and 

gapdh (housekeeping gene). Graphs are representative of two independent experiments.  
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Figure 3.14: PMA differentiated THP1 macrophages are suitable for studying TLR3, 

TLR4 and TLR7/8 activation. THP1 monocytes were plated in a 12 well plate at a density 

of 1.4x10
6
 cells/ml and stimulated with 20 nM PMA for 48 hr at 37°C. Cells were then either 

left unstimulated, stimulated with (A) TLR ligands: poly(I:C) (25 μg/ml), LPS (100 ng/ml), 

R848 (1 μg/ml and 5 μg/ml), and CLO97 (1 μg/ml and 5 μg/ml) for 6 hr at 37°C or (B) 

infected with HRV16 for 48, 80 and 96 hr at 33°C. Cells were then harvested and total RNA 

was isolated and used as a template for first strand cDNA synthesis. The cDNA was then 

used as a template for qRT-PCR using forward and reverse primers specific to human rantes, 

cxcl10, ifn-β, ifn-α, tnf-α, hrv16 and gapdh (housekeeping gene). Graphs are representative of 

two independent experiments. 
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3.2.11 Knockdown of endogenous human TRAM using siRNA 

To investigate the role played by TRAM in TLR7/8 signalling, knockdown of endogenous 

TRAM in PMA-differentiated THP1 cells was performed using small interfering RNA 

(siRNA). SiRNA sequences are RNA nucleotide sequences approximately 21 nucleotides in 

length with a 2-nucleotide overhang on the 3’ end. Introduction of this sequence into the cell 

results in their integration into the RNA-induced silencing complex (RISC) resulting in 

complementary base-pairing with its target sequence to initiate its degradation thus impeding 

translation [237]. This process was harnessed to impede translation of TRAM and thus 

knockdown its expression. SiRNA corresponding to the unique N-terminal region of TRAM 

was transfected into PMA differentiated THP1s for 48 hr and knockdown of TRAM’s mRNA 

expression was assessed by qRT-PCR of the tram gene relative to cells transfected with a 

scrambled control siRNA sequence. It was found that TRAM specific siRNA significantly 

reduced the expression of TRAM mRNA as assessed by qRT-PCR. Estimated knockdown 

was 50% when compared to transfection with the scrambled control sequence (Figure 3.15A). 

It was not possible to observe a decrease of endogenous TRAM at the protein level as reliable 

anti-TRAM antibodies are not currently available [86].  
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Figure 3.15: Suppression of human TRAM mRNA using RNA interference in PMA 

differentiated THP1 macrophages. THP1 monocytes were plated in a 12 well plate at a 

density of 1.4x10
6
 cells/ml and stimulated with 20 nM PMA for 48 hr at 37°C. Cells were 

then transfected with either 200 nM TRAM specific siRNA or scrambled control siRNA for a 

further 48 hr. Cells were then harvested and total RNA was isolated and used as a template 

for first strand cDNA synthesis. The cDNA was then used as a template for qRT-PCR using 

forward and reverse primers specific to human tram and gapdh (housekeeping gene). Graph 

is representative of two independent experiments. 
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3.2.12 Suppression of TRAM impairs R848 and HRV16 mediated rantes, ifnβ and 

cxcl10 gene expression 

To investigate whether the role of human TRAM in TLR7/8 signalling correlated with the 

role of TRAM in murine cells, levels of rantes, ifnβ, cxcl10 and tnfα gene expression were 

monitored in PMA-differentiated THP1 macrophages transfected with either TRAM specific 

or scrambled siRNA nucleotides. After 48 hr, cells were then stimulated with R848, LPS, 

poly(I:C) for 6 hr or with HRV16 for 72-80 hr. Suppression of human TRAM significantly 

decreased R848, LPS and HRV16 mediated rantes and ifnβ gene expression compared to 

control cells (Figure 3.16A,B). Levels of cxcl10 were also significantly reduced in response 

to R848 and LPS. However, HRV16 infection induced minimal levels of cxcl10 and this may 

explain why no difference was observed between the control and TRAM-specific siRNA 

treatments (Figure 3.16C). R848, LPS and HRV16 all induced the expression of tnfα mRNA 

(Figure 3.16D). In contrast, suppression of TRAM expression failed to inhibit tnfα mRNA 

induction in response to R848 and HRV16. However, TRAM suppression significantly 

reduced LPS mediated tnfα expression compared to control cells (Figure 3.16D). Suppression 

of TRAM did not affect poly(I:C) mediated induction of rantes, ifnβ, tnfα and cxcl10 when 

compared to the control cells. The poly(I:C) control was particularly important in this 

experiment as HRV16, despite being a ssRNA virus known to signal through TLR7/8, also 

produces dsRNA during its replication which has been shown to signal through the dsRNA 

sensing PRRs, TLR3 and retinoic acid-inducible 1 (RIG-I) [238]. It could therefore be argued 

that HRV16 is signalling via these PRRs and not TLR7/8 and this would eliminate the 

specificity of the conclusions that could be drawn. However, as poly(I:C) is itself, synthetic 

dsRNA that can activate both TLR3 and RIG-I and stimulation using it indicated no 

difference in cells in which levels of TRAM were reduced, it can logically be suggested that 

the cytokine phenotype observed upon HRV16 infection of TRAM-suppressed cells is 

specific to TLR7/8 signalling and not to TLR3/RIG-I.  
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Attempts were also made to compare cytokine secretion between TRAM supredded and 

control cells by ELISA. However, it was found that PMA was causing major basal cytokine 

secretion such that stimulation with LPS, R848, poly(I:C) or HRV16 resulted in little or no 

increase in cytokine production compared to unstimulated controls.  Further time would be 

required to optimise PMA mediated basal cytokines activity in the THP1 cells.  
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Figure 3.16: Suppression of endogenous levels of human TRAM reduces TLR7/8 and 

RV16 mediated rantes, ifn-β, cxcl10 but not tnf-α gene expression. THP1 monocytes were 

plated in a 12 well plate at a density of 1.4x10
6
 cells/ml and stimulated with 20 nM PMA for 

48 hr at 37°C. Cells were then transfected with either 200nM TRAM specific siRNA or 

scrambled control siRNA for a further 48 hr. At this point, cells were either left unstimulated, 

stimulated with poly(I:C) (25 μg/ml), LPS (100ng/ml) and R848 (1 μg/ml), for 6 hr at 37°C, 

or infected with HRV16 for 80 hr at 33°C. Cells were then harvested and total RNA was 

isolated and used as a template for first strand cDNA synthesis. The cDNA was then used as 

a template for qRT-PCR using forward and reverse primers specific to human (A) rantes, (B) 

ifn-β, (C) cxcl10, (D) tnf-α and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** 

p<0.001. Graphs are representative of three independent experiments. 
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3.2.13 A TRAM mutant inhibits TLR7 mediated gene reporter activation 

TLR7 and TLR8 have been shown to localise to the endoplasmic reticulum (ER), endosome 

and lysosomes. In resting cells, they reside in the ER lumen but transverse to the 

endolysosome via the golgi apparatus in order to detect nucleic acids released into the 

endolysosome by acidification [210, 239]. TRAM has previously been shown to localise to 

the plasma membrane and golgi apparatus in resting cells but can also traffic independently 

of TLR4 to endosome membranes via a bipartite sorting motif [84]. Myriostoylation of 

TRAM has been shown to be required for both plasma and endosomal membrane localisation 

as mutation of the myriostoylation sequence causes mislocalisation and in fact negates the 

functionality of TRAM’s role in TLR4 signalling leading to reduced cytokine production in 

response to LPS [82, 84].  

With this in mind, it was decided to examine whether overexpression of a dominant-negative 

TRAM mutant (TRAM G2A) [82], which is unable to undergo myriostoylation, could inhibit 

TLR7 mediated responses. To this end, HEK293 cells stably expressing TLR7, and therefore 

responsive to the TLR7 activator CLO97, were transiently transfected with the IFN-α, IFN-β, 

NF-κB and RANTES reporter gene constructs as well as increasing amounts of the TRAM 

G2A plasmid. As previously reported [82], overexpression of TRAM G2A did not drive 

promoter activation in all cases examined (Figure 3.17A-D). In agreement with our data in 

murine TRAM 
-/-

 iBMDMs and siRNA interference of human TRAM in THP1 cells, 

increasing amounts of dominant negative TRAM inhibited TLR7 mediated RANTES, IFN-β, 

IFN-α. It was also observed that NFκB promoter activation was similarily reduced upon 

overexpression of TRAMG2A suggesting that TRAM’s role in HEK293 cells may not be 

restricted to IRF3 mediated signalling (Figure 3.17A-D). To confirm that the phenotype 

exhibited by TRAM G2A was attributable to a defect in the ability of TRAM to signal and 

not a non-specific consequence of overexpression, we repeated the same experiment using a 
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dominant-negative form of the adaptor MAL which has no known role in TLR7 signalling.  

Indeed, overexpression of dominant-negative MAL had no significant effect on TLR7 

mediated RANTES, IFN-β, IFN-α or NFκB promoter activation (Figure 3.18A-D). From 

these data, it would appear that myriostoylation of TRAM, and therefore the ability of TRAM 

to membrane localise, is required for its ability to mediate TLR7 induced RANTES, IFN-α 

and IFN-β promoter activation. 

 

3.2.14 TRAM and MyD88 physically interact upon activation of TLR7 

The data obtained thus far definitively indicates a role for TRAM in TLR7/8 signalling. 

However, whilst perturbations to TRAM resulting in its genetic loss, genetic reduction or 

protein modification all indicate a specific role for TRAM in TLR7 signalling, evidence for 

the physical presence of TRAM in the TLR7 pathway is still lacking. A recent study 

demonstrated that TRAM can act as a linker molecule between MyD88 and the IL-18 

receptor (IL-18R), allowing IL-18 signalling to be transduced in a manner resembling the role 

of TRAM linking TRIF to TLR4 signalling [23, 179]. The study in question used 

overexpression to demonstrate an interaction between TRAM and MyD88 which surprisingly 

dissociated upon activation of the IL-18R with exogenous IL-18 [179]. Herein, to extend this 

study towards establishing a physical association between TRAM and the TLR7 signalling 

pathway, Flag-tagged TRAM and myc-tagged MyD88 were overexpressed in HEK-TLR7 

cells followed by stimulation of cells for 15, 30 and 60 min with the TLR7 ligand CLO97.  

Flag-TRAM was immunoprecipitated with the resulting complex subjected to SDS-PAGE 

followed by immunobloting for myc-MyD88. The finding that TRAM and MyD88 interacted 

in resting cells could not be replicated despite many attempts (Figure 3.19).  This could be 

due to the aforementioned study introducing higher concentrations of Flag-TRAM and myc-

MyD88 (4 μg per plasmid vs 3 μg of plasmid in the current study).  Interestingly, co-

expression of TRAM and MyD88 followed by TLR7 stimulation with CLO97 induced the 
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physical interaction between the two proteins at 15, 30 and 60 min with distinct myc-MyD88 

specific bands appearing directly underneath the heavy chain band (Figure 3.19). It should be 

noted that myc-MyD88 band (~ 38 kDa) and the anti-flag antibody heavy chain band (~ 50 

kDa) appear so close due to the high percentage (18 %) acrylamide gel used in this 

experiement which combined with the lack of allowed seperation time meant that protein 

bands within this region did not sepearte well. A previous study indicated that TRAM did not 

interact with TLR7 or TLR8 in resting cells but did interact with TLR4 [240]. Other studies 

have shown that TRAM is present at the plasma membrane and cytoplasm in resting cells and 

traffics to the endosome upon TLR4 activation [84, 86]. This would suggest that TRAM 

preferentially localises to endosomes upon pathogen challenge. Here it may encounter the 

‘TLR7 signalosome’, binding to MyD88 to direct IRF3 activation. It is known that MyD88, 

whilst present in the cytoplasm of resting cells, also traffics to endosomal compartments upon 

TLR7 and TLR9 activation [196, 209]. This could explain the observation that TRAM did not 

interact with MyD88 in unstimulated cells, but did interact upon TLR7 stimulation, as both 

TRAM and MyD88 had by now trafficked to the endosome to mediate TLR7’s signalling 

requirements. Endosomal acidification and maturation has also been shown to be critical for 

TLR7 activation as treatment of cells with the inhibitor of the vacuolar H(+)-ATPase, 

bafilomycin A1, which inhibits maturation, prevents TLR7 signalling. TRAM has been 

shown to be present in both early and late (mature) endosomes during TLR4 signalling [86] 

which again suggests that TRAM is capable of localising to TLR7 containing structures. The 

downstream implications of the TRAM-MyD88 interaction are unclear at present. TRAM is 

required for IRF3 activation so further experiments ascertain whether TRAM binds to IRF3 

or any of the several proteins involved in the downstream signalling of TLR7. MyD88 has 

also been shown to interact with TLR7 but it would be interesting to know if this requires an 

additional ‘linker’ adaptor, such as TRAM to facilitate this interaction as is the case with 
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MAL and MyD88 in TLR2 and TLR4 signalling [12] as well as with TRAM and MyD88 in 

IL-18 signalling [179]. 
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Figure 3.17: A dominant negative mutant of TRAM (TRAM G2A), negatively regulates 

TLR7 induced RANTES, IFN-β, IFN-α, but not NF-κB reporter gene activity. A–D, 

HEK293-TLR7 cells were cotransfected with vectors encoding either a reporter gene for the 

RANTES (A), NF-κB (B) IFN-α (C) or IFN-β (D) promoters and either empty vector 

(pcDNA3; 40 ng) or increasing amounts of an expression vector encoding TRAM G2A (10, 

20, 40 ng) as indicated. After 24 h, cells were stimulated with CLO97 (5 μg/ml) for a further 

24 hr followed by harvesting and lysis. Cell lysates were frozen at -80°C overnight prior to 

assessment of luciferase reporter gene activity. * p<0.05, ** p<0.01 and *** p<0.001. Results 

are representative of at least three independent experiments.  
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Figure 3.18: A dominant negative mutant of MAL (MAL P126H) has no effect on TLR7 

induced RANTES, IFN-β, IFN-α, or NF-κB reporter gene activity. A–D, HEK293-TLR7 

cells were cotransfected with vectors encoding either a reporter gene for the RANTES (A), 

NF-κB (B) IFN-α (C) or IFN-β (D) promoters and either empty vector (pcDNA3; 40 ng) or 

increasing amounts of an expression vector encoding MAL P126H (10, 20, 40 ng) as 

indicated. After 24 h, cells were stimulated with CLO97 (5 μg/ml) for a further 24 hr 

followed by harvesting and lysis. Cell lysates were frozen at -80°C overnight prior to 

assessment of luciferase reporter gene activity. * p<0.05, ** p<0.01 and *** p<0.001. Results 

are representative of at least three independent experiments.  
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Figure 3.19: TRAM interacts with MyD88 upon TLR7 activation. HEK293-TLR7 cells 

were seeded into 6-well plates at a density of 1.4x10
6
 and incubated for approximately 24 hr 

at 37°C. At 70% confluency, cells were co-transfected with 3 μg Flag-TRAM and 3 μg EV or 

3 μg Flag-TRAM and 3 μg Myc-MyD88. Approximately 24 hr after transfection, cells were 

either left unstimulated or stimulated with CLO97 (5 μg/ml) for 15, 30 and 60 min as 

indicated. Thereafter, cells were lysed in 200 μl low stringency buffer (LSB) (50 mM HEPES, 

pH 7.5, 150 mM NaCl, 2 mM EDTA pH 7.6, 1 % NP-40, 0.5 % sodium deoxycholate 

supplemented with 1 mM PMSF, 1 mM DTT, 1 mM NaVO3, 5 mM EGTA and protease 

inhibitor cocktail). Cellular debris was removed by centrifugation upon which 20 μl of the 

remaining whole cell lysate (WCL) was removed, mixed with an equal volume of 5x Lamelli 

loading buffer, boiled for 10 min and frozen for later WCL analysis. Remaining cell lysates 

were incubated with 1 μg of anti-Flag monoclonal antibody overnight with gentle shaking 

followed by addition of 25 μl Protein A/G beads for a second night with gentle shaking. 

Samples were then washed 4 times with unsupplemented LSB and released from the beads by 

addition of 50 μl of 5x Laemmli loading buffer, followed by boiling for 10 min. Both these 

immunoprecipitated samples and the WCL samples were separated by SDS-PAGE gel 

electrophoresis and subjected to immunoblot analysis using anti-Flag and anti-Myc and anti 

β-Actin antibodies. 
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3.3 Discussion 
 

The TIR-domain containing adaptor protein TRAM has until recently, been associated with 

TLR4 signalling only, acting a linker molecule bridging TLR4 and TRIF to facilitate MyD88 

independent, predominantly anti-viral signalling [15].  Recent studies however, have 

suggested additional roles for TRAM. A novel role has been proposed in IL-18 signalling 

whereby TRAM acts as a linker molecule between MyD88 and IL-18R to enable downstream 

inflammatory cytokine production [179]. There is also evidence to indicate a role for TRAM 

in TLR2 signalling in response to the gram negative, TLR2 specific bacteria Francisella 

tularensis [178]. The current data provides evidence for an additional role for TRAM in 

TLR7 signalling whereby it mediates production of RANTES, IFNβ, CXCL10 but not TNFα. 

A significant reduction in secretion of the cytokine RANTES but not TNFα was observed in 

TRAM deficient iBMDMs compared to WT cells when stimulated with the TLR7 ligand 

R848. The role of TRAM appears to be at the transcriptional level as levels of the rantes gene 

transcript were also significantly reduced. This phenotype was replicated in PMA-

differentiated THP1 macrophages using siRNA specific to the unique N-terminal region of 

TRAM with levels of rantes, ifnβ and cxcl10 significantly reduced. It was planned to also 

monitor modulation of cytokine secretion upon suppression of TRAM. However, due to time 

constraints, it was not possible to optimise basal levels of secretion from PMA differentiated 

THP1 cells. Results would be expected to mirror those obtained by monitoring cytokine 

mRNA induction.  

To date, MyD88 is the only TIR-domain containing adaptor known to be involved in TLR7 

and TLR8 signalling. Evidence for the lack of involvement of other adaptors in this pathway 

derives mainly from studies where the adaptors are used as negative controls and have 

examined only at their role in mediating inflammatory cytokines such as TNFα, IL-6 and IL-
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12p40 [23, 24]. Therefore, to our knowledge, this is the first study to examine TRAM’s role 

in anti-viral cytokine induction mediated by the TLR7 pathway.  

Co-immunoprecipitation experiments in HEK-293 cells stably expressing TLR7 indicated 

that TRAM and MyD88 do not interact basally but do co-localise upon stimulation with the 

TLR7 ligand, CLO97 at 15, 30 and 60 minutes. TRAM and MyD88 have previously been 

shown to co-immunoprecipitate to mediate IL-18R signalling but in that case, the complex 

dissociated upon stimulation with IL-18 [179]. Although presenting a different mode of 

localisation, this study does agree, first with our ability to co-immunoprecipitate TRAM and 

MyD88 and second, with the observed dynamism exhibited by TRAM upon ligand-receptor 

binding. TRAM has also been shown to be phosphorylated on serine-16 upon TLR4 

activation and this phosphorylation event is required for its ability to transmit the TLR4 

signal [83].  In this respect, it would be interesting to examine whether phosphorylation of 

TRAM is required for its ability to mediate TLR7 signalling or whether there are other 

important residues involved.  

Overexpression of a TRAM myriostoylation mutant, TRAM G2A, which is unable to 

membrane localise within cells, dose dependently inhibited RANTES, IFNβ, IFN-α but not 

NFκB promoter activation in HEK-TLR7 cells. In contrast, overexpression of a dominant 

negative version of MAL had no significant effect on the same pathway. Myriostoylation of 

TRAM has been shown to be important for its ability to transmit TLR4 dependent signals in 

that it is required for TRAM’s localisation to the plasma membrane and by extension, for it to 

interact with TLR4. Indeed, overexpression of the TRAM G2A mutant is unable to drive 

NFκB or RANTES reporter gene activation in human cells and in fact dose-dependently 

repressed LPS mediated activation of the same reporter genes [82]. Basally, TRAM has been 

shown to be expressed on the plasma membrane, golgi apparatus and on endosomal structures 

in resting cells [84, 86, 87]. Its presence on endosomal structures remains even when 
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dynamin dependent TLR4 endocytosis is inhibited [84] suggesting that TRAM targets 

independently to the endosomal membrane and that its endosomal presence may be non-

exclusive regarding TLR4. Based on the data presented here, it is proposed that the presence 

of TRAM on endosomal structures is myriostoylation dependent and serves to aid signalling 

from both TLR4 and TLR7. 

An additional finding was that TLR7 mediated, TRAM dependent phosphorylation of the 

transcription factor IRF3. IRF3 was phosphorylated in WT iBMDMs by the TLR7 ligand 

R848 in a time dependent manner from 15 minutes to two hours. Confirmation of its 

activation was the observance of IRF3 nuclear translocation, again mediated by TLR7, in a 

TRAM dependent manner. It is suspected that the observed activation of IRF3 is cell type, or 

even cell line specific as a previous study conducted in HEK293 cells indicated that 

overexpressed IRF3 did not translocate to the nucleus upon R848 stimulation. The same 

study was unable to detect endogenous phosphorylation of IRF3 in RAW264.7 macrophages 

in response to R848 [212]. It is well documented that endotoxin in the form of LPS is known 

to drive IRF3 phosphorylation in a TLR4 dependent manner and so to account for possible 

endotoxin contamination of the R848 preparation, HEK-TLR4 cells were stimulated with 

increasing concentrations of R848 with no activation of TLR4 apparent.  

 

The majority of our current knowledge on TLR7’s role in anti-viral signalling comes from 

studies conducted in pDCs owing to their ability to secrete higher levels of type-I IFN than 

macrophages and conventional dendritic cells [241]. Both type-I IFN and inflammatory 

cytokines are produced in a MyD88 dependent manner however type-1 IFN secretion utilises 

IRAK-1 recruited IRF7 whereas inflammatory cytokines are induced via TRAF6, IRAK-4 

and the IKK complex to drive NFκB activation [12]. Comparatively little work has been 

undertaken regarding TLR7 mediated IFN signalling in macrophages however and there is a 
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dearth of information regarding the role of the adaptors in mediating this pathway. It is 

notable that loss of TRAM did not abolish TLR7 signalling as has been previously reported 

with MyD88 [40] and that while it is required for TLR4 mediated anti-viral signalling, 

TLR4’s MyD88 dependent pathway remains intact in TRAM deficient cells [28]. IL-18 

signalling can still occur in TRAM deficient cells, albeit to a limited extent [179]. 

Therapeutic targeting of TRAM could therefore provide a significant but not detrimental 

suppression of innate derived, predominantly anti-viral cytokines.  

As mentioned in section 3.2.1, the iBMDM cell lines were problematic in a number of ways. 

Growth rates differed between the WT and TRAM 
-/-

 iBMDMs  and at times they failed to 

consistently replicate previously published phenotypes such as reduced signalling in TRAM 

deficient cells compared to WT in response to LPS [24]. Therefore, relatively simple 

experiments often became extremely drawn-out affairs. It was originally intended to attempt 

a proteomic comparision of WT versus TRAM 
-/- 

iBMDMs for the following two results 

chapters however in light of the problems experienced during completion of Chapter 3, and 

due to the implicit time constraints inherent to the current work, it was decided to modify 

future experiements to avoid investing excess time conducting experiments involving 

iBMDMs. Therefore, a proteomic study using a single cell line, it was hoped, would generate 

useful publication quality data without the complications experienced in the current chapter. 

The following two results chapters therefore attempt to characterise proteomic changes 

induced in a single respiratory cell line in response to two respiratory pathogens: B. pertussis 

and HRV16.   
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Chapter 4 

 

 

Investigations into respiratory cell proteome 

changes in response to infection with the 

respiratory pathogen Bordetella pertussis 
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4.1 Chapter Aim 
 

The aim of this chaper was to analyse proteome modulation of a lung epithelial cell line in 

response to infection with the gram negative bacterium B. pertussis. This would be 

accomplished using 2D-DIGE combined with LC-MS and also using LFQ-MS. Protein hits 

obtained from both techniques would be compared to see if the techniques are 

complementary. A selection of hits would then be validated and an analysis of their role in 

immune signalling undertaken by supresssion their expression priot to infection with B. 

pertussis. 
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4.2 Results 
 

4.2.1 B. pertussis activation of BEAS-2B cells 

In order to identify an optimal timepoint for B. pertussis to activate the immune response, a 

timecourse experiment was carried out in which B. pertussis was allowed to infect BEAS-2B 

cells for 6, 12, 24, 32 and 48 hr. Inflammatory cytokine gene expression was then monitored 

at each timepoint in order to identify the point at which the immune response was maximally 

activated (Figure 4.1).  

Upon infection of BEAS-2B cells with B. pertussis, levels of IL-6 mRNA were upregulated 

at both 6 and 24 hr with maximal activation occurring at 12 hr (Figure 4.1A). A significant, 

but much smaller upregulation of TNFα gene expression was also observed at 12 hr but not at 

6 hr or 24 hr (Figure 4.1B).Based on these observations, it was decided to infect BEAS-2B 

cells with B. pertussis for 12 hr prior to protein solubilisation and preparation for 2D-DIGE 

and LFQ analysis. 
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Figure 4.1: B. pertussis infection of BEAS-2B cells activates the immune response. 

BEAS-2B cells were plated at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated 

for 24 hr at 37°C. Individual wells were then either left unstimulated or stimulated with B. 

pertussis (200 bacteria/cell) for the timepoints indicated. Cells were then harvested, total 

RNA isolated and from this, cDNA was synthesised. The cDNA was then used as a template 

for qRT-PCR using forward and reverse primers specific to human il-6 and gapdh 

(housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. Graphs are representative of two 

independent experiments.  
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4.2.2 Proteomic response to B. pertussis infection – common trends and functional 

annotation of protein hits obtained by 2D-DIGE / MS 

Protein hits that were significantly up or down regulated in response to B. pertussis infection 

of BEAS-2B cells, as identified by 2D-DIGE with MS were categorised first based on a 

broad generalisation of their biological role (Figure 4.2A). A protein was considered to be a 

true hit when it fulfilled a number of statistical criteria. First was that the protein in question, 

derived from whole cell lysates from B. pertussis stimulated cells, must have exhibited a fold 

change equal to or greater than plus or minus 1.3 fold compared to unstimulated cells. This 

fold change also must have been detected across N=4 independent experiments. From this 

then the statistical significance was based on a P value below 0.05. At this point the 

equivalent protein spot on the 2D-DIGE gel was extracted for MS analysis. Using software 

analysis, recognised peptides were then matched to proteins. A peptide was considered 

matched upon recognition of extensive homology with a P value below 0.05 which typically 

equated to a ‘Mascot Score’ of ≥50 (Appendix Table A1.1) [242].  

 

A total of 47 protein hits were found to be significantly up or down regulated in response to B. 

pertussis infection (Table 4.1). The observed protein fold changes averaged approximately 

1.4 fold indicating that although many proteins underwent modulation of expression, the level 

of modulation was quite small. This could be a limitation of the 2D-DIGE technique however 

firther experimentation would be required to confirm this. Of the 47 proteins hits identified, 

42 proteins, or 87 % of the total, were found to be upregulated and five proteins, or 13% of 

the total, were downregulated (Figure 4.2B, Table 4.1). The protein hits were found to fall 

into seven general functional categories namely the redox response, the immune response, 

transcription and DNA editing, structural proteins, cancer related proteins, protein synthesis 

and modification and trafficking (Figure 4.2A). Proteins with previously documented roles in 

the immune response represented 29 % of the total observed hits, the largest category 
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observed and indicating that lung epithelial cells are equipped with many defence 

mechanisms to deal with such as pathogen, perhaps unsurprising as they would be one of the 

first exposed to a respiratory pathogen such as B. pertussis [140]. Structural proteins were the 

next best represented functional subset with accounting for 15 % of total hits identified 

(Figure 4.2A).  Many of these proteins were found to have known functions in regulating 

tubulin and actin formation within the cell (Table 4.1). B. pertussis is known to actively enter 

ciliated lung epithelial cells and inhibit intracellular immune responses whist simultaneously 

evading the extracellular immune response [138, 243-245]. Although it is well documented 

that intracellular bacteria can modify the host actin network for their own means [246-248], 

recently, some light has been shed on the mechanism of B. pertussis entry into cells and the 

involvement of the host microtubule network. It has been shown that entry is dependent upon 

microtubule assembly, lipid raft integrity and activation of tyrosine-kinase mediated 

signalling [249]. Indeed, treatment of cells with a microtubule depolymerisation agent 

significantly reduced the number of internalised bacteria [249]. Relating to this, 5 % of 

proteins identified were involved in trafficking (Figure 4.2A) which likely utilise the cell’s 

structural network to enable the bacteria to internalise. Proteins involved in protein synthesis 

and modification as well as transcription and DNA editing exhibited large changes in 

expression accounting for 15 % and 10 % respectively of the observed global changes (Figure 

4.2A). Given the immediate threat to the cell’s integrity, the accommodation of a new, 

foreign organism and the mobilisation of defence mechanisms against the pathogen, this 

observation, was unsurprising. An interesting observation was that 12 % of dynamically 

regulated proteins in response to B. pertussis infection harboured known links to cancer either 

as known biomarkers or as mediators of cancer signalling (Figure 4.2A, Table 4.1). Many 

parallels have been drawn between cancer progression and the immune response and it is 

becoming increasingly clear that the two are intertwined [250-252].  An example of this from 



148 
  

the current study is the protein hit stathmin (Table 4.1). Stathmin has long been known as a 

marker for cancer progression had recently been shown to be an endogenous activator of 

TLR3 [253-255]. Finally, proteins involved in the redox response accounted for 9 % of 

observed protein hits (4.2A). Redox signalling has many roles in cell physiology particularly 

in defence with reactive oxygen and nitrogen species playing key roles in the innate defence. 

However, as these reactive species are consequently damaging to both the invading pathogen 

and the host a large number of proteins are involved in tailoring redox signalling to best 

benefit the host [256].  

 

 

 

 

 

 

 

 



149 
  

 

 

Figure 4.2: Pie chart representations of proteins identified by 2D-DIGE in response to B. 

pertussis infection. (A) Identified proteins were manually researched for functional 

properties and assigned functions(s) to form the basis of categorisation. Total numbers of 

proteins assigned to each function were inputted into a pie chart for appropriate visualisation. 

(B) Protein hits that were adjudged to be up or down regulated via Progenesis software, were 

inputted into a pie chart in order to visualise the divide.  
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Fold Ch. Protein Name Function 

↑1.5 Thioredoxin Redox Signalling. Regulates NFκB DNA binding [257] 

DNA repair, recombination and replication. Inhibits viral DNA replication [258] 

Important in glycolytic pathway [259] 

Tubulin folding [260] 

Endogenous TLR3 agonist [255]. Cancer marker. Microtubule regulation [261]. 

Microtubule regulation. Associated with Alzheimer’s [262] 

Catalyses protein folding. MHC loading [263]. Required for HIV infection [264].  

Intracellular trafficking [265] 

Protein chaperone. Aids protein folding [266]. TLR2/4 activator [267]. 

MHC class I peptide loading [268]. 

Redox signalling. Indirect NFκB modulator [269]. 

Metabolism. Levels increased in colorectal cancer [270]. 

Required for MAP Kinase activation [271]. Role in TRAF6 mediated signalling [272].  

Actin modulator. Role in cell migration [273]. 

Redox signalling [274]. Prostate cancer marker [275]. 

Chloride Channel. Aids macrophage phagosome acidification [276]. 

↑1.5 Replication protein A 14 kDa subunit  

↑4.4 Triose phosphotate Isomerase 

↑1.4 Tubulin-specific chaperone A 

↑1.5 Stathmin 

↑1.5 Stathmin-2 

↓1.3 Protein disulfide-isomerase 

↓1.5 Transitional endoplasmic reticulum ATPase  

↓1.4 heat shock 70kDa protein 9B  

↓1.4 Tapasin ERP57  

↑1.3 Superoxide dismutase [Cu-Zn] 

↑1.3 GSTP1-1 

↑1.3 Ubiquitin-conjugating enzyme E2 N (Ubc13) 

↓1.7 Cofilin-1 

↑1.3 PRDX3  

↑1.4 Clic1 

↑1.3 EB1    Microtubule regulator [277]. 

↑1.4 Glutathione S-transferase omega-1 

NLRP12 

 

 

 

  Suspected inflammasome modulator. Binds to ASC [278, 279]. 

  Cytosolic PRR. Senses Yersinia pestis. Supresses inflammation [280]. 

 

 

 

Overview of protein hits obtained by 2D-DIGE with LC-MS 

Table 4.1: Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to B. pertussis 

infection. Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.1. 

 

↑1.4 
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Fold Ch. Protein Name Function 

↑1.5 

↑1.5 

↑1.5 

↑1.5 

↑1.4 

↑1.3 

↑1.3 

↑1.3 

↑1.4 

↑1.3 

↑1.4 

↓1.3 

↑1.3 

↑1.4 

↑1.3 

↑1.3 

↑1.4 

↑1.4 

Proteasome subunit beta type-4 

Annexin A2 

Thioredoxin domain-containing protein 12 

Mitotic spindle-associated MMXD complex  

Nucleoside diphosphate kinase A (NME1) 

Peroxiredoxin-6 

Dj-1  

Acyl-protein thioesterase 1 

Phosphoglycerate mutase 1  

Transaldolase 

Serine/threonine-protein phosphatase PPP1Cα 

ER-60 protease 

Human Galectin-1  

40S ribosomal protein S12 

IL-25 

Caspase 3 

PSMB10 

Platelet-activating factor acetylhydrolase  

 

Protein degradation [281]. 

Vascular homeostasis [282]. Post transcriptional regulation [283] 

Part of thioredoxin superfamily. Redox signalling [284]. 

Iron/sulphur incorporation. Involvement in mitosis [285]. 

Transfers phosphate groups between kinases [286]. 

Redox signalling. Phospholipase activity [287]. 

Associated with Parkinson’s Disease. Protective against oxidative stress [288]. 

Fatty acid hydrolysis. Involved in Ras signalling [289]. 

Phosphate transfer in glycolysis [290]. 

Role in pentose phosphate pathway [291].  

Phosphotase. Required for RIG-I and MDA5 signalling [292]. 

ER resident protein-cysteine protease activity. Degrades misfolded proteins [293] 

Inhibits macrophage migration and pathogen killing. Increased in tumours [294] 

Ribosome subunit. Site of protein synthesis [295].    

TH2 cytokine-induces secretion of IL-4 [296]. Anti-inflammatory [297] 

Protease. Central apoptosis mediator [298].  

Proteasome subunit. MHC class I peptide cleavage [299]. 

Suggested anti-inflammatory. Produced by lymphocytes in atherosclerosis [300]. 

 

 

 

 

  

Overview of protein hits obtained by 2D-DIGE with LC-MS 

Table 4.1 (contd): Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to B. pertussis 

Infection. Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.1. 
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Fold Ch. Protein Name Protein Name Function 

↑1.3 

↑1.3 

↑1.4 

↑1.3 

↑1.4 

↑1.4 

↑1.4 

↑1.4 

↑1.4 

Replication Protein A (Rpa14 And Rpa32) 

Eukaryotic translation initiation factor 4E 

Heat shock protein beta-1 

DNA replication complex GINS protein PSF2 

ATP synthase subunit d, mitochondrial 

Calpain small subunit 1  

14-3-3 protein epsilon  

Complement component 1 Q  

Putative hydrolase RBBP9 

 

 

 

 

 

Binds DNA to ensure efficient replication and repair [301]. 

Directs ribosomes to mRNA for translation. Viral target to aid replication [302]. 

Cell stress resistance and actin organization [303]. 

Role in DNA replication. Preferentially binds single stranded DNA [304]. 

Produces ATP from ADP [305]. 

Calcium dependent cysteine protease. Active in cell migration [306]. 

Signal transduction. Inhibits multiple TLR signalling pathways [307].  

Regulator of DC differentiation [308] . Inhibitor of RIG-I and MDA5 [309] 

Serine hydrolase. Role in TGF-β signalling. Implicated in pancreatic cancer [310] 

Overview of protein hits obtained by 2D-DIGE with LC-MS 

Table 4.1 (contd): Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to B. pertussis 

Infection. Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.1. 
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4.2.3 Verification of protein hits from B. pertussis infection. 

As can be seen from Table 4.1, over 40 proteins whose expression were significantly up or 

down regulated in response to B. pertussis infection were identified by 2D-DIGE with LC-

MS. These proteins have documented functions in diverse cellular processes ranging from 

structural integrity and metabolism to immune function and redox signalling (Table 4.1 and 

Figure 4.2A). However, immunoblotting using antibodies specific to selected proteins of 

interest must also be undertaken in both unstimulated and B. pertussis stimulated whole cell 

lysates in order to confirm the stimulation dependent changes in expression. With this in 

mind, it was decided to confirm the expression of proteins that were considered interesting 

with respect to B. pertussis infection and which represented a range of the different cellular 

processes affected by B. pertussis infection. Proteins selected for verification include DJ-1 – 

a protein whose exact function is unknown but is linked to redox prcocesses, Parkinson’s 

disease and pancreatic cancer progression (Table 4.1). The proteins glutathione S-transferase 

omega 1 (GSTO1) and NLRP12 both have demonstrated roles in immune function but 

neither have been linked to B. pertussis pathogenesis (Table 4.1). Stathmin 1 is known 

primarily for its role in structural processes within the cell. PPP1Cα is a phosphatase capable 

of protein modifications and finally, triosephosphate isomerase whose role in is the 

glycolytic pathway and thus is important in cellular metabolism. Further insight on each 

protein is provided in the following sections. 
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4.2.4 2D DIGE Protein Hit Verification: DJ-1 

DJ-1, otherwise known as PARK7, is an evolutionarily conserved protein found in all 

aerobic species including humans, Drosophila melanogaster, Caenorhabditis elegans and 

Escherichia coli [288].  

Its exact function within the cell is to date, unclear. However it has been shown that a lack of 

DJ-1 causes increased sensitivity to oxidative stress, leading to cell death. Similarly, 

overexpression of DJ-1 is protective under the same conditions [311]. This function is 

dependent upon the modification of cysteine residues on DJ-1 to cysteine-sulfonic residues 

[312-314]. The observed phenotype was specific to oxidative stress as no correlation was 

found between DJ-1 and non-oxidative stress [315]. Exactly how DJ-1 mediates these effects 

is unknown with suggestions ranging from transcriptional coactivaor to molecular chaperone 

[311]. DJ-1 localises to the cytoplasm and nucleus and is omnipresent throughout human 

tissue, including the brain [316]. Interestingly, DJ-1 null mice have been shown to release 

less dopamine which is turn linked to a severe reduction in function of the D2 receptor, a key 

molecule in the regulation of the dopaminergic system [317]. This study added credence to 

an earlier publication which showed that a mutation in the DJ-1 gene was associated with 

early-onset Parkinson’s Disease (Figure 4.3) [316]. 

In recent years, a role for DJ-1 in innate immunity has been suggested. DJ-1 
-/- 

mice have 

been shown to produce higher levels of nitric oxide in response to stimulation with the TLR4 

agnoist LPS compared to WT mice [318]. Furthermore, DJ-1 deficient  Caenorhabditis 

elegans (C. elegans) showed increased activation of MAP-kinase controlled genes related to 

the innate immune response compared to WT in response to pathogenic Pseudomonas 

aeruginosa [319]. 
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The current work has shown that when analysed by 2D-DIGE, levels of the DJ-1 protein are 

elevated 1.3 fold in human lung epithelial cells infected with B. pertussis compared to 

uninfected controls (Figure 4.4A, Table 4.1). This result was verified by western blot (Figure 

4.4B). Levels of the DJ-1 gene were also significantly upregulated 2.2 fold compared to 

unstimulated controls (Figure 4.4C) indicating that upon response to B. pertussis infection, 

DJ-1 levels are regulated at the transcriptional level. 

As mentioned previously, DJ-1 has been suggested to be a redox responsive protein in that it 

undergoes cysteine modifications to mediate a protective effect upon cells [313]. B. pertussis 

PTx has been shown to induce NO production in spleen cells. 

 

 

Figure 4.3: Overview of suspected roles for Dj-1. Mutations in DJ-1 can cause misfolding 

which overloades protein degradation systems causing cytotoxicity that could contribute to 

PD pathogenesis. Mutations in DJ-1 have also been linked to increased sensitivity to 

oxidative stress leading to increased cell death. Adapted from [320] 
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Figure 4.4: Verification of DJ-1 upregulation in response to B. pertussis. (A) Screen grab 

of Progenesis analysis showing DJ-1 presence on 2D-DIGE gel from control (Ctrl) and B. 

pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well plate at a density 

of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were either left 

uninfected or infected with B. pertussis (MOI of 200) for 15 min, 30 min, 60 min, 2 hr, 4 hr, 

6 hr and 12 hr. Cells were then harvested and each sample lysed in 100 μl H.S. buffer for 20 

min on ice. Cell debris was removed by centrifugation with the remaining whole cell lysates 

mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. Proteins were separated 

by SDS-PAGE and subjected to immunoblot analysis using anti-DJ-1 and anti-β-Actin 

antibodies. Results represent two independent experiments. (C) BEAS-2B cells were plated 

at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37 °C. 

Individual wells were then either left unstimulated or stimulated with B. pertussis (MOI of 

200) for the timepoints indicated. Cells were then harvested, total RNA isolated and from 

this, cDNA was synthesised. The cDNA was then used as a template for qRT-PCR using 

forward and reverse primers specific to human dj-1 and gapdh (housekeeping gene). * 

p<0.05, ** p<0.01 and *** p<0.001. Graph is representative of four independent 

experiments.  
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4.2.5 2D-DIGE Protein Hit Verification: GSTO1 

Glutathione S-transferases are a family of enzymes that catalyse the conjugation of 

glutathione, via a sulfhydryl group, to electrophilic centres on a wide range of substrates 

including carcinogens, oxidative products and synthetic drugs [321]. Based on sequence 

similarities and immune cross reactivity, there are seven classes of cytosolic GST in humans: 

Alpha, Mu, Sigma, Pi, Theta, Zeta and a more recently identified class, Omega [322, 323]. 

They are highly conserved with more classes present across species [324].   A number of 

features set the omega class apart from the other GST family members. It contains a unique 

N-terminal, proline rich extension of 19 aa which forms a distinct structural unit in 

conjunction with the C-terminus. The function of this unit however, is currently unknown 

[323]. Other GST family members contain a tyrosine or serine residue within hydrogen 

bonding distance of a sulphur atom of the bound glutathione and mutation of either of these 

residues results in complete or severe inactivation [325]. The Omega class does not contain 

equivalent residues but does contain an active site cysteine suggesting the GSTO1 does not 

have the glutathione conjugation abilities common to other GSTs and instead have another 

as yet undescribed function [323]. A mouse orthologue of GSTO1, termed p28, also lacks 

GST activity but changes its subcellular location in response to heat suggesting a role in 

cellular stress response mechanisms [326].  

 

GSTO1 has been implicated in a number of studies as playing a role in IL-1β processing 

through its association with cytokine release inhibitory drugs (CRIDs) [278, 279]. Affinity 

labelling and affinity binding chromatography identified GSTO1 as a target of CRID and 

this interaction was dependent on the aforementioned active cysteine site, Cys
32

 [278].  The 

concentration of [
14

C]CRID required to label cell-associated GSTO1 was also directly 

proportional to the extent of inhibition of IL-1β posttranslational processing. 
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A second study examined this finding further by showing the GSTO1 interacts with adapter 

molecule apoptosis-associated speck-like protein containing a CARD (ASC), a pivotal 

protein in the assembly of NACHT, LRR and pyrin domain (PYD) domains-containing 

protein (NLRP) 1, NLRP3 and absent in melanoma 2 (AIM2) inflammasome formation 

[279]. This study showed that CRID3 inhibited ASC oligomerization in the NLRP3 and 

AIM2 inflammasome and speculated that glutathionylation of ASC by GSTO1 could be 

required for ASC function [279]. 

 

The current study identified GSTO1 as being upregulated 1.4 fold in BEAS-2B cells in 

response to infection with B. pertussis (Figure 4.5A, Table 4.1). Immunoblotting using an 

anti-GSTO1 antibody confirmed this result and indeed indicated that GSTO1’s expression 

was upregulated in response to B. pertussis after only 30 min of infection with expression 

being maintained at multiple further timepoints up to and including 12 hr of infection (Figure 

4.5B). GSTO1 gene expression was also significantly upregulated at both 6 and 12 hr post 

infection suggesting its regulation in transcriptionally regulated (Figure 4.5C).  
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Figure 4.5: Verification of GSTO1 upregulation in response to B. pertussis. (A) Screen 

grab of Progenesis analysis showing GSTO1 presence on 2D-DIGE gel from control (Ctrl) 

and B. pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well plate at a 

density of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were either left 

uninfected or infected with B. pertussis (MOI of 200) for 15 min, 30 min, 60 min, 2 hr, 4 hr, 

6 hr and 12 hr. Cells were then harvested and each sample lysed in 100 μl H.S. buffer for 20 

min on ice. Cell debris was removed by centrifugation with the remaining whole cell lysates 

mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. Proteins were separated 

by SDS-PAGE and subjected to immunoblot analysis using anti-GSTO1 and anti-β-Actin 

antibodies. Results represent two independent experiments. (C) BEAS-2B cells were plated 

at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37 °C. 

Individual wells were then either left unstimulated or stimulated with B. pertussis (MOI of 

200) for the timepoints indicated. Cells were then harvested, total RNA isolated and from 

this, cDNA was synthesised. The cDNA was then used as a template for qRT-PCR using 

forward and reverse primers specific to human gsto1 and gapdh (housekeeping gene). * 

p<0.05, ** p<0.01 and *** p<0.001. Graph is representative of four independent 

experiments.  
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4.2.6 2D-DIGE Protein Hit Verification: Stathmin 1 

Stathmin is a ubiquitous phosphorprotein, highly conserved among vertebrates, which was 

originally discovered from analysis of lysates derived from cells perturbed with hormones 

such as thyrotropin-releasing hormone and corticotropin-releasing hormone [327, 328].  It 

was also recognised as a protein that was highly expressed in acute leukaemias [329]. 

Indeed, stathmin has been shown to be highly expressed in multiple human malignancies and 

interestingly, a high level of stathmin expression correlates with poor prognosis [253, 254]. 

Stathmin’s main role is in the regulation of microtubule dynamics by promoting 

depolymerisation of microtubules or preventing polymerisation of tubulin heterodimers 

[261]. Because of this, stathmin plays a particularly important role in mitotic spindle 

formation during the cell cycle in both early and late stages of mitosis. Because microtubule 

formation effects diverse cellular functions, stathmin has also been found to play a role in 

activated T cell polarization. Polarisation of the microtubule organising center of activated T 

cells was defective in stathmin null mice causing reduced secretion of cytolysic granules and 

target cell lysis [330]. 

 

In keeping with immune related functions of stathmin, a startling observation was that 

stathmin acts as an endogenous protein agonist for TLR3 [255]. TLR3 and stathmin were 

shown to colocalise under neuroinflammatory conditions replicating multiple sclerosis in 

astrocytes, neurons and microglia. Monocyte derived dendritic cells were also activated by 

stimulation with stathmin. Cytokine expression profiles of stathmin and poly(I:C) stimulated 

WT and TLR3 deficient cells were almost identical. The authors hypothesised that as both 

TLR3 and stathmin can inhibit axon and dendrite formation, the interaction between the two 

may underlie, or even be required for, their functional similarities [255]. 
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Stathmin was observed by 2D-DIGE with LC-MS to be upregulated 1.5 fold in B. pertussis 

infected cells compared to controls (Figure 4.6A, Table 4.1). This finding was verified by 

western blot over multiple timepoints up to and including 12 hr (Figure 4.6B). Analysis of 

stathmin mRNA levels did not indicate any significant increase in transcription of stathmin 

mRNA indicating that its dynamic regulation is determined by post-transcriptional events 

(Figure 4.6C).  
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Figure 4.6: Verification of STMN1 upregulation in response to B. pertussis. (A) Screen 

grab of Progenesis analysis showing STMN1 presence on 2D-DIGE gel from control (Ctrl) 

and B. pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well plate at a 

density of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were either left 

uninfected or infected with B. pertussis (200 bacteria/cell) for 15 min, 30 min, 60 min, 2 hr, 

4 hr, 6 hr and 12 hr. Cells were then harvested and each sample lysed in 100 μl H.S. buffer 

for 20 min on ice. Cell debris was removed by centrifugation with the remaining whole cell 

lysates mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. Proteins were 

separated by SDS-PAGE and subjected to immunoblot analysis using anti-STMN1 and anti-

β-Actin antibodies. Results represent two independent experiments. (C) BEAS-2B cells were 

plated at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37 °C. 

Individual wells were then either left unstimulated or stimulated with B. pertussis (200 

bacteria/cell) for the timepoints indicated. Cells were then harvested, total RNA isolated and 

from this, cDNA was synthesised. The cDNA was then used as a template for qRT-PCR 

using forward and reverse primers specific to human stmn1 and gapdh (housekeeping gene). 

* p<0.05, ** p<0.01 and *** p<0.001. Graph is representative of four independent 

experiments.  
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4.2.7 2D-DIGE Protein Hit Verification: PPP1Cα 

Protein phosphatase PP1 alpha catalytic subunit (PPP1Cα), also known as PP1α, is one of 

three catalytic subunits of protein phosphatase 1, the other two subunits being PPP1β and γ. 

They form a small but vitally important part of the phosphoprotein phosphatase (PPP) 

superfamily which comprises serine/threonine phosphatases 1-7 [331]. Together, PPP1-7 

catalyse over 90% of dephosphorylating reactions in eukaryotic cells [332]. The most 

important of these seven, in terms of substrate diversity, is PPP1 as it is predicted to 

hydrolyse the majority of serine and threonine-linked phosphate ester bonds in eukaryotic 

cells [333]. Further evidence of PPP1’s importance is the fact that it is extremely highly 

conserved between yeast and humans with greater than 80% sequence similarity between the 

two. Indeed, human PPP1 can rescue the lethal loss of PPP1 in yeast [334]. PPP1 affects 

such a large proportion of dephosphorylation events by its ability to interact with over 200 

known targeting proteins that serve to localise PPP1 to distinct cellular regions whilst also 

modifying its substrate specificity. The use of these targeting proteins is therefore believed to 

allow PPP1 to be converted into 100s of highly specific holoenzymes  [335]. The 

phosphatase activity of PPP1 is regulated by endogenous inhibitory proteins such as the 

aptly named inhibitor-1 and inhibitor-2, as well as CPI-17 and DARPP-32 [336]. As PPP1 

interactors are the main determinant of PPP1 function, they too are studied in detail. Their 

role is predominantly in signalling processes with known involvements in metabolism, the 

cell cycle and stress responses [337].  The importance of PPP1α in the immune response can 

be demonstrated by the encoding by herpes simplex virus of a PPP1α interactor termed 

ICP34.5. This protein interacts with PPP1α directing it to dephosphorylate and thus activate 

eIF2α which in turn inhibits PKR, a key mediator of the antiviral immune response [338, 

339]. A further interactor, nuclear inhibitor of protein phosphatase 1, in combination with 

PP1 can act as a molecular compass to direct cancer cell migration by affecting guanosine 
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triphosphate (GTP)ase signalling, with an implied role in cancer cell metastasis [340]. While 

the current work on PPP1α was proceeding, a striking observation was made regarding its 

role in innate immune signalling. It has been shown that dephosphorylation of the viral RNA 

sensors retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated 

protein 5 (MDA5) by PPP1α and its isoform PPP1γ is essential for their ability to drive type-

I IFN production [292]. Both PPP1α and PPP1γ were shown to interact with RIG-I and 

MDA5 upon viral infection to inhibit phosphorylation of specific serine residues on CARD 

domains pertaining to both receptors. Furthermore, mutation of the PPP1 binding motif on 

both RIG-I and MDA5, led to an almost complete abolishment of their ability to signal 

[292]. 

The current study identified PPP1α as being upregulated 1.4 fold in a 2D-DIGE comparison 

between uninfected and B. pertussis infected lung epithelial cells (Figure 4.8A, Table 4.1). 

This result was verified by western blot at multiple timepoints from 15 min up to 12 hr. Gene 

expression of PPP1α was also shown to be significantly upregulated 15-fold upon 

stimulation with B. pertussis for 12 hr (Figure 4.8B). PPP1α mRNA was also upregulated 

approximately 3 fold after 6 hr of infection with B. pertussis (Figure 4.8C). This would 

suggest that PPP1α is somehow induced by B. pertussis at the transcriptional level. This 

result also hints at an increasing role for PPP1α as the infection increase in severity over 

time. 

 
Figure 4.7: General functions of PP1/PPP1. Roles for PPP1 include recovery from 

starvation, protein synthesis regulation, calcium signalling, immune function and mitosis. 

Adapted from [341]. 
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Figure 4.8: Verification of PPP1Cα upregulation in response to B. pertussis. (A) Screen 

grab of Progenesis analysis showing PPP1Cα presence on 2D-DIGE gel from control (Ctrl) 

and B. pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well plate at a 

density of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were either left 

uninfected or infected with B. pertussis (MOI of 200) and each sample lysed in 100 μl H.S. 

buffer for 20 min on ice. Cell debris was removed by centrifugation with the remaining 

whole cell lysates mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. 

Proteins were separated by SDS-PAGE and subjected to immunoblot analysis using anti-

PPP1Cα and anti-β-Actin antibodies. Results represent two independent experiments. (C) 

BEAS-2B cells were plated at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated 

for 24 hr at 37 °C. Individual wells were then either left unstimulated or stimulated with B. 

pertussis (MOI of 200) for the timepoints indicated. Cells were then harvested, total RNA 

isolated and from this, cDNA was synthesised. The cDNA was then used as a template for 

qRT-PCR using forward and reverse primers specific to human ppp1cα and gapdh 

(housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. Graph is representative of four 

independent experiments.  
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4.2.8 2D-DIGE Protein Hit Verification: Triosephosphate Isomerase 

Triose phosphate isomerase (TPI) is a dimeric enzyme consisting of two identical subunits of 

critical importance to the glycolytic pathway. Its specific role is in the interconversion of two 

triose phosphate isomers, dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate, 

which are intermediates in both the glycolytic and pentose phosphate pathways [259]. 

Humans born with mutations in TPI suffer from multiple pathologies including anaemia, 

cardiomyopathy, neuromuscular impairment, increased susceptibility to infection and is in 

most cases fatal by early childhood [342]. With its role exclusively related to metabolism, 

TPI has no direct documented role in the immune response however absence of evidence is 

not evidence of absence. Indeed the role of metabolism and metabolites in the inflammatory 

conditions is fast becoming vogue [343]. The initiation and maintenance of an inflammatory 

response requires intensive energy usage by the cells involved and similarities have been 

observed  between the increased metabolism exhibited by tumour cells to that of activated T 

cells [344]. Moreover, it has recently been shown that succinate, an intermediate in the citric 

acid cycle (which itself requires pyruvate derived from glycolysis) has been shown to be an 

inflammatory signal which drives LPS mediates IL-1β production in macrophages [345]. 

 

TPI was found to by 2D-DIGE to be upregulated 4.4 fold in response to B. pertussis 

infection (Figure 4.9A, Table 4.1). This result was verified by western blot using an anti-

triosephosphate isomerase antibody. TPI levels were increased at 15 min post infection, 

peaking at 2 hr before decreasing slightly by 12 hr (Figure 4.9B). Comparison of TPI mRNA 

in uninfected and infected cells indicated no significant increase between the two states 

(Figure 4.9C). This suggests that TPI’s levels are being modified post-transcriptionally. The 

exceptionally high fold change in TPI upon B. pertussis infection indicates that metabolism 

within the cell is increases upon infection. 
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Figure 4.9: Verification of TPI upregulation in response to B. pertussis. (A) Screen grab 

of Progenesis analysis showing TPI presence on 2D-DIGE gel from control (Ctrl) and B. 

pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well plate at a density 

of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were either left 

uninfected or infected with B. pertussis (MOI of 200) for 15 min, 30 min, 60 min, 2 hr, 4 hr, 

6 hr and 12 hr. Cells were then harvested and each sample lysed in 100 μl H.S. buffer for 20 

min on ice. Cell debris was removed by centrifugation with the remaining whole cell lysates 

mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. Proteins were separated 

by SDS-PAGE and subjected to immunoblot analysis using anti-TPI and anti-β-Actin 

antibodies. Results represent two independent experiments. (C) BEAS-2B cells were plated 

at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37 °C. 

Individual wells were then either left unstimulated or stimulated with B. pertussis (MOI of 

200) for the timepoints indicated. Cells were then harvested, total RNA isolated and from 

this, cDNA was synthesised. The cDNA was then used as a template for qRT-PCR using 

forward and reverse primers specific to human tpi and gapdh (housekeeping gene). * p<0.05, 

** p<0.01 and *** p<0.001. NS, not significant. Graph is representative of four independent 

experiments.  
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4.2.9 2D-DIGE Protein Hit Verification: NLRP12 

NACHT, LRR and PYD domains-containing protein 12 (NLRP12), is a member of the 

nucleotide oligomerisation and binding domain (NOD)-like receptor (NLR) family of 

proteins. This family contains more than 20 members and are a relatively recent addition to 

the cadre of innate PRRs, playing critical roles in the recognition of many infectious 

pathogens including fungi, bacteria, viruses, protists and helminthes [346-351]. During an 

infection, NLRs oligomerise into multiprotein complexes termed inflammasomes that cleave 

pro-caspase-1 into its active form. Active caspase-1 in turn cleaves pro-IL1-β, pro-IL-18 and 

pro-IL-33 to generate mature proteins which are then secreted to mediate their downstream 

inflammatory effects (Figure 4.12) [352].   

 
Figure 4.10:  Overview of non-NLRP3 inflammasome signalling. NLRP4, 6, 7 and 12 

share a C-terminal leucine rich repeat (LRR) region an internal nucleotide-binding-domain 

(NBD) and an N-terminal PYD. AIM2 has a HIN200 DNA binding domain and a PYD but 

no NBD. The NLR recruits the adaptor ASC, a PYD domain containing protein and a 

caspase recruitment and activation domain (CARD) which bridges the NLR with caspase-1. 

Caspase-1 cleaves pro-IL-1β and pro-IL-18 into their mature, secretory forms. Adapted from 

[352]. 

 

In general, inflammosome forming NLRs exhibit the same structural features. NLRP12, 

along with NLRP3, NLRP6 and NLRP7 all share a C-terminal LRR region, an internal 

nucleotide-binding-domain (NBD) and an N-terminal Pyrin domain (PYD). The NLR 

recruits the adaptor ASC, a PYD domain containing protein and a caspase recruitment and 

activation domain (CARD) which links the NLR to caspase-1 (Figure 4.10) [352].  
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NLRP12 was originally shown to play a pro-inflammatory role by driving NFκB induction 

as well as caspase-1 mediated cleavage and secretion of IL-1β in vitro [353]. A later in vivo 

study largely agreed with this showing that NLRP12 was required to drive IL-1β and IL-18 

production following murine infection with the gram negative bacterium Yersina pestis, the 

causative agent of plague. However, the authors detected minimal NLRP12 mediated NFκB 

activity [280]. On the other hand, two recent studies presented in-vivo evidence that 

NLRP12 negatively regulates inflammatory processes relating to colon inflammation and 

tumorigenesis by specifically inhibiting activation of NFκB [354, 355]. It is worth noting 

that similar conflicting reports have emerged regarding NLRP6 [356, 357] such that it has 

been proposed that individual NLRs can play different roles in different infections, the 

phenotype perhaps depending upon their levels of expression and functionality in the tissues 

and cells that undergo pathology relating to a particular disease [352]. 

 

NLRP12 was identified as being upregulated 1.3 fold in BEAS-2B cells in response to B. 

pertussis infection (Figure 4.11A) (Table 4.1). This result was verified by immunobloting for 

endogenous NLRP12 where its levels were again found to be increased at multiple 

timepoints in repose to B. pertussis infection (Figure 4.11B). A slight increase was found in 

levels of NLRP12 mRNA at 12 hr post infection however this increase was not found to be 

significant (Figure 4.11C). 
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Figure 4.11: Verification of NLRP12 upregulation in response to B. pertussis. (A) 

Screen grab of Progenesis analysis showing NLRP12 presence on 2D-DIGE gel from control 

(Ctrl) and B. pertussis infected (BP) lysates. (B)  BEAS-2B cells were seeded in a 6-well 

plate at a density of 0.7x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were 

either left uninfected or infected with B. pertussis (MOI of 200) for 15 min, 30 min, 60 min, 

2 hr, 4 hr, 6 hr and 12 hr. Cells were then harvested and each sample lysed in 100 μl H.S. 

buffer for 20 min on ice. Cell debris was removed by centrifugation with the remaining 

whole cell lysates mixed with 30 μl 5x Laemmli loading buffer and boiled for 10 min. 

Proteins were separated by SDS-PAGE and subjected to immunoblot analysis using anti-

NLRP12 and anti-β-Actin antibodies. Results represent two independent experiments. (C) 

BEAS-2B cells were plated at a density of 0.7x10
6
 cells/ml in a six-well plate and incubated 

for 24 hr at 37 °C. Individual wells were then either left unstimulated or stimulated with B. 

pertussis (MOI of 200) for the timepoints indicated. Cells were then harvested, total RNA 

isolated and from this, cDNA was synthesised. The cDNA was then used as a template for 

qRT-PCR using forward and reverse primers specific to human nlrp12 and gapdh 

(housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. NS, not significant. Graph is 

representative of four independent experiments.  
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4.2.10 Proteomic response to B. pertussis infection – common trends and functional 

annotation of protein hits obtained by LFQ MS 

2D-DIGE is based upon the quantitative labelling of proteins within a gel matrix, followed 

by protein excision, digestion and MS identification. As previously discussed however, this 

method has drawbacks such as the masking of low abundance proteins by high abundant 

ones and a low throughput. LFQ MS, as previously discussed, does not suffer from either of 

these drawbacks and may therefore be capable of identifying expression changes in low 

abundant proteins that were missed by 2D-DIGE analysis. Thus the same whole cell lysates 

from uninfected and B. pertussis infected BEAS-2B cells that were used for 2D-DIGE 

analysis were also used for LFQ MS.  

As with the 2D-DIGE study, protein hits that were significantly up or down regulated in 

response to B. pertussis infection, as identified LFQ MS were categorised first based on a 

broad generalisation of their biological role (Figure 4.12). Again, a protein was considered to 

be a true hit when it fulfilled certain statistical criteria. Protein intensities were normalized 

across all runs (N=4 for control and infected) and the resulting ‘LFQ intensities’ were 

grouped based on treatment and an ANOVA test performed to identify statistically 

significant variation in protein intensity between all control and infected samples. Proteins 

that were completely lacking from one treatment but present in the other were determined 

manually. Statistics could not be performed on these proteins as one treatment set had no 

intensity values. Therefore, LFQ intensities and ANOVA values for these proteins are 

presented as NaN (Section 2.4.6 and Appendix Table A1.2). 

Proteome analysis by LFQ MS found a total of 60 protein hits that were significantly up or 

down regulated in response to B. pertussis infection. Of these, 29 proteins, or 48 % of the 

total were found to be upregulated and 31 proteins, or 52 % of the total were downregulated 

(Figure 4.13A,B), Table 4.2). The protein hits were grouped into the same seven general 

functional categories as the proteins identified by 2D-DIGE (Figure 4.12A,B). There were 
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some protein functionalities differentially represented with LFQ MS than with 2D DIGE. 

LFQ MS identified more proteins involved in transcription/DNA synthesis and trafficking 

than 2D DIGE. LFQ MS also identified fewer proteins involved in maintaining structural 

integrity and those involved in protein synthesis and redox reactions compared to 2D-DIGE 

(Figure 4.12A,B). Furthermore, there was a notable difference in the number of proteins 

identified as being significantly up or down regulated with an almost even split in the LFQ  

analysis compared to 2D-DIGE where the vast majority were upregulated (Figure 4.13A,B). 

Differences between the two methods were expected to a certain extent and indeed have 

been demonstrated previously in a similar study which compared 2D gel electrophoresis with 

an LFQ analysis [358]. Surprisingly, there was very little overlap between the two 

techniques in terms of actual proteins identified with only two proteins identified using both 

techniques despite samples for both coming from the same whole cell lysates (4.13A,B) 

(Table 4.2).  

 
Figure 4.12: Pie chart representation and comparison of proteins identified by LFQ 

and 2D-DIGE in response to B. pertussis infection. (A) LFQ identified proteins were 

manually researched for functional properties and assigned functions(s) to form the basis of 

categorisation. Total numbers of proteins assigned to each function were inputted into a pie 

chart for appropriate visualisation. (B) 2D-DIGE identified proteins from Figure 2 for 

comparative purposes 
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Figure 4.13: Pie chart representation and comparison of proteins identified by LFQ in 

response to B. pertussis infection. (A) Total number of LFQ derived protein hits that were 

adjudged to be up or down regulated via MaxQuant was inputted into a pie chart in order to 

visualise the divide. (B) Total number of 2D-DIGE derived up and downregulated proteins 

adapted from Figure 2 for comparative purposes. (C) Venn diagram illustrating the total 

number of protein hits identified by LFQ (red circle) and 2D-DIGE (blue circle) with the 

number of identical hits detected by both methods in the centre. Identical hits are annotated.  
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Fold Ch. Protein Name Function 

BP+ Elongation Factor gamma  Delivers tRNA’s to ribosome. Aids replication of VSV [359].  

Ion transporter across plasma membrane [360]. 

Regulation of actin cytoskeleton, cell adhesion and motility [361]. 

Transports proteins out of nucleus into cytoplasm [362]. 

Involved in DNA damage response and cell cycle [363]. 

Ribosomal subunit. Involved in protein synthesis [364]. 

Inhibits transcriptional activity of NFκB [365]. 

Metabolism. Involved in pentose phosphate pathway. Maintains levels of NADPH [366]. 

Critical role in apoptosis [298]. 

Possible role in caspase 8 mediated apoptosis [367]. Protein transporter [368]. 

Mitosis. Essential component of mitotic spindle [369]. 

Serine/Threonine protein kinases. Important in DNA recombination [370]. 

Major functional component of basement membranes [371]. 

Ribosomal subunit. Involved in protein synthesis [295] 

Ribosomal subunit. Involved in protein synthesis [295] 

Contains leucine rich repeat domain. Localises to endosome [372]. 

Protein transporter and anchor. Interacts with 14-3-3ζ a known TLR mediator [373]. 

Mediates RNA functions such as alternative splicing and translation regulation [374]. 

Exports certain proteins with no signal peptide for example IL-1α [375].  

 

 

 

BP+ Sodium/potassium-transporting ATPase  

BP+ Adenylyl cyclase-associated protein 1 

BP+ Exportin-2 

BP+ Pre mRNA slicing factor SYF2 

BP+ 60S ribosomal protein L9 

BP+ Pre-rRNA-processing protein TSR2  

BP+ Glucose-6-phosphate 1-dehydrogenase 

BP+ Caspase-7 

BP+ B-cell receptor-associated protein 31 

BP+ Small kinetochore-associated protein 

BP+ DNA-dependent protein kinase  

BP+ Laminin subunit gamma-1 

BP+ 60S ribosomal protein L7a 

BP+ 60S ribosomal protein L17 

BP+ Ribosome-binding protein p34 (p34) 

BP+ RACK1 

BP- RNA-binding protein 4 

BP- Protein S100-A13 

  
 
 

Protein hits obtained by LFQ MS 

Table 4.2: Proteins identified by LFQ MS showing changes in expression in response to B. pertussis Infection. Protein function is also 

indicated. BP+ indicates proteins detected in B. pertussis infected samples but not in uninfected samples. BP- indicated proteins detected in 

uninfected samples but not in B. pertussis infected samples. Full annotation of protein hits can be found in appendix table A1.2.  
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Fold Ch. Protein Name Function 

BP- NUDT15 Helps to prevent mutations in DNA, possibly by degrading oxygen radicals [376]. 

Transcription factor. Binding site on HLA locus [377, 378]. 

Adaptor protein. Regulates activation of downstream mediators [379]. 

Aid formation of intraluminal vesicle formation. Also required for virus budding [380]. 

Targets proteins for proteosomal degradation. Inhibits ERK/MAPK pathway [381]. 

Anti-apoptotic via caspase 3, 9 and 10 [382]. 

Involved in transcription [383]. 

Function unknown. Human form localized predominantly to nucleus [384]. 

Localises to mitochondria [385]. 

Component of exon splicing junction complex [386]. 

Pre mRNA splicing [387]. 

Function unknown. May bind to RNA (Uniprot). 

Negatively regulates RIG-I and MDA5 by ubquitination [388].  

Induced by B. pertussis [136]. Receptor for leukocytes to migrate into tissue [389]. 

Involved in pre-mRNA splicing and RNA metabolism [390]. 

Inactivated by Wnt signalling [391]. Regulates macrophage phagocytosis [392]. 

Function unknown 

Links clathrin vesicles to early endosomes [393] 

BP- Upstream stimulatory factor 2 

BP- Nck-1 

BP- BRO1 domain-containing protein BROX 

BP- E3 ubiquitin-protein ligase RNF181 

BP- Caspase activity and apoptosis inhibitor 1 

BP- RNA polymerase-associated protein RTF1  

BP- Kanadaptin 

BP- Cx9C motif-containing protein 4 

↓0.64 RNA-binding protein 8A 

↓0.75 Serine/arginine-rich splicing factor 2 

↑0.85 Putative RNA-binding protein Luc7-like 2 

↓1.23 UV excision repair protein RAD23 

↑3.87 Intercellular adhesion molecule 1 

↓0.88 Serine/arginine-rich splicing factor 6 

↓0.59 Calponin-2 

↑1.53 Uncharacterized protein C14orf119 

↓0.64 SNX15 

↓1.21 U4/U6.U5 Nuclear ribonucleoprotein Pre mRNA splicing [394]. 

 

 

Protein hits obtained by LFQ MS 

Table 4.2 (contd): Proteins identified by LFQ MS showing changes in expression in response to B. pertussis Infection. Protein function 

is also indicated. BP+ indicates proteins detected in B. pertussis infected samples but not in uninfected samples. BP- indicated proteins 

detected in uninfected samples but not in B. pertussis infected samples. Full annotation of protein hits can be found in appendix table A1.2.  
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Fold Ch. Protein Name Function 

↓2.38 SH3-containing Grb-2-like 1 protein Function unknown. May be similar to GRB2 [395]. 

Pro-phagocytic signal on cancer cell surface [396]. Found in NK & T cell granules [397] 

Redox Signalling. Indirect NFκB modulator [398].  

Role in alternative splicing [399]. 

Associated with tissue injury and inflammation. Endogenous TLR4 activator [400].  

Pre mRNA splicing [401]. 

Pre mRNA splicing [402]. 

Function unknown 

Component of 40S ribosome subunit. Involved in protein synthesis [295]. 

Inhibits macrophage migration and pathogen killing. Overexpressed in tumours [294]. 

Spliceosome component (Uniprot). 

Involved in maintenance of actin cytoskeleton [403]. 

Transcriptional repressor activity [404]. Implicated in tumourgenesis [405]. 

Function unknown. 

Involved in pre-mRNA processing [406]. 

Critical in iron storage. Upregulated during inflammatory processes [407]. 

Suspected role in Parkinson’s Disease [408]. Involved in cell cycle progression [409]. 

May be involved in transcription (Uniprot). 

Component of ferritin. Upregulated during inflammatory processes [407].  

 

 

 

↓1.19 Calreticulin  / ER resident protein 60 

↑4.13 Superoxide dismutase 

↓0.77 Zinc finger Ran-binding domain protein 2 

↑1.73 Tenascin  

↑1.23 U6 snRNA-associated Sm-like protein  

↓1.73 RNA-binding protein - serine rich domain 

↓0.84 Coiled-coil domain-containing protein 97 

↑0.87 40S ribosomal protein S29 

↑0.67 Galectin-1 

↓0.97 N-alpha-acetyltransferase 38 

↓1.14 Cdc42 effector protein 3  

↑1.00 TSC22 domain family protein 1 

↓0.64 Protein TSSC4  

↓2.11 Serine/arginine repetitive matrix protein 1 

↑3.02 Ferritin 

↑1.06 Periphilin-1 

↓0.89 Transcription elongation factor A  

↑3.64 Ferritin heavy chain   

Protein hits obtained by LFQ MS 

Table 4.2 (contd): Proteins identified by LFQ MS showing changes in expression in response to B. pertussis Infection. Protein function 

is also indicated. BP+ indicates proteins detected in B. pertussis infected samples but not in uninfected samples. BP- indicated proteins 

detected in uninfected samples but not in B. pertussis infected samples. Full annotation of protein hits can be found in appendix table A1.2.  
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Fold Ch. Protein Name Function 

↓0.91 Transcription elongation factor A  Necessary for efficient RNA polymerase II transcription [410]. 

Involved in pre-mRNA splicing [411]. 

May have role in ubquitination [412]. Nuclear translocation upon heat shock [413]. 

↓2.01 

 

Serine/arginine repetitive matrix protein 2 

Suppressor of G2 allele of SKP1 homolog 

  

  

         

         

↓0.68 

Protein hits obtained by LFQ MS 

Table 4.2 (contd): Proteins identified by LFQ MS showing changes in expression in response to B. pertussis Infection. Protein function 

is also indicated. BP+ indicates proteins detected in B. pertussis infected samples but not in uninfected samples. BP- indicated proteins 

detected in uninfected samples but not in B. pertussis infected samples. Full annotation of protein hits can be found in appendix table A1.2.  
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4.2.11 Verification of LFQ MS derived protein hits from B. pertussis infection. 

Two hits were selected for verification by immunoblotting. These were superoxide dismutase 

(SOD) and ferritin. SOD was selected because it was one of two proteins that appeared in 

both the 2D-DIGE with MS and the LFQ MS studies and also because SODs play important 

roles in innate immunity (Table 4.2). Ferritin was selected due to its critical role in iron 

storage which is important for host metabolism. It is also known to be upregulated during 

inflammatory processes (Table 4.2). 

4.2.12 Verification of LFQ MS protein hit: Superoxide Dismutase  

SODs play a key role in metabolising O2 radicals thus pre-empting the formation of 

damaging reactive oxygen reactive species (ROS) such as hypochlorite, peroxynitrate and 

hydrogen peroxide [398]. High levels of these ROS lead to oxidative stress which is 

implicated in may cardiovascular diseases. However, low levels are important in innate 

immune defences as well as general cell signalling [414]. Although the term superoxide 

dismutase denotes three independent enzymes (SOD1, SOD2 and SOD3), at the core of each 

is the ability to convert two molecules of superoxide into dioxegen (O2) and hydrogen 

peroxide. The difference between the three SODs resides both in their fold and in the 

different metal ion(s) in their active site. SOD1 can bind copper and zinc ions, SOD2 

contains an manganese ion while SOD3 also binds copper and zinc ions [269]. SOD1 is the 

major intracellular SOD. It exists as a 32kDa homodimer mainly in the cytosol, with smaller 

fractions residing within the nucleus, lysosomes, peroxisomes and intermembrane space of 

mitochondria [398].  
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Fig 4.14: Role of SOD1 in NFκB activation. During redox signalling, SOD1 is recruited to 

the endosomal surface where it indirectly regulates Nox2 mediated O2 radical formation. O2 

radicals exit via chloride channels (CIC3) whereupon they are dismutated by SOD1to 

produce hydrogen peroxide and promoting redox activation of NFκB. Adapted from [398]. 

 

SOD1’s role in redox signalling is well documented with the dismutation of O2 radicals 

produced following IL-1 signalling, producing hydrogen peroxide which goes on to activate 

and modulate the NFκB pathway [398, 415]. SOD2 is an exclusively mitochondrial enzyme 

utilising a manganese ion. Its function is identical to that of SOD1 (and SOD3) in that it too 

facilitates the dismutation of O2 radicals to oxygen and hydrogen peroxide [398].  

SOD1 was found to be upregulated in response to B. pertussis infection, as detected by LFQ 

MS (Figure 4.15A). This was verified by immunoblotting for SOD1 in whole cell lysates 

infected with B. pertussis for various timepoints.  SOD1’s expression was increased at one 

hour post infection and remained so up to 12 hr (Figure 4.15B). Expression of SOD1 mRNA 

was not found to be significantly upregulated at 6 or 12 hr post infection (Figure 4.15C) 

indicating that its expression in response to B. pertussis is governed by post-transcriptional 

processes.  
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Figure 4.15: Verification of SOD1 upregulation in response to B. pertussis. (A)  BEAS-

2B cells were seeded in a 6-well plate at a density of 0.7x10
6
 cells/ml and incubated for 24 hr 

at 37 °C. Thereafter, cells were either left uninfected or infected with B. pertussis (MOI of 

200) for 15 min, 30 min, 60 min, 2 hr, 4 hr, 6 hr and 12 hr. Cells were then harvested and 

each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell debris was removed by 

centrifugation with the remaining whole cell lysates mixed with 30 μl 5x Laemmli loading 

buffer and boiled for 10 min. Proteins were separated by SDS-PAGE and subjected to 

immunoblot analysis using anti-SOD1 and anti-β-Actin antibodies. Results represent two 

independent experiments. (B) BEAS-2B cells were plated at a density of 0.7x10
6
 cells/ml in a 

six-well plate and incubated for 24 hr at 37 °C. Individual wells were then either left 

unstimulated or stimulated with B. pertussis (MOI of 200) for the timepoints indicated. Cells 

were then harvested, total RNA isolated and from this, cDNA was synthesised. The cDNA 

was then used as a template for qRT-PCR using forward and reverse primers specific to 

human nlrp12 and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. NS, 

not significant. Graph is representative of four independent experiments.  

 

A 

B 
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4.2.13 Verification of LFQ MS protein hit: Ferritin 

Ferritin is a hollow, spherical and mainly cytosolic protein consisting of 24 subunits whose 

main function is the periodic sequesterisation and release of intracellular iron (Fe). Ferritin 

can store up to 4,500 iron atoms within its core with multiple mechanisms regulating its 

storage and release – mainly determined by the current status of the iron labile pool (free iron 

available within the cell) at any given time [416].  In addition to iron storage and release, 

ferritin has enzymatic properties converting Fe(II) to Fe(III) [417].  Iron in the cell has many 

critical roles. For example, iron in heme is essential for oxygen transport around – essential 

for survival. It is also an essential component of many enzymes involved in the cell cycle and 

electron transport. Fe (III) is involved in the generation of the potentially toxic superoxide 

radical which can damage DNA, lipids and proteins [407]. For these reasons, iron levels are 

highly regulated with ferritin playing a key role in the buffering of intracellular 

concentrations. Evidence of its innate importance is that the knocking out of the ferritin gene 

is embryonic lethal in mice [418]. Ferritin is known to be upregulated during inflammatory 

processes with the cytokines IL-1α and TNFα playing noted roles in this regard, by 

transcriptionally upregulating the H-chain of ferritin via NFκB binding sites on the ferritin h-

chain gene (Figure 4.16) [407]. 

 

Figure 4.16: Ferritin gene promoter region. Binding sites for NFκB, AP-1 and creb 

binding protein (CBP) are indicated thus indicating its regulation by inflammatory processes. 

Adapted from [407]. 



182 
  

The current study identified ferritin as being upregulated by LFQ MS in response to B. 

pertussis at 12 hr post infection (Table 4.2). This result was verified by western blot using 

antibodies specific to both the ferritin heavy chain and the ferritin light chain which indicated 

that the heavy chain was strongly induced at 6 hr post infection with the light chain 

upregulated much later at approximately 12 hr (Figure 4.17A,B). Analysis of both Ferritin LC 

and HC mRNA showed no such increases at either 6 or 12 hr (Figure 4.17C,D). Ferritin HC 

mRNA showed a slight increase at 12 hr but this approximated to 1.4 fold and was not 

significant (Figure 4.17C). As Ferritin HC has been shown to be upregulated transcriptionally 

by both TNF and IL-1 signalling, this would suggest that there are other factors at play in 

upregulating its expression. LPS for example, when administered endotracheally to rats, had 

been shown to induce ferritin protein but not mRNA [419]. With B. pertussis being a gram 

negative, LPS containing bacterium, this is one possible mechanism by which ferritin is being 

induced.  
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Figure 4.17: Verification of Ferritin upregulation in response to B. pertussis. (A and B)  

BEAS-2B cells were seeded in a 6-well plate at a density of 0.7x10
6
 cells/ml and incubated 

for 24 hr at 37 °C. Thereafter, cells were either left uninfected or infected with B. pertussis 

(MOI of 200) for 15 min, 30 min, 60 min, 2 hr, 4 hr, 6 hr and 12 hr. Cells were then harvested 

and each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell debris was removed by 

centrifugation with the remaining whole cell lysates mixed with 30 μl 5x Laemmli loading 

buffer and boiled for 10 min. Proteins were separated by SDS-PAGE and subjected to 

immunoblot analysis using anti-Ferritin HC, Ferritin LC and anti-β-Actin antibodies. Results 

represent two independent experiments. (C and D) BEAS-2B cells were plated at a density of 

0.7x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 37 °C. Individual wells were 

then either left unstimulated or stimulated with B. pertussis (MOI of 200) for the timepoints 

indicated. Cells were then harvested, total RNA isolated and from this, cDNA was 

synthesised. The cDNA was then used as a template for qRT-PCR using forward and reverse 

primers specific to human ferritin-lc, ferritin-hc and gapdh (housekeeping gene). * p<0.05, 

** p<0.01 and *** p<0.001. NS, not significant. Graph is representative of four independent 

experiments.  
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4.2.14 Selection and expression knockdown of selected protein hits 

Although the identification of proteins whose expression is significantly changed due to 

system perturbation is often cited as implying function , a deeper analysis of these protein’s 

physiological role is required in order to assign function with better understanding and 

confidence [112, 420]. With this in mind, it was decided to select a number of verified 

protein hits for further analysis by utilising RNA interference to knockdown their endogenous 

expression levels and from this, to examine if, or how, their reduced expression affected the 

immune response to B. pertussis infection.  Proteins were selected for further analysis by 

thoroughly researching their known functionality and from here, inferring potentially 

unknown roles in the immune response. The proteins selected for further analysis were 

stathmin 1, PPP1Cα, NLRP12, GSTO1 and DJ-1. All of these proteins shared in common, 

functions that indicate their capability of playing roles in the innate immune response to B. 

pertussis infection.   

To investigate the role played by these proteins in the response to B. pertussis, knockdown of 

their expression was performed in BEAS-2B cells using endoribonuclease-prepared siRNA 

(esiRNA). EsiRNA’s were purchased commercially and are prepared by amplifying cDNA 

specific to the gene of interest followed by generation of dsRNA from the cDNA, using RNA 

polymerase. This dsRNA is then chopped by RNase III into a heterogeneous mixture of short, 

overlapping siRNA fragments all specific to the target gene that triggers highly specific and 

effective gene silencing [421]. To confirm knockdown of target genes, BEAS-2B cells were 

transfected with either an esiRNA control sequence against green fluorescent protein (eGFP) 

or esiRNA specific to one each of the above proteins for 24 hr after which gene expression 

specific to each protein was monitored by real time PCR (Figure 4.20). Sufficient knockdown 

of gene expression was found to occur in each of the proteins targeted by esiRNA with 

approximately 50 % reduction in PPP1Cα mRNA, a 40 % reduction in NLRP12 mRNA, 95 % 
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reduction in levels of stathmin 1 mRNA levels and a 60 % reduction DJ-1 gene expression 

(Figure 4.18A-D). 

 

 

Figure 4.18: Suppression of human PPP1Cα, stathmin 1, NLRP12 and Dj-1 mRNA 

using RNA interference. BEAS-2B cells were seeded in a 6-well plate at a density of 

0.4x10
6
 cells/ml and incubated for 24 hr at 37 °C. Cells were then transfected with either 200 

ng target gene specific esiRNA or a control esiRNA (eGFP) for a further 24 hr. Cells were 

then harvested, total RNA isolated and from this, cDNA was synthesised. The cDNA was 

then used as a template for  qRT-PCR using forward and reverse primers specific to human 

ppp1cα (A), stmn1 (B), nlrp12 (C), dj-1(D) and gapdh (housekeeping gene). * p<0.05, ** 

p<0.01 and *** p<0.001. Graphs are representative of two independent experiments. 
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4.2.15 Cytokine production after gene knockdown in response to B. pertussis and TLR4 

activation 

In order to ascertain if the selected protein hits could somehow affect the innate immune 

response of BEAS-2B cells during B. pertussis infection, their expression was individually 

supressed using esiRNA and the cells immediately infected with the bacteria as normal for 12 

hr. Cell supernatants derived from infected cells were then analysed for inflammatory 

cytokine expression by ELISA in order to evaluate whether or not suppression of each 

particular protein could affect the inflammatory response. In unstimulated cells, transfection 

of the various esiRNAs did not drive any major production of IL-6 (Figure 4.19) thus 

ensuring that any effects observed upon B. pertussis stimulation were specific to esiRNA 

mediated protein supression and not to the presence of the esiRNA nucleotides themselves. 

Cells transfected with the negative control esiRNA, eGFP, and stimulated with B. pertussis 

for 12 hr produced large quantities of IL-6 with approximately 5000 pg/ml secreted (Figure 

4.19A). However, knockdown of expression of NLRP12, PPP1Cα, DJ-1 or stathmin 1 did not 

significantly modulate IL-6 protein production (Figure 4.19A). B. pertussis, like any 

pathogenic organism, likely activates multiple signalling pathways during an infection 

process. As well as this, B. pertussis is known to encode multiple virulence factors some of 

which can modulate various immune response signalling pathways in order to preserve its 

presence within the host. For example, one virulence factor, adenylate cyclase toxin, can 

supress superoxide production and inflammatory cytokine production [422]. Another 

virulence factor, FHA , can inhibit IL-12 production while inducing IL-6 and IL-10 [423]. 

Moreover, LPS can induce IL-6, TNFα, IL-1β, IL-12 and IL-8 secretion whilst inhibiting NO 

production [424]. B. pertussis therefore employs multiple strategies to modulate the immune 

response and thus the lack of an observed phenotype upon suppression of multiple protein 

hits may be due to a lack of specificity on the part of B. pertussis and how it interacts with the 

host immune system and not necessarily due to a lack of involvement of the protein hits. 
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As B. pertussis in known to activate TLR4 amongst other PRRs [143, 425], it was next 

examined whether knowndown of the selected proteins could affect the immune response 

specific to TLR4. To this end, BEAS-2B cells were again transfected with either control 

esiRNA or esiRNA specific to each protein 24 hr prior to stimulation with LPS. After 24 hr 

stimulation, supernatants were removed and examined for secreted levels of proinflammatory 

cytokines IL-6 and TNFα (Figure 4.19B,C).  

Transfection of cells with the various esiRNAs again had little effect on basal levels of IL-6 

and TNFα (Figure 4.19B,C). Transfection with the negative control esiRNA, eGFP, and 

stimulation with LPS caused detectable secretion of IL-6 but not TNFα from BEAS-2B cells 

(Figure 4.21B,C). LPS induced IL-6 production was significantly increased upon suppression 

of NLRP12 thus agreeing with previous studies showing that it could exert a negative 

influence on inflammatory cytokine production (Figure 4.19B) [354, 355]. Suppression of 

DJ-1 gave rise to a slight increase in IL-6 production but this was determined to be non-

significant (Figure 4.19B). Interestingly, knockdown of statmin-1 and PPP1Cα both led to a 

significant reduction in TLR4 mediated IL-6 production (Figure 4.19B).  

Apart from the previously discussed role for stathmin 1 as an endogenous activator of TLR3 

signalling [255], no other role for stathmin in mediating the innate immune response has 

previously been identified. Stathmin has been shown to colocalise with TLR3 in MS lesions 

on both the surface of astrocytes and neurons and also in intracellular vesicular structures of 

astrocytes and microglia [255]. This observation would suggest that stathmin is capable of 

localising to areas of the cell where TLRs are expressed and with TLR4 known to localise to 

the cell surface as well as vesicular structures within the cell, this leaves open the possibility 

that stathmin 1 can localise to the TLR4 signalling pathway. Stathmin 1 is also a key 

regulator of microtubule dynamics within the cell during lymphocyte activation [330] and as 

the ‘TLR4 signalosome’ is known to traffic between the plasma membrane and endosomal 
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compartments in a process dependent upon microtubule transport, it is conceivable that 

suppression of stathmin 1 is inhibiting the ability of TLR4 and/or its adaptors and interactors 

to localise to the signalling complex thereby reducing downstream cytokine production [84, 

86].  

PPP1Cα has a known role in innate signalling in that it dephosphorylates RIG-I and MDA5 to 

allow them to signal recognition of RNA viruses such as influenza virus, paramyxovirus, 

dengue virus, and picornavirus [292]. As a negative control, the authors of this study 

examined the role of PPP1Cα in TLR3 signalling (where it had no effect) but did not examine 

its role in other TLRs including TLR4.  Many proteins within the TLR4 pathway are 

phosphorylated on either serine or threonine residues including MAL, TRAM, IRAK4, 

STAT1, IRF3, IRF7 and IκB kinase β (IKKβ) [15, 57, 83, 426-428]. However, as PPP1Cα is 

a phosphatase, it would be expected that suppression on PPP1Cα would lead to increased 

phosphorylation. Knockdown of PPP1Cα led to a decrease in inflammatory cytokine 

production (Figure 4.19B) and so it would also be expected that PPP1Cα is acting on a 

protein which requires dephosphorylation for its activity, similar to RIG-I and MDA5. 

Proteins that are dephosphorylated to aid relay of TLR4 signal include eukaryotic initiation 

factor 2B and heat shock protein 27 (Hsp27) [429, 430]. It is possible that PPP1Cα acts on 

these molecules in order to drive TLR4 signalling. 
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Figure 4.19: B. pertussis and LPS meditated inflammatory response upon suppression of 

human PPP1Cα, stathmin 1, NLRP12 and Dj-1. BEAS-2B cells were seeded in a 6-well 

plate at a density of 0.4x10
6
cells/ml and incubated for 24 hr at 37 °C. Cells were then 

transfected with either 200ng target gene specific esiRNA or a control esiRNA (eGFP) for 24 

hr. At this point, medium was removed and fresh medium added. After 2 hr, cells were either 

left unstimulated or stimulated with either B. pertussis (400 bacteria/cell) or LPS (500ng/ml) 

for a further 12 and 24 hr respectively. Cell free supernatants were then harvested and 

analysed for the presence of (A) B. pertussis mediated IL-6 (N=5) and (B, C) LPS mediated 

IL-6 and TNFα by ELISA (N=3). * p<0.05, ** p<0.01 and *** p<0.001. NS, not significant. 

A 

B 
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4.2.16 Examination of stathmin 1’s and PPP1Cα’s ability to drive NFκB/AP-1 activation 

Due to the observed reduction of TLR4 mediated IL-6 production upon suppression of 

stathmin 1 and PPP1Cα, it was hypothesised that their signalling could in some way drive 

activation of the transcription factors NFκB and AP-1, both of which have binding sites on 

the IL-6 promoter sequence [431]. To investigate whether either of these proteins are capable 

of driving activation of these transcription factors in a TLR4 dependent manner, increasing 

amounts of plasmid DNA corresponding to either stathmin or PPP1Cα were expressed in 

HEK-Blue™-hTLR4 cells. After 24 hr, cells were stimulated with LPS for a further 24 hr 

after which signal activation was assayed. 

Although stimulation of the cells with LPS drove activation, expression of increasing 

amounts of plasmid DNA corresponding to 10-80 ng of either stathmin 1 or PPP1Cα failed to 

increase the intensity of the LPS generated signal (Figure 4.20A,B). This could mean that 

additional cofactors are required for both proteins to activated TLR4 signalling that are not 

present in the parental HEK cell line used. Recently, stathmin was shown to be an 

endogenous ligand for TLR3 and this was proven using a number of methods including the 

use of TLR3 deficient mice and RNA interference [255]. Interestingly, TLR3 transfected 

HEK293 cells were unable to respond to stathmin despite responding normally to poly(I:C) 

leading the authors to conclude that HEK 293 cells are missing cofactors that are required for 

the stathmin mediated activation of TLR3 [255]. Therefore, the observed results obtained in 

the current study are not without precedent. 
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Figure 4.20: Investigation of ability of stathmin 1 and PPP1Cα to independently drive 

NFκB and AP-1 signalling. A, HEK-Blue™-hTLR4 cells were plated at a density of 25,000 

cells/well in a 96-well plates and incubated at 37 °C for 24 hr. Cells were then transfected 

with either empty vector (EV) or increasing amounts of either stathmin 1 or PPP1Cα plasmid 

DNA as indicated and incubated for 24 hr. Cells were then stimulated with LPS (100 ng/ml) 

for a further 24 hr followed addition of 20 μl of supernatant from each well to 180 μl/well of 

prewarmed Quanti-Blue detection medium. Colour changes were measured by spectrometry 

reading at a wavelength of 630 nm. Results are representative of two independent 

experiments. NS, not significant. 
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4.3 Discussion 
 

The current study was conceived around the need to better characterise the physiological 

response to B. pertussis - a human pathogen that despite a widely available vaccine with high 

uptake has seen the recent doubling of reported cases in western countries. Taking Ireland as 

an example, in 2012, 444 cases were reported. This was double the number of cases reported 

in 2011 which itself was double the number of cases reported in 2010 [432]. Of the reported 

2012 cases, 30 % required hospitilisation and two were fatal [432]. Similar figures have been 

noted in the UK also [433]. The ability to improve the B. pertussis vaccine in order to 

increase the longevity and strength of its protection from the earliest point in life is the 

ultimate aim but to do this, a better understanding of both vaccine development and also B. 

pertussis infection is required [139].    

To this end, it was decided to characterise changes induced in the proteome of a human lung 

epithelial cell line upon infection with B. pertussis with the aim of cataloguing the proteins 

induced or repressed during infection which may ultimately play a role in its pathogenesis. 

Two separate proteomic techniques were used in this regard namely 2D-DIGE with LC-MS 

and LFQ MS. One of the most striking initial observations from the two studies was the lack 

of overlap in identified propteins between 2D-DIGE and LFQ MS. Proteins identified by 

LFQ MS but 2D-DIGE could be due to the higher sensitivity of LFQ MS compared to the 

more restrictive 2D-DIGE. However, the inability of LFQ MS to identify almost any proteins 

identified by 2D-DIGE is puzzling. One factor could be that during the preparation of protein 

lysates for LFQ MS, difficulties were experienced when trying to resuspend required 

quantities of protein in the resuspension buffer (Section 2.3). It could be possible that only 

proteins exhibiting particular characteristics regarding solubility were reuspended which 

could have led to exclusion of others that happened not be as solubule.   
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Another observation was that approximately one quarter of all proteins identified by both 

techniques as being significantly up or down regulated in response to infection were proteins 

with previously known roles in the immune response but of which, critically few have been 

shown to play a role in the response to B. pertussis (Figure 4.12 and Tables 4.1, 4.2). This 

result in itself would suggest that there is still a large amount of work still to be done in the 

characterisation of the immune response to B. pertussis and similarily to any bacterium. 

Other functional areas that were well represented were transcription and DNA editing, 

structural proteins and those involved in protein synthesis. The involvement of transcription 

and translation processes would be expected as the cell gears up to respond to infection. 

However it is interesting to correlate this observation the real time-PCR and immunoassay 

vertifications of various protein hits. Of the eight hits selected for verification, four did not 

correlate increased protein expression with increased gene expression (Figures 4.9, 4.11, 4.15 

and 4.17). This would suggest that approximately half of all protein regulation in response to 

B. pertussis is occurring at the post-transcriptional level. Post transcriptional control plays an 

important role in the regulation of immune effector proteins. Transcript specific regulation 

requires individual factors that bind to particular mRNA targets. The functional fate of a 

particular transcript is often defined by a myriad of RNA-binding proteins (RBPs) can 

stabilise mRNA transcripts and stimulate their translation or vice-versa [434].  Indeed, four 

separate RBPs were identified from the LFQ MS study and these, along with many other 

RNA modifying proteins, comprised 31 % of all proteins identified as being dynamically 

regulated in response to B. pertussis infection (Figure 4.12, Table 4.2). This would suggest 

that targeting the post-transcriptional regulation of immune signalling is a field with 

therapeutic potential. Indeed, a relatively recently characterised subset of post-transcriptional 

regulators, the micro-RNAs, which typically supress translation by targeting mRNA 
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transcripts of degradation have been identified as one such contributor to immune modulatory 

therapy in the future [435, 436].  

Unfortunately, upon suppression of a number of selected protein hits, no striking 

inflammatory based phenotype was observed during B. pertussis infection (Figure 4.19A). As 

previously stated, this could be due to the myriad of documented immune modulatory 

mechanisms possessed by B. pertussis and the many concurrent detection and signalling 

pathways employed by humans to respond to B. pertussis [139]. Therefore, the suppression of 

one individual protein with a function in one pahtway may have no overall effect. 

Interestingly however, significant modulation of the inflammatory response was noted upon 

suppression of the selected protein’s expression prior to stimulation with a purified version of 

a known B. pertussis PAMP, LPS (Figure 4.19B). Specifically, suppression of NLRP12 led 

to significantly increased IL-6 secretion while suppression of both the protein phosphotase 

PPP1Cα and the microtubule regulator stathmin 1 led to significantly decreased IL-6 

production (Figure 4.19B). As LPS, through its membrane receptor TLR4, is a key sensor of 

gram negative bacteria and consequently a major driver of the symptoms of septic shock, a 

role for these two proteins in mediating this response is a tantalising possibility. They do not 

appear to be intrinsic activators of the transcription factors NFκB and AP-1 upon 

overexpression of their wild-type forms in a TLR4 dependent system however perhaps 

overexpression of mutant forms of the proteins could inhibit activation. Alternatively, their 

role in TLR4 signalling may be more abstract and require the presence of other cellular 

proteins not present in the HEK293 cells used.  
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5.1 Chapter Aim 
 

The aim of this chaper was to analyse proteome modulation of a lung epithelial cell line in 

response to infection with the respiratory virus HRV16. This would be accomplished by 2D-

DIGE combined with LC-MS. Protein hits obtained would be compared to those obtained 

upon infection with the same cell line with B. pertussis. A selection of hits would then be 

validated and an analysis of their role in immune signalling undertaken by supresssion their 

expression priot to infection with HRV16. 
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5.2 Results 

5.2.1 Optimisation of HRV16 infection protocol 

As with B. pertussis in Chapter 4, an infection protocol had to be designed that would drive a 

sufficient immune response to HRV16 infection in BEAS-2B cells. It has been shown that 

HRV infects cells more efficiently at temperatures below 37 °C and this has been suggested 

as a reason why the human nasal cavity, which is exposed and therefore cooler, serves as the 

primary site of natural inoculation for HRVs [162, 437]. It has also been shown that infecting 

cells in vitro with HRV is more efficient when the cell monolayer is subconfluent [437]. For 

these reasons, BEAS-2B cells were infected with HRV16 (MOI of 3) at an estimated 50-60% 

confluency at 33 °C covering timpoints between 24 and 72 hr.    

Infection of BEAS-2B cells with HRV16 drove significant increases in RANTES, IL-6 and 

IFN-β mRNA expression however this only became apparent at 72 hr post infection (Figure 

5.1B,C). There was little or no change in gene expression at 6 or 24 hr with increases 

beginning at 48 hr. A possible explanation for the requirement of such a long timescale for an 

immune response to become apparent is simply the level of viral replication occurring. This 

was measured by quantitative PCR with primers specific to HRV16 (Figure 5.1D). This 

indicated that although there was an approximate 10-fold increase in HRV16 presence at 24 

hr post infection compared to 6 hr, it then took until 72 hr for this level be doubled (Figure 

5.1D). This would suggest that the HRV16’s replication was being impeded by the host’s 

immune response, activation of which was being detected at approximately 48 hr and at 

significant levels by 72 hr (Figure 5.1 A-C). In any case, HRV16 infection of BEAS-2B cells 

was confirmed along with the activation of an immune response. It was therefore decided to 

analyse the whole cell proteomic response to HRV16 at 72 hr post infection. 
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Figure 5.1: HRV16 infection of BEAS-2B cells activates the immune response. BEAS-2B 

cells were plated at a density of 0.4x10
6
 cells/ml in a six-well plate and incubated for 24 hr at 

37 °C. Individual wells were then either left unstimulated or stimulated with HRV16 (MOI of 

3) for the timepoints indicated. Cells were then harvested, total RNA isolated and from this, 

cDNA was synthesised. The cDNA was then used as a template for qRT-PCR using forward 

and reverse primers specific to human il-6, ifn-β, rantes and gapdh (housekeeping gene). * 

p<0.05, ** p<0.01 and *** p<0.001. Graphs are representative of three independent 

experiments.  
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5.2.2 Proteomic response to HRV16 infection – common trends and functional 

annotation of protein hits obtained by 2D-DIGE with MS 

Protein hits that were significantly up or down regulated in response to HRV16 infection of 

BEAS-2B cells, as identified by 2D-DIGE and MS were categorised as per Figure 4.2. 

Categorisation of each protein into the same broad functional roles applied to the B. pertussis 

study revealed broadly similar levels of contributions to processes such as immune function 

(24 % of proteins with HRV16 vs. 27 % with B. pertussis), cancer related (14 % of proteins 

with HRV16 vs. 12 % with B. pertussis), structural (15 % vs. 12 %) and redox (7 % vs. 9 %) 

(Figure 5.2A,B). However, notable differences were evidenced with a reduction of those 

involved in metabolism (7 % with HRV16 vs. 10 % with B. pertussis) and trafficng (12 % vs. 

5 %) (Figure 5.2A,B).    

It is possible that these differences in overall cellular function mobilisation represent at the 

broadest level, the contrasting cellular response to infection with a virus versus the response 

to a bacterium. Increased expression of proteins involved in protein synthesis for example, 

would align with dogma regarding viral hijacking of host transcription and translation 

machinery in order to replicate itself [162]. The 30 % reduction in proteins involved in 

metabolism is interesting but can be explained by the fact that unlike B. pertussis, HRV 

infection does not tend to drive pathology in lung epithelial cells [162, 437, 438]. As HRV 

infection is less lethal to the cell, it could be hypothesised that the cell in turn expends less 

energy in fighting it. Also, although both pathogens can reside within the cell [163, 249], the 

fact that B. pertussis is a much more complex organism compared to HRV (viruses are not 

considered a form of life according to modern taxonomy [439]) could mean that the levels of 

host metabolism subverted by an intracellular bacterial infection versus an intracellular viral 

infection are much higher.  
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The total number of upregulated proteins vs downregulated proteins was broadly similar 

between HRV16 and B. pertussis infection with an approximate 4:1 ratio of upregulated 

proteins against down regulated proteins observed in both studies (Figure 5.2C,D). 

 

 

 

Figure 5.2: Pie chart representation and comparison of protein function from hits 

identified by 2D-DIGE in response to HRV16 and B. pertussis infection. (A) 2D-DIGE 

identified proteins from HRV16 infected cells were researched for functional properties and 

grouped according to function(s) in one or more of eight general categories: protein synthesis, 

trafficking, redox, immune function, transcription/DNA editing, metabolism, structural and 

cancer. Total numbers of proteins assigned to each function were then displayed in pie chart 

format for visualisation. (B) 2D-DIGE identified protein hits from B. pertussis infected cells 

underwent a similar process and are displayed for comparative purposes. (C) Total numbers 

of 2D-DIGE MS – HRV16 derived protein hits that were up or down regulated according to 

Progenesis software were visualised in pie chart format (D) Total numbers of up and 

downregulated protein hits derived from the 2D-DIGE MS - B. pertussis study are shown for 

comparative purposes.  
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5.2.3 2D-DIGE protein hits common to both HRV16 and B. pertussis infection 

An average of 44 protein hits were identified as being significantly up or downregulated in 

response to either HRV16 or B. pertussis infection (Figure 5.3A). Of these, 11, or 

approximately 25 % of proteins were identified in both infection settings indicating that these 

play a role in the host response to both viral and bacterial challenge to cells of the respiratory 

system. These proteins were TPI, SOD1, DJ-1, stathmin 1, ubiquitin conjugating enzyme 13 

(Ubc13), peroxiredoxin 3 (PRDX3), nucleoside diphosphate kinase (NDK), gankryin (p28), 

IL-25, caspase 3 and partner of Sld five 2 (PSF2) (Figure 5.3A). Annotation and 

categorisation of these proteins according to their function revealed the processes that appear 

to be most important in the host response immune response to both bacterial and viral 

infections (Figure 5.3B, Table 5.1). 

Proteins with documented roles in immune function represent the majority (one-third) of 

those whose expression changed significantly in response to both viral and bacterial 

challenge. Proteins with roles in cancer processes represented slightly less than one quarter of 

the total with 22 %. Those involved in redox signalling and transcription/DNA editing 

accounted for 17 % and 11 % respectively. Metabolism, structural and trafficking proteins 

were each responsible for approximately 6 % (Figure 5.3B). It is interesting to note that when 

examining the proteome in response to bacterial or viral infection, by either 2D-DIGE MS or 

LFQ MS, between one quarter and one third of dynamically regulated proteins are known to 

have some function within the immune response. However, this in turn means that between 

three quarters and two thirds of identified proteins respectively, have no documented role in 

the immune response – a large proportion considering that they were identified upon 

pathogenic infection. While some of these undoubtedly have to date unknown links or roles 

in the immune response, it is unlikely that all do. Therefore, another avenue of research in 

terms of defining therapeutic targets could be in targeting proteins involved not in the 
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immune response, but involved in disregulated cancer signalling pathways for example or 

redox signalling pathways in response to infection.  

 

  

 

 

Figure 5.3: Quantification of unique and identical protein hits identified in response to 

HRV16 and B. pertussis infection by 2D-DIGE with LC/MS. (A) Venn diagram 

illustrating the total number (underlined) of protein hits identified by HRV16 (red circle) and 

B. pertussis (blue circle) infection of BEAS-2B cells. The number of identical protein hits 

detected in both infections is in the centre and the names of these proteins are annotated 

below. These identical protein hits were then researched for function and assigned to groups 

in the pie chart in (B). Functions were found to fall into seven general categories: trafficking, 

redox, immune function, transcription and DNA editing, metabolism, structural and cancer 

related.  
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Fold Ch. Protein Name Function 

↑1.6 

↑1.6 

↑1.5 

↑1.7 

↑1.6 

↑1.5 

↑1.5 

↑1.5 

↑1.6 

↑1.5 

↑1.6 

↓1.7 

↑1.5 

↑1.6 

↑1.5 

↓1.3 

↑1.4 

↑1.5 

↑1.3 

Stathmin 

Actin-related protein 2/3 complex subunit 5 

Prefoldin subunit 5 

Superoxide dismutase [Cu-Zn] 

Deoxyuridine 5'-triphosphate nucleotidohydrolase,  

Nucleoside diphosphate kinase A (NME1)  

Putative hydrolase RBBP9 

α/β hydrolase domain-containing protein 14B 

Dj-1 

PRDX3 

Lysozyme C  

Myosin regulatory light chain 12A 

60S acidic ribosomal protein P2 

Eukaryotic Translation Initiation Factor Eif5a 

Glia maturation factor beta 

Heme-binding protein 1 (p22HBP) 

Glutathione S-Transferase P1 

Gankryin or p28 or GANK 

Caspase 3 

Endogenous TLR3 agonist [255]. Cancer marker. Microtubule regulation [261]. 

Regulates general actin cytoskeleton [440].  

Promotes folding of nascent polypeptide chain [441].  

Redox signalling. Indirect NFκB modulator [269].   

Nucleotide metabolism [442]. 

Transfers phosphate groups.Cancer metastasis marker & link to endocytosis [443].  

Serine hydrolase.Increased in pancreatic cancer.Suppression of TGFβ signalling[444] 

Unknown  

Associated with Parkinson’s Disease. Protective against oxidative stress [288]. 

Redox signalling [274]. Prostate cancer marker [275]. 

Glycoside hydrolase. Damages peptidoglycan layer in bacterial cell walls [274].   

Critical in maintain cell structure and cellular integrity [445]. 

Component of ribosome 60S subunit. Protein synthesis elongation step [446]. 

Translation factor [447]. Regulates iNOS levels [448].  

Overexpression drives NFκB activation in astrocytes. Neuronal survival [449]. 

Binds heme [450]. 

Polymorphisms associated with multiple cancers[451]Inhibits JNK signalling[452]  

Inhibits NFκB by retaining in cytoplasm [453]. Noted oncoprotein [454]. 

Protease. Central apoptosis mediator [454]. 

 

 

Protein hits obtained by 2D-DIGE with MS 

Table 5.1: Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to HRV16 Infection. 

Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.3. 
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Fold Ch. Protein Name Function 

↑1.5 

↑1.5 

↓1.3 

↑1.5 

↑1.5 

↑1.5 

↑1.5 

↓1.5 

↓1.6 

↑1.5 

↓1.7 

↓1.7 

↓1.6 

↑1.4 

↑1.4 

↑1.4 

↑1.4 

↑1.4 

↑1.3 

DNA-directed RNA polymerases subunit RPABC1 

Phosphoglycerate mutase 1 

unnamed protein product  

40S ribosomal protein S12 

HINT1 

S-phase kinase-associated protein 1 

DNA replication complex GINS protein PSF2 

Lamin-B1  

Mitogen-activated protein kinase kinase kinase 5 

Splicing factor 3A subunit 1 

Menin 

Glycogen debranching enzyme  

Tetratricopeptide repeat protein 21B 

IL-25 

Histidine triad nucleotide-binding protein 2 

Cofilin-1 

Ubiquitin-conjugating enzyme E2 N (Ubc13) 

Triosephosphate isomerase 

coiled-coil domain containing 69 

Transcribes DNA into RNA [455].  

Phosphate transfer in glycolysis [290].  

Unknown 

Ribosome subunit. Site of protein synthesis [295].  

Tumour suppressor. Can inhibit NFκB activity [456]. Can trigger apoptosis [457].  

Component of SCF ubiquitin ligase. Targets proteins for degradation [458]. 

Essential in initiation of DNA replication. Preferentially binds to ssDNA [304]. 

Nuclear membrane protein. Structural integrity [459]. 

Serine/threonine kinase-mediates inflammatory and stress signals via AP-1[460]. 

Complex required for mRNA splicing [461]. 

Primarily nuclear. Inhibits AP-1 transcription factor jun-D [462]. 

Metabolism. Glycogen breakdown [463]. 

Component of IFT complex which maintains cilia (Uniprot). 

TH2 cytokine-induces secretion of IL-4 and others[296].Anti-inflammatory[297] 

Mitochondrial apoptotic sensitiser[464]. Regulates intracellular calcium levels [465] 

Actin modulator. Role in cell migration [273]. 

Required for MAP Kinase activation [271]. Role in TRAF6 mediated signalling [271] 

Important in glycolytic pathway [259]. 

Mitosis. Regulates spindle formation [466]. 

 

 

Protein hits obtained by 2D-DIGE with MS 

Table 5.1 (contd): Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to HRV16 

Infection. Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.3. 
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Fold Ch. Protein Name Function 

↑1.4 

↑1.4 

↑1.4 

Prefoldin subunit 3  

Acyl-protein thioesterase 1  

NME1-NME2 protein (Nucleoside diphosphate 

kinase A and B) 

Prefoldin promotes folding of nascent polypeptide chain [441]. 

T-cell activation . Depalmitoylation . Affects Ras signalling [467]. 

NME1 is a tumour suppressor. NME2 involved in activation of G proteins [468]. 

Protein hits obtained by 2D-DIGE with MS 

Table 5.1 (contd): Proteins identified by 2D-DIGE combined with LC-MS showing changes in expression in response to HRV16 

Infection. Protein function is also indicated. Full annotation of protein hits can be found in appendix table A1.3. 
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5.2.4 Verification of protein hits from HRV16 infection. 

As mentioned previously, approximately 25 % of proteins whose expression was significantly 

modulated in response to HRV16 infection were similarly modulated in response to B. 

pertussis infection (Figure 5.3A). Because expression of these proteins appeared modulated 

in response to two distinct pathogenic challenges, particular importance was assigned to them 

as they may play central roles host defence. With this in mind, it was decided to verify a 

selection of proteins which appeared in response to HRV16 that were also identified in B. 

pertussis infection. These proteins were further selected based on their contribution to each of 

the broad functional categories alluded to in Figure 5.3B. These were NDK (or NME) which 

has roles in cancer and trafficking, TPI which is involved in metabolism, SOD1 which has 

redox and immune functions, DJ-1 which is also involved in redox signalling and finally 

stathmin 1 which has demonstrated roles in immune function, cell structure and cancer (Table 

5.1). These proteins therefore play diverse roles within the cell and may play equally diverse 

roles in the response to pathogen challenge.  

 

5.2.5 Verification of HRV16 protein hit:  Nucleoside diphosphate kinase (NME1-NME2) 

 NDK A, also known as NME1 or nm23-H1 and NDK B, also known as NME2 or nm23-H2, 

are highly conserved and expressed enzymes with roles in many cellular processes. First, as 

its name suggests, it is a kinase that transfers phosphate groups between nucleoside tri- and 

diphosphates, for example, between adenosine triphosphate (ATP) and guanosine 

diphosphate (GDP) [443]. It can also bind to DNA to modulate transcription [469, 470]. 

Moreover, NDK has a granzyme-A dependent DNase activity during caspase independent 

apoptosis [471]. Somewhat controversially, NDK levels have been inversely associated with 

cancer metastasis in xenografts of human breast cancer and oral squamous cancer with 

reduced expression correlating with increased metastasis [472, 473]. However, other studies 

have doubted this [443, 474]. More recently, NDK has been shown to interact with the 
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Epstein-Barr virus (EBV) virulence factor  nuclease antigen 1 which inhibits NDK’s ability 

to supress cell migration in lymphoblastoid cell lines [475]. Finally, NDK has also been 

shown to play a role in dynamin dependent processes such as cytokinesis and endocytosis by 

way of its role in GTP production, which is required for dynamin activity [476, 477]. The 

exact mechanism for this role has not been ascertained. 

 

The current 2D-DIGE with MS study identified both NDK A and its isoform NDK B as being 

upregulated 1.5 fold in BEAS-2B cells infected with HRV16 for 72 hr compared to 

uninfected control cells (Figure 5.4A, Table 5.1). This result was verified by western blot 

using an anti-NME2 antibody. This showed that levels of both isoforms undergo major 

upregulation upon infection with HRV16 at 24 hr with this upregulation being maintained at 

112 hr (Figure 5.4B). Levels of NME2 mRNA were also analysed by real time PCR which 

did not indicate any significant upregulation at the gene level suggesting that NDK undergoes 

post-transcriptional or translational modifications to increase its expression (Figure 5.4C).  
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Figure 5.4: Verification of NME2 upregulation in response to HRV16. (A) Screen grab of 

Progenesis analysis showing NME2 presence on a reference 2D-DIGE gel image from 

control (Ctrl) and HRV16 infected (72 hr) lysates. Image represents four independent 

experiments (B) BEAS-2B cells were seeded in a 6-well plate at a density of 0.4x10
6
 cells/ml 

and incubated for 24 hr at 37 °C. Thereafter, cells were transferred to a 33 °C incubator and 

either left uninfected or infected with HRV16 (MOI of 3) for the timepoints indicated. Cells 

were then harvested and each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell 

debris was removed by centrifugation with the remaining whole cell lysates mixed with 30ul 

5x Laemmli loading buffer and boiled for 10 min. Proteins were separated by SDS-PAGE 

and subjected to immunoblot analysis using anti-NME2 and anti-β-Actin antibodies. Results 

represent two independent experiments. Image is representative of three independent 

experiments (C) BEAS-2B cells were plated, incubated and stimulated according to (B). Cells 

were then harvested, total RNA isolated and from this, cDNA was synthesised. The cDNA 

was then used as a template for qRT-PCR using forward and reverse primers specific to 

human nme2 and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. NS, not 

significant. Graph is representative of two independent experiments. 
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5.2.6 Verification of HRV16 protein hits:  DJ-1 and stathmin 1 

DJ-1 and stathmin 1 were both found to be upregulated 1.6 fold in HRV16 infected BEAS-2B 

cells compared to uninfected controls (Figure 5.5A, 5.6A). These results were verified by 

western blot which in the case of DJ-1, showed increased expression at 72 and 96 hr of 

HRV16 infection (Figure 5.5B). Stathmin 1 expression was found to be increased at 24 hr 

post infection and this was maintained until 96 hr (Figure 5.6B). DJ-1 mRNA was not found 

to be significantly changed across multiple timepoints indicating that its levels are being 

regulated post-transcriptionally (Figure 5.5C). This contrasts with its expression upon B. 

pertussis infection which indicated a small but significant increase in gene DJ-1 gene 

expression upon B. pertussis infection (Figure 4.4C). Expression of stathmin 1 mRNA was 

significantly upregulated upon HRV16 by approximately 4 fold compared to uninfected cells. 

This result correlates with stathmin 1’s gene expression upon B. pertussis infection which 

was also upregulated (Figure 5.6C and 4.6C). Further discussion of both DJ-1 and stathmin 1 

can be found in Section 4.2.1 and 4.2.6 respectively. 

5.2.7 Verification of HRV16  protein hits:  TPI and SOD 

TPI and SOD were both found by 2D-DIGE MS to be upregulated 1.4 and 1.7 fold 

respectively upon HRV16 infection at 72 hr (Figures 5.7A, 5.8A) (Table 5.1). Again, both 

results were verified by western blot with TPI undergoing upregulation between 48 hr and 96 

hr (Figure 5.7B). Levels of SOD were also increased at 48 hr and remained so at 112 hr of 

infection (Figure 5.8B). Analysis of mRNA corresponding to both proteins revealed no 

significant changes in expression across all timepoints analysed (Figure 5.7C and 5.8C). 

These results agreed with observations of the levels of the same mRNAs in response to B. 

pertussis infection which were also unchanged (Figure 4.16C and 4.15C). Further discussion 

of both TPI and SOD can be found in Section 4.2.8 and 4.2.12 respectively. 
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Figure 5.5: Verification of DJ-1 upregulation in response to HRV16. (A) Screen grab of 

Progenesis analysis showing DJ-1 presence on a reference 2D-DIGE gel image from control 

(Ctrl) and HRV16 infected (72 hr) lysates. Image represents four independent experiments (B) 

BEAS-2B cells were seeded in a 6-well plate at a density of 0.4x10
6
 cells/ml and incubated 

for 24 hr at 37 °C. Thereafter, cells were transferred to a 33 °C incubator and either left 

uninfected or infected with HRV16 (MOI of 3) for the timepoints indicated. Cells were then 

harvested and each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell debris was 

removed by centrifugation with the remaining whole cell lysates mixed with 30ul 5x 

Laemmli loading buffer and boiled for 10 min. Proteins were separated by SDS-PAGE and 

subjected to immunoblot analysis using anti-DJ-1 and anti-β-Actin antibodies. Results 

represent two independent experiments. Image is representative of three independent 

experiments (C) BEAS-2B cells were plated, incubated and stimulated according to (B). Cells 

were then harvested, total RNA isolated and from this, cDNA was synthesised. The cDNA 

was then used as a template for qRT-PCR using forward and reverse primers specific to 

human dj-1 and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. NS, not 

significant. Graph is representative of two independent experiments. 
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Figure 5.6: Verification of stathmin 1 upregulation in response to HRV16. (A) Screen 

grab of Progenesis analysis showing stathmin 1 presence on a reference 2D-DIGE gel image 

from control (Ctrl) and HRV16 infected (72 hr) lysates. Image represents four independent 

experiments (B) BEAS-2B cells were seeded in a 6-well plate at a density of 0.4x10
6
 cells/ml 

and incubated for 24 hr at 37 °C. Thereafter, cells were transferred to a 33 °C incubator and 

either left uninfected or infected with HRV16 (MOI of 3) for the timepoints indicated. Cells 

were then harvested and each sample lysed in 100 μl H.S. buffer for 20 min on ice. Cell 

debris was removed by centrifugation with the remaining whole cell lysates mixed with 30ul 

5x Laemmli loading buffer and boiled for 10 min. Proteins were separated by SDS-PAGE 

and subjected to immunoblot analysis using anti-stathmin 1 and anti-β-Actin antibodies. 

Results represent two independent experiments. Image is representative of three independent 

experiments (C) BEAS-2B cells were plated, incubated and stimulated according to (B). Cells 

were then harvested, total RNA isolated and from this, cDNA was synthesised. The cDNA 

was then used as a template for qRT-PCR using forward and reverse primers specific to 

human stmn1 and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** p<0.001. NS, not 

significant. Graph is representative of two independent experiments. 
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Figure 5.7: Verification of triose phosphate isomerase upregulation in response to 

HRV16. (A) Screen grab of Progenesis analysis showing triose phosphate isomerase (TPI) 

presence on a reference 2D-DIGE gel image from control (Ctrl) and HRV16 infected (72 hr) 

lysates. Image represents four independent experiments (B) BEAS-2B cells were seeded in a 

6-well plate at a density of 0.4x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells 

were transferred to a 33 °C incubator and either left uninfected or infected with HRV (MOI 

of 3) for the timepoints indicated. Cells were then harvested and each sample lysed in 100 μl 

H.S. buffer for 20 min on ice. Cell debris was removed by centrifugation with the remaining 

whole cell lysates mixed with 30ul 5x Laemmli loading buffer and boiled for 10 min. 

Proteins were separated by SDS-PAGE and subjected to immunoblot analysis using anti-TPI 

and anti-β-Actin antibodies. Results represent two independent experiments. Image is 

representative of three independent experiments (C) BEAS-2B cells were plated, incubated 

and stimulated according to (B). Cells were then harvested, total RNA isolated and from this, 

cDNA was synthesised. The cDNA was then used as a template for qRT-PCR using forward 

and reverse primers specific to human tpi and gapdh (housekeeping gene). * p<0.05, ** 

p<0.01 and *** p<0.001. NS, not significant. Graph is representative of two independent 

experiments. 
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Figure 5.8: Verification of superoxide dismutase upregulation in response to HRV16. (A) 

Screen grab of Progenesis analysis showing superoxide dismutase (SOD) presence on a 

reference 2D-DIGE gel image from control (Ctrl) and HRV16 infected (72 hr) lysates. Image 

represents four independent experiments (B) BEAS-2B cells were seeded in a 6-well plate at 

a density of 0.4x10
6
 cells/ml and incubated for 24 hr at 37 °C. Thereafter, cells were 

transferred to a 33 °C incubator and either left uninfected or infected with HRV (MOI of 3) 

for the timepoints indicated. Cells were then harvested and each sample lysed in 100 μl H.S. 

buffer for 20 min on ice. Cell debris was removed by centrifugation with the remaining whole 

cell lysates mixed with 30ul 5x Laemmli loading buffer and boiled for 10 min. Proteins were 

separated by SDS-PAGE and subjected to immunoblot analysis using anti-SOD and anti-β-

Actin antibodies. Results represent two independent experiments. Image is representative of 

three independent experiments (C) BEAS-2B cells were plated, incubated and stimulated 

according to (B). Cells were then harvested, total RNA isolated and from this, cDNA was 

synthesised. The cDNA was then used as a template for qRT-PCR using forward and reverse 

primers specific to human sod and gapdh (housekeeping gene). * p<0.05, ** p<0.01 and *** 

p<0.001. NS, not significant. Graph is representative of two independent experiments. 
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5.2.8 HRV16 and poly(I:C) mediated cytokine production post knockdown of stathmin 

1 and DJ-1 expression in BEAS-2B cells 

As previously discussed, stathmin 1’s primary function in microtubule organisation implies 

possible roles in diverse cellular functions [253, 261, 330]. Indeed, previous data has 

indicated a role for stathmin 1 in TLR4 mediated IL-6 production (Figure 4.19). Moreover, 

stathmin 1 has been described as a candidate TLR3 agonist and TLR3 is also known to sense 

dsRNA produced by HRV16 in BEAS-2B cells [478].  DJ-1 is a known biological marker for 

Parkinson’s disease susceptibility and may play a role in its pathogenesis [313]. Furthermore, 

DJ-1 has been shown to play a conserved role in the regulation of NO production in response 

to gram-negative bacteria [318, 319]. However a role for either proteins in mediating the 

immune response to viral infection has not been shown.  

In order to attain a greater understanding of the role that stathmin 1 and DJ-1 play in the host 

innate immune response to HRV16 infection, their levels were endogenously supressed in 

BEAS-2B cells immediately prior in HRV16 infection. Resulting cytokine expression in 

infected cells with suppressed levels of either protein were therefore compared to control 

infected cells. 

Validation of esiRNA mediated suppression of mRNA expression corresponding to both 

stathmin 1 and DJ-1 was previously carried out (Figure 4.18). Estimated knockdown 

efficiency was 95 % and 60 % respectively compared to controls (Figure 4.18B,D).  

Transfection of esiRNA specific to either stathmin 1 or DJ-1 did not significantly alter basal 

IL-6, RANTES or type-I IFN cytokine production (Figure 5.9A-E). Infection with HRV16 

induced production of IL-6 with approximately 400 pg/ml secreted compared to uninfected 

controls (Figure 5.9A). However, minimal RANTES or type-I IFN was detected (Figure 

5.9B,E). In contrast, poly(I:C) stimulation mediated strong production of all three cytokines 

compared to unstimulated controls (Figure 5.9C-E). Knockdown of stathmin 1 expression did 

not significantly modulate secretion of IL-6, RANTES or type-I IFN in response to HRV16 
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infection or poly(I:C) stimulation compared to uninfected or unstimulated controls (Figure 

5.9A-E). The same result was obtained upon suppression of DJ-1 (Figure 5.9A-E). Levels of 

IL-6 increased slightly upon stathmin 1 and DJ-1 suppression during HRV16 infection but 

this was not significant (Figure 5.9A). It would therefore appear that stathmin 1 and DJ-1 do 

not play a role in both pro-inflammatory cytokine and type-I IFN production in response to 

TLR3 activation and infection with HRV16.     
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Figure 5.9: HRV16 and poly(I:C) mediated cytokine production upon suppression of 

stathmin 1 and Dj-1. For HRV16 mediated responses, BEAS-2B cells were seeded in a 6-

well plate at a density of 0.4x10
6
cells/ml and either left uninfected or infected with HRV16 

(MOI of 3) in an incubator at 33 °C for 24 hr. Cells were then transfected with either 200 ng 

of target gene specific esiRNA or a control esiRNA (eGFP) for a further 24 hr. At this point, 

medium was removed and fresh medium containing HRV16 (MOI of 3) was added for a 

further 24 hr. Cell free supernatants were then harvested and analysed for the presence of 

human IL-6 (A), RANTES (B) and type-I IFN (E). For poly(I:C) mediated responses, BEAS-

2B cells were seeded in a 6-well plate at a density of 0.4x10
6
cells/ml for 24 hr at 37 °C. Cells 

were then transfected with either 200 ng of target gene specific esiRNA or a control esiRNA 

(eGFP) for a further 24 hr. At this point, medium was removed and fresh medium was added 

for 2 hr upon which cells were either left unstimulated or stimulated with poly(I:C) (25 μg/ml) 

for 24 hr. Cell free supernatants were then harvested and analysed for the presence of human 

IL-6 (C), RANTES (D) and type-I IFN (E). Results are representative of 3 independent 

experiments. NS, not significant. 
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5.3 Discussion 
 

Viral respiratory tract infections (VRTIs) are among the most common illnesses in humans 

[479]. Non-influenza related VRTIs, particularly the picnoraviruses place a significant 

economic burden on society in terms of missing direct medical costs and indirect losses in 

productivity including absences from work and school [480]. Annual losses to the US 

economy for example, have been estimated to total $40 billion annually, with  a close to 

50:50 split between direct and indirect expenditures [479]. Unlike influenza, for which there 

is a limited vaccine available that requires annual doses, there is no such prophylaxis 

currently available for protection against HRVs, despite the aforementioned economic toll. 

Antiviral therapies are therefore seen as a feasible method of control which serves to limit the 

virus’s ability hijack the host’s machinery and thus prevent replication, dissemination and the 

associated inflammatory symptoms. As previously mentioned, no analysis of the HRV 

induced changes to the host cell’s proteome have been conducted and a greater understanding 

of this area could aid the design of more effective antiviral drugs that target host response 

mechanisms, which the virus requires to survive, instead of targeting the virus itself.  

To this end, the whole cell proteome of a lung epithelial cell line, BEAS-2B, was assessed 

following infection with HRV16 using uninfected cells as a control. A total of 41 proteins 

were found to be significantly differentially regulated upon HRV16 viral infection (Figure 

5.3A, Table 5.1). Of these, 80% were upregulated and 20% were downregulated (Figure 

5.2C). Major cellular processes involved in the response to HRV16 appear to be immune 

function, protein synthesis, cancer related and structural processes (Figure 5.2A). 

Interestingly, approximately 25% of proteins identified as undergoing significant expression 

changes in response to HRV16 infection also underwent similar changes in response to B. 

pertussis infection (Figure 5.3A,B). As previously mentioned, these proteins in particular 
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may be of significant interest to future attempts at curbing the growth and pathogenesis of 

these two infections. It was interesting that the cytokine IL-25 was found to be significantly 

upregulated in response to both bacterial and viral challenge. IL-25 has only recently been 

discovered and is known to promote T helper cell 2 (TH2) associated pathology by 

augmenting production of TH2 cytokines such as IL-4, IL-5, IL-13 but not IL-17 (a TH1 

associated cytokine) despite IL-25 being a member of the IL-17 family [296]. A recent study 

has implicated IL-25 in enhancing herpes simplex virus 1 and VACV replication by 

inhibiting expression of an epithelial barrier protein, filaggrin as well as by synergistically 

acting with other TH2 cytokines to aid replication [481]. Moreover, HRV is known to induce 

higher clinical illness severity in asthmatic patients and this has been associated with 

significantly higher levels of TH2 cytokines and impaired TH1 immunity [482, 483]. As IL-25 

is a key driver of TH2 response it stands to reason that inhibiting its activity could lead to 

reduced viral replication and symptom severity. B. pertussis infection in infants and mice 

tends to drive a TH1 cytokine profile and it is difficult to speculate upon the effects of 

supressing IL-25 in this respect [484]. The number of proteins known to be cancer markers 

was surprising. Several of these have only transient if any known role in the host response to 

pathogens (Figure 5.2A and Table 5.1). NDK, RBBP9, PRDX3 and GSTP1 are examples of 

this trend and thus their identification as markers of host homeostatic disregulation, whether 

in a cancer or infection setting, signals their importance to host homeostasis. Either way, their 

dynamic regulation during the host response to HRV16 signifies a possible role in host 

defence against the virus or in viral subversion of the host response. Further experiments will 

need to be undertaken in order to identify the exact nature of their roles.  

Two proteins that were significantly upregulated in response to HRV16 infection, stathmin 1 

and Dj-1 were further assessed using RNA interference to examine if they were involved in 

mediating cytokine production in response to infection. Suppression of each protein 
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individually led to slight increases in IL-6 production during HRV16 however this was not 

significant. No change was similarly detected in the production of HRV16 or poly(I:C) 

mediated RANTES or type-I IFN upon suppression of either protein.  As no significant 

phenotype was observed, their exact role in the host innate immune response viral infection 

can only be speculated upon. Stathmin 1’s role in microtubule formation would suggest that it 

is involved in modulating intracellular structures or trafficking in response to viral entry 

within the cell.  DJ-1’s role in host protection against oxidative stress could serve to limit 

collateral damage to the host upon activation of ROS, a known human defence mechanism 

against viruses [485]. 

In conclusion, multiple proteins have been identified as being dynamically regulated in 

response to HRV16 infection. These proteins have documented roles in a wide variety of 

cellular processes and shed light on the host response to viral infection. Whilst no specific 

HRV16 infection related function could be found upon the suppression of expression of two 

of these proteins, more rigorous approaches are likely to yield dividends. These approaches 

would include the use of broad scale RNAi panels to supress many protein hits, both 

individually and simultaneously as well as a wider range of functional assays such as the 

monitoring of viral replication and ROS production in response to these protein knockdowns. 
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6.1 Discussion 

The overarching aim of the current work was to add new dimension(s) to our current 

knowledge regarding the host response to pathogen challenge. To this end, the aim of chapter 

3 was to examine the effects of the loss of a single, relatively understudied TLR adaptor 

molecule, TRAM, upon activation of multiple TLR signalling pathways. The central aim here 

was not to confirm previous findings regarding TRAM’s function but rather to re-evaluate its 

role in TLR signalling. Although it is generally accepted that TRAM functions solely as a 

linker molecule, bridging TLR4 with TRIF to primarily drive anti-viral cytokine production 

[15, 24], a careful reading of the primary papers that originally defined TRAM’s isolated role 

show that this hypothesis had not been stringently tested, particularly with regard to its 

possible role(s) in TLR4 independent IRF mediated cytokine production [23, 24]. Control 

experiments aiming to demonstrate that TRAM does not participate in TLR signalling 

pathways that are distinct from TLR4 have, to date, only examined NF-κB driven 

inflammatory cytokines such as TNFα and IL-6 upon perturbation of TRAM [23, 24]. This is 

surprising as the role of TRAM in TLR4 signalling has always been linked to the production 

of cytokines and chemokines associated with strong IRF3 and IRF7 regulation, such as type-I 

IFN [15].  Thus re-evaluating the role of TRAM in TLR signalling, whilst factoring in IRF3 

and IRF7 modulated cytokines, revealed a number of unanticipated roles for TRAM in TLR2, 

TLR7 and TLR9 signalling. Notably, these roles were not related to the production of the 

pro-inflammatory, primarily NF-κB controlled cytokine TNFα, but rather the IRF3 controlled 

chemokine RANTES and the type-I IFN (Figure 3.5). The observed phenotypes were 

unexpected for a number of reasons. Firstly, TLR2, TLR7 and TLR9 are primarily known as 

MyD88-dependent TLRs, which, upon recognition of their cognate PAMP, transduce their 

intracellular signal using only MyD88 (TLR2 also utilises the adaptor MAL at low PAMP 

concentrations) [15, 21]. TRAM, on the other hand is primarily known to mediate the MyD88 

independent signalling axis via TLR4 and thus it was surprising that it was found to play a 
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role in mediating MyD88-dependent TLR2, TLR7 and TLR9 signalling. However, the recent 

demonstration that TRAM physically interacts with MyD88 to mediate IL-18R signalling 

provides a precedent for a role for TRAM in mediating signalling via MyD88 dependent 

receptors. This result was verified in the current study, wherein an interaction between 

TRAM and MyD88 was demonstrated upon TLR7 stimulation and as elaborated upon earlier, 

suggests that TRAM is capable of localising to endosomal compartments upon TLR7 

signalling, just as it does during TLR4 signalling [84].    

Another reason for the unexpected phenotype was the observation that TRAM, at least in the 

case of TLR7 and TLR9 signalling, appears to mediate their signalling through a mechanism 

that involves IRF3 (Figure 3.9). The finding that IRF3 is activated in response to TLR7 or 

TLR9 signalling is novel and perhaps controversial, as it has previously been asserted that 

IRF3 is not involved in TLR7 signalling in Raw264.7 macrophages [212]. In contrast to the 

previous study that utilised the TLR7 ligand R848 at a concentration of 10 μM to activate the 

Raw264.7 macrophages, the current study demonstrated that 2.8 μM R848 (1 μg/ml) resulted 

in the activation of iBMDMs.  This suggests that iBMDMs may be more sensitive than 

Raw264.7 macrophages to TLR7 stimulation and that this may be due in part to their ability 

to utilise IRF3 to supplement their signalling. Thus, the observed TRAM-dependent IRF3 

activation may be cell type specific whereby iBMDMs display a lower TLR7 activation 

threshold due to their ability to activate IRF3 in a TRAM dependent  manner. From a 

(patho)physiological perspective, the reliance sole reliance on a MyD88-IRF5 or MyD88-

IRF7 for type-I IFN production by the endosomal TLRs seems a risky strategy for the cell. 

Although other cytosolic PRRs can also sense foreign nucleotides leading to the activation of 

Type-I IFN in an IRF3 and IRF7 dependent manner [486], the endosomsal TLRs nevertheless 

play an important role in pathogen response and the potential to utilise IRF3, via a TLR7-

MyD88-TRAM-IRF3 axis, would at least expand their ability to successfully transmit a 
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danger signal to the nucleus if IRF7 and in the case of TLR7, IRF5 also, were to become 

antagonised by a viral subversion mechanism [487].   

It should be noted that the involvement of TRAM in TLR7 signalling does not negate its 

reliance on MyD88. The TLR7 dependent co-immunoprecipitation of TRAM and MyD88 

suggests that TLR7-TRAM signalling is dependent upon MyD88 (Figure 3.19). Thus, a 

remaining question is whether TRAM is required for the interaction of MyD88 with TLR7, as 

it is for the interaction of TRIF with TLR4, or is it the case that TRAM binds downstream of 

MyD88 to act as a linker to the IRF3 pathway. Contrasting with MyD88 deficient cells [40], 

suppression of TRAM does not completely abolish TLR7 signalling (Figure 3.5, 3.16) 

suggesting that there are still transcription factor(s), likely IRF5 and IRF7 via MyD88, 

mediating type-I IFN in the absence of the TRAM-IRF3 pathway. This would therefore 

suggest that TRAM functions downstream of MyD88. If it were upstream of MyD88, TRAM 

deficient cells would be completely unresponsive to TLR7 or TLR9 stimulation, which is not 

the case (Figure 3.5). Thus, it may be proposed that TLR7 signalling in BMDMs may be 

mediated by three MyD88 dependent signalling pathways. These are a TLR7-MyD88-NF-κB 

axis, a TLR7-MyD88-IRF5/IRF7 axis and a novel TLR7-MyD88-TRAM-IRF3 axis which 

complements the IRF5/IRF7 pathway. Future work would include elucidation of the factors 

that modulate TLR7 signalling downstream of TRAM but upstream of IRF3 in this pathway. 

IRF3 is known to be phosphorylated by the combined action of the kinases TBK1 and IKKε 

and would therefore be expected to be involved in any activation of IRF3 [488]. Furthermore, 

confocal imaging of TRAM, TLR7, TLR9 and IRF3 upon stimulation with the corresponding 

TLR ligands would be hugely useful in both visualising the trafficking patterns of these 

proteins during active signalling and also in conforming the roles of TRAM and IRF3 in 

these pathways.  
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If such novel insights can still be made regarding the function of the adaptor TRAM, one of 

the basic tenants of TLR signalling, then one must wonder as to the scale of the ‘novelties’ 

still to be discovered with roles in the host defence against pathogen invasion. One could 

argue that almost all proteins in a cell can potentially play some role in this regard as any 

change to cell homeostasis, be it from a pathogenic, cancerous, aging or autoimmune source, 

can signal to host systems to mobilise in order to revert the cell back to its homeostatic 

equilibrium. The host response to a pathogen for example, could therefore be considered not 

just in terms of the immune response, but should also consider the multitude of ways in 

which cellular process are disrupted and thus respond to threats [489]. Paying attention to 

these processes and how they dictate the balance of survival between say pathogen and host 

could provide many new targets for therapeutic interventions or at the very least bring a 

greater understand of what exactly occurs to a cell during pathogenic insult. 

 

With the above concept in mind, the aim of chapters four and five were to delineate the host 

response to pathogenic insult – not at the level of a single protein, namely TRAM, but on a 

global scale, utilising a whole cell proteomic approach. Proteins whose expression is 

significantly modified in response to infection are considered mediators of host homeostatic 

change and are therefore potential targets for therapies that seeks to restore homeostasis. Two 

respiratory pathogens, one bacterial (B. pertussis) and one viral (HRV16), were chosen as the 

model pathogens owning to their contrasting taxonomy and comparable target in humans, the 

respiratory tract. Humans are also the primary reservoir for B. pertussis and HRV16 and both 

have thus evolved remarkable abilities to stubbornly resist eradication despite advances in 

medical science. The host proteomic response upon infection with each pathogen was thus 

characterised with comparisons between the two also made in order to more succinctly 

illustrate protein responses that are exclusive to either pathogen or that are inclusive of both.  
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Chapter four sought to examine the host whole cell proteomic response to B. pertussis 

infection and is the first time such a study has been attempted. Previously, a transcriptomic 

study using high density DNA microarrays examined the in-vitro host response to B. 

pertussis infection in the same cell-line (BEAS-2B) that was used the current study [181]. 

The researchers investigated the transcriptome of BEAS-2B cells following exposure to B. 

pertussis at a single time point and MOI in order to create an easily controlled and 

reproducible model of the interaction between the pathogen and its target cell type. The 

transcriptomic study found that upon B. pertussis infection for three hours, a dominant pro-

inflammatory response was generated with numerous inflammatory genes upregulated 

including those encoding IL-8, IL-6 and IL-1β [181]. It was interesting that both IL-6 and IL-

1β mRNAs were upregulated as the current work documented copious IL-6 production in 

response to B. pertussis (Figure 4.19), however no detectable IL-1β was detected. It may be 

possible that while IL-β mRNA is upregulated in response to B. pertussis, its secretion at the 

protein level may be somehow inhibited by a B. pertussis virulence factor. A further 

possibility is that BEAS-2B cells either lack, or express low levels of the inflammasome 

machinery required to sense B. pertussis and thus process pro-IL-1β into its mature, secretory 

form. The expression of NLRP12 was shown to be upregulated in response to B. pertussis 

however as no detectable IL-1β was secreted, this suggests that NLRP12 is not a major 

sensor of B. pertussis in BEAS-2B cells, at least with regard to mature IL-1β production.  The 

disconnect between gene and protein expression was a recurring theme in the analysis of hits 

obtained through both 2D-DIGE MS and LFQ MS. Many proteins which were upregulated in 

response to B. pertussis infection such as SOD, TPI, NLRP12 and ferritin were not due to 

increased gene expression (Figures 4.15, 4.9 and 4.11). Similarly, the disconnect between IL-

1β mRNA upregulation in [181] and the lack of secreted mature IL-1β in the current study 

illustrates a key drawback of transcriptomic studies. Dynamic gene expression in response to 
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cell perturbation does not necessarily correlate with protein expression [490]. Inferring that 

this is the case, without verification of corresponding protein levels, leads to false 

conclusions being drawn. Thus, a key benefit of the proteomic approach is simultaneously 

illustrated.  Taking the trancriptomic study at face-value, one could be forgiven for expecting 

both IL-6 and IL-1β to be key effector molecules produced by BEAS-2B cells in response to 

B. pertussis when in fact only IL-6 is secreted in detectable quantities.   

  

Both the transcriptomic [181] and current proteomic studies revealed the upregulation of 

several apoptosis factors with anti-apoptotic genes such as tnfaip3 and api2 dominating in the 

transcriptomic study and more pro-apoptotic proteins such as caspase 3 and caspase 7 in the 

proteomic study (Table 4.1, 4.2). This apparent shift to a pro-apoptotic fate can be explained 

by the different time points used in both studies with the transcriptional study infecting for 3 

hr and the proteomic study for 12 hr. As B. pertussis is known to drive apoptosis in infected 

cells [438, 491], the shift from anti-apoptotic to pro-apoptotic proteins likely reflects the 

detrimental effect the replicating bacteria are having on the host cell viability at the later time 

point of 12 hr. Thus B. pertussis mediated apoptosis of infected cells in likely to proceed in a 

caspase 3 and caspase 7-dependent manner. 

Another interesting pattern was the relatively large contribution that proteins associated with 

cancer and transcriptional/DNA editing processes appear to make to the changes in host 

homeostasis upon B. pertussis infection (Figure 4.12). It is estimated that approximately 15% 

of malignant cancers are attributed to infections with bacteria and viruses [492].  Examples 

include Hylobacteria pyori and gastric cancer and Streptococcus bovis with colon cancer 

[493, 494]. There is no known link between B. pertussis and cancer, however the large 

number of detected proteins with roles in DNA damage repair, DNA and RNA modifications 

and the cell cycle agree with the consensus that bacterial agents are capable of causing or at 
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least inducing similar pathways involved in tumorigenesis [492]. Pathogens such as B. 

pertussis that are capable of residing within the cell, like tumours, require metabolic 

resources which must be derived from the host. Thus like tumours [495], these requirements 

could potentially be targeted for disruption to supress bacterial replication – particularly 

during chronic infections. B. pertussis, if undetected regularly causes chronic infections [496] 

and this paradigm could potentially be used to target B. pertussis. However, a more useful 

intervention would be against antibiotic resistant bacteria such as methicillin-resistant 

Staphylococcus aerus (MRSA), which is also capable of surviving intracellularly [497]. 

Preventing these bacteria from increasing host intracellular metabolism and subverting it for 

their own needs could inhibit intracellular survival and thus reduce lethality.  

Suppression of a number of protein hits failed to elicit any change in secretion of IL-6 (Figure 

4.19A). However, this does not in any way mean that these proteins have no role to play in 

the host response to B. pertussis. Cytokine secretion is but one effector mechanism used by 

the cell and does not paint a complete picture regarding host response. Other defence 

mechanisms such as NO production could also be monitored as well as levels of bacterial 

replication and host cell death. Even better would be the use of in-vivo studies using mice 

deficient in each protein of interest. Alteration of survival upon loss of one of the protein hits 

would be the ideal illustration of a role for a particular protein in B. pertussis pathogenesis. 

Despite the lack of a cytokine related phenotype upon B. pertussis infection, suppression of 

PPP1Cα and stathmin 1 caused a significant reduction in TLR4 mediated IL-6 secretion 

(Figure 4.19B). The TLR4 ligand, LPS, is a noted virulence factor of B. pertussis however 

whilst B. pertussis is known to be recognised by TLR4, it is a relatively weak activator of this 

PRR compared to other members of the Bordetella family [498]. Thus B. pertussis may 

purposely seek to avoid or suppress the TLR4 response as host proteins stathmin and PPP1Cα, 

both upregulated by B. pertussis, appear to mediate TLR4’s inflammatory response which ma 
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in turn negatively impact upon B. pertussis survival. Addition of TLR4 agonists as adjuvants 

to B. pertussis vaccine preparations may therefore aid the protective response generated. 

Indeed both acellular and whole cell pertussis vaccines show defective protection against 

disease in TLR4 deficient mice [143]. 

 

Chapter five sought to examine the proteome of BEAS-2B cells in response to infection with 

another respiratory pathogen, HRV16. The aims of the study were to ascertain the proteins 

that may potentially be involved in the host response to viral infection, whether these had any 

effect on the immune response to HRV16 and also to probe similarities observed between the 

proteome alterations upon HRV16 and B. pertussis infection.  

The reduction in the number of HRV16 mediated protein hits with functions in metabolism 

compared to B. pertussis has already been discussed (Section 5.2.2), and serves to illustrate 

the difference in the host response to both pathogens. Another interesting observation was 

that approximately 25 % of protein hits altered upon HRV16 infection were also altered upon 

B. pertussis infection (Figure 5.3). Focusing on these proteins that were identified in both 

studies, 33 %, had previously demonstrated immune function, one quarter had documented 

links to cancer progression and one sixth have known involvements in redox pathways 

(Figure 5.3). Viral and bacterial co-infections in humans have been extensively reported upon 

with one of the best known examples being the synergism between Streptococcus 

pneumoniae and influenza which caused the ‘Spanish flu’ pandemic in 1918 [499]. This 

ability to coexist may be the result of shared patterns of host intracellular modification by 

certain bacteria and viruses thus rendering the cell weakened and amenable to coinfection 

[499]. Additionally, immune subversion mechanisms initiated by bacterial infections could 

increase susceptibility to viral coinfection and vice-versa. Indeed, the propensity for 

coinfection between B. pertussis and HRV was illustrated in a recent Dutch study on a cohort 
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of children who experienced prolonged coughing episodes found that the two most frequent 

pathogens encountered from swabs taken from the children were HRV (32 %) and B. 

pertussis (17 %) [500]. Moreover, the most frequent mixed infection was also HRV and B. 

pertussis which occurred in 10% of cases [500]. Thus it is proposed that the similarities in 

host proteome remodelling observed in response to both B. pertussis and HRV16 infection 

suggests that there are similar pathways utilised by both pathogens to supplement their 

individual replication. Future work will involve perturbing these pathways with the intention 

of curbing either individual pathogens or both. Again, the use of knockout mice combined 

with both individual and co-infection models with a focus on alterations in bacterial or viral 

load and mouse survival in knockout mice compared to WT strains would be the preferred 

model. 

Knockdown of two protein hits that were upregulated upon HRV16 infection, stathmin 1 and 

DJ-1 did not have any effect on IL-6 production in response to HRV16 (Figure 5.9). This 

result mimics that observed upon B. pertussis infection as these two proteins, which were also 

found to be upregulated in response to B. pertussis, did not play a role in B. pertussis 

mediated IL-6 production (Figure 4.19A). Suppression of stathmin 1 and DJ-1 followed by 

stimulation of BEAS-2B cells with a HRV16 PAMP, dsRNA, in the form of poly(I:C) also 

had no effect on either IL-6, RANTES or type-I IFN secretion (Figure 5.9). It therefore 

remains to be seen what roles these proteins play in the host response to HRV16 infection. 

Further studies looking other cellular processes such as iNOS production and metabolism 

could be investigated. As mentioned earlier, alterations to viral replication could also be 

studied upon knockdown of these proteins. One interesting caveat that emerged from the 

poly(I:C) stimulations was that stathmin 1 suppression had no effect on poly(I:C) - TLR3  

mediated IL-6 production (Figure 5.9A). This contrasts with LPS (TLR4) mediated IL- 

production which was significantly reduced upon stathmin 1 knockdown (Figure 4.19B). 
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Thus, it would appear that stathmin 1’s role in TLR signalling is partially exclusive, at least 

to the TLR4 pathway. Stathmin’s role in microtubule formation has already been aluded to 

(Table 4.1, 5.1). It has also been shown that both TLR4 and TLR2 colocalise with alpha-

tubulin and align with microtubules in both dendritic cells and monocytes [501]. Moreover, 

microtubule disruption disturbed TLR2 and TLR4 expression and led to inhibition of IL-12 

production [501]. Thus potential roles in the signalling pathways of other TLRs, particularly 

those capable of trafficking between the plasma membrane and endosomes, such as TLR2 

[502] will have to be investigated in the future in order to further elucidate stathmin 1’s role 

in TLR signalling.  

 

6.2 Future work 

Regarding Chapter 3, there are a number of further experiments that could supplement the 

current data. It was previously attempted to obtain primary WT and TRAM 
-/- 

BMDMs in 

order to confirm the observed phenotypes, however the once shipped, the cells failed to grow. 

This experiement should be attempted again. TRAM’s role in TLR4 signalling has been 

shown to be dependent upon the adaptor TRIF which is immediately downstram of TRAM. 

Therefore, obtaining primary TRIF 
-/-

 BMDMs in order to define TRIF’s role in TLR7 

signalling would also be helpful.  

RNA interference of TRAM in human cells indicated a similar role for human TRAM in the 

TLR7 pathway. However, these experiements looked only at cytokine mRNA induction. 

Measurement of protein secretion by ELISA could not be optimised in time and should be 

examined in future experiments.  

It would be beneficial to provide further confirmation of TRAM’s physical presence within 

the TLR7 pathway and thus TRAM’s trafficking, localisation and protein-protein interactions 
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could be monitored at multiple timepoints using confocal microscopy to probe the position of 

fluorescently-tagged TRAM and other fluorescently-tagged proteins of interest such as TLR7, 

MyD88, TRIF, IRF3, IRF5, IRF7, TRAF6 and TRAF3.  

Finally, it would be interesting to see if the survival of TRAM deficient mice is in any way 

altered compared to WT mice upon infection with a TLR7 activating ssRNA virus. One 

would have to be certain however, that only the TLR7 pathway is being activated. Thus 

perhaps an intra-peritoneal injection of the TLR7 ligand R848 could be attempted and 

survival motiored from here. 

 

Focusing on Chapters’s 4 and 5, again there are numerous experiments that could append the 

present data. Regarding the LFQ MS study of B. pertussis modulated proteins, it was 

disappointing that more proteins known to be involved in innate immune signalling were not 

identified as well as the fact that only two proteins identified by LFQ MS were also found 

using 2D-DIGE MS. Thus it would be useful to further optimise the LFQ MS protocol 

particularly the protein lysis, peptide preparation and the specific protocol used for the Q-

Exactive MS/MS run. Once optimised, this technique could be applied to studying the whole-

cell lysate of HRV16 infected cells also.  

The experiements whereby esiRNA was used to reduce the endogenoud expression of 

selected hit proteins during infection with B. pertussis or HRV16 did produce some 

interesting results however they were limited by the small number of cytokine readouts. It is 

possible to purchase commercially produced cytokine arrays tailored to specific cell types 

(such as the epithelial cells used in the current work) which could simultaneously profile the 

secretion of many cytokines between control and knockdown states upon infection with B. 
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pertussis  or HRV16. This could therefore provide a much broader characterisation of the role 

of the selected proteins in cytokine secretion during an infection scerario.  

Cytokines are not the only possible downstream effector function that could be modulated by 

the selected proteins however. Other processes such as ROS production could also be 

monitored. Additionally, both bacterial and viral load could be tracked in order to see if the 

survival of B. pertussis or HRV16 is being impeded or indeed facilitated by the suppression 

of the selected proteins.  
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Spot 

No. 

Protein Name Fold 

Change 

Accession 

Code 

Mascot 

Score 

MW 

(kDa) 

pI Peptides 

Matched 

Cov 

(%) 

P Value 

1221 Thioredoxin ↑1.5 P10599 194 11.7 4.82 4 34 7.1E-04 

1221 Replication protein A 14 kDa subunit  ↑1.5 P35244 86 13.5 4.96 2 33 7.1E-04 

951 Triosephosphotase Isomerase (TPI) ↑4.4 P60174 297 30.7 5.65 5 29 0.008 

1179 Tubulin-specific chaperone A ↑1.4 O75347 172 12.8 5.25 6 38 0.002 

1120 Stathmin ↑1.5 P16949 142 17.2 5.76 3 21 0.015 

1120 Stathmin-2 ↑1.5 Q93045 86 20.8 8.4 2 10 0.015 

467 Protein disulfide-isomerase ↓1.3 P07237 916 57.0 4.76 25 50 0.015 

103 Transitional endoplasmic reticulum ATPase  ↓1.5 P55072 791 89.2 5.14 19 29 8E-04 

338 heat shock 70kDa protein 9B  ↓1.4 BAD96478 376 73.5 5.87 8 15 0.005 

527 Tapasin ERP57  ↓1.4 3F8U_A 946 54.1 5.61 18 46 1.8E-05 

1312 Superoxide dismutase [Cu-Zn] ↑1.3 Q6NR85 55 15.9 5.7 1 9 9.8E-05 

1199 HGSTP1-1 ↑1.3 4PGT_A 436 23.3 5.43 11 52 0.043 

1434 Ubiquitin-conjugating enzyme E2 N (Ubc13) ↑1.3 P61088 281 17.1 6.13 6 51 5.8E-04 

1347 Cofilin-1 ↓1.7 P23528 256 18.4 8.22 4 42 0.007 

1191 PRDX3  ↑1.3 P30048 238 27.6 7.67 4 18 0.02 

1032 Clic1 ↑1.4 3QR6_A 359 26.9 5.01 9 39 0.001 

997 EB1  ↑1.3 Q15691 446 29.9 5.02 10 45 0.021 

1061 

1019 

 

 

Glutathione S-transferase omega-1 

NLRP12 

 

 

↑1.4 

↑1.3 

 

 

P78417 

NP_150639 

 

 

204 

52 

 

 

27.5 

102 

 

 

6.23 

8.85 

 

 

7 

2 

 

 

24 

13 

 

 

0.017 

Table A1.1: Proteins identified by DIGE/ LC/MS showing changes in expression in response to B. pertussis Infection. All proteins were 

identified using the NCBI and Swiss Prot protein databases and demonstrated a mascot score >52 indicating reliable protein identification.  
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P Value 

1032 Proteasome subunit beta type-4 ↑1.5 P28070 372 29.1 5.72 9 36 0.005 

826 Annexin A2 ↑1.5 3GPD_R 125 38.5 7.57 2 6 3.7E-04 

1509 Thioredoxin domain-containing protein 12 ↑1.5 O75347 200 19.1 5.27 4 30 0.022 

1444 Mitotic spindle-associated MMXD complex  ↑1.5 Q9Y3D0 84 17.6 5.07 2 26 0.002 

1374 Nucleoside diphosphate kinase A (NME!) ↑1.4 Q96Q81 461 17.1 5.83 18 64 5.8E-06 

1539 Peroxiredoxin-6 ↑1.3 1SOA_A 256 25.0 6 9 44 0.023 

1488 Dj-1  ↑1.3 2RK6_A 490 19.8 6.33 16 66 0.011 

1093 Acyl-protein thioesterase 1 ↑1.3 P18669 89 24.6 6.29 2 8 0.004 

997 Phosphoglycerate mutase 1  ↑1.4 P37837 110 28.7 6.67 2 15 0.025 

806 Transaldolase ↑1.3 P62136 323 37.5 5.26 7 21 0.005 

1382 Serine/threonine-protein phosphatase PP1α ↑1.4 BAA11928 379 37.4 5.74 7 22 0.007 

1415 ER-60 protease ↓1.3 P38657 609 56.7 5.98 13 27 5.9E-05 

1442 Galectin-1  ↑1.3 P25398 260 14.5 5.34 7 44 0.001 

1342 40S ribosomal protein S12 ↑1.4 Q969H8 73 14.5 6.81 3 13 9E-07 

 1325 IL-25 ↑1.3 P09211 235 18.7 6.2 6 27 0.002 

1047 Caspase 3 ↑1.3 O75832 63 21.4 7.67 3 19 0.004 

1087 PSMB10  ↑1.4 Q6IBR6 100 24.4 5.71 3 17 0.011 

1492 Platelet-activating factor acetylhydrolase  ↑1.4 1QUQ_A 80 25.5 5.57 2 12 0.003 

          

          

          

Table A1.1: Proteins identified by DIGE/ LC/MS showing changes in expression in response to B. pertussis Infection. All proteins were 

identified using the NCBI and Swiss Prot protein databases and demonstrated a mascot score >52 indicating reliable protein identification.  
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972 Replication Protein A (Rpa14 And Rpa32) ↑1.3 P06730 260 14.4 5.43 6 44 0.008 

1028 Eukaryotic translation initiation factor 4E ↑1.3 Q9UC36 74 25.0 5.79 2 11 0.047 

1037 Heat shock protein beta-1 ↑1.4 P13693 73 22.7 5.98 1 4 4E-04 

1109 DNA replication complex GINS protein PSF2 ↑1.3 O75947 58 21.4 5.29 1 13 6E-04 

1128 ATP synthase subunit d, mitochondrial ↑1.4 P04632 476 18.4 5.21 12 67 1.4E-04 

1019 Calpain small subunit 1 ↑1.4 Q96L46 485 28.2 5.05 9 51 1.6E-04 

1500 14-3-3 protein epsilon  ↑1.4 Q07021 123 29.1 4.63 3 15 0.004 

886 Complement component 1 Q  ↑1.4 P28066 289 31.3 4.74 8 31 3E-04 

1494 Putative hydrolase RBBP9 ↑1.4 1SOA_A 131 20.9 5.79 2 18 0.017 

          

          

          

          

          

          

          

 

 

 

Table A1.1: Proteins identified by DIGE/ LC/MS showing changes in expression in response to B. pertussis Infection. All proteins were 

identified using the NCBI and Swiss Prot protein databases and demonstrated a mascot score >52 indicating reliable protein identification.  
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Protein Name Accession Code LFQ Intensity 

(Control) 

LFQ Intensity 

(Infected) 

Matched 

Peptides 

Fold 

Change 

PEP ANOVA 

Elongation Factor gamma  IPI:IPI00000875.7 NaN 26.1588 4 N/A 2.49E-16 N/A 

Sodium/potassium-transporting ATPase  IPI:IPI00006482.1 NaN 25.2055 6 N/A 8.69E-14 N/A 

Adenylyl cyclase-associated protein 1 IPI:IPI00008274.7 NaN 24.056 3 N/A 3.92E-16 N/A 

Exportin-2 IPI:IPI00022744.5 NaN 25.1535 7 N/A 1.03E-20 N/A 

Pre mRNA slicing factor SYF2 IPI:IPI00022963.3 NaN 24.6667 3 N/A 3.93E-13 N/A 

60S ribosomal protein L9 IPI:IPI00031691.1 NaN 25.0996 2 N/A 8.65E-05 N/A 

Pre-rRNA-processing protein TSR2  IPI:IPI00056314.1 NaN 23.5004 2 N/A 0.000226 N/A 

Glucose-6-phosphate 1-dehydrogenase IPI:IPI00216008.4 NaN 26.0543 8 N/A 1.20E-25 N/A 

Caspase-7 IPI:IPI00216674.1 NaN 24.9004 2 N/A 0.001409 N/A 

B-cell receptor-associated protein 31 IPI:IPI00642984.2 NaN 23.1694 4 N/A 1.96E-06 N/A 

Small kinetochore-associated protein IPI:IPI00294680.5 NaN 25.5811 2 N/A 7.50E-05 N/A 

DNA-dependent protein kinase  IPI:IPI00296337.2 NaN 26.1313 19 N/A 1.55E-46 N/A 

Laminin subunit gamma-1 IPI:IPI00298281.4 NaN 25.1725 3 N/A 1.25E-18 N/A 

60S ribosomal protein L7a IPI:IPI00299573.12 NaN 24.8042 2 N/A 0.000365 N/A 

60S ribosomal protein L17 IPI:IPI00413324.6 NaN 25.5323 2 N/A 1.78E-05 N/A 

Ribosome-binding protein p34 (p34) IPI:IPI00396321.1 NaN 25.7962 3 N/A 5.30E-14 N/A 

RACK1 IPI:IPI00848226.1 NaN 25.7188 6 N/A 5.44E-32 N/A 

RNA-binding protein 4 IPI:IPI00003704.4 25.0283 NaN 3 N/A 2.12E-07 N/A 

Protein S100-A13 IPI:IPI00016179.1 26.4933 NaN 2 N/A 1.86E-26 N/A 
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Protein Name Accession Code LFQ Intensity 

(Control) 

LFQ Intensity 

(Infected) 

Matched 

Peptides 

Fold 

Change 

PEP ANOVA 

NUDT15 IPI:IPI00019487.3 24.8133 NaN 3 N/A 6.96E-08 N/A 

Upstream stimulatory factor 2 IPI:IPI00020037.1 25.3726 NaN 3 N/A 7.44E-10 N/A 

Nck-1 IPI:IPI00028065.1 24.7187 NaN 4 N/A 9.56E-20 N/A 

BRO1 domain-containing protein BROX IPI:IPI00065500.3 25.2597 NaN 2 N/A 1.28E-08 N/A 

E3 ubiquitin-protein ligase RNF181 IPI:IPI00292354.8 25.1869 NaN 2 N/A 5.56E-09 N/A 

Caspase activity and apoptosis inhibitor 1 IPI:IPI00303812.7 25.4128 NaN 3 N/A 5.77E-05 N/A 

RNA polymerase-associated protein RTF1  IPI:IPI00303832.6 25.3318 NaN 6 N/A 5.49E-17 N/A 

Kanadaptin IPI:IPI00306749.8 24.5912 NaN 3 N/A 1.00E-08 N/A 

Cx9C motif-containing protein 4 IPI:IPI00446798.1 25.1599 NaN 2 N/A 4.32E-15 N/A 

RNA-binding protein 8A IPI:IPI00001757.1 31.3137 30.9937 10 -0.64 1.98E-228 + 

Serine/arginine-rich splicing factor 2 IPI:IPI00005978.8 32.3223 31.9449 12 -0.75 0 + 

Putative RNA-binding protein Luc7-like 2 IPI:IPI00006932.4 28.1672 28.5935 10 0.85 3.52E-123 + 

UV excision repair protein RAD23 IPI:IPI00008219.1 26.0555 25.4419 8 -1.23 6.40E-18 + 

Intercellular adhesion molecule 1 IPI:IPI00008494.4 24.3462 26.2793 6 3.87 4.29E-26 + 

Serine/arginine-rich splicing factor 6 IPI:IPI00012345.2 31.5658 31.1274 14 -0.88 1.71E-99 + 

Calponin-2 IPI:IPI00910593.1 32.0846 31.7908 17 -0.59 0 + 

Uncharacterized protein C14orf119 IPI:IPI00016726.3 25.4719 26.2364 3 1.53 1.26E-12 + 

SNX15 IPI:IPI00016820.1 26.9393 26.6184 7 -0.64 1.15E-20 + 

U4/U6.U5 Nuclear ribonucleoprotein IPI:IPI00017289.3 27.4412 26.8387 5 -1.21 2.13E-36 + 
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Protein Name Accession 

Code 

LFQ Intensity 

(Control) 

LFQ Intensity 

(Infected) 

Matched 

Peptides 

Fold 

Change 

PEP ANOVA 

SH3-containing Grb-2-like 1 protein IPI:IPI00019169.3 25.9905 24.7994 5 -2.38 4.06E-31 + 

Calreticulin  / ER resident protein 60 IPI:IPI00020599.1 32.4786 31.8841 22 -1.19 0 + 

Superoxide dismutase IPI:IPI00022314.1 26.5621 28.6293 6 4.13 4.54E-57 + 

Zinc finger Ran-binding domain protein 2 IPI:IPI00029400.2 30.5409 30.158 12 -0.77 2.64E-70 + 

Tenascin  IPI:IPI00031008.1 25.256 26.1233 5 1.73 2.16E-27 + 

U6 snRNA-associated Sm-like protein  IPI:IPI00032460.3 27.5791 28.196 3 1.23 7.88E-34 + 

RNA-binding protein IPI:IPI00033561.3 30.6525 29.7869 7 -1.73 1.42E-109 + 

Coiled-coil domain-containing protein 97 IPI:IPI00061777.4 27.8229 27.401 6 -0.84 1.13E-38 + 

40S ribosomal protein S29 IPI:IPI00182289.6 25.5816 26.0145 2 0.87 6.93E-06 + 

Galectin-1 IPI:IPI00219219.3 34.1862 34.5223 16 0.67 0 + 

N-alpha-acetyltransferase 38 IPI:IPI00219871.5 28.4039 27.9208 4 -0.97 6.85E-19 + 

Cdc42 effector protein 3  IPI:IPI00294391.2 26.3264 25.7559 3 -1.14 5.49E-08 + 

TSC22 domain family protein 1 IPI:IPI00301610.9 27.7164 28.2144 8 +1.00 5.10E-69 + 

Protein TSSC4  IPI:IPI00305144.1 29.2542 28.9348 5 -0.64 1.07E-30 + 

Serine/arginine repetitive matrix protein 1 IPI:IPI00328293.3 28.0004 26.944 6 -2.11 2.74E-40 + 

Ferritin IPI:IPI00375676.5 27.9658 29.4761 6 3.02 4.09E-47 + 

Periphilin-1 IPI:IPI00410039.1 26.5231 27.0506 7 1.06 3.41E-31 + 

Transcription elongation factor A protein-like 
3  

IPI:IPI00478127.3 30.6756 30.2284 9 -0.89 3.55E-65 + 

Ferritin heavy chain IPI:IPI00554521.2 31.962 33.7804 16 3.64 1.06E-255 + 

 Table A1.2: Proteins identified by LFQ MS showing changes in expression in response to B. pertussis Infection. All proteins were 

identified using the NCBI and Swiss Prot protein databases and demonstrated a mascot score >52 indicating reliable protein identification.  

 



263 
  

Protein Name Accession Code LFQ Intensity 

(Control) 

LFQ Intensity 

(Infected) 

Matched 

Peptides 

Fold 

Change 

PEP ANOVA 

Transcription elongation factor A protein-like 
4 

IPI:IPI00647163.1 29.142 28.6857 11 -0.91 3.46E-58 + 

Serine/arginine repetitive matrix protein 2 IPI:IPI00782992.3 30.0636 29.0563 24 -2.01 1.29E-221 + 

 
Suppressor of G2 allele of SKP1 homolog IPI:IPI00828150.1 27.7404 27.4011 6 -0.68 2.53E-70 + 
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Spot 

No. 

Protein Name Fold 

Change 

Accession 

Code 

Mascot 

Score 

MW 

(kDa) 

pI Peptides 

Matched 

Cov 

(%) 

P Value 

1361 Stathmin ↑1.6 P16949 154 17.2 5.76 3 21 0.009 

1375 Actin-related protein 2/3 complex subunit 5 ↑1.6 O15511 193 16.3 5.47 5 41 0.003 

1383 Prefoldin subunit 5 ↑1.5 O99471 97 17.3 5.93 3 21 0.006 

1345 Superoxide Dismutase (Cu-Zn)  ↑1.7 Q904262A 56 15.9 8.76 2 16 0.009 

1325 DUTP ↑1.6 Q96Q81 254 26.5 9.46 8 30 0.006 

1334 Nucleoside diphosphate kinase A (NME1) ↑1.5 P15531 379 17.1 5.83 14 63 0.012 

1291 Putative hydrolase RBBP9 ↑1.5 O75884 202 20.9 5.79 4 30 0.025 

1250 α/β hydrolase domain-containing protein 14B ↑1.5 Q96IU4 206 22.3 5.94 4 28 0.028 

1550 DJ-1 ↑1.6 ISOA_A 473 19.8 6.33 14 68 0.003 

1549 PRDX3 ↑1.5 P30048 173 27.6 7.67 4 18 0.01 

1326 Lysozyme C ↑1.6 P61626 62 16.5 9.38 1 8 0.045 

1581 Myosin regulatory light chain 12A ↓1.7 P19105 151 19.7 5.67 3 17 0.001 

1417 60S acidic ribosomal protein P2 ↑1.5 P05387 261 11.6 4.42 9 69 0.005 

 1373 Eukaryotic translation factor Eif5a ↑1.6 3CPF_A 321 15.1 5.8 9 40 4.35E-04 

1374 Glia maturation factor beta ↑1.5 P60983 199 16.7 5.19 3 29 0.006 

1265 Heme-binding protein 1 ↓1.3 Q9NRV9 481 21.0 5.71 12 50 0.011 

1492 

1240 

1261 

Glutathione S-Transferase P1 

26S proteasome non-ATPase reg. subunit 10 

Caspase 3 

↑1.4 

↑1.5 

↑1.3 

1QUQ_A 

4PGT_A 

EAX04676 

 

80 

644 

57 

 

25.5 

23335 

21.4 

5.57 

5.43 

7.67 

2 

16 

2 

12 

55 

21 

0.003 

0.003 

0.01 
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Spot 

No. 

Protein Name Fold 

Change 

Accession 

Code 

Mascot 

Score 

MW 

(kDa) 

pI Peptides 

Matched 

Cov 

(%) 

P Value 

1190 RPABC1 ↑1.5 NP_002686 251 24.5 5.69 6 30 0.002 

1154 Phosphoglycerate mutase 1 ↑1.5 P18669 150 28.7 6.67 4 16 0.033 

1518 Unnamed protein product ↓1.3 BAG63158 76 55.7 6.12 3 5 0.022 

1429 40S ribosomal protein S12  ↑1.5 P25398 69 14.5 6.81 3 13 0.022 

1434 HINT1 ↑1.5 P49773 88 13.7 6.43 2 24 0.006 

1651 S-phase kinase-associated protein 1 ↑1.5 P63208 299 18.6 4.4 5 46 0.009 

1254 DNA replication complex GINA protein PSF2 ↑1.5 Q9Y248 128 21.4 5.29 3 24 0.004 

512 Lamin B1 ↓1.5 P20700 758 66.3 5.11 7 32 0.012 

526 MAP3K1 or ASK1 ↓1.6 Q99683 62 154.4 5.52 2 61 0.012 

66 Splicing factor 3A subunit 1 ↑1.5 Q15459 252 88.3 5.15 8 13 0.009 

15 Menin ↓1.7 O00632 54 67.9 6.14 1 2 0.004 

17 Glycogen debranching enzyme ↓1.7 Q9UF08 52 174.6 6.31 2 1 0.005 

21 Tetratricopeptide repeat protein 21B ↓1.6 Q9HAK8 62 150.8 6.53 2 1 0.006 

1411 IL-25 ↑1.4 Q969H8 153 18.7 6.2 4 27 0.02 

1413 Histidine triad nucleotide-binding protein 2 ↑1.4 Q9BX68 147 17.1 9.2 4 36 0.009 

1342 Cofilin-1 ↑1.4 P23528 242 18.4 8.22 5 42 0.031 

1408 Ubquitin-conjugatin enzyme E2 N ↑1.4 P61088 397 17.1 6.13 9 67 0.02 

1192 

963 

Triose phosphate isomerase 

Coiled-coiled domain containing 69 

↑1.4 

↑1.3 

P60174 

EAW61682 

339 

59 

30.7 

34.6 

5.65 

5.49 

8 

2 

27 

7 

0.003 

0.006 
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Spot 

No. 

Protein Name Fold 

Change 

Accession 

Code 

Mascot 

Score 

MW 

(kDa) 

pI Peptides 

Matched 

Cov 

(%) 

P Value 

1224 Prefoldin subunit 3 ↑1.4 P61758 160 22.6 6.63 4 19 0.033 

1236 Acyl-protein thioesterase ↑1.4 O75608 88 24.6 6.29 2 8 0.022 

1189 NME1-NME2(Nucleoside diphosphate kinase A 

and B) 

↑1.4 NP001018146 340 30.1 9.06 12 36 0.022 
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Table A1.4 List of antibodies used 

Antibody Company  

Phospho-IRF3 Cell Signalling 

Total IRF3 Santa Cruz 

IκBα Cell Signalling 

β-Actin Sigma Aldrich 

Lamin A/C Cell Signalling 

NLRP12 Biorbyt 

DJ-1 Biorbyt 

Stathmin-1 Biorbyt 

SOD1 Abcam 

NME1/NME2 Abcam 

GSTO1 Santa Cruz 

Ferritin HC Abcam 

Ferritin LC Abcam 

PPP1Cα Biorbyt 
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Figure A1.1 IRF3 phosphorylation in WT and TRAM deficient iBMDMs in response to 

R848 and LPS stimulation 

 

 

 

Figure A1.2 IRF3 phosphorylation in WT and TRAM deficient iBMDMs in response to 

CpG stimulation 
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Figure A1.3 IκBα degradation in WT and TRAM deficient iBMDMs in response to 

R848 stimulation 

 

 

 

 

Figure A1.4 IRF3 nuclear translocation in WT and TRAM deficient iBMDMs in 

response to R848 stimulation 
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