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1. Introduction 

Projected changes in climate are expected to increase flood risk in north western Europe 
(e.g., Lehner et al., 2006; Wilby et al., 2008; Murphy and Charlton, 2008). In responding 
to such risks, responsible authorities have set out design allowances to incorporate 
climate change impacts in building robust flood infrastructure. When it is cheap, 
particularly at design stage, Hallegatte (2009) highlights that it is prudent to add security 
margins to design criteria to improve the resilience of infrastructure to future (expected or 
unexpected) shocks. This paper sets out to subject such design allowances to a sensitivity 
analysis of the uncertainty inherent in estimates of future flood risk. We use Ireland as a 
case study where policy guidance such as the Greater Dublin Strategic Drainage Study 
(GDSDS) sets out that all new development must allow for a 20% increase in peak flows 
for all return periods up to 100 years to allow for climate change. Similarly, the Office of 
Public Works (OPW), the national body responsible for flood risk management in Ireland 
has advised an allowance of +20% of peak flows under a mid-range future scenario and 
+30% as a high-end scenario (OPW, 2009). Such decisions are crucial to the protection of 
lives, livelihoods and critical infrastructure and therefore need to be subjected to 
sensitivity analysis to demonstrate how robust such safety margin approaches are to 
uncertainty in future impacts. 
 
In understanding local scale climate change impacts the direct application of GCMs is 
difficult given their coarse spatial resolution, which typically requires some form of 
downscaling. Regional climate models (RCMs) use a dynamic, physically based 
approach to downscale the larger resolution GCM variables to a higher resolution 
(typically 50 km) over a limited area. Such techniques are computationally expensive as 
they explicitly describe the physical properties affecting climate. Additionally, the output 
from regional climate models often require further downscaling if they are to be applied 
for hydrological simulation at the catchment scale. With the inclusion of more GCMs the 
computational cost required to better characterise the outputs from these models is 
immense. A computationally cheap alternative for downscaling is the statistical approach 
where empirical relationships are typically established between GCM-resolution climate 
variables and local climate. Such techniques offer the possibility of including a larger 
number of GCMs in the analysis. Climate change scenarios generated from statistical 
downscaling (e.g., using a stochastic weather generator) offer a significant computational 
advantage over dynamical downscaling methods in sensitivity testing and adaptation 
options appraisal where the focus is on populating the uncertainty space, with less 
emphasis placed on the precision of single scenarios. 
 
The aim of this paper is to analyse the sensitivity of fluvial flood risk to the uncertainty in 
climate change by incorporating different sources of uncertainty and utilizing key 
features of an ensemble of climate models. In addition to uncertainties in emission 
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scenario and climate model selection, uncertainties arising from hydrological model 
structure and parameters are also incorporated for four case study catchments. In doing so 
the safely margin allowances for food infrastructure suggested in Irish policy guidance 
will be stress tested. 
 

2. Study design and data 

The methodology used to assess the impact of climate change on the frequency of 
extreme events and their sensitivity to future change is based on the idea of a scenario 
neutral approach proposed by Prudhomme et al. (2010). In their method, instead of using 
time varying outcomes for individual scenarios, the sensitivity analysis relied upon 
plausible ranges of climate changes making it neutral to the scenario used. The key 
advantage of such an approach as outlined by the authors is that the sensitivity domain 
can cover the entire spectrum of the latest GCM outputs, while it can also be adjusted to 
include additional values at both ends of the spectrum to plan for surprise and potential 
new extreme projections by adjusting the sensitivity domain. Here, however, the change 
factor approach is used to inform the parameters of a weather generator to produce 
continuous time series of change and the uncertainty space includes the uncertainty from 
rainfall runoff models and their parameters. While hydrological model uncertainty is not 
as large as that from GCMs it has been shown to be a significant contribution to the total 
uncertainty envelope (Bastola et al., 2011a) and also interacts differently with the same 
scenario input. The steps adopted in this study are as follows 
 

(1) Select a wide range of GCMs developed by various climate centres and a number 
of plausible emission scenarios that provide output on the future climate for the 
selected region. In this study we use the IPCC AR4 scenarios (17 GCMs×3 SRES 
emission scenarios). 

(2) Derive the monthly change factors from the control and future GCM simulations.  
(3) Model the monthly change factors using a simple cosine curve to reduce the 

dimensionality of sensitivity analysis. 
(4) Select the range of parameters of the cosine curve from the ensemble of the 

modelled cosine curves that represent the monthly change factors. 
(5) Force hydrological models with climate scenarios generated using all possible 

combinations of parameters of the cosine curve i.e., a full factorial experiment of 
parameters for sensitivity analysis. 

(6) From the simulations, derived in step 5, analyse the flood frequency and estimate 
the flood quantiles for specified return periods. 

 
The study focuses on four catchments where the impact of climate change on flood 
frequency at the catchment scale is investigated using four Irish catchments, namely; the 
river Blackwater at Ballyduff (2302 km2), the river Suck at Bellagill (1219 km2), the 
Moy at Rahans (1803 km2), and the Boyne at Slane (2452 km2). Observed precipitation 
and temperature data were obtained from Met Éireann, the Irish National Meteorological 
Service. The river discharge data used to condition the hydrological models was obtained 
from the Office of Public Works (OPW).  
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A large number of climate change experiments using GCMs forced with SRES (Special 
Report on Emission Scenarios) emission scenarios have been completed in recent years. 
The results of experiments at several modelling centres are currently available from the 
IPCC DDC (Data Distribution Centre) at http://www.ipcc-data.org. The data period used 
in this study was 1971–2100 and the climatic variables analysed were monthly mean 
temperature and precipitation. Table 2 shows the list of the 17 GCMs. Each of these 
GCMs was run with the A1B, A2 and B1 SRES emission scenarios, all of which were 
used in this study and comprise 51 future scenarios (17 GCMs×3 SRES emission 
scenarios). Due to the difference in spatial resolution of the GCMs used in this study, all 
GCMs were suitably regridded to conform to the spatial resolution of 3.75×3.75° prior to 
extraction. This averaging would approximate the republic of Ireland as a single grid cell. 
The 20C3M experiment which represents the climate of the 20th century is used as a 
control run. This experiment runs with greenhouse gases increasing as observed through 
the 20th century. 
 

 
Table 1: Details of the 17 GCMs employed. Each GCM was run with the A2, A1B and B1 

SRES emission scenarios yielding 51 total simulations 

 

 

3. Methods 

3.1 Change Factors 
A variety of methods are available to estimate climatological variables for future times 
and at spatial scales that are appropriate for local scale impact assessment. Owing to the 
simplicity and speed at which it can be applied, the Change Factor Methodology (CFM) 
is still widely used in impact analysis studies. The first step of the CFM method is to 
establish a baseline climatology for the area of interest. Secondly, changes in the 
equivalent variable for the GCM grid box closest to the target site are calculated as 
 

 
 
where ∆P, and ∆T are the change factors for precipitation and temperature, the primed 
quantities correspond to the future while unprimed quantities correspond to the baseline 
period (control period). In the final step the changes estimated are simply added to each 
day in the baseline time series. The resultant scenario incorporates the station information 
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as well as the change of the specified GCM grid box. The procedure assumes that the 
spatial pattern of the present climate remains unchanged in the future. The method, 
however, cannot be used to explore transient changes in local climate scenarios as the CF 
derived is specific to the selected time slice. 
 

A number of studies have observed that the CF calculated from a specified period is 
sensitive to the period selected (e.g., Kendon et al., 2008; Prudhomme et al., 2010). 
Therefore, the effect of sampling uncertainty on the estimated CF is addressed using a 
block sampling method where a continuous 20-year data block is sampled from the 30 
year series of data representing control and future periods. Subsequently, the ensemble of 
change factors is estimated from each sample of monthly precipitation and temperature 
for all the selected GCM projections and emission scenarios. A change factor 
corresponding to median value of each of the 51 climate scenarios is selected and 
employed hereafter. From the range of change factors, regional sequences of precipitation 
and temperature are derived by suitably modifying the parameters of a weather generator 
based on the monthly CFs for precipitation and the annual change factors for maximum 
and minimum temperature. For precipitation this requires sampling 12 parameters, each 
representing a change factor for each month. Therefore, following Prudhomme et al. 
(2010) a harmonic analysis was applied to model the monthly CFs and to synthesise and 
smooth the larger inter-annual variations, reducing the required number of parameters to 
three in the form of: 
 

 
 
where µt is the value of the series at time t, µ¯  is the arithmetic mean, A and Ф are the 
amplitude and phases (in radian), P is the period of observation. The phase angle Ф 
indicates the time of year the maximum of a given harmonic occurs and was converted to 
months (Kirkyla and Hameed, 1989). 
 

3.2 Weather Generator 

The weather generator employed is WGEN (Richarsdon and Wright, 1984). Wilks (1992) 
provide a method to adapt the calibrated parameters of WGEN to changing climate. In 
this study, 100 sets of different precipitation and temperature scenarios were constructed. 
For the generation of the future climate scenarios, the parameters calibrated for Irish 
synoptic weather stations were adapted accordingly from Bastola et al. (2011b) and 
Wilks (1992). Bastola et al. (2011b) provide a full evaluation of the application of 
WGEN to Irish conditions. In addition to comparing observations Bastola et al. (2011b) 
also compared WGEN generated future climate scenarios against available regional 
climate scenarios developed for Ireland using alternative techniques. Here the monthly 
change in mean and variance of the selected variables between the simulated control and 
future are utilized.  
 
The modification of the parameters related to both the occurrence and magnitude of 
precipitation are derived from GCMs e.g., changes in wet days probability, monthly wet 
days precipitation. For the two parameters that are related to the generation of 
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temperature, both are modified based on the change in annual average temperature and 
the change in the coefficient of variation of temperature derived from GCM outputs. 
Potential evapotranspiration (PET) data was estimated using a generalized form of the 
Hargreaves method (Xu and Singh, 2000); a radiation based empirical model popularly 
used for the simulation of PET. The empirical method utilises solar radiation, minimum 
and maximum temperature to compute PET. The solar radiation was estimated from 
maximum and minimum temperature, extra-terrestrial radiation and coefficients 
(Hargreaves et al., 1985). The coefficients for estimating solar radiation from temperature 
for Ireland were taken from Supit (1994). 
 

3.3 Hydrological Modelling 
Uncertainty in the application of rainfall runoff models stems from a variety of sources 
including; data, parameter, model structure and state uncertainty. Despite their 
acknowledged limitations, conceptual rainfall runoff models continue to be widely used 
for assessing the impacts of climate change on water resources and for projecting 
potential ranges of future impacts. Their popularity is related to their availability, low 
data requirements and computational demands. The uncertainties associated with 
hydrological models have traditionally been given less attention in impact assessments in 
comparison to other sources. Therefore in this study the uncertainty in hydrological 
model structure, along with parameter uncertainty is incorporated into the uncertainty 
space by using a number of plausible conceptual model structures and their behavioural 
parameters to transform future climate scenarios into future hydrological series. 
 
From among the large number of models used for the purpose of modelling flow in 
catchments, we selected four conceptual rainfall runoff models; HyMOD (see Wagener et 
al., 2001), NAM (see Madsen, 2000), TANK (Sugawara, 1995) and TOPMODEL (Beven 
et al., 1995). Each model varies in their conceptualisation of key hydrological processes 
and complexity, primarily related to the number of parameters requiring calibration. 
NAM and TANK describe the behaviour of each component of the hydrological cycle at 
the catchment level by using a group of conceptual elements while both TOPMODEL 
and HyMOD are variable contributing area models. In TOPMODEL spatial variability is 
accounted for through topographic indices whereas in HyMOD spatial variability is 
modelled using a probability distribution function. All four models employ a single linear 
reservoir to model groundwater. Each has been applied in numerous applications and 
their potential for simulating flow due to climate change has been discussed extensively 
in the past. The models employed are independently developed by different researchers 
and organisations. 
 
In order to examine hydrological model uncertainty (parameter and structural 
uncertainty) a multi-model approach based on Generalised Likelihood Uncertainty 
Estimation (GLUE) framework is used. The GLUE method introduced by Beven and 
Binley (1992) has been extensively used and is based on the premise that for a physically 
based hydrological model, no single optimum parameter set exists; rather a range of 
different sets of model parameter values may represent the process equally well. 
Different model structures, as well as different parameter sets in a particular model 
structure, can be easily combined within this framework. 
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The application of the GLUE method requires the definition of a likelihood measure, a 
measure that differentiates behavioural and non behavioural simulators (behavioural 
threshold) and a measure that sets the relative weights of the behavioural and non 
behavioural simulators. The behavioural set of model parameters for each of the models 
and catchments used in this study were taken from Bastola et al. (2011) where we used 
the period of observations from 1971 to 1990 for model calibration and from 1991 to 
2000 for model validation. A common assumption implicit in most climate change 
impact studies is that hydrological models calibrated over the historical period are valid 
for use in the future under a changed climatic regime. 
 
We used the Nash Sutcliffe Efficiency (NSE) criteria as an informal goodness-of-fit 
measure which is based on the sum of squared errors. An NSE threshold value of 0.6 was 
selected and fine tuned for each catchment so that the prediction interval encapsulates as 
much observation as possible, and maintains a good population of behavioural solutions. 
Bastola et al. (2011), which used same set of models and catchment, show that prediction 
interval and their reliability estimated from each of the four models are different among 
each catchment indicating the important role multimodel simulations can play. Each of 
the calibrated hydrological models was forced with the generated scenarios. 
 

3.4 Frequency Analysis 
The impact of climate change on flood frequency is defined here as the percentage 
change in the flood peak of a given return period. This definition results in different 
figures for different return periods and different time slices. A number of researchers 
have conducted flood frequency analysis using the output from a continuous simulation 
of river flow (e.g., Kay et al., 2006; Cameron, 2006). In such approaches, the analysis of 
flood frequency involves the selection of a flood frequency model, a statistical 
distribution and a method for estimating the parameters of the selected distribution. Both 
the annual maximum series (AMS) and peak over threshold (POT) methods are widely 
used for frequency analysis. In relation to the statistical distribution for the flood data 
Ahilan et al. (2011) recommend the Generalised Extreme Value (GEV) distribution for 
Irish flood data constructed from annual maximum series. Therefore we fit the AMS 
series using the Generalised Extreme Value distribution (GEV) using the method of 
probability weighted moments (Hosking et al., 1985), a method equivalent to L-moments. 
 

 

4. Results 

4.1 Establishing the sensitivity domain 
Box and whisker plots in Fig. 1 show the mean and uncertainty in monthly change factors 
for temperature and rainfall for the A2, A1B, and B1 SRES emission scenarios for the 
2020s, 2050s and 2080s. They are all treated with equal weight. The seasonal signal for 
precipitation is more pronounced than temperature, with the seasonality in precipitation 
becoming more pronounced with time. Given that the monthly climatological values of 
precipitation and temperature influence the calculation of change factors and 
subsequently the generation of climate scenarios, the influence of sampling uncertainty is 
evaluated by sampling continuous blocks of 20-year time series from within the control 
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period 1961–2000 and from the three future time slices output from the GCMs. The 
distribution of seasonal mean precipitation derived from 20 year continuous blocks for 
each of the three scenarios and future time periods revealed (not shown) that the effect of 
sampling uncertainty on monthly climatological values is minimal. Therefore, a median 
value for seasonal mean precipitation and an estimation of the range of values derived 
from the selected GCMs are used for estimating the change factor in seasonal mean 
precipitation. 
 
The change factors for precipitation were then modelled using a simple three parameter 
cosine curve to synthesise and smoothen the inter-annual variation. The distribution of 
the phase parameter for each future time period showed that for most of the data and for 
each time period, the phase parameter is located between the months of June and August. 
To reduce the dimensionality of the sensitivity testing and thus the computational burden 
the phase parameter is fixed at July. The Nash Sutcliffe Efficiency (NSE) criteria and 
root mean square error is used to evaluate the goodness of fit between change factors 
derived from the GCMs and those derived using the harmonic function. The goodness of 
fit plotted in Fig. 2 shows that agreement is better for later time periods as changes 
become more pronounced. While a large number of efficiency criteria exist (e.g. NSE, 
coefficient of determination, index of agreement etc.) that can be used to judge the 
goodness of fit, the selection of particular criteria is predominantly a subjective decision. 
 

 
Fig 1: Change factors for the output from 17 GCMs and the A1B, A2 and B1 SRES emission 

scenarios for a cell representing Ireland based on 30-year average for the 2020s (2011–2040), 

2050s (2041–2070) and 2080s (2071–2100) compared to 20C3M control (1961–1990). 
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Fig 2: Nash Sutcliffe Efficiency and root mean square measures of goodness of fit between 

modelled and GCM estimated monthly change factors for precipitation. 

 
Climate change scenarios are generated by adjusting the parameters of the WGEN 
weather generator based on the monthly change factors estimated from the harmonic 
function i.e., with mean and amplitude parameters of the cosine curve. Table 2 shows the 
range of the mean and amplitude parameters characterising the monthly change factor for 
precipitation. As highlighted above the phase parameter is fixed assuming a maximum in 
July. The parameter ranges used for the sensitivity analysis are 1.5 times greater than the 
range derived for the modelled change factor. A widened sensitivity domain is employed 
to include extra values at both ends of the GCM estimated range to allow for potential 
new extreme projections.  
 

 
Table 2: Summary of the parameters of the cosine curve characterising the monthly change 

factor for precipitation. Also shown are the parameters characterising the change factor in 

temperature. 

 
By approximating change factors using a harmonic function, it is quite possible that the 
resulting sensitivity domain for the seasonal signal may be different from that built upon 
the signatures derived from modelled change factors. On the other hand, building a 
sensitivity domain on the signature of individual GCMs would increase significantly the 
number of parameters and thus the complexity of the analysis. Therefore it is important 
that the limits of the sensitivity derived from modelled change factors encapsulate the 
change factors estimated from different GCMs. Analysis (not shown) highlights that for 
the majority of months the modelled domain encapsulates the change factor derived from 
the selected GCMs indicating that the range used for sensitivity testing is justifiable. 
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4.2 Sensitivity analysis of flood peaks 
The purpose of the sensitivity analysis is to assess the effectiveness and residual risks 
associated with climate change allowances for peak flows in Irish river catchments, the 
results of which are visualized using a response surface for each catchment. The 
hydrological simulation involved approximately 20,000 model runs with 4 structurally 
different hydrological models, each with 50 behavioural parameters and 100 different 
daily precipitation and temperature scenarios. The temperature scenarios were 
subsequently used to generate an equal number of scenarios for potential 
evapotranspiration. Both precipitation and temperature scenarios were generated by 
modifying the parameters of WGEN as discussed earlier. The range of the amplitude and 
mean parameters of the cosine curve for precipitation and the mean and coefficient of 
variation parameter for temperature (shown in Table 2) were used to analyse the 
sensitivity of flood frequency. The analysis is based on a fully factorial experiment where 
the two parameters of the cosine curve are sampled at 10 discrete, equally spaced 
increments. The simulated time series of flow were then used to estimate 20,000 sets of 
annual maximum flood events, each of thirty years duration. Probability weighted 
moments is then used to fit the GEV distribution to each annual maximum series. 
Following Prudhomme et al. (2003) stationarity is assumed for each thirty year period. 
 
Fig. 3 shows the impact of hydrological model structure and parameter uncertainty on 
flood quantiles for the Boyne. Each model displays the varying effect of parameter 
uncertainty on different flood quantiles using a climate scenario generated from a single 
value of the mean and amplitude parameters. The highest uncertainty is associated with 
low frequency flood quantiles simulated with TANK and TOPMODEL and can be 
attributed to the nonlinear structure of both models. Stores are common components of all 
lumped rainfall–runoff models used in this study. HYMOD, NAM and TANK use the 
linear store i.e., the output from each is proportional to the amount of stored water. 
Unlike HYMOD and NAM, TANK uses two outlets to simulate surface runoff. This 
nonlinear structure in the surface reservoir allows TANK to represent diverse hydrograph 
types (see Sugawara, 1995). TOPMODEL uses an exponential store where output is 
exponentially related to storage. The exponential store is generally considered to be a tool 
for recession and base flow simulation but, as part of a rainfall runoff model, it can also 
play an important role in the simulation of high flow events. The differences and extent 
of uncertainty highlighted in Fig. 3 emphasise the importance of incorporating model 
structure and parameter uncertainty in estimating climate change impacts on flood 
quantiles, particularly for larger extremes with lower frequencies of occurrence. 
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Fig 3: The 95th, 5th percentile and median value for modelled flood quantile (5, 25, 50 and 

100 year return year period), that represent the uncertainty in model parameters for the Boyne 

 
The results of the sensitivity analysis of precipitation scenarios are summarised using the 
3D contour plots in Fig. 4 which show the percentage changes in the 95th percentile flow 
of the specified return period, estimated with respect to the 95th percentile flow of the 
same return period from present climatic conditions. The colours represent intervals, 
whereas the legend corresponds to the threshold values. The plots help in assessing the 
design allowances or safety margins identified for dealing with climate change. As 
expected, an increase in the frequency of all return periods (5, 25, 50 and 100 years) 
analysed is found for an increase in the mean and variability of rainfall. However, the 
magnitude of changes in flood frequency varied considerably for different catchments. 
Results show that floods with a high recurrence period (e.g., 5 year return period event). 
The impact of climate change is not as great for flood peaks with smaller return periods. 
Consequently, for low frequency events, the risk of exceedence of design allowances of 
+20% of flood peak is greater, with considerable implications for critical infrastructure, 
e.g. culverts, bridges and flood defenses whose design is normally associated with higher 
return period events. 
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Fig. 4: 3D contour plot showing percentage changes in the 5, 25, 50 and 100-year return 

period peak flows for each catchment; Blackwater (a–d for 5, 25 50 and 100 year return period 

events respectively), Boyne (e–h), Moy (i–l), Suck (m–p) under the range of scenarios 

constructed from the change factors synthesised by amplitude (0–0.5) and mean (−0.125–

0.125) of the cosine curve. 

 
 

5. Conclusions 

Future projections of climatic change are subjected to large uncertainties. Consequently, 
impact assessments lead to a wide range of possible outcomes that are practically very 
difficult to handle. In moving from top down predict and provide approaches to climate 
change adaptation this study aims to build on previous work internationally to establish 
best practice for stress testing important adaptation decisions. For each of the selected 
catchments the sensitivity analysis is used to stress test design and safety margin 
allowances made for climate change in critical infrastructure to uncertainties in 
hydrological response. Results show that there is a considerable residual risk associated 
with allowances of +20% when uncertainties are accounted for and that the risk of 
exceedence of design allowances is greatest for more extreme, low frequency events with 
considerable implication for critical infrastructure, e.g., culverts, bridges, flood defences 
whose designs are normally associated with such return period events. In terms of 
hydrological models, the differences and extent of uncertainty emphasise the importance 
of incorporating model structure and parameter uncertainty in estimating climate change 
impacts on flood quantiles, particularly for larger extremes with lower frequencies of 
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occurrence. Each of the models used here displays the varying effect of parameter 
uncertainty on different flood quantiles. The highest uncertainty is associated with low 
frequency flood quantiles and with models that use nonlinear surface storage structures. 
Though the flood frequency analysis analysed in this study recognised the fact that 
frequency distributions are not stationary, the uncertainty associated with the fitting of 
the annual maximum series to the generalised extreme value distribution is not explored. 
Furthermore, it should also be noted that for the frequency analysis, a 30 year period is 
used to generate 100 year return period event. Therefore, results based on such 
extrapolation should be taken with caution. 
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