

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 208 – 217, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Feature Selection Based on Run Covering

Su Yang1, Jianning Liang1, Yuanyuan Wang2, and Adam Winstanley3

1 Shanghai Key Laboratory of Intelligent Information Processing, Dept. of Computer Science
and Engineering, Fudan University, Shanghai 200433, China

2 Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
3 National Centre for Geocomputation, Dept. of Computer Science, National University of

Ireland, Maynooth, Co. Kildare, Ireland
suyang@fudan.edu.cn

Abstract. This paper proposes a new feature selection algorithm. First, the data
at every attribute are sorted. The continuously distributed data with the same
class labels are grouped into runs. The runs whose length is greater than a given
threshold are selected as “valid” runs, which enclose the instances separable
from the other classes. Second, we count how many runs cover every instance
and check how the covering number changes once eliminate a feature. Then, we
delete the feature that has the least impact on the covering cases for all
instances. We compare our method with ReliefF and a method based on mutual
information. Evaluation was performed on 3 image databases. Experimental
results show that the proposed method outperformed the other two.

1 Introduction

For pattern recognition problems, the data represented in feature space can be of very
high dimensionality. However, some features are redundant and do not provide extra
information over the others. In some worse cases, feature extraction could introduce
noise, which does not contribute to pattern classification but degrade the classification
performance. Thus, how to find a compact and effective feature subset is a significant
issue, to which a great deal of effort has been devoted so far. There are two types of
methodologies for dimensionality reduction: The unsupervised methods like PCA and
the supervised methods, for which the class labels of the training samples are prior
known. In this study, we foucse on the supervised dimensionality recduction, which is
referred to as feature selection. Feature selection plays an important role in a variety
of applications, including image classification [9,10]. Some reviews on feature
selection can be found in [1-3]. According to [4], feature selectors can be sorted into
two different groups: wrappers and filters. Wrappers employ a given classifier to
evaluate features such that the feature selection is optimized for the given classifier.
Filters evaluate features according to some measurements of class separability. In
general, filters are less computationally complex than wrappers. As for filters, some
methods measure the power of every independent feature in terms of class
separability while some other methods measure the power of a subset of features as a
whole. According to [3], only exhaustive search and the branch and bound methods

 Feature Selection Based on Run Covering 209

[12,13] are optimal feature selectors. However, the branch and bound methods are
based on an assumption that a performance index drops monotonously. In fact,
investigations on developing new feature selectors have never stopped. Recently,
mutual information based methods have received much attention [7,14-15].

In this study, we propose a new feature selection method, which belongs to the
filter category. Its implementation is outlined as follows. First, the data at every
attribute are sorted. The continuously distributed data with the same class labels
are grouped into runs. The runs whose length is greater than a given threshold are
selected as “valid” runs, which imply that the instances falling into such runs are
separable from the other classes because enough instances from an identical class
occupy spatially close positions. Second, we count how many runs cover every
instance and check how the covering number changes once eliminate a feature. We
delete the feature that has the least impact on the covering cases for all instances.

We compare our method with ReliefF [5], which is member of the Relief family
[6], and the method based on mutual information [7]. Both methods belong to the
filter category. We evaluate the 3 methods on 3 image databases provided in UCI
Machine Learning Repository [16]. Experimental results show that the proposed
method outperformed the other two.

2 The Method

The feature selection method is based on run covering. First, we sort the data values at
every attribute. After the sorting, the data at every attribute can be divided into some
segments, where the class labels of the elements in every segment should be identical.
Such a segment is referred to as a run. If an instance is covered by at least one run
(One of its attribute is included in the run.) whose length is greater than a given
threshold, it means that this instance is separable from the other classes. By
eliminating recursively such attributes that the removal of them will not affect the
class separability in terms of run covering, a feature subset can then be selected. In the
following, we first give the definition of runs. Then, we describe the feature selection
algorithm. Finally, we provide a feature ranking method by which we can identify the
least important feature and delete it in every loop.

2.1 Runs

The runs at every attribute can be extracted via the following procedure:

(1) Suppose that there are N instances. After sorting the kth attribute, we obtain
xk1≤xk2≤…≤xkN. Denote the corresponding class labels as [C(xk1),C(xk2),…,C(xkN)].
Note that C(xki)∈{1,2,…,L}, i=1,2,…,N, if there are L classes. Also, the indices of the
corresponding instances are denoted as [I(xk1),I(xk2),…,I(xkN)].

(2) If xki=xk,i+1=…=xk,i+U but C(xki)=C(xk,i+1)=…=C(xk,i+U) does not hold at the
same time, it means that xki,xk,i+1,…,xk,i+U are not separable. To denote that, we let
C(xki)=C(xk,i+1)=…=C(xk,i+U)=0. Note that only 0∉{1,2,…,L}. Thus, it is not a valid
class label.

210 S. Yang et al.

(3) If C(xki)=C(xk,i+1)=…=C(xk,i+U)≠0, then, [xki,xk,i+1,…,xk,i+U] forms a run. The
length of this run is U+1.

(4) Repeat (3) until all runs at every attribute have been found.

Some examples regarding the previously defined runs are shown in Fig. 1, 2, and 3,
where the class labels distributed along a given attribute are illustrated. We can see
that Fig. 1, 2, and 3 contains 2, 3, and 12 runs, respectively. Clearly, the case shown
in Fig. 1 promises the best separability between the 2 classes while Fig. 3 corresponds
with the worst case. The two cases shown in Fig. 1 and 2 are better in that the run
length is greater. A longer run corresponds with a better case in terms of class
separability. These examples show that the runs defined as above characterize the
class separability to some extent. If the maximum run length at an attribute is too
short as the case shown in Fig. 3, it means that the instances are not separable at this
attribute. If we set a threshold of 5 and look for such runs whose length is greater this
threshold, we can find out 2, 1, and 0 runs in Fig. 1, 2, and 3, respectively.

However, run length is a coarse characterization of class separability. It is known
that N individually strong attributes are not certainly the best N attributes if combined
together (N attributes performing well alone could perform unsatisfactorily as a
team.). In this study, our focus is how to choose the best team, not the best N
individuals. This can be achieved by using the run covering described in the next
section.

1111111112222222222

Fig. 1. Class labels at a given
attribute

22222111111111122222

Fig. 2. Class labels at a given
attribute

1122112211221122112212

Fig. 3. Class labels at a given
attribute

2.2 Eliminate Redundant Attributes Based on Run Covering

Prior to describing the feature selection algorithm, we give some definitions as
follows.

(1) R={Ri}: The run set including all the runs at every attribute.
(2) ||Ri||: The length of the run Ri∈R.
(3) A: The attribute set that contains all remainder attributes following the feature

elimination process described below. Initially, this set contains all the attributes. After
the feature elimination process stops, the residual attributes are the finally selected
features.

(4) /* Comments on pseudo codes */.

Following is the feature selection (feature elimination) algorithm:

(1) Assign a score to each attribute to represent the individual power of every
attribute in terms of its contribution to class separability. Let us denote these scores
as w(1), w(2), …., and w(K). If w(i)<w(j), it means that the ith attribute is better
than the jth attribute in terms of class separability. This is also referred to as feature
ranking. The detailed ranking algorithm is provided in section 2.3.

 Feature Selection Based on Run Covering 211

(2) Compute ∑=
ik

ikjll TRxhC
,

),,(, where

⎩
⎨
⎧ >∧∈∧=

=
else

TRRxlxI
TRxh iikjkj

ikjl 0

||)(1
),,(.

/* If xkj is a member of run Ri and the corresponding run length is greater than a
threshold T, then, the corresponding instance I(xkj)=l has been covered once. Cl
corresponds with how many times the lth instance has been covered*/

(3) ∀p∈A, compute ∑
≠

− =
pkik

ikjlpl TRxhC
,,

,),,(.

/* The times that instance l has been covered without the kth attribute */

(4) Find }0|)()(|:{ , =−∧∈= ∑ −
l

pll CgCgAppP , where

⎩
⎨
⎧

≤
>

=
00

01
)(

x

x
xg .

/* P corresponds with the redundant attributes, the elimination of any of which will
not cause a critical change on the times that each instance has been covered, where
the critical change means that the covering times for any instance go down from a
positive value to 0 suddenly after eliminating an attribute. */

(5) Find }|)(max{arg Pppwq ∈= and eliminate q from A.

/* Delete the least important feature in set P, where the criterion to select the least
important feature refers to the feature ranking algorithm described in the next
section */.

(6) If P=φ, delete }|)(max{arg Appwq ∈=

/* If no feature satisfying that elimination of it will not change the covering case
for every instance, then, delete the least important feature ranked by the feature
ranking algorithm described in the next section. */

(7) Let Cl=Cl,-p and Go to (3) until the number of the residual attributes in A is
equal to the predefined desired number.

Some discussions about the above algorithm are given below. The central idea of
this algorithm is: Look for such attributes that the class separability will not be
affected if eliminating them. The run covering plays an important role in this
algorithm. First, we select the runs whose length is greater than a given threshold T.
Every selected run covers the instances that are separable at a given attribute since the
instances from the same class distribute very closely to each other (They are within a
run). As every instance has K attributes, it has the chance to be covered by K runs at
most. If an instance is covered V≤K times by the runs, then, eliminating one attribute
from the V attributes will not affect the classification of this instance because it is still
covered by the runs at the other V-1 attributes, which means that this instance is still
close to the instances from the same class at the V-1 attributes. Taking all the
instances into account together, we hold the following idea. Suppose that Q≤N
instances are covered by at least one run. When we eliminate one attribute, if the Q
covered instances are still covered by at least one run, then, it means that this attribute

212 S. Yang et al.

is redundant and contributes no additional information in contrast to the reminder
attributes. Eliminating it should have no impact on the classification. In case there
exist R>1 attributes that the removal of any of them will not chance the covering, we
eliminate only one attribute among the R attributes and then recompute the covering.
In such a case, the selection of the attribute to be eliminated is not random. It is based
on a feature-ranking criterion. That is, we firstly score every attribute according to its
individual significance in terms of class separability. Then, we always eliminate the
least important one from the R attributes. The feature-ranking criterion is described in
detail in the next section. The above procedure can be repeated to eliminate redundant
attributes recursively.

In the above algorithm, T is the only parameter (See step 2), which determines how
many runs are valid in counting the covering number. We let the threshold T=0.1×N,
where N denotes the number of all instances. We have tested a couple of different
values for T and found that T=0.1×N is a satisfactory one in this study, which not only
leads to a satisfactory overall classification performance but also promises a stable
classification performance when T∈[0.1×N-Δ,0.1×N+Δ], where Δ is a relative small
positive value. Note that T can be scaled to adapt to problmes from different domains.

The above algorithm can be easily extended to multi-class classification. We only
need to decompose the multi-classification into multiple two-class classifications
(pairwise classification). Then, we look for such attributes the elimination of which
do not affect the covering for every two-class classification. For example, if there are
L classes, then, we decompose the L-class separability computation into L(L-1)/2
parallel two-class separability computations. Here, step (1)~(3) and step (7) are
implemented as L(L-1)/2 parallel processes. In step (4), the intersection of the
L(L-1)/2 solutions forms P. The other steps are the same as described prevoiusly.

× × × × × × × + × + + + + + +

Fig. 4. Distribution of two classes along a
given attribute

× × × × × × + + × × + + + + +

Fig. 5. Distribution of two classes along a
given attribute

2.3 Feature Ranking

Suppose that there are M and N samples in class X and Y and the kth attribute of the
two classes are {xk1,xk2,…,xkM} and {yk1,yk2,…,ykN}, respectively.

We define the relationship between xki and ykj as

⎪⎩

⎪
⎨
⎧

≥
<

=
kjki

kjki
kjki yx

yx
yxH

0

1
),(. (1)

The above definition means that if xki lies in the left side of ykj, then, H(xki,ykj)=1. Else,
H(xki,ykj)=0.

Based on the relationship between two instances, we define the overall relationship
between the two classes in terms of the kth attribute as

∑ ∑∑∑
= = ==

=
M

i

M

i

N

j

kikj

N

j

kjkik xyHyxHd
1 1 11

}),(,),(max{ . (2)

 Feature Selection Based on Run Covering 213

It summarizes the relationship between every class X sample and every class Y
sample. Also, it reveals the separability between the two classes and can be
understood as a distance measure between the two classes. This is explained via the
following two examples.

See the example shown in Fig. 4, where the samples in the overlapping region are
underlined. Suppose that, in the from left to right order, the “×” marks represent one-
dimensional class X samples x1,x2,…,x8 and the “+” marks represent one-dimensional
class Y samples y1,y2,…,y7, respectively. The underlined “×” corresponds with x8 and
the underlined “+” corresponds with y1. With regard to x1, all the 7 samples of the
other class lie in the right side of it. So, we obtain ∑jH(x1,yj)=7. With regard to x8,
only 6 samples of the other class lie in the right side of it. Thus, we hold ∑jH(x8,yj)=6.
In fact, ∑jH(xi,yj) figures out how many samples in class Y locate in the right side of
xi. In contrast, ∑jH(yj,xi) reveals how many samples in class Y locate in the left side of
xi. Therefore, ∑i∑jH(xi,yj) is a measure of the degree that class X locates in the left
side of class Y and ∑i∑jH(yj,xi) characterizes the degree that class X locates in the
right side of class Y. Obviously, max{∑i∑jH(xi,yj), ∑i∑jH(yj,xi)} reveals the relative
relationship between the two classes of interest. For the above example,
∑i∑jH(xi,yj)=55 and ∑i∑jH(yj,xi)=1. This means that most samples of class X locate in
the left side of class Y. In accordance with Eq. (1), the separability measure between
the two classes is 55. Now, consider another example shown in Fig. 5, where the
overlapping region is larger than the case shown in Fig. 4. Correspondingly, the
separability measure between the two class computed via Eq. (1) is 52. Taking into
account the two examples, it is easy to see that a smaller separability measure
corresponds with a more severe overlap between the two classes of interest, namely, a
worse case in terms of separability. On the contrary, a greater separability measure,
which corresponds with a smaller overlapping degree, means a better case in terms of
separability.

Suppose that there are L classes and class j contains N(j) samples, j=1,2,…,L. Let
)(j

kix denote the kth attribute of the ith sample of class j. We further assume that every

sample has K attributes. The feature-ranking algorithm is described below. Suppose

that the input is {)(j
kix | j=1,2,…,L; i=1,2,…,N(j); k=1,2,…,K}. With regard to the kth

attribute, compute the separability between every pair of classes via Eq. (1) and

Eq. (2), that is, {),(vu
kd |u=1,…,L-1; v=u+1,…,L}. Then, let ∑

vu

vu
kd

,

),(be the overall

discrimination power of the kth attribute, according to which all attributes can be
ranked.

2.4 Computational Complexity

Suppose every class contains N samples. Let L denote the class number, K the feature
number, and M the dimension of set A. The complexity of step 1, step 2, and the loop
from step 3 to step 7 is roughly O(K×L×(L-1)×N2), O(L×(L+1)×K×N), and
O(M×(M+1)×L×(L+1)×N), respectively. The overall complexity is basically the sum
of the three parts.

214 S. Yang et al.

3 Experimental Results

We tested the proposed algorithm with UCI machine learning databases [16]. The
performance evaluation was conducted with the letter recognition database, the
satellite image classification database, and the image segmentation database. The data
properties of the 3 databases are summarized in Table 1. We also compare our method
with 2 other methods: ReliefF [5] and the method based on mutual information [7]. In
classifying every data set, we use 3 classifiers: 1-nearest neighbor (1-NN), decision
tree, and support vector machine (SVM). Here, we use the weka software to
implement Relief and the decision tree as well as the SVM classifier [17]. We apply
10-fold cross validation for performance evaluation [8].

The classification accuracy against the feature number for the image segmentation
data is illustrated in Fig 6, 7, and 8, where 1-NN, decision-tree, and SVM classifiers
are applied, respectively. Obviously, the proposed method outperforms the other two
methods. For the 1-NN classification based on the proposed feature selector, when
the feature number is equal to 3, the classification accuracy reaches 97.23%. Then, the
classification accuracy changes very little, between 96.49% and 97.58%. The
classification accuracy using the full attributes is 96.62%, which is less than that using
only 3 features selected by the proposed algorithm. See Fig. 6, the other two methods
perform much worse than the proposed method. See Fig. 7 and Fig. 8, the same case
takes place when comparing the 3 methods based on decision tree and SVM
classification.

The classification accuracy against the feature number for the satellite image data
is shown in Fig 9, 10, and 11, where 1-NN, decision-tree, and SVM classifiers are
applied, respectively. It can be seen that the proposed method outperforms the other
two methods given any feature number.

The classification accuracy against the feature number for the letter recognition
data is exhibited in Fig 12, 13, and 14, where 1-NN, decision-tree, and SVM
classifiers are applied, respectively. The proposed method promises comparable
performance to ReliefF while both methods outperform the method based on mutual
information.

In the above 3 benchmarks, we can see that different classifier leads to different
classification performance but the comparison among different feature selection
methods never changes with the choice of classifiers. According to Fig. 9~11, the
proposed method approaches the best performance or a satisfactory perofrmance very
quickly but the other two methods do not. The above comparisons show that the
proposed method performs well in selecting useful features for image classification.

Table 1. Data properties

Data #Attributes #Instances #Classes
Image 19 2310 7
SatImage 36 6435 6
Letter 16 20000 26

 Feature Selection Based on Run Covering 215

Fig. 6. Classification accuracy against feature
number using 1-NN: image segmentation

Fig. 7. Classification accuracy against feature
number using decision tree: Image segmen-
tation

Fig. 8. Classification accuracy against feature
number using SVM: Image segmentation

Fig. 9. Classification accuracy against feature
number using 1-NN: Satellite image

Fig. 10. Classification accuracy against feature
number using decision tree: Satellite image

Fig. 11. Classification accuracy against feature
number using SVM: Satellite image

216 S. Yang et al.

Fig. 12. Classification accuracy against feature
number using 1-NN: Letter

Fig. 13. Classification accuracy against feature
number using decision tree: Letter

Fig. 14. Classification accuracy against feature number using SVM: Letter

4 Concluding Remarks

In this study, we propose a new feature selection method. It is based on run covering.
The heart of this algorithm is to check whether the removal of a given attribute will
change the covering of every instance. If not, it can be decided that this attribute is
redundant. The run length plays an important role in judging whether an instance is
separable from the other classes at a given attribute. The experiments confirmed the
effectiveness of this method in terms of selecting useful features for image
classification. Note that the run-length based method works with not only the linear
separable attributes but also the attributes that are not linearly separable.

Another important issue is the stopping criterion, that is, what feature number is
satisfactory to stop the feature elimination procedure. For the limited space of this
paper, we did not present the criterion and the related performance evaluation. One
stopping criterion can be: If the covering case for any instance changes after
eliminating a feature, then, stop the feature selection. It is easy to implement. We just
need to modify step (6) of the algorithm to be: If P=φ, the desired feature number has
been approached.

 Feature Selection Based on Run Covering 217

Acknowledgement. This work is supported in part by Natural Science Foundation of
China under grant 60305002, China/Ireland Science and Technology Research
Collaboration Fund under grant CI-2004-09, and National Basic Research Program of
China under grant 2006CB705700.

References

[1] Guyon, I. and Elisseeff, A.: An introduction to variable and feature selection. Journal of
Machine Learning Research 3 (2003) 1157-1182

[2] Liu, H. and Yu, L.: Toward integrating feature selection algorithms for classification and
clustering. IEEE Trans. Knowledge and Data Engineering, 17 (2005) 491-502

[3] Jain, A. and Zongker, D.: Feature selection: Evaluation, application, and small sample
performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (1997)
153-158

[4] Kohavi, R. and John, G. H.: Wrappers for feature subset selection. Artificial Intelligence,
97 (1997) 273-324

[5] Robnik-Sikonja, M. and Kononenko, I.: Theoretical and empirical analysis of ReliefF and
RreliefF. Machine Learning, 53 (2003) 23-69

[6] Kira, K. and Rendell, L.: A practical approach to feature selection. Proc. Int. Conf.
Machine Learning, (1992) 249-256

[7] Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27 (2005) 1226-1238

[8] Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. Proc. Int. Joint Conf. Artificial Intelligence, (1995) 1137-1145

[9] Y. Rui, T. S. Huang, and S. Chang, “Image retrieval: Current techniques, promising
directions and open issues,” Visual communication and image representation, vol. 10, no.
4, pp. 39-62, 1999.

[10] Ho, T. K and Baird, H. S.: Pattern classification with compact distribution maps.
Computer Vision and Image Understanding, 70 (1998) 101-110

[11] Cover, T. M.: The best two independent measurements are not the two best. IEEE
Transactions on Systems, Man, and Cybernetics, 4 (1974) 116-117

[12] Narendra, P. M. and Fukunaga, K.: A branch and bound algorithm for feature subset
selection. IEEE Transactions on Computers, 26 (1977) 917-922

[13] Somol, P., Pudil, P., Kittler, J.: Fast branch & bound algorithms for optimal feature
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004),
900-912

[14] N. Kwak and C. H. Choi, “Input feature selection by mutual information based on Parzen
windows,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no.
12, pp. 1667-1671, 2002.

[15] Trappenberg, T., Ouyang, J., Back, A.: Input variable selection: Mutual information and
linear mixing measures. IEEE Trans. Knowledge and Data Engineering, 18 (2006) 37-46

[16] http://www.ics.uci.edu/~mlearn/MLRepository.html
[17] http://www.cs.waikato.ac.nz/~ml

	Introduction
	The Method
	Runs
	Eliminate Redundant Attributes Based on Run Covering
	Feature Ranking
	Computational Complexity

	Experimental Results
	Concluding Remarks
	References

