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Abstract 

Vitamin A is essential for normal embryonic development and vision. Retinol binding protein (RBP) 

and its receptor, STRA6, are vital for the maintenance of intracellular stores of vitamin A. Recently, 

elevated serum RBP concentration has been implicated as a contributing factor to the development of 

insulin resistance and type II diabetes. However, conflicting opinions exist as to how increased RBP 

levels can cause insulin resistance. Some suggest it is as a result of the activation of macrophages in 

adipose tissue and the secretion of cytokines. Others suggest it is as a result of RBP induced STRA6 

phosphorylation, and the activation of the JAK/STAT signalling pathway. Regardless of the 

mechanism, reducing circulating levels of RBP may be a novel strategy for the treatment of type II 

diabetes. Several small molecules have been designed to promote renal clearance of RBP, thus 

lowering serum levels. In order to consolidate the theories surrounding RBP induced insulin 

resistance, a proteomic study was devised to determine the direct effect of RBP on muscle cells, since 

the muscle is the main target of insulin induced glucose uptake. Results suggest that RBP may be 

affecting the enzymes involved in glucose storage and glycogen catabolism. Artificial methods aimed 

at reducing serum RBP levels may act by preventing RBP induced glycogen disruption. In a related 

study, it was noted that small molecules aimed at reducing circulating RBP levels had a direct effect 

on muscle cells to stimulate glucose uptake. This phenomenon occurred independently of the 

predicted mechanism of action. A second proteomic study was conducted to determine the direct 

mechanism of action of the compounds in muscle cells. The molecules appear to stimulate the influx 

of glucose by reducing the ATP yield from oxidative phosphorylation and enhancing the utilisation of 

alternate energy stores.  

The C-terminal region of STRA6 appears to be a large SH2 motif-containing intracellular segment 

which may be capable of forming an independently folding domain. As such it may represent the site 

of interaction with other proteins in the system. Therefore, it was cloned, expressed and characterised. 

The secondary structure of the domain was shown to be largely α-helical and a model was 

constructed. Possible functional roles for this region were investigated. 
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1.1 Vitamin A regulation and transport: 

Vitamin A or retinol (ROH) is a fat soluble vitamin. Fig 1.1 depicts the chemical structure of ROH. It 

contains a β-ionone ring which is characteristic of retinoid molecules and a polyunsaturated side chain 

(Pitt, 1965). It is a highly hydrophobic molecule and can be toxic in large amounts. Plants and some 

bacteria have the ability to synthesise ROH. However, animals must obtain it from the diet. Foods 

such as carrots, sweet potato, liver and dark leafy greens are rich in ROH. ROH is an essential dietary 

requirement and is vitally important for vision and gene transcription. It is absorbed in the small 

intestine, from there it is stored in the liver. Indeed, the ingestion of fresh liver was once used by the 

ancient Egyptians as a cure for night blindness. It was not until thousands of years later that the active 

ingredient was identified as ROH. Retinol based therapies are used for a number of illnesses such as 

cancer, acne and visual defects. However, in excess, retinoids can be harmful and the regulation and 

transport of these toxic agents must be tightly controlled. Deregulation of retinoids can lead to 

diseases as diverse as cancer, visual disorders, teratogenicity and neurological disorders. 

 

 

Fig. 1.1 The chemical structure of ROH. 

Representation of the chemical structure of ROH (Pitt, 1965). The structure of ROH is based on a β-

ionone ring and a polyunsaturated side chain. 
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1.1.1 The vitamin A transport protein, Retinol Binding Protein: 

Retinol Binding Protein (RBP) is responsible for the transport of ROH throughout the body. The liver 

is one of its main expression sites. RBP binds ROH in the liver to form holo-RBP. As ROH is 

hydrophobic in nature, binding to RBP facilitates its movement through the aqueous environment of 

the bloodstream. ROH distribution throughout the body is tightly regulated, suggesting the importance 

of its use and disposal. It is a strong reducing agent and can cause toxicity in high amounts. RBP is 

necessary for its safe and efficient transport. RBP belongs to a family of proteins known as lipocalins. 

Lipocalins are involved in the transport of a diverse range of hydrophobic molecules such as vitamins 

and steroid hormones. 

1.1.2 The structure of RBP: 

RBP is part of the lipocalin family of proteins, which transport small hydrophobic molecules such as 

steroids and retinoids. It contains a single binding site for ROH (Newcomer et al., 1984). The crystal 

structure of RBP revealed that it contains a coiled N-terminus, an eight stranded β-barrel, an α-helix 

and a C-terminal coil (Fig 1.2) (Newcomer et al., 1984). The β-barrel acts as the binding pocket for 

ROH. ROH enters through 3 important loops of the structure which guard the entrance to the binding 

pocket (Zanotti et al., 1993). The three loop regions consist of residues 33 to 36, 64 to 68 and 92 to 98 

and demonstrate a conformational change when ROH binds (Zanotti et al., 1993). The β-ionone ring 

of ROH lies near the bottom of the pocket with the isoprene tail lying towards the opening. This may 

be important for trafficking of ROH across the cell membrane. 
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Fig. 1.2 The crystal structure of retinol binding protein. 

RBP is shown in red with ROH shown in yellow. ROH is orientated with the β-ionone ring inserted in 

the binding pocket and the isoprene tail pointing outwards (Berry and Noy, 2012). 
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1.1.3 RBP and its interaction with Transthyretin: 

RBP circulates through the bloodstream bound to Transthyretin (TTR). When holo-RBP is generated 

in the liver a conformational change occurs allowing it to interact stably with TTR. This initiates the 

release of the complex into the serum. TTR itself is a homotetrameric structure with four potential 

binding sites for RBP (Fig 1.3) (Hyung et al., 2010). Due to an excess of TTR in the serum, generally 

only one RBP molecule binds per TTR homotetramer (Goodman, 1984). RBP alone has a molecular 

weight of 21kDa, when bound to TTR the complex has a molecular weight of 76kDa. The increased 

mass of the complex allows it to pass through the glomerulus unfiltered, thus preventing excretion of 

holo-RBP in the urine. TTR only has affinity for holo-RBP and not the ROH un-bound version (apo-

RBP), (Heller and Horwitz, 1973). The TTR-RBP complex then travels through the bloodstream 

delivering ROH to target tissues. 

 

Fig. 1.3 Crystal structure of TTR coupled to holo-RBP. 

Holo-RBP is shown in red and TTR shown in purple. The TTR homotetramer can bind two molecules 

of holo-RBP but usually only binds one (Berry et al., 2011). 
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1.1.4 Delivery of ROH into the cell: 

ROH is transported across the cell membrane via a receptor called Stimulated by Retinoic Acid 6 or 

STRA6 (Kawaguchi et al., 2007). STRA6 competes with TTR for the same region on the RBP 

molecule. Therefore, in order for the TTR-RBP complex to dissociate, STRA6 must have a higher 

affinity than TTR for RBP binding. Indeed this is the case, the affinity of TTR for RBP is in the micro 

molar range (Malpeli et al., 1996) and the affinity of STRA6 for RBP is in the nanomolar range 

(Kawaguchi et al., 2007). As TTR does not rebind apo-RBP, RBP is then small enough to be excreted 

by the kidney. ROH is subsequently free to traverse the membrane to its intracellular acceptor 

molecule, cellular retinol binding protein (CRBP) (Fig. 1.4). 

 

 

Fig. 1.4 The transport of ROH through the cell membrane. 

Holo-RBP binds to the cell membrane receptor (STRA6) and ROH traverses the membrane to bind to 

intracellular CRBP. Once inside the cell ROH is metabolised and induces gene expression (Zhang et 

al., 2012).  
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1.1.5 Interaction of RBP with STRA6 and TTR: 

RBP has three potential areas of interaction with STRA6. The carboxy domain of RBP is altered when 

RBP is excreted in the urine. RBP extracted from the urine differs from serum RBP in that it appears 

to undergo cleavage after excretion through the kidney, resulting in removal of the final four residues 

of the sequence (Rask et al., 1980). Urinary RBP was shown to have a much lower affinity for TTR. 

The C-terminal region of RBP may act to stabilise the structure of the protein and its interaction with 

ROH. A mutagenesis study carried out by Sundaram et al demonstrated that altering the loop regions 

between the β strands of RBP, around the ROH exit site, can greatly affect both TTR and STRA6 

binding (Sivaprasadarao and Findlay, 1994). Mutation of residue L35, located in the loop region 

connecting β strands A and B, showed a marked decrease in TTR binding but not STRA6 binding. 

Mutation of residues L63 and L64 in the loop region connecting β strands C and D showed a 

significant decrease in TTR binding and completely abolished the ability of RBP to bind to STRA6. 

In addition, deletion of the loop region connecting β strands E and F completely removed the ability 

of RBP to bind to TTR but RBP still had some affinity for STRA6. Crystallographic studies of RBP 

complexed with TTR confirmed that RBP binds to TTR at the ROH exit site (Naylor and Newcomer, 

1999). The crystal structure also confirmed that the C-terminus of RBP is involved in TTR binding, 

specifically the terminal leucine residues, Leu 182 and Leu 183. RBP and TTR both contribute 21 

amino acids to the interaction site. The majority of the residues contributed by RBP are located on the 

loop region connecting β strands E and F, as predicted by mutagenic analysis. Therefore, TTR and 

STRA6 must bind to RBP around the exit site for ROH but with different affinity for some of the loop 

regions. Redondo et al went on to further demonstrate that the loop region between β strands C and D 

(CD loop) was enough to confer binding affinity of RBP to STRA6 (Redondo et al., 2008). A unique 

chimera of a mouse lipocalin, mouse urinary protein (MUP) fused with the CD loop of RBP, was used 

to demonstrate that this protein could bind to STRA6. MUP is a protein that binds to pheromones 

excreted in male mouse urine and has no natural affinity for STRA6. MUP with the CD loop 

replacing residues 59-68 of the native protein, bound to HEK cell membranes that express STRA6 
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and showed a higher affinity when its natural ligand 3-isobutyl-2-methoxypyrazine (IBMP) was 

present (Redondo et al., 2008).  

1.1.6 The internal acceptor for ROH, CRBP: 

Once inside the cell, ROH binds to its acceptor molecule CRBP. The two most prominent isoforms of 

CRBP are CRBP I and CRBP II. They share 56% sequence identity and both proteins are highly 

conserved across species. CRBP II is predominantly expressed in the intestinal mucosa and is 

involved in the uptake of ROH from dietary sources (Napoli, 2000). CRBP has a very specific affinity 

for ROH, with a Kd of 0.1 nM. RBP and CRBP share a very similar tertiary structure, CRBP contains 

10 β-strands as opposed to 8 in RBP (Fig 1.5). Similar to RBP, the β-strands form a binding pocket 

for ROH. However, ROH has the opposite orientation in the binding pocket of CRBP compared to 

RBP (Fig 1.4). The β-ionone ring lies at the outside of the binding pocket with the isoprene tail lying 

in the inside face of the β-barrel (Franzoni et al., 2002). This would suggest that ROH simply slips out 

of the binding pocket located in RBP, through STRA6, directly into the binding pocket of CRBP 

(Fig.1.3) but this is likely to be a simplistic view. Once ROH enters the cell it is quickly converted to 

retinyl ester (RE) by lecithin retinol acyltransferase (LRAT) for storage. Indeed, LRAT may even be a 

specific component of the ROH transport process (Kawaguchi et al., 2011).  

1.1.7 The function of CRBP: 

CRBP is integral for the controlled utilisation and storage of ROH inside the cell. Holo-CRBP acts as 

a substrate for esterification and hydrolysing enzymes, such as LRAT. However, LRAT can convert 

ROH to RE in the absence of CRBP. CRBP I knockout mice present a perfectly normal phenotype 

when fed a vitamin A supplemented diet. However, there is very rapid turnover of ROH. When the 

knockout mice were fed a vitamin A deficient diet RE stores became fully depleted compared to wild 

type (WT) which never became depleted (Ghyselinck et al., 1999). Conversely, apo-CRBP has a 

strong inhibitory action on LRAT, preventing ROH storage when there is ROH deficiency. Apo-

CRBP can also stimulate the hydrolysis of RE to supply free ROH for metabolism by activating the 

enzyme retinyl ester hydrolase (Napoli, 1999). This would suggest that CRBP plays a crucial role in 



Chapter 1: Introduction 

8 
 

maintaining RE stores and ensuring that the cell has a constant supply of ROH. In the intracellular 

environment an equilibrium of ROH levels exists which is tightly controlled by both the holo and apo 

versions of CRBP. This would suggest a structural change of some sort is allowing CRBP to regulate 

ROH metabolic enzymes in very different ways. 

 

 

 

Fig. 1.5 Structure of CRBP I with ROH bound. 

The solved crystal structure of CRBP with retinol bound (shown in grey). The β-ionone ring of retinol 

lies at the outside of the binding pocket with the isoprene tail lying in the inside face of the β-barrel 

(Franzoni et al., 2002) 
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1.1.8 Cellular Retinoic Acid Binding Protein: 

Outside of the eye, the functionally active form of ROH is predominantly retinoic acid (RA). RA is 

produced in a bi-phasic reaction. ROH is first oxidised to form the intermediary substrate, retinal by 

retinol dehydrogenase I (RoDHI). Retinal is then converted to RA by retinal dehydrogenase 

(RALDH). RA is sequestered by cellular retinoic acid binding protein (CRABP) which then allows its 

interaction with the target molecule, the retinoic acid receptor (RAR). There are two isoforms of 

CRABP, CRABP I and CRABP II which share 72% sequence identity in humans. They are extremely 

well conserved across species, highlighting their evolutionary significance in retinoid processing. 

They differ in their tissue distribution with CRABP II mainly confined to the skin and CRABP I being 

ubiquitously expressed (Li and Norris, 1996).  

Both CRABP I and CRABP II bind all-trans-retinoic acid with high affinity. The exact molecular 

function of CRABP is still under debate. Like CRBP, CRABP acts to protect the cell from free 

retinoid. CRABP is also thought to play a role in directing RA to its target destination. This was 

highlighted in a study that demonstrated that in cells overexpressing CRABP, differentiation induced 

by RA was reduced rather than increased, CRABP could be acting to mop up “excess” RA in the cell. 

In addition, the cellular expression of both CRABP I and CRABP II is under the direct control of RA, 

suggesting that in times of excess, increased CRABP levels are stimulated to control the distribution 

of RA (Donovan et al., 1995). Holo-CRABP also acts as a substrate for RA metabolising enzymes. 

CRABP has been shown to bind several metabolites of RA. Indeed, increased expression of CRABP 

led to elevated intracellular levels of known RA metabolites (Donovan et al., 1995). Knockout studies 

of both CRABP I and CRABP II reveal physiologically normal phenotypes with postaxial forelimb 

polydactyly being the only abnormality. This demonstrates that other retinoid binding proteins such as 

fatty acid binding protein (FABP) could be compensating for CRABP absence (Theodosiou et al., 

2010). 
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1.2 STRA6 mediated ROH transport: 

It is as yet unknown how STRA6 transports ROH across the cell membrane. Only structural studies 

will truly reveal how this biological process is occurring. Historically, it was thought that upon 

binding to its receptor, RBP is internalized (Matarese and Lodish, 1993). However, evidence from 

Heller et al showed that 
125 

I-RBP could be displaced from its receptor by unlabelled RBP. If 

endocytosis occurred upon RBP binding, unlabelled RBP could not dissociate labelled RBP from its 

receptor (Heller, 1975). Thus, RBP is not taken up into the cell via endocytosis. In addition, 

Sivaprasadarao and Findlay (19988b) demonstrated uptake of ROH without uptake of RBP. They also 

observed that excess amounts of TTR can inhibit holo-RBP binding to the receptor (Sivaprasadarao 

and Findlay, 1988a). ROH alone must simply traverse the membrane via its receptor, STRA6. 

1.2.1 The dynamics of ROH transport across the cell membrane: 

STRA6 does not utilise traditional uptake mechanisms such as active transport or endocytosis. 

Kawaguchi et al and Sundaram et al suggest that STRA6 functions as an enzyme to catalyse the 

release of ROH from holo-RBP to intracellular partners (Kawaguchi et al., 2011; Sundaram et al., 

1998). Sundaram and colleagues demonstrated that ROH transport through the cell membrane is 

coupled to an intracellular storage protein. Placental membranes stimulated the release of [
3
H] ROH 

from RBP to apo-CRBP, an effect that was abrogated when membranes were denatured (Sundaram et 

al., 1998). Interestingly, it was found that by increasing expression of the ROH storage proteins 

CRBP-I and LRAT, both independently, ROH influx into the cell was greatly enhanced (Kawaguchi 

et al., 2011). CRBP-I displayed saturation kinetics possibly due to lack of availability of the apo-form 

of the protein, which could also be further evidence that CRBP-I tightly controls the levels of ROH in 

the cell. LRAT did not display saturation, this may be due to the production of retinyl esters by 

LRAT. LRAT could not be saturated with ROH in this experimental system as it simply converts 

ROH into its storage form and is free to bind more substrate. 

LRAT specifically enhanced the transport of ROH and not other retinoid molecules such as 

retinylamine and RA. It appears other retinoids were not the correct substrate for the transportation to 
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occur. Other retinoid handling proteins were also shown to enhance retinoid uptake into the cell. The 

enzyme retinol dehydrogenase when overexpressed, led to an increase in STRA6 mediated ROH 

influx into the cell (Kawaguchi et al., 2011). STRA6 can also transport RA across the cell membrane. 

CRABP-I when overexpressed was shown to increase RA uptake from RBP loaded with RA 

(Kawaguchi et al., 2011). As the transport of retinoids is highly reliant on intracellular storage 

proteins it is possible that these proteins couple directly to STRA6. Potential interaction sites could be 

the large C-terminal tail and intracellular loop regions.  

1.2.2 ROH efflux via STRA6: 

Interestingly, in cells solely overexpressing STRA6, saturation for ROH influx into the cell was 

observed. In addition, free ROH was found to inhibit STRA6 catalysed ROH release from RBP 

(Kawaguchi et al., 2011). This inhibitory effect was ameliorated by the addition of LRAT or CRBP-I. 

Once there is a storage protein present for ROH only then will more ROH enter the cell. In 1988, 

Sivaprasadarao and Findlay (1988b) demonstrated that apo-RBP can reverse the uptake of ROH via 

membrane vesicles. Kawaguchi et al also observed that following ROH influx into the cell, the 

addition of apo-RBP to STRA6 led to an efflux of retinol from the intracellular environment to 

extracellular apo-RBP (Kawaguchi et al., 2012). It seems that STRA6 can also catalyse the re-loading 

of ROH back onto RBP. This would explain why saturation was observed in STRA6 overexpressing 

cells. Without increased intracellular recipients for ROH, ROH was simply re-loaded back to the apo 

form of RBP. In addition, free ROH was found to inhibit further retinol release. Therefore, a negative 

feedback inhibition occurs, as ROH is released it can negatively impact the release of more ROH from 

holo-RBP. In cells overexpressing LRAT and STRA6 little efflux of ROH to apo-RBP was observed, 

presumably due to storage of ROH as retinyl esters. However, in cells overexpressing CRBP-I and 

STRA6 near complete efflux of previously created ROH stores to apo-RBP was observed (Kawaguchi 

et al., 2012). Holo-RBP was shown to inhibit the STRA6 catalysed efflux of ROH onto apo-RBP, 

presumably due to the higher affinity of STRA6 for holo-RBP.  
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In normal human serum, holo-RBP is found in vast excess compared to the apo version of the protein. 

Kawaguchi et al demonstrated that cells overexpressing STRA6 and CRBP-I or LRAT do not cause 

ROH efflux when incubated with human serum. However, when STRA6 and CRBP-I cells were pre-

loaded with [
3
H] ROH an exchange was observed between extracellular cold ROH and intracellular 

[
3
H] ROH. This effect was not observed in cells overexpressing LRAT presumably because ROH had 

already been converted to RE. This phenomenon could be happening as a mechanism to maintain 

fresh ROH stores, as over time ROH may oxidise. In conclusion, ROH efflux depends on the ratio of 

holo-RBP versus apo-RBP in the serum and expression levels of CRBP-I and LRAT. Interestingly, it 

seems that CRBP-I and LRAT are not necessary for STRA6 to be active but they are necessary for the 

retention and utilisation of ROH.  

1.2.3 The physiological relevance of ROH efflux via STRA6: 

Kawaguchi et al propose that STRA6 can cause ROH efflux from its intracellular storage partners to 

apo-RBP (Kawaguchi et al., 2012). When apo-RBP is in vast excess of holo-RBP, ROH can be “re-

loaded” to apo-RBP from CRBP-I via STRA6. In normal human serum holo-RBP makes up 90% of 

the total RBP levels with 10% apo-RBP (Mills et al., 2008). Therefore, the ability of STRA6 to cause 

ROH efflux out of the cell may not bear any physiological relevance in a normal setting. However, in 

obese patients serum apo-RBP levels were found to be two fold higher than in lean subjects (Mills et 

al., 2008). Interestingly, Quadro et al showed that extra-hepatically expressed RBP was able to 

prevent visual defects which would normally arise in RBP knockout animals (Quadro et al., 2002). In 

addition, the same group demonstrated that extra-hepatic RBP could not mobilise hepatic ROH stores 

(Quadro et al., 2004). Thus extra-hepatic RBP must mobilise stores of ROH from other tissues via 

STRA6.  

ROH re-loading onto apo-RBP may be a unique mechanism to allow re-distribution of ROH from 

ROH sufficient tissues to tissues which are ROH depleted. This may have a profound physiological 

relevance. A recent publication by Muenzner et al detailed how apo-RBP can cause ROH efflux from 

adipocytes in a STRA6 dependant manner (Muenzner et al., 2013). The biologically active ROH 
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derivative, retinoic acid (RA) has a known inhibitory effect on adipocyte differentiation via activation 

of retinoic acid receptor α (RARα) responsive genes (Kamei et al., 1994). Treatment of pre-adipocytes 

with apo-RBP led to re-partitioning of ROH into the extracellular milieu causing a subsequent 

decrease in RARα mediated gene expression. This effect was concomitant with increased 

adipogenesis. As detailed in section 1.5.1 RBP was identified as a secretory signal produced by 

adipose tissue leading to increased insulin resistance (Yang et al., 2005). It is unknown at present how 

much apo-RBP present in the serum is excreted by adipose tissue. The exact ratio of apo-RBP versus 

holo-RBP excreted by adipose tissue may be an interesting aspect of retinoid homeostasis in fat tissue. 

RBP produced in mature adipocytes may be having a paracrine effect on neighbouring pre-adipocytes 

to promote increased adipogenesis. 

1.2.4 The influence of other retinoids on STRA6 activity: 

Following on from the observation that free ROH can inhibit further ROH release (Kawaguchi et al., 

2011), Kawaguchi et al observed that several retinoids can inhibit the ability of STRA6 to load ROH 

onto apo-RBP, most notably fenretinide (a synthetic derivative of retinoic acid), all trans retinal, all 

trans retinoic acid and 13-cis retinoic acid (Kawaguchi et al., 2013). The same retinoids also increased 

STRA6 catalysed ROH release from holo-RBP. The effect of retinoids on STRA6 activity appears to 

be isomer specific with the 9-cis isomers being much less effective than all-trans isomers. The ability 

of certain retinoids to inhibit ROH loading onto RBP is partially due to the transfer of the retinoid to 

RBP by STRA6 in place of ROH. Therefore, STRA6 can recognise and bind to other retinoids apart 

from ROH. This interaction is highly specific as 9-cis isomers do not show the same properties as the 

all-trans isomers, thus STRA6 will only recognise a certain structural conformation of retinoids.  

In the experiments described above, the retinoids were interacting with STRA6 in an extracellular 

manner. In a physiological setting this may not occur frequently, as the retinoids are produced as 

products of enzymatic reactions intracellularly. Where it does bear physiological relevance is in the 

treatment of certain disorders. Several retinoids are utilised for treatments such as acne, cancer and 

visual defects. Fenretinide has traditionally been used as an anti-cancer therapeutic particularly in the 
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treatment of breast cancer. The exact mechanism of action has yet to be identified but fenretinide has 

been shown to induce apoptosis rather than cell differentiation (Lazzeroni et al., 2011). STRA6 is 

known to be up-regulated in several types of cancer. Fenretinide could be functioning by interrupting 

STRA6 interaction with its native ligand, ROH. Fenretinide was shown to increase ROH release from 

holo-RBP and prevent ROH loading back to apo-RBP, therefore the net effect would be an increase in 

intracellular ROH leading to activation of RAR target genes. 

1.3 The RBP receptor; STRA6: 

It was originally believed that ROH simply partitioned through the cell membrane, due to its 

hydrophobic nature (Noy and Xu, 1990). As ROH is highly toxic in large amounts, a more practical 

view developed that there exists a controlled delivery system for ROH intracellular transport. 

1.3.1 Discovery of the RBP-Receptor: 

The first account of RBP binding to a specific membrane protein appeared in 1975 (Heller, 1975). 

Heller et al found that 
125 

I-RBP specifically bound to some unknown protein present in pigment 

epithelial cells. This interaction was displaced by unlabelled RBP, and 
125 

I-RBP could not be 

displaced by TTR, showing that it was a specific, high affinity interaction. Sivaprasadarao and 

Findlay (1988a) further demonstrated that a protein present in the cell membrane could bind to holo-

RBP and initiate ROH transport through the cell membrane. RBP was observed to bind to a protein 

present in membrane vesicles generated from placental brush border cells and this protein greatly 

enhanced [
3
H] ROH transport to its acceptor protein, CRBP (Sundaram et al., 1998). This was further 

evidence that there was a specific protein present in the membrane responsible for the uptake of ROH. 

In addition, it showed that the developing foetus was able to absorb ROH from maternal stores via a 

receptor located in the placental membrane.  
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1.3.2 Identification of the RBP Receptor, STRA6: 

The interaction of RBP with STRA6 is transient in nature. This is due to the decreased affinity of 

STRA6 for apo-RBP compared to holo-RBP. This transient interaction made identification of the 

RBP receptor extremely difficult. In 2007, Kawaguchi et al employed a novel crosslinking technique 

to stabilise the interaction of RBP with its receptor. Subsequent affinity purification of RBP and mass 

spectrometry analysis of co-purified protein, revealed the receptor to be STRA6. Cells transfected 

with this novel receptor were found to have a much higher affinity for RBP binding and dramatically 

increased ROH uptake (Kawaguchi et al., 2007). STRA6 was originally identified as a gene which 

was upregulated in embryonic carcinoma P19 cells treated with retinoic acid (RA) (Bouillet et al., 

1997). It is unlike any other protein in the human genome. In addition to RA stimulation, STRA6 

expression is also induced via the wnt-1 signalling pathway (Szeto et al., 2001). Activation of the wnt-

1 pathway inhibits the degradation of the signalling molecule, β-catenin, thus enabling it to travel to 

the nucleus and induce expression of wnt-1 responsive genes. Szeto et al also demonstrated that cells 

overexpressing wnt-1 showed a concomitant increase in STRA6 mRNA. The induction of STRA6 

expression was augmented by the addition of al-trans retinoic acid (ATRA). In addition, STRA6 

expression was completely blocked with the addition of a pan-RAR antagonist, which implies that 

STRA6 expression is dependent on RAR activity. Wnt-1 signalling synergistically augments STRA6 

expression via crosstalk between β-catenin and RAR, through some as yet unknown mechanism.  

1.3.3 STRA6 and embryonic development: 

STRA6 is expressed in most tissues throughout the body (Fig.1.6), especially in blood organ barriers 

like the blood brain barrier and the retinal pigment epithelium. This allows for the efficient uptake of 

ROH from holo-RBP present in the bloodstream. STRA6 is transiently expressed in many tissues 

during development. A study conducted by Chazaud et al utilised in situ hybridisation to trace the 

expression pattern of STRA6 in developing mouse embryos (Chazaud et al., 1996). The study showed 

that STRA6 is heavily expressed in the limb bud outgrowth, distally from the origin of the limb and in 

regions of rapid differentiation. This correlates strongly with the finding that RA induces extension of 
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the limb bud (Summerbell, 1983).  STRA6 is highly expressed in the labyrinthine region of the 

placenta, which is the zone of exchange between the maternal and fetal bloods (Bouillet et al., 1997), 

reinforcing the importance of the vitamin for normal embryonic development.  

 

Fig. 1.6 Tissue distribution of retinoid handling receptors.  

Table representing the expression levels of STRA6 in various tissues, as assessed by expressed 

sequence tag (EST) counts recorded by NCBI’s EST Profile Viewer. Intensity of the oval represents 

relative abundance of STRA6 mRNA. Absence of an oval represents undetectable expression levels 

(Sun, 2012). 
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1.3.4 Matthew Wood Syndrome: 

The importance of STRA6 to human development is clearly evident from studies on specific human 

mutations. Genetic polymorphisms give us a clear insight as to what role a protein has in vivo. Known 

genetic mutations in STRA6 range from single point mutations, to missense or frame shift mutations 

which result in truncated translated protein (Fig 1.7). They are extremely deleterious, often embryos 

do not reach full gestation and if they do, they are severely compromised. Abnormalities include 

microphthalmia or anophthalmia, congenital heart and lung defects as well as mental retardation. The 

collective phenotype is now known as the underlying genetic cause of Matthew Wood Syndrome. 

This is a congenital disorder which displays the characteristic abnormalities associated with STRA6 

mutations (Golzio et al., 2007).   

The detection of STRA6 mutations in cases of anophthalmia is becoming increasingly common. 

When a cohort of random cases of anophthalmia  were screened approximately 4% of those cases 

were due to mutations located in the STRA6 gene (White et al., 2008). Patients with these particular 

mutations did not display any other phenotype apart from anophthalmia, thus some STRA6 mutations 

may be more severe than others. Genetic mutations highlight how essential STRA6 is for normal 

ocular development. Mutations mostly arise in the intracellular loops 1 and 3, the extracellular loop 3 

and the C-terminal region of STRA6 (Pasutto et al., 2007). Table 1.1 summarises known genetic point 

mutations, their location and how they affect STRA6 expression, RBP binding and ROH transport.  

Kawaguchi et al conducted large scale mutagenic analysis of STRA6 (Kawaguchi et al., 2008a). The 

known genetic mutations yielded varying results. Most mutations led to retention of STRA6 in the 

endoplasmic reticulum (ER). This of course would cause a decrease in availability of the receptor at 

the cell membrane and subsequent decrease in RBP binding and ROH transport. The T321P genetic 

mutation appears not to affect STRA6 transport to the membrane. However, this mutation was 

identified alongside mutation P90L, suggesting that it is the dominant negative of the two (Kawaguchi 

et al., 2008a). Mutations that arise in the human population appear to affect trafficking of the receptor 

during development. This would lead to a decrease in ROH influx into the cell which is vital during 
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embryonic development. Interestingly, missense mutations are often associated with a more severe 

phenotype than truncation mutations and there is vast phenotypic variability among patients and 

across known mutations (Ng et al., 2013). In contrast, genetic mutations in RBP exhibit a much 

milder phenotype in comparison to STRA6. This may suggest that STRA6 has other functions in 

addition to its ROH transport function. 

 

 

 

Fig 1.7 Locations in the STRA6 protein sequence where genetic mutations have been observed. 

Representation of the location of all known genetic mutations found in STRA6. Vertical boxes denote 

transmembrane regions in the protein sequence from amino acid 1 to 667. Point mutations are 

positioned at the approximate location in the STRA6 sequence (Ng et al., 2013). 
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Mutation Location Membrane Localisation RBP Binding ROH Transport 

P90L IC-1 None, localised in ER Greatly  Reduced Reduced  

G217E TM5 Unknown Unknown Unknown 

P293L IC-3 None, localised in ER Greatly  Reduced Reduced 

G304K TM7 None, localised in ER Greatly  Reduced Reduced 

T321P EC-3 Expressed at the cell membrane Not affected Not affected 

Q438R TM8 Unknown Unknown Unknown 

D560H C-Term Unknown Unknown Unknown 

R638P C-Term Unknown Unknown Unknown 

T644M C-Term None, localised in ER Greatly  Reduced Reduced 

R655C C-Term None, localised in ER Greatly  Reduced Reduced 

 

Table 1.1 Summary of the location of point mutations found in STRA6 to date and the effect on 

membrane localisation, RBP binding and ROH transport. 

Table summarising the known genetic mutations that occur in the STRA6 gene and their impact on 

receptor expression, RBP binding and ROH transport. Intracellular loop (IC), extracellular loop (EC), 

transmembrane region (TM). Data was compiled from (Casey et al., 2011; Chassaing et al., 2012; 

Kawaguchi et al., 2008a; Ng et al., 2013; White et al., 2008). 
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1.3.5 STRA6 knockout studies: 

Although human genetic mutations in STRA6 are extremely deleterious, murine knockout models of 

the receptor are viable and give us some insight into the functioning of the receptor. Deletion of the 

orthologous STRA6 gene in mice produced very mild phenotypic abnormalities (Ruiz et al., 2012). 

This was surprising considering the severity of malformations in the human counterpart. The only 

abnormalities observed were localised to the eye region, in particular the retinal pigment epithelium 

(RPE). A slight reduction in eye diameter was observed in STRA6 null mice compared to wild type 

(WT). The inner and outer segments of the retina were thinner in diameter in the STRA6 null mice 

and densely packed cell masses were observed in the vitreous humour of the knockout. Visual 

responsiveness to light was significantly diminished in the knockout, but not fully abolished, 

suggesting that there may be some sort of compensatory mechanism for ROH uptake. This was 

reflected in the level of ROH metabolites present in the RPE, where significant levels of retinyl esters 

were present along with other ROH metabolites necessary for vision, such as ATRA and 11-cis-

retinal. This would suggest that ROH was entering the cell and being actively metabolised via a 

STRA6 independent mechanism. Considering the fatal defects observed in humans carrying even a 

single point mutation in the STRA6 gene, the same compensatory mechanism may not be present in 

humans.  

Interestingly, STRA6 knockdown in a zebrafish model demonstrated much more severe 

morphological defects compared to the murine model (Isken et al., 2008). Microphthalmia was 

observed along with malformed body axis, heart edema and cardiac malformations, phenotypic 

characteristics similar to the Matthew-Wood Syndrome. One would assume that defects caused by 

STRA6 deficiency occur as a result of decreased ROH uptake. However, Isken et al observed normal 

RA production in some tissues, even excess RA in some areas of the STRA6 knockdown model. 

Therefore, STRA6 deficiency did not result in decreased RA production, but excess RA production. 

Isken and colleagues propose that the malformations observed with STRA6 deficiency occur as a 

result of uncontrolled ROH uptake. They demonstrated that reduction of RBP expression in the 

developing larvae prevented the malformations caused by STRA6 knockdown (Isken et al., 2008). 
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Some malformations were still apparent with reduced RBP levels, but not as severe when RBP levels 

were normal (Isken et al., 2008). Reduction of RBP expression blocked mobilisation of yolk vitamin 

A stores. This suggests that uncontrolled utilisation of ROH stores is responsible for genetic mutations 

caused by STRA6 knockdown. 

Interestingly, RBP knockout models develop a normal phenotype and human deletion mutations have 

been observed with no medical complications, when a vitamin A rich diet is maintained. STRA6 

mutations may be more severe compared to RBP abnormalities, due to uncontrolled utilisation of 

ROH. This may explain the discrepancy between the RBP deficient model and the STRA6 deficient 

model. 

1.3.6 STRA6 topology: 

STRA6 is 667 amino acids long and has a molecular weight of 72 kDa. Computational analysis to 

reveal the folding of a protein in the cell membrane can be a valuable tool to gain insights into its 

structure and function. Topology modelling of STRA6 has yielded conflicting results about the exact 

number of transmembrane regions, with some groups suggesting anywhere between eight and twelve 

transmembrane segments. Topology modelling software may predict varying transmembrane 

structures but extensive experimental analysis suggests a 9 transmembrane topology (Kawaguchi et 

al., 2008b). Kawaguchi et al inserted a Myc epitope tag into putative extra and intracellular regions of 

the receptor. Subsequent analysis of accessibility of an anti-Myc antibody to each of the mutated 

regions revealed the topology of STRA6 (Fig 1.8). Along with 9 transmembrane (TM) regions the 

receptor contains several interesting putative domains. The N-terminal region appears to be 

extracellular leaving the large C-terminal region intracellular. Other domains of interest include a 

large third extracellular loop, connecting TM 6 and 7 and two large intracellular loop regions, 

connecting TM 5 and 6 and TM 7 and 8, respectively. 
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Fig 1.8 Topology model of STRA6 as revealed by epitope tagging. 

Epitope tagging experiments have revealed potential extra and intracellular regions of STRA6. Each 

of the locations where the Myc epitope tag was inserted is denoted by M and depicted on the topology 

model of STRA6. A positive sign with live cell staining revealed that anti-Myc antibody was able to 

gain access to the respective inserted Myc epitope without cell permeabilization, thus revealing this 

location to be extracellular (Kawaguchi et al., 2008b). 
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1.3.7 Extracellular loop 3: 

The large third extracellular loop region (EC3) between TM 6 and TM7 consists of 44 amino acids. 

Large scale mutagenesis suggests an essential binding site for RBP located in this region. (Kawaguchi 

et al., 2008a). When residues Y336, G340 and G342 of the bovine sequence of STRA6 were mutated 

individually, RBP binding and subsequent ROH transport, were significantly reduced. All 3 mutated 

versions of the protein were expressed at the cell membrane and were readily available to RBP. The 

three residues implicated in RBP binding are highly conserved among species and they correlate to 

residues Y335, G339 and G341 in the human sequence (Fig 1.9). Interestingly, leucine 336 in the 

human sequence is replaced with a methionine residue in the monkey sequence. Inclusion of 

methionine at this site would significantly shift the relative position of the critical tyrosine residue in 

relation to the other putative RBP binding sites. This could indicate that some of the 3 residues are 

more important for the interaction to occur between STRA6 and RBP than others. When the three 

critical residues were mutated respectively, ROH uptake was significantly impaired. However, 

mutation of bovine STRA6 at residue 342 was not as detrimental on uptake activity (Kawaguchi et al., 

2008a). In addition, RBP binding was completely abolished when residues Y336 and G342 were 

replaced, but some affinity still remained when residue G340 was mutated (Kawaguchi et al., 2008a). 

As elucidated by Redondo et al the binding site of RBP for STRA6 is the CD loop region (Redondo et 

al., 2008). These three key residues may be directly interacting with the CD loop of RBP. It is 

unknown as yet whether interaction of RBP with these three residues is enough to stimulate ROH 

release from RBP. 

BOVINE          ITTDVSYLLAGFGIVLSEDRQE 

RAT             ITTDVSYLLAGFGIVLSEDRQE 

MOUSE           INTDVSYLLAGFGIVLSEDRQE 

HUMAN           VTTDVSYLLAGFGIVLSEDKQE 

MONKEY          VTTDVSYMLAGFGIVLSEDKQE 
Fig 1.9 Cross-species sequence alignment of the putative RBP-binding domain of STRA6 as 

identified by random large scale mutagenesis. 

Y336, G340 and G342 along with other residues in this region of the bovine sequence of STRA6, are 

highly conserved across species. Mutations in any three of these residues (shown in yellow) result in 

loss of RBP-binding and consequently, loss of vitamin A uptake activity (Kawaguchi et al., 2008a). 

Alignment performed using ClustalW 2.1. 
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1.3.8 Intracellular loop 3: 

STRA6 also possesses a large third intracellular loop (IC3) between TM 5 and 6, consisting of 

approximately 73 amino acids. Mutations in this region resulted in a marked decrease in ROH 

transport (Kawaguchi et al., 2008a). As it is not accessible to RBP binding it may be a potential 

binding site for the intracellular storage partners for ROH, such as CRBP or LRAT, which are 

essential for ROH transport. Berry et al observed that a fusion protein generated from residues 235-

293 of STRA6, conjugated to green fluorescent protein (GFP) was capable of binding CRBP (Berry et 

al., 2012). The complex that formed was dissociated with increasing amounts of ROH, showing that 

STRA6 has a decreased affinity for holo-CRBP. It is as yet undetermined if this domain alone is 

enough to stimulate ROH transport across the cell membrane. Specific mutation of leucine 255 to 

alanine in the IC3 loop resulted in loss of CRBP binding (Berry et al., 2012). Mutation of full length 

STRA6 at L255 resulted in below basal levels of ROH uptake. Therefore, this residue appears to be 

critical for ROH transport and CRBP binding. 

As discussed in section 1.3.9, Berry et al have demonstrated that STRA6 is phosphorylated at the C-

terminal region (Berry et al., 2012). They propose that phosphorylation of the C-terminus is necessary 

to allow CRBP recruitment to IC3. IC3 was shown to directly bind to CRBP with leucine 255 being a 

critical residue involved in the interaction. Previously, this group demonstrated that phosphorylation 

of STRA6 is transient with peak phosphorylation at 30 minutes. Treatment of cells overexpressing 

STRA6, with holo-RBP resulted in increased recruitment of CRBP to STRA6 with a peak interaction 

at 30 minutes.  ROH transport occurs instantaneously and therefore it is unlikely that it would be 

dependent on a phosphorylation event which peaks at 30 minutes.  
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1.3.9 C-terminal region: 

The C-terminus of STRA6 may also be an important domain for protein interactions and possibly 

signalling events. It is a large domain, containing approximately 170 amino acids, based on topology 

modelling. Berry et al have suggested that residue T644 located in the C-terminal domain of STRA6 

is phosphorylated upon holo-RBP treatment (Berry et al., 2011). This residue is a known genetic 

mutation site and is a putative src homology 2 (SH2) domain (Pasutto et al., 2007). Mutation of 

residues Y643 and T644, respectively, abolished phosphorylation of STRA6. In this study, mutated 

STRA6 was still found to be expressed at the cell membrane. However, in another mutagenesis study, 

it was observed that when T644 is mutated, cell surface expression is lost (Kawaguchi et al., 2008a). 

Lack of expression at the cell surface could be a possible reason why the receptor was not 

phosphorylated. Nevertheless, STRA6 does appear to be phosphorylated upon holo-RBP treatment 

and in a transient manner. Peak phosphorylation was observed 30 minutes after holo-RBP treatment 

(Berry et al., 2011). SH2 domains are known binding sites for the JAK/STAT signalling proteins. 

Increased phosphorylation of the signalling partner proteins Janus Kinase 2 (JAK2) and Signal 

Transducer and Activator of Transcription 5 (STAT5) was also observed in response to holo-RBP 

treatment (Berry et al., 2012). The SH2 domain at residue T644 in the C-terminal region of STRA6 

appears to be the binding site for JAK2. Decreased expression of JAK2 results in decreased 

phosphorylation of STRA6, suggesting that JAK2 is in fact responsible for STRA6 phosphorylation 

(Berry et al., 2012). Mutation of the STRA6 phosphorylation site to alanine resulted in loss of CRBP 

binding to STRA6. Berry et al do not claim that CRBP binds directly to the C-terminus of STRA6, 

rather that phosphorylation of the C-terminus results in increased accessibility to the CRBP binding 

site located in IC3. Mutation of residue 644 to the phosphomimetic residue glutamic acid resulted in 

increased CRBP binding to STRA6 (Berry et al., 2012). They also claim that increased expression of 

CRBP results in increased signalling via the JAK/STAT pathway by some as yet unknown 

mechanism. All this evidence suggests that the C-terminus of STRA6 is an essential ligand binding 

and signalling domain. Structural studies of this region are crucial to facilitate our understanding of 

the unique aspects of STRA6 mediated ROH transport and downstream signalling events. 
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1.4 The biological activity of retinoids: 

Retinoids are very important signalling molecules and they activate a very diverse and complex 

signalling cascade.  

1.4.1 Diverse functions of retinol metabolites: 

Once ROH enters the cell, it is either stored as retinyl esters via LRAT or oxidised to form retinal also 

known as retinaldehyde via a family of alcohol dehydrogenases (Fig 1.10) (Theodosiou et al., 2010). 

Retinaldehyde is the precursor for one of the most biologically active retinoids, RA. Retinaldehyde is 

irreversibly oxidised to RA via the enzyme RALDH. RA and its stereoisomers ATRA, 9-cis RA and 

13-cis RA are responsible for a diverse array of biological activities. Retinoids signal via the ligand 

activated transcription factors, Retinoic Acid Receptors (RAR) and Retinoid X Receptors (RXR). 

Both of these receptors have 3 isotypes, denoted α, β and γ. Each isotype exhibits different splice 

variants resulting in numerous isoforms of the receptor (Chambon, 1996).  

ATRA and its isomers 9-cis retinoic acid and 13-cis retinoic acid activate RAR. Metabolites of ATRA 

have also been shown to be biologically active via RAR with varying specificities for each isotype 

(Idres et al., 2002). Retinoids are extremely important for normal embryonic growth. Expression of a 

group of genes known as HOX genes are under the control of RA and promote anteroposterior 

development (Theodosiou et al., 2010). Increased expression of STRA6 in limb buds further 

highlights the importance of retinoid activity in normal limb formation (Chazaud et al., 1996). RA 

signalling can induce expression of many proteins involved in ROH transport and handling, most 

notably CRBP and even STRA6 itself (Rochette-Egly and Germain, 2009). RA can also induce 

expression of enzymes responsible for retinoid degradation such as members of the cytochrome P450 

family e.g. CYP26 (Theodosiou et al., 2010).  

ROH is also vitally important for vision. The earliest indicator of vitamin A deficiency is night-

blindness. In humans 11-cis retinal is the retinol chromophore utilised by opsin proteins for 

photoreception in the retina. Once consumed it is isomerised to all trans-retinal. It must be quickly 

regenerated to 11-cis retinal to allow for constant photoreception. The isomerisation reaction is 
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mediated by the retinoid isomerase, RPE65 (Palczewski, 2012). Retinoids are also required for normal 

reproduction. Spermatogenesis is highly reliant on RA. Knockout animals for the various RAR 

isoforms are often sterile (Clagett-Dame and Knutson, 2011). Retinoid involvement in the female 

reproductive system is highly dependent on the stage of the reproductive cycle. If ROH deficiency 

occurs before fertilisation often conception will not occur. 

 

 

Fig 1.10 The metabolic processing of retinoids.  

Representative diagram of retinoid metabolic processing in the cell. Retinoids are denoted by the 

closed boxes and the physiological processes affected are denoted by the grey circles (Theodosiou et 

al., 2010). 
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1.4.2 The retinoic acid receptors: 

Fig 1.9 shows the diversity of the metabolic processing of retinol. RA and its metabolites are the 

predominant retinoids involved in transcription activation. Retinoids signal via the ligand activated 

transcription factors RAR and RXR (Chambon, 1996). As mentioned previously, many isoforms exist 

of the two receptors and to add to the complexity, RARs can form homodimers, or heterodimers with 

RXR. RXR has also been shown to form heterodimers with steroid hormone receptors, such as the 

thyroid hormone receptor, peroxisome proliferator activated receptor (PPAR) and the vitamin D 

receptor. Given the many isoforms of the RAR and RXR receptors, and their ability to form 

complexes, the potential combinations are vast and vary greatly with cell type. This may explain the 

pleiotropic effects of retinoid signalling during development.  

RAR and RXR bind to specific promoter regions called Retinoic Acid Response Elements (RARE). 

RAREs can be found as direct repeats of the RARE sequence separated by 2 nucleotides (DR2) or 

most commonly as direct repeats of the RARE sequence separated by 5 nucleotides (DR5) before the 

gene of interest. When RXR is activated by its natural ligand, it binds a DNA sequence known as 

DR1. The CRBP gene itself has a DR2 RARE sequence in its promoter region (Rochette-Egly and 

Germain, 2009). This would suggest a positive feedback loop, i.e. when ROH enters the cell it is 

metabolised and triggers an RAR response, increasing levels of CRBP to mop up any excess ROH. 

Both RAR and RXR exhibit a DNA binding domain which forms a similar zinc finger motif. They 

also both contain a ligand binding domain which varies greatly in specificity for the activating ligand 

or retinoid.  

RARs play a crucial role in embryonic development particularly in organogenesis and limb formation. 

This specific role has been highlighted through several knockout studies of the various subtypes of 

RAR (Mark et al., 2006). Knockout of some subtypes of RAR results in a phenotype similar to 

embryos lacking RALDH. This demonstrates the dependence of RA signalling on RARs. 
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1.4.3 The retinoid X receptor: 

RXR is activated by 9-cis retinoic acid and traditionally thought to only function as a partner for other 

nuclear receptors. There are 3 subtypes RXR α, β and γ with RXRα being the most active. They 

display different tissue expression patterns. The RXRα isotype is largely expressed in the kidney, 

spleen, liver, visceral tissues, epidermis and placenta. The RXRβ isotype is ubiquitously expressed 

and the RXRγ isotype is mostly found in the muscle and brain (Szanto et al., 2004). RXRα is 

particularly important in myocardial development. Knockout mouse embryos displayed severe 

congenital heart defects along with ocular defects. Whereas RXRβ and γ knockout mice displayed no 

morphogenic effects only sterility in reproducing adult males lacking the RXRβ isotype (Mark et al., 

2006). The exact ligand for RXR is still under debate. 9-cis RA has been shown to bind in vitro but 

has yet to be detected in vivo. RXR is known to be activated by fatty acids, namely phytanic acid, 

docosahexaenoic acid and lithocholic acid (Dawson and Xia, 2012). It can form heterodimers with 

many nuclear receptors such as PPAR, RAR, vitamin D receptor (VDR), thyroid hormone receptor 

(TR), liver x receptor (LXR) and farnesoid x receptor (FXR), having a diverse physiological function 

ranging from cell differentiation, apoptosis, metabolism and embryonic development (Szanto et al., 

2004). Much debate surrounds the exact role of RXR in these heterodimeric complexes. It is now 

thought that RXR is not just a silent partner in gene regulation but can have a direct affect along with 

the other nuclear receptor in the complex. The heterodimeric binding partners of RXR can be classed 

as permissive, non-permissive or conditionally permissive to RXR transcriptional activity. Non-

permissive receptors include TR and VDR, permissive receptors include PPAR, LXR and FXR, with 

conditionally permissive receptors being the RAR. When a heterodimer partner is said to be non-

permissive, the RXR receptor is said to be subordinate to the other nuclear receptor, thus RXR 

activation by its own ligand would not enhance the transcriptional activity of the complex. When the 

heterodimer partner is permissive it means that transcription is activated by agonist binding to either 

partner or to both. In the case of conditionally permissive receptors, activation of the complex occurs 

as a result of agonist binding to the RAR but once active, allows activation of RXR (Dawson and Xia, 

2012). 
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1.4.4 Regulation of retinoid signalling: 

Transcription via RAR and RXR is tightly regulated through interacting partner proteins known as co-

repressors and co-activators (Fig 1.11). In the absence of a ligand, RARs can repress gene activation 

by binding to exposed RARE sequences in chromatin. RAR binds to a RARE and recruits co-

repressors such as nuclear receptor co-repressor (NCoR) and silencing mediator for RAR and TR 

(SMRT) to form a large molecular weight complex which impedes gene activation (Rochette-Egly 

and Germain, 2009). NCoR and SMRT bind to histone deacetylases (HDAC) to condense the 

chromatin structure. Once the active ligand or retinoid binds to the RAR, it initiates a conformational 

change causing the co-repressor complex to dissociate, allowing co-activators to bind and chromatin 

unravelling to occur. Co-repressors bind to un-liganded RAR or RXR using specific domains with the 

consensus sequence LxxxIxxxI/L. Co-activators bind to RAR or RXR using specific domains with the 

consensus sequence LxxLL (Szanto et al., 2004). Co-activator proteins were originally identified as 

160kDa proteins that interacted with nuclear receptors in a ligand-dependent manner. Known human 

co-activators include nuclear receptor co-activator-1 (NcoA1) also known as steroid receptor co-

activator 1 (SRC-1), and nuclear receptor co-activator-2 (NcoA2) also known as transcriptional 

intermediary factor 2 (TIF2). They bind to the activated RAR or RXR and initiate complex formation 

to recruit histone acetyltransferases (HAT) to de-condense the chromatin structure (Torchia et al., 

1998). This allows transcriptional complexes access to target genes and transcription to occur. 
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Fig 1.11 Metabolic Pathway of Retinol and Subsequent transcriptional activation.  

ROH enters the cell via STRA6 where it is either converted to retinyl esters  via LRAT for storage or 

oxidised via RALDH to form RA. RA then travels to the nucleus to activate gene transcription via 

RAR and RXR (Theodosiou et al., 2010). 
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1.5 Type II diabetes, a new epidemic: 

Type II diabetes is one of the fastest growing epidemics of the western world. The prevalence has also 

risen rapidly in developing countries like China and India, leading to an enormous financial burden on 

health care systems on a global scale. In addition, the percentage of adolescents diagnosed with 

insulin resistance is rising rapidly. The world health organisation (WHO) predicts that diabetes will be 

the 7
th
 leading cause of death in 2030, with 439 million people suffering from the disease. Obesity, in 

particular excess visceral fat tissue, along with a more sedentary lifestyle is the predominant cause of 

this worldwide epidemic. Indeed, visceral fat adiposity is a defined risk factor for insulin resistance 

and type II diabetes in its own right (Chen et al., 2012). 

Overt type II diabetes is caused by a systemic insulin resistant state. Following ingestion of food, cells 

fail to respond to insulin secreted by the pancreas and as a result serum glucose levels rise to 

progressively higher levels. To combat this, the pancreas strives to produce more insulin, eventually 

leading to dysfunction of the pancreatic β islet cells (Kahn et al., 2006). Before the onset of type II 

diabetes there exists a condition which in many cases can remain undiagnosed, where the body is 

becoming increasingly insulin resistant. Insulin resistance is defined as a diminished responsiveness 

of the signalling pathway to its activating molecule, insulin. The most effective therapy for insulin 

resistance is a dramatic change in lifestyle, increasing physical activity and adopting a healthier diet. 

Many theories abound as to what metabolic effect excess fat mass is having on glucose tolerance. 

Many groups suggest it is as a result of an immune response. Other groups report that it is a result of 

increased circulating fatty acids. Several studies have demonstrated that excess fat mass leads to the 

secretion of numerous signals or adipokines, most notably non-esterified fatty acids. Several 

inflammatory cytokines have also been shown to be increased, such as tumour necrosis factor α 

(TNFα) and interleukin-6 (IL-6) (Kahn et al., 2006). Adipose tissue is now widely regarded as an 

endocrine organ in its own right. Due to the wide range of theories as to the root molecular factor 

behind the disorder, one can only conclude that it is a multifactorial disease.  
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1.5.1 RBP, a biomarker for insulin resistance: 

In 2005, RBP was identified as a potential contributing factor to the development of insulin resistance. 

A study conducted by Yang et al revealed that elevated levels of serum RBP can lead to insulin 

resistance (Yang et al., 2005). Obesity is the leading cause of type II diabetes, particularly excess 

visceral adipose tissue. An adipose tissue specific GLUT4 knockout mouse was used to study what 

adipokines are secreted in response to insulin resistance. GLUT4 is the main membrane transporter 

for glucose. Mice in which GLUT4 was selectively knocked out in adipose tissue exhibit an insulin 

resistant phenotype, due to decreased uptake of glucose. Amongst a plethora of other proteins secreted 

from adipose tissue, serum RBP was shown to be increased (Yang et al., 2005). The liver is the 

primary site for RBP secretion with adipose tissue being the second largest contributor to serum RBP 

levels (Tsutsumi et al., 1992). Serum RBP was identified to be elevated 2.5 fold in GLUT4 knockout 

mice compared to WT (Yang et al., 2005).  

The direct effect of RBP on glucose tolerance and insulin sensitivity was subsequently investigated. 

Mice injected with human RBP showed marked insulin resistance over time, when compared to 

controls (Yang et al., 2005). Conversely, RBP knockout
 
mice exhibit increased insulin sensitivity. 

Pharmacological methods aimed at reducing circulating RBP levels can also improve insulin 

sensitivity. Fenretinide, a synthetic retinoid, was found to improve glucose tolerance in obese, insulin 

resistant mice (Yang et al., 2005). Fenretinide actively reduces circulating RBP levels by inhibiting 

the interaction of RBP and TTR, thus enabling RBP to be filtered by the kidneys and excreted. 

Fenretinide was initially developed to treat cancer and acts by inducing apoptosis in rapidly dividing 

cells, by an unknown mechanism (Fontana and Rishi, 2002). As it is an anti-cancer therapeutic it 

would not be suitable for the long term treatment of insulin resistance. RBP is therefore a potential 

drug target for the treatment of insulin resistance and type 2 diabetes. 
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1.5.2 Physiological relevance: 

When the findings of the seminal paper by Yang et al in 2005 were translated to human subjects with 

type II diabetes, the results were in agreement. Epidemiology studies have shown that obese patients 

with type II diabetes display elevated levels of serum RBP (Graham et al., 2006). Even in lean 

subjects with a genetic predisposition to type II diabetes, serum RBP levels were found to be elevated. 

In non-obese subjects elevated serum RBP levels were concomitant with decreased GLUT4 

expression in adipose tissue, as seen with the GLUT4 adipose selective knockout mouse. There has 

been some discrepancy in epidemiology studies investigating levels of serum RBP in diabetic 

patients. Some groups report a positive correlation with increased serum RBP levels and increased 

insulin resistance; others show no correlation at all. Graham et al suggest that the reason behind the 

conflicting results is the methodology used. Quantitative Western blot appears to be the most accurate 

method to assess levels of circulating RBP levels between subjects (Graham et al., 2007). 

Exercise is the first line of treatment for insulin resistance in obese diabetic patients. RBP levels were 

analysed in the serum of diabetic subjects following periods of increased physical activity. Improved 

glucose tolerance correlated positively with a reduction in serum RBP levels (Graham et al., 2006). 

Table 1.2 depicts the effect of medical intervention for type II diabetes on serum RBP levels. Most 

treatments associated with weight loss also correlate positively with decreased RBP levels. This 

would most likely be due to a decrease in adipose tissue and associated secretion of this adipokine. 

Monitoring of serum RBP levels may become a non-invasive method to assess the onset of insulin 

resistance and monitor its improvement.  

The question remains whether elevated RBP levels are also associated with increased ROH levels. 

TTR will only bind to holo-RBP, and as RBP would be filtered from the blood without TTR one 

would presume that if serum RBP levels are elevated ROH is also present. In obese subjects serum 

apo-RBP levels were found to be two fold higher than non-obese subjects (Mills et al., 2008). The 

ratio of RBP to ROH was found to be lower in obese patients. This is thought to be due to increased 

levels of circulating apo-RBP which could dilute down the proportion of RBP with ROH bound. 
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Table 1.2 The effect of medical interventions on circulating RBP levels. 

Table representing the relative effect of medical treatment for type II diabetes on circulating RBP levels (Christou et al., 2012). 
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1.5.3 The molecular mechanisms of RBP induced insulin resistance: 

Much debate surrounds the exact mechanism by which RBP can contribute to insulin resistance. 

Recent studies by Norseen et al have shown that increased RBP may lead to an immune response 

(Norseen et al., 2012).  Elevated levels of RBP in white adipose tissue led to an increase in the 

mitogenic signals IL-6, TNF-α and Monocyte Chemoattractant Protein-1 (MCP-1). The cytokines 

were produced by a direct effect of RBP on macrophages present in adipose tissue, not by stimulating 

the adipocytes. The researchers suggest that elevated cytokine levels produced by macrophages in 

response to RBP have a detrimental effect on insulin signalling in adjacent adipocytes.  

Interestingly, it was found that apo-RBP had a greater effect in stimulating cytokine production than 

holo-RBP. STRA6 was not found to be expressed in the macrophages used in this study. Therefore, 

the immune response elicited by RBP acts via a STRA6 independent mechanism. Analysed together 

these results would suggest a retinoid independent mechanism of action. In order to determine what 

secretory pathway was activated to promote cytokine production, inhibitors of known cytokine 

production pathways were used. Specific inhibition of the c-Jun N-Terminal Kinase (JNK) pathway 

caused a marked reduction in cytokine levels. The study went on to show that when Toll Like 

Receptor 4 (TLR4) knockout macrophages were stimulated with RBP, significantly lower amounts of 

cytokines were secreted. However, the effect was not totally abrogated, suggesting that other 

pathways may be involved. In addition, the 3T3L1 adipocytes used in this study endogenously 

express TLR4 (Song et al., 2006) but did not themselves exhibit TLR4 activation with direct RBP 

treatment. RBP may be acting by an as yet undiscovered mechanism to cause cytokine production.  
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1.5.4 Cytokines and insulin resistance: 

The interruption of insulin signalling by immune response cytokines has been well documented (see 

below). Large numbers of macrophages can be found in visceral adipose tissue. Weisberg et al found 

that in obese rodents 40% of cells present in visceral adipose tissue were macrophages compared to 

10% in lean rodents (Weisberg et al., 2003). The macrophages in this region are active and secrete 

pro-inflammatory cytokines such as TNFα, IL-6 and IL-1β. These cytokines have been shown to 

impact indirectly on the insulin signalling pathway by activation of the JNK pathway (Patel et al., 

2013).  

1.5.5 Role of TNFα in insulin resistance:  

TNFα is one of the most prominent pro-inflammatory cytokines. Stimulation of the tumour necrosis 

factor receptor by TNFα leads to activation of the JNK signalling pathway. TNFα has been shown to 

cause an interruption of insulin signalling at an early point in the pathway. Complete TNFα inhibition 

of insulin receptor substrate-1 (IRS-1) activation occurs after several hours which would suggest that 

it is not a direct inhibition but one reliant on a change in the proteomic profile of the cell. TNFα is 

thought to inhibit insulin signalling by two proposed mechanisms, firstly by causing an increase in 

IRS-1 phosphorylation at serine 307 and secondly by inducing Suppressor of Cytokine Signalling 3 

(SOCS3) expression. Serine 307 phosphorylation of IRS-1 blocks tyrosine phosphorylation of IRS-1 

using an unknown mechanism (Aguirre et al., 2000). It is thought that JNK is the kinase responsible 

for phosphorylation of IRS-1 at Serine 307. Tyrosine phosphorylation of IRS-1 is vital for the 

downstream propagation of the insulin signal as it generates SH2 sites necessary for PI3 Kinase to 

bind (Copps and White, 2012).  

TNFα may also be inducing insulin resistance by increasing SOCS3 expression. SOCS3 can bind to 

the insulin receptor specifically at tyrosine 960 (Ueki et al., 2004). This residue is vital for IRS-1 

recruitment to the insulin receptor. Thus, by binding to the insulin receptor SOCS3 blocks the 

association of these two proteins (Fig 1.12). Inhibition of the insulin signalling pathway at this level 

leads to a decrease in glucose uptake into the cell. 
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Fig. 1.12 Recruitment of SOCS3 to Y960 of the insulin receptor inhibits IRS-1 association.  

Proposed model of how cytokine production can act to inhibit insulin receptor activation by increased 

SOCS3 expression (Ueki et al., 2004). 

 

1.5.6 STRA6 and the JAK/STAT pathway: 

Another group has suggested that RBP is functioning as a signalling molecule to cause a disruption in 

the cell’s insulin response. The genetic mutation site of STRA6, T644M, is a putative SH2 domain. 

Berry and Noy (2012) investigated whether this site was phosphorylated and indeed, when cells 

overexpressing STRA6 were stimulated with holo-RBP, they saw a marked increase in STRA6 

tyrosine phosphorylation. Holo-RBP was shown to induce phosphorylation of STRA6 in a time 

dependent manner, with maximal phosphorylation at 30 minutes. Apo-RBP and ROH alone did not 

induce phosphorylation. SH2 domains are typically associated with the JAK/STAT signalling 

pathway. Holo-RBP was shown to cause an increase in STAT5 phosphorylation, and this 

phosphorylation was linked to JAK2. JAK2 was found to associate directly with STRA6 (Berry and 

Noy, 2012). Berry and Noy suggest that association of JAK2 with STRA6 leads to JAK2 

phosphorylation and subsequent activation of STAT5 (Fig 1.13). STAT5 is a known transcription 
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factor. Using a luciferase reporter assay Berry et al observed that a number of genes regulated by 

STAT5 were increased in expression following holo-RBP treatment. One gene in particular that was 

found to be up-regulated in expression was SOCS3. As described previously, SOCS3 has been shown 

to directly bind to the insulin receptor and inhibit downstream insulin signalling (Ueki et al., 2004). 

In a separate study, Muenzner et al demonstrated that overexpression of RBP specifically in the liver 

led to increased serum holo-RBP levels (Muenzner et al., 2013). When they examined gene 

expression in adipose tissue, they saw increased expression of several RARα responsive genes such as 

CRBPI and CYP26A1 but no increase in SOCS3 expression or TNFα expression (Muenzner et al., 

2013). In addition, they did not observe an increase in STAT5 phosphorylation in response to apo-

RBP, holo-RBP or ROH alone in pre-adipocytes overexpressing STRA6. This work is in direct 

conflict with that described by Berry and Noy. The cause behind this discrepancy is unknown. 

 

Fig. 1.13 Activation of STRA6 leads to increased SOCS3 expression and inhibition of the insulin 

receptor.  

Proposed model of holo-RBP activation of the JAK/STAT signalling pathway via STRA6 (Berry et 

al., 2011). 
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1.6 Project Aims: 

It has been widely reported that, in patients with type II diabetes, elevated serum RBP levels correlate 

positively with insulin resistance. Reduction of serum RBP levels can have a beneficial effect on 

glucose tolerance. Conflicting theories surround the exact mechanism by which increased RBP levels 

can cause insulin resistance. 

The aim of this investigation is to use proteomic technologies and techniques to investigate the effect 

of elevated RBP levels on muscle cells. Information gained from studying alterations in the proteome 

due to RBP treatment could reveal the molecular mechanism by which insulin resistance occurs in this 

tissue.  

In conjunction with this study, the effect of a successful novel therapeutic for type II diabetes on 

muscle cells was investigated. This small molecule prevents the association of TTR and RBP and in 

theory should cause an increase in RBP excretion in the urine. When cells were stimulated directly 

with the drug an increase in glucose uptake was observed. This effect was independent of the 

predicted mechanism of action. In order to reveal the mechanism of action when added directly to 

muscle cells, a proteomic study was conducted. Proteomic profiling of a small molecule for the 

treatment of type II diabetes may reveal a novel effect on cell homeostasis and uncover any 

potentially toxic effects of the drug. 

Another aspect of this study was to analyse the structure and function of the C-terminal region of 

STRA6. The C-terminus is a large intracellular, potentially independently-folding domain which 

could be of functional significance. Evaluation of the structural characteristics of the C-terminus 

could reveal the domain’s secondary and quaternary structure. In addition, studies with potential 

binding partners such as CRBP could uncover novel interaction sites. A recombinant version of the 

domain was produced in E. coli and purified to a high standard. The protein was then used to 

investigate its secondary structure and any potential functional characteristics. 
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2.1 Tissue Culture: 

All cell lines were maintained in a sterile environment at 37
o
C with 5% CO2. 

2.1.1 General Tissue Culture Reagents: 

Fetal bovine serum (FBS) was purchased from either Sigma or Thermo Scientific and heat inactivated 

at 56
o
C for 30 minutes. Horse serum and Dulbeccos phosphate buffered saline (DPBS) was supplied 

by Gibco. Horse serum was also heat inactivated at 56
o
C for 30 minutes. High glucose Dulbecco’s 

Modified Eagles Medium (DMEM) was obtained from Thermo scientific or Sigma. Trypsin-EDTA 

solution was supplied by Thermo Scientific. L-glutamine, and penicillin/streptomycin were supplied 

by Sigma. L-glutamine was used at a final concentration of 2mM. Penicillin/Streptomycin was used at 

100U/mL Penicillin and 100µg/mL streptomycin.  

2.1.2 C2C12 cell line maintenance and storage: 

C2C12 cells were purchased from Sigma (91031101). Cells were routinely maintained in high glucose 

DMEM 4500 mg/ml Glucose, 2mM L-Glutamine, 10% FBS, 1% Pen/Strep (complete media). Cells 

were thawed at 37
o
C and washed in 10mL complete media, to remove the cryo-preservative DMSO, 

then re-suspended in complete media and cultured in a T75 flask at 37
o
C with 5% CO2. When 80% 

confluent, cells were detached from the flask using trypsin-EDTA, 0.25% (v/v), 3mL for 5 minutes. 

Protease action was inhibited using 8mL complete media. Cells were then re-seeded at 1x10
5
 cells per 

flask until 80% confluent. C2C12 cells were then either passaged once more or differentiated into 

myotubes with high glucose DMEM 4500 mg/ml glucose, 2mM L-glutamine, 2% horse serum, 1% 

Pen/Strep for 3 days. Storage of C2C12 cells was carried out by freezing 2x10
6
 cells in 1mL complete 

media with 10% DMSO at -80
o
C overnight. Cells were then placed in liquid nitrogen for long term 

storage. 
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2.1.3 HEK293T STRA6 stable cell line maintenance and storage: 

HEK293T cells, transfected with either N-Terminally tagged or C-Terminally tagged STRA6 were 

kindly donated by Dr. Conor Breen as a frozen culture. Storage of stable cells was carried out by 

freezing 3x10
6
 cells in 1mL complete media with 10% DMSO at -80

o
C overnight. Cells were then 

placed in liquid nitrogen for long term storage. They were thawed at 37
o
C and washed in 10mL 

complete media, to remove the cryo-preservative DMSO, then re-suspended in complete media and 

cultured in a T75 flask at 37
o
C with 5% CO2 overnight. Media was then replaced with complete media 

containing 100µg/mL hygromycin (Invitrogen) and 15µg/mL blasticidin (Merck).When 

approximately 80% confluent, cells were detached from the flask using Trypsin-EDTA, 3mL for 5 

minutes. Protease action was then inhibited using 8mL complete media. Cells were then re-seeded by 

diluting 1:7.5 in 15mL complete media. STRA6 expression was induced at 70% confluency by 

replacing media with complete media containing 1 µg/mL tetracyclin (Sigma). 

2.1.4 HEPG2 cell line maintenance and storage: 

HEPG2 cells were obtained from ATTC (77400).  Cells were routinely maintained in high glucose 

DMEM 4500 mg/ml glucose, 2mM L-glutamine, 10% FBS, 1% Pen/Strep. Storage of HEPG2 cells 

was carried out by freezing 2x10
6
 cells in 1mL complete media with 10% DMSO at -80

o
C overnight. 

Cells were then placed in liquid nitrogen for long term storage. They were thawed at 37
o
C and washed 

in 10mL complete media, to remove the cryo-preservative DMSO, then re-suspended in complete 

media and cultured in a T25 flask at 37
o
C with 5% CO2. When approximately 80% confluent, cells 

were detached from the flask using Trypsin-EDTA, 3mL for 5 minutes. Protease action was then 

inhibited using 8mL complete media. Cells were re-seeded by diluting 1:5 in 15mL complete media.  
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2.1.5 BMDM cell line maintenance and storage: 

Bone marrow derived macrophages (BMDM) were kindly donated as a live culture courtesy Prof. 

Paul Moynagh.  Cells were routinely maintained in high glucose DMEM 4500 mg/ml glucose, 2mM 

L-Glutamine, 10% FBS, 1% Pen/Strep. When approximately 80% confluent, cells were detached 

from the flask using a cell scraper. Cells were then re-seeded at 1x10
6
 in a T175 flask. Storage of 

BMDM cells was carried out by freezing 2x10
6
 cells in 1mL complete media with 10% DMSO at -

80
o
C overnight. Cells were then placed in liquid nitrogen for long term storage. 

2.1.6 C2C12 RTC15 Treatment: 

Differentiated C2C12 cells were washed once with 10 ml DPBS at 37
o
C. Cells were then incubated 

for 16 hours with 10µM RTC15 in complete media with 2% horse serum. Control cells were 

incubated with an equal volume of the vehicle, DMSO, in complete media with 2% horse serum. 

2.1.7 C2C12 RBP Treatment: 

Differentiated C2C12 cells were serum starved for 7 hours using complete media with 0.1% horse 

serum, then washed with DPBS warmed to 37
o
C. RBP was pre-incubated with ROH in equimolar 

concentrations at 37
o
C for ten minutes. Cells were then incubated with 75µg/ml holo-RBP in 

complete media with 0.1% horse serum for 16 hours. Control cells were incubated with an equal 

volume of the vehicle, PBS in complete media with 0.1% horse serum. 

2.1.8 C2C12 insulin treatment: 

Differentiated C2C12 cells were washed once with pre-warmed DPBS. 9.5mg/ml insulin supplied by 

Sigma (I9278) was diluted 1:172 in sterile Krebs Ringer buffer (KRB) with 5mM glucose to give 

55µg/ml insulin. KRB was composed of 136mM NaCl, 20mM HEPES, 4.7mM KCl, 1mM MgSO4, 

1mM CaCl2, 4.05mM Na2HPO4, 0.95mM NaH2PO4, pH 7.4. 55µg/ml insulin was diluted 1:100 in 

KRB with 5mM glucose to give 0.5µg/ml insulin. Cells were incubated with 0.5µg/ml insulin in KRB 

with 5mM glucose for 1 hour at 37
o
C, and then washed with 1mL of KRB without glucose. 
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2.2 Sample Preparation: 

2.2.1 Cell lysis: 

For co-immunoprecipitation experiments, cells were lysed in HEPES lysis buffer 50mM HEPES 

(pH7.5), 150mM NaCl, 10mM Na2HPO4, 50mM NaF, 1mM EDTA, 1.5mM MgCl2, 2mM Na3VO4, 

1mM Na4P2O7, 1X protease inhibitor cocktail (Sigma S8380), 10% glycerol, 10µg/ml aprotonin and 

1% Triton x-100. Cells were re-suspended in HEPES lysis buffer and incubated at 4
o
C for 1 hour with 

rotation. Lysates were spun at 13,000 RCF for 5 minutes at 4
o
C. The insoluble pellet was discarded 

and the soluble supernatant was retained for further analysis. 

For Western blotting cells were lysed in RIPA buffer 50mM Tris-HCL (pH 7.4), 150mM NaCl, 1% 

Triton x-100, 0.1% SDS, 0.5% sodium deoxycholate, 1X protease inhibitor cocktail, 1mM EDTA, 

50mM NaF, 2mM Na3VO4, 1mM Na4P2O7. 

2.2.2 Cell membrane isolation: 

Attached cells were washed 3 times with ice cold PBS, then detached using a cell scraper in 10mL 

PBS. Cells were then pelleted at 500 RCF for 10 minutes at 4
o
C. The supernatant was discarded and 

the cells resuspended in 2mL hypotonic buffer (10mM HEPES (pH 7.9), 1.5mM MgCl2, 10mM KCl, 

0.5mM DTT, 1X protease inhibitor cocktail, 50mM NaF, 2mM Na3VO4, 1mM Na4P2O7). Cells were 

sonicated for 1 minute on ice. The lysate was spun at 3,000 RCF for 15 minutes at 4
o
C, to remove cell 

debris. The supernatant was then transferred to an Optiseal Polyallomer tube (Beckman 362185). The 

tube was filled to the brim with hypotonic buffer (fill volume 5mL) and centrifuged at 100,000 RCF 

for 1 hour at 4
o
C in a NVT90 rotor using the Optima L-100 XP Ultracentrifuge (Beckman Coulter). 

The supernatant was removed and membrane pellets were resuspended in 50µl MES buffer (25mM 

MES, 150mM M NaCl, 1% Triton X-100, pH6.5). To aid solubilisation membranes were sonicated on 

ice for 10 seconds. 
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2.2.3 BCA protein assay: 

A standard protein curve was prepared using bovine serum albumin (BSA) at 0, 50, 100, 200, 400, 

600, 800, 1000, 1250, 1500, 1750 and 2000 µg/ml. Samples were diluted as required and 10µl used 

for the assay in duplicate. 10µl of each standard or sample was used in duplicate in a 96 well plate. 

Copper sulphate was diluted 1:50 into biochinchinoic acid. 200µl of the copper sulphate and 

biochinoic acid mix was added to each well. The plate was incubated at 37
o
C for 30 minutes. The 

plate was then analysed using a BIO-TEK EL800 plate reader at 562nm. Protein concentration of the 

samples was deduced from the standard curve. 

2.2.4 Pierce protein assay: 

A standard protein curve was prepared using BSA at 0, 50, 100, 200, 400, 600, 800, 1000, 1250, 

1500, 1750 and 2000 µg/ml. Samples were diluted as required and 10µl used for the assay in 

duplicate. 10µl of each standard or sample was used in duplicate in a 96 well plate along with 150µl 

Pierce Protein Assay reagent (PN22660). The plate was incubated at room temperature for 5 minutes. 

The plate was then analysed using a BIO-TEK EL800 plate reader at 630nm. Protein concentration of 

the samples was deduced from the standard curve. 
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2.3 Two Dimensional Electrophoresis:  

2.3.1 Sample preparation for the RBP proteomic study: 

C2C12 cells were treated overnight with holo-RBP as described in section 2.17. Cells were 

subsequently lysed and separated into the cytosolic and membrane fractions as described in section 

2.2.2. The membrane pellet was resuspended in MES buffer with 1% Triton X-100 (v/v) and 

centrifuged at 10,000 RCF for 5 minutes at 4
o
C. The pellet was discarded and the protein 

concentration of the supernatant was analysed using the BCA assay. 1mg of protein was used per 

electrophoresis strip (Bio-Rad) and made up to 600µl in 2D sample buffer (7M urea, 2M thiourea, 

100mM DTT, 4% (w/v) CHAPS, 1% (v/v) Trion X-100, 0.06% (v/v) ampholytes pH4-7, 0.06% (v/v) 

bromophenol blue). Samples were left to solubilise at room temperature for 6 hours. The cytosolic 

fraction from the membrane preparation was retained for each sample. Protein was precipitated using 

3 times the volume of ice-cold acetone at -20
o
C for 2 hours. The reaction was centrifuged at 13,000 

RCF for 10 minutes at 4
o
C and the pellet retained. Residual acetone was removed by air-drying. The 

protein pellet was resuspended in MES buffer with 1% Triton X-100 (v/v). Resuspended cytosolic 

proteins were spun at 10,000 RCF for 5 minutes at 4
o
C. The pellet was discarded and the protein 

concentration of the supernatant was analysed using the BCA assay.1mg of protein was used per strip 

and made up to 600µl in 2D sample buffer. Samples were left to solubilise at room temperature for 6 

hours. 

2.3.2 Sample preparation for the RTC15 proteomic study: 

C2C12 cells were treated with 10µM RTC15 overnight as described in section 2.16. Briefly, cells 

were lysed in 2D sample buffer and left to solubilise for 6 hours at room temperature. Cell lysate was 

centrifuged at 13,000 RCF for 5 minutes. The supernatant was retained and assessed for protein 

concentration using the Pierce protein assay. 500µg of protein was used per electrophoresis strip and 

the sample was made up to 500µl in 2D sample buffer. 
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2.3.3 Strip rehydration: 

IPG strips were obtained from Biorad (163-2044), pH gradient 4-7. Samples were prepared as per 

sections 2.3.1 and 2.3.2. The protein sample was pipetted along a single well in a rehydration tray. 

The plastic backing was removed from the IPG strip and the strip was placed gel side down onto the 

sample. The strip was left to rehydrate for one hour then overlaid with mineral oil. Strips were 

rehydrated overnight by passive rehydration.  

2.3.4 Isoelectric focusing: 

Isoelectric focusing (IEF) allows the separation of proteins based on the pI of the protein. When 

current is applied to the protein sample, individual proteins will migrate to the pH at which the charge 

of the protein is neutral (Fig. 2.1). For the RBP proteomics study IEF was performed using an Ettan 

IPGphor 3 supplied by GE. For the RTC15 proteomics study IEF was performed using the 

PROTEAN IEF cell supplied by Biorad. The same protocol was used for both studies. Electrode 

wicks were dampened with distilled H2O and any excess water blotted off. When using the GE system 

the strips were placed gel side up in the correct orientation and the electrode wicks placed on the ends 

of the gel respectively. When using the Biorad system the electrode wicks were placed onto the 

electrode and the gel strip placed gel side down onto the wicks. For both systems the strips were 

completely covered with mineral oil. When using the GE system the electrodes were carefully placed 

onto the ends of the strip in the correct orientation. For both systems the lid was then placed on top 

and the following IEF protocol initiated. 

Step 1. Hold at 250V for 4 hours 

Step 2. Gradient to 10,000 V 2 and half hours 

Step 3. Hold at 10,000 V for 60,000 volt hours 

Step 4. Hold at 500V for 24 hours to store 
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2.3.5 Gel casting: 

Acrylamide gels for SDS-Page were prepared the night before to allow polymerisation of the gel 

overnight. Acrylamide was present at 10% for all proteomic studies. The gel composition was as 

follows; 10% acrylamide, 0.38M Tris-HCl pH 8.8, 0.1% SDS (V/V), APS 0.05% (V/V), TEMED 

0.04%, Rhinohide 1.67% (V/V). 100mL was prepared for each gel with an excess of 100mL. Once 

gels were poured, each gel was overlaid with 50:50 water saturated butanol and allowed to set at room 

temperature. When set, gels were overlaid with 1X SDS running buffer to store. 

2.3.6 Equilibration of IPG strip: 

Following IEF, strips were drained of excess mineral oil and transferred to a clean IEF tray for 

equilibration to allow SDS to bind for 2
nd

 dimension electrophoresis. Strips were first saturated with 

reducing equilibration buffer (6M urea, 0.05M Tris-HCL pH 8.8, 2% SDS, 20% glycerol, 2% DTT). 

Strips were incubated with reducing equilibration buffer for 15 minutes at room temperature. After 15 

minutes the buffer was replaced with equilibration buffer containing iodoactemide to prevent re-

oxidation of cysteine residues and formation of disulphide bonds (6M urea, 0.05M Tris-HCL pH 8.8, 

2% SDS, 20% glycerol, 2.5% iodoacetamide). Strips were incubated for a further 15 minutes at room 

temperature. 
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2.3.7 2
nd

 dimension electrophoresis: 

The second dimension of 2D electrophoresis allows for the separation of proteins based on molecular 

weight (Fig. 2.1). IPG strips were removed from the final equilibration buffer and washed in 1X SDS 

running buffer. Strips were placed on top of the gel with the plastic backing along the back glass 

plate. A molecular weight marker was added to a piece of blotting paper and positioned alongside the 

anode side of the IPG strip. The strips were then overlaid with 0.5 % agarose sealing solution (0.5% 

agarose (w/v), 0.002% bromophenol blue (w/v) prepared in 1X SDS electrophoresis buffer). The 

agarose gel was allowed to set at room temperature for 20 minutes. For the RBP proteomics study, 

gels were electrophoresed using the Ettan DALT twelve system. For the RTC15 proteomics study, the 

gels were electrophoresed using the Biorad PROTEAN plus Dodeca Cell system. For both studies 

gels were run at 200V constant for approximately 6 hours in 1X SDS electrophoresis buffer (25mM 

tris-base, 192mM glycine, 1% SDS (w/v)). The gels were then carefully removed from the glass 

plates and transferred to fixing reagent (40% ethanol (v/v), 10% acetic acid (v/v)) for 30 minutes. 

Gels were immersed in fresh fixing solution and left overnight at room temperature with constant 

shaking. 
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Fig 2.1 2D electrophoresis schematic. 

Protein samples are resolved first by isoelectric focusing using the pI of the protein and secondly by 

SDS-Page using the molecular weight of the protein. Taken from the 2D guide supplied by Bio-Rad. 
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2.4 Gel visualisation: 

Changes in protein phosphorylation were analysed using ProQ Diamond phospho stain supplied by 

Invitrogen (P-33300). Changes in total protein expression levels were analysed using Sypro Ruby 

stain supplied by Bio-Rad (170-3125). Gels used to excise spots for mass spectrometry analysis were 

stained with silver stain compatible with mass spectrometry, using a kit supplied by Thermo 

Scientific, (24600). 

2.4.1 ProQ Diamond staining: 

Following overnight fixation, gels were washed 3 times with milliq (MQ) H2O for 10 minutes, then 

immersed in 250mL ProQ diamond stain diluted 1:3. Stain can be diluted without compromising 

staining efficiency (Agrawal and Thelen, 2005). Gels were incubated in the dark with ProQ diamond 

as per manufacturer’s instruction for 90 minutes and destained in 50mM sodium acetate pH 4, 20% 

acetonitrile (v/v) for 30 minutes, 3 times. Before imaging gels were washed twice in MQ water for 5 

minutes each. 

2.4.2 Sypro Ruby staining: 

Following ProQ diamond staining, gels were washed in MQ water 3 times for 10 minutes. Then 

incubated with 250mL Sypro Ruby stain in the dark overnight, then washed with destaining solution 

(10% ethanol (v/v) and 7% acetic acid (v/v)) for 30 minutes, twice. Gels were washed twice with MQ 

water for 5 minutes. 
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2.4.3 Silver staining: 

The spot pattern was visualised using a silver staining kit supplied by Thermo Scientific (24600) 

subsequent to ProQ diamond and Sypro Ruby staining. All steps were carried out as per 

manufacturer’s instructions. Briefly, gels were incubated with sensitising solution for 1 minute (1 part 

sensitiser solution with 500 parts MQ water), washed twice with MQ water for 1 minute and then 

incubated with silver stain enhancer solution for 5 minutes (1 part silver stain enhancer with 100 parts 

silver stain). Gels were washed twice with MQ water for 20 seconds and then incubated with 

developer solution (1 part silver stain enhancer with 100 parts silver stain developer), for 3 minutes, 

followed by stop solution (5% (v/v) acetic acid), for 10 minutes. Gels were finally washed in MQ 

water for ten minutes. 

2.4.4 Image acquisition: 

Gel images used for the RBP proteomics study were scanned using the Typhoon Trio Variable Mode 

Imager supplied by GE. Gel images used for the RTC15 proteomics study were scanned using the 

BioRad molecular imager FX. ProQ diamond images were acquired at excitation 532nm and emission 

560nm using the Typhoon scanner. ProQ diamond images were acquired at excitation 532nm and 

emission 555nm using the Molecular Imager FX. Sypro Ruby images were acquired at excitation 

532nm and emission 610nm using the Typhoon scanner. Sypro Ruby images were acquired using the 

Molecular Imager FX were scanned using the pre-set Sypro Ruby settings outlined by the software. 
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2.5 Image analysis: 

All images were analysed using Progenesis SameSpots software. For each study both ProQ Diamond 

and Sypro Ruby stained images were matched to a Sypro Ruby stained “reference gel” (manually 

chosen as the most representative from the general experiment). The spot pattern for each gel was 

aligned to the reference gel for subsequent spot analysis. Spot alignment was conducted automatically 

by the software with subsequent manual manipulation to remove artefacts and misaligned areas. The 

original gel images were then categorised into replicate groups so that the software could recognise a 

group of gels separately from one another and allow statistical analysis between the groups.  In the 

case of these experiments, analysis was conducted between a control group and a treatment group for 

both phosphorylation and expression changes. The software automatically normalised spot quantity 

values in each gel by dividing the raw quantity of each spot by the total quantity of all the spots in the 

respective gel. One-way analysis of variance (ANOVA) was conducted between treatment groups. 

Only spots showing a >1 fold change with a p-value <0.005 were included for further investigation. 
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2.6 Spot excision and mass spectrometry:  

2.6.1 Spot excision: 

Protein spots selected for mass spectrometry analysis were excised from a silver stained gel manually 

using a cut pipette tip and transferred to a 0.5µl Eppendorf tube. 

2.6.2 Gel destaining: 

Silver stained gel pieces were destained using the silver stain mass spectrometry kit supplied by 

Thermo Scientific (24600), according to the manufacturer’s instructions. Briefly, gel plugs were 

destained with 200µl destaining solution for 15 minutes (74µl of silver destain reagent A, 245µl of 

silver destain reagent B and 4mL MQ water). The gel pieces were destained again for 15 minutes with 

200µl of destaining solution, the destaining solution was removed and gel pieces were incubated with 

200µl wash solution (25mM ammonium bicarbonate, 50% (v/v) acetonitrile), 3 times for ten minutes. 

2.6.3 In-gel digestion: 

Once gel pieces were destained protein digestion was carried out as per Shevchenko et al 

(Shevchenko et al., 2006). Briefly trypsin digestion solution was prepared using 20µg sequencing 

grade trypsin supplied by Promega (V511C). 20µg trypsin was resuspended in 1.5mL 10mM 

ammonium bicarbonate containing 10% (v/v) acetonitrile. 50µl of trypsin solution was incubated with 

each gel piece on ice for 2 hours. The digestion solution was increased on any gel pieces that were not 

saturated with solution. 10µl of 10mM ammonium bicarbonate, 10% acetonitrile solution was layered 

on top of the gel pieces to prevent drying out. The gel pieces were then incubated at 37
o
C overnight. 

Protein was then extracted from the gel plugs using 100µl extraction buffer (1:2 (v/v) 5% Formic 

acid/acetonitrile). Samples were incubated at 37
o
C for 15 minutes with shaking. The solution 

containing extracted peptides was then removed from each sample and placed in a fresh Eppendorf 

tube. Samples were vacuum dried using an Eppendorf concentrator 5301and stored at -20
o
C until 

mass spec analysis. 
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2.6.4 LC/MS/MS:  

All peptide identifications were carried out using the Ion Trap 6340 LC/MS/MS system supplied by 

Agilent. Digested samples were resuspended in 20µl 0.1% (v/v) trifluroacetic acid (TFA) in MQ 

water. Samples were then filtered using spin filters supplied by Fisher (MPA-150-020W). 5µl of 

trypsin digest was loaded onto a C18 chip (G4240-62006) supplied by Agilent at a rate of 0.6µl/min 

in 0.1% formic acid (FA). The mobile phases were aqueous solutions of 0.1% (v/v) FA and an 

acetonitrile solution of 0.1% (v/v) FA. A 10 minute gradient was carried out to increase the 

acetonitrile concentration to 100% linearly. Charged ions were generated using an electrospray 

ionisation source. Spray voltage was set to 2000V. 

2.6.5 Protein identification: 

All peptides were submitted to the Mascot search engine (Matrix Science, London, UK; 

http://www.matrixscience.com) to identify proteins and searched against the NCBI and Swiss-Prot 

databases. The enzyme used was selected as trypsin and up to 2 missed cleavages were allowed. 

Peptide mass tolerance was set at ±2 for precursor ions and a tolerance of ±1 for fragment ions. 

Variable modifications allowed for were carboxymethyl (C) and oxidation (M). Taxonomy was 

selected as mammalia. When using the NCBI database, individual ion scores >54 indicate protein 

identity or extensive homology. Only peptides matched with an ion score above 54 were accepted as 

significant. When using the Swiss-Prot, database individual ion scores >40 indicate protein identity or 

extensive homology. Only peptides matched with a score >40 were accepted as significant.  
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2.7 One dimensional electrophoresis and Western blotting: 

2.7.1 SDS-PAGE: 

Proteins were separated by molecular weight using SDS Polyacrylamide Gel Electrophoresis (SDS-

PAGE). Before electrophoresis samples were denatured in Laemmli sample buffer. 5X Laemmli 

buffer was prepared with 300mM Tris-HCl, 50% (v/v) glycerol, 10% (w/v) SDS, 0.02% (w/v) 

Bromophenol Blue, 10% (v/v) β-mercaptoethanol, pH 6.8. Samples were heated to 75
o
C for 5 minutes 

and electrophoresed through an acrylamide gel at 100 volts for approximately 2 hours. The running 

buffer was composed of 0.1% (w/v) SDS, 25mM Tris-Base and 192mM glycine, pH 8.3. A prepared 

protein ladder supplied by Thermo Scientific (SM1811) was used to assess the molecular weight of 

electrophoresed proteins (Fig 2.2). 

 

 

Fig. 2.2 Diagram of distribution of molecular weight markers used for SDS-PAGE. 

Distribution of the molecular weight standards present in the Thermo Scientific PageRuler Plus 

Prestained Protein Ladder when analysed by SDS-PAGE. Image taken from 

www.thermoscientificbio.com. 
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2.7.2 Coomassie brilliant blue staining: 

SDS-PAGE gels were stained with Coomassie blue using Coomassie Brilliant Blue G250 powder 

supplied by Ams Biotechnology (17524). Gels were stained according to manufacturer’s instructions. 

Briefly gels were fixed in 40% (v/v) ethanol, 10% (v/v) acetic acid for 15 minutes with shaking, 

twice. Gels were then immersed in a 1:1 mix of staining solution I (0.2% (w/v) Brilliant Blue G250, 

90% (v/v) ethanol) and staining solution II (20% (v/v) acetic acid) and left overnight. Gels were 

destained for 5 minutes in fixing solution. Gels were then immersed in destaining solution (20% (v/v) 

ethanol, 10% (v/v) acetic acid) until completely destained, then washed in distilled H2O before 

imaging. 

2.7.3 Silver staining: 

Silver staining was performed using the silver staining kit supplied by Thermo Scientific (24600). 

Gels were stained as described in section 2.4.3. 

2.7.4 Semi-dry electro blotting: 

Following SDS-PAGE, identification of proteins of interest was carried out by Western blotting. 

Proteins were transferred from SDS-PAGE gels onto a polyvinylidene fluoride (PVDF) membrane in 

transfer buffer (10mM CAPS, pH 11, 10% (v/v) methanol) for 2 hours 10 minutes at a constant 

140mA, using a semi-dry transfer unit.  
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2.7.5 Western blotting: 

Membranes were blocked in either 10% (w/v) non-fat dried milk prepared in PBS-T (10mM 

NaH2PO4, 0.14 M NaCl, 3mM KCL, 0.05% (v/v) Tween-20, pH 7.4), or 5% (w/v) BSA in TBS-T 

(150mM NaCl, 3mM KCl, 25mM Tris-Base, 0.05% (v/v) Tween-20, pH 7.4) for 1 hour at room 

temperature. Membranes were washed once with PBS-T or TBS-T for 5 minutes at room temperature. 

Primary antibody was incubated with the membrane in a 5mL volume of PBS-T or TBS-T at the 

appropriate dilution overnight at 4
o
C or for 2 hours at room temperature. If secondary antibody was 

required, it was used at a 1:5000 dilution in either 5mL PBS-T or TBS-T for 1 hour at room 

temperature. Membranes were washed 4 times for 5 minutes in either PBS-T or TBS-T. Blots were 

developed by incubating with enhanced chemiluminescent (ECL) substrate supplied by Roche 

(11500694001) for 2 minutes. Signal was detected by exposure with X-ray film supplied by Santa 

Cruz (SC-201697). 

2.7.6 Stripping and re-probing PVDF membranes: 

In order to visualise different proteins on the same PVDF membrane, the initial primary antibody used 

must be removed. PVDF membranes were stripped of antibody using 5mL of Restore Western Blot 

Stripping Buffer (21059) supplied by Thermo Scientific and incubated with rotation for 5 minutes at 

room temperature. Residual stripping solution was removed by washing 3 times for 5 minutes with 

either PBS-T or TBS-T. In order to ascertain complete removal of antibody used for initial detection, 

membranes were incubated with ECL and developed as described in 2.7.7, above.  Where no signal 

was detected, complete removal of the enzyme conjugate could be assumed. Successfully stripped 

membranes were then re-blocked with either 10% (w/v) non-fat dried milk prepared in PBS-T or 5% 

(w/v) BSA in TBS-T for a minimum of 30 minutes at room temperature. Successfully stripped 

membranes were then probed with alternative antibodies. 
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2.8 Molecular Biology: 

Cloning of various genes of interest was performed using the polymerase chain reaction (PCR). PCR 

reactions were conducted using a G-Storm thermo cycler.  

2.8.1 PCR: 

DNA template at a concentration of 10ng was used to amplify the sequence of interest. Forward and 

reverse primers were used at final concentration of 0.4µM. 1X Pfu reaction buffer, was combined 

with 200µM dNTPs and 1µl Pfu Hotstart Polymerase supplied by Stratagene (600322) and made up to 

50µl with RNA and DNA free water. An initial heat step of 95
o
C for 5 minutes was used to initialize 

the enzyme for PCR. The PCR reaction was typically cycled using the following parameters for 30 

cycles.  

1. Denaturing 95
o
C for 30 seconds. 

2. Annealing 5
o
C lower than the average Tm of the forward and reverse primers for 45 seconds 

3. Elongation 72
o
C for 1 minute per kilo base pair 

A final elongation step at 72
o
C for 5 minutes was used to ensure any single stranded DNA was fully 

extended. PCR reactions were then stored at 4
o
C until use. 
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2.8.2 Agarose gel electrophoresis of DNA: 

DNA was analysed using a 0.8% agarose gel with SYBR Safe DNA gel stain supplied by Invitrogen 

(S33102). 0.4 g agarose was heated to dissolve in 50mL 1X TAE buffer (40mM Tris-acetate, 1mM 

EDTA, pH 8.4). The solution was cooled and 5µL of SYBR Safe added. Gels were poured and 

allowed to set at room temperature. DNA loading dye supplied by Thermo Scientific (R0631) was 

used at a 1:6 dilution with the DNA sample. Gels were electrophoresed at 100 volts constant and 

visualised using a UV light source. GeneRuler 1kb DNA ladder supplied by Thermo Scientific 

(SM0313) was used to assess the size of electrophoresed DNA (Fig.2.3). When DNA was required for 

downstream reactions the DNA product of desired size was excised from the gel using UV 

illumination. DNA was then extracted from the gel, using a DNA extraction kit supplied by Qiagen 

(28704) according to the manufacturer’s instructions.  

 

Fig. 2.3 Diagram of distribution of markers used for DNA electrophoresis. 

Distribution of the DNA standards present in the Thermo Scientific GeneRuler 1kb DNA Ladder 

when analysed by DNA agarose electrophoresis. Image taken from www.thermoscientificbio.com. 
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2.8.3 Restriction digestion: 

Destination plasmid and PCR product were digested with desired enzymes. Where possible a double 

digestion of the DNA of interest was performed, using a buffer compatible with both restriction 

enzymes. If the enzymes were not compatible in the same buffer, each digest was carried out 

consecutively. 1µg of destination plasmid and total PCR product were digested using 1 µl of each 

enzyme. Enzymes were used at a final concentration of 0.1U/µl, in 1X reaction buffer with 100ng/ml 

BSA. The digestion reaction was incubated overnight at 37
o
C. Total digested plasmid and PCR 

product were electrophoresed using a 0.4% agarose gel with SYBR Safe as the DNA visualisation 

agent. Bands were excised and purified as described previously. Total DNA was combined for 

plasmid and PCR product respectively. DNA concentration was assessed using the Nanodrop 2000 

supplied by Thermo Scientific by reading the absorbance at 260nm. 

2.8.4 Ligation: 

Digested destination plasmid was combined with digested insert in a 1:1 ratio. 100ng of plasmid and 

100ng of insert were combined in 1X T4 DNA ligase buffer. 1µl of T4 DNA Ligase supplied by New 

England Biolabs (M0202S) was added to the ligation reaction at a final concentration of 20U/µl. 

Plasmid and insert were incubated at 16
o
C overnight in a thermocycler. 

2.8.5 Transformation of competent E. coli:  

Either TOP10 E. coli cells supplied by Invitrogen (C4040-03) or XL-Blue E. coli cells supplied by 

Stratagene (200249) were used to propagate all ligation reactions as per manufacturer’s instructions. 

5µl of the total ligation reaction was added to 50µl of competent cells and incubated on ice for 30 

minutes. Cells were then incubated at 42
o
C for 30 seconds. Cells were placed on ice and 250µl of pre-

warmed SOC media was added (5% tryptone (w/v), 0.5% yeast extract (w/v), 10mM NaCl, 2.5mM 

KCl, 10mM MgCl2, 10mM MgSO4, 20mM glucose). Cells were incubated at 37
o
C for 1 hour with 

shaking, then plated on LB agar plates (1% tryptone (w/v), 0.5% yeast extract (w/v), 1% NaCl (w/v), 

1% agar (w/v), pH 7) with 50µg/ml of appropriate antibiotic for selection and left at 37
o
C overnight. 
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2.8.6 Miniprep and subsequent analysis: 

Colonies that grew on selection agar plates were transferred into 3mL LB media (1% tryptone (w/v), 

0.5% yeast extract (w/v), 1% NaCl (w/v), pH 7). Colonies were incubated in media overnight at 37
o
C. 

2mL of each respective culture was spun at 6800 RCF for 2 minutes. DNA was then extracted from 

the bacteria using the plasmid purification kit supplied by Thermo Scientific (K0503) as per 

manufacturer’s instructions. 10µl of purified plasmid was then digested as described previously, using 

the appropriate restriction enzyme to assess the presence of the desired insert. 

2.8.7 Midiprep culture of plasmid: 

Plasmids were propagated in 50mL LB media with 50µg/ml of required selection antibiotic. Media 

was inoculated with either 100µL of miniprep culture or if culturing from a glycerol stock a scraping 

was taken of the stock using a 200µl pipette tip placed into the culture. Cultures were grown at 37
o
C 

for 48 hours. Plasmid was then purified using the S.N.A.P. Midiprep kit supplied by Invitrogen 

(K1910-01), as per manufacturer’s instructions. DNA was eluted using 750µL sterile MQ water. DNA 

concentration was assessed by reading absorbance at 260nm. DNA was then stored at -20
o
C. 

2.8.8 Preparation of glycerol stocks: 

For long term storage of plasmids, liquid cultures of E. coli transformed with the plasmid of interest 

were frozen at -80
o
C. Briefly, 150µl of a 50ml culture of desired E. coli was combined with 850µl of 

sterile glycerol and mixed thoroughly. Cells were then stored at -80
o
C. 
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2.9 Protein expression and purification: 

2.9.1 Expression of RBP in Pichia pastoris: 

Recombinant RBP was routinely expressed using a Pichia pastoris yeast strain stably transfected with 

a pPICZα plasmid containing the DNA sequence encoding RBP (Wysocka-Kapcinska et al., 2010). 

Transformed Pichia pastoris were streaked onto a YPD agar plate (1% (w/v) yeast extract, 2% (w/v) 

peptone, 2% (w/v) dextran, 1% (w/v) agar) with 100µg/ml Zeocin and incubated at 30
o
C for 3 days. 1 

Litre of YP media (1% (w/v) yeast extract, 2% (w/v) peptone, 10% (v/v) PBS) with 2% (v/v) 

glycerol) was inoculated with yeast colonies from the YPD plate. Yeast was cultured overnight at 

30
o
C with constant shaking (200-250rpm). The 1L culture was pelleted in 250mL aliquots, separately 

at 7000rpm using a Sorvall RC5C Plus ultracentrifuge, rotor SLA-3000, at room temperature for 10 

minutes. Supernatant was discarded and each pellet was resuspended in 1L of YP media with 1% 

(v/v) methanol to induce expression. Cultures were incubated at 30
o
C for 3 days. 1% (v/v) methanol 

was replenished every 24 hours. Cultures were spun at 7000rpm 4
o
C for 10 minutes. As RBP is 

excreted into the media the cell pellet was discarded and the media filtered on ice to remove any 

contaminants. Recombinant RBP was purified using 3mL washed Ni-NTA resin (30410) supplied by 

Qiagen. Ni-NTA was incubated with the culture media at 4
o
C overnight with constant agitation. Resin 

was collected and washed with PBS at room temperature. RBP was eluted from the resin using PBS 

with 250mM imidazole. Collected eluate was dialysed in PBS overnight at 4
o
C to remove the 

imidazole. Aliquots were placed at -20
o
C for long term storage. 
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2.9.2 Expression and purification of recombinant CRBP: 

Recombinant CRBP was expressed using a BL21 E. coli strain stably transformed with a pGEX-4T-3 

plasmid containing the DNA sequence for CRBP coupled to a glutathione S-transferase tag. Glycerol 

stocks were streaked onto a LB agar plate and incubated at 37
o
C overnight. Single colonies were 

transferred into 100mL of LB media and incubated overnight at 37
o
C with shaking (200-250 rpm). 

Starter cultures were then diluted 1:100 into fresh LB media. BL21 cells were allowed to reach an 

optical density (OD) of 0.6 when measured at 600nm. After the desired OD was achieved, expression 

of recombinant protein was induced by addition of 0.1mM isopropyl-β-D-1-thiogalactopyranoside 

(IPTG). Cultures were allowed to grow for a further 4 hours with constant shaking (200-250 rpm). 

Cells were harvested by centrifugation at 8,000 RCF for 10 minutes at 4
o
C. The supernatant was 

discarded and the cells re-suspended in ice-cold PBS supplemented with protease inhibitors supplied 

by Sigma (S8830). Suspended cells were sonicated on ice for 1 minute with 1 minute intervals until 

the lysate cleared. To aid protein solubilisation Triton X-100 was added at 1% (v/v) to the lysate and 

incubated at 4
o
C for 30 minutes with constant rotation. Lysozyme was then added to the lysate 

(0.5mg/ml) for 30 minutes at 37
o
C with constant agitation. DNAse I (2U/ml) was added to remove 

viscosity caused by DNA, and lysate incubated for a further 30 minutes at 37
o
C. Soluble protein was 

isolated by centrifugation of lysates at 10,000 RCF for 20 minutes at 4
o
C. The soluble supernatant 

fraction was then added to an appropriate volume of washed Glutathione Sepharose 4 supplied by GE 

(17-0756-01) and incubated overnight at 4
o
C with gentle agitation. Resin was then collected by 

gravity flow using 5mL disposable columns supplied by Thermo Scientific (29922). Collected resin 

was washed with ten bed volumes of ice-cold PBS and protein eluted with 50mM Tris-HCl, 10mM 

reduced glutathione, pH 8.0. Eluate was assessed for protein concentration using absorbance at 280nm 

and aliquots stored at -20
o
C. 
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2.9.3 Cleavage of recombinant CRBP: 

When CRBP was required for binding assays in its native form, it was necessary to remove the GST 

fusion tag. Cleavage was carried out with the protein bound to the resin. Following column packing of 

the resin with CRBP bound, as described in section 2.9.2, the Sepharose was washed with ten bed 

volumes of ice-cold PBS. Thrombin was added to the resin at 80U/ml in 1 bed volume of PBS. 

Cleavage was allowed to occur at room temperature overnight with constant agitation. The flow-

through from the column, containing cleaved CRBP was then added to washed Benzamidine 

Sepharose 6B resin (17-5123-10) supplied by GE for 1 hour at 4
o
C with gentle agitation to remove the 

protease. The flow through from the benzamidine Sepharose, containing purified cleaved CRBP was 

then applied to washed Glutathione Sepharose to remove any residual GST. Flow through from the 

resin was collected and protein concentration assessed by absorbance at 280nm and aliquots stored at 

-20
o
C. 
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2.9.4 General protocol for C-Terminus expression and purification: 

A recombinant version of the C-Terminus of STRA6 was expressed and purified as a fusion protein 

with a maltose binding protein (MBP) epitope tag for the purposes of structural and functional studies. 

The general protocol was finalised as follows. BL21 competent cells supplied by Invitrogen (44-

0048), a strain optimised for protein expression, were transformed with a pET30a plasmid containing 

the DNA sequence encoding for the C-Terminus of STRA6 with a MBP fusion tag. Glycerol stocks 

were prepared as described in section 2.7.7. Glycerol stocks were streaked onto a LB agar plate 

containing kanamycin at 50µg/ml and incubated at 37
o
C overnight. Single colonies were transferred 

into 10mL of terrific broth (TB) media (1.2% (w/v) tryptone, 2.4% (w/v) yeast, 0.4% (v/v) glycerol, 

17mM KH2PO4, 72mM K2HPO4, pH 7.0) with 50µg/ml of kanamycin and incubated overnight at 

37
o
C with shaking (200-250 rpm). Starter cultures were then diluted 1:100 into 400mL of TB media 

with 50µg/ml kanamycin. BL21 cells were allowed to reach an OD of 0.6 when measured at 600nm. 

After the desired OD was achieved, expression of recombinant protein was induced by addition of 

0.1mM IPTG. Cultures were left at room temperature overnight with constant shaking (200-250 rpm). 

The cultures were centrifuged at 4,000 RCF for 15 minutes using a Sorvall RC5C Plus ultracentrifuge 

with rotor SLA-3000 at 4
o
C. Cells were washed in 300mM NaCl, 50mM Na2HPO4, pH 7.5 and re-

centrifuged at 4,000 RCF for 15 minutes at 4
o
C. Cells were lysed in lysis buffer (300mM NaCl, 

50mM Na2HPO4, 100mM KCl, 1% (w/v) n-Dodecyl β-D-maltopyranoside (DDM), 10mM β-

mercaptoethanol, 1X protease inhibitor cocktail, 1mM PMSF, 1mg/ml lysozyme, pH 7.5) for 1 hour at 

4
o
C with constant rotation. Lysates were sonicated on ice for 3 minutes using a Bandelin Sonopuls 

probe sonicator. Soluble protein was separated from insoluble by high speed centrifugation. Lysates 

were spun at 12,000 RCF at 4
o
C using the SS-34 rotor for 20 minutes. The supernatant was retained 

and added to 2mL of washed Ni-NTA resin supplied by Qiagen (30410), for every 400mL of original 

culture. Protein was allowed to bind to the resin at 4
o
C for 90 minutes with constant rotation. Resin 

was then collected by gravity flow using 5mL disposable columns. Collected resin was washed with 

ten bed volumes of ice-cold wash buffer (300mM NaCl, 50mM Na2HPO4, 100mM KCl, 0.5% (w/v) 

DDM, 10mM β-mercaptoethanol, pH 7.5). Bound protein was eluted with 3 bed volumes of elution 
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buffer (20 % glycerol, 300mM NaCl, 20mM Tris-HCl , 100mM KCl, 0.5%(w/v) DDM, 10mM β-

mercaptoethanol, 250mM imidazole pH 7.5). 

In order to prepare >95% pure protein a second affinity chromatography step was carried out. 

Amylose affinity chromatography was performed following Ni-NTA purification to prevent 

contamination of expressed MBP-C-Term fusion protein with native E. coli MBP. Protein previously 

purified using Ni-NTA resin was applied to 2mL washed amylose resin supplied by New England 

Biolabs (E8021S). Protein was allowed to bind to the resin at 4
o
C for 90 minutes with constant 

rotation. Resin was then collected by gravity flow using 5mL disposable columns. Collected resin was 

washed with ten bed volumes of ice-cold wash buffer (300mM NaCl, 20mM Tris-HCl, 100mM KCl, 

0.5% (w/v) DDM, 10mM β-mercaptoethanol, pH 7.5). Bound protein was eluted with 3 bed volumes 

of elution buffer (20 % glycerol, 300mM NaCl, 20mM Tris-HCl , 100mM KCl, 0.5%(w/v) DDM, 

10mM β-mercaptoethanol, 10mM maltose, pH 6.5). Protein concentration was assessed by measuring 

absorbance at 280nm. Eluted protein was then stored at -20
o
C. 

2.9.5 Cleavage of recombinant C-Terminus using TEV protease: 

The concentration of purified recombinant MBP-C-Term was assessed by absorbance at 280nm. The 

fusion protein contains a TEV protease site to allow the removal of the MBP epitope tag. 1µl of halo-

TEV protease supplied by Promega (G6601) was used per 100µg of purified MBP-C-Term. The 

cleavage reaction was then incubated with rotation at room temperature for 16 hours. Cleaved C-

terminus was then purified away from the cleavage reaction by Ni-NTA affinity chromatography. 

Briefly, the cleavage reaction was incubated with 0.5mL of washed Ni-NTA per 1mg of cleaved 

protein at 4
o
C for 1 hour with rotation. Resin was then collected by gravity flow in a 5mL disposable 

column. The resin was washed with 3 column volumes of ice cold wash buffer (300mM NaCl, 50mM 

Na2HPO4, 100mM KCl, 0.5% (w/v) DDM, 10mM β-mercaptoethanol, pH 7.5). C-Term was eluted in 

3 resin bed volumes of elution buffer (20% glycerol (v/v) 300mM NaCl, 100mM KCl, 20mM Tris-

HCl, 2mM DDM, 250mM imidazole, pH 6.5). Purified protein was then either dialysed overnight to 

remove the imidazole or concentrated for size exclusion chromatography analysis.  



Chapter 2: Materials and Methods 

69 

 

2.9.6 Strep-tactin purification of STRA6 from a stable cell line: 

Stable HEK293 cells induced to express STRA6-HA were lysed in HNG lysis buffer (50mM HEPES, 

150mM NaCl, 5% (v/v) glycerol, 1% DDM, 5µg/µl avidin,10mM NaF, 1.5mM Na3VO4, 1mM 

Na4P2O7, 1X Protease inhibitor cocktail). Cells were incubated with lysis buffer for 1 hour at 4
o
C with 

rotation. Lysates were spun at 13,000 RCF for 5 minutes at 4
o
C. The insoluble pellet was discarded 

and the soluble supernatant was incubated with 200µl of washed Strep-Tactin resin supplied by 

Qiagen (30002). Lysates were incubated with the resin for 1 hour at 4
o
C with rotation. The lysates 

were then spun at 2,000 RCF for 2 minutes at 4
o
C and the supernatant removed. The resin was 

washed twice with HNG wash buffer (50mM HEPES, 150mM NaCl, 5% (v/v) glycerol, 0.5% (w/v) 

DDM, pH 7.4). Protein was eluted from the resin with HNG elution buffer (50mM HEPES, 150mM 

NaCl, 5% (v/v) glycerol, 0.5% (w/v) DDM, 10mM biotin, pH 7.4).  
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2.9.7 Immunoprecipitation of proteins of interest: 

Cells expressing the desired protein of interest were lysed using RIPA buffer (50mM Tris-HCL, pH 

7.4, 1% (v/v) Triton X-100, 0.1% (w/v) SDS, 150mM NaCl, 0.5% (w/v) sodium deoxycholate, 1mM 

EDTA, 10mM NaF, 1.5mM Na3VO4, 1mM Na4P2O7, 1X Protease inhibitor cocktail) at 4
o
C for 1 hour 

with rotation. Cell lysate was centrifuged at 10,000 RCF for 5 minutes at 4
o
C. The supernatant was 

then incubated overnight with the desired antibody at 4
o
C with constant rotation. Cell lysates were 

incubated with 100µl washed protein-G agarose supplied by Sigma (P7700) for 4 hours at 4
o
C with 

constant rotation. The immunoprecipiation reaction was then centrifuged at 2,000 RCF for 2 minutes 

at 4
o
C. Supernatant was removed and the agarose was washed twice by centrifugation with 20mM 

Na2HPO4, 150mM NaCl, pH 7.5 at 4
o
C. Protein was eluted from the resin either by incubation with 

2X Laemmli sample buffer at 95
o
C for 5 minutes or by incubation with 10mM glycine pH 3.  

2.9.8 Co-immunoprecipitation of proteins of interest: 

Cells expressing the desired protein of interest were lysed using HEPES lysis buffer (50mM HEPES, 

pH 7.5, 1% (v/v) Triton X-100, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 10mM NaF, 1.5mM 

Na3VO4, 1mM Na4P2O7, 1X Protease inhibitor cocktail 10% (v/v) glycerol, 100µg/mL aprotonin) at 

4
o
C for 1 hour with rotation. Cell lysate was centrifuged at 10,000 RCF for 5 minutes at 4

o
C. The 

supernatant was then incubated overnight with the desired antibody at 4
o
C with constant rotation. Cell 

lysates were incubated with 100µl washed protein-g agarose for 4 hours at 4
o
C with constant rotation. 

The immunoprecipiation reaction was then centrifuged at 2,000 RCF for 2 minutes at 4
o
C. 

Supernatant was removed and the agarose was washed twice by centrifugation with 20mM Na2HPO4, 

150mM NaCl, pH 7.5 at 4
o
C. Protein was eluted from the resin either by incubation with 2X Laemmli 

sample buffer at 95
o
C for 5 minutes or by incubation with 10mM glycine pH 3.  
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2.10 Structural and functional assays: 

Several techniques were employed to gain some insight into the structural and functional 

characteristics of purified recombinant proteins. 

2.10.1 Size exclusion chromatography: 

In order to determine the molecular mass of purified recombinant proteins, size exclusion 

chromatography (SEC) was employed. Purified proteins were analysed using either a Superose 6 

10/300 column (17-5172-01) or a Superdex 200 10/300 GL column (17-5175-01) supplied by GE 

coupled to an AKTA purifier system (Amersham Biosciences), courtesy of Prof. Sean Doyle, 

Biotechnology Lab, NUI Maynooth. The Superose 6 column is composed of crosslinked agarose. The 

Superose 200 10/300 is composed of crosslinked agarose and dextran. The column was first flushed 

with two column volumes (48mL) of MQ water to remove the ethanol storage buffer. The column was 

then equilibrated with two column volumes (48mL) of the same buffer the sample was prepared in. 

On first use of a new column the void volume was assessed by running blue dextran as a large 

molecular weight calibrant. The void volume is defined as the volume of eluent used to elute a large 

molecular weight protein such as blue dextran. For each column the void volume was defined as 7mL. 

Concentrated protein samples were injected onto the column at a flow rate of 0.2ml/min. Once the 

void volume of the column had been evacuated every 0.5mL fraction was collected in a clean 

Eppendorf tube for further analysis. Absorbance at 280nm was recorded in order to determine when 

protein was eluting from the column. In order to determine the exact molecular weight of the protein 

of interest, defined molecular weight calibrants were used. Molecular weight markers supplied by 

Sigma were used at a concentration of 1mg/ml. Molecular marker features are defined in table 2.1. 
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Protein Marker Catalogue 

Number 

Molecular Mass Elution position 

Superose 6 

Elution Position 

Superdex 200 

Apoferritin A3660 443 kDa 14mL 10mL 

β-Amylase A8781 200 kDa 15mL 11mL 

Alcohol 

dehydrogenase 

A8656 150 kDa 15.5mL 13mL 

Bovine Serum 

Albumin 

A8531 66 kDa 16.5mL 13.5mL 

Cytochrome C C7150 12.4 kDa 18.5mL 17mL 

Blue dextran D4772 2,000 kDa 7mL 7mL 

 

Table 2.1 Molecular weight standards used to define elution position of defined molecular 

weight using SEC. 

Molecular weight standards were prepared in the mobile phase used to analyse the proteins of interest. 

Following resuspension in the mobile phase, samples were centrifuged at 10,000 RCF for 5 minutes to 

remove particulates. Standards were applied to the column and eluted protein analysed by measuring 

absorbance at 280nm per mL of mobile phase eluted. 
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2.10.2 Circular dichroism: 

Circular dichroism (CD) analysis was conducted using the Chiroscan spectropolarimeter supplied by 

AppliedPhotophysics. Samples were purified to approximately 95% purity, ascertained by gel 

electrophoresis and Coomassie staining as described in sections 2.7.1 and 2.7.2. Samples were diluted 

to 0.2mg/ml in the respective buffer and analysed compared to that buffer in a quartz cuvette, width 

1mm. Samples were scanned every 1nm from 280nm to 180nm at 20
o
C. Two spectra scans were 

acquired and data points averaged across the two scans. Data was acquired in millidegrees (mθ) and 

converted to mean residue ellipticity utilising the following formula (Greenfield, 2006) where mean 

residue weight represents (molecular weight (Da) / number of amino acids – 1). 

                              mean residue ellipticity =           mθ x mean residue weight 

                                                                      path length (mm) x concentration (mg/ml) 

Mean residue ellipticity was then plotted against wavelength. Fractional structural content was 

analysed using the online server DichroWeb. The analysis was conducted using the CONTIN 

algorithm with the structural reference database SMP180 (Abdul-Gader et al., 2011). 

2.10.3 Chemical crosslinking:  

In order to demonstrate protein-protein interactions where the interaction may be highly unstable a 

chemical crosslinker was utilised to covalently bind two proteins together in complex formation. The 

putative proteins involved in an interaction were incubated at equimolar concentrations at room 

temperature for 30 minutes with constant rotation. The photo-activated chemical crosslinker sulfo-

NHS-SS-diazerine (SDAD) supplied by Thermo Scientific (26175) was then added to a final 

concentration of 1mM to the reaction. SDAD was allowed to bind to amine residues for 2 hours on 

ice. The reaction was quenched by the addition of 100mM Tris, pH 8 and incubated on ice for 15 

minutes. SDAD was then photo-activated on ice for 5 minutes using a UV light source at 365nm to 

covalently link any peptides in close proximity. Crosslinked proteins were then incubated with 

Laemmli sample buffer either with or without 10% (v/v) β-mercaptoethanol and analysed by SDS-

PAGE and Western blotting as described in sections 2.7.1, 2.7.4 and 2.7.5.
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3.1 Introduction: 

RBP is now widely regarded as a novel biomarker for the development of insulin resistance and type 

II diabetes. Excess visceral fat may lead to an increase in RBP secretion into the bloodstream. Even in 

lean patients with type II diabetes, elevated serum levels of RBP were observed (Graham et al., 2006). 

In 2005, Yang et al associated increased serum RBP levels with the development of insulin resistance 

(Yang et al., 2005). The synthetic retinoid, fenretinide, induced RBP excretion into the urine from the 

bloodstream and this led to an improvement in glucose tolerance. Several theories exist as to what the 

exact molecular mechanism is behind RBP stimulated insulin resistance.  

Berry et al suggest that excess serum holo-RBP leads to activation of the JAK/STAT signalling 

pathway via STRA6 phosphorylation (Berry et al., 2011). JAK2 appears to co-purify with STRA6 and 

is responsible for phosphorylation of the receptor (Berry et al., 2012). Subsequent activation of 

STRA6 and JAK2 association leads to STAT5 recruitment and phosphorylation. Activation of STAT5 

by phosphorylation results in the transcription of several target genes, but in particular it was 

demonstrated to cause an increase in SOCS3 mRNA (Berry et al., 2011). SOCS3 is a known inhibitor 

of the insulin signalling pathway, and can directly bind to and inhibit the insulin receptor (Ueki et al., 

2004).  

Norseen et al suggest that excess RBP levels are having an indirect effect on adipocytes, by causing 

cytokine excretion from peripheral macrophages (Norseen et al., 2012). Macrophages treated with 

holo or apo-RBP displayed increased secretion of TNF-α, IL-6, and MCP-1. Therefore, it appears to 

be a retinol independent reaction. In addition, the macrophages used in this study are thought not 

express STRA6, thus RBP could not promote cytokine production via activation of this membrane 

protein. The cytokines elevated in response to RBP are known to cause inhibition of the insulin 

signalling pathway (Patel et al., 2013). 

The theories that surround RBP-induced insulin resistance are in disagreement about the involvement 

of STRA6. One group suggests insulin resistance occurs as a result of direct stimulation of STRA6 

whereas another suggests it is not involved at all. In addition, Norseen et al demonstrated that apo-
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RBP was just as effective at inducing insulin resistance as holo-RBP, whereas Berry and colleagues 

declare that only holo-RBP is capable of inducing insulin resistance. Both groups directly stimulated 

3T3-L1 adipocytes with holo-RBP (Berry et al., 2011; Norseen et al., 2012). Berry et al observed 

impaired signalling in the insulin pathway. Norseen and colleagues observed that insulin signalling is 

only impaired in adipocytes when co-cultured with macrophages (Norseen et al., 2012). In an separate 

study, Muenzner et al did not observe an increase in SOCS3 expression, in response to elevated levels 

of holo-RBP (Muenzner et al., 2013). The same 3T3-L1 adipocyte cell line was utilised and 

stimulated directly with holo-RBP. No increase in phosphorylation of STAT5 was observed and no 

alteration of SOCS3 mRNA, even in cells over-expressing STRA6.  

Muscle tissue is the main site for insulin stimulated glucose uptake in the body. If glucose uptake is 

impaired in this tissue for a prolonged period, plasma glucose levels can reach high enough levels to 

cause damage to other areas of the body, such as the eyes and kidney. The study conducted by 

Norseen et al did not assess the effect of increased RBP levels and subsequent cytokine production on 

muscle cell signalling (Norseen et al., 2012). In a previous publication by the same group, they 

observed that elevated serum RBP levels in whole animal studies resulted in impaired insulin 

signalling in muscle tissue (Yang et al., 2005). No change was observed in insulin receptor 

phosphorylation. However, phosphatidylinositide 3 kinase (PI3K) activity was reduced as was IRS-1 

phosphorylation at tyrosine 612. Phosphorylation of this residue in IRS-1 provides the docking site for 

PI3K. Berry and colleagues also observed that insulin signalling was impaired in muscle tissue of 

mice treated with elevated levels of RBP (Berry et al., 2011). However, they observed a reduction in 

phosphorylation of the insulin receptor which would correlate with their theory that SOCS3 was 

having an inhibitory action on this protein.  

We are still a long way from understanding the precise molecular mechanisms involved in RBP 

mediated insulin resistance. A global, unbiased view of the proteome of muscle cells treated with 

holo-RBP may provide a definitive answer as to what cellular pathways are affected. 
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Aims and Objectives: 

In order to determine the molecular mechanism of RBP induced insulin resistance, a proteomic study 

was devised to identify proteins in muscle cells affected by increased RBP levels. Skeletal muscle is 

regarded as the main site for insulin-induced glucose uptake. The investigation asked whether holo-

RBP has a direct effect on signalling pathways in the mouse muscle cell line, C2C12. Normal plasma 

RBP levels are approximately 25µg/ml, elevated levels in obese patients can vary greatly but on 

average are approximately 70µg/ml (Graham et al., 2006). Therefore, 75µg/ml holo-RBP was used to 

simulate elevated serum RBP levels. Overnight stimulation with holo-RBP was chosen to represent 

long-term exposure.  

2D-electrophoresis in conjunction with mass spectrometry was utilised as a method to identify 

changes in the proteome of cells treated with holo-RBP. Cells used in this study were lysed and the 

membrane and cytosolic fractions isolated and analysed separately. This was performed to enrich the 

membrane fraction and to possibly observe protein recruitment to the membrane. A number of protein 

changes were identified and subjected to secondary validation and further analysis. 
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3.2 Method: 

The mouse muscle cell line, C2C12, was cultured and differentiated into myotubes as described in 

section 2.1.2. Cells were treated with 75µg/ml holo-RBP for 16 hours, with PBS used as an 

appropriate control. Cells were harvested and the whole cell lysate was separated into membrane and 

cytosolic fractions (sections 2.2.2 and 2.3.1). The membrane and cytosolic fractions were used for 

proteomic analysis (section 2.3.2 through to 2.3.7). 2D gels were first visualised using the phospho-

protein stain Pro-Q Diamond to assess changes in the phospho-proteome of the cell, (section 2.4.1). 

Gels were subsequently visualised for total protein levels using the sypro ruby fluorescent stain 

(section 2.4.2). Three technical replicates were performed for each sample and samples were 

produced in triplicate. Therefore, 9 gels were run for each treatment group for the cytosolic and 

membrane fraction, equalling 36 gels in total. Changes in the proteome of the cell were identified 

using Progenesis SameSpots software. Only proteins showing a greater than 1.1 fold change with a 

statistical significance of <0.05 were chosen for identification by mass spectrometry (MS). A 2D gel 

was then selected as a reference gel and stained using silver stain (section 2.4.3). Proteins showing 

altered phosphorylation or expression were excised and trypsin digested. MS analysis was 

subsequently conducted on digested protein spots (section 2.6). Once proteins were identified by 

peptide matching software, a number of the most interesting proteins were selected for secondary 

validation using SDS-PAGE and Western blotting.  
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3.3 Results: 

Several proteins were identified that showed changes in either phosphorylation or expression levels in 

response to overnight treatment with 75µg/ml holo-RBP. Fig 3.1 depicts a representative gel of the 

cytosolic fraction isolated from cells treated with holo-RBP overnight, with proteins showing changes 

in expression circled and numbered. Fig 3.2 depicts a representative gel of the membrane fraction 

isolated from cells treated with holo-RBP overnight, with proteins showing changes in 

phosphorylation or expression circled and numbered.  

Selected protein spots were trypsin digested and peptides identified by mass spectrometry (MS)-Table 

3.1. Peptides were identified using the NCBI protein database and only proteins matched with a score 

>54 were chosen as significant protein identifications. Fig. 3.3 represents individual phosphorylation 

changes observed in the proteins identified by MS. Fig. 3.4 represents individual expression changes 

observed in the proteins identified by MS. The function of each protein was identified using the NCBI 

and UniProt databases, summarised in Table 3.2. 
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Fig 3.1 Identified spots from C2C12 cytosolic fraction generated from cells treated with 75µg/mL holo-RBP. 

Representative Sypro ruby image of C2C12 cytosolic fraction generated from cells treated with 75µg/ml holo-RBP, resolved by 2D electrophoresis. Spots 

circled and numbered represent proteins showing a statistically significant change in expression. 
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Fig 3.2 Identified spots from C2C12 membrane fraction generated from cells treated with 75µg/mL holo-RBP. 

Representative Sypro ruby image of C2C12 membrane fraction generated from cells treated with 75µg/ml holo-RBP, resolved by 2D electrophoresis. Spots 

circled and numbered represent proteins showing a statistically significant change in phosphorylation or expression. 
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Spot 

No. 

Protein Identified Accession No. Fold 

Change 

Change Score Peptides 

Matched 

Cov 

(%) 

MW 

1 Lysozyme homolog AT-2        gi|539969  1.3                  Down 153 6 100 31.62 

2 Ornithine aminotransferase    gi|8393866     1.3                  Down 105 1 4 48.32 

3 Protein Phosphatase1β            gi|148705446  1.5             Down 304 6 23 35.29 

4 Mitochondrial Inner Membrane Protein gi|70608131  1.2 Down 485 9 18 83.85 

5 *Protein Phosphatase 2A          gi|122921194  1.2            Down 642 18 30 64.38 

6 Protein disulfide-isomerase A3 gi|112293264          1.4                  Up 914 25 48 56.64 

7 Vimentin gi|2078001  1.4                  Up 494 14 25 51.53 

8 Vimentin gi|2078001  1.4                  Up 558       18 29 51.53 

9 *SCaMC-1                               gi|27369998    1.6                     Up 248 6 14 52.87 

10 DDB1- and CUL4-associated factor 12 gi|22218619  1.3                  Down 31 1 2 50.49 

11 *Cardiomyopathy-associated protein 5 gi|308912513         1.4                 Down 59 3 0 45.05 

12 Lamin B1 gi|15126742  1.8                    Up 415 10 15 66.37 

Table 3.1 Proteins identified by mass spectrometry showing changes in phosphorylation or abundance in response to 75 µg/ml holo-RBP. 

All proteins were identified using the NCBI protein database and demonstrated a score >54, indicating significant protein identification. Proteins denoted with 

* represent proteins showing a change in phosphorylation. 
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Fig 3.3 Phosphorylation changes observed in C2C12 muscle cells treated with 75µg/ml holo-

RBP. 

Single spot analysis of statistically significant phosphorylation changes in C2C12 cells treated with 

75µg/ml holo-RBP versus control. ProQ Diamond stained images are shown on the left and Sypro 

Ruby stained images are shown on the right. The following proteins are represented A. Protein 

Phosphatase 2A subunit A B. SCaMc-1 C. Cardiomyopathy associated protein 5. 

A 

B 

C 
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Fig 3.4 Changes in protein abundance observed in C2C12 muscle cells treated with 75µg/ml holo-RBP. 

Single spot analysis of statistically significant changes in protein abundance in C2C12 cells treated with 75µg/ml holo-RBP versus control. Each panel depicts 

a sypro ruby stained control sample and RBP treated sample. The following proteins are represented A. Lysozyme Homologue AT-2 B. Ornithine 

Aminotransferase C. Protein Phosphatase 1β D. Mitochondrial Inner Membrane Protein E. Protein Disulphide Isomerase A 3 F. Vimentin G. Vimentin H. 

DDB1- and CUL4-associated factor 12 I. Lamin B1 
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Spot 

No. 

Protein Identified Function 

1 Lysozyme homolog AT-2        Homologue of the bacteriolytic enzyme lysozyme. 

2 Ornithine aminotransferase    Ornithine aminotransferase catalyses the transfer of the δ amino group of ornithine to 2-oxoglutereate.  

3 Serine/threonine-protein phosphatase PP1-

beta, catalytic subunit (PP1β)             

PP1β is involved in the regulation of glycogen synthesis and metabolism. 

4 Mitochondrial Inner Membrane Protein 1 Mitochondrial inner membrane chaperone that helps import and insert transmembrane proteins into the 

mitochondrial membrane. 

5 *Protein Phosphatase 2A subunit A         PP2A subunit A (PR65) serves as a scaffolding molecule to form the complete PP2A complex. 

6 Protein disulphide-isomerase A3 Protein disulphide-isomerase A3 catalyses the re-arrangement of disulphide bonds in proteins.     

7 Vimentin Vimentin is an intermediate filament involved in cell migration and adhesion. It may also be involved in 

vesicle trafficking to the cell membrane.            

8 Vimentin Vimentin is an intermediate filament involved in cell migration and adhesion. It may also be involved in 

vesicle trafficking to the cell membrane.            

9 *SCaMC-1                               ScaMC-1 is a solute carrier that may shuttle metabolites, nucleotides and co-factors through the membrane of 

the mitochondria. 

10 DDB1- and CUL4-associated factor 12 DDB1- and CUL4-associated factor 12 may function as a substrate receptor for the ubiquitin-protein ligase 

complex. 

11 *Cardiomyopathy-associated protein 5 

(Cmya5) 

Cmya5 is involved in compartmentalisation of protein kinase A (PKA).        

12 Lamin B1 Lamin B1 is a structural component of the nuclear lamina. It belongs to the intermediate filament family. 

Table 3.2 Function of proteins identified by MS showing changes in response to holo-RBP. 

Proteins denoted with * represent proteins showing a change in phosphorylation. The function of each protein identified was compiled using the UniProt and 

NCBI protein databases. 
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3.3.1 Identification of changes in the proteome in response to holo-RBP: 

A number of changes in the proteome of the cell were observed in the cytosolic and membrane 

fraction of C2C12 cells treated with 75µg/ml holo-RBP overnight. More changes would have been 

expected in protein abundance, as cell stimulation with holo-RBP would in theory prompt the delivery 

of ROH into the cell. As cells were harvested after 16 hours incubation with holo-RBP, any changes 

in the proteome due to increased ROH may have been missed. In addition, the cell lysate was 

separated into membrane and cytosolic fractions across three replicate samples with three technical 

replicate gels per sample. Therefore, due to the high stringency of technical and experimental 

replicates some protein changes may not have been statistically significant and remained unidentified. 

Of the proteins that were identified 5 were chosen for secondary validation. 

3.3.2 Analysis of changes in the proteome of the cytosolic fraction:  

Three proteins demonstrated altered expression levels in the cytosolic fraction of C2C12 cells treated 

with holo-RBP, lysozyme homolog AT-2 (LAT-2), ornithine aminotransferase (OAT) and protein 

phosphatase 1β (PP1β).  

3.3.2.1 Analysis of decreased expression of LAT-2: 

LAT-2 expression was decreased 1.3-fold in response to holo-RBP. BLAST analysis revealed that it 

is a member of the lysozyme family. The peptide fragment used to confer protein identity in this 

study, shares considerable sequence similarity with chicken lysozyme (Fig 3.5).  

 

            LAT-2           FESNFNTQATNRNTDGSTDYGILQINSR 28 

            Lysozyme        FESNFNTQATNRNTDGSTDYGILQINSR 28 

                            **************************** 

 

Fig 3.5 Sequence alignment of peptide fragments from LAT-2 and chicken lysozyme. 

 

Sequence similarity between peptide fragments from LAT-2 and chicken lysozyme. Sequence 

alignment performed using ClustalW 2.1. 
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Lysozyme has a bactericidal action by binding to peptidoglycan in the bacterial cell wall (Chipman 

and Sharon, 1969). Hydrolysis of the β-glycosidic bonds present in peptidoglycan results in 

destabilisation of the structure of the cell wall and subsequent cell lysis. A study conducted by Yoon 

et al showed that lysozyme levels are increased in times of RA deprivation (Yoon et al., 1999). When 

cells were deprived of RA in the media, lysozyme secretion increased (Yoon et al., 1999). However, 

this was not associated with an increase in mRNA transcripts of the protein, but it is thought to be 

associated with a decrease in lysozyme metabolism. Thus, stimulation of cells with holo-RBP would 

lead to increased intracellular levels of RA, which may be having an oppressive effect on LAT-2 

protein levels. Decreased levels of LAT-2 in response to holo-RBP may occur as a result of RA 

stimulated lysozyme degradation by some unknown mechanism. 

3.3.2.2 Analysis of decreased expression of OAT: 

OAT is involved in the inter-conversion of proline and ornithine. Ornithine is an essential 

intermediate in the production of the amino acid, arginine. In hepatic tissues, OAT is involved in urea 

production. In non-hepatic tissues, OAT is involved in the metabolism of arginine to form proline, an 

essential component of collagen (Dekaney, 2000). A study conducted by Dekaney et al determined 

that exposure of intestinal epithelial cells to RA resulted in increased expression of OAT (Dekaney et 

al., 2008). This is the opposite expression profile observed with exposure of muscle cells to holo-

RBP. The expression profile of OAT in muscle in response to RA has not been studied. However, 

OAT transcription may be controlled differently in various tissues. Shull and colleagues observed that 

OAT mRNA was reduced in the liver of mice fed a vitamin A deficient diet (Shull et al., 1995). When 

mRNA levels were analysed in the kidney, no effect was observed on OAT transcription levels. 

Therefore, RA may elicit a cell type specific effect on the control of OAT transcription. 
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3.3.2.3 Analysis of decreased expression of PP1β: 

PP1β is a serine/threonine phosphatase that is involved in the regulation of the enzymes that control 

glycogen metabolism (Cohen, 2002). PP1β expression was reduced 1.5-fold in response to holo-RBP 

treatment. Secondary validation by Western blotting did reveal a significant decrease in expression 

following holo-RBP treatment (Fig 3.6). It is not known how transcription of this phosphatase is 

regulated. Expression is thought to occur constitutively and the translated protein is subsequently 

regulated by binding to various targeting subunits, which control its subcellular distribution and 

activity (Cohen, 2002). 

 

 

 

Fig 3.6 Analysis of expression levels of PP1β. 

Representative Western blot depicting expression levels of PP1β in response to PBS or 75µg/ml holo-

RBP overnight. Serum starved C2C12 cells were treated with PBS or 75µg/ml holo-RBP overnight. 

Cells were harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE 

protein assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% 

SDS-PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting 

analysis was conducted using anti-PP1β specific antibody and β-Actin as a loading control. All 

analysis was conducted in triplicate. 
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3.3.3 Analysis of changes in the proteome of the membrane fraction: 

Several proteins were altered in the membrane fraction of C2C12 cells treated with holo-RBP. These 

include mitochondrial inner membrane protein isoform 1 (IMMT), protein phosphatase 2A (PP2A) 

subunit A, Protein disulphide-isomerase A3 (PDIA3), vimentin, SCaMc-1, DDB1- and CUL4-

associated factor 12 (DCAF12), cardiomyopathy-associated protein 5 (CMYA5) and lamin B1. 

3.3.3.1 Analysis of decreased expression of IMMT: 

IMMT is associated with the inner mitochondrial membrane. It is involved in the maintenance of 

cristae in the membrane (Zerbes et al., 2012b). IMMT is also known as mitofilin and it exists in the 

mitochondrial membrane as a central component of a mitochondrial inner membrane organising 

system (MINOS) complex. The MINOS complex functions as a scaffold structure in the membrane 

and may also be involved in protein biosynthesis (Zerbes et al., 2012a). Mitofilin demonstrated a 1.2-

fold decrease in expression in response to holo-RBP treatment. It is unknown what direct effect holo-

RBP would have on mitofilin expression.  

3.3.3.2 Analysis of decreased phosphorylation of PP2A subunit A: 

PP2A is a ubiquitously expressed serine/threonine protein phosphatase. It functions mainly as a 

trimeric structure composed of a scaffolding A subunit, a regulatory B subunit and a catalytic C 

subunit (Lechward et al., 2001). The B subunit determines the phosphatase activity of the enzyme. 

The A subunit acts as a scaffold for the rest of the complex, it can also be denoted PR65 and exists in 

two isoforms α and β. The α isoform of the A subunit of PP2A displayed a 1.2-fold decrease in 

phosphorylation in response to holo-RBP treatment. As no phospho-specific antibodies were 

commercially available for the A subunit of PP2A, the subunit was first purified by 

immunoprecipitation from C2C12 cells treated with holo-RBP or PBS, using a PP2A A subunit, α 

isoform specific antibody. Purified protein was then analysed by Western blotting using general anti-

phospho amino acid antibodies. Fig 3.7 depicts the secondary validation of PP2A A subunit 

phosphorylation levels in response to holo-RBP treatment. Only the anti-phospho-serine antibody was 

reactive with the A subunit of PP2A. 
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Fig 3.7 Analysis of phosphorylation levels of PP2A subunit A. 

Representative Western blot depicting phosphorylation levels of PP2A A subunit in response to PBS 

or 75µg/ml holo-RBP overnight. All analysis was conducted in triplicate. C2C12 cells were treated 

with PBS or 75µg/ml holo-RBP for 16 hours. Cells were harvested and lysed in HEPES lysis buffer. 

Cell lysate was then incubated with anti-PP2A subunit A, α isoform antibody overnight. 

Immunoprecipitated protein was purified using protein G agarose beads. Purified protein was then 

electrophoresed using a 10% SDS-PAGE gel and protein was subsequently transferred to PVDF 

membrane. A. Western blot representing total protein immunoblotted with anti-phospho-serine 

antibody. The A subunit of PP2A is approximately 64 kDa. The bands present at 55 kDa and 25 kDa 

respectively, represent the heavy and light chain of the PP2A subunit A antibody used in the 

immunoprecipitation reaction. B.Western blot representing total levels of PP2A subunit A using anti-

PP2A subunit A α isoform antibody. 

 

There is no known serine phosphorylation site in the A subunit of PP2A. Analysis of the murine 

amino acid sequence using the phosphorylation prediction server PhosphoSitePlus, predicted several 

potential serine phosphorylation sites at residue 9, 36, 335, 343, 401, 403 and 554 (Fig 3.8). 

 

Fig 3.8 Prediction of potential phosphorylation sites in the sequence of the A subunit of PP2A. 

Diagram depicting the potential phosphorylation sites of the A subunit of PP2A. Image generated 

using the phosphorylation site prediction software, PhosphoSitePlus. 
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3.3.3.3 Analysis of increased expression of PDIA3: 

PDIA3 is expressed in the endoplasmic reticulum (ER) (Lee, 1987). It is an isomerase which catalyses 

the rearrangement of disulphide bonds. A 1.4-fold increase in expression was observed in response to 

holo-RBP treatment. PDIA3 is a common protein which appears upregulated in several proteomic 

studies and is thought to be a response to cellular stress. It is also known as 58kDa glucose-regulated 

protein, as it was upregulated in response to glucose starvation (Lee, 1987). PDIA3 has also been 

observed to increase in expression following viral infection and dopamine treatment (Dukes et al., 

2008; Mazzarella et al., 1994). Upregulation of enzymes involved in protein folding is a cellular 

defence mechanism to protect the cell from stress damage. Increased PDIA3 expression in response to 

holo-RBP could be occurring as a result of cellular stress, due to increased intracellular ROH levels. 

3.3.3.4 Analysis of increased expression of vimentin: 

Vimentin is a member of the intermediate filament family. It is thought to be involved in cell motility 

and has a scaffolding function in the cell (Ivaska et al., 2007). Fig 3.9 depicts the expression level of 

vimentin in response to PBS or holo-RBP treatment. Secondary validation by Western blotting did not 

reveal a significant increase in expression following holo-RBP treatment. 

 

Fig 3.9 Analysis of expression levels of vimentin. 

Representative Western blot depicting expression levels of vimentin in response to PBS or 75µg/ml 

holo-RBP overnight. Serum starved C2C12 cells were treated with PBS or 75µg/ml holo-RBP 

overnight. Cells were harvested and lysed in RIPA buffer. Protein concentration was assessed using 

the PIERCE protein assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed 

using a 10% SDS-PAGE gel and protein was subsequently transferred to PVDF membrane. Western 

blotting analysis was conducted using anti-vimentin specific antibody and β-Actin as a loading 

control. All analysis was conducted in triplicate. 
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3.3.3.5 Analysis of increased phosphorylation of SCaMC-1: 

SCaMc-1 is a small calcium dependent solute carrier which shuttles proteins across the inner 

mitochondrial membrane (del Arco and Satrústegui, 2004). SCaMc-1 displayed a 1.6-fold increase in 

phosphorylation in response to holo-RBP stimulation. It has no known phosphorylation site. Analysis 

of the murine amino acid sequence using the phosphorylation prediction server PhosphoSitePlus, 

predicted potential phosphorylation sites at S208, S229, Y322, Y326 and Y355 respectively (Fig 

3.10).   

 

Fig 3.10 Prediction of potential phosphorylation sites in the sequence of SCaMC-1. 

Diagram depicting the potential phosphorylation sites of SCaMC-1. Image generated using the 

phosphorylation site prediction software, PhosphoSitePlus. 

 

As no phospho-specific antibodies were commercially available for SCaMC-1, the protein was first 

immunoprecipitated using SCaMC-1 specific antibody then analysed by SDS-PAGE and Western 

blotting using general phospho-amino acid antibodies. SCaMC-1 only demonstrated reactivity with 

the anti-phospho-serine antibody. Fig 3.11 depicts the secondary validation of SCaMC-1 

phosphorylation. SCaMC-1 did not display any significant alteration in phosphorylation levels in 

response to holo-RBP treatment when analysed directly. As this protein has a molecular weight of 53 

kDa, it ran at a similar position to the heavy chain of the antibody used in the immunoprecipitation 

reaction. This made secondary validation of the phosphorylation levels of this protein extremely 

difficult as the fluorescence overlapped significantly from the heavy chain band. 
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Fig 3.11 Analysis of phosphorylation levels of SCaMC-1. 

Representative Western blot depicting phosphorylation levels of SCaMC-1 in response to PBS or 

75µg/ml holo-RBP overnight. All analysis was conducted in triplicate. C2C12 cells were treated with 

PBS or 75µg/ml holo-RBP for 16 hours. Cells were harvested and lysed in RIPA buffer. Cell lysate 

was then incubated with anti-SCaMC-1 antibody overnight. Immunoprecipitated protein was purified 

using protein G agarose beads. Purified protein was then electrophoresed using a 10% SDS-PAGE gel 

and protein was subsequently transferred to PVDF membrane. A. Western blot representing total 

protein immunoblotted with anti-phospho-serine antibody. SCaMC-1 is a 53 kDa protein. The bands 

present at 55 kDa and 25 kDa, represent the heavy and light chain of the SCaMC-1 antibody used in 

the immunoprecipitation reaction. B.Western blot representing total levels of SCaMC-1 using anti-

SCaMC-1 antibody. 

 

3.3.3.6 Analysis of decreased expression of DCAF12: 

DCAF12 is a binding partner of the CUL4-DDB1 E3 ubiquitin ligase complex (Jin et al., 2006). The 

CUL4-DDB1 complex adds ubiquitin groups onto proteins targeted for proteasomal degradation. 

DCAF12 binds to the complex via the DDB1 subunit. The functional significance of this interaction is 

unknown but it is thought to enhance substrate binding to the complex. DCAF12 contains a WD40 

domain which is known to aid protein complex formation. DCAF12 demonstrated a 1.3-fold decrease 

in expression in response to holo-RBP treatment. Very little is known about the regulation of 

DCAF12 expression and what effect holo-RBP stimulation would have. 
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3.3.3.7 Analysis of decreased phosphorylation of CMYA5: 

CMYA5 is also known as myospryn. It acts as an anchoring protein for cAMP-protein kinase A 

(PKA) (Reynolds et al., 2007). PKA is a ubiquitous kinase and specificity is achieved by spatial 

regulation conferred by regulatory complexes known as A kinase anchoring proteins (AKAP). 

CMYA5 is a known AKAP and is thought to anchor PKA to α-actinin at the costamere in skeletal 

muscle (Reynolds et al., 2007). The costamere is involved in binding the sarcomere to the cell 

membrane. PKA was demonstrated to phosphorylate CMYA5 in vitro (Reynolds et al., 2007). A 1.4-

fold decrease in phosphorylation of CMYA5 was observed in response to holo-RBP stimulation. A 

study conducted by Streb et al revealed that ATRA treatment regulated the AKAP protein, AKAP12, 

which shares significant sequence identity to CMY5A  (Reynolds et al., 2007; Streb et al., 2011). 

ROH influx into the cell may also regulate CMY5A in a similar manner to AKAP12, resulting in 

altered regulation of this protein. It is unknown how phosphorylation regulates CMY5A and what 

downstream affect it may have. 

3.3.3.8 Analysis of increased expression of lamin B1: 

Lamin B1 is an intermediate filament protein of the inner nuclear lamina. It is thought to maintain the 

structure of the nucleus (Vergnes et al., 2004). A proteomic study conducted by Baron et al 

demonstrated that lamin B1 expression was upregulated in response to RA and some of its metabolites 

(Baron et al., 2005). Fig 3.12 depicts the expression level of lamin B1 in response to PBS or holo-

RBP treatment. 2D analysis predicted a 1.8-fold increase in laminB1. Following secondary validation 

by Western blotting, no significant change in expression levels of lamin B1 was observed in response 

to holo-RBP treatment when analysed directly. 
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Fig 3.12 Analysis of expression levels of lamin B1. 

Representative Western blot depicting expression levels of lamin B1 in response to PBS or 75µg/ml 

holo-RBP overnight. Serum starved C2C12 cells were treated with PBS or 75µg/ml holo-RBP 

overnight. Cells were harvested and lysed in RIPA buffer. Protein concentration was assessed using 

the PIERCE protein assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed 

using a 10% SDS-PAGE gel and protein was subsequently transferred to PVDF membrane. Western 

blotting analysis was conducted using anti-lamin B1 specific antibody and β-Actin as a loading 

control. All analysis was conducted in triplicate. 
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3.3.4 Analysis of the effect of RBP on the PP1β signalling pathway: 

In skeletal muscle, one of the functions of PP1β is to regulate the rate-limiting enzymes of glycogen 

metabolism, glycogen synthase and glycogen phosphorylase (Ceulemans and Bollen, 2004). Fig 3.13 

depicts the involvement of PP1β in glycogen metabolism. Insulin stimulates the cell to increase 

intracellular glucose levels via activation of the insulin signalling pathway and subsequent GLUT4 

translocation to the cell membrane. As glucose enters the cell it is phosphorylated to glucose-6-

phosphate and converted to glycogen as an energy store, by glycogen synthase. Glycogen synthase is 

only in its active form when it is not phosphorylated. Its phosphorylation is mediated by glycogen 

synthase kinase 3β (GSK3β). Upon insulin stimulation of the cell, Akt is activated and causes GSK3β 

inactivation. This removes the inhibitory kinase preventing glycogen synthesis. However, glycogen 

synthase must be de-phosphorylated. PP1β is the phosphatase responsible for the de-phosphorylation 

of glycogen synthase and its subsequent activation. Glycogen synthesis occurs in the cell in times of 

glucose abundance. Therefore, when glycogen synthesis is occurring, glycogen utilisation is not 

required. Glycogen phosphorylase is the enzyme responsible for glycogenolysis. In its active state, it 

is phosphorylated. Therefore, it is inactivated by de-phosphorylation and PP1β is the phosphatase 

responsible for its deactivation (Brady and Saltiel, 2001). Through de-phosphorylation events, PP1β 

helps to control the homeostasis of glycogen levels in the cell.   

Very little is known about how PP1β expression is regulated. PP1β activity is tightly regulated by 

several targeting subunits which direct the phosphatase to particular cellular compartments. The Gm 

regulatory subunit is responsible for targeting the phosphatase to glycogen granules (Cohen, 2002). 

Insulin is thought to regulate PP1β by increasing its concentration in areas of glycogen storage via 

phosphorylation of the regulatory subunits of PP1β (Saltiel and Kahn, 2001). A 1.2-fold decrease in 

abundance of the catalytic subunit of PP1β was observed in response to holo-RBP treatment. This 

could occur via two mechanisms, firstly, by decreased expression of the protein or secondly, by 

increased degradation of the protein. By whichever mechanism, decreased levels of PP1β may have 

downstream consequences on glycogen metabolism. 
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Fig 3.13 Regulation of glycogen metabolism by PP1β. 

Diagram depicting the involvement of PP1β in glycogen metabolism. When the insulin receptor is 

activated by its native ligand, insulin, it prompts the activation of the insulin signalling pathway. 

Subsequent activation of Akt results in the translocation of GLUT4 vesicles to the cell membrane and 

glucose transport into the cell. Concomitantly Akt also deactivates GSK3β, preventing GSK3β 

mediated inhibition of glycogen synthase (GS). When GS is phosphorylated, it is in an inactive state. 

PP1β is the phosphatase responsible for the de-phosphorylation of GS, resulting in its activation. GS 

is then free to convert the glucose entering the cell into glycogen stores. When glycogen production is 

occurring glycogenolysis should not occur. Glycogen phosphorylase (GP) is the enzyme responsible 

for glycogen utilisation. When GP is phosphorylated it is in an active state, PP1β is the phosphatase 

responsible for the de-phosphorylation of GP, resulting in its inhibition. Therefore, net glycogen 

production occurs. 
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3.3.4.1 The effect of decreased PP1β expression on glycogen synthase and glycogen 

phosphorylase: 

C2C12 muscle cells stimulated with holo-RBP overnight demonstrated decreased PP1β expression. 

As a result of this event, one would expect a downstream effect on the proteins regulated by PP1β. 

PP1β regulates the de-phosphorylation of both glycogen synthase and glycogen phosphorylase. 

Therefore, a net increase in phosphorylation of both of these proteins would be expected. As predicted 

glycogen synthase phosphorylation levels appear to be increased with holo-RBP treatment overnight 

(Fig 3.14). As no phospho-specific antibodies were commercially available for glycogen 

phosphorylase it was necessary to immunoprecipitate the protein first and then assess phosphorylation 

levels using general phospho amino acid antibodies. Immunoprecipitated protein was analysed by 

Western blotting. After several failed attempts to purify glycogen phosphorylase from holo-RBP 

treated cells, total glycogen phosphorylase levels were assessed in whole cell lysate by Western 

blotting (Fig 3.14). Following holo-RBP treatment overnight, there appears to be a decrease in total 

glycogen phosphorylase expression. 

 

Fig. 3.14 The effect of holo-RBP treatment on glycogen synthase phosphorylation levels and 

glycogen phosphorylase expression levels. 

Serum starved C2C12 cells were incubated with either PBS or 75µg/ml holo-RBP for 16 hours. Cells 

were collected and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE 

protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide SDS gel. Protein 

was transferred to PVDF membrane. Phospho-glycogen synthase, glycogen synthase, glycogen 

phosphorylase and β-Actin levels were assessed by Western blotting. β-Actin levels were used as a 

loading control. All experiments were conducted in triplicate. A double band appears when blotting 

total glycogen synthase. The upper band corresponds to the phosphorylated version of the protein and 

the lower band corresponds to unphosphorylated protein (Jensen et al., 2006). 
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3.3.4.2 Time course analysis of PP1β expression, glycogen phosphorylase expression and 

glycogen synthase phosphorylation: 

Overnight treatment of C2C12 cells with holo-RBP resulted in increased phosphorylation of glycogen 

synthase and decreased expression of glycogen phosphorylase. As a decrease in glycogen 

phosphorylase expression was unexpected, it was necessary to determine which event was occurring 

first, decreased PP1β expression or decreased glycogen phosphorylase expression. C2C12 cells were 

treated with holo-RBP for 0, 6, 8, 10, 12, 14 and 16 hours and protein expression and/or 

phosphorylation levels assessed by Western blotting (Fig 3.15). PP1β expression appears to decrease 

after 12 hours incubation with holo-RBP. Glycogen phosphorylase expression levels drop subsequent 

to PP1β levels, at 14 hours. Interestingly, glycogen synthase phosphorylation increases prior to PP1β 

downregulation, as early as 8 hours. Maximal phosphorylation appears at 12 hours which correlates 

with the decrease of the phosphatase, PP1β at 12 hours. However, as phosphorylation increases before 

a decline in PP1β is evident there may be another contributing factor, such as increased GSK3β 

activity, leading to this event. 

 

Fig 3.15 Time course analysis of the effect of holo-RBP treatment on PP1β expression, glycogen 

phosphorylase expression and glycogen synthase phosphorylation levels. 

C2C12 muscle cells were treated with 75µg/ml holo-RBP for 0, 6, 8, 10, 12, 14 and 16 hours. Cells 

were collected at each time point and lysed in RIPA buffer. Protein concentration was assessed using 

the PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide 

SDS-PAGE gel. Protein was subsequently transferred to PVDF membrane. PP1β, glycogen 

phosphorylase, phospho-glycogen synthase, glycogen synthase and β-Actin levels were assessed by 

Western blotting. β-Actin levels were used as a loading control. 
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3.3.4.3 Assessment of ROH dependence in the PP1β signalling pathway: 

Several changes in protein expression and phosphorylation have been observed as a result of holo-

RBP stimulation overnight. Alterations in the proteome of the cell could be occurring as a result of 

ROH influx into the cell or as a result of RBP interaction with a cell surface protein. In order to 

determine whether RBP alone or ROH alone was responsible for changes in the proteome, C2C12 

cells were treated with either 75µg/ml apo-RBP or 3.45µM ROH for 16 hours.  Neither apo-RBP nor 

ROH alone initiated changes in expression of glycogen phosphorylase or PP1β (Fig 3.16). In addition, 

no change in glycogen synthase phosphorylation was observed with either apo-RBP or ROH 

treatment alone. Therefore, only holo-RBP treatment elicits a change in the proteins involved in 

glycogen metabolism of the muscle cell.  

Changes in protein expression may still be reliant on ROH, as holo-RBP would allow the influx of 

ROH into the cell via STRA6. In addition, apo-RBP has been shown to cause ROH efflux out of the 

cell (Kawaguchi et al., 2012). This could mean that ROH influx is necessary for these changes to 

occur. The lack of protein changes with apo-RBP treatment suggests that holo-RBP may interact with 

a cell surface receptor to initiate proteome alterations. Therefore, the receptor may have a lower 

affinity for the apo version of RBP and that may be why no alterations in protein phosphorylation or 

expression occurred. ROH alone may still enter the cell as it is a highly hydrophobic molecule. 

Specific interaction of holo-RBP with STRA6 may be essential to initiate a signalling pathway which 

results in the alteration in several enzymes involved in glycogen regulation. 
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Fig. 3.16 The effect of apo-RBP and ROH treatment on PP1β, glycogen phosphorylase and 

glycogen synthase. 

Serum starved C2C12 cells were incubated with PBS, 75µg/ml apo-RBP or 3.45µM ROH for 16 

hours. Cells were collected and lysed in RIPA buffer. Protein concentration was assessed using the 

PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide SDS 

gel. Protein was subsequently transferred to PVDF membrane. Glycogen phosphorylase, PP1β, 

phospho-glycogen synthase, glycogen synthase, and β-Actin levels were assessed by Western 

blotting. β-Actin levels were used as a loading control. All experiments were conducted in triplicate. 
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3.3.4.4 Assessment of the effect of holo-RBP on STRA6 deficient cells: 

The cell surface receptor for RBP is STRA6 (Kawaguchi et al., 2007). It has a higher affinity for the 

holo version of RBP and binding of holo-RBP to STRA6 results in ROH influx into the cell 

(Sivaprasadarao and Findlay, 1988b). ROH influx may be a mechanism by which alterations in the 

glycogen metabolising enzymes occur or it could also occur via some unknown signalling pathway 

initiated by STRA6. In order to determine the significance of STRA6 in holo-RBP-induced protein 

changes, cell lines were chosen which are believed not to express STRA6. Norseen et al demonstrated 

by PCR that primary or cultured macrophages derived from mice or humans do not express STRA6 

(Norseen et al., 2012). In addition to macrophages, the liver is thought not to express the receptor 

(Bouillet et al., 1997). A murine immortalised bone marrow derived macrophage (BMDM) cell line 

and human hepatic HEPG2 cells were utilised to determine the effect of holo-RBP on STRA6 

deficient cells. Firstly, membranes isolated from each cell line were assessed for the presence of 

STRA6 using a polyclonal antibody raised against the receptor, with C2C12 cells as a positive control 

(Fig 3.17).  

 

Fig. 3.17 Expression of STRA6 in C2C12, BMDM and HEPG2 cell membranes. 

Cell membranes were isolated from C2C12, BMDM and HEPG2 cells. Membranes were resuspended 

in the presence of 1% Triton X-100 and protein quantity assessed using the PIERCE protein assay. 

100µg of each membrane suspension was electrophoresed using a 10% acrylamide SDS gel. Protein 

was subsequently transferred to PVDF membrane. Total STRA6 expression levels were assessed by 

Western blotting using a polyclonal STRA6 antibody. STRA6 is a 72kDa molecular weight protein 

and appears in C2C12 cell membranes. 
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As demonstrated in Fig 3.17 STRA6 was only present in C2C12 cell membranes. The effect of holo-

RBP on PP1β and glycogen phosphorylase expression levels and glycogen synthase phosphorylation 

levels in STRA6 deficient cell lines was assessed by Western blotting (Fig 3.18). BMDM and HEPG2 

cells do not appear to be susceptible to the same changes in protein expression and phosphorylation 

observed in C2C12 cells. This indicates that STRA6 may be a key mediator in RBP-induced changes 

in glycogen regulating enzymes. STRA6 may simply be necessary to mediate ROH influx or it may 

initiate a unique signalling mechanism which terminates in the alteration of glycogen metabolism. 

 

 

Fig. 3.18 The effect of holo-RBP treatment on PP1β, glycogen phosphorylase and glycogen 

synthase in STRA6 deficient cells. 

Serum starved BMDM and HEPG2 cells were incubated with either PBS or 75µg/ml holo-RBP for 16 

hours. Cells were collected and lysed in RIPA buffer. Protein concentration was assessed using the 

PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide SDS 

gel. Protein was subsequently transferred to PVDF membrane. Glycogen phosphorylase, PP1β, 

phospho-glycogen synthase, glycogen synthase, and β-Actin levels were assessed by Western 

blotting. β-Actin levels were used as a loading control. All experiments were conducted in triplicate. 

Comparative result to Fig. 3.14. 
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3.3.5 The PP2A trimeric complex: 

PP2A is a common cellular phosphatase. It is a trimeric structure composed of a scaffolding A 

subunit, a regulatory B subunit and a catalytic C subunit (Fig 3.19). The A and C subunits are found 

bound to each other at all times in the cell. They form the core dimer to which the regulatory, B 

subunit binds (Lechward et al., 2001). Association of the regulatory B subunit allows the generation 

of functional holoenzyme and this event confers the specificity of the complete phosphatase complex. 

There are 4 main classes of B subunit, the B family (also known as B55), of which there are 3 

isoforms, the B’ family (also known as B56), which has 5 isoforms, the B” family, with 3 isoforms 

and the striatin family (also known as B”’) which has 3 isoforms (Lechward et al., 2001). The B 

subunits are expressed differentially during development and in specific tissues which adds another 

dimension to PP2A regulation. The B subunit can often direct the phosphatase to specific 

compartments of the cell and therefore, dictates the function of the enzyme. 

 

 

Fig 3.19 The trimeric structure of PP2A 

PP2A is composed of three subunits. The A and C subunits exist pre-coupled in the cytosol and 

exhibit 2 isoforms each. The regulatory B subunit confers specificity of the enzyme and can have 

several isoforms with distinct functions (Seshacharyulu et al., 2013). 
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3.3.5.1 Regulation of the PP2A dimer complex by phosphorylation: 

In the present study, the scaffolding A subunit of PP2A was observed to have decreased levels of 

serine phosphorylation in response to holo-RBP treatment. Phosphorylation of this subunit has not 

been extensively studied. The C subunit is known to be phosphorylated at tyrosine 307 and this leads 

to decreased binding affinity for the B subunit (Brautigan, 1995). In a study conducted by Guo and 

Damuni (1993), it was noted that an autophosphorylation-activated protein kinase caused an increase 

in 
32

P incorporation into the C subunit of PP2A and this resulted in marked inhibition of the enzyme. 

Some incorporation of 
32

P was also observed in the A subunit but at unknown residues, this may also 

contribute to inhibition of the enzyme but it has never been studied. Phosphorylation of residues in the 

dimer complex could result in steric hindrance, preventing B subunit association. Serine 

phosphorylation of the A subunit of PP2A is a novel observation and may also have a similar function 

to phosphorylation of the C subunit. Thus, a decrease in phosphorylation of this subunit may allow 

increased association of the B subunit, generating increased levels of functional holoenzyme.  

3.3.5.2 Mass spectrometry analysis of the PP2A holoenzyme: 

In order to assign a function to the PP2A complex altered with holo-RBP treatment, the A subunit was 

immunoprecipitated from C2C12 cells using the same antibody used to validate the phosphorylation 

change. Purified protein was fractionated by SDS-PAGE and visualised using silver staining as 

described in section 2.7.1 and 2.4.3. All protein bands were excised and trypsin digested as described 

in sections 2.6.2 and 2.6.3. Digested peptides were identified by MS analysis. Table 3.3 depicts the 

proteins identified relevant to PP2A complex identification. The only B subunit found to co-

immunoprecipitate with the scaffolding A subunit was B56, in particular the δ isoform.  
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Table 3.3 Components of the PP2A complex identified from PP2A subunit A immunoprecipitation.  

Summary of PP2A subunit proteins isolated from C2C12 cells using anti-PP2A subunit A α isoform antibody. All proteins were identified using the NCBI 

protein database and demonstrated a score >54 indicating significant protein identification. 

 

 

Protein Identified Accession No. Score Peptides 

Matched 

Cov (%) MW PI 

Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit 

A alpha isoform 

gi|8394027 222 5 13 65.28 5.00 

Protein phosphatase 2A B56 delta subunit gi|33285883 214 5 14 69.08 7.99 
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3.3.6 The B56 delta regulatory subunit of PP2A: 

MS analysis revealed that the PP2A subunit A α isoform forms a complex with the B56δ regulatory 

subunit in C2C12 muscle cells. PP2A with this specific B subunit bound is involved in the wnt 

signalling pathway. Wnt is responsible for the regulation of β-catenin-induced gene transcription (Fig 

3.20). When the receptor for wnt, frizzled, is inactive, β-catenin remains bound to a degradation 

complex in the cytosol (Kim et al., 2013a). This complex is composed of adenomatosis polyposis coli 

(APC), axin, casein kinase 1 (CK1) and GSK3β and mediates the phosphorylation of β-catenin. Once 

phosphorylated, β-catenin is destined for degradation via the proteasome. When wnt stimulates the 

frizzled receptor, the degradation complex dissociates and β-catenin is free to translocate to the 

nucleus and initiate gene transcription (Kim et al., 2013a). 

 

Fig 3.20 The Wnt/β-Catenin signalling pathway. 

A. In the absence of wnt, β-Catenin is sequestered in the cytosol by a degradation complex composed 

of APC, Axin, GSK3β and CK1. This complex mediates the phosphorylation of β-Catenin and targets 

it for proteasomal degradation. Therefore, β-Catenin controlled transcription does not occur. B. Upon 

wnt binding at the cell surface the β-Catenin degradation complex dissociates. β-Catenin then 

translocates to the nucleus and initiates transcription of target genes (Kim et al., 2013a). 
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In 1999, Seeling et al demonstrated that the B56 regulatory subunits of PP2A are negative regulators 

of the wnt signalling pathway (Seeling et al., 1999). All of the isoforms of the B56 subunit were found 

to positively regulate the degradation complex, thus increasing β-catenin degradation. The addition of 

the PP2A inhibitor, okadaic acid, resulted in increased levels of β-catenin. In addition, co-expression 

of GSK3β and B56 resulted in increased degradation of β-catenin. These results suggest that the 

degradation complex is positively regulated by PP2A-B56. B56δ has been shown to interact with 

several proteins in the degradation complex, in particular APC and GSK3β (Liu and Eisenman, 2012; 

Seeling et al., 1999). 

B56δ is known to positively regulate GSK3β (Liu and Eisenman, 2012). GSK3β is also a component 

of the insulin signalling pathway and is responsible for the inhibition of glycogen synthase as 

discussed in section 4.3.4. GSK3β is regulated by several enzymes some of which include Akt and 

PKA. These kinases phosphorylate GSK3β at serine 9, resulting in its inhibition. Phosphorylation at 

this residue results in the generation of a pseudosubstrate which blocks the catalytic domain of the 

enzyme. When the insulin signalling pathway is activated, Akt phosphorylates GSK3β on serine 9, 

leading to its inactivation and subsequent downstream activation of glycogen synthase. The PP2A, 

B56δ complex is the phosphatase responsible for de-phosphorylating GSK3β at serine 9 and thus 

rendering it more active (Liu and Eisenman, 2012). As a result of holo-RBP treatment an increase in 

glycogen synthase phosphorylation was observed before the onset of PP1β downregulation, this could 

be an indicator that GSK3β was more active. Increased PP2A activity may provide the link between 

holo-RBP treatment and increased glycogen synthase phosphorylation (Fig 3.21).  
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Fig 3.21 Proposed pathway involving PP2A activation and increased glycogen synthase 

phosphorylation. 

Diagram depicting the potential involvement of PP2A in the activation of GSK3β and subsequent 

glycogen synthase inhibition. Activation of STRA6 by holo-RBP stimulation appears to cause a 

decrease in PP2A phosphorylation, via an as yet unknown mechanism. This may lead to an increase in 

association of the B56δ subunit, forming active holo-enzyme. Akt deactivates GSK3β by 

phosphorylation at serine 9, preventing GSK3β mediated inhibition of glycogen synthase (GS). PP2A 

is known to dephosphorylate GSK3β at serine 9. Thus, increased PP2A activity could cause elevated 

levels of active GSK3β. Increased GSK3β activity would cause increased phosphorylation of GS and 

inhibition of this important enzyme. 
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3.3.6.1 Assessment of B56δ expression in response to holo-RBP treatment: 

Interestingly, RA has been shown to cause an increase in B56δ expression (McCright et al., 1996). 

Differentiation of a neuroblastoma cell line, IMR-32, into neurone like cells with RA led to an 

increase in mRNA levels of all isoforms of B56 but in particular B56β and B56δ. In addition, Park et 

al found that PP2A may also mediate the effects of  ATRA on nitric oxide (NO) production (Park et 

al., 2013). Decreased NO levels are observed following ATRA treatment via inhibition of endothelial 

nitric oxide synthase (eNOS). When eNOS is phosphorylated at serine 1179 it is active. PP2A is a 

known phosphatase of eNOS and de-phosphorylation leads to its inactivation. ATRA treatment 

resulted in increased PP2A activity and decreased eNOS serine 1179 phosphorylation. This effect was 

mediated through increased expression of B56α. B56δ expression was unaltered in this study. 

Induction of B56δ expression could be a means by which holo-RBP is eliciting an effect on glycogen 

synthase phosphorylation levels. B56δ expression was analysed in C2C12 cells treated with holo-RBP 

for 0, 6, 8, 10, 10, 12, 14 and 16 hours (Fig 3.22). As demonstrated in Fig 3.22 no increase in B56δ 

expression was observed with holo-RBP treatment, in fact a marked decrease in total expression 

levels was observed from 10 hours onwards. In order to determine if B56δ expression was increased 

at an earlier time point, a second time course analysis was conducted. B56δ expression was assessed 

in C2C12 cells treated with holo-RBP for 0, 1, 2, 3 and 4 hours (Fig 3.23). No effect on B56δ 

abundance was observed with holo-RBP treatment for shorter time intervals. It appears that holo-RBP 

treatment does not result in elevated expression levels of the B56δ subunit of PP2A. However, a 

decrease in PP2A A subunit phosphorylation was observed and as discussed in section 3.3.5.1, this 

could still indicate that the complex was more active. 
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Fig 3.22 Time course analysis of the effect of holo-RBP treatment on B56δ expression. 

C2C12 muscle cells were treated with 75µg/ml holo-RBP for 0, 6, 8, 10, 12, 14 and 16 hours. Cells 

were collected at each time point and lysed in RIPA buffer. Protein concentration was assessed using 

the PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide 

SDS-PAGE gel. Protein was subsequently transferred to PVDF membrane. B56δ and β-Actin levels 

were assessed by Western blotting. β-Actin levels were used as a loading control. 

 

 

 

Fig 3.23 Time course analysis of the effect of holo-RBP treatment on B56δ expression using 

early time points. 

C2C12 muscle cells were treated with 75µg/ml holo-RBP for 0, 1, 2, 3 and 4 hours. Cells were 

collected at each time point and lysed in RIPA buffer. Protein concentration was assessed using the 

PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide SDS-

PAGE gel. Protein was subsequently transferred to PVDF membrane. B56δ and β-Actin levels were 

assessed by Western blotting. β-Actin levels were used as a loading control. 
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3.3.6.2 Analysis of GSK3β phosphorylation in response to holo-RBP treatment:  

If the PP2A holoenzyme was more active, one would expect to see a decrease in phosphorylation of 

GSK3β at serine 9. Therefore, the level of GSK3β serine 9 phosphorylation was assessed to determine 

if this enzyme was activated in response to holo-RBP treatment.  

GSK3β serine 9 phosphorylation was assessed in C2C12 cells treated with holo-RBP for 0, 6, 8, 10, 

10, 12, 14 and 16 hours (Fig 3.23). Serine 9 phosphorylation levels appear to drop slightly at 6 hours 

which could be an indication that PP2A is more active. Following 6 hours treatment, phosphorylation 

levels appear to remain constant. As observed in section 3.3.4.2 glycogen synthase phosphorylation 

was maximal at 12 hours so this may not be associated with increased GSK3β activity. 

In order to determine if GSK3β phosphorylation was decreased at an earlier time point, a second time 

course analysis was conducted. GSK3β phosphorylation was analysed in C2C12 cells treated with 

holo-RBP for 0, 1, 2, 3 and 4 hours (Fig 3.24). No decrease in phosphorylation levels was observed, 

which is indicative that GSK3β may not be more active. 
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Fig 3.24 Time course analysis of the effect of holo-RBP treatment on GSK3β serine 9 

phosphorylation levels. 

C2C12 muscle cells were treated with 75µg/ml holo-RBP for 0, 6, 8, 10, 12, 14 and 16 hours. Cells 

were collected at each time point and lysed in RIPA buffer. Protein concentration was assessed using 

the PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide 

SDS-PAGE gel. Protein was subsequently transferred to PVDF membrane. GSK3β serine 9 

phosphorylation levels, GSK3β total expression and β-Actin expression were assessed by Western 

blotting. β-Actin levels were used as a loading control. 

 

 

 

 

Fig 3.25 Time course analysis of the effect of holo-RBP treatment on GSK3β serine 9 

phosphorylation using early time points. 

C2C12 muscle cells were treated with 75µg/ml holo-RBP for 0, 1, 2, 3 and 4 hours. Cells were 

collected at each time point and lysed in RIPA buffer. Protein concentration was assessed using the 

PIERCE protein assay and 30µg of each sample was electrophoresed using a 10% acrylamide SDS-

PAGE gel. Protein was subsequently transferred to PVDF membrane. GSK3β serine 9 

phosphorylation levels, GSK3β total expression and β-Actin expression were assessed by Western 

blotting. β-Actin levels were used as a loading control. 
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3.4 Summary of proteomic analysis of holo-RBP stimulated C2C12 muscle cells: 

Several proteins in the mouse muscle cell line, C2C12, appeared altered in response to holo-RBP 

treatment overnight. Some of the alterations in the proteome may occur as a result of increased ROH 

influx into the cell. LAT-2, OAT, PDIA3 and CMYA5 may be altered as a result of elevated 

metabolites produced from ROH.  

LAT-2 abundance is known to decrease as a result of increased metabolism initiated by RA (Yoon et 

al., 1999). OAT was observed to be elevated in intestinal epithelial cells in response to RA treatment 

(Dekaney et al., 2008). The opposite expression profile was observed in C2C12 muscle cells, this may 

be due to a cell type specific effect of RA on OAT transcription (Shull et al., 1995). PDIA3 

expression seems to be elevated in times of cellular stress (Dukes et al., 2008; Lee, 1987; Mazzarella 

et al., 1994). Influx of ROH into the cell may lead to some cellular stress and this may be the cause of 

increased PDIA3 expression. CMYA5 shares significant sequence similarity to AKAP12 and is a 

known regulator of protein kinase A (Reynolds et al., 2007). AKAP12, was demonstrated to be 

regulated by ATRA treatment and has a RARE sequence in the promoter region of its gene (Streb et 

al., 2011).  Clearly retinoids play a role in regulating AKAP12 and CMYA5 could be controlled in a 

similar manner. No alteration in expression level was observed with 2D analysis. However, altered 

phosphorylation of CMYA5 may still occur in a retinoid dependent manner by some unknown 

mechanism. 

Alterations in the structural proteins vimentin and lamin B1 were not validated by secondary methods. 

This discrepancy may be as a result of variances in the 2D electrophoresis and Western blotting 

techniques utilised in this study. Increased abundance of vimentin and lamin B1 was observed in the 

membrane fraction of muscle cells when analysed by 2D electrophoresis, but this may not be as a 

result of increased translation of protein. Western blotting was conducted on whole cell lysate. This 

was necessary to determine if holo-RBP treatment led to induced expression of these proteins. Holo-

RBP may have no direct effect on expression levels but it may alter the subcellular distribution of the 

proteins, which requires further study. 
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A number of proteins involved in glycogen regulation were affected by holo-RBP treatment. 

Decreased expression of PP1β occurs after 12 hours holo-RBP treatment. This may occur as a result 

of decreased transcription of the gene or as a result of increased degradation. Decreased levels of the 

phosphatase PP1β would be expected to have a downstream effect on the enzymes glycogen synthase 

and glycogen phosphorylase. As expected glycogen synthase phosphorylation was elevated in 

response to holo-RBP but this event may slightly precede PP1β downregulation. Maximal glycogen 

synthase phosphorylation levels occurred at 12 hours which is the time point of the apparent onset of 

PP1β downregulation. Therefore, PP1β decline may be the underlying causative agent for increased 

glycogen synthase phosphorylation, but there may be other contributing factors.  

Unexpectedly, glycogen phosphorylase expression declined following PP1β downregulation. As 

described previously, an increase in glycogen synthase phosphorylation was also observed. As 

glycogen synthase is rendered less active by phosphorylation one would expect the net production of 

glycogen to decline. Glycogen synthase diminished activity appears to precede a reduction in 

glycogen phosphorylase expression. Decreased levels of glycogen in the cell may have an inhibitory 

action on glycogen phosphorylase expression (Wang et al., 2013). Knockout studies of the glycolytic 

enzyme glucokinase, revealed decreased levels of glycogen in the liver. Following long-term 

glycogen depletion, glycogen phosphorylase mRNA levels declined (Wang et al., 2013). Conversely, 

elevated levels of glycogen can cause upregulation of glycogen phosphorylase. Transgenic mice 

overexpressing glycogen synthase in skeletal muscle, displayed elevated levels of glycogen stores 

(Manchester et al., 1996). Concomitantly upregulation of glycogen phosphorylase in skeletal muscle 

was observed. Assessment of glycogen levels in the cell in response to holo-RBP stimulation is 

necessary to determine if this could be an explanation for reduced glycogen phosphorylase 

expression. 

Interestingly, when the observed changes in glycogen regulating enzymes were assessed in cells 

treated with apo-RBP or ROH alone, no alteration in phosphorylation or expression levels occurred. 

This is indicative that holo-RBP is the active molecule, but at least some of the changes may be 

dependent on ROH influx into the cell, as this would be increased with holo-RBP treatment compared 
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to ROH alone. It also indicates that a cell surface receptor may be necessary for the proteomic 

changes to occur. STRA6 has a higher affinity for holo-RBP compared to apo-RBP, which may 

explain why apo-RBP did not elicit the same changes as the retinol bound version. Cell lines that are 

not believed to express STRA6 were stimulated with holo-RBP and expression of PP1β and glycogen 

phosphorylase was analysed along with glycogen synthase phosphorylation levels. No alteration in 

this cohort of proteins was observed in STRA6 deficient cell lines. One can conclude from this 

analysis that interaction of holo-RBP with STRA6 is necessary for the inhibition of several proteins 

involved in glycogen regulation via a mechanism that requires further elucidation. 

RBP treatment resulted in decreased serine phosphorylation of the A subunit of PP2A. A decrease in 

phosphorylation of this subunit of the phosphatase results in increased activity of the enzyme (Guo 

and Damuni, 1993). It is unknown how RBP may be causing a decrease in PP2A phosphorylation as 

the kinase or phosphatase involved has not been characterised. In order to determine the function of 

PP2A in the muscle cell, the holoenzyme was immunoprecipitated and the regulatory B subunit 

identified. The B56δ subunit was found to associate with the A subunit of PP2A. PP2A in complex 

with B56δ is known to regulate GSK3β (Seeling et al., 1999) and could be the link between holo-RBP 

treatment and altered glycogen synthase phosphorylation levels. The expression of the B56 subunit 

family is known to be regulated by RA (McCright et al., 1996). B56δ expression levels were assessed 

in response to holo-RBP treatment. However, no significant increase in expression was identified. In 

fact, a definite decline in expression was observed, which was unexpected and needs further 

investigation.  

A study conducted by Liu and Eisenman (2012) demonstrated that a negative feedback loop exists in 

B56 expression. Prolonged c-Myc activity resulted in a marked decrease in B56δ expression. 

Interestingly, increased GSK3β activity results in the phosphorylation and subsequent degradation of 

c-Myc. Therefore, there exists a negative feedback mechanism whereby excess active c-Myc can 

stimulate its own degradation via the proteasome (Fig 3.25). Increased c-Myc activity causes the up-

regulation of B56δ, this leads to increased activation of GSK3β and ultimately increased c-Myc 

proteosomal degradation. Therefore, with prolonged activation of PP2A-B56δ as a result of decreased 
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phosphorylation levels, GSK3β activity may be increased. This would in theory result in c-Myc 

degradation and could account for the decrease in B56δ expression observed in this study. 

Identification of reduced B56δ expression as a result of holo-RBP stimulation could itself be an 

indication that the PP2A holoenzyme is more active. 

 

 

 

Fig 3.26 Model of the negative feedback mechanism involved in the regulation of c-Myc 

abundance. 

C-Myc controls its own abundance via a negative feedback loop involving B56δ expression and 

GSK3β activity. When c-Myc is activated it causes increased expression of B56δ. This allows 

association of this subunit with the PP2A phosphatase complex, resulting in active holoenzyme. PP2A 

can then mediate the activation of GSK3β by removing the inhibitory phosphorylation at serine 9. 

Active GSK3β then phosphorylates c-Myc which ultimately results in its degradation by the 

proteasome. Image taken from (Liu and Eisenman, 2012). 
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Although no elevation of B56δ expression was observed with holo-RBP treatment, a decrease in 

phosphorylation of the PP2A enzyme may still have an impact on the holoenzyme’s activity. PP2A in 

complex with B56δ is a known regulatory phosphatase for GSK3β, specifically by the removal of 

phosphate from serine 9. Therefore, GSK3β serine 9 phosphorylation levels were assessed. A slight 

decrease in phosphorylation was observed at 6 hours which may be indicative of increased activity 

which correlates with the onset of glycogen synthase phosphorylation prior to PP1β downregulation.  

A combination of events may have a dramatic effect on the glycogen metabolic pathway of muscle 

cells. This effect occurs as a result of STRA6 and holo-RBP interaction, solely through ROH influx 

via STRA6 together with some unknown signalling pathway. Therefore, further study is required to 

determine how holo-RBP causes some of the alterations in the proteome observed in this study.  
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4.1 Introduction: 

In 2005, Yang and colleagues demonstrated that increased serum RBP levels can contribute to insulin 

resistance (Yang et al., 2005). Pharmacological methods aimed at reducing circulating RBP levels 

were shown to improve insulin sensitivity (Yang et al., 2005). Fenretinide, a synthetic retinoid, was 

found to improve glucose and insulin tolerance in obese, insulin resistant mice. Fenretinide actively 

reduces circulating RBP levels by inhibiting the interaction of RBP and TTR, thus enabling RBP to be 

filtered by the kidneys and excreted. As it has already been FDA approved for use as an anti-cancer 

therapeutic, it quickly entered clinical trials and is currently in a randomized trial, due to finish in 

2015, to assess the effect of fenretinide administration to obese subjects (Preitner et al., 2009). In 

order to pre-empt extended exposure to the drug, Preitner et al conducted a long term study on high 

fat diet (HFD) fed mice which resulted in a marked decrease in fat mass accumulation in a 

preventative and intervention regime (Preitner et al., 2009). In both cases, insulin resistance was 

improved significantly with fenretinide treatment. Preitner et al also administered the drug to RBP 

knockout mice maintained on a HFD. Interestingly, fenretinide also prevented diet induced adiposity 

in these mice suggesting that this effect was independent of lowered levels of RBP. This correlates 

with the observation that RBP knockout control mice in this study showed no change in adiposity. 

Mcilroy et al showed that direct treatment of 3T3-L1 adipocytes with fenretinide resulted in the 

prevention of differentiation to mature adipocytes (Mcilroy et al., 2013).  In addition, fenretinide 

prevented lipid accumulation in previously matured adipocytes. Direct RA treatment can also prevent 

maturation of adipocytes (Kamei et al., 1994). Several RA responsive genes were found to be 

upregulated, notably CRBP1, RARβ and CYP26A1 by fenretinide, suggesting that fenretinide acts in 

a similar manner to RA in prevention of adipocyte differentiation.  
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4.1.1 Novel small molecules for the treatment of insulin resistance: 

As discussed in chapter 3, the exact molecular mechanism for RBP-induced insulin resistance is still 

under debate. It may be due to an effect on macrophages located in close proximity to adipocytes in 

visceral fat, or to activation of the JAK/STAT pathway in muscle cells, or to disruptions in glycogen 

homeostasis. Regardless of the mechanism of action, a strategy aimed at reducing serum RBP levels 

may be a direct method to prevent RBP-induced insulin resistance. A number of compounds have 

been developed as retinoid alternatives in the hope of mimicking the inhibitory effect of fenretinide 

(Campos-Sandoval et al., 2011). Several of these compounds were shown to bind to RBP, inhibit 

RBP-TTR interaction and interrupt RBP-STRA6 interaction.  

4.1.2 In vivo study of novel compounds developed to interrupt RBP-TTR complex formation: 

Following on from the study conducted by Campos-Sandoval and colleagues, an in-silico screening 

study was conducted by Dr. Gemma Kinsella (this laboratory) using compounds in commercial 

databases. Compounds which bound to RBP and inhibited the RBP-TTR and RBP-STRA6 

interactions were used in animal trials to assess efficacy in both the prevention of insulin resistance 

and the rescue of insulin resistance in obese mice. Compounds that performed well in these trials were 

subsequently subjected to structure-activity relationship (SAR) analysis. One of these derivatives, 

RTC-1, resulted in dramatic improvement in glucose and insulin tolerance tests (Fig 4.1). In a 32 

week intervention study mice were fed a HFD for 16 weeks and a subset of mice was subsequently 

treated with RTC-1 and HFD for a further 16 weeks. Glucose tolerance and insulin tolerance were 

then assessed compared to mice fed a normal chow diet and mice maintained on a HFD. Mice treated 

with RTC-1 demonstrated dramatically improved glucose clearance from the serum and improved 

responsiveness to insulin treatment. Results obtained for mice treated with RTC-1 were comparable to 

controls fed a normal chow diet. In addition, it was observed that RTC-1 elicited much reduced fat 

mass accumulation compared to HFD fed mice alone. 
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Fig 4.1. The effect of RTC-1 on glucose and insulin tolerance in high fat diet fed mice. 

Mice fed a high fat diet (HFD) for 16 weeks were subsequently treated with RTC-1 for a further 16 

weeks and assessed for glucose tolerance and insulin tolerance. A. Mice fed either normal chow, 

HFD, HFD with RTC-1 were injected with a bolus of glucose, serum glucose clearance was 

subsequently monitored for 2 hours. B. Mice fed either normal chow, HFD, HFD with RTC-1 were 

injected with a bolus of insulin and serum glucose levels monitored for 2 hours. Images kindly 

provided by Dr. Darren Martin. 

 

A 

B 
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4.1.3 Independent action of retinoid derivatives on glucose uptake: 

Due to the dramatic effect of the compounds on insulin resistance and the reduction of fat mass 

accumulation in whole animal studies, it was thought that there may be an additional mechanism of 

action of the drugs. Thus, the compounds were directly tested in a glucose uptake assay using 

differentiated C2C12 mouse myotubes. RTC-1 out-performed insulin in inducing glucose uptake 

(unpublished results, Dr. Darren Martin). A derivative of RTC-1, RTC-15, was even more superior to 

RTC-1 in this respect (Fig 4.2). The effect of the compounds is independent of inhibition of the RBP-

TTR complex, as this would not have a physiological effect in a cell culture assay. 

 

 

Fig 4.2. The effect of insulin, RTC-1 and RTC-15 on glucose uptake in C2C12 cells. 

Differentiated C2C12 mouse muscle cells were treated with 10µM RTC-1 and 10µM RTC-15 

overnight. Control cells were untreated or treated with insulin alone. Glucose uptake was then 

assessed by measuring levels of intracellular [
3
H] deoxyglucose. All treatments showed a significant 

increase in glucose uptake. RTC-1 and RTC-15 both induced glucose uptake in the absence of insulin. 

Image kindly provided by Dr. Darren Martin. 
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4.1.4 Proteomics as a tool to decipher molecular mechanism of action: 

Proteomics has been used to help decipher the exact molecular mechanisms of diseases and therapies. 

To decipher a potentially novel mechanism of action, for the compounds discussed above, a 2D 

electrophoresis experiment was devised to assess changes in the proteome in response to direct drug 

treatment. 

4.1.5 Direct assessment of the mechanism of action of RTC-15: 

As the mice fed a HFD with RTC-1 had reduced fat mass compared to HFD fed mice, it was 

postulated that the mice may be more metabolically active. One common cause of increased metabolic 

activity is un-coupling of the electron transport chain (ETC) of the mitochondrial membrane. In a 

separate study conducted in the laboratory, Dr. Conor Breen assessed the effect of the RTC-1 

derivatives on complex 1 function in isolated mitochondria. Complex I is involved in the first step of 

the ETC and the production of NAD from NADH to generate a proton gradient. Dr. Breen observed 

that the compounds directly inhibited complex I activity, resulting in a decrease in oxygen 

consumption by mitochondria.  

In a separate study conducted by Siobhan Leonard in conjunction with the proposed proteomic study, 

the AMP-activated protein kinase (AMPK) pathway was investigated as a potential mechanism of 

action of the compounds. AMPK acts as an energy sensor in the cell. When ATP levels are low, or 

AMP levels high, the AMP to ATP ratio increases and more AMP binds to AMPK. This stimulates 

phosphorylation of AMPK activating the kinase and ultimately resulting in translocation of the 

glucose transporter, GLUT4, to the cell membrane (Carling, 2007). RTC-15 was demonstrated to 

cause an increase in AMPK phosphorylation. Inhibition of complex I would result in increased 

cellular levels of AMP due to increased activity of adenylate kinase which catalyses the conversion of 

2 ADP molecules to AMP plus ATP. Thus, AMPK is activated causing GLUT4 translocation to the 

cell membrane in an insulin-independent mechanism. This could be the mechanism by which RTC-15 

is having a direct effect on glucose uptake in a cell culture system.  
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Aims and Objectives: 

As a result of these observations on the action of RTC-1 and RTC-15, the following proteomic study 

was devised to identify the global effect of this set of compounds. As RTC-15 appeared to be the most 

active of the compounds in the cell culture glucose uptake assay, it was selected as the lead compound 

for the study. Overnight stimulation with the compound was chosen to represent long-term exposure 

to the drug to determine what were the most prominent proteins affected. In addition, it would 

ascertain if the drug was having a potential detrimental effect on cell homeostasis. 

2D-electrophoresis was utilised in conjunction with mass spectrometry, as a method to identify 

changes in the proteome of cells treated with RTC-15. A number of protein changes were identified 

and subjected to secondary validation. 

4.2 Method: 

The mouse muscle cell line, C2C12, was cultured and differentiated into myotubes as described in 

section 2.1.2. Cells were treated with 10µM RTC-15 for 16 hours, with DMSO used as an appropriate 

control. Cells were harvested and the whole cell lysate was used for proteomic analysis (section 2.3.2 

through to 2.3.7). 2D gels were first visualised using the phospho-protein stain Pro-Q Diamond to 

ascertain if the drug was having an effect on the phospho-proteome of the cell (section 2.4.1). Gels 

were subsequently visualised for whole protein levels using the sypro ruby fluorescent stain (section 

2.4.2). Changes in the proteome of the cells were identified using the Progenesis SameSpots software. 

Only proteins showing a greater than 1 fold change with a statistical significance of <0.05 were 

chosen for identification by mass spectrometry (MS). A 2D gel was then selected as a reference gel 

and stained using silver stain (section 2.4.3). Protein spots showing alterations in expression level or 

phosphorylation were picked from the gel and proteins digested and extracted. MS analysis was 

subsequently conducted on digested protein spots (section 2.6). Once proteins were identified by 

peptide matching software a number of the most interesting proteins were selected for secondary 

validation using SDS-PAGE and Western blotting. 
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4.3 Results: 

Several proteins were identified showing changes in either phosphorylation or expression levels in 

response to overnight treatment with 10µM RTC-15. Fig 4.3 depicts a representative gel of C2C12 

whole cell lysate treated with RTC-15 overnight with proteins showing changes in phosphorylation or 

expression circled and numbered.  

Selected protein spots were digested, peptides extracted and parent proteins identified by MS-Table 

4.1. Peptides were identified using the NCBI protein database and only proteins matched with a score 

>54 were chosen as significant protein identifications. Fig. 4.4 represents individual phosphorylation 

changes observed in the proteins identified by MS. Fig. 4.5 represents individual expression changes 

observed in the proteins identified by MS. 
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Fig 4.3 Identified protein changes from C2C12 cell lysate treated with 10µM RTC-15 

Representative Sypro ruby image of C2C12 cell lysate treated with 10µM RTC-15, resolved by 2D electrophoresis. Spots circled and numbered represent 

proteins showing a statistically significant change in phosphorylation or expression. 
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Spot 
No. 

Protein Identified Accession 

No. 
Fold 

Change 
Change Score Peptides 

Matched 
 Cov 

(%) 
MW pI 

1 *Alpha-Actinin gi|28723 1.4 Down 251 7 11 68.7    5.10 
2 Prelamin A/C                                                              gi|162287370   1.6                Up 858 21 35 74.15 6.41  
3 Zinc finger protein                                                      gi|6756053 1.2              Up 353 6 13 50.68 4.71 
4 Pyruvate dehydrogenase protein x                              gi|28201978   1.2               Down 246 6 11 53.97 7.63 
5 Heterogeneous Nuclear Ribonucleoprotein                gi|9845253             1.3                 Up 83 3 11 49.25 5.89 
6 MHR23A   gi|1044897             1.3                Up 185 4 21 39.75 4.59 
7 Ribonuclease/angiogenesis inhibitor gi|14577933 1.1               Up 263 7 19  49.60  4.64 
8 PANDA_012419   gi|281341811 1.2                  Up 353 6 16  39.32  4.84 
9 Elongation factor Tu                                                    gi|27370092          1.3                  Up 578 14 28  49.48  7.23 
10 Calumenin gi|6680840 1.3                    Up 296 10 33  37.04  4.49 
11 Isovaleryl Co-A dehydrogenase                                   gi|9789985 1.3                 Up 414 12 22  46.30  8.53 
12 *Reticulocalbin-1   gi|6677691 1.3                  Down 572 13 35  38.09  4.70 
13 Ser/Thr Kinase Receptor associated 

protein                
gi|4063383   1.3                 Down 204 4 16 38.51 4.99 

14 Ciapin 1 gi|18314528 1.4                 Down 115 3 14 28.54 5.30 
15 *Calponin 3                                                                   gi|21312564           1.3                  Up 346 8 30   36.41  5.46 
16 *Delta-aminolevulinic acid dehydratase                     gi|188036156   1.4                   Up 302 8 24 35.82 6.17 
17 Annexin A2 gi|6996913 1.4                  Up 485 10 34 38.65 7.55 
18 PDZ and LIM domain protein 1                                  gi|158635992 1.4                  Up 251 6 22  35.75  6.38 

 

 

 

 

Table 4.1 Proteins Identified by mass spectrometry showing changes in phosphorylation or abundance in response to RTC-15 treatment. 

All proteins were identified using the NCBI protein database and demonstrated a score >54 indicating significant protein identification. Proteins denoted with * 

represent proteins showing a change in phosphorylation. 
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Spot 
No. 

Protein Identified Accession 

No. 
Fold 

Change 
Change Score Peptides 

Matched 
 Cov 

(%) 
MW pI 

19 Cathepsin Z                                                                  gi|291411144   1.2                      Up 62 1 3  33.97  6.13 
20 delta(3,5)-Delta(2,4)-dienoyl-CoA 

isomerase            
gi|7949037 1.7                      Up 303 8 28  36.10  7.60 

21 EF-hand domain-containing protein D2                     gi|31981086 1.2                   Up 229 4 33 26.78 5.07 
22 Elongation Factor Ts                                                    gi|21313468 1.7                    Up 103 4 13   35.31  6.62 
23 Cathepsin B                                                                  gi|227293 1.1                    Up 154 5 12 37.34 5.46 
24 Cathepsin B                                                                  gi|227293 1.3                   Up 133 3 12 37.34 5.46 
25 Triosephosphate isomerase                                           gi|54855 1.6                     Up 96 4 16 26.68 6.90 
26 *Eukaryotic translation initiation factor 6                      gi|27501448          1.2                      Up 231 7 26  26.49  4.63 
27 LSM12 homolog                                                           gi|22748747   1.5                      Up 136 2 18  21.69 7.63 
28 ATP Synthase Subunit α                                                gi|57029 1.2                      Up 199 4 6 59.72 9.22 
29 Vimentin    gi|2078001             1.6                    Down 241 6 16 53.66 5.06 
 

 

Table 4.1 continued. Proteins Identified by mass spectrometry showing changes in phosphorylation or abundance in response to RTC-15 treatment. 

All proteins were identified using the NCBI protein database and demonstrated a score >54 indicating significant protein identification. Proteins denoted with 

* represent proteins showing a change in phosphorylation. 
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Fig 4.4. Phosphorylation changes observed in C2C12 muscle cells treated with 10µM RTC-15. 

Single spot analysis of statistically significant phosphorylation changes in C2C12 cells treated with 

10µM RTC-15 versus DMSO control. ProQ Diamond stained images are shown on the left and Sypro 

Ruby stained images are shown on the right. The following proteins are represented A. Alpha-actinin, 

B. Reticulocalbin-1, C. Calponin-3, D. Delta-aminolevulinic acid dehydratase, E. Eukaryotic 

translation initiation factor 6. 
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Fig 4.5 Changes in protein abundance observed in C2C12 muscle cells treated with 10µM RTC-15. 

Single spot analysis of statistically significant changes in protein abundance in C2C12 cells treated with 10µM RTC-15 versus DMSO control. All images are 

Sypro ruby stained spots representing protein expression changes in A. Prelamin A/C, B. Zinc finger protein, C. Pyruvate Dehydrogenase, D. Heterogeneous 

Nuclear Ribonucleoprotein, E. MHR23A, F. Ribonuclease/angiogenesis inhibitor, G. PANDA_012419, H. Elongation factor Tu. I. Calumenin                
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 Fig 4.5 continued. Changes in protein abundance observed in C2C12 muscle cells treated with 10µM RTC-15. 

Single spot analysis of statistically significant changes in protein abundance in C2C12 cells treated with 10µM RTC-15 versus DMSO control. All images are 

Sypro ruby stained spots representing protein expression changes in J. Isovaleryl Co-A dehydrogenase K. Ser/Thr Kinase Receptor associated protein 

L.Ciapin-1 M. Annexin A2 N. PDZ and LIM domain protein 1 O. Cathepsin Z P. delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase Q. EF-hand domain-

containing protein D2 R. Elongation Factor Ts 
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Fig 4.5 continued. Changes in protein abundance observed in C2C12 muscle cells treated with 10µM RTC-15. 

Single spot analysis of statistically significant changes in protein abundance in C2C12 cells treated with 10µM RTC-15 versus DMSO control. All images are 

Sypro ruby stained spots representing protein expression changes in S. Cathepsin B T. Cathepsin B U. Triosephosphate isomerase V. LSM12 homolog 

W. ATP Synthase Subunit α X. Vimentin 
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Spot 

No. 

Protein Identified Function 

1 *Alpha-Actinin Alpha-actinin functions a cross-linking protein involved in anchoring actin to a variety of intracellular structures. 

2 Prelamin A/C                                                              Pre-Lamin A/C is a structural component of the nuclear lamina. It has been known to directly interact with chromatin and 

accelerate smooth muscle cell senescence. 

3 Zinc finger protein-1 (ZPR1)                                                     ZPR1 is involved in communicating mitogenic signals from the cytoplasm to the nucleus. 

4 Pyruvate dehydrogenase protein x component                             The x component of the pyruvate dehydrogenase (PDH) complex is essential for anchoring the E3 subunit to the E2 subunit. 

It is necessary for a functional PDH complex. 

5 Heterogeneous Nuclear Ribonucleoprotein 

H2 (hnRNP H2)                

hnRNP H2 is part of a complex that is required for the processing events that pre-mRNA undergoes before becoming 

functional mRNA in the cytoplasm.            

6 MHR23A   MHR23A is a multiubiquitin chain receptor and is thought to be involved in proteasomal degradation and nucleotide 

excision repair.         

7 Ribonuclease/angiogenesis inhibitor It may inhibit RNAse1, RNAse2 and angiogenin. It could also play a role in redox homeostasis. 

8 PANDA_012419   PANDA_012419 is an uncharacterised protein but it is homologous to the intermediate filament family of proteins. 

9 Elongation factor Tu  (EfTu)                                                 EfTu promotes GTP-dependent binding of amino-acyl-tRNA to the A site of ribosomes during protein synthesis.        

10 Calumenin Calumenin is a calcium binding protein thought to be involved in regulation of the SERCA2 Ca
2+

 pump in the ER. 

11 Isovaleryl Co-A dehydrogenase (IVD)                                   IVD is a member of the acyl coA dehydrogenase family and is responsible for the catabolism of branched chain amino acids 

for the production of acyl coA. 

12 *Reticulocalbin-1  (RCN-1) RCN-1 is a calcium binding protein thought to regulate calcium dependent activities in the endoplasmic reticulum. 

13 Ser/Thr Kinase Receptor associated protein  Ser/Thr Kinase Receptor associated protein may play a role in the cellular distribution of the survival motor neuron complex.  

14 Ciapin 1 Ciapin 1 inhibits apoptosis and may play a role in Fe/S protein assembly. 

15 *Calponin 3                                                                   Calponin-3 is a thin filament associated protein that has been implicated in the regulation and modulation of smooth muscle 

contraction.           

Table 4.2 Function of proteins identified by MS showing changes in response to RTC-15. 

Proteins denoted with * represent proteins showing a change in phosphorylation. The function of each protein identified was compiled using the UniProt and 

NCBI protein databases. 
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16 *Delta-aminolevulinic acid dehydratase 

(ALAD)  

ALAD catalyses an early step in the biosynthesis of tetrapyroles. 

17 Annexin A2 Annexin A2 is a calcium regulated phospholipid binding protein involved in membrane organisation and trafficking. 

18 PDZ and LIM domain protein 1                                  Also known as elfin, it is a cytoskeletal adaptor protein known to interact with alpha-actinin. 

19 Cathepsin Z                                                                  Cathepsin Z is a cysteine protease in the papain family of proteins. It is a component of the lysosomal proteolytic system. 

20 Delta(3,5)-delta(2,4)-dienoyl-CoA isomerase   Also known as ECH1, it is involved in the preparation of unsaturated fatty acids for fatty acid oxidation. 

21 EF-hand domain-containing protein D2                     As it contains an EF hand domain it is known to bind calcium. It is thought to bind to actin to modulate actin bundling. 

22 Elongation Factor Ts (EfTs)                                                    EfTs associates with the EfTu GDP complex and induces the exchange of GDP to GTP. It facilitates the binding of amino-

acyl-tRNA to the ribosome. 

23 Cathepsin B                                                                  Cathepsin B is a thiol protease thought to be involved in intracellular degradation of proteins. 

24 Cathepsin B                                                                  Cathepsin B is a thiol protease thought to be involved in intracellular degradation of proteins. 

25 Triosephosphate isomerase                                           Triosephosphate isomerase converts di-hydroxy acetone phosphate to D-glyceraldehyde 3-phosphate. Enzyme of the 

glycolytic pathway.                                          

26 *Eukaryotic translation initiation factor 6   

(eIF-6)                   

eIF-6 binds to the 60S ribosomal subunit and prevents its association with the 40S subunit to form the 80S initiation 

complex. Increased phosphorylation leads to release of the 60S subunit allowing the formation of the 80S complex.         

27 LSM12 homolog                                                           LSM12 homolog is a translation machinery associated protein.  

28 ATP Synthase Subunit α                                                The α subunit forms the catalytic core of the ATP synthase complex or complex V in the electron transport chain. 

29 Vimentin    Vimentin is an intermediate filament involved in cell migration and adhesion. It may also be involved in vesicle trafficking 

to the cell membrane.            

Table 4.2 continued. Function of proteins identified by MS showing changes in response to RTC-15. 

Proteins denoted with * represent proteins showing a change in phosphorylation. The function of each protein identified was compiled using the UniProt and 

NCBI protein databases. 
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4.3.1 Identification of common trends in proteome changes: 

A number of intriguing changes in the proteome of the cell were observed in response to RTC-15 

treatment overnight. Table 4.2 depicts the proteins identified and their predicted cellular functions. 

Interestingly, there were no striking changes in protein expression. The highest fold increase was 1.7. 

This demonstrates that the drug is eliciting a subtle effect on the proteome of the cell and not 

dramatic, potentially toxic events, even with direct stimulation at 10µM. Fig 4.6 demonstrates 

common processes in which some of the proteins identified are involved.  

Proteins that showed changes in expression or phosphorylation can be categorised into the following 

groups; metabolic processes, integral structural proteins, protein biosynthesis, calcium binding, 

protein degradation and other functions.  

 

 

Fig 4.6 Distribution of common trends among proteins showing changes in response to RTC-15: 

Several common cellular functions were identified in proteins affected by RTC-15 treatment. They 

fall under the categories, metabolic processes, integral structural proteins, protein biosynthesis, 

calcium binding, protein degradation and other functions. 
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4.3.2 Analysis of changes in the proteome affecting metabolism: 

Several proteins demonstrated changes that are involved in metabolic processes in the cell, most 

notably fatty acid oxidation and oxidative phosphorylation. As discussed in section 4.1.2, mice treated 

with RTC-1 and a HFD demonstrated a decreased accumulation of fat mass compared to mice fed a 

HFD alone. This could suggest that the mice were more metabolically active and diverting energy 

away from storage as fat, towards energy consumption. The observation that the compounds were 

having an inhibitory action on complex I could also be impacting on how the cell generates ATP. 

Complex I is involved in the first step of oxidative phosphorylation and the production of NAD from 

NADH to generate a proton gradient (Fig 4.7). Dr. Breen found that the compounds inhibited oxygen 

consumption in a mitochondrial activity test. Malate was used as a substrate to increase NADH levels 

in isolated rat mitochondria. Addition of the compounds resulted in a drop in oxygen consumption, 

which was rescued with the addition of the complex II substrate, succinate. This suggests that the 

compounds directly inhibit complex I. Inhibition of complex I would result in oxidative 

phosphorylation beginning at succinate dehydrogenase or complex II. Complex II utilises FADH as 

the hydrogen donor. Inhibition of complex I would not have been detected in a proteomic approach as 

it is a direct inhibitory action of the drug on protein activity. However, several changes in proteins 

have been observed that could be occurring as a result of this inhibitory action. Complex I inhibition 

is a potentially toxic event, the complex I inhibitor, rotenone is moderately toxic to humans. However, 

RTC-15 does not seem to have a toxic effect on the cell i.e. other energy sources are being utilised to 

compensate for complex I inhibition and to maintain levels of ATP. 
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Fig 4.7 Representation of oxidative phosphorylation and the protein complexes involved. 

Diagram depicting the electron transport chain of the inner mitochondrial membrane (Brockington et 

al., 2010). 

  

4.3.2.1 Analysis of increased expression of isovaleryl co-A dehydrogenase: 

A 1.3-fold increase was observed in isovaleryl co-A dehydrogenase (IVD) expression. IVD is 

involved in a dehydrogenation step in the catabolism of leucine to acetyl-co-A. Acetyl-co-A is the 

substrate utilised for the citric acid cycle (Fig 4.8). An increase in IVD expression could mean that the 

cell is using different energy sources, such as branched amino acids, to compensate for inhibition of 

complex I. Fig 4.9 shows the expression levels of IVD in response to DMSO vehicle or RTC-15. 

However, no significant change was observed in expression level when analysed directly by Western 

blotting.  
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Fig 4.8 The citric acid cycle. 

Representation of the citric acid cycle. Taken from www.biologycorner.com.  
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Fig 4.9 Analysis of expression levels of IVD. 

Representative Western blot depicting expression levels of IVD in response to DMSO or 10µM RTC-

15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-IVD specific antibody and β-Actin as a loading control. All analysis was 

conducted in triplicate. 

 

4.3.2.2 Analysis of increased expression of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase: 

A 1.7-fold increase was observed in delta(3,5)-delta(2,4)-dienoyl-CoA isomerase (ECH1) expression. 

ECH1 is an auxiliary enzyme of β-oxidation. It is involved in preparing unsaturated fatty acids for 

fatty acid oxidation. One cycle through the β-oxidation pathway produces 1 molecule of FADH and 1 

of NADH and also results in the production of acetyl-coA which can then enter the citric acid cycle 

(Kunau et al., 1995). Therefore, as a result of complex I inhibition the cell could be utilising fatty 

acids as an additional energy source. Fig 4.10 shows the expression levels of ECH1 in response to 

DMSO vehicle or 10µM RTC-15. As previously observed with 2D electrophoresis, ECH1 is indeed 

increased in expression in response to 10µM RTC-15. 
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Fig 4.10 Analysis of expression levels of ECH1. 

Representative Western blot depicting expression levels of ECH1 in response to DMSO or 10µM 

RTC-15 overnight.C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-ECH1 specific antibody and β-Actin as a loading control. All analysis was 

conducted in triplicate. 

4.3.2.3 Analysis of decreased expression of PDH protein x component: 

The PDH protein x component showed a 1.2-fold decrease in expression. PDH is involved in the 

catabolism of pyruvate to form acetyl-coA which then enters the citric acid cycle (Fig 4.8). The x 

component of the complex is necessary for anchoring the E3 catalytic subunit to the E2 catalytic 

subunit (Patel and Roche, 1990). The x component is also thought to transfer electrons to the E3 

catalytic subunit. Removal of the lipoyl domain of the protein results in a dramatic reduction in 

activity of the complex (Gopalakrishnan et al., 1989). Increases in NADH and acetyl-coA levels leads 

to an inhibitory phosphorylation of the PDH complex resulting in decreased activity of the enzyme. 

This is particularly evident when fatty acid oxidation is the preferred energy source as increased 

amounts of NADH and acetyl-coA are produced (Patel and Roche, 1990). Expression of the protein 

may also be decreased by a negative feedback mechanism. When levels of NADH and acetyl-coA are 

abundant they may have an inhibitory effect on PDH component expression. Increased expression of 

ECH1 indicates that there could be increased utilisation of fatty acids as an energy source, leading to 

increased acetyl coA levels. Therefore, PDH protein x component expression may be reduced due to 

elevated levels of acetyl-coA, produced as a result of increased cellular demand for ATP. 
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4.3.2.4 Analysis of increased expression of ribonuclease/angiogenesis inhibitor-1: 

A 1.1-fold increase in ribonuclease/angiogenesis inhibitor-1 (Rnh1) expression was observed. Rnh1 is 

thought to be involved in redox homeostasis and is found in the cytosol, nucleus and mitochondria. It 

was originally believed to bind to and inhibit ribonucleases to prevent cytotoxicity (Haigis et al., 

2003). However, the protein contains a high number of cysteine residues which are prone to oxidation 

and it is now established that Rnh1 is a scavenging molecule, with the ability to mop up excess 

reactive oxygen species (ROS) (Cui et al., 2003). In a co-immunoprecipitation study, Furia et al 

demonstrated that Rnh1 can bind to several mitochondrial proteins, placing it in close proximity to 

areas of high ROS production (Furia et al., 2011). In particular, it was noted that Rnh1 can bind to 

ATP-synthase subunit alpha. Interestingly, ATP-synthase subunit alpha was another protein which 

demonstrated increased expression in response to RTC-15 treatment. The complex I inhibitor, 

Rotenone, causes an increase in ROS due to binding to the CoQ binding site in complex I (Cadenas et 

al., 1977). When the NADH/NAD
+
 ratio is elevated in the mitochondria, ROS production increases, 

as a result of increased transfer of electrons to O2 (Murphy, 2009). Complex I inhibition results in 

decreased utilisation of NADH, leading to a higher NADH to NAD
+
 ratio. Therefore, RTC-15 may 

increase ROS production, stimulating the cell to activate compensatory mechanisms in the form of 

Rnh1 expression, to prevent oxidative stress in the cell. 

4.3.2.5 Analysis of increased phosphorylation of δ-aminolevulinic acid dehydratase: 

A 1.4-fold increase in δ-aminolevulinic acid dehydratase (ALAD) phosphorylation was observed. 

ALAD is involved in the condensation of two molecules of δ-aminolevulinic acid (ALA) to form 

porphobilinogen (Jaffe, 2004). Porphobilinogen is a precursor for the production of tetrapyrrole 

pigments such as haem. Haem is an essential co-factor in the ETC, acting as a mediator of electron 

transfer in several of the mitochondrial respiratory complexes (Kim et al., 2012). The precursors of 

haem synthesis are glycine and succinyl coA (Fig 4.11). Succinyl-coA is an intermediate substrate in 

the citric acid cycle. If increased levels of acetyl-coA were entering the citric acid cycle excess 

succinyl-coA would be produced. As a result, excess succinyl-coA may be stimulating an increase in 
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activity of tetrapyrrole synthetic enzymes such as ALAD. ALAD is not known to be phosphorylated 

but when the sequence was entered into the phosphorylation prediction server PhosphoSitePlus, a 

serine phosphorylation site was predicted at serine 215 (Fig 4.12) It is unknown how phosphorylation 

would affect the function of this enzyme. 

 

Fig 4.11 The haem biosynthetic pathway. 

Diagram depicting the haem biosynthetic pathway. Haem synthesis is initiated by the production of 

ALA from glycine and succinyl-CoA. ALAD mediates the conversion of δ-aminolevulinic acid to 

porphobilinogen (Khan and Quigley, 2011).  

 

Fig 4.12 Prediction of potential phosphorylation sites in the sequence of ALAD. 

Diagram depicting the predicted phosphorylation site of ALAD at Ser215. Image generated using the 

phosphorylation site prediction software, PhosphoSitePlus. 
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4.3.2.6 Analysis of increased expression of triosephosphate isomerase: 

Triosephosphate isomerase (TPI) expression increased 1.6-fold in response to RTC-15 treatment and 

was verified by Western blotting analysis (Fig 4.13). This enzyme is involved in the glycolytic 

pathway. It converts dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-

GAP) (Wierenga et al., 2010). DHAP is produced as a by-product in glucose utilisation. TPI ensures 

that DHAP enters the glycolytic pathway for energy production and subsequently prevents toxicity 

that could occur as a result of increased levels of this metabolite. Increased expression of an enzyme 

involved in glycolysis is a strong indicator of increased metabolic rate. 

 

Fig 4.13 Analysis of expression levels of TPI. 

Representative Western blot depicting expression levels of TPI in response to DMSO or 10µM RTC-

15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-TPI specific antibody and β-Actin as a loading control. All analysis was 

conducted in triplicate. 

 

4.3.2.7 Analysis of increased expression of ATP synthase subunit α: 

ATP synthase is responsible for transporting the protons generated from the ETC across the 

membrane to generate new molecules of ATP for energy consumption. The α subunit of this complex 

showed a 1.2-fold increase in expression in response to RTC-15 treatment. This subunit is one of the 

core subunits of the F1 ATPase component of the complex (Fig 4.7). It forms part of the catalytic core 

of the enzyme along with the β and γ subunits, and is responsible for ATP hydrolysis. The α subunit 

does not directly catalyse ATP production but is thought to allosterically regulate the β subunit to 
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allow nucleotide binding (Yoshida et al., 2001). Increased expression of one of the subunits of ATP 

synthase could indicate an increased demand for ATP production, caused by complex I inhibition. 

4.3.2.8 Analysis of decreased expression of ciapin-1: 

Ciapin-1, which showed a 1.4-fold decrease in expression was originally identified as an anti-

apoptotic protein (Shibayama et al., 2004). Expression of ciapin-1 is induced by cytokine activation of 

the Ras pathway. Ciapin-1 knockout is lethal in late gestation, possibly as a result of anaemia due to 

defects in the liver and spleen (Shibayama et al., 2004). Interestingly, no apparent abnormality was 

observed in the skeletal muscle of deceased ciapin-1 knockout mice, which suggests that a decrease in 

expression in muscle tissue may not have adverse effects. Other anti-apoptotic molecules may be 

compensating for lack of ciapin-1 expression.  

Ciapin-1 is the human homolog of the yeast Dre2 protein which is involved in the assembly of Fe/S 

binding proteins in the mitochondria (Zhang et al., 2008). Expression of ciapin-1 in Dre2 knockout 

yeast prevented abnormalities associated with this deletion.  Fe/S proteins are highly involved with 

complex I, complex II and complex III of the ETC. In vitro, ciapin-1 has been shown to bind Fe/S and 

associates with proteins involved in the formation of Fe/S cluster proteins (Banci et al., 2011). 

A yeast two hybrid screen identified protein kinase C θ interacting cousin of thioredoxin (PICOT), as 

a binding partner of ciapin-1 (Saito et al., 2011b). PICOT can also bind Fe/S. Therefore, both proteins 

may be involved in Fe/S cluster assembly. PICOT was originally identified as an interacting protein 

of PKC θ,  and has an inhibitory action on PKC activity (Witte et al., 2000). Interestingly, in ciapin-1 

knockout cells, PKC was shown to be more active (Saito et al., 2011a). When ciapin-1 knockout cells 

were activated with a PKC agonist, the calcium independent protein kinases, PKC θ and δ, showed 

increased phosphorylation compared to WT cells. Therefore, ciapin-1 may be a negative regulator of 

PKC activity. RTC-15 appears to down-regulate ciapin-1 by an unknown mechanism, as a result PKC 

θ and δ could potentially be more active. 

 



Chapter 4: Proteomic profiling of C2C12 cells treated with a novel therapeutic for type II diabetes 

146 

 

4.3.3 Analysis of changes in the proteome affecting integral structural proteins: 

Treatment of C2C12 cells with RTC-15 overnight resulted in changes in several proteins which have 

structural roles in the cell. This set of proteins includes prelamin A/C, vimentin, PANDA_012419, 

calponin-3 and PDZ and LIM domain protein 1. 

4.3.3.1 Analysis of increased expression of prelamin A/C: 

Fig 4.14 depicts the expression level of lamin A/C and prelamin A/C in response to DMSO or RTC-

15 treatment. 2D analysis predicted a 1.6-fold increase in prelamin A/C. Prelamin A/C is the 

precursor of lamin A/C. Cleavage of the last 18 C-terminal residues activates the protein. Lamin A/C 

is an intermediate filament protein of the inner nuclear lamina. It is thought to maintain the structure 

of the nucleus (Vergnes et al., 2004). Western blotting analysis was conducted using antibodies raised 

against lamin A/C, which should also react with prelamin A/C. Two bands were visible by Western 

blot analysis, the upper band corresponding to prelamin A/C and the lower band corresponding to 

lamin A/C. No significant change in expression level of either protein was subsequently observed in 

response to RTC-15 treatment.  

 

Fig 4.14 Analysis of expression levels of Prelamin A/C. 

Representative Western blot depicting expression levels of Prelamin A/C and Lamin A/C in response 

to 10µM RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells 

were harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE 

protein assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% 

SDS-PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting 

analysis was conducted using anti-Lamin A/C specific antibody and β-Actin as a loading control. All 

analysis was conducted in triplicate. 
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4.3.3.2 Analysis of decreased expression of vimentin: 

Vimentin is a member of the intermediate filament family. It is thought to be involved in cell motility 

and has a scaffolding function in the cell (Ivaska et al., 2007). Fig 4.15 depicts the expression level of 

vimentin in response to DMSO or RTC-15 treatment. 2D analysis predicted a 1.6-fold decrease in 

expression. Secondary validation by Western blotting did not reveal a significant decrease in 

expression following RTC-15 treatment. 

 

 

 

Fig 4.15 Analysis of expression levels of Vimentin. 

Representative Western blot depicting expression levels of vimentin in response to DMSO or 10µM 

RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-vimentin specific antibody and β-Actin as a loading control. All analysis 

was conducted in triplicate. 

 

4.3.3.3 Analysis of increased expression of PANDA_012419: 

PANDA_012419 is an uncharacterised protein but it shares sequence similarity with the intermediate 

filament family. Lamin and vimentin are also part of this family. PANDA_012419 displayed a 1.2-

fold increase in expression in response to RTC-15 treatment. The intermediate filament proteins are a 

family of cytoskeletal proteins which act as a scaffold for maintaining cell integrity. 
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4.3.3.4 Analysis of increased phosphorylation of calponin-3: 

Calponin-3, which showed a 1.3-fold increase in phosphorylation, is involved in smooth muscle 

contraction. Calponin-3 interacts with actin and other cytoskeletal proteins. Phosphorylation of 

calponin-3 via protein kinase C (PKC) results in a diminished binding capacity of calponin-3 for other 

cytoskeletal proteins (Winder and Walsh, 1990). Loss of binding to actin results in the reversal of 

inhibition of the actomyosin MgATPase. Thus, calponin is a regulator of the actin myosin interaction 

and negatively regulates smooth muscle contraction. The phosphorylation site of calponin was 

determined by mutational analysis and appears to be located in the actin binding site, specifically 

Ser175 (Tang et al., 1996). Phosphorylation diminishes calponin’s affinity for actin presumably by 

blocking the binding site. Therefore, elevated phosphorylation of claponin-3 with RTC-15 treatment 

would lead to decreased binding to actin and may result in increased contractility of actin fibres. The 

α and ε isoforms of PKC have been demonstrated to phosphorylate calponin in vivo and could be the 

kinase responsible for RTC-15 mediated calponin-3 phosphorylation (Patil et al., 2004) (Winder et al., 

1998).  

4.3.3.5 Analysis of increased expression of PDZ and LIM domain protein 1: 

PDZ and LIM domain protein 1 (Pdlim1), also known as elfin, demonstrated a 1.4-fold increase in 

expression. As its name suggests, Pdlim1 contains an N-terminal PDZ domain and a C-terminal LIM 

domain. It is a member of the actinin-associated LIM protein (ALP) family and is known to bind to 

alpha-actinin. The PDZ domain of Pdlim1 binds to alpha-actinin at its EF hand domain and links it to 

the cytoskeletal protein, actin (Kotaka et al., 2000). It is thought to act as an adaptor protein as it can 

bind to two distinctly different regions via its PDZ and LIM domains. The function of the LIM 

domain is unknown at present but members of another PDZ/LIM containing subfamily, enigma, are 

known to bind PKC via the LIM domain (te Velthuis and Bagowski, 2007). This interaction has been 

postulated to enable PKC targeting to the sarcomere. Phosphorylation targets of PKC include vinculin 

and troponin which are known to regulate muscle contraction. 
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4.3.4 Analysis of changes in the proteome affecting protein biosynthesis: 

Several proteins involved in protein biosynthesis also exhibited changes. This set of proteins includes 

Heterogeneous Nuclear Ribonucleoprotein H2 (hnRNP H2), elongation factor Tu (EfTu), elongation 

factor Ts (EfTs), eukaryotic translation initiation factor 6 (eIF-6), and Protein LSM12 homolog. 

4.3.4.1 Analysis of increased expression of hnRNP H2, EfTu and EfTs: 

hnRNP H2 which exhibited a 1.3-fold increase in expression, is an RNA binding protein and is 

thought to regulate alternative splicing and mRNA processing (Han et al., 2010). EfTu and EfTs both 

showed an increase in expression in response to RTC-15. These proteins are involved in transfer of 

amino-acyl tRNA molecules to the ribosomal complex for translation to occur. Interestingly, a 

proteomic study conducted by Wang et al, demonstrated that RA stimulation of a breast cancer cell 

line, MCF-7, caused an increase in hnRNP H2 and EfTu expression (Wang et al., 2007). Therefore, 

any increase in these proteins could be as a result of RTC-15 effects on the retinoid system and its 

influence on gene transcription.  

4.3.4.2 Analysis of increased phosphorylation of eIF-6: 

A 1.2-fold increase in eIF-6 phosphorylation was observed in response to RTC-15 treatment. In vivo, 

eIF-6 binds to the 60S ribosomal subunit, inhibiting its interaction with the 40S subunit. It is 

negatively regulated by phosphorylation which is conducted by PKC (Ceci et al., 2003). 

Phosphorylation of eIF-6 allows 60S release and subsequent binding to the 40S subunit and initiation 

of translation. As RTC-15 treatment lead to an increase in eIF-6 phosphorylation it could mean that 

PKC is more active. 

4.3.4.3 Analysis of increased expression of protein LSM12 homolog: 

A 1.5-fold increase was observed in protein LSM12 homolog expression. Very little is known about 

the function of this protein. LSM12 contains an RNA binding domain and is thought to be involved in 

RNA processing and is associated with the ribosomal complex (Fleischer et al., 2006). 
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4.3.5 Analysis of changes in the proteome affecting calcium binding proteins: 

A common motif exists in several of the proteins showing changes in response to RTC-15 treatment. 

The EF hand domain is a highly conserved structural motif that allows a protein to bind calcium. The 

domain consists of two perpendicular alpha-helices and a connecting loop region, forming a binding 

site for a single calcium ion (Ikura, 1996). Calumenin, reticulocalbin-1 (RCN-1), EF hand domain 

containing protein D2 (also known as swiprosin-1) and alpha-actinin all have at least two EF hand 

domains. Annexin A2 has a high affinity binding site for EF hand domain containing proteins. 

4.3.5.1 Analysis of increased expression of Annexin A2: 

Fig 4.16 depicts the expression levels of annexin A2 in response to RTC-15 treatment (1.4-fold 

increase). Annexin proteins bind positively charged calcium via the annexin domain. This allows 

annexin proteins to bind to negatively charged phospholipid headgroups present in the plasma 

membrane (Gerke et al., 2005). Annexin A2 is involved in membrane organisation and trafficking. 

Vesicle transport to the plasma membrane is a known calcium dependent process. Annexin A2 is 

thought to be involved in the fusion of plasma secretory vesicles with the plasma membrane (Emans 

et al., 1993). Annexin A2 was found to be enriched at the plasma membrane, associated with GLUT4 

vesicles which were recycled from the endosome (Aledo and Hundal, 1996). Huang et al 

demonstrated that the anti-diabetic drug troglitazone, a member of the thiazolidinedione family, was 

found to increase annexin A2 expression (Huang et al., 2004). Interestingly, insulin stimulated 

GLUT4 translocation was markedly inhibited when annexin A2 expression was down-regulated with 

siRNA. Conversely, cells over-expressing annexin A2 demonstrated increased insulin stimulated 

GLUT4 trafficking and increased glucose uptake (Huang et al., 2004). Thiazolidinedione anti-diabetic 

therapeutics may be having an insulin sensitizing effect by up-regulating proteins involved in insulin 

dependent GLUT4 incorporation into the plasma membrane. RTC-15-induced annexin A2 expression 

could potentiate GLUT4 translocation to the cell membrane. 
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Fig 4.16 Analysis of expression levels of Annexin A2. 

Representative Western blot depicting expression levels of annexin A2 in response to DMSO or 

10µM RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells 

were harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE 

protein assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% 

SDS-PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting 

analysis was conducted using anti-annexin A2 specific antibody and β-Actin as a loading control. All 

analysis was conducted in triplicate. 

4.3.5.2 Analysis of increased expression of Calumenin: 

Calumenin is a member of the CREC family which are calcium binding proteins with multiple EF 

hand domains. It is predominantly expressed in the ER and the sarcoplasmic reticulum (SR). It was 

observed to increase 1.3-fold in expression in response to RTC-15 treatment. Fig 4.17 shows the 

secondary validation of calumenin upregulation by Western blotting. Calcium release from the SR is 

mediated by the ryanodine receptor 1 (RyR1) and calcium uptake by the sarco/endoplasmic reticulum 

Ca
2+

 ATPase (SERCA). Calumenin is thought to regulate calcium release and uptake in the SR by 

direct interaction with both RyR1 and SERCA (Jung et al., 2006), (Sahoo and Kim, 2008). When 

calumenin was overexpressed in C2C12 myotubes, a net increase in calcium release from the SR was 

observed on caffeine treatment (Jung et al., 2006). However, a net decrease in calcium release was 

observed with depolarization (Jung et al., 2006). This could be due to direct interaction of calumenin 

with RyR1. Calumenin was also overexpressed in rat cardiomyocytes and shown to inhibit calcium 

uptake via its interaction with SERCA (Sahoo et al., 2009). This interaction is calcium-dependent and 

when calumenin binds to SERCA its affinity for calcium is diminished, thus reducing calcium influx. 

Calumenin may also play a role as a chaperone for protein folding in the ER. Calumenin was 

increased in expression in response to ER stress (Lee et al., 2013). Overexpression of this protein led 

to a decrease in stress mediated signalling events and had an anti-apoptotic effect. 
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Fig 4.17 Analysis of expression levels of Calumenin. 

Representative Western blot depicting expression levels of calumenin in response to DMSO or 10µM 

RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-calumenin specific antibody and β-Actin as a loading control. All analysis 

was conducted in triplicate. 

 

4.3.5.3 Analysis of decreased phosphorylation of RCN-1: 

Another member of the CREC family, RCN-1, showed a 1.3-fold decrease in phosphorylation in 

response to RTC-15 treatment. RCN-1 is primarily located in the ER and contains multiple EF hand 

domains. Therefore, it is thought to be involved in calcium handling in the ER (Ozawa and 

Muramatsu, 1993). Proteins expressed in the ER either contain an ER retention signal peptide or they 

are secreted from the ER. The Sec61 complex is a protein translocase responsible for the transport of 

proteins out of the ER. RCN-1 and calumenin were both found to associate with the Sec63p subunit of 

the Sec61 complex (Tyedmers et al., 2005). This association of RCN-1 and calumenin may prevent 

efflux of calcium ions as proteins are translocated across the ER membrane. As discussed in section 

4.3.5.2, calumenin may have a chaperone like role in the ER. Association of RCN-1 and calumenin 

with Sec63p may also aid protein folding in the ER lumen. 

As no phospho-specific RCN-1 antibodies were available for Western blotting, RCN-1 was first 

immunoprecipitated from mouse C2C12 cells treated with RTC-15 using a RCN-1 specific antibody. 

Purified protein was subsequently analysed by SDS-PAGE and Western blotting using general anti-
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phospho amino acid antibodies. Fig 4.18 depicts the secondary validation of RCN-1 phosphorylation 

levels in response to RTC-15. Only the anti-phospho-serine antibody was reactive with RCN-1. Large 

scale proteomic analysis revealed human RCN-1 to be phosphorylated at threonine 76 (Olsen et al., 

2010). Threonine 76 corresponds to serine 70 in the murine version of the protein (Fig 4.19).  The 

human and the murine version of RCN-1 share extensive sequence similarity. Therefore, it is likely 

that the phosphorylation site is conserved across the two species. It is currently unknown which 

kinase is responsible for phosphorylation of RCN-1 and what impact a phosphate moiety has on the 

function of the protein.  

 

Fig 4.18 Analysis of phosphorylation levels of RCN-1. 

Representative Western blot depicting phosphorylation levels of RCN-1 in response to DMSO or 

10µM RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 for 16 hours. Cells 

were harvested and lysed in RIPA buffer. Cell lysate was then incubated with anti-RCN-1 antibody 

overnight. Immunoprecipitated protein was purified using protein G agarose beads. Purified protein 

was then electrophoresed using a 10% SDS-PAGE gel and protein was subsequently transferred to 

PVDF membrane. A. Western blot representing total protein immunoblotted with anti-phospho-serine 

antibody. RCN-1 is a 38 kDa protein. The bands present at 55 kDa and 25 kDa, represent the heavy 

and light chain of the RCN-1 antibody respectively, which was used in the immunoprecipitation 

reaction. B.Western blot representing total levels of RCN-1 using anti-RCN-1antibody. 
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hRCN1           MARGGRGRRLGLALGLLLALVLAPRVLRAKPTVRKERVVRPDSELGERPPEDNQSFQYDH 60 

mRCN1           MARGGR---LGLALGLLLALVLA---LRAKPTVRKERVVRPDSELGERPPEDNQSFQYDH 54 

                ******   **************   ********************************** 

 

hRCN1           EAFLGKEDSKTFDQLTPDESKERLGKIVDRIDNDGDGFVTTEELKTWIKRVQKRYIFDNV 120 

mRCN1           EAFLGKEDSKTFDQLSPDESKERLGKIVDRIDSDGDGLVTTEELKLWIKRVQKRYIYDNV 114 

                ***************:****************.****:******* **********:*** 

 

hRCN1           AKVWKDYDRDKDDKISWEEYKQATYGYYLGNPAEFHDSSDHHTFKKMLPRDERRFKAADL 180 

mRCN1           AKVWKDYDRDKDEKISWEEYKQATYGYYLGNPAEFHDSSDHHTFKKMLPRDERRFKASDL 174 

                ************:********************************************:** 

 

hRCN1           NGDLTATREEFTAFLHPEEFEHMKEIVVLETLEDIDKNGDGFVDQDEYIADMFSHEENGP 240 

mRCN1           DGDLTATREEFTAFLHPEEFEHMKEIVVLETLEDIDKNGDGFVDQDEYIADMFSHEDNGP 234 

                :*******************************************************:*** 

 

hRCN1           EPDWVLSEREQFNEFRDLNKDGKLDKDEIRHWILPQDYDHAQAEARHLVYESDKNKDEKL 300 

mRCN1           EPDWVLSEREQFNDFRDLNKDGKLDKDEIRHWILPQDYDHAQAEARHLVYESDKNKDEML 294 

                *************:******************************************** * 

 

hRCN1           TKEEILENWNMFVGSQATNYGEDLTKNHDEL 331 

mRCN1           TKEEILDNWNMFVGSQATNYGEDLTKNHDEL 325 

                ******:************************ 

 

Fig 4.19 Sequence alignment of human and mouse RCN-1 

Comparison of the sequence of human RCN-1 (hRCN1) and mouse RCN-1 (mRCN1) reveals 95% 

sequence identity. The putative phosphorylation site, highlighted in red, is a very well conserved 

region with serine 70 of the murine version replacing threonine 76 in the human version. Alignment 

was performed using ClustalW2.   
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4.3.5.4 Analysis of decreased phosphorylation of alpha-actinin: 

Alpha-actinin, which displayed a 1.4-fold decrease in phosphorylation, is involved in linking 

cytoskeletal proteins to signalling pathways. It can bind to actin and is responsible for actin bundling 

(Blanchard et al., 1989). Alpha-actinin is known to be phosphorylated by tyrosine kinases and this 

phosphorylation event decreases its ability to bind to actin (Otey and Carpen, 2004). Thus, stimulation 

of cells with RTC-15 leads to a reduction in alpha-actinin phosphorylation rendering the protein more 

active. This event is necessary for cell motility and muscle contraction. Interestingly, alpha-actinin 

also contains the EF hand calcium binding motif and increased calcium binding also reduces its 

binding capacity for actin. As discussed in section 4.3.3.5 alpha-actinin can bind to PDZ and LIM 

domain containing proteins such as Pdlim1 (Kotaka et al., 2000). Therefore, upon RTC-15 stimulation 

there appears to be a shift towards increased actin remodelling and structural adaptation. 

4.3.5.5 Analysis of increased expression of swiprosin-1: 

Swiprosin-1 displayed a 1.2-fold increase in expression in response to RTC-15 treatment. It contains 

two EF hand domains. The protein was originally identified in lymphocytes and shown to regulate 

mast cell activation via actin remodelling (Kwon et al., 2013). Swiprosin-1 is found in the cell 

associated with actin and may also have an actin bundling function (Kwon et al., 2013). It can bind 

actin in the absence of calcium but its bundling activity is diminished. Therefore, calcium binding 

increases swiprosin-1 mediated actin bundling. Swiprosin-1 expression is increased in response to 

PKC activation (Kim et al., 2013b). Targeted down-regulation of PKC isoform expression by siRNA 

revealed that PKC θ is specifically responsible for regulating swiprosin-1 expression. Therefore, 

increased PKC activity, induced by RTC-15, could result in elevated expression levels of swiprosin-1. 
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4.3.6 Analysis of changes in the proteome affecting protein degradation: 

Several proteins involved in protein degradation demonstrated changes in response to RTC-15 

treatment. This set of proteins includes MHR23A, cathepsin Z and cathepsin B. 

4.3.6.1 Analysis of increased expression of MHR23A: 

A 1.3-fold increase in MHR23A expression was observed with RTC-15 treatment. MHR23A, also 

known as Rad23a, is primarily involved in binding poly-ubiquinated proteins and directing them to 

the proteasome for degradation. It forms part of the Rad4/Rad23 sensor complex involved in DNA 

damage repair (Dantuma et al., 2009). As a result of inhibition of complex I, excess ROS may be 

present in the cell. MHR23A increased expression may be acting as a protective mechanism to 

prevent oxidative injury to the cell and also to direct damaged proteins to the proteasome.  

4.3.6.2 Analysis of increased expression of cathepsin Z and cathepsin B: 

Both cathepsin Z and cathepsin B belong to the papain family of cysteine proteases located in the 

lysosome and comprise one of the groups of enzymes responsible for protein degradation (Turk et al., 

2012). This family of enzymes are optimally active in the acidic environment of the lysosome. 

Cathepsins are expressed as inactive pre-proenzymes. The pre-peptide is removed in the ER and only 

when the pH drops slightly, as occurs in the lysosome, will the pro-enzyme be converted to the active 

enzyme (Turk et al., 2000). A drop in pH appears to weaken the interaction between the pro-peptide 

sequence and the catalytic domain of the enzyme. The pro-peptide sequence is then removed by 

cleavage and degraded. Interestingly, upon RTC-15 treatment overnight the cell culture media is often 

yellowish compared to the DMSO control, indicative of a slightly acidic pH. Increased levels of the 

cathepsin proteins as a result of RTC-15 treatment may not be a direct effect on protein expression but 

rather an increase in proteolytic processing of the enzymes due to a more acidic environment. 
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4.3.7 Analysis of changes in the proteome affecting other cellular processes: 

Expression changes were also noted in several proteins that could not be categorised into the other 

functional groups. These proteins include ZPR1 and Ser/Thr kinase receptor associated protein 

(STRAP). 

4.3.7.1 Analysis of increased expression of ZPR1: 

The zinc finger domain containing-protein, ZPR1 demonstrated a 1.2-fold increase in expression. Co-

immunoprecipitation experiments revealed that ZPR1 binds to the cytoplasmic domain of receptor 

tyrosine kinases, such as the epidermal growth factor (EGF) receptor (Galcheva-Gargova et al., 1998). 

When the receptor is activated by its ligand, EGF, ZPR1 is dislodged and subsequently translocates to 

the nucleus. As a result of this process, ZPR1 is thought to convey mitogenic signals from the 

cytoplasm to the nucleus. Not much is known about the exact function of ZPR1 but it is thought to be 

involved in normal nucleolar function, as selective knockdown of the gene resulted in decreased pre-

rRNA processing (Galcheva-Gargova et al., 1996). Another study demonstrated that selective 

knockdown of ZPR1 resulted in a total decrease in gene transcription in response to mitogenic signals 

(Gangwani, 2006). The two processes may be linked. ZPR1 is known to interact with eukaryotic 

translation elongation factor-1α (eEF-1α) resulting in the translocation of this complex to the nucleus 

(Gangwani et al., 1998). It is unknown as yet what exact function this protein complex has in the 

nucleus, though prevention of complex formation resulted in cell cycle arrest. Thus, ZPR1 and eEF-

1α may be required for normal cell proliferation in response to mitogenic signals such EGF. 

Secondary validation by Western blotting confirmed that ZPR1 expression is increased in response to 

RTC-15 treatment (Fig 4.20). 
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Fig 4.20 Analysis of expression levels of ZPR1. 

Representative Western blot depicting expression levels of ZPR1 in response to DMSO or 10µM 

RTC-15 overnight. C2C12 cells were treated with DMSO or 10µM RTC-15 overnight. Cells were 

harvested and lysed in RIPA buffer. Protein concentration was assessed using the PIERCE protein 

assay and 30µg/ml protein was used per sample. Cell lysate was electrophoresed using a 10% SDS-

PAGE gel and protein was subsequently transferred to PVDF membrane. Western blotting analysis 

was conducted using anti-ZPR1 specific antibody and β-Actin as a loading control. All analysis was 

conducted in triplicate. 

4.3.7.2 Analysis of decreased expression of STRAP: 

STRAP also known as UNR-interacting protein (Unrip) demonstrated a 1.3-fold decrease in 

expression. This protein has been shown to bind to the smooth muscle neuron complex (SMN) which 

is a large oligomeric assembly thought to take part in cellular RNA metabolism. Small nuclear 

ribonucleoproteins (snRNP) are necessary for the processing of pre-mRNA to mature mRNA and are 

composed of a small nuclear ribonucleic acid (snRNA) and a core of seven proteins known as sm 

proteins (Yong et al., 2004). The SMN complex is involved in the assembly of these seven proteins to 

form the core of the snRNP molecule. In a co-immunoprecipitaton experiment, STRAP was found to 

associate with the complex (Grimmler et al., 2005). Specific knockdown of STRAP resulted in a 

decrease in the cytosolic SMN complex and an increase in nuclear localisation. Thus, STRAP may 

modulate SMN complex compartmentalisation. As a reduction of STRAP expression was observed 

with RTC-15 treatment, this may reflect an increase in nuclear SMN complex localisation. 

Interestingly, ZPR1 is required for nuclear translocation of SMN (Ahmad et al., 2012). As described 

earlier, ZPR1 knockdown results in a decrease in pre-mRNA processing, this could be as a result of 

decreased SMN complex in the nucleus. An increase in ZPR1 was observed with RTC-15 treatment. 

Thus, the cellular response to RTC-15 treatment involves an increase in ZPR1, a protein responsible 

for SMN complex nuclear localisation and a decrease in STRAP, a protein responsible for 

cytoplasmic retention. 
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4.4 Conclusions of proteomic profiling of the effect of RTC-15 on C2C12 cells: 

Several changes in protein expression and phosphorylation are observed when muscle cells are 

exposed to the anti-diabetic compound, RTC-15. Secondary validation by Western blotting confirmed 

some of these changes. In some cases, expression changes observed by Western blotting analysis such 

as with annexin A2, calumenin and ZPR1, appeared much greater than indicated via 2D 

electrophoresis. This could be due to differences in sensitivity of the two techniques. 2D 

electrophoresis and subsequent staining and image analysis is highly reliant on statistical evaluation. 

Direct assessment of expression level by Western blotting analysis is a much more sensitive method 

and this could account for the discrepancy between the two techniques. Changes observed in the 

proteomic profile of the cell may not be a direct effect of RTC-15 but as a result of complex I 

inhibition and the consequent re-orientation of cellular activity to maintain ATP levels. Complex I 

inhibition results in inhibition of the ETC in the mitochondrial membrane, an increase in the AMP to 

ATP ratio and subsequent activation of the AMP sensing molecule, AMPK. In a separate study, this 

RTC-15 related AMPK activation was demonstrated together with an increase in downstream AS160 

phosphorylation, GLUT4 translocation to the plasma membrane and elevated glucose uptake.  

The most widely used treatment for type II diabetes is Metformin. The precise mechanism of action of 

the drug is still under debate, but it is established that Metformin also increases AMPK 

phosphorylation, thus activating the AMPK signalling cascade, though the activation is weak (Zhou et 

al., 2001). Exercise mediated glucose uptake also occurs as a result of activation of the AMPK 

signalling cascade (Cohen, 1978). In addition, activation of AMPK can lead to increased fatty acid 

oxidation as an alternate energy source (Winder and Hardie, 1996). The exact mechanism of 

Metformin-induced activation of AMPK is as yet unknown-one potential mechanism of action is 

complex I inhibition (Owen et al., 2000). Owen et al found that Metformin treatment resulted in 

complex I inhibition which reduced liver gluconeogenesis while increasing glucose utilisation in other 

tissues such as muscle. Metformin-induced glucose uptake in peripheral tissues occurs as a result of 

increased GLUT4 translocation to the plasma membrane (Hundal et al., 1992). The insecticide, 

rotenone, a known complex I inhibitor also induces GLUT4 translocation to the cell membrane 
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(Wheeler et al., 1994). Therefore, complex I inhibition stimulates the cell to acquire increased sources 

of ATP, in an insulin-independent manner.  

A large proportion of the proteins identified in this study are associated with metabolic processes. 

Inhibition of complex I could be initiating a shift towards compensatory mechanisms inside the cell, 

so that net energy levels are maintained. As this occurs in an insulin-independent fashion, there is 

great potential for the treatment of insulin resistance and indeed type I diabetes, in a whole animal 

model. Increases in ECH1 and TPI expression illustrate that the cell is increasing the use of energy 

sources such as unsaturated fatty acids and glucose. One of the main proteins involved in ATP 

production, ATP synthase, appears to be increased in expression and this potentially means that ATP 

synthesis is increased. Increased metabolic activity could result in reduced glucose conversion to fat 

which could account for the observed decrease in accumulation of fat mass in mice fed a HFD and 

RTC-15, opposed to mice fed a HFD diet alone. As discussed in section 4.3.6.2, the colour of the cell 

media was altered with RTC-15 treatment, compared to vehicle control. It suggests that the media is 

more acidic. A decrease in media pH is indicative of increased metabolic rate. Cathepsin processing is 

reliant on a decrease in pH. Therefore, this may be the reason for an increase in cathepsin B and Z 

levels compared to control cells.  

Several proteins associated with calcium binding were found to be altered in response to RTC-15. An 

increase in expression of proteins associated with calcium binding is consistent with an increase in 

intracellular calcium levels. Upregulated calumenin expression is associated with increased release of 

calcium from the SR (Jung et al., 2006; Sahoo et al., 2009). Elevated calcium levels are closely 

associated with the transport of secretory vesicles to the cell membrane (Koenig et al., 1993). In order 

for increased glucose uptake to occur, increased numbers of the GLUT4 glucose transporter must be 

present at the plasma membrane. Complex I inhibition appears to initiate GLUT4 translocation to the 

membrane, but other auxiliary proteins aid this process. As discussed in section 4.3.5.1, troglitazone 

was shown to increase annexin A2 expression and this was associated with the insulin sensitizing 

effect of thiazolidinediones (Huang et al., 2004). RTC-15 may act in the same manner; increasing 

annexin A2 expression would contribute to a higher level of GLUT4 in the plasma membrane. 
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Globally, RTC-15-induced expression of proteins involved in calcium handling will contribute to 

increased secretory vesicle fusion with the plasma membrane. 

In conjunction with calcium handling proteins, several cytoskeletal proteins were observed to be 

affected by RTC-15. The two events may be intrinsically linked. Cytoskeletal proteins play an integral 

role in the fusion of secretory vesicles to the plasma membrane and many are regulated by calcium. 

Actin re-modelling is a necessary event to allow membrane fusion of secretory vesicles. Actin 

rearrangement before vesicle translocation has been demonstrated in several cell types (Koffer et al., 

1990; Lang et al., 2000). With RTC-15 treatment, there was an increase in inhibitory phosphorylation 

of calponin, which would allow actin contraction. There was also a decrease in alpha-actinin 

phosphorylation, rendering the protein more active and leading to increased actin bundling. Increased 

calcium binding to swiprosin can also lead to increased actin bundling. Foster et al demonstrated that 

several cytoskeletal proteins were co-purified with GLUT4 upon insulin stimulation (Foster et al., 

2006), most notably alpha-actinin 1 and 4. Thus, cytoskeletal proteins are crucial to enable increased 

GLUT4 translocation to the plasma membrane. Thus, upon RTC-15 stimulation, there is an alteration 

in proteins involved in actin remodelling, facilitating the translocation of secretory vesicles to the cell 

membrane. 

The increase observed in proteins associated with protein biosynthesis and protein degradation could 

simply be as a result of increased metabolic rate in the cell. However, some proteins may be increased 

in expression as a result of activation of RA responsive genes. A proteomic study conducted by Wang 

et al showed that hnRNP H2 and EfTu expression was increased with RA treatment (Wang et al., 

2007). These proteins are involved in transcription regulation. An increase in such regulatory proteins 

could be as a result of RTC-15 mediated effects on the retinoid system and its influence on gene 

transcription.  

RTC-15 treatment resulted in increased ZPR1 expression and decreased STRAP expression. There 

appears to be a shift in proteins involved in cytosolic localisation of SMN complex to proteins 

involved in nuclear localisation of the complex. As several proteins involved in protein biosynthesis 
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were altered in response to RTC-15, this shift could be as a result of a requirement for increased 

mRNA processing in the nucleus. The SMN complex is responsible for the assembly of snRNPs 

which are essential for the processing of pre-mRNA to mature mRNA (Yong et al., 2004). 

Ciapin-1 expression was decreased in response to RTC-15 treatment. Interestingly, PKC δ  and θ 

activity was increased in ciapin-1 knockout cells (Saito et al., 2011a). Several known phosphorylation 

targets of PKC were found to have increased phosphorylation levels in response to RTC-15. Inhibition 

of ciapin-1 expression could be causing an increase in PKC activity which is reflected in the observed 

increase in phosphorylation of calponin-3 and eIF-6. In two separate studies, calponin was found to be 

phosphorylated by the calcium dependent PKC kinases, PKC α and ε, respectively (Patil et al., 2004) 

(Winder and Walsh, 1990). eIF-6 is phosphorylated by PKCβII (Ceci et al., 2003). Swiprosin-1 

expression was also found to be increased in the cell which is directly linked to increased PKC θ 

activity (Kim et al., 2013b).  

If PKC activity is increased in the cell in response to RTC-15 treatment, the exact pathways affected 

would be highly reliant on which isoform of the enzyme is activated. The downstream targets of 

several isoforms of PKC (α, βII, δ, ε and θ) appear altered in response to RTC-15. A rise in 

intracellular calcium is a well-established mediator of PKC activation and this kinase is highly 

involved in cytoskeletal remodelling (Larsson, 2006). The isoforms of PKC which show evidence of 

activation in this study are known to phosphorylate substrates which are involved in cytoskeletal 

rearrangement. Therefore, if RTC-15 is activating PKC, this kinase may contribute to vesicle 

trafficking to the cell membrane. PKC βII facilitates GLUT4 trafficking to the membrane via 

activation of myristoylated, alanine-rich C kinase substrate (MARCKS) (Chappell et al., 2009). In 

addition, Park et al demonstrated that PKC ε is necessary for depolarisation-induced translocation of 

vesicles to the cell membrane (Park et al., 2006). PKC θ may have a direct effect on the actin 

cytoskeleton by increasing swiprosin-1 expression (Kim et al., 2013b). Thus, increased PKC activity 

may be the cause of several changes in the cytoskeleton, potentiating the movement of vesicles to the 

cell membrane. Further study of the activation state of PKC in response to RTC-15 is necessary. 
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5.1 Introduction: 

The recombinant expression of membrane proteins is integral to our studies on how these proteins are 

organised in the membrane and how they function. Membrane proteins contain large stretches of 

hydrophobic residues to allow them to fold into the lipid bi-layer of the cell membrane. The 

distribution of distinct stretches of hydrophobic amino acids poses a significant problem for the 

expression, purification and subsequent structural analysis of membrane proteins. In order to avoid 

this problem, one strategy has evolved to look at isolated hydrophilic domains of a membrane protein. 

These hydrophilic regions lie either in the intracellular region or exposed to the extracellular 

environment. This makes them attractive domains to study in relation to protein-protein interactions.  

5.1.1 STRA6 topology: 

As discussed in section 1.2.5 there has been much debate over the exact topology of STRA6. 

Topology modelling experiments have yielded varying results. An experimental analysis indicated a 9 

transmembrane structure (Kawaguchi et al., 2008b). By insertion of a Myc epitope tag into putative 

extra and intracellular regions, the localisation of distinct regions of the receptor was assessed. 9 

transmembrane regions were observed along with an extracellular N-terminus and an intracellular C-

terminus. The study predicted the C-terminal region of STRA6 to be a large intracellular domain of 

approximately 170 amino acids.  
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5.1.2 Inter-species conservation of the C-Terminal region: 

STRA6 is not homologous to any known protein and only exists in vertebrate species. It is highly 

conserved across species, with several regions in the C-terminus particularly so. The putative 

phosphorylation site located in the C-terminus, discussed in section 1.2.8, is very well conserved 

across species (Fig 5.1) and through deleterious mutations appears to be vital for activity. This would 

suggest that this region is integral to the structure and function of the whole protein. 

 

 
  

 

Fig 5.1 Sequence alignment of the C-terminal region of STRA6 across Mus musculus, Bos 

taurus, Rattus norvegicus and Homo sapiens species. 

The amino acid sequence of human STRA6 shares >71% sequence identity with all of the species 

listed above. Areas of extensive conserved residues exist in the C-terminal region. The putative SH2 

domain sequence, highlighted in red, is a very well conserved region. Alignment performed using 

Blast/Uniprot.   
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5.1.3 The function of the C-terminus: 

As the C-terminus is a large intracellular domain, it is an attractive region to study protein-protein 

docking. Berry et al have demonstrated that the C-terminus is phosphorylated at T644 and is a 

potential SH2 domain containing the sequence YTLL (Berry et al., 2011). Experimentally, they have 

shown that STRA6 interacts with JAK2 at the SH2 domain. In addition, mutational analysis of this 

region diminished the ability of STRA6 to bind to CRBP (Berry and Noy, 2012). This residue may be 

a direct interaction site for CRBP or have some structural influence on a neighbouring docking site. 

Increasingly, it is becoming established that membrane proteins form oligomeric structures in the cell 

membrane. Preliminary experimental data conducted in our lab also suggests that STRA6 occurs as an 

oligomer. The C-terminus could be a potential interaction site for the formation of an ordered 

quaternary structure. 

5.1.4 Fusion tags to aid protein expression and purification:  

As domains of a membrane protein are usually part of a large, complex structure, often it is necessary 

to tether these regions to a fusion protein to aid solubility of the protein. Fusion tags have been used 

for decades as a strategy to allow proteins to both fold properly and remain soluble. Originally fusion 

proteins were utilised to facilitate the detection and purification of the partner protein. It was soon 

realised that some fusions can vastly improve yields of the desired protein. The most commonly used 

ones are green fluorescent protein (GFP), glutathione s-transferase (GST), maltose binding protein 

(MBP), and thioredoxin (Trx). For this study, the MBP tag was utilised. MBP is natively expressed in 

E. coli making it an ideal fusion protein for soluble expression. It has outperformed many other tags in 

relation to yields of soluble protein (Kapust and Waugh, 1999). The tag also allows for the affinity 

purification of the fusion protein using amylose resin.  
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Aims and Objectives: 

Analysis of the structure of a membrane protein is critical to gain insights as to how the protein 

functions. Expression and purification of a full length membrane protein can be a very high risk 

approach to gain structural information. A more cautious approach is to analyse the structure of 

particular domains of interest. The C-terminal domain of STRA6 is a large intracellular region and 

has a size and predicted structure to suggest it could represent an independently folding domain. It is a 

prime candidate for a protein-protein interaction site, due to its large size and intracellular location. It 

is a highly conserved region across species highlighting its evolutionary importance. This domain of 

STRA6 is a known phosphorylation site, which may be a prime target for interacting proteins. 

The C-terminus of STRA6 was expressed in E. coli for the purpose of structural and functional 

analysis. This chapter describes the optimisation of expression, purification and structural 

characteristics of soluble C-terminus generated as a fusion protein with MBP.  

Potential protein-protein interactions of the C-terminal domain were also explored by use of co-

purification strategies and chemical crosslinking.  
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5.2 Materials and Methods: 

There is some disagreement as to whether the C-terminus begins at threonine 497 or leucine 535. 

Incorporation of residues 497 through to 535 as part of the C-terminal domain places a significantly 

hydrophobic region at the N-terminus of this sequence (Kawaguchi et al., 2008a). Previous 

experimental analysis of expression of the C-terminus of STRA6 consisting of residues 497-667 

revealed that the protein was largely insoluble (unpublished data). By truncating this region to consist 

of residues 535 to 667, a more soluble version of the protein was generated. This could mean that 

residues 497-535 are part of the last transmembrane sequence. Indeed, the topology modelling 

software PredictProtein predicts that residues 517 through to 536 form a transmembrane region (Fig 

5.2). 

 

 

Fig 5.2 Topology model of human STRA6 generated using PredictProtein. 

PredictProtein generated a 9 transmembrane topology model of STRA6. Predicted transmembrane 

regions are highlighted in purple corresponding to the residue numbers above. A transmembrane 

region was predicted for residues 517 to 536 in accordance with previous experimental findings that 

inclusion of this sequence generated an insoluble version of the C-terminus of STRA6.   
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5.2.1 Molecular cloning: 

All experimental analysis in this study was conducted using the C-terminal sequence consisting of 

residues 535 through to 667. From the previous experimental study the C-terminus of STRA6, 

consisting of these residues, was cloned into a pGEX-4T-3 plasmid, conjugated to a GST tag. As GST 

can form homodimers in vivo (Edwards et al., 2000) a different epitope tag was utilised. To improve 

expression and purification of the C-terminus of STRA6 a new construct was designed to include an 

N-terminal MBP fusion tag. The plasmid used for the entire study was pET-30a (Fig 5.3). 

 

 

Fig 5.3 Expression plasmid pET-30a. 

Vector map of the bacterial expression plasmid pET-30a. The plasmid contains a kanamycin 

resistance marker. Gene expression is under control of a T7 lac promoter, inducible by addition of 

IPTG into the culture media. Taken from the pET system manual, Novagen. 
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5.2.2 Insertion of MBP into pET-30a: 

The pMAL-c5E plasmid from New England Biolabs (N8110) was used as the DNA template for 

MBP. This plasmid lacks the signal sequence that directs MBP to the periplasmic space, i.e. MBP 

would be expressed in the cytosol. MBP was cloned first into the pET-30a plasmid using the NdeI and 

KpnI restriction enzymes. A FLAG tag was incorporated at the 3’end of MBP.  

The primers used were: 

5’-AAA TCG AGC ATA TGA AAA TCG AAG AAG GTA AAC TGG TAA TCT GGA TTA ACG 

GCG  ATA AAG GCT-3’ which incorporates a NdeI restriction site and start codon (underlined) and 

bases 1 through 49 of the MBP DNA sequence. An 8 residue overhang was included at the 5’ end of 

the sequence to aid restriction digestion of the PCR product by NdeI. 

3’-TCG TAC GGT ACC CTT ATC GTC GTC ATC CTT GTA ATC ATT AGT CTG CGC GTC 

TTT CA-5’ which incorporates a KpnI restriction site (underlined) a FLAG tag and the final 20 

residues of the MBP DNA sequence. A 6 residue overhang was included at the 3’ end of the sequence 

to aid restriction digestion of the PCR product by KpnI. 

The unique 1,151 base pair PCR product was subsequently purified from an agarose gel as described 

in section 2.8.2, digested using the NdeI and KpnI restriction enzymes and purified once again. The 

digested, purified insert was then ligated into the similarly digested pET-30a destination plasmid. 

Successful ligation of the PCR product into the plasmid was confirmed by digestion and verified by 

sequencing (Eurofins). This plasmid was subsequently used as a control MBP-FLAG expression 

plasmid. 
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5.2.3 Sequence verification of MBP in pET30a: 

Sequences were aligned using ClustalW2 (Fig 5.4). The sequence was verified using the T7 promoter 

primer and the T7 terminator primer. 

T7 Promoter sequence verification 

MBP-pET30a      MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDI 60 

T7Promoter      MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDI 60 

                ************************************************************ 

 

MBP-pET30a      IFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 120 

T7Promoter      IFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 120 

                ************************************************************ 

 

MBP-pET30a      DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 180 

T7Promoter      DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 180 

                ************************************************************ 

 

MBP-pET30a      DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 240 

T7Promoter      DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 240 

                ************************************************************ 

 

T7 Terminator sequence verification 

MBP-pET30a      MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDI 60 

T7reverse       ------------------------------------------------------------ 

                                                                             

 

MBP-pET30a      IFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 120 

T7reverse       -----------------------------LYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 31 

                                             ******************************* 

 

MBP-pET30a      DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 180 

T7reverse       DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 91 

                ************************************************************ 

 

MBP-pET30a      DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 240 

T7reverse       DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 151 

                ************************************************************ 

 

MBP-pET30a      VNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 300 

T7reverse       VNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 211 

                ************************************************************ 

 

MBP-pET30a      GAVALKSYEEELVKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDE 360 

T7reverse       GAVALKSYEEELVKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDE 271 

                ************************************************************ 

 

MBP-pET30a      ALKDAQTNDYKDDDDK----------------------------------------- 376 

T7reverse       ALKDAQTNDYKDDDDKGTDDDDKAMADIGSEFELRRQACGRTRAPPPPPLRSGCQSP 328 

                ****************                        

 

Fig 5.4 Validation of the MBP sequence in the pET30a expression plasmid. 

Verification of the presence of the sequence for MBP in the correct position in the pET30a expression 

plasmid. Sequence alignment conducted using ClustalW2 and the T7 promoter and T7 reverse 

promoter primers. 
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5.2.4 Completion of the MBP-C-Term expression plasmid: 

Once MBP was successfully inserted into the plasmid, the DNA sequence encoding the C-terminal 

region of STRA6 (residues 535-667) was obtained from the previous pGEX-4T-3 C-term expression 

plasmid using the BamHI and EcoRI restriction enzymes. The insert taken from the pGEX-4T-3 

plasmid also contained a 3’ 6XHistidine sequence tag and a stop codon. Using the combination of 

BamHI and EcoRI restriction enzymes, the enterokinase cleavage site between the MBP fusion tag 

and the C-term remained intact (see fig 5.5), to allow for removal of the MBP tag. The unique 430 

base pair digestion product was subsequently purified from an agarose gel as described in section 

2.8.2. The digested, purified insert was then ligated into the similarly digested pET-30a destination 

plasmid already containing the MBP DNA sequence. Successful ligation of the insert into the plasmid 

was confirmed by digestion and verified by sequencing (Eurofins). 

 

 

Fig 5.5 Cloning region of the pET-30a plasmid. 

Map of the cloning region of the bacterial expression plasmid pET-30a. Insertion of the coding 

sequence for MBP using the NdeI and KpnI restriction sites removed the sequence of the His and 

Strep epitope tags. Insertion of the DNA sequence for the C-terminus of STRA6 using the BamHI and 

EcoRI restriction sites, allowed for the preservation of the enterokinase cleavage site between the 

MBP fusion tag and the C-term. Taken from the pET system manual, Novagen. 
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5.2.5 Sequence verification of the C-Terminus of STRA6 in pET30a: 

Sequences were aligned using ClustalW2 (Fig 5.6). The sequence was verified using the T7 

terminator primer. Following sequence verification of the plasmid construct, BL21 cells supplied by 

Invitrogen (44-0048) were transformed with the pET30a-MBP-C-term fusion plasmid as described in 

section 2.8.5. 

C-Term-pET30a      LSALYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSL 60 

T7Term             LSALYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSL 60 

                   ************************************************************ 

 

C-Term-pET30a      LPRTMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVF 120 

T7Term             LPRTMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVF 120 

                   ************************************************************ 

 

C-Term-pET30a      RKTALLGANGAQPHHHHHH---------------------------- 139 

T7Term             RKTALLGANGAQPHHHHHHEFELRRQACGRTRAPPPPPLRSGCQSPK 167 

                                                   ******************* 

Fig 5.6 Validation of the presence of the sequence of the C-terminal domain of STRA6 in the 

pET30a expression plasmid. 

Verification of the presence of the sequence for the C-terminal domain of STRA6 in the correct 

position in the pET30a expression plasmid. Sequence alignment conducted using ClustalW2 and the 

T7 reverse promoter primer. 

5.2.6 TEV MBP-C-Term plasmid: 

Due to problems with enterokinase cleavage efficiency of the MBP-C-term fusion protein, a new 

plasmid was designed containing a TEV protease cleavage site. The TEV cleavage site amino acid 

sequence is ENLYFQG. The previously generated plasmid was used as a template for PCR and a new 

reverse primer was designed to incorporate the TEV sequence between the MBP and C-term 

sequences respectively. 

The primers used were: 

5’-AAA TCG AGC ATA TGA AAA TCG AAG AAG GTA AAC TGG TAA TCT GGA TTA ACG 

GCG  ATA AAG GCT-3’ which incorporates a NdeI restriction site and start codon (underlined) and 

bases 1 through 49 of the MBP DNA sequence. An 8 residue overhang was included at the 5’ end of 

the sequence to aid restriction digestion of the PCR product by NdeI. 
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3’-GGC TTA GGT ACC GCC CTG AAA ATA CAG GTT TTC CTT ATC GTC GTC ATC C -5’ 

which incorporates a KpnI restriction site (underlined) a TEV cleavage site (highlighted) and a FLAG 

tag. A 6 residue overhang was included at the 3’ end of the sequence to aid restriction digestion of the 

PCR product by KpnI. 

The unique 1,172 base pair PCR product was subsequently purified from an agarose gel as described 

in section 2.8.2, digested using the NdeI and KpnI restriction enzymes and purified once again. The 

digested, purified insert was then ligated into the similarly digested pET-30a destination plasmid 

which already contained the C-terminus. Successful ligation of the PCR product into the plasmid was 

confirmed by digestion and verified by sequencing (Eurofins) using the T7 terminator primer.  

Sequencing results were compared using ClustalW2 (Fig 5.7). After verification BL21 cells were 

transformed with the pET30a-MBP-TEV-C-Term plasmid as described in section 2.8.5 and 

subsequently used for all expression experiments. 

pET30a-MBP-TEV-C-Term      FKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 300 

T7Term                     -----------------NAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 33 

                                            ********************************* 

 

pET30a-MBP-TEV-C-Term      GAVALKSYEEELVKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVIN 350 

T7Term                     GAVALKSYEEELVKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVIN 83 

                           ************************************************** 

 

pET30a-MBP-TEV-C-Term      AASGRQTVDEALKDAQTNDYKDDDDKENLYFQGGTDDDDKAMADIGSLSA 400 

T7Term                     AASGRQTVDEALKDAQTNDYKDDDDKENLYFQGGTDDDDKAMADIGSLSA 133 

                           ************************************************** 

 

pET30a-MBP-TEV-C-Term      LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSL 450 

T7Term                     LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSL 183 

                           ************************************************** 

 

pET30a-MBP-TEV-C-Term      LLQAQSLLPRTMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRA 500 

T7Term                     LLQAQSLLPRTMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRA 233 

                           ************************************************** 

 

pET30a-MBP-TEV-C-Term      RWGLAYTLLHNPTLQVFRKTALLGANGAQPHHHHHH 536 

T7Term                     RWGLAYTLLHNPTLQVFRKTALLGANGAQPHHHHHH 269 

                           ************************************ 

 

Fig 5.7 Validation of the insertion of the TEV protease cleavage sequence in the pET30a 

expression plasmid. 

Verification of the presence of the cleavage sequence for TEV protease in the correct position in the 

pET30a expression plasmid. The TEV protease cleavage site is highlighted in yellow. Sequence 

alignment conducted using ClustalW2 and the T7 reverse promoter primer. 
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5.2.7 Expression of the MBP C-Term fusion protein: 

Following a small expression trial to ascertain optimal expression parameters, the MBP-C-term fusion 

protein was routinely expressed as described in section 2.9.4. Briefly, single colonies of BL21 E. coli 

cells containing the pET-30a MBP-C-term expression plasmid were suspended in 10mL TB media for 

overnight culture at 37
o
C, with shaking (225-250 rpm). Following overnight incubation, cultures were 

diluted 1:100 into fresh TB media and grown to an optical density (OD600nm) of 0.6. Protein 

expression was induced by the addition of 0.1mM IPTG and incubated at room temperature overnight.  

Collected cell pellets were lysed as described in section 2.9.4. The soluble fraction was retained for 

subsequent purification of the protein of interest. Samples from each stage of the initial protein 

expression and purification of MBP-C-term were retained and stored at -20
o
C for subsequent analysis 

by SDS-PAGE and Western blotting as described in section 2.7.1 and 2.7.5 respectively. 

5.2.8 Protein purification: 

The MBP-C-Term fusion protein was purified using affinity chromatography. All purification 

experiments were conducted at 4
o
C with protease inhibitors to prevent protein degradation and or 

aggregation. Following purification, protein concentrations were determined using absorbance at 

280nm.  

Amylose Resin Affinity Chromatography: 

Due to the high affinity of MBP for amylose, purification using this resin was the method of choice 

during early phases of this study. Subsequent analysis of contaminants revealed that a large proportion 

of native MBP was purified along with the C-term fusion protein. In later phases of this study, to 

eliminate this problem, Ni-NTA affinity chromatography was conducted prior to amylose affinity 

chromatography. In each case the method used to purify the protein was the same. 
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Briefly, 2mL of packed amylose resin per 400mL of original bacterial culture was washed with 5 bed 

volumes of PBS. The resin was then incubated with the soluble portion of the bacterial cell lysate or 

Ni-NTA eluate, for 90 minutes at 4
o
C with constant rotation. Resin was then collected by gravity flow 

using 5mL disposable columns. Collected resin was washed with ten bed volumes of ice-cold wash 

buffer as described in section 2.9.4. Protein was eluted with 3 bed volumes of ice-cold wash buffer 

supplemented with 20% glycerol (v/v) and 10mM maltose. Eluate was assessed for protein 

concentration using absorbance at 280nm and either concentrated for size exclusion chromatography 

or stored as aliquots at -20
o
C. 

Ni-NTA Affinity Chromatography: 

The MBP-C-term fusion protein was designed to incorporate a C-terminal 6XHistidine tag. This 

would allow for a double purification strategy and for purification of cleaved protein from the MBP 

fusion tag. Briefly, 2mL of packed amylose resin per 400mL of original bacterial culture was washed 

with 5 bed volumes of PBS. The resin was then incubated with the soluble portion of the bacterial cell 

lysate for 90 minutes at 4
o
C with constant rotation. Resin was then collected by gravity flow using 

5mL disposable columns. Collected resin was washed with ten bed volumes of ice-cold wash buffer 

as described in section 2.9.4. Protein was eluted with 3 bed volumes of ice-cold wash buffer 

supplemented with 20% glycerol (v/v) and 250mM imidazole. Eluate was then purified once more 

using amylose affinity chromatography, as described above. 
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5.2.9 TEV cleavage of the MBP-C-Term fusion protein: 

Following a brief optimisation trial, TEV cleavage of the MBP-C-term fusion protein was routinely 

conducted as follows. 1µl of halo-TEV protease supplied by Promega (G6601) was used per 100µg of 

purified MBP-C-term. The cleavage reaction was then incubated with rotation at room temperature 

for 16 hours. An aliquot of the cleavage reaction was retained to assess cleavage efficiency by SDS-

PAGE and Western blotting. Cleaved C-terminus was then purified away from the cleavage reaction 

by Ni-NTA affinity chromatography as described in section 5.2.8. Eluted protein was concentrated 

and analysed using size exclusion chromatography. 

5.2.10 Detection of protein expression: 

Protein expression was analysed by SDS-PAGE, gel-staining and Western blotting as described 

previously. Western blots were probed with either anti-FLAG or anti-His antibodies. Routinely, anti-

FLAG antibody was used at a 1:1,000 dilution in PBS with 0.05% (v/v) Tween-20 overnight at 4
o
C. 

Anti-His-HRP antibody was used at a 1:10,000 dilution in PBS with 0.05% (v/v) Tween-20 and 2% 

(w/v) non-fat dried milk, either overnight at 4
o
C or for 2 hours at room temperature.  

For the purpose of protein interaction studies the following antibodies were also used: 

Anti-Ha antibody at a 1:1,000 dilution in PBS with 0.05% (v/v) Tween-20 and 2% (w/v) non-fat dried 

milk, overnight at 4
o
C. 

Anti-CRBP antibody at a 1:500 dilution in PBS with 0.05% (v/v) Tween-20 overnight at 4
o
C. 
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5.3 Results: 

5.3.1 Expression of MBP-C-Term in BL21 E. coli cells: 

E. coli BL21 cells are an ideal expression host to produce large amounts of protein in an inexpensive 

manner. Unfortunately, some proteins may form insoluble aggregates, otherwise known as inclusion 

bodies within the E. coli cell. One of the first tasks of bacterial protein expression is to assess whether 

the protein is in the insoluble fraction of the cell lysate or in the soluble fraction. Following a brief 

expression optimisation trial, the insoluble and soluble fractions were assessed for the presence of 

MBP-C-term. Fortunately, the majority of expressed MBP-C-term was present in the soluble fraction 

and purified away from E. coli contaminants (Fig 5.8).  

 

Fig 5.8 Expression and purification of MBP-C-term.  

Coomassie brilliant blue stained SDS-PAGE gel depicting the purification of 59kDa MBP-C-term 

from E. coli lysate. The first lane represents insoluble protein (P) retained in a high speed 

centrifugation pellet. The second lane represents the soluble protein (S) present in the supernatant of a 

high speed centrifugation. The third lane represents all purified protein following incubation of cell 

lysate with Ni-NTA affinity chromatography resin. The last lane represents all purified protein 

following incubation of Ni-NTA eluate with amylose affinity chromatography resin. 
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5.3.2 Size Exclusion Chromatography: 

Once soluble protein was expressed and purified structural characteristics of the protein were 

assessed. Size exclusion chromatography (SEC) is an ideal method to determine the molecular weight 

of a protein in its native conformation. It may reveal valuable insights as to the quaternary structure of 

the protein i.e. whether it forms a higher molecular weight species such as a dimer, trimer or tetramer. 

For the present study, two size exclusion columns were used, the Superose 6 10/300 column (17-

5172-01) and the  Superdex 200 10/300 GL column (17-5175-01) supplied by GE coupled to an 

AKTA purifier system supplied by Amhersham Biosciences. The Superose 6 column is composed of 

crosslinked agarose. The Superdex 200 column is composed of crosslinked agarose and dextran. 

Molecular weight standards were run on both columns to obtain an elution profile to compare the 

protein of interest against (Fig 5.9 and 5.10). Purified proteins were concentrated and passed through 

the size exclusion column to assess the native molecular weight. Absorbance at 280nm was utilised as 

a method to detect eluted protein. After 7mL of the mobile phase had passed through the column 

samples were taken every 0.5mL eluted from the column. Every second sample was assessed by 

Western blot for the presence of the desired protein. 
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Fig 5.9 Molecular weight standards utilised to calibrate the Superose 6 column.  

Absorbance at 280nm was used to analyse protein eluting from the column per mL of mobile phase eluted from the column. A. The 440kDa molecular weight 

standard, ferritin eluting at approximately 14mL. B. The 66kDa molecular weight standard, BSA, eluting at approximately 16mL. C. The 150kDa molecular 

weight standard, alcohol dehydrogenase, eluting at approximately 15.5mL. D. The 200kDa and 13.8kDa molecular weight standards, β-amylase and 

cytochrome c, eluting at approximately 15mL and 18.5mL respectively. 
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Fig 5.10 Molecular weight standards utilised to calibrate the Superdex 200 column.  

Absorbance at 280nm was used to analyse protein eluting from the column per mL of mobile phase eluted from the column. A. The 440kDa molecular weight 

standard, ferritin eluting at approximately 10mL. B. The 66kDa molecular weight standard, BSA, eluting at approximately 13.5mL. C. The 150kDa molecular 

weight standard, alcohol dehydrogenase, eluting at approximately 13mL. D. The 200kDa and 13.8kDa molecular weight standards, β-amylase and 

cytochrome c, eluting at approximately 11.5mL and 17.5mL respectively. 
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5.3.3 SEC of MBP-C-term: 

Purified and concentrated MBP-C-term was analysed by SEC using the Superose 6 column (Fig 5.11). 

As the protein has a molecular weight of 59kDa, the protein should elute from the column at roughly 

the same position as BSA, which is 16mL (Fig 5.9). However, MBP-C-term eluted from the column 

at a position which represents a molecular weight >600kDa. Therefore, the protein was forming a 

large aggregated species. 

 

 

 

Fig 5.11 Elution profile of MBP-C-term. 

MBP-C-term was purified as described in section 5.2.8. Purified and concentrated protein was 

analysed by SEC using the Superose 6 column. Absorbance at 280nm was used to analyse protein 

eluting from the column per mL of mobile phase eluted from the column. After the void volume of 

7mL had eluted from the column every 0.5mL fraction was collected. Every second fraction from 

7mL onwards was assessed for the presence of MBP-C-term by Western blotting. Anti-His-HRP 

antibody was used to detect MBP-C-term. The large peak present at 17mL represents native MBP 

purified as a contaminant from E. coli cells. 
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5.3.4 SEC of MBP-FLAG: 

As a control, the fusion partner for the C-term of STRA6, MBP, was purified as described for MBP-

C-term in section 5.2.8 and analysed by SEC (Fig 5.12). As the protein has a molecular weight of 

45kDa, the protein should elute from the column after BSA at approximately 16.5mL. However, it 

was observed that MBP was eluting from the column at two positions. The first peak representing a 

molecular weight >600kDa and the second peak eluting at the same position as BSA, representing 

monomeric protein. 

 

 

 

 

Fig 5.12 Elution profile of MBP-FLAG. 

MBP-FLAG was purified as described in section 5.2.8. Purified and concentrated protein was 

analysed by SEC using the Superose 6 column. Absorbance at 280nm was used to analyse protein 

eluting from the column per mL of mobile phase eluted from the column. After the void volume of 

7mL had eluted from the column every 0.5mL fraction was collected. Every second fraction from 

7mL onwards was assessed for the presence of MBP-FLAG by Western blotting. Anti-FLAG 

antibody was used to detect the protein of interest.  
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5.3.5 Optimisation of MBP-FLAG SEC: 

Following analysis of the MBP tag alone via SEC, it was observed that the tag itself was running as a 

separate higher molecular weight species. As MBP is a monomer in vivo, this was unexpected. 

According to the findings of Garcia et al MBP may associate to form an aggregate species due to 

ionic interactions (Garcia et al., 2006). An optimisation trial then ensued to remove the higher 

molecular weight species caused by association of MBP. Ionic interactions can be prevented by 

increasing salt concentration. KCl was added to the lysis buffer at 100mM and maintained at this 

concentration throughout the purification process. Purified protein was subsequently analysed by SEC 

(Fig 5.13, Panel B).  

The MBP-FLAG protein also contains an additional cysteine residue that the MBP-C-term protein 

does not. In order to rule out formation of disulphide bridges, the sulphydryl alkylating agent, n-

ethylmaleamide (NEM) was utilised at 20mM in the lysis buffer and maintained at this concentration 

throughout the purification process. Purified protein was subsequently analysed by SEC (Fig 5.13, 

Panel C). 

Increasing salt concentration is often an advantageous method to prevent formation of aggregated 

protein. As the MBP-FLAG protein was forming a higher molecular weight species at 0.3M NaCl, the 

salt concentration was increased to 0.8M NaCl in the lysis buffer and maintained at this concentration 

throughout the purification process. Purified protein was subsequently analysed by SEC (Fig 5.13, 

Panel D). 

All three conditions removed the higher molecular weight complex observed to elute at approximately 

10mL, which had been observed previously (Fig 5.12). Therefore, ionic interactions could have been 

responsible for the aggregated species observed, as this was removed by increasing salt concentration. 

The addition of NEM also removed the higher molecular weight species. The MBP-FLAG protein 

could form aggregate species due to disulphide bonds, as this was inhibited by modifying the cysteine 

residues. 
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Fig 5.13 Optimisation of the MBP-FLAG elution profile.  

Absorbance at 280nm was used to analyse protein eluting from the column per mL of mobile phase eluted from the column. A. Elution profile of MBP-FLAG 

purified in the presence of 0.3M NaCl. B. Elution profile of MBP-FLAG purified in the presence of 0.3M NaCl and 0.1M KCL C. Elution profile of MBP-

FLAG purified in the presence of 0.3M NaCl and 20mM NEM D. Elution profile of MBP-FLAG purified in the presence of 0.8M NaCl. 
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5.3.6 Optimisation of MBP-C-term SEC: 

Following successful optimisation of SEC using the MBP-FLAG fusion protein alone, the same 

strategy was adopted for the MBP-C-term protein. Lysis buffer supplemented with 100mM KCl was 

chosen as the optimal buffer for purification of the protein. NEM would cause non-native 

modifications to the protein and high salt concentration may cause the protein to precipitate out of 

solution. MBP-C-term was purified as described previously with 100mM KCl present throughout the 

purification process. Purified protein was then subjected to SEC using the Superdex 200 column (Fig 

5.14). BSA with a molecular weight of 66kDa elutes at 13.5mL using this column (Fig 5.10), as 

MBP-C-term is 59kDa, it would be expected to elute at a similar position. However, it eluted near the 

void volume of the column. Therefore, the addition of KCl did not prevent the formation of 

aggregated protein. 

 

Fig 5.14 Elution profile of MBP-C-term in the presence of 100mM KCl. 

MBP-C-term was purified as described previously with 100mM KCl supplemented in all buffers. 

Purified protein was analysed by SEC using the Superdex 200 column. Absorbance at 280nm was 

used to analyse protein eluting from the column per mL of mobile phase eluted from the column. 

After the void volume of 7mL had eluted from the column every 0.5mL fraction was collected. Every 

second fraction from 7mL was assessed for the presence of MBP-C-term by Western blotting. Anti-

His-HRP antibody was used to detect the protein of interest. The peak present at 14.5mL represents 

native MBP purified as a contaminant from E. coli. 
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5.3.7 Further optimisation of MBP-C-term SEC: 

As demonstrated in Fig 5.14, 100mM KCl did not prevent the formation of a higher molecular weight 

aggregate species of MBP-C-term. Several attempts then ensued to dis-aggregate the MBP-C-term 

fusion protein. The strong chaotropic reagents, urea and guanidine hydrochloride (G-HCl) have 

successfully been used to aid solubilisation of aggregated proteins (Hatefi and Hanstein, 1969). 2M 

urea and 2.5M G-HCl were used in an attempt to solubilise the high molecular weight aggregated 

protein (Fig 5.15, Panel A and B). However, this did not result in soluble protein. 

In extreme cases, complete denaturation of aggregated protein using urea and re-folding by dialysis 

can yield soluble, functional protein. MBP-C-term denatured with 8M urea eluted at a position 

representing a molecular weight of 440kDa. MBP-C-term previously denatured with 8M urea was 

dialysed into a buffer without urea and theoretically re-folded. Subsequent analysis by SEC revealed 

that the protein eluted at the same position as when denatured (Fig 5.15, Panel C and D). One 

explanation for this result would be that the protein did not re-fold on dialysis. If this were the case 

the MBP portion of the fusion protein would not bind to amylose resin, as it would not be properly 

folded. To test this theory, a small portion of the original, dialysed sample used for the SEC analysis 

was purified using amylose resin (Fig 5.16). As Fig 5.16 demonstrates all of the protein was found in 

the elution fraction. This showed that the protein had re-folded. Therefore, attempts to disaggregate 

the protein using denaturing conditions did not yield soluble protein. 
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Fig 5.15 Optimisation of the MBP-C-term elution profile via the use of chaotropic agents.  

MBP-C-term was purified as described previously with either A. 2M urea supplemented in all buffers, B. 2.5M G-HCl supplemented in all buffers C. 8M 

urea supplemented in all buffers D. 8M urea supplemented in all buffers and subsequently dialysed to remove urea. Purified protein was analysed by SEC 

using the Superdex 200 column (A and B) or the Superose 6 column (C and D). Absorbance at 280nm was used to analyse protein eluting from the column 

per mL of mobile phase eluted from the column. After the void volume of 7mL had eluted from the column every 0.5mL fraction was collected. Every second 

fraction from 7mL was assessed for the presence of MBP-C-term by Western blotting. Anti-His-HRP antibody was used to detect the protein of interest. 
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Fig 5.16 Amylose affinity chromatography of MBP-C-Term previously denatured with 8M urea 

and re-folded by dialysis. 

MBP-C-term was purified as described previously in the presence of 8M urea. The urea was 

subsequently removed by dialysis to allow re-folding of the protein. Dialysed protein was then 

incubated with amylose affinity chromatography resin, to assess the re-folding of the MBP tag. The 

resin was centrifuged and supernatant retained (FT), containing any un-bound protein. The resin was 

washed and any bound protein eluted with the addition of 10mM maltose (E). Protein content from 

the FT and E fractions was analysed by Western blotting and MBP-C-Term detected using anti-His-

HRP antibody. 

 

5.3.8 Detergent solubilisation of MBP-C-term: 

Solubilisation using urea and G-HCl did not result in a successful yield of soluble protein. Another 

method used to solubilise aggregated protein is the addition of detergents. N,N-dimethyldodecylamine 

N-oxide (LDAO) was used in an effort to solubilise the MBP-C-term fusion protein. 1% Triton X-100 

(v/v) present in the cell lysis buffer was substituted with 1% LDAO (w/v) and LDAO was maintained 

at a concentration of 0.5% throughout the purification process, following cell lysis. Purified protein 

was analysed by SEC using the Superdex 200 column, with 2mM LDAO supplemented in the mobile 

phase (Fig 5.17, Panel B). Utilisation of LDAO as a solubilisation agent resulted in a shift of 

molecular weight of a large proportion of purified protein to the expected elution position of 

approximately 13 ml. However, yields of purified protein were not as high as previously observed. 

The detergent used was substituted to n-Dodecyl β-D-maltopyranoside (DDM). Yields of protein 

vastly improved and protein analysed by SEC eluted at a position consistent with the predicted 

molecular weight of the protein (59kDa), at 13 to 14mL (Fig 5.17, Panel C). 



Chapter 5: Structural and functional characterisation of the C-Terminus of STRA6 

190 

 

 

Fig 5.17 Elution profile of MBP-C-term in the presence of detergent. 

MBP-C-term was purified as described previously with either A. No detergent present B. 0.5% LDAO 

present in all buffers C. 0.5% DDM present in all buffers. Purified protein was analysed by SEC using 

the Superdex 200 column. Absorbance at 280nm was used to analyse protein eluting from the column 

per mL of mobile phase. After the void volume of 7mL had eluted from the column every 0.5mL 

fraction was collected. Every second fraction from 7mL was assessed for the presence of MBP-C-

term by Western blotting. Anti-His-HRP antibody was used to detect the protein of interest. The 

molecular weight of the protein is 59kDa. BSA with a molecular weight of 66kDa elutes at 13.5mL. 
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5.3.9 Characterisation of cleaved C-term: 

Following successful expression and purification of soluble mono-disperse fusion protein as analysed 

by SEC, characterisation of the cleaved version of the protein was conducted. Fusion tags can vastly 

improve expression yields and solubility of a protein, but they may have adverse effects on protein 

function and more detailed structural analysis. A TEV protease cleavage site was incorporated into the 

expression plasmid to allow for the removal of the MBP and FLAG epitope tags. Cleavage was 

conducted as described in section 5.2.9. Cleavage of the full length protein results in a 16.8kDa 

product with a C-terminal His tag. A trial was conducted to determine the optimal conditions for TEV 

cleavage (Fig 5.18, A). The cleavage reaction was subsequently conducted at room temperature for 16 

hours. The effect of DDM on the cleavage reaction was also assessed (Fig 5.18, B). Cleavage of the 

C-term fusion protein does not appear to be altered with the presence of DDM.                                                                                    

 

Fig 5.18 Optimisation of the removal of the MBP-FLAG tag by the addition of TEV protease. 

A. MBP-C-term was purified as described previously. 100µg of purified protein was incubated with 

1µl TEV protease for 0,4,6,8 and 16 hours at room temperature or 4
o
C. Cleavage products were then 

analysed by SDS-PAGE and Western blotting. Anti-His-HRP antibody was used to detect protein of 

interest. Full length protein is observed at 59kDa and the C-term-His cleavage product is observed at 

approximately 16kDa. B. Overnight TEV cleavage of purified MBP-C-term in the presence of 0.5% 

DDM at room temperature. Cleavage products were then analysed by SDS-PAGE and Western 

blotting. Anti-His-HRP antibody was used to detect protein of interest. Full length protein is observed 

at 59kDa and the C-term-His cleavage product is observed at approximately 16kDa. 
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5.3.10 SEC of purified and cleaved C-term: 

Following successful optimisation of MBP-C-term cleavage, the cleaved version of the C-term was 

analysed by SEC using the Superose 6 column, in the presence of 2mM DDM (Fig 5.19).                                

 

Fig 5.19 Elution profile of MBP-C-term and Cleaved C-term in the presence of 2mM DDM. 

MBP-C-term was purified and cleaved as described previously. Both the full length fusion protein 

(59kDa) (A) and the cleaved protein (16kDa) (B) were analysed by SEC using the Superose 6 column 

with 2mM DDM present in the mobile phase. Absorbance at 280nm was used to analyse protein 

eluting from the column per mL of mobile phase eluted from the column. After the void volume of 

7mL had eluted from the column every 0.5mL fraction was collected. Every second fraction from 

7mL was assessed for the presence of desired protein by Western blotting. Anti-His-HRP antibody 

was used to detect the protein of interest. BSA with a molecular weight of 66kDa elutes at 16mL and 

cytochrome c with a molecular weight of 13.8kDa elutes at 18.5mL 
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5.3.11 Long term stability of mono-disperse protein: 

A critical aspect in the structural analysis of recombinant proteins is their stability at room 

temperature. For protein crystallisation it is necessary that the protein does not precipitate at room 

temperature or form aggregate species. In order to assess the stability of the recombinant proteins 

generated in this study, the peak fractions from the previous SEC analysis were incubated at room 

temperature for 5 days and analysed once more by SEC using the same column. The 16mL fraction 

from the MBP-C-term SEC analysis (Fig 5.19) was retained and incubated at room temperature for 5 

days. The same sample was then analysed by SEC (Fig.5.20, A). The 17mL fraction from the cleaved 

C-term SEC analysis (Fig 5.19) was retained and incubated at room temperature for 5 days. The same 

sample was then analysed by SEC (Fig.5.20, B). The majority of the full length protein retained its 

solubility when incubated at room temperature. However, the cleaved C-term formed an aggregate 

species, observed at the void volume of the column. 

5.3.12 Optimisation of C-term stability at room temperature: 

Analysis of the stability of the cleaved C-term protein at room temperature revealed that it formed a 

high molecular weight aggregate with room temperature storage (Fig 5.20). One strategy to stabilise a 

protein is to lower the pH below the predicted pI of the protein. The pI of the cleaved C-term was 

predicted to be 7.3 using the ProtParam software tool provided by ExPASy. Previously purified and 

cleaved C-term protein was dialysed into two different buffers differing in one and two pH units 

below the predicted pI respectively, 6.3 and 5.3. Dialysed protein was subsequently incubated at room 

temperature for 5 days. The molecular weight of the protein was then analysed by SEC (Fig 5.21). A 

reduction in pH allowed for the retention of soluble protein, when incubated at room temperature for 

long periods.  
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Fig 5.20 Long term stability of MBP-C-term and cleaved C-term when incubated at room 

temperature. 

Soluble protein previously analysed by SEC using the Superose 6 column was retained and incubated 

at room temperature for 5 days. Protein was analysed once again by SEC using the Superose 6 column 

Absorbance at 280nm was used to analyse protein eluting from the column per mL of mobile phase 

eluted from the column. After the void volume of 7mL had eluted from the column every 0.5mL 

fraction was collected. Every odd fraction from 7mL was assessed for the presence of desired protein 

by Western blotting. Anti-His-HRP antibody was used to detect the protein of interest. A. Elution 

profile of MBP-C-term incubated at room temperature for 5 days, with corresponding Western blot. 

B. Elution profile of cleaved C-term incubated at room temperature for 5 days, with corresponding 

Western blot. The peak present at 18mL represents the contaminant MBP. 
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Fig 5.21 Optimisation of room temperature stability of cleaved C-term, using varying pH. 

Soluble, cleaved C-term protein previously analysed by SEC using the Superose 6 column was 

retained and dialysed into a buffer composed of the same components with varying pH of either 6.3 or 

5.3. Dialysed protein was then incubated at room temperature for 5 days. Protein was analysed once 

again by SEC using the Superose 6 column. Absorbance at 280nm was used to analyse protein eluting 

from the column per mL of mobile phase eluted from the column. After the void volume of 7mL had 

eluted from the column every 0.5mL fraction was collected. Every second fraction from 7mL was 

assessed for the presence of desired protein by Western blotting. Anti-His-HRP antibody was used to 

detect the protein of interest. A. Elution profile of cleaved C-term at pH 6.3, incubated at room 

temperature for 5 days, with corresponding Western blot. B. Elution profile of cleaved C-term at pH 

5.3, incubated at room temperature for 5 days, with corresponding Western blot. 
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5.3.13 Secondary structure analysis of purified mono-disperse C-term: 

 

Circular dichroisim (CD) is an accurate, non-destructive technique to assess the secondary structure of 

a recombinant protein. It utilises the path of plane polarised light as it travels through a protein to 

determine structural motifs. Defined secondary structure motifs display characteristic CD spectra as 

summarised in Fig 5.22. 

 

 

Fig 5.22 Representative plot of structural motifs depicted by CD. 

CD-Spectra of defined structural motifs. Red line depicts alpha helix, blue line depicts beta sheet, 

green line depicts random coil. Taken from http://biochem-vivek.tripod.com/id19.html 

 

 

http://biochem-vivek.tripod.com/id19.html
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MBP-FLAG, MBP-C-term and cleaved C-term were purified as described previously and subjected to 

SEC. The mono-disperse elution peak for each respective protein was concentrated to 0.2mg/mL. 3µg 

of each respective protein was analysed by SDS-PAGE and Coomassie staining to assess purity (Fig 

5.23). Purified protein was then analysed using a Chiroscan CD spectropolarimeter 

(AppliedPhotophysics), courtesy of the Astbury Centre for Structural Molecular Biology, University 

of Leeds. The high tension of the carrier buffer was analysed to assess the absorption properties of the 

buffer alone (Fig 5.24).  A high tension reading of above 500 at 200nm would imply that the detector 

is saturated and the buffer alone is causing a high amount of absorbance. Following verification that 

the buffer was compatible with CD analysis, purified protein was analysed at 0.2mg/ml in a 

thermostated 1mm quartz cuvette. Absorption was recorded from bandwidth 280nm to 180nm at 20
o
C 

at 1nm per second with a wavelength step of 1nm. 2 scans were acquired and an average calculated 

for accuracy. Data were recorded in millidegrees (mθ) and subsequently converted to mean residue 

ellipticity, in order to directly compare all 3 proteins, using a formula as described in Greenfield 

(Greenfield, 2006) (Fig 5.25). 

 

Fig 5.23 Purity of protein samples utilised for CD analysis. 

MBP-FLAG, MBP-C-term and cleaved C-term were purified and analysed by SEC. Peak elution 

fractions were concentrated to 0.2mg/ml and 3µg analysed by SDS-PAGE. Coomassie brilliant blue 

was utilised to visualise the purity of the recombinant proteins. 
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Fig 5.24 High voltage tension spectra of buffer used with recombinant proteins analysed by CD. 

High voltage tension graph depicting the spectra obtained for buffer alone without protein present. A 

high reading at 200nm would indicate that the buffer alone has a high background absorbance. A 

reading below 400 at 200nm is acceptable to conduct CD spectra analysis in a particular buffer. 

 

 

Fig 5.25 CD spectra of MBP, MBP-C-term and cleaved C-term. 

Representation of the CD spectra obtained for MBP (blue line), MBP-C-term (red line) and cleaved 

C-term (green line). All proteins display a typical alpha helical CD spectra. 
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5.3.14 Calculation of structural content of recombinant proteins: 

CD spectra data previously converted to mean residue ellipticity, as described in section 5.3.13 was 

subsequently used to determine the distribution of structural motifs in the recombinant proteins 

analysed. The online sever DichroWeb was utilised to calculate the structural composition of each 

protein based on spectra obtained (Whitmore and Wallace, 2004, 2008). The analysis was conducted 

using the CONTIN algorithm with the structural reference database SMP180 (Abdul-Gader et al., 

2011). The reference database is composed of the CD spectra of proteins which have had their 

structure solved by x-ray crystallography and thus can be used to accurately predict the composition 

of an unknown protein. MBP has a known alpha helical content of 40% and beta sheet content of 

20%, based on the solved crystal structure of the protein (Spurlino et al., 1991). The algorithm and 

dataset used in this study to determine structural composition were chosen based on the accuracy of 

prediction of MBP structural content, compared to the solved crystal structure. Table 5.1 describes the 

structural content calculated for MBP alone, the MBP-C-term fusion protein and cleaved C-term. 

 

 

Table 5.1 Fractional structural content of purified and analysed recombinant proteins. 

Calculated structural content of MBP (MBP), MBP-C-term (MBP-CT) and cleaved C-term (CT) 

respectively, using the online server DichroWeb. The algorithm CONTIN was used to calculate 

predicted structural characteristics of the proteins by comparison with the SMP180 reference dataset 

of known structures. 
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5.3.15 Modelling the predicted structure of the C-terminus of STRA6: 

Helical content of the cleaved C-term of STRA6 was determined to be 65% based on CD spectra 

analysis with the remaining residues formulating 35% turns between the helices (Table 5.1). The 3D 

structure of the C-term was predicted using the web server iTasser, in collaboration with Dr. Gemma 

Kinsella (NUI Maynooth). iTasser uses the threading technique to match the amino acid sequence of a 

protein of interest to a dataset of proteins which have had their crystal structure solved. The protein’s 

secondary structure is first predicted from the amino acid sequence and then both the amino acid 

sequence and the predicted secondary structure are used to predict the overall tertiary structure of the 

protein by comparison with known protein structures in the PDB database (Zhang, 2008).  

Fig. 5.26 shows the predicted secondary structure content of the C-term based on the amino acid 

sequence. The structural content of the top three predicted 3D models are shown below. The best 

match or model 1 depicts a structure with helical content of 75% and the rest 25% coil or turn. This 

closely resembles the predicted structure based on CD analysis. Fig 5.27 shows the predicted 3D 

model based on the best match or model 1 for the C-terminus of STRA6. The confidence score or C-

score estimates the quality of the predicted structure and can range from -5 to 2. The higher the C-

score the more confidence the user has in the predicted structure. The C-score for the most accurate 

model of the C-term was -2.43. The Tm score of a model is a standard to assess the structural 

similarity between the predicted structure and known structures. A score of >0.5 indicates a model 

with a correct topology and a score of <0.17 indicates a model with random similarity. The Tm score 

of model 1 was 0.43 indicating that the model is a high quality model prediction. There should be a 

strong correlation between the C-score and the Tm score. The discrepancy between these scores may 

be as a result of the unique characteristics of STRA6. The C-score is generated from comparison of 

the predicted secondary structure of the protein and known structures. The moderate C-score may be a 

result of the uniqueness of STRA6 in the human system. It is unlike any known protein. Therefore, 

the ability of the software to predict the structure compared to other structures in the database may not 

be a true reflection on the accuracy of the model. From 3D modelling we can gain valuable insight as 

to how the structure is ordered and where potential interaction sites might be located. 
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Fig 5.26 iTasser structural homology comparison.  

Structural homology comparison of the C-terminus of STRA6 (residues 535-667). The sequence prediction represents the predicted secondary structure of the 

C-term as generated by the iTasser web server. Model 1, 2 and 3 depicts the structural content of the best fit 3D structures generated by iTasser based on the 

amino acid sequence and predicted secondary structure. The amino acid sequence of the C-term is shown above. C shown in black text denotes coil and H 

shown in red text denotes alpha helix. 
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Fig 5.27 3D model of the C-terminus of STRA6. 

Representation of the predicted structure of the C-terminus of STRA6 generated using the online 

server iTasser. Alpha helix is represented by the coiled structures. The N-terminal region begins at the 

dark blue helix and the C-terminal region is represented by the red helix. The genetic mutation site 

and known phosphorylation site, T644, is highlighted. Image kindly provided by Dr. Gemma Kinsella 

(NUI Maynooth). 
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5.3.16 Functional analysis of purified, soluble C-term: 

The cellular uptake and transport of ROH is mediated by the RBP receptor, STRA6 (Kawaguchi et al., 

2007). Several studies have shown that once ROH enters the cell it is coupled with CRBP (Sundaram 

et al., 1998), (Kawaguchi et al., 2012). As the C-terminus of STRA6 is a large intracellular domain it 

may interact directly with CRBP. Following extensive optimisation of the purification of the C-

terminus of STRA6, the functional characteristics of the domain were assessed. 10µg of purified 

MBP-C-term was coupled to amylose affinity chromatography resin and allowed to interact with 

10µg CRBP at room temperature for 30 minutes, with MBP-FLAG as a negative control. The resin 

was pelleted by centrifugation and the supernatant containing any un-bound protein retained for 

subsequent analysis. The resin was washed and any bound protein eluted in Laemmli sample buffer. 

Protein content of each fraction was then assessed by SDS-PAGE and Western blotting (Fig 5.28). 

CRBP was not found associated with MBP-C-term in the protein fraction bound to the amylose resin. 

 

Fig 5.28 Binding assay to determine the interaction of MBP-C-Term with CRBP. 

MBP-C-Term was purified as described previously in the presence of DDM. 10µg of MBP-C-term 

was coupled to amylose affinity chromatography resin and allowed to interact with 10µg CRBP for 30 

minutes at room temperature. MBP-FLAG was used as a negative control. Protein bound to the resin 

was separated by centrifugation and any un-bound protein present in the supernatant retained. The 

resin was washed and any bound protein eluted by incubation with Laemmli sample buffer. The un-

bound and bound fractions were analysed by SDS-PAGE and Western blotting. A. Representative 

Western blot using anti-FLAG antibody. B. Representative Western blot using anti-CRBP antibody. 

For both panels track 1 represents the un-bound fraction from the MBP-FLAG and CRBP interaction 

assay. Track 2 represents the un-bound fraction from the MBP-C-term and CRBP interaction assay. 

Track 3 represents the bound fraction from the MBP-FLAG and CRBP interaction assay. Track 4 

represents the bound fraction from the MBP-C-term and CRBP interaction assay. 
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5.3.17 Chemical crosslinking of potential protein interactions: 

When STRA6 was originally identified as the elusive receptor for RBP, it was isolated as a result of 

chemical crosslinking to RBP (Kawaguchi et al., 2007). The interaction is transient in nature, 

allowing for a high turnover of holo-RBP to bind to the receptor. The use of chemical crosslinking 

agents allows for the identification of protein interactions which may not be stable. In this 

investigation the photo-activated crosslinker, sulpho-NHS-SS-diazirine (SDAD) was utilised as a 

chemical linker between two potentially interacting proteins. SDAD has a spacer arm of 13.5 Å, with 

an internal disulphide bond, allowing for the cleavable association of two closely interacting proteins. 

Chemical crosslinking was conducted as described in section 2.9.3. Crosslinking was performed 

following incubation of purified, soluble, cleaved C-term with either CRBP or full length STRA6, 

purified as described in sections 2.8.2 and 2.8.5 respectively, at room temperature for 30 minutes. 

Once the theoretical interaction was allowed to take place the chemical crosslinker, SDAD was 

incubated with the reaction. Following quenching of the amine reactive site of the crosslinker using 

100mM Tris-HCl, the photo-reactive site of the crosslinker was allowed to bind to any nearby 

proteins by incubation under a UV source. Samples were then treated with Laemmli sample buffer for 

resolution by SDS-PAGE, with or without β-mercaptoethanol (β-ME). If the C-term interacted with 

CRBP or STRA6 one would observe a shift in position on a Western blot to a position consistent with 

the combined molecular weight of the two proteins. On treatment with β-ME the disulphide bond 

located in the spacer arm of SDAD would be reduced and both proteins would theoretically 

dissociate. The proteins would then appear at their predicted molecular weight position on a Western 

blot. No interaction was observed when C-term was incubated with CRBP or STRA6, Fig 5.29 and 

5.30. 
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Fig 5.29 Chemical crosslinking of C-term with CRBP. 

10µg of purified and cleaved C-term was incubated with 10µg CRBP at room temperature for 30 

minutes, along with appropriate controls. The photo-activated crosslinker SDAD was then added to 

appropriate samples and incubated on ice for 2 hours. The crosslinking reaction was terminated with 

the addition of 100mM Tris-HCl. The reaction was then photo-activated on ice using a UV source. 

Samples were subsequently incubated with Laemmli sample buffer with or without β-ME at 75
o
C for 

5 minutes and analysed by SDS-PAGE and Western blotting. A. Representative anti-His Western blot 

showing the molecular weight of C-Term (16.8 kDa) following incubation with the crosslinking 

agent, SDAD and CRBP. B. Representative anti-CRBP Western blot showing the molecular weight of 

CRBP (15 kDa) following incubation with the crosslinking agent, SDAD and C-term. 
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Fig 5.30 Chemical crosslinking of C-term with full length STRA6. 

10µg of purified and cleaved C-term was incubated with 10µg of either N-terminal (NT-STRA6) or 

C-terminal (CT-STRA6) HA tagged STRA6 at room temperature for 30 minutes, along with 

appropriate controls. The photo-activated crosslinker SDAD was then added to appropriate samples 

and incubated on ice for 2 hours. The crosslinking reaction was terminated with the addition of 

100mM Tris-HCl. The reaction was subsequently photo-activated on ice using a UV source. Samples 

were incubated with Laemmli sample buffer with or without β-ME at 75
o
C for 5 minutes and analysed 

using a 4-20% gradient SDS-PAGE gel and Western blotting. A. Representative anti-HA Western blot 

showing the monomeric molecular weight of STRA6 (72 kDa) following incubation with the 

crosslinking agent, SDAD and C-term. B. Representative anti-His Western blot showing the 

molecular weight of C-term (16.8 kDa) following incubation with the crosslinking agent, SDAD and 

STRA6. 
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5.4 Summary of the structural and functional analysis of the C-terminus of STRA6: 

The C-terminal region of STRA6 is a large intracellular domain with a putative phosphorylation site 

and SH2 motif. Efforts to produce a pure and soluble recombinant version of the C-terminus were 

largely successful. Topology prediction suggested the C-terminal region to consist of residues 497-

667. Initial expression studies indicated that inclusion of residues 497-535, resulted in insoluble 

protein. Therefore, residues 535-667 were utilised in this study to represent this intracellular, C-

terminal domain. As this stretch of amino acids only became soluble with the addition of detergent, 

there may still be a proportion of the structure partially inserted into the cell membrane.  

With the addition of DDM, the MBP-tagged C-terminal domain eluted as a mono-disperse peak, at a 

position representing approximately 60 kDa, its predicted molecular weight. Upon removal of the 

MBP tag via TEV protease the resultant molecular weight of the domain would be 16.8 kDa. The 

cleaved domain eluted at 17-18 ml on gel filtration. Cytochrome c elutes at 18.5 ml which is 13.8 

kDa. As both the tagged and cleaved versions of the C-terminus elute as a single mono-disperse peak 

at approximately the predicted molecular weight, one can assume the quaternary structure of the 

protein is monomeric. 

As seen in Fig 5.30, STRA6 forms a higher molecular weight species with the addition of a chemical 

crosslinking agent, which is reversible with the addition of the reducing agent β-ME. This suggests 

that the receptor forms an oligomer. In order to determine if the C-terminal domain is a potential 

oligomerisation site, co-purification experiments were conducted with the protein and full length 

STRA6. The domain did not bind to STRA6, even in the presence of a crosslinking agent suggesting 

that it is not associated with the rest of the receptor and may be freely accessible to the intracellular 

milieu.  

The C-terminal domain of STRA6 contains the highly conserved sequence, YTLL, which is a 

potential SH2 domain. In addition, it is a large intracellular domain which may be a potential 

interaction site for cytosolic proteins. Co-purification experiments with the intracellular acceptor for 

ROH, CRBP, did not reveal any interaction of the two proteins. Should they interact in vivo, the 
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contact may be transient in nature. Therefore, the crosslinking agent SDAD was utilised to stabilise 

any bond formed between the two proteins. Crosslinking studies did not reveal an interaction between 

them. Berry et al demonstrated that CRBP can bind to another intracellular region, IC3 (Berry et al., 

2012). In addition, they indicated that the SH2 domain present in the C-terminus was necessary for 

the interaction of STRA6 with CRBP. They suggest this is due to the binding of JAK2 to the C-

terminal region and subsequent phosphorylation of STRA6. The C-term may stabilise the interaction 

of CRBP with the IC3 region of STRA6, but not participate directly with the interaction.  

Analysis of the secondary structure of the C-terminus revealed that it is primarily composed of alpha 

helix and connecting turns. As it has a defined structure, this suggests that this domain is 

independently folded. A predicted structure based on the “threading” algorithm is indicated. Thus, the 

C-terminal domain expressed in E. coli and purified in the presence of detergent appears to have a 

recognised, folded structure, the precise function of which has yet to be determined. 
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6.1 Summary of glycogen enzyme alterations in response to holo-RBP: 

Several proteins were altered in the proteome of C2C12 muscle cells treated with holo-RBP 

overnight. Some of these changes can be attributed to the influx of ROH into the cell. However, other 

changes may be more complex. Most notably this exposure to holo-RBP resulted in the alteration of 

some of the enzymes involved in the regulation of glycogen storage and consumption. The abundance 

of the phosphatase, PP1β was reduced following 12 hours stimulation with holo-RBP. PP1β is an 

important phosphatase, responsible for the regulation of the rate limiting enzymes involved in 

glycogen metabolism. A decrease in PP1β levels would be anticipated to result in elevated levels of 

phosphorylation of its downstream targets, glycogen synthase and glycogen phosphorylase. 

Interestingly, glycogen phosphorylase expression was decreased in response to holo-RBP treatment. 

This event was unexpected and warrants further investigation. As expected, glycogen synthase 

phosphorylation levels were increased with holo-RBP treatment, but this event may occur before a 

downregulation of PP1β is evident. Therefore, there may be other factors contributing to increased 

glycogen synthase phosphorylation. This could be due to increased activity of the kinase responsible 

for this phosphorylation event, GSK3β.  

Holo-RBP was demonstrated to cause a decrease in phosphorylation of the A subunit of PP2A. This 

may result in increased activity of the phosphatase. Interestingly, PP2A is the phosphatase responsible 

for activating GSK3β and may provide the link between holo-RBP treatment and increased glycogen 

synthase phosphorylation. Clearly holo-RBP has a negative impact on the enzymes involved in 

glycogen processing. The long-term consequences of this may contribute to RBP induced insulin 

resistance. 
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6.1.1 The potential long-term consequences of PP1β downregulation: 

A decrease in PP1β abundance was observed. Sustained inhibition of this phosphatase could result in 

a decrease in glycogen synthase activity and potentially inefficient glycogen synthesis. It is unknown 

how expression of PP1β is regulated. However, the phosphatase’s activity is controlled by subunits 

which direct it to glycogen granules. Alterations in the subunits of PP1β which target the enzyme to 

glycogen granules have uncovered some interesting results.  

The Gm subunit is responsible for targeting PP1β to glycogen granules, and is the most abundant 

glycogen targeting subunit in skeletal muscle (Cohen, 2002). Mice in which the gene encoding Gm  

was disrupted, demonstrated a decreased ability to clear a bolus of glucose (Delibegovic et al., 2003). 

With age, mice developed overt insulin resistance. Gm knockout also resulted in decreased expression 

of total PP1β levels in skeletal muscle, which could also have contributed to insulin resistance 

(Delibegovic et al., 2003). Gm knockout mice displayed decreased PP1β activity and correspondingly 

lower levels of muscle glycogen compared to WT. Interestingly, Gm knockout mice also displayed 

excessive weight gain. This is thought to be due to the inability to direct glucose towards storage as 

glycogen, and subsequent storage of glucose as fat (Delibegovic et al., 2003). Therefore, long term 

downregulation of PP1β in muscle tissue may have a detrimental effect on glycogen storage and this 

could result in impaired glucose clearance and insulin resistance. 

6.1.2 The physiological impact of decreased abundance of glycogen phosphorylase: 

Unexpectedly, glycogen phosphorylase abundance was also decreased following holo-RBP treatment. 

One would expect phosphorylation levels to increase as a result of PP1β downregulation, but not 

expression levels. This may be due to lowered levels of glycogen present in the cell. Total levels of 

glycogen would need to be assessed in order to determine if this may be having a negative impact on 

glycogen phosphorylase expression. Glycogen phosphorylase is an important enzyme for the 

utilisation of energy stores in times of high energy consumption, such as during exercise. Prolonged 

downregulation of this enzyme may have detrimental effects on energy generation in the cell.  
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The predominant storage sites of glycogen are the liver and muscle. Interestingly, inhibition of liver 

glycogen phosphorylase is a novel strategy for the treatment of type II diabetes. When the liver 

becomes insulin resistant excess glucose release into the bloodstream can occur, elevating already 

higher than normal levels of plasma glucose (Moller, 2001). Excess hepatic glucose production occurs 

due to a reduction in insulin signalling, leading to uncontrolled glycogen phosphorylase activity and 

glycogenolysis. Specific inhibition of glycogen phosphorylase is one strategy used to prevent 

mobilisation of excess glucose into the bloodstream. In ob/ob diabetic mice, a selective glycogen 

phosphorylase inhibitor reduced fasting plasma glucose to near normal levels (Martin et al., 1998). In 

the present study hepatic HEPG2 cells treated with holo-RBP did not display a decrease in glycogen 

phosphorylase expression. This may be due to the lack of STRA6 expression in this cell type. 

Therefore, the effect of holo-RBP on glycogen phosphorylase may be muscle specific. In the whole 

animal system, holo-RBP may not affect the liver isoform. 

McArdle’s disease is a unique glycogen storage disorder. Mutations in the muscle glycogen 

phosphorylase gene result in loss of expression of the enzyme specifically in muscle tissue (Lubran, 

1975). Patients with the disease display chronic elevated muscle glycogen levels and fatigue very 

quickly during exercise as a result of inefficient use of this important energy store. A study conducted 

by Nielson and colleagues observed that patients with McArdle’s disease display insulin resistance 

(Nielsen et al., 2002). A small cohort of patients was assessed for their responsiveness to insulin 

treatment. Four out of six patients demonstrated impaired insulin stimulated glucose clearance. 

Decreased glycogen synthase activity was observed and this was concomitant with elevated 

phosphorylation levels of this enzyme. Elevated glycogen levels may be the reason for decreased 

insulin signalling in patients with the disorder (Nielsen et al., 2002). 

Overnight stimulation of muscle cells with holo-RBP resulted in a dramatic decrease in glycogen 

phosphorylase expression. More study is needed to determine if this effect persists with time and if 

glycogen levels are affected. It would be very interesting to assess the effect of long-term holo-RBP 

treatment in mice on glycogen levels in muscle and abundance and phosphorylation state of the 
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enzymes involved in its regulation. Cleary disorders affecting glycogen utilisation and production can 

be a contributing factor to insulin resistance. 

6.1.3 Elevated glycogen synthase phosphorylation and its impact on glycogen storage: 

Elevated levels of glycogen synthase phosphorylation were observed after 8 hours treatment with 

holo-RBP. Phosphorylation peaked at 12 hours which is the timepoint at which PP1β downregulation 

became apparent. Decreased levels of the phosphatase, PP1β, may be the underlying cause of an 

increase in glycogen synthase phosphorylation. It is not known how expression of PP1β is regulated 

but its activity is controlled by targeting subunits. Delibegovic and colleagues observed that when 

cells were deficient in the glycogen targeting subunit Gm there was a decrease in PP1β abundance 

(Delibegovic et al., 2003). They attribute this event to increased degradation of the phosphatase, 

although this has not been substantiated. Events may be occurring prior to a downregulation of PP1β 

to prevent its localisation with glycogen granules where glycogen synthase is located. This may 

explain why an increase in glycogen synthase phosphorylation was apparent before a decrease in 

PP1β expression became significant. Further work is required to assess the localisation of PP1β in 

response to holo-RBP treatment. 

The phospho-specific glycogen synthase antibody utilised in this study was selective for serine 640. 

This residue is the predominant phosphorylation site and a known target of GSK3β (Roach et al., 

2012). Another explanation for elevated glycogen synthase phosphorylation levels would therefore be 

increased GSK3β activity. The activity of this kinase may be elevated due to increased PP2A-B56δ 

phosphatase activity. As described in section 3.3.6, PP2A in complex with the B56δ subunit removes 

the inhibitory phosphate located at serine 9 of GSK3β. No definitive decrease in phosphorylation of 

this residue was observed in response to holo-RBP treatment. However, GSK3β activity is also 

controlled by phosphorylation at tyrosine 216 (Hughes et al., 1993; Rayasam et al., 2009). 

Phosphorylation of this site results in increased activity of the kinase. The kinase responsible for 

phosphorylating GSK3β at tyrosine 216 has not been formally identified but a study conducted by 

Pijet et al suggests that mitogen-activated protein kinase kinase (MEK) may be involved (Pijet et al., 
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2013). A specific inhibitor of the enzyme prevented leptin induced phosphorylation at tyrosine 216. It 

would be interesting to determine if holo-RBP treatment results in elevated phosphorylation of this 

residue.  

Elevated glycogen synthase phosphorylation may have a physiological impact on glycogen storage in 

muscle cells. Glycogen synthase is rendered inactive when phosphorylated. Prolonged inhibition of 

activity could result in the inability to convert glucose into glycogen stores. Glycogen synthase 

phosphorylation is reversed in response to insulin stimulation. It would be interesting to observe 

whether holo-RBP inhibits insulin stimulated glycogen synthase activation. Glycogen synthesis is 

impaired in patients with type II diabetes, most likely due to a reduction in glucose uptake as a result 

of insulin resistance (Roach et al., 2012). A disruption in the muscle glycogen synthase gene (GYS1) 

results in decreased glycogen content in muscle (Groop and Orho-Melander, 2008). A study 

conducted by Groop et al observed a disruption in the GYS1 gene in 30% of type II diabetic patients 

that they studied (Groop et al., 1993). Patients in which the mutation was observed also had a stronger 

familial pre-disposition to the disease. 

Collectively holo-RBP appears to negatively regulate several enzymes involved in glycogen storage 

and utilisation. The long term physiological effect of elevated serum RBP levels may have a 

considerable impact on total muscle glycogen levels. Both the inability to store glucose as glycogen 

and the inability to utilise glycogen stores appear to be contributing factors to insulin resistance. 

Whole animal studies may be necessary to reveal the glycogen content of muscle tissue in response to 

holo-RBP. Should interruption of glycogen metabolism occur in muscle tissue before the onset of 

overt insulin resistance it may reveal the underlying mechanism of RBP induced insulin resistance. 
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6.2 Summary of the proteomic analysis of the effect of RTC-15 on C2C12 cells: 

Proteomic analysis of C2C12 cells treated with RTC-15 overnight revealed changes in several 

proteins involved in diverse regulatory pathways of the cell. The underlying mechanism of action of 

the compound was not revealed by proteomics but by alternative means. Inhibition of NADH 

dehydrogenase appears to be the root cause of RTC-15 stimulated glucose uptake in muscle cells. 

Alterations in the proteome substantiate this inhibitory action, as several proteins involved in 

metabolic activity were affected. The proteomic study did demonstrate that the effect of RTC-15 on 

the cell was not toxic, as compensatory mechanisms are activated to combat decreased energy 

production. ECH1 expression is elevated which suggests that fatty acid consumption is increased. 

This may also explain why animals administered the RTC compounds along with a high fat diet 

appear not to gain weight when compared to animals on a high fat diet alone. In addition, TPI 

expression was increased, which strongly suggests elevated levels of glycolysis.  

Interestingly, several changes were observed in cytoskeletal proteins and calcium binding proteins. 

Increased glucose influx into the cell can only occur via elevated GLUT4 translocation to the cell 

membrane. Increased intracellular calcium is known to stimulate vesicle trafficking to the membrane 

and this event is dependent on cytoskeletal proteins to navigate the vesicle to the correct location. It 

would be interesting to assess intracellular calcium levels in response to RTC-15 treatment to 

determine if this may be stimulating GLUT4 translocation to the cell surface.  

Several downstream targets of PKC were altered in response to RTC-15, such as swiprosin-1, 

calponin-3 and eIF-6. This is a strong indicator that some isoforms of PKC are activated with RTC-15 

treatment. PKC is a known regulator of the cytoskeleton in muscle cells. Therefore, PKC activation 

via RTC-15 may also contribute to vesicle trafficking to the cell membrane. 

 

 

 



Chapter 6: Discussion 

216 
 

6.3 Characterisation of the C-terminal domain of STRA6: 

Structural analysis of the C-terminal region of STRA6 has revealed that this stretch of amino acids is 

a highly ordered and potentially an independently folded domain. CD analysis and 3D modelling 

revealed that the C-terminus is primarily composed of alpha helix with other residues ordered as turns 

between the helices. Removal of the MBP tag appears not to alter the structure of the C-terminus and 

it remains a structured domain. This bodes well for further structural analysis. In addition, with the 

alteration of pH, the cleaved C-terminal region is stable for long periods at room temperature. 

Quaternary structure of the C-terminus can be definitively assigned as monomeric. The domain did 

not co-purify with full length STRA6 and did not crosslink with either itself or the full length 

receptor. 

Functional analysis did not reveal an interaction of the domain with CRBP, the intracellular acceptor 

for ROH. It may, however, form a docking site for other cytosolic proteins. Further study is required 

to determine if the recombinant domain produced in E. coli, is functional. One caveat with bacterial 

protein expression is the lack of eukaryotic post translational modifications. According to Berry et al 

the C-terminus contains a highly conserved phosphorylation site which forms a putative SH2 domain 

(Berry et al., 2011). In addition, phosphorylation of the C-terminus was only observed upon 

stimulation of the full length receptor with holo-RBP. The independently expressed C-terminal region 

may not possess the capability for phosphorylation, which could be necessary to initiate binding of 

interacting proteins. Perhaps the introduction of a phosphomimetic residue such as glutamic acid 

could aid in the search for proteins that interact with this important domain.  
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6.4 Future Work: 

During the course of this study several of the original aims were achieved. However, most aspects of 

the research covered in this body of work warrant further study. Continuation of this investigation can 

be divided into the respective studies conducted. 

6.4.1 Investigation of the effect of holo-RBP on the proteome of muscle cells: 

Several unanswered questions exist regarding work carried out to determine the effect of holo-RBP on 

muscle cells. PP2A phosphorylation levels were elevated in response to RBP treatment overnight. 

Phosphorylation may increase the activity of the phosphatase, resulting in a downstream effect on 

glycogen synthase. The phosphatase inhibitor okadaic acid can be used to selectively inhibit PP2A 

activity. It would be interesting to observe if the administration of okadaic acid prevented the 

downstream effects of holo-RBP on glycogen regulating enzymes.  

B56δ expression appeared to decrease in a time-dependent manner in response to holo-RBP treatment. 

This may be due to activation of a negative feedback mechanism involving c-Myc. Analysis of c-Myc 

abundance may reveal whether PP2A complexed with B56δ results in increased degradation of c-

Myc. This may shed light on whether the PP2A holo-enzyme is more active with RBP treatment. 

The assessment of glycogen levels in muscle cells treated with holo-RBP may reveal if this protein is 

having a detrimental effect on glucose storage. If glycogen levels are decreased in response to holo-

RBP it may explain why an affiliated decrease in glycogen phosphorylase expression is observed. It 

may also partially explain why insulin resistance occurs in muscle tissue of mice treated with elevated 

levels of holo-RBP. 
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6.4.2 Investigation of the effect of RTC-15 on the proteome of muscle cells: 

Several proteins appeared altered in response to RTC-15 treatment. The implications of the observed 

changes in the proteome need to be addressed. It appears that due to NADH dehydrogenase inhibition 

the cell is utilising alternate energy sources. The enzyme ECH1 was elevated in expression, and this 

protein is involved in fatty acid oxidation. It would be interesting to assess the total levels of fatty acid 

in control cells versus cells treated with RTC-15. As discussed previously, mice fed a high fat diet and 

RTC-15 showed reduced weight gain. Consumption of fatty acid as an energy source may explain 

why this occurs. 

Variations in several proteins involved in calcium handling were observed. This may be as a result of 

elevated intracellular calcium levels. Therefore, assessment of calcium levels is necessary to 

determine the nature of expression of this cohort of proteins. As discussed in section 4.4 increased 

cytosolic calcium levels are associated with vesicle trafficking to the cell membrane. RTC-15 may 

cause an influx of calcium to the cytosol and subsequent translocation of GLUT4 vesicles to the 

plasma membrane. The abundance of GLUT4 in the membrane in response to RTC-15 should also be 

assessed to identify by what means glucose is entering the cell. 

Numerous downstream targets of PKC appeared altered with RTC-15 administration. This suggests an 

increase in activity of this kinase. Therefore, the effect of RTC-15 on PKC should be assessed to 

determine if this kinase is altered by the compound. A specific inhibitor of PKC such as calphostin C 

could be used to address this issue. PKC-induced alterations in expression of downstream targets such 

as swiprosin-1 and phosphorylation targets such as calponin-3 could be monitored to reveal if RTC-15 

is activating the kinase. 
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6.4.3 Characterisation of the C-terminus of STRA6: 

Large amounts of a recombinant version of the C-terminus of STRA6 can be generated in a soluble 

and stable form. Preliminary structural analysis of the protein has revealed that it is folded into an 

ordered domain. The ultimate goal for production of soluble and stable recombinant protein is 

determination of the 3-D structure. The cleaved version of the C-terminus will be subjected to 

crystallisation trials in the hope of generating this structural information.  

Further work is necessary to determine the exact function of this independently folded domain. As the 

C-terminal region is intracellular it may interact with cytosolic proteins involved in ROH handling. 

Over-expression of LRAT alone has been shown to cause an increase ROH influx (Kawaguchi et al., 

2011). This suggests a direct interaction with STRA6. Therefore, the C-terminal region may be a 

potential binding site for LRAT. Berry et al also suggest that it is a docking site for JAK2 (Berry et 

al., 2011). This specific interaction should be verified with the recombinant protein generated in this 

study. Work is on-going in our laboratory to uncover novel interacting proteins for STRA6. The C-

terminal domain will be assessed as a putative binding site for some of the novel interactions. As 

discussed in section 6.3, the C-terminus is also a potential phosphorylation site. Thus, it may be 

necessary to express the domain in mammalian cells to determine novel protein interactions.  

The transport and utilisation of retinoids is a tightly regulated process, an intensive operation for such 

a small, seemingly insignificant molecule. The study of retinoid biology has revealed many interesting 

aspects of the importance of this simple vitamin for cellular homeostasis. However, there are many 

aspects of the system which have yet to be discovered.  



 

 

 

. 

 

 

 

 

Chapter 7 

 

Bibliography



Chapter 7: Bibliography 

221 

 

Abdul-Gader, A., A. J. Miles, and B. A. Wallace, 2011, A reference dataset for the analyses of 

membrane protein secondary structures and transmembrane residues using circular dichroism 

spectroscopy: Bioinformatics, v. 27, p. 1630-6. 

 

Agrawal, G. K., and J. J. Thelen, 2005, Development of a simplified, economical polyacrylamide gel 

staining protocol for phosphoproteins: Proteomics, v. 5, p. 4684-8. 

 

Aguirre, V., T. Uchida, L. Yenush, R. Davis, and M. F. White, 2000, The c-Jun NH(2)-terminal 

kinase promotes insulin resistance during association with insulin receptor substrate-1 and 

phosphorylation of Ser(307): J Biol Chem, v. 275, p. 9047-54. 

 

Ahmad, S., Y. Wang, G. M. Shaik, A. H. Burghes, and L. Gangwani, 2012, The zinc finger protein 

ZPR1 is a potential modifier of spinal muscular atrophy: Hum Mol Genet, v. 21, p. 2745-58. 

 

Aledo, J. C., and H. S. Hundal, 1996, Isolation and characterization of two intracellular GLUT4 

glucose transporter pools in rat skeletal muscle: Biochem Soc Trans, v. 24, p. 190S. 

 

Banci, L., I. Bertini, S. Ciofi-Baffoni, F. Boscaro, A. Chatzi, M. Mikolajczyk, K. Tokatlidis, and J. 

Winkelmann, 2011, Anamorsin is a [2Fe-2S] cluster-containing substrate of the Mia40-

dependent mitochondrial protein trapping machinery: Chem Biol, v. 18, p. 794-804. 

 

Baron, J. M., R. Heise, W. S. Blaner, M. Neis, S. Joussen, A. Dreuw, Y. Marquardt, J. H. Saurat, H. 

F. Merk, D. R. Bickers, and F. K. Jugert, 2005, Retinoic acid and its 4-oxo metabolites are 

functionally active in human skin cells in vitro: J Invest Dermatol, v. 125, p. 143-53. 

 

Berry, D. C., H. Jin, A. Majumdar, and N. Noy, 2011, Signaling by vitamin A and retinol-binding 

protein regulates gene expression to inhibit insulin responses: Proc Natl Acad Sci U S A, v. 

108, p. 4340-5. 

 

Berry, D. C., and N. Noy, 2012, Signaling by vitamin A and retinol-binding protein in regulation of 

insulin responses and lipid homeostasis: Biochim Biophys Acta, v. 1821, p. 168-76. 

 

Berry, D. C., S. M. O'Byrne, A. C. Vreeland, W. S. Blaner, and N. Noy, 2012, Cross Talk between 

Signaling and Vitamin A Transport by the Retinol-Binding Protein Receptor STRA6: Mol 

Cell Biol, v. 32, p. 3164-75. 

 

Blanchard, A., V. Ohanian, and D. Critchley, 1989, The structure and function of alpha-actinin: J 

Muscle Res Cell Motil, v. 10, p. 280-9. 

 

Bouillet, P., V. Sapin, C. Chazaud, N. Messaddeq, D. Décimo, P. Dollé, and P. Chambon, 1997, 

Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new 

type of membrane protein: Mech Dev, v. 63, p. 173-86. 

 

Brady, M. J., and A. R. Saltiel, 2001, The role of protein phosphatase-1 in insulin action: Recent Prog 

Horm Res, v. 56, p. 157-73. 

 

Brautigan, D. L., 1995, Flicking the switches: phosphorylation of serine/threonine protein 

phosphatases: Semin Cancer Biol, v. 6, p. 211-7. 

 

Brockington, A., P. R. Heath, H. Holden, P. Kasher, F. L. Bender, F. Claes, D. Lambrechts, M. 

Sendtner, P. Carmeliet, and P. J. Shaw, 2010, Downregulation of genes with a function in 

axon outgrowth and synapse formation in motor neurones of the VEGFdelta/delta mouse 

model of amyotrophic lateral sclerosis: BMC Genomics, v. 11, p. 203. 



Chapter 7: Bibliography 

222 

 

Cadenas, E., A. Boveris, C. I. Ragan, and A. O. Stoppani, 1977, Production of superoxide radicals and 

hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase 

from beef-heart mitochondria: Arch Biochem Biophys, v. 180, p. 248-57. 

 

Campos-Sandoval, J. A., C. Redondo, G. K. Kinsella, A. Pal, G. Jones, G. S. Eyre, S. C. Hirst, and J. 

B. Findlay, 2011, Fenretinide derivatives act as disrupters of interactions of serum retinol 

binding protein (sRBP) with transthyretin and the sRBP receptor: J Med Chem, v. 54, p. 

4378-87. 

 

Carling, D., 2007, The role of the AMP-activated protein kinase in the regulation of energy 

homeostasis: Novartis Found Symp, v. 286, p. 72-81; discussion 81-5, 162-3, 196-203. 

 

Casey, J., R. Kawaguchi, M. Morrissey, H. Sun, P. McGettigan, J. E. Nielsen, J. Conroy, R. Regan, E. 

Kenny, P. Cormican, D. W. Morris, P. Tormey, M. N. Chróinín, B. N. Kennedy, S. Lynch, A. 

Green, and S. Ennis, 2011, First implication of STRA6 mutations in isolated anophthalmia, 

microphthalmia, and coloboma: a new dimension to the STRA6 phenotype: Hum Mutat, v. 

32, p. 1417-26. 

 

Ceci, M., C. Gaviraghi, C. Gorrini, L. A. Sala, N. Offenhäuser, P. C. Marchisio, and S. Biffo, 2003, 

Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly: Nature, v. 

426, p. 579-84. 

 

Ceulemans, H., and M. Bollen, 2004, Functional diversity of protein phosphatase-1, a cellular 

economizer and reset button: Physiol Rev, v. 84, p. 1-39. 

 

Chambon, P., 1996, A decade of molecular biology of retinoic acid receptors: FASEB J, v. 10, p. 940-

54. 

 

Chappell, D. S., N. A. Patel, K. Jiang, P. Li, J. E. Watson, D. M. Byers, and D. R. Cooper, 2009, 

Functional involvement of protein kinase C-betaII and its substrate, myristoylated alanine-

rich C-kinase substrate (MARCKS), in insulin-stimulated glucose transport in L6 rat skeletal 

muscle cells: Diabetologia, v. 52, p. 901-11. 

 

Chassaing, N., N. Ragge, A. Kariminejad, A. Buffet, S. Ghaderi-Sohi, J. Martinovic, and P. Calvas, 

2012, Mutation analysis of the STRA6 gene in isolated and non-isolated 

anophthalmia/microphthalmia: Clin Genet, v. 9999. 

 

Chazaud, C., P. Bouillet, M. Oulad-Abdelghani, and P. Dollé, 1996, Restricted expression of a novel 

retinoic acid responsive gene during limb bud dorsoventral patterning and endochondral 

ossification: Dev Genet, v. 19, p. 66-73. 

 

Chen, L., D. J. Magliano, and P. Z. Zimmet, 2012, The worldwide epidemiology of type 2 diabetes 

mellitus--present and future perspectives: Nat Rev Endocrinol, v. 8, p. 228-36. 

 

Chipman, D. M., and N. Sharon, 1969, Mechanism of lysozyme action: Science, v. 165, p. 454-65. 

 

Christou, G. A., A. D. Tselepis, and D. N. Kiortsis, 2012, The metabolic role of retinol binding 

protein 4: an update: Horm Metab Res, v. 44, p. 6-14. 

 

Clagett-Dame, M., and D. Knutson, 2011, Vitamin A in reproduction and development: Nutrients, v. 

3, p. 385-428. 

 

Cohen, P., 1978, The role of cyclic-AMP-dependent protein kinase in the regulation of glycogen 

metabolism in mammalian skeletal muscle: Curr Top Cell Regul, v. 14, p. 117-96. 

 



Chapter 7: Bibliography 

223 

 

Cohen, P. T., 2002, Protein phosphatase 1--targeted in many directions: J Cell Sci, v. 115, p. 241-56. 

 

Copps, K. D., and M. F. White, 2012, Regulation of insulin sensitivity by serine/threonine 

phosphorylation of insulin receptor substrate proteins IRS1 and IRS2: Diabetologia, v. 55, p. 

2565-82. 

 

Cui, X. Y., P. F. Fu, D. N. Pan, Y. Zhao, J. Zhao, and B. C. Zhao, 2003, The antioxidant effects of 

ribonuclease inhibitor: Free Radic Res, v. 37, p. 1079-85. 

 

Dantuma, N. P., C. Heinen, and D. Hoogstraten, 2009, The ubiquitin receptor Rad23: at the 

crossroads of nucleotide excision repair and proteasomal degradation: DNA Repair (Amst), v. 

8, p. 449-60. 

 

Dawson, M. I., and Z. Xia, 2012, The retinoid X receptors and their ligands: Biochim Biophys Acta, 

v. 1821, p. 21-56. 

 

Dekaney, C. M., G. Wu, Y. L. Yin, and L. A. Jaeger, 2008, Regulation of ornithine aminotransferase 

gene expression and activity by all-transretinoic acid in Caco-2 intestinal epithelial cells: J 

Nutr Biochem, v. 19, p. 674-81. 

 

Dekaney, C. M., Wu, G., &amp; Jaeger, L. A, 2000, Regulation and function of ornithine 

aminotransferase in animals.: Trends Comp Biochem Physiol, v. 6, p. 175-83. 

 

del Arco, A., and J. Satrústegui, 2004, Identification of a novel human subfamily of mitochondrial 

carriers with calcium-binding domains: J Biol Chem, v. 279, p. 24701-13. 

 

Delibegovic, M., C. G. Armstrong, L. Dobbie, P. W. Watt, A. J. Smith, and P. T. Cohen, 2003, 

Disruption of the striated muscle glycogen targeting subunit PPP1R3A of protein phosphatase 

1 leads to increased weight gain, fat deposition, and development of insulin resistance: 

Diabetes, v. 52, p. 596-604. 

 

Donovan, M., B. Olofsson, A. L. Gustafson, L. Dencker, and U. Eriksson, 1995, The cellular retinoic 

acid binding proteins: J Steroid Biochem Mol Biol, v. 53, p. 459-65. 

 

Dukes, A. A., V. S. Van Laar, M. Cascio, and T. G. Hastings, 2008, Changes in endoplasmic 

reticulum stress proteins and aldolase A in cells exposed to dopamine: J Neurochem, v. 106, 

p. 333-46. 

 

Edwards, R., D. P. Dixon, and V. Walbot, 2000, Plant glutathione S-transferases: enzymes with 

multiple functions in sickness and in health: Trends Plant Sci, v. 5, p. 193-8. 

 

Emans, N., J. P. Gorvel, C. Walter, V. Gerke, R. Kellner, G. Griffiths, and J. Gruenberg, 1993, 

Annexin II is a major component of fusogenic endosomal vesicles: J Cell Biol, v. 120, p. 

1357-69. 

 

Fleischer, T. C., C. M. Weaver, K. J. McAfee, J. L. Jennings, and A. J. Link, 2006, Systematic 

identification and functional screens of uncharacterized proteins associated with eukaryotic 

ribosomal complexes: Genes Dev, v. 20, p. 1294-307. 

 

Fontana, J. A., and A. K. Rishi, 2002, Classical and novel retinoids: their targets in cancer therapy: 

Leukemia, v. 16, p. 463-72. 

 

Foster, L. J., A. Rudich, I. Talior, N. Patel, X. Huang, L. M. Furtado, P. J. Bilan, M. Mann, and A. 

Klip, 2006, Insulin-dependent interactions of proteins with GLUT4 revealed through stable 

isotope labeling by amino acids in cell culture (SILAC): J Proteome Res, v. 5, p. 64-75. 



Chapter 7: Bibliography 

224 

 

Franzoni, L., C. Lücke, C. Pérez, D. Cavazzini, M. Rademacher, C. Ludwig, A. Spisni, G. L. Rossi, 

and H. Rüterjans, 2002, Structure and backbone dynamics of Apo- and holo-cellular retinol-

binding protein in solution: J Biol Chem, v. 277, p. 21983-97. 

 

Furia, A., M. Moscato, G. Calì, E. Pizzo, E. Confalone, M. R. Amoroso, F. Esposito, L. Nitsch, and 

G. D'Alessio, 2011, The ribonuclease/angiogenin inhibitor is also present in mitochondria and 

nuclei: FEBS Lett, v. 585, p. 613-7. 

 

Galcheva-Gargova, Z., L. Gangwani, K. N. Konstantinov, M. Mikrut, S. J. Theroux, T. Enoch, and R. 

J. Davis, 1998, The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of 

proliferating cells: Mol Biol Cell, v. 9, p. 2963-71. 

 

Galcheva-Gargova, Z., K. N. Konstantinov, I. H. Wu, F. G. Klier, T. Barrett, and R. J. Davis, 1996, 

Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor: Science, v. 272, 

p. 1797-802. 

 

Gangwani, L., 2006, Deficiency of the zinc finger protein ZPR1 causes defects in transcription and 

cell cycle progression: J Biol Chem, v. 281, p. 40330-40. 

 

Gangwani, L., M. Mikrut, Z. Galcheva-Gargova, and R. J. Davis, 1998, Interaction of ZPR1 with 

translation elongation factor-1alpha in proliferating cells: J Cell Biol, v. 143, p. 1471-84. 

 

Garcia, A. D., J. Otero, J. Lebowitz, P. Schuck, and B. Moss, 2006, Quaternary structure and cleavage 

specificity of a poxvirus holliday junction resolvase: J Biol Chem, v. 281, p. 11618-26. 

 

Gerke, V., C. E. Creutz, and S. E. Moss, 2005, Annexins: linking Ca2+ signalling to membrane 

dynamics: Nat Rev Mol Cell Biol, v. 6, p. 449-61. 

 

Ghyselinck, N. B., C. Båvik, V. Sapin, M. Mark, D. Bonnier, C. Hindelang, A. Dierich, C. B. Nilsson, 

H. Håkansson, P. Sauvant, V. Azaïs-Braesco, M. Frasson, S. Picaud, and P. Chambon, 1999, 

Cellular retinol-binding protein I is essential for vitamin A homeostasis: EMBO J, v. 18, p. 

4903-14. 

 

Golzio, C., J. Martinovic-Bouriel, S. Thomas, S. Mougou-Zrelli, B. Grattagliano-Bessieres, M. 

Bonniere, S. Delahaye, A. Munnich, F. Encha-Razavi, S. Lyonnet, M. Vekemans, T. Attie-

Bitach, and H. C. Etchevers, 2007, Matthew-Wood syndrome is caused by truncating 

mutations in the retinol-binding protein receptor gene STRA6: Am J Hum Genet, v. 80, p. 

1179-87. 

 

Goodman, D. S., 1984, Overview of current knowledge of metabolism of vitamin A and carotenoids: 

J Natl Cancer Inst, v. 73, p. 1375-9. 

 

Gopalakrishnan, S., M. Rahmatullah, G. A. Radke, S. Powers-Greenwood, and T. E. Roche, 1989, 

Role of protein X in the function of the mammalian pyruvate dehydrogenase complex: 

Biochem Biophys Res Commun, v. 160, p. 715-21. 

 

Graham, T. E., C. J. Wason, M. Blüher, and B. B. Kahn, 2007, Shortcomings in methodology 

complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human 

subjects: Diabetologia, v. 50, p. 814-23. 

 

Graham, T. E., Q. Yang, M. Blüher, A. Hammarstedt, T. P. Ciaraldi, R. R. Henry, C. J. Wason, A. 

Oberbach, P. A. Jansson, U. Smith, and B. B. Kahn, 2006, Retinol-binding protein 4 and 

insulin resistance in lean, obese, and diabetic subjects: N Engl J Med, v. 354, p. 2552-63. 

 



Chapter 7: Bibliography 

225 

 

Greenfield, N. J., 2006, Using circular dichroism spectra to estimate protein secondary structure: Nat 

Protoc, v. 1, p. 2876-90. 

 

Grimmler, M., S. Otter, C. Peter, F. Müller, A. Chari, and U. Fischer, 2005, Unrip, a factor implicated 

in cap-independent translation, associates with the cytosolic SMN complex and influences its 

intracellular localization: Hum Mol Genet, v. 14, p. 3099-111. 

 

Groop, L., and M. Orho-Melander, 2008, New insights into impaired muscle glycogen synthesis: 

PLoS Med, v. 5, p. e25. 

 

Groop, L. C., M. Kankuri, C. Schalin-Jäntti, A. Ekstrand, P. Nikula-Ijäs, E. Widén, E. Kuismanen, J. 

Eriksson, A. Franssila-Kallunki, and C. Saloranta, 1993, Association between polymorphism 

of the glycogen synthase gene and non-insulin-dependent diabetes mellitus: N Engl J Med, v. 

328, p. 10-4. 

 

Guo, H., and Z. Damuni, 1993, Autophosphorylation-activated protein kinase phosphorylates and 

inactivates protein phosphatase 2A: Proc Natl Acad Sci U S A, v. 90, p. 2500-4. 

 

Haigis, M. C., E. L. Kurten, and R. T. Raines, 2003, Ribonuclease inhibitor as an intracellular sentry: 

Nucleic Acids Res, v. 31, p. 1024-32. 

 

Han, S. P., Y. H. Tang, and R. Smith, 2010, Functional diversity of the hnRNPs: past, present and 

perspectives: Biochem J, v. 430, p. 379-92. 

 

Hatefi, Y., and W. G. Hanstein, 1969, Solubilization of particulate proteins and nonelectrolytes by 

chaotropic agents: Proc Natl Acad Sci U S A, v. 62, p. 1129-36. 

 

Heller, J., 1975, Interactions of plasma retinol-binding protein with its receptor. Specific binding of 

bovine and human retinol-binding protein to pigment epithelium cells from bovine eyes: J 

Biol Chem, v. 250, p. 3613-9. 

 

Heller, J., and J. Horwitz, 1973, Conformational changes following interaction between retinol 

isomers and human retinol-binding protein and between the retinol-binding protein and 

prealbumin: J Biol Chem, v. 248, p. 6308-16. 

 

Huang, J., S. H. Hsia, T. Imamura, I. Usui, and J. M. Olefsky, 2004, Annexin II is a thiazolidinedione-

responsive gene involved in insulin-induced glucose transporter isoform 4 translocation in 

3T3-L1 adipocytes: Endocrinology, v. 145, p. 1579-86. 

 

Hughes, K., E. Nikolakaki, S. E. Plyte, N. F. Totty, and J. R. Woodgett, 1993, Modulation of the 

glycogen synthase kinase-3 family by tyrosine phosphorylation: EMBO J, v. 12, p. 803-8. 

 

Hundal, H. S., T. Ramlal, R. Reyes, L. A. Leiter, and A. Klip, 1992, Cellular mechanism of 

metformin action involves glucose transporter translocation from an intracellular pool to the 

plasma membrane in L6 muscle cells: Endocrinology, v. 131, p. 1165-73. 

 

Hyung, S. J., S. Deroo, and C. V. Robinson, 2010, Retinol and retinol-binding protein stabilize 

transthyretin via formation of retinol transport complex: ACS Chem Biol, v. 5, p. 1137-46. 

 

Idres, N., J. Marill, M. A. Flexor, and G. G. Chabot, 2002, Activation of retinoic acid receptor-

dependent transcription by all-trans-retinoic acid metabolites and isomers: J Biol Chem, v. 

277, p. 31491-8. 

 

Ikura, M., 1996, Calcium binding and conformational response in EF-hand proteins: Trends Biochem 

Sci, v. 21, p. 14-7. 



Chapter 7: Bibliography 

226 

 

Isken, A., M. Golczak, V. Oberhauser, S. Hunzelmann, W. Driever, Y. Imanishi, K. Palczewski, and 

J. von Lintig, 2008, RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient 

animal model for Matthew-Wood syndrome: Cell Metab, v. 7, p. 258-68. 

 

Ivaska, J., H. M. Pallari, J. Nevo, and J. E. Eriksson, 2007, Novel functions of vimentin in cell 

adhesion, migration, and signaling: Exp Cell Res, v. 313, p. 2050-62. 

 

Jaffe, E. K., 2004, The porphobilinogen synthase catalyzed reaction mechanism: Bioorg Chem, v. 32, 

p. 316-25. 

 

Jensen, J., E. Jebens, E. O. Brennesvik, J. Ruzzin, M. A. Soos, E. M. Engebretsen, S. O'Rahilly, and J. 

P. Whitehead, 2006, Muscle glycogen inharmoniously regulates glycogen synthase activity, 

glucose uptake, and proximal insulin signaling: Am J Physiol Endocrinol Metab, v. 290, p. 

E154-E162. 

 

Jin, J., E. E. Arias, J. Chen, J. W. Harper, and J. C. Walter, 2006, A family of diverse Cul4-Ddb1-

interacting proteins includes Cdt2, which is required for S phase destruction of the replication 

factor Cdt1: Mol Cell, v. 23, p. 709-21. 

 

Jung, D. H., S. H. Mo, and D. H. Kim, 2006, Calumenin, a multiple EF-hands Ca2+-binding protein, 

interacts with ryanodine receptor-1 in rabbit skeletal sarcoplasmic reticulum: Biochem 

Biophys Res Commun, v. 343, p. 34-42. 

 

Kahn, S. E., R. L. Hull, and K. M. Utzschneider, 2006, Mechanisms linking obesity to insulin 

resistance and type 2 diabetes: Nature, v. 444, p. 840-6. 

 

Kamei, Y., T. Kawada, J. Mizukami, and E. Sugimoto, 1994, The prevention of adipose 

differentiation of 3T3-L1 cells caused by retinoic acid is elicited through retinoic acid 

receptor alpha: Life Sci, v. 55, p. PL307-12. 

 

Kapust, R. B., and D. S. Waugh, 1999, Escherichia coli maltose-binding protein is uncommonly 

effective at promoting the solubility of polypeptides to which it is fused: Protein Sci, v. 8, p. 

1668-74. 

 

Kawaguchi, R., J. Yu, J. Honda, J. Hu, J. Whitelegge, P. Ping, P. Wiita, D. Bok, and H. Sun, 2007, A 

membrane receptor for retinol binding protein mediates cellular uptake of vitamin A: Science, 

v. 315, p. 820-5. 

 

Kawaguchi, R., J. Yu, M. Ter-Stepanian, M. Zhong, G. Cheng, Q. Yuan, M. Jin, G. H. Travis, D. 

Ong, and H. Sun, 2011, Receptor-mediated cellular uptake mechanism that couples to 

intracellular storage: ACS Chem Biol, v. 6, p. 1041-51. 

 

Kawaguchi, R., J. Yu, P. Wiita, J. Honda, and H. Sun, 2008a, An essential ligand-binding domain in 

the membrane receptor for retinol-binding protein revealed by large-scale mutagenesis and a 

human polymorphism: J Biol Chem, v. 283, p. 15160-8. 

 

Kawaguchi, R., J. Yu, P. Wiita, M. Ter-Stepanian, and H. Sun, 2008b, Mapping the membrane 

topology and extracellular ligand binding domains of the retinol binding protein receptor: 

Biochemistry, v. 47, p. 5387-95. 

 

Kawaguchi, R., M. Zhong, M. Kassai, M. Ter-Stepanian, and H. Sun, 2012, STRA6-Catalyzed 

Vitamin A Influx, Efflux, and Exchange: J Membr Biol. 

 



Chapter 7: Bibliography 

227 

 

Kawaguchi, R., M. Zhong, M. Kassai, M. Ter-Stepanian, and H. Sun, 2013, Differential and Isomer-

Specific Modulation of Vitamin A Transport and the Catalytic Activities of the RBP Receptor 

by Retinoids: J Membr Biol, v. 246, p. 647-60. 

 

Khan, A. A., and J. G. Quigley, 2011, Control of intracellular heme levels: heme transporters and 

heme oxygenases: Biochim Biophys Acta, v. 1813, p. 668-82. 

 

Kim, H. J., O. Khalimonchuk, P. M. Smith, and D. R. Winge, 2012, Structure, function, and assembly 

of heme centers in mitochondrial respiratory complexes: Biochim Biophys Acta, v. 1823, p. 

1604-16. 

 

Kim, W., M. Kim, and E. H. Jho, 2013a, Wnt/β-catenin signalling: from plasma membrane to 

nucleus: Biochem J, v. 450, p. 9-21. 

 

Kim, Y. D., M. S. Kwon, B. R. Na, H. R. Kim, H. S. Lee, and C. D. Jun, 2013b, Swiprosin-1 

Expression Is Up-Regulated through Protein Kinase C-θ and NF-κB Pathway in T Cells: 

Immune Netw, v. 13, p. 55-62. 

 

Koenig, J. H., K. Yamaoka, and K. Ikeda, 1993, Calcium-induced translocation of synaptic vesicles to 

the active site: J Neurosci, v. 13, p. 2313-22. 

 

Koffer, A., P. E. Tatham, and B. D. Gomperts, 1990, Changes in the state of actin during the 

exocytotic reaction of permeabilized rat mast cells: J Cell Biol, v. 111, p. 919-27. 

 

Kotaka, M., S. Kostin, S. Ngai, K. Chan, Y. Lau, S. M. Lee, H. Li, E. K. Ng, J. Schaper, S. K. Tsui, 

K. Fung, C. Lee, and M. M. Waye, 2000, Interaction of hCLIM1, an enigma family protein, 

with alpha-actinin 2: J Cell Biochem, v. 78, p. 558-65. 

 

Kunau, W. H., V. Dommes, and H. Schulz, 1995, beta-oxidation of fatty acids in mitochondria, 

peroxisomes, and bacteria: a century of continued progress: Prog Lipid Res, v. 34, p. 267-342. 

 

Kwon, M. S., K. R. Park, Y. D. Kim, B. R. Na, H. R. Kim, H. J. Choi, I. Piragyte, H. Jeon, K. H. 

Chung, W. K. Song, S. H. Eom, and C. D. Jun, 2013, Swiprosin-1 is a novel actin bundling 

protein that regulates cell spreading and migration: PLoS One, v. 8, p. e71626. 

 

Lang, T., I. Wacker, I. Wunderlich, A. Rohrbach, G. Giese, T. Soldati, and W. Almers, 2000, Role of 

actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells: Biophys 

J, v. 78, p. 2863-77. 

 

Larsson, C., 2006, Protein kinase C and the regulation of the actin cytoskeleton: Cell Signal, v. 18, p. 

276-84. 

 

Lazzeroni, M., S. Gandini, M. Puntoni, B. Bonanni, A. Gennari, and A. DeCensi, 2011, The science 

behind vitamins and natural compounds for breast cancer prevention. Getting the most 

prevention out of it: Breast, v. 20 Suppl 3, p. S36-41. 

 

Lechward, K., O. S. Awotunde, W. Swiatek, and G. Muszyńska, 2001, Protein phosphatase 2A: 

variety of forms and diversity of functions: Acta Biochim Pol, v. 48, p. 921-33. 

 

Lee, A., 1987, Coordinated regulation of a set of genes by glucose and calcium ionophores in 

mammalian cells.: Trends Biochem Sci, v. 12, p. 20-23. 

 

Lee, J. H., E. J. Kwon, and D. H. Kim, 2013, Calumenin has a role in the alleviation of ER stress in 

neonatal rat cardiomyocytes: Biochem Biophys Res Commun. 



Chapter 7: Bibliography 

228 

 

Li, E., and A. W. Norris, 1996, Structure/function of cytoplasmic vitamin A-binding proteins: Annu 

Rev Nutr, v. 16, p. 205-34. 

 

Liu, L., and R. N. Eisenman, 2012, Regulation of c-Myc Protein Abundance by a Protein Phosphatase 

2A-Glycogen Synthase Kinase 3β-Negative Feedback Pathway: Genes Cancer, v. 3, p. 23-36. 

 

Lubran, M. M., 1975, McArdle's disease: a review: Ann Clin Lab Sci, v. 5, p. 115-22. 

 

Malpeli, G., C. Folli, and R. Berni, 1996, Retinoid binding to retinol-binding protein and the 

interference with the interaction with transthyretin: Biochim Biophys Acta, v. 1294, p. 48-54. 

 

Manchester, J., A. V. Skurat, P. Roach, S. D. Hauschka, and J. C. Lawrence, 1996, Increased 

glycogen accumulation in transgenic mice overexpressing glycogen synthase in skeletal 

muscle: Proc Natl Acad Sci U S A, v. 93, p. 10707-11. 

 

Mark, M., N. B. Ghyselinck, and P. Chambon, 2006, Function of retinoid nuclear receptors: lessons 

from genetic and pharmacological dissections of the retinoic acid signaling pathway during 

mouse embryogenesis: Annu Rev Pharmacol Toxicol, v. 46, p. 451-80. 

 

Martin, W. H., D. J. Hoover, S. J. Armento, I. A. Stock, R. K. McPherson, D. E. Danley, R. W. 

Stevenson, E. J. Barrett, and J. L. Treadway, 1998, Discovery of a human liver glycogen 

phosphorylase inhibitor that lowers blood glucose in vivo: Proc Natl Acad Sci U S A, v. 95, p. 

1776-81. 

 

Matarese, V., and H. F. Lodish, 1993, Specific uptake of retinol-binding protein by variant F9 cell 

lines: J Biol Chem, v. 268, p. 18859-65. 

 

Mazzarella, R. A., N. Marcus, S. M. Haugejorden, J. M. Balcarek, J. J. Baldassare, B. Roy, L. J. Li, 

A. S. Lee, and M. Green, 1994, Erp61 is GRP58, a stress-inducible luminal endoplasmic 

reticulum protein, but is devoid of phosphatidylinositide-specific phospholipase C activity: 

Arch Biochem Biophys, v. 308, p. 454-60. 

 

McCright, B., A. M. Rivers, S. Audlin, and D. M. Virshup, 1996, The B56 family of protein 

phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins 

that target PP2A to both nucleus and cytoplasm: J Biol Chem, v. 271, p. 22081-9. 

 

Mcilroy, G. D., M. Delibegovic, C. Owen, P. N. Stoney, K. D. Shearer, P. J. McCaffery, and N. 

Mody, 2013, Fenretinide treatment prevents diet-induced obesity in association with major 

alterations in retinoid homeostatic gene expression in adipose, liver, and hypothalamus: 

Diabetes, v. 62, p. 825-36. 

 

Mills, J. P., H. C. Furr, and S. A. Tanumihardjo, 2008, Retinol to retinol-binding protein (RBP) is low 

in obese adults due to elevated apo-RBP: Exp Biol Med (Maywood), v. 233, p. 1255-61. 

 

Moller, D. E., 2001, New drug targets for type 2 diabetes and the metabolic syndrome: Nature, v. 414, 

p. 821-7. 

 

Muenzner, M., N. Tuvia, C. Deutschmann, N. Witte, A. Tolkachov, A. Valai, A. Henze, L. E. Sander, 

J. Raila, and M. Schupp, 2013, RBP4 and its Membrane Receptor STRA6 Control 

Adipogenesis by Regulating Cellular Retinoid Homeostasis and RARα Activity: Mol Cell 

Biol. 

 

Murphy, M. P., 2009, How mitochondria produce reactive oxygen species: Biochem J, v. 417, p. 1-13. 

 



Chapter 7: Bibliography 

229 

 

Napoli, J. L., 1999, Retinoic acid: its biosynthesis and metabolism: Prog Nucleic Acid Res Mol Biol, 

v. 63, p. 139-88. 

 

Napoli, J. L., 2000, A gene knockout corroborates the integral function of cellular retinol-binding 

protein in retinoid metabolism: Nutr Rev, v. 58, p. 230-6. 

 

Naylor, H. M., and M. E. Newcomer, 1999, The structure of human retinol-binding protein (RBP) 

with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP: 

Biochemistry, v. 38, p. 2647-53. 

 

Newcomer, M. E., T. A. Jones, J. Aqvist, J. Sundelin, U. Eriksson, L. Rask, and P. A. Peterson, 1984, 

The three-dimensional structure of retinol-binding protein: EMBO J, v. 3, p. 1451-4. 

 

Ng, W. Y., F. Pasutto, T. M. Bardakjian, M. J. Wilson, G. Watson, A. Schneider, D. A. Mackey, J. R. 

Grigg, M. Zenker, and R. V. Jamieson, 2013, A puzzle over several decades: eye anomalies 

with FRAS1 and STRA6 mutations in the same family: Clin Genet, v. 83, p. 162-8. 

 

Nielsen, J. N., J. Vissing, J. F. Wojtaszewski, R. G. Haller, N. Begum, and E. A. Richter, 2002, 

Decreased insulin action in skeletal muscle from patients with McArdle's disease: Am J 

Physiol Endocrinol Metab, v. 282, p. E1267-75. 

 

Norseen, J., T. Hosooka, A. Hammarstedt, M. M. Yore, S. Kant, P. Aryal, U. A. Kiernan, D. A. 

Phillips, H. Maruyama, B. J. Kraus, A. Usheva, R. J. Davis, U. Smith, and B. B. Kahn, 2012, 

Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing 

proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like 

receptor 4-dependent and retinol-independent mechanism: Mol Cell Biol, v. 32, p. 2010-9. 

 

Noy, N., and Z. J. Xu, 1990, Interactions of retinol with binding proteins: implications for the 

mechanism of uptake by cells: Biochemistry, v. 29, p. 3878-83. 

 

Olsen, J. V., M. Vermeulen, A. Santamaria, C. Kumar, M. L. Miller, L. J. Jensen, F. Gnad, J. Cox, T. 

S. Jensen, E. A. Nigg, S. Brunak, and M. Mann, 2010, Quantitative phosphoproteomics 

reveals widespread full phosphorylation site occupancy during mitosis: Sci Signal, v. 3, p. 

ra3. 

 

Otey, C. A., and O. Carpen, 2004, Alpha-actinin revisited: a fresh look at an old player: Cell Motil 

Cytoskeleton, v. 58, p. 104-11. 

 

Owen, M. R., E. Doran, and A. P. Halestrap, 2000, Evidence that metformin exerts its anti-diabetic 

effects through inhibition of complex 1 of the mitochondrial respiratory chain: Biochem J, v. 

348 Pt 3, p. 607-14. 

 

Ozawa, M., and T. Muramatsu, 1993, Reticulocalbin, a novel endoplasmic reticulum resident Ca(2+)-

binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence: J 

Biol Chem, v. 268, p. 699-705. 

 

Palczewski, K., 2012, Chemistry and biology of vision: J Biol Chem, v. 287, p. 1612-9. 

 

Park, J. H., H. Y. Sung, J. Y. Lee, H. J. Kim, J. H. Ahn, and I. Jo, 2013, B56α subunit of protein 

phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial 

nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial 

cells: Biochem Biophys Res Commun, v. 430, p. 476-81. 

 



Chapter 7: Bibliography 

230 

 

Park, Y. S., E. M. Hur, B. H. Choi, E. Kwak, D. J. Jun, S. J. Park, and K. T. Kim, 2006, Involvement 

of protein kinase C-epsilon in activity-dependent potentiation of large dense-core vesicle 

exocytosis in chromaffin cells: J Neurosci, v. 26, p. 8999-9005. 

 

Pasutto, F., H. Sticht, G. Hammersen, G. Gillessen-Kaesbach, D. R. Fitzpatrick, G. Nürnberg, F. 

Brasch, H. Schirmer-Zimmermann, J. L. Tolmie, D. Chitayat, G. Houge, L. Fernández-

Martínez, S. Keating, G. Mortier, R. C. Hennekam, A. von der Wense, A. Slavotinek, P. 

Meinecke, P. Bitoun, C. Becker, P. Nürnberg, A. Reis, and A. Rauch, 2007, Mutations in 

STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart 

defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental 

retardation: Am J Hum Genet, v. 80, p. 550-60. 

 

Patel, M. S., and T. E. Roche, 1990, Molecular biology and biochemistry of pyruvate dehydrogenase 

complexes: FASEB J, v. 4, p. 3224-33. 

 

Patel, P. S., E. D. Buras, and A. Balasubramanyam, 2013, The role of the immune system in obesity 

and insulin resistance: J Obes, v. 2013, p. 616193. 

 

Patil, S. B., M. D. Pawar, and K. N. Bitar, 2004, Direct association and translocation of PKC-alpha 

with calponin: Am J Physiol Gastrointest Liver Physiol, v. 286, p. G954-63. 

 

Pijet, M., B. Pijet, A. Litwiniuk, B. Pajak, B. Gajkowska, and A. Orzechowski, 2013, Leptin impairs 

myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways: Cytokine, v. 

61, p. 445-54. 

 

Pitt, G. A., 1965, Chemical structure and vitamin A activity: Proc Nutr Soc, v. 24, p. 153-9. 

 

Preitner, F., N. Mody, T. E. Graham, O. D. Peroni, and B. B. Kahn, 2009, Long-term Fenretinide 

treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis: Am 

J Physiol Endocrinol Metab, v. 297, p. E1420-9. 

 

Quadro, L., W. S. Blaner, L. Hamberger, P. M. Novikoff, S. Vogel, R. Piantedosi, M. E. Gottesman, 

and V. Colantuoni, 2004, The role of extrahepatic retinol binding protein in the mobilization 

of retinoid stores: J Lipid Res, v. 45, p. 1975-82. 

 

Quadro, L., W. S. Blaner, L. Hamberger, R. N. Van Gelder, S. Vogel, R. Piantedosi, P. Gouras, V. 

Colantuoni, and M. E. Gottesman, 2002, Muscle expression of human retinol-binding protein 

(RBP). Suppression of the visual defect of RBP knockout mice: J Biol Chem, v. 277, p. 

30191-7. 

 

Rask, L., H. Anundi, J. Böhme, U. Eriksson, A. Fredriksson, S. F. Nilsson, H. Ronne, A. Vahlquist, 

and P. A. Peterson, 1980, The retinol-binding protein: Scand J Clin Lab Invest Suppl, v. 154, 

p. 45-61. 

 

Rayasam, G. V., V. K. Tulasi, R. Sodhi, J. A. Davis, and A. Ray, 2009, Glycogen synthase kinase 3: 

more than a namesake: Br J Pharmacol, v. 156, p. 885-98. 

 

Redondo, C., M. Vouropoulou, J. Evans, and J. B. Findlay, 2008, Identification of the retinol-binding 

protein (RBP) interaction site and functional state of RBPs for the membrane receptor: 

FASEB J, v. 22, p. 1043-54. 

 

Reynolds, J. G., S. A. McCalmon, T. Tomczyk, and F. J. Naya, 2007, Identification and mapping of 

protein kinase A binding sites in the costameric protein myospryn: Biochim Biophys Acta, v. 

1773, p. 891-902. 



Chapter 7: Bibliography 

231 

 

Roach, P. J., A. A. Depaoli-Roach, T. D. Hurley, and V. S. Tagliabracci, 2012, Glycogen and its 

metabolism: some new developments and old themes: Biochem J, v. 441, p. 763-87. 

 

Rochette-Egly, C., and P. Germain, 2009, Dynamic and combinatorial control of gene expression by 

nuclear retinoic acid receptors (RARs): Nucl Recept Signal, v. 7, p. e005. 

 

Ruiz, A., M. Mark, H. Jacobs, M. Klopfenstein, J. Hu, M. Lloyd, S. Habib, C. Tosha, R. A. Radu, N. 

B. Ghyselinck, S. Nusinowitz, and D. Bok, 2012, Retinoid content, visual responses, and 

ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein 

receptor, STRA6: Invest Ophthalmol Vis Sci, v. 53, p. 3027-39. 

 

Sahoo, S. K., and d. H. Kim, 2008, Calumenin interacts with SERCA2 in rat cardiac sarcoplasmic 

reticulum: Mol Cells, v. 26, p. 265-9. 

 

Sahoo, S. K., T. Kim, G. B. Kang, J. G. Lee, S. H. Eom, and d. H. Kim, 2009, Characterization of 

calumenin-SERCA2 interaction in mouse cardiac sarcoplasmic reticulum: J Biol Chem, v. 

284, p. 31109-21. 

 

Saito, Y., H. Shibayama, H. Tanaka, A. Tanimura, and Y. Kanakura, 2011a, A cell-death-defying 

factor, anamorsin mediates cell growth through inactivation of PKC and p38MAPK: Biochem 

Biophys Res Commun, v. 405, p. 303-7. 

 

Saito, Y., H. Shibayama, H. Tanaka, A. Tanimura, I. Matsumura, and Y. Kanakura, 2011b, PICOT is 

a molecule which binds to anamorsin: Biochem Biophys Res Commun, v. 408, p. 329-33. 

 

Saltiel, A. R., and C. R. Kahn, 2001, Insulin signalling and the regulation of glucose and lipid 

metabolism: Nature, v. 414, p. 799-806. 

 

Seeling, J. M., J. R. Miller, R. Gil, R. T. Moon, R. White, and D. M. Virshup, 1999, Regulation of 

beta-catenin signaling by the B56 subunit of protein phosphatase 2A: Science, v. 283, p. 

2089-91. 

 

Seshacharyulu, P., P. Pandey, K. Datta, and S. K. Batra, 2013, Phosphatase: PP2A structural 

importance, regulation and its aberrant expression in cancer: Cancer Lett, v. 335, p. 9-18. 

 

Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann, 2006, In-gel digestion for mass 

spectrometric characterization of proteins and proteomes: Nat Protoc, v. 1, p. 2856-60. 

 

Shibayama, H., E. Takai, I. Matsumura, M. Kouno, E. Morii, Y. Kitamura, J. Takeda, and Y. 

Kanakura, 2004, Identification of a cytokine-induced antiapoptotic molecule anamorsin 

essential for definitive hematopoiesis: J Exp Med, v. 199, p. 581-92. 

 

Shull, J. D., K. L. Pennington, J. A. Gurr, and A. C. Ross, 1995, Cell-type specific interactions 

between retinoic acid and thyroid hormone in the regulation of expression of the gene 

encoding ornithine aminotransferase: Endocrinology, v. 136, p. 2120-6. 

 

Sivaprasadarao, A., and J. B. Findlay, 1988a, The interaction of retinol-binding protein with its 

plasma-membrane receptor: Biochem J, v. 255, p. 561-9. 

 

Sivaprasadarao, A., and J. B. Findlay, 1988b, The mechanism of uptake of retinol by plasma-

membrane vesicles: Biochem J, v. 255, p. 571-9. 

 

Sivaprasadarao, A., and J. B. Findlay, 1994, Structure-function studies on human retinol-binding 

protein using site-directed mutagenesis: Biochem J, v. 300 ( Pt 2), p. 437-42. 



Chapter 7: Bibliography 

232 

 

Song, M. J., K. H. Kim, J. M. Yoon, and J. B. Kim, 2006, Activation of Toll-like receptor 4 is 

associated with insulin resistance in adipocytes: Biochem Biophys Res Commun, v. 346, p. 

739-45. 

 

Spurlino, J. C., G. Y. Lu, and F. A. Quiocho, 1991, The 2.3-A resolution structure of the maltose- or 

maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis: 

J Biol Chem, v. 266, p. 5202-19. 

 

Streb, J. W., X. Long, T. H. Lee, Q. Sun, C. M. Kitchen, M. A. Georger, O. J. Slivano, W. S. Blaner, 

D. W. Carr, I. H. Gelman, and J. M. Miano, 2011, Retinoid-induced expression and activity of 

an immediate early tumor suppressor gene in vascular smooth muscle cells: PLoS One, v. 6, 

p. e18538. 

 

Summerbell, D., 1983, The effect of local application of retinoic acid to the anterior margin of the 

developing chick limb: J Embryol Exp Morphol, v. 78, p. 269-89. 

 

Sun, H., 2012, Membrane receptors and transporters involved in the function and transport of vitamin 

A and its derivatives: Biochim Biophys Acta, v. 1821, p. 99-112. 

 

Sundaram, M., A. Sivaprasadarao, M. M. DeSousa, and J. B. Findlay, 1998, The transfer of retinol 

from serum retinol-binding protein to cellular retinol-binding protein is mediated by a 

membrane receptor: J Biol Chem, v. 273, p. 3336-42. 

 

Szanto, A., V. Narkar, Q. Shen, I. P. Uray, P. J. Davies, and L. Nagy, 2004, Retinoid X receptors: X-

ploring their (patho)physiological functions: Cell Death Differ, v. 11 Suppl 2, p. S126-43. 

 

Szeto, W., W. Jiang, D. A. Tice, B. Rubinfeld, P. G. Hollingshead, S. E. Fong, D. L. Dugger, T. 

Pham, D. G. Yansura, T. A. Wong, J. C. Grimaldi, R. T. Corpuz, J. S. Singh, G. D. Frantz, B. 

Devaux, C. W. Crowley, R. H. Schwall, D. A. Eberhard, L. Rastelli, P. Polakis, and D. 

Pennica, 2001, Overexpression of the retinoic acid-responsive gene Stra6 in human cancers 

and its synergistic induction by Wnt-1 and retinoic acid: Cancer Res, v. 61, p. 4197-205. 

 

Tang, D. C., H. M. Kang, J. P. Jin, E. D. Fraser, and M. P. Walsh, 1996, Structure-function relations 

of smooth muscle calponin. The critical role of serine 175: J Biol Chem, v. 271, p. 8605-11. 

 

te Velthuis, A. J., and C. P. Bagowski, 2007, PDZ and LIM domain-encoding genes: molecular 

interactions and their role in development: ScientificWorldJournal, v. 7, p. 1470-92. 

 

Theodosiou, M., V. Laudet, and M. Schubert, 2010, From carrot to clinic: an overview of the retinoic 

acid signaling pathway: Cell Mol Life Sci, v. 67, p. 1423-45. 

 

Torchia, J., C. Glass, and M. G. Rosenfeld, 1998, Co-activators and co-repressors in the integration of 

transcriptional responses: Curr Opin Cell Biol, v. 10, p. 373-83. 

 

Tsutsumi, C., M. Okuno, L. Tannous, R. Piantedosi, M. Allan, D. S. Goodman, and W. S. Blaner, 

1992, Retinoids and retinoid-binding protein expression in rat adipocytes: J Biol Chem, v. 

267, p. 1805-10. 

 

Turk, B., D. Turk, and V. Turk, 2000, Lysosomal cysteine proteases: more than scavengers: Biochim 

Biophys Acta, v. 1477, p. 98-111. 

 

Turk, V., V. Stoka, O. Vasiljeva, M. Renko, T. Sun, B. Turk, and D. Turk, 2012, Cysteine cathepsins: 

from structure, function and regulation to new frontiers: Biochim Biophys Acta, v. 1824, p. 

68-88. 



Chapter 7: Bibliography 

233 

 

Tyedmers, J., M. Lerner, W. Nastainczyk, and R. Zimmermann, 2005, Calumenin and reticulocalbin 

are associated with the protein translocase of the mammalian endoplasmic reticulum: Journal 

of Biological Sciences, v. 5, p. 70-75. 

 

Ueki, K., T. Kondo, and C. R. Kahn, 2004, Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 

cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor 

substrate proteins by discrete mechanisms: Mol Cell Biol, v. 24, p. 5434-46. 

 

Vergnes, L., M. Péterfy, M. O. Bergo, S. G. Young, and K. Reue, 2004, Lamin B1 is required for 

mouse development and nuclear integrity: Proc Natl Acad Sci U S A, v. 101, p. 10428-33. 

 

Wang, R., H. Gao, W. Xu, H. Li, Y. Mao, Y. Wang, T. Guo, X. Wang, R. Song, Z. Li, D. M. Irwin, 

G. Niu, and H. Tan, 2013, Differential expression of genes and changes in glucose 

metabolism in the liver of liver-specific glucokinase gene knockout mice: Gene, v. 516, p. 

248-54. 

 

Wang, Y., Q. Y. He, H. Chen, and J. F. Chiu, 2007, Synergistic effects of retinoic acid and tamoxifen 

on human breast cancer cells: proteomic characterization: Exp Cell Res, v. 313, p. 357-68. 

 

Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, 2003, 

Obesity is associated with macrophage accumulation in adipose tissue: J Clin Invest, v. 112, 

p. 1796-808. 

 

Wheeler, T. J., R. D. Fell, and M. A. Hauck, 1994, Translocation of two glucose transporters in heart: 

effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia: Biochim Biophys 

Acta, v. 1196, p. 191-200. 

 

White, T., T. Lu, R. Metlapally, J. Katowitz, F. Kherani, T. Y. Wang, K. N. Tran-Viet, and T. L. 

Young, 2008, Identification of STRA6 and SKI sequence variants in patients with 

anophthalmia/microphthalmia: Mol Vis, v. 14, p. 2458-65. 

 

Whitmore, L., and B. A. Wallace, 2004, DICHROWEB, an online server for protein secondary 

structure analyses from circular dichroism spectroscopic data: Nucleic Acids Res, v. 32, p. 

W668-73. 

 

Whitmore, L., and B. A. Wallace, 2008, Protein secondary structure analyses from circular dichroism 

spectroscopy: methods and reference databases: Biopolymers, v. 89, p. 392-400. 

 

Wierenga, R. K., E. G. Kapetaniou, and R. Venkatesan, 2010, Triosephosphate isomerase: a highly 

evolved biocatalyst: Cell Mol Life Sci, v. 67, p. 3961-82. 

 

Winder, S. J., B. G. Allen, O. Clément-Chomienne, and M. P. Walsh, 1998, Regulation of smooth 

muscle actin-myosin interaction and force by calponin: Acta Physiol Scand, v. 164, p. 415-26. 

 

Winder, S. J., and M. P. Walsh, 1990, Smooth muscle calponin. Inhibition of actomyosin MgATPase 

and regulation by phosphorylation: J Biol Chem, v. 265, p. 10148-55. 

 

Winder, W. W., and D. G. Hardie, 1996, Inactivation of acetyl-CoA carboxylase and activation of 

AMP-activated protein kinase in muscle during exercise: Am J Physiol, v. 270, p. E299-304. 

 

Witte, S., M. Villalba, K. Bi, Y. Liu, N. Isakov, and A. Altman, 2000, Inhibition of the c-Jun N-

terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-

interacting protein with a thioredoxin homology domain: J Biol Chem, v. 275, p. 1902-9. 



Chapter 7: Bibliography 

234 

 

Wysocka-Kapcinska, M., J. A. Campos-Sandoval, A. Pal, and J. B. Findlay, 2010, Expression and 

characterization of recombinant human retinol-binding protein in Pichia pastoris: Protein 

Expr Purif, v. 71, p. 28-32. 

 

Yang, Q., T. E. Graham, N. Mody, F. Preitner, O. D. Peroni, J. M. Zabolotny, K. Kotani, L. Quadro, 

and B. B. Kahn, 2005, Serum retinol binding protein 4 contributes to insulin resistance in 

obesity and type 2 diabetes: Nature, v. 436, p. 356-62. 

 

Yong, J., L. Wan, and G. Dreyfuss, 2004, Why do cells need an assembly machine for RNA-protein 

complexes?: Trends Cell Biol, v. 14, p. 226-32. 

 

Yoon, J. H., J. S. Koo, D. Norford, K. Guzman, T. Gray, and P. Nettesheim, 1999, Lysozyme 

expression during metaplastic squamous differentiation of retinoic acid-deficient human 

tracheobronchial epithelial cells: Am J Respir Cell Mol Biol, v. 20, p. 573-81. 

 

Yoshida, M., E. Muneyuki, and T. Hisabori, 2001, ATP synthase--a marvellous rotary engine of the 

cell: Nat Rev Mol Cell Biol, v. 2, p. 669-77. 

 

Zanotti, G., S. Ottonello, R. Berni, and H. L. Monaco, 1993, Crystal structure of the trigonal form of 

human plasma retinol-binding protein at 2.5 A resolution: J Mol Biol, v. 230, p. 613-24. 

 

Zerbes, R. M., M. Bohnert, D. A. Stroud, K. von der Malsburg, A. Kram, S. Oeljeklaus, B. 

Warscheid, T. Becker, N. Wiedemann, M. Veenhuis, I. J. van der Klei, N. Pfanner, and M. 

van der Laan, 2012a, Role of MINOS in mitochondrial membrane architecture: cristae 

morphology and outer membrane interactions differentially depend on mitofilin domains: J 

Mol Biol, v. 422, p. 183-91. 

 

Zerbes, R. M., I. J. van der Klei, M. Veenhuis, N. Pfanner, M. van der Laan, and M. Bohnert, 2012b, 

Mitofilin complexes: conserved organizers of mitochondrial membrane architecture: Biol 

Chem, v. 393, p. 1247-61. 

 

Zhang, Y., 2008, I-TASSER server for protein 3D structure prediction: BMC Bioinformatics, v. 9, p. 

40. 

 

Zhang, Y., E. R. Lyver, E. Nakamaru-Ogiso, H. Yoon, B. Amutha, D. W. Lee, E. Bi, T. Ohnishi, F. 

Daldal, D. Pain, and A. Dancis, 2008, Dre2, a conserved eukaryotic Fe/S cluster protein, 

functions in cytosolic Fe/S protein biogenesis: Mol Cell Biol, v. 28, p. 5569-82. 

 

Zhang, Y. R., Y. Q. Zhao, and J. F. Huang, 2012, Retinoid-binding proteins: similar protein 

architectures bind similar ligands via completely different ways: PLoS One, v. 7, p. e36772. 

 

Zhou, G., R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. 

Fujii, N. Musi, M. F. Hirshman, L. J. Goodyear, and D. E. Moller, 2001, Role of AMP-

activated protein kinase in mechanism of metformin action: J Clin Invest, v. 108, p. 1167-74. 

 



 

235 

 

 


