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Abstract

Convexity represents a fundamental descriptor of object shape. This paper presents a
new convexity measure for both open and closed simple contours. Given such a contour
this measure extracts two corresponding open convex hulls. The shape similarity be-
tween these two hulls and the original contour is then computed and normalized to give
a measure of convexity. The time complexity of the proposed technique is O(n). The
authors believe this technique represents the first measure of convexity which uses shape
similarity and which can be applied to both open and closed contours. The proposed
technique is shown to provide similar or greater performance relative to two other state
of the art techniques.

1 Introduction
Object recognition represents an extremely powerful capability of the Human Visual System
(HVS). It has been shown that shape is the single most important feature used by the HVS
to recognize objects [3]. Many general shape descriptors exist, such as Fourier descriptors
and moments, which provide a feature vector of high dimensionality capable of accurately
describing shape. Alternatively many shape descriptors exist which measure a single char-
acteristic of shape [16]. Such characteristics include circularity [12], rectangularity, triangu-
larity [13], rectilinearity [21] and convexity [14, 22, 23]. In machine vision research object
contours are commonly extracted from images using an edge detection and linking strategy
[19]. Due to occlusion, scene complexity and image noise, contour extraction techniques do
not necessarily always return a closed object contour. Instead, in many cases, a set of open
contours corresponding to object parts are returned. This does not represent an obstacle to
recognition in the HVS as psychophysical studies have shown that recognition can be suc-
cessfully achieved by partial contours alone [3]. As such, many methods exist to accurately
describe the shape of open contours so that inference regarding object class can be determine
[4, 17, 20]. From the above discussion it should be clear that in order to perform contour
based object recognition one must be able to accurately describe the shape of both open and
closed contours.
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In this paper we focus exclusively on the shape characteristic of convexity. Convexity
represents an important descriptor of shape for many reasons. It is generally accepted that the
parts of an object’s contour which exhibit high convexity generally correspond to object parts
[7]. Liu et al. [10] demonstrated, through the use of several psychophysical experiments, that
convexity plays a strong role in perceptual organization. They showed that in some cases
convexity dominates the effects of Gestalt properties, such as good continuation. Convexity
is also a nonaccidential property which can distinguish structures from noise in real images
[6]. Although many convexity measures exist for closed contours the work of Zunic et al.
[23] represents the only measure suitable for open contours. However we will illustrate
in the results section of this paper that this measure suffers from a degenerate case and is
computationally expensive to compute.

Most convexity measures can generally be classified as area or perimeter based methods
[15]. Since open contours do not enclose a region, area based methods cannot be applied.
The most commonly used perimeter based method compares the perimeter length to that of
its convex hull. In this paper we propose a new perimeter based convexity measure called SC
which determines convexity by determining the shape similarity between the open contour
in question and its corresponding open convex hull. The authors believe this is the first time
shape similarity has been used to determine convexity. It is motivated by the following ex-
ample. Consider the closed contour and its corresponding convex hull displayed in Fig. 1(a).
The shape similarity between this contour and its corresponding convex hull is a function of
its convexity. If the contour is convex its corresponding convex hull will have an identical
shape. On the other hand if the contour is not convex the degree of shape similarity will
be a function of convexity. The computation of SC requires three steps. Firstly the convex
hull of the open contour is computed and from this two open hulls are extracted. Next the
shape similarity between both open hulls and the original contour is determined. Finally the
minimum of these values is normalized to give a measure of convexity. SC has the following
desirable properties [22]:

1. SC is a number from (0,1];
2. SC equals 1 if and only if the contour is convex;
3. There are shapes for which SC approaches 0;
4. SC is invariant under similarity transformations (translations, rotations and scaling).

(a)

p q

(b)

Figure 1: Closed and open contours (solid lines) and their corresponding convex hulls (dotted
lines) are displayed in (a) and (b) respectively.

The layout of this paper is as follows. Section 2 describes the proposed technique for
extracting the open convex hull corresponding to the open contour in question. Section 3
describes how shape similarity is computed and normalized to give the SC measure. Section
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4 evaluates the accuracy of SC relative to other convexity measures. Finally in Section 5 we
draw conclusions.

2 Convex Hull Extraction

Consider the open contour and its corresponding convex hull in Fig. 1(b). Although this
open contour is convex it does not have identical shape to its corresponding closed convex
hull. This is due to the fact that we are comparing an open contour to a closed contour.
To overcome this difficulty the subset of the closed convex hull corresponding to the open
contour must be extracted before shape similarity is determined. In Fig. 1(b) this can be
achieved by extracting the subset of the closed convex hull which contains the vertices from
p to q listed in clockwise order. Extraction of such a subset presents two challenges. Firstly
the desired subset may not contain all vertices of the corresponding closed convex hull.
To illustrate this consider the open contour in Fig. 2(a) and its corresponding desired open
convex hull. This open convex hull does not contain the vertex s which would appear on
the corresponding closed convex hull. Secondly for every open contour two corresponding
open convex hulls exist. For example the second open convex hull corresponding to the
above example is shown in Fig. 2(b). In order to compute a convexity measure it must be
determined which open convex hull this calculation should be a function of. In the above
example, clearly any convexity measure should be a function of the open convex hull in Fig.
2(a).

To overcome both of these issues we propose a novel method for extracting the correct
subset of a closed convex hull. For a given open contour this method extracts two subsets
of the convex hull which correspond to a clockwise (CW) and counter-clockwise (CCW)
ordering of vertices. These are referred to as the CW and CCW hulls respectively. The
similarity between the original contour and both hulls is then determined and the most similar
is then used to derive a measure of convexity. The CW and CCW hulls are extracted using a
process of two steps which we now describe.

p
q

r s

(a)

p
q

r
s

(b)

Figure 2: A open contour (solid lines) and its corresponding CW and CCW hulls (dotted
lines) are displayed in (a) and (b) respectively.

Firstly a modified version of the on-line convex hull algorithm of Melkman [11] is ap-
plied. The original algorithm of Melkman is shown in Algorithm 1; this pseudocode in
based on that of [18]. The function isLeft(p1, p2, p3) returns a value of True if p3 is left
of the line through p1 and p2; returns a value of False if p1, p2 and p3 are collinear and
returns a value False if p3 is right of the line through p1 and p2. As input the algorithm
takes a set of vertices W = {v1,v2, . . . ,vn} which define a contour. A deque data structure
D =

{
dbot , . . . ,dtop

}
is used to store those elements of W which form the convex hull in a
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CCW order. The algorithm initializes D so that the first three vertices of W form a CCW
triangle (lines 2-9). Next it sequentially processes each of the remaining vertices vi in order
(lines 10-22). Each of these vertices will satisfy one of two conditions. Firstly vi may lie
inside the current hull in which it case processing proceeds to the next vertex (lines 11-13).
Secondly vi may lie outside the current hull and becomes a new hull vertex extending the
previous hull. In this case vertices on the previous hull may become interior to the new hull
and must be discarded (lines 14-16 and 18-20). Once such vertices have been discarded vi is
added to form the new hull (lines 17 and 21).

Algorithm 1 Melkman Convex Hull Algorithm
1: Input: W = {v1,v2, . . . ,vn}
2: D.push_back(v3)
3: if isLeft (v1,v2,v3) then
4: D.push_back(v1)
5: D.push_back(v2)
6: else
7: D.push_back(v2)
8: D.push_back(v1)
9: end if

10: for i = 4 to n do
11: if ( (isLeft(dbot ,dbot+1,vi)> 0) & (isLeft(dtop−1,dtop,vi)> 0) ) then
12: continue
13: end if
14: while isLeft(dbot ,dbot+1,vi)≤ 0 do
15: D.pop_front()
16: end while
17: D.push_front(vi)
18: while isLeft(dtop−1,dtop,vi)≤ 0 do
19: D.pop_back()
20: end while
21: D.push_back(vi)
22: end for

Algorithm 2 Operations on deque D
1: function push_back_D(vk)
2: D.push_back(vk)
3: VL.push_back(k)
4: vpk = vpk +1

5: function pop_back_D()
6: D.pop_back()
7: VL.pop_back()
8: vpvltop = vpvltop −1

Melkman’s original algorithm returns the vertices forming the convex hull listed in CCW
order. We altered this algorithm to return the list of vertices listed in the order in which
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they appear in the original contour. Consider the simple (non-self-intersecting) contour
{v1,v2, . . . ,v8} in Fig. 3. Melkman’s algorithm returns the convex hull vertices in the CCW
order {v3,v2,v4,v6,v8,v7,v3}. Our first alteration to Melkman’s algorithm returns the ver-
tices of the convex hull in the same ordering as the original contour; that is {v2,v3,v4,v6,v7,v8}.
To achieve this we introduced two additional data structures V P and V L. V P= {vp1,vp2 . . . ,vpn}
is list which has the invariant property vpi > 0 if and only if vi is a point on the current hull.
The second data structure V L =

{
vlbot , . . . ,vltop

}
is a deque which is used to maintain the in-

variance of V P. There is a one-to-one correspondence between elements of V L and D. This
property is used to maintain the correspondence between elements of D and W ; that is, dp =
vq if and only if vlp = q. V P and V L are integrated into the algorithm of Melkman using new
versions of the functions push_back(vk), push_front(vk), pop_front() and pop_back(). These
new functions are entitled push_back_D(), push_front_D(vk), pop_front_D() and pop_back_D()
respectively. Algorithm 2 describes two of these functions while the remaining two have a
similar form. When Algorithm 1 begins both D and V L are empty and vpi = 0 for i = 1 . . .n.
Following calculation of the convex hull the vertices listed in the same order in which they
appear in the original chain can be obtained by removing all elements vi from W for which
vpi == 0.

v1
v2

v3

v4

v5

v6

v7

v8

Figure 3: A simple open contour and its corresponding convex hull are displayed.

Given a list of convex hull vertices having an order equal to the original contour we now
extract the CW and CCW hulls. This step is inspired by the algorithm of Graham [5] for
calculating the convex hull of a set of planar points. To extract the CW hull we process the
convex hull vertices in the order they appear in the original contour and remove those which
do not make a right turn. To extract the CCW hull we process the convex hull vertices in
the same order and remove those which do not make a left turn. For example the CW hull
extracted from Fig. 3 will contain the vertices {v2,v3,v7,v8}, and the CCW hull will contain
the vertices {v2,v4,v6,v8}.

Lemma 1. Given a simple open contour containing n vertices, the proposed algorithm com-
putes both CW and CCW hulls in O(n) time complexity.

Proof. The original algorithm of Melkman [11] computes a CCW ordering of convex hull
vertices in O(n). Our algorithm for extracting the list of convex hull vertices having an
order equal to the original contour adds two unit time operations to each operation on D
(Algorithm 2). The overall complexity of this algorithm remains O(n). Extracting the CW
and CCW hulls both require a single pass over the list of convex hull vertices. The number
of vertices on the hull will be less than or equal to n and the time complexity of this step is
O(n). Consequently the overall time complexity is O(n).
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Opposed to altering the original algorithm of Melkman to obtain vertices listed in the
desired order, an alternative approach would be to run the algorithm in its original form and
post-process the result. The authors initially considered this approach but were unable to
develop a robust implementation with time complexity not greater than O(n).

3 Convexity Measure
In order to determine shape similarity between a contour and its corresponding hulls, the
turning-function representation of Arkin et al. [1] was used. This function is denoted Θ(s)
and measures the angle of the counter-clockwise tangent as a function of arclength s. Θ(s)
accumulates the turning which takes place; increasing with left-hand turns and decreasing
with right hand-turns. The contour is rescaled such that the total perimeter is 1; Θ(s) is
therefore a function from [0,1] in R. The similarity of two contours A and B is determined
by Equation 1 [8]. The variable θ represents a rotation of B and the value which minimizes
this integral can be calculated by Lemma 3 in [1].

D(A,B) = min
θ∈R

∫ 1

0
(ΘA (s)−ΘB (s)+θ)2 ds (1)

Let DU and DL be the distance between a contour W and its CW and CCW hulls by
Equation 1 respectively. By assigning DH to be the minimum of these values the convexity
of W is determined by the function SC in Equation 2. If a open contour is convex it will
have an identical shape to its CW or CCW hull and consequently DH will equal 0. In this
case SC will evaluate to 1 indicating a convex contour. The less convex a open contour the
more dissimilar its shape will be relative to its CW and CCW hulls. At its limit the value
SC will approach 0 as DH approaches infinity. Due to these facts SC satisfies the first three
properties necessary for a measure of convexity presented in Section 1. The shape similarity
measure D is similarity transformation invariant and as a result property four is also satisfied.
SC can be applied to a closed contour by representing the contour as an open contour where
the first and last vertices are equal.

SC (W ) =
1

1+DH
(2)

Theorem 1. The convexity measure SC for a simple contour can be computed in O(n) time
complexity.

Proof. From lemma 1 the CW and CCW hulls of a contour can be calculated in O(n). If the
contour contains n vertices and its CW hull contains m vertices the integral D in Equation 1
for a given θ can be calculated in O(n+m) [1]. Since n ≥ m is always true this reduces to
O(n). The value θ which minimizes D can be calculated in constant time by lemma 3 of [1].
The overall time complexity of SC is therefore O(n).

4 Results
To evaluate the performance of the proposed convexity measure for open contours the con-
vexity measure M of Zunic and Rosin [23] was used as a benchmark. If A and B are two
randomly chosen points on the open contour W the convexity M(W ) is defined as the prob-
ability that the open line segment AB does not intersect W or completely belongs to W . The
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measure M returns a convexity measure in the range (0,1] with values closer to 1 indicating
greater convexity. To the best of our knowledge there exists no other convexity measure
which can be directly applied to open contours. To evaluate the performance of the proposed
convexity measure for closed contours the convexity measure CP of Zunic and Rosin [22]
was used as a benchmark. CP equates the convexity of a polygon as the ratio of the poly-
gons l2 perimeter to its l1 perimeter minimized over all rotations of the polygon. It returns a
convexity measure in the range (0,1] with values closer to 1 indicating greater convexity.

Fig. 4 displays a set of open contours taken from the UJI Pen Characters Data Set [2].
Under each sub-figure the corresponding convexity measures are listed in the order SC fol-
lowed by M. The sub-figures are ordered by SC value in descending order. The contour
in Fig. 4(a) is very close to if not convex; consequently each convexity measure returns a
corresponding value close to 1. The contour in Fig. 4(b) also exhibits high convexity and
is assigned a high convexity value by SC. However examining the corresponding M value
suggests a contour of low convexity. This value is less than the M values corresponding to
many other significantly less convex contours; for example Fig. 4(h). The reason for this
apparent inconsistency is due to the fact that the metric M is not robust in the presence of al-
most collinear line segments. Consider the series of line segments in Fig. 5. These segments
represent a series of almost collinear segments but the turn angles have been exaggerated
for illustration purposes. If a contour consists of a series of collinear or almost collinear
segments it should be determined as have high convexity. Despite this fact, the segment
joining any two random points on such a contour, for example A and B in Fig. 5, will have a
high probability of intersecting the contour. This in turn results in such a contour receiving
a low M convexity value. Another undesirable property of the M measure is that it suffers
from high computational complexity due to the fact that it estimates convexity using Monte
Carlo methods. Our own C++ implementation of M running on a Intel 2.8 GHz dual core
processor requires between 5 and 10 seconds to compute convexity for a single contour in
Fig. 4(a) to Fig. 4(p) using 100,000 samples. This number of samples was taken directly
from the original implementation [23]. Fig. 6 displays a set of closed contours taken from
the MPEG-7 data set [9]. Under each sub-figure the corresponding convexity measures are
listed in the order SC followed by CP.

To quantify the performance of the proposed measure SC, as a shape descriptor relative
to the benchmark methods, Precision-Recall curves for a k-nearest neighbour retrieval algo-
rithm were calculated. Thirty object classes were selected from the MPEG-7 dataset and and
for each class 10 object instances were selected to gave a dataset of 300 closed contours. For
each contour the most salient part was selected by visual inspection to give a dataset of 300
open contours. The complete MPEG-7 dataset was not used because of the significant man-
ual work required to select contour parts. For each closed contour its k nearest neighbours
for k = 1, . . . ,9, in terms of both the SC and CP convexity measures, were calculated. For
example the 7 nearest neighbours, in terms of SC, to the contour in Fig. 8(a) are displayed
in Fig. 8(b)-8(h). Fig. 8(a), 8(b) and 8(h) all belong to the class chicken. For each value of
k corresponding precision and recall values were calculated. The resulting Precision-Recall
curves for the measures SC and CP are displayed in Fig. 9(a). These curves demonstrate that
both measures offer similar performance. The same methodology was applied to the set of
open contours. For example the 7 nearest neighbours, in terms of SC, to the contour in Fig.
7(a) are displayed in Fig. 7(b)-7(h). Fig. 7(a), 7(c) and 7(e) all belong to the class bat wing.
The resulting Precision-Recall curves for the measures SC and M are displayed in Fig. 9(b).
It is evident from these curves that SC offers greater performance compared to M.
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(a) 0.998-0.990 (b) 0.990-0.644 (c) 0.906-0.831 (d) 0.872-0.762

(e) 0.730-0.944 (f) 0.735-0.786 (g) 0.713-0.920 (h) 0.623-0.827

(i) 0.541-0.723 (j) 0.508-0.748 (k) 0.447-0.531 (l) 0.414-0.633

(m) 0.307-0.613 (n) 0.304-0.683 (o) 0.242-0.597 (p) 0.212-0.742

Figure 4: The values are listed as SC-M under each contour.

A B

Figure 5: A series of almost collinear segments.

(a) 0.252 (b) 0.251 (c) 0.254 (d) 0.256

(e) 0.256 (f) 0.246 (g) 0.258 (h) 0.260

Figure 7: The corresponding SC value is displayed under each contour.
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(a) 0.98-0.94 (b) 0.94-0.92 (c) 0.91-0.90 (d) 0.84-0.89

(e) 0.79-0.82 (f) 0.77-0.86 (g) 0.70-0.84 (h) 0.64-0.75

(i) 0.57-0.79 (j) 0.46-0.64 (k) 0.42-0.39 (l) 0.34-0.42

(m) 0.33-0.56 (n) 0.32-0.67 (o) 0.28-0.39 (p) 0.24-0.47

Figure 6: The values are listed as SC-CP under each contour.

(a) 0.811 (b) 0.815 (c) 0.806 (d) 0.806

(e) 0.817 (f) 0.804 (g) 0.819 (h) 0.822

Figure 8: The corresponding SC value is displayed under each contour.
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Figure 9: PR curves.

5 Conclusions
This paper proposes a new measure entitled SC for determining the convexity of both open
and closed contours. The authors believe SC to be the first convexity measure to use shape
similarity to determine convexity. Quantitative results demonstrate that SC provides similar
performance to the current state of the art measure for closed contours while it offers im-
proved performance relative to the state of the art measure for open contours. The O(n) time
complexity of SC makes it suitable for machine vision applications.
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