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Abstract

Supertrees can be used to combine partially overalapping trees and generate more
inclusive phylogenies. It has been proposed that Maximum Likelihood (ML)
supertrees method (SM) could be developed using an exponential probability
distribution to model errors in the input trees (given a proposed supertree). When
the tree-to-tree distances used in the ML computation are symmetric differences,
the ML SM has been shown to be equivalent to a Majority-Rule consensus SM, and
hence, exactly as the latter, it has the desirable property of being a median tree
(with reference to the set of input trees).

The ability to estimate the likelihood of supertrees, allows implementing
Bayesian (MCMC) approaches, which have the advantage to allow the support for
the clades in a supertree to be properly estimated.

| present here the L.U.St software package; it contains the first
implementation of a ML SM and allows for the first time statistical tests on
supertrees. | also characterized the first implementation of the Bayesian (MCMC)
SM. Both the ML and the Bayesian (MCMC) SMs have been tested for and found to
be immune to biases. The Bayesian (MCMC) SM is applied to the reanalyses of a
variety of datasets (i.e. the datasets for the Metazoa and the Carnivora), and | have
also recovered the first Bayesian supertree-based phylogeny of the Eubacteria and
the Archaebacteria. These new SMs are discussed, with reference to other, well-
known SMs like Matrix Representation with Parsimony. Both the ML and Bayesian

SM offer multiple attractive advantages over current alternatives.
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Chapter 1: Introduction

“The affinities of all the beings of the same class have sometimes been
represented by a great tree. | believe this simile largely speaks the truth. The
green and budding twigs may represent existing species; and those produced
during each former year may represent the long succession of extinct species...
The limps divided into great branches, and these into lesser and lesser
branches, were themselves once, when the tree was small, budding twigs; and
this connexion of the former and present buds by ramifying branches may well
represent the classification of all extinct and living species in groups

subordinate to groups” — Charles Darwin, 1859.

It is uncontroversial that the biologist’s interest in recovering relationships of
common ancestry among organisms dates back, at the very least, to the work of
Darwin (see above), and the use of trees to depict evolutionary trends (not
necessarily based on the Darwinian concept of common ancestry) predates the work
of Darwin himself, dating back at the very least to the work of Lamarck (1809).
Rightfully, phylogenetics still plays a central role in evolutionary biology.
Relationships among many living organisms are still poorly understood, and the
development of methods to recover such relationships and test phylogenetic
hypotheses is still a central aim of theoretical biology. The goals of this PhD thesis
are to develop new methodological approaches to reconstruct phylogenetic trees, to

test pre-existing phylogenetic hypotheses, and to apply such methods to real data



sets. More broadly, this thesis is about bioinformatics. Biologists need informatics
not only to assemble sequenced genes into full genomes but also to store and
analyse the genomic data that is now readily available. Phylogenetics, the
reconstruction of trees depicting the relationships among a set of objects, is a
particularly important branch of bioinformatics. Firstly, phylogenies are used as part
of other bioinformatic tools. For example, standard multiple sequence alignment
methods exploit phylogenetic trees to decide the order in which sequences are to be
added to growing alignments (Feng and Doolittle, 1987). Secondly, phylogenies are
important per se because they allow the relationships among several objects (e.g.
species or genes) to be defined, and this is prerequisite to understand several
aspects of their evolutionary history. Notable examples are represented by the
“comparative approach” (e.g. (Harvey and Purvis, 1991; Lamarck, 1809; Rohlf, 2001;
Rihoux and Ragin, 2008), whereby phylogenetic trees are used to correct for the
effect of common ancestry when correlating biological variables (van Hooff, 1972;
Rowe and Arnqvist, 2002; Losos and Glor, 2003), and by application in macroecology,
e.g. to understand patterns of biodiversity through time (Ruta et al., 2003) and (Ruta
et al., 2007)). It is thus unsurprising that theoretical phylogenetics has become a
vibrant area of research at the interface between informatics and evolutionary
biology, and it is equally unsurprising that Systematic Biology (the journal that
publishes original research in evolutionary biology with the highest impact factor)
specialises in theoretical phylogenetics and method development. Indeed, there is a
constant need for new analytical tools that can efficiently deal with the ever-
increasing amount of data that are currently being generated, and for new methods

that can improve on the accuracy of currently available methods.



Phylogenomics, the use of genome scale data sets in phylogenetics, has now
virtually replaced standard (using single or a few genes) phylogenetic analyses
(Fitzpatrick et al., 2006; Pisani et al., 2007; Holton and Pisani, 2010; Pisani et al.,
2007). Advances in molecular biology and next generation sequencing (NGS)
techniques have led to an explosion in the amount of full genome data that is
available for analysis. NGS methods are discussed in some detail in section 1.2.1. but
for an in-depth review see Metzker (2009) and Ansorge (2009). Phylogenetic
analyses based on a handful of genes are now generally considered to be of low
significance, at best providing preliminary results that ought to be validated in light
of phylogenomic analysis.

The consequence of the above is that there is now a growing need for
sophisticated new methods that can deal with the reconstruction of phylogenies
based on entire genomes (or at least based on large data sets composed of hundreds
to thousands of genes) (Gordon, 1986; Baum, 1992; Ragan, 1992; Ranwez et al.,
2007; de Queiroz and Gatesy, 2007; Steel and Rodrigo, 2008; Smith et al., 2009;
Bansal et al., 2010). Such techniques can be divided into two broad classes: 1) those
based on a gene concatenation approach (and inspired by the total evidence
approach (Kluge, 1989, 2004; Farias et al., 2000) and 2) those based on some form of
reconciliation of the gene trees into single, species trees. Approaches that fall into
this second class are essentially grounded on the theoretical underpinnings defined
by the Taxonomic Congruence approach (Farris, 1971; Mickevich, 1978; Miyamoto
and Fitch, 1995). Gene concatenation approaches are generally referred to as
supermatrix-based approaches. These approaches involve the generation of

sequence alignments or rectangular phylogenetic matrices through the



concatenation of all the character data followed by simultaneous analyses. The
supermatrix approach also known as ‘combined analysis or simultaneous analysis’ is
a “total evidence approach” because of its direct and simultaneous use of all of the
taxa included in a given study (de Queiroz and Gatesy, 2007). Taxonomic
congruence approaches include a more heterogeneous set of tools including the
consensus and supertree methods, and the gene-tree/species-trees approaches
(Page, 1998; Liu and Pearl, 2007; Drummond and Rambaut, 2007; Kubatko et al.,
2009). This thesis will focus on the supertree methods and any mention of
supermatrix, unless stated otherwise, will be in relation to the rectangular matrix of
pseudocharacters representing nodes on trees (e.g. the Matrix Representation with
Parsimony (MRP) supertree method developed independently by Baum (1992) and
Ragan (1992)).

In addition, one should keep in mind that there is another important data set
that bears on our understanding of evolution: Morphology. The latter is key because
for some types of biological data (e.g. fossils) genomic data will never be available.
Yet it is well known that fossil information is key to our understanding of evolution
(Gauthier et al., 1988). For example no study of the evolution of birds will ever lead
to any solid conclusions if researchers were to limit their comparisons to the extant
vertebrate lineage (Chiappe, 2002). Several approaches that can integrate
morphological and molecular data have been developed within both of the
taxonomic congruence and the total evidence frameworks. The former uses
supertree approaches to integrate phylogenies derived from the analyses of fossil
data. The latter, on the other hand, exploits the availability of models that can

accommodate morphological characters and data partitioning (Lewis, 2001; de



Queiroz and Gatesy, 2007; Geisler et al., 2011; Ronquist et al., 2012b; Ronquist et al.,
2012a).

According to Steel and Rodrigo (2008) mathematicians involved in the
development of methods for phyologenetic inference have often complained that
biologists are not always sure what is it that they want when they build a phylogeny.
As a biologist | think it is fair to assume that what we want is the best possible
interpretation for the data that is available to them. Hence, the principal aim of this
thesis is to provide a solid framework for data interpretation. In particular | shall
focus on supertree approaches inspired by Taxonomic Congruence and investigate
the developments and the applications of Maximum likelihood (ML) and Bayesian
(MCMOC) supertree methods. These new methods will be shown to represent
improvements over currently available supertree methods (Bininda-Emonds, 2004a)
and are implemented in the L.U.St software package.

In the second chapter of this thesis, Implementation of Maximum Likelihood
(ML) and Bayesian (MCMC) supertree methods, | discuss briefly concepts
introduced by Steel and Rodrigo (2008). These provide the foundation for the
calculation of a maximum likelihood supertree given a set of input trees on partially
overlapping taxa. This chapter will focus on theoretical issues and present software
that has been developed as part of this project in order to implement ML and
Bayesian supertree reconstruction. Topics include representation of trees as data
structures that can be manipulated by computer software, the creation of a tree-
class in the context of object oriented programming, and the application of this class
to the development of a ML supertree software in which | implement a subtree

pruning and regrafting (SPR) heuristic search strategy (Swofford et al., 1990).



Chapter three, Testing case studies, discusses the different tests that have
been performed on each of the supertree methods in order to ensure that it is fit for
its purpose. The ML and Bayesian (MCMC) supertree methods are tested for both
input tree size- and input tree shape- related biases. In this chapter, | also take a
look at how both of these supertree methods perform when used to analyse an
empirical data set for which | know the expected result a priori.

Chapter four, Reanalyses of published data sets, examines the performance
of the ML and the Bayesian (MCMC) supertree methods when used to analyse real
world data sets. Two previously analysed data sets, the metazoan dataset of Holton
and Pisani (2010) and the carnivore data set of Nyakatura and Bininda-Emonds
(2012) were used in this chapter. The first data set represents a phylogenomic data
set (with a high level of taxonomic overlap) while the second is a more traditional
data set composed of trees sampled from the literature (with a low level of
taxonomic overlap).

Chapter five, Reconstructing the Bayesian Tree of Life, explores a key
guestion in phylogenetics, the nature of the tree of life, and evaluates whether it will
be possible to improve the current understanding of the evolution of life by using
the new tools introduced in this thesis. This chapter is essentially an application of
the various tools | have developed over the course of my PhD to a novel genomic-
scale data set. In chapters three, four and five | compare and contrast the
performance of both the ML and Bayesian supertree methods against other available
and widely used supertree methods. For this, | decided to compare the ML and
Bayesian methods against three well established methods, i.e.: matrix

representation with parsimony (Baum, 1992; Ragan, 1992), most similar supertree



(Creevey and Mclnerney, 2005), and the Robinson Foulds supertree (Bansal et al.,
2010). The results obtained from these chapters are used to explain the advantages
offered by the novel supertree methods developed and characterised in this thesis
over existing supertree methods.

Chapter six, General Discussion and Conclusions, will address the results |
have obtained, discuss the questions answered by this thesis and the new questions
posed by these results, and | attempt to philosophize on the impact that this thesis
will have on phylogenetics.

Chapter seven, General conclusion, is a short concluding chapter where | will
evaluate the extent of the future work | need and want to perform to improve on

what | have achieved here.

1.1 Terms and Definitions

1.1.1 Trees
Most of this thesis focuses on the development of new supertrees methods. These
methods are used to construct more inclusive and larger phylogenies using the
information in smaller trees (input or source trees). Accordingly | start this thesis by
describing and formally introducing the concept of trees. As thisis not a
mathematical thesis, this introduction is mostly written from the standpoint of
practising biologists. For a more mathematically in-depth definition of trees, see
(Harary and Palmer, 1973; Bryant, 1997; Thorley, 2000).

Trees are acyclic, connected graphs (Harary and Palmer, 1973; Bryant, 1997).
In particular, phylogenetic trees differ from standard trees because, aside from

consisting of a set of nodes (vertices) that are connected by a set of branches



(edges), they further have labelled terminal nodes. Each node in a tree has a degree,
representing the degree of a node is the number of branches incident to it. In a
phylogenetic tree, nodes can be terminal or internal. Terminal nodes are those with
a degree of 1. Internal nodes have a degree greater than 1. Phylogenetic trees can
be either rooted or unrooted. An unrooted phylogenetic tree is a tree with no
nodes (vertices) of degree of 2. This corresponds to the phylogenetic tree in Steel
(1992) and Dress and Steel (1992). A rooted phylogenetic tree is described in the
same way, except that the internal node called the root is distinguished by having a
degree of 2.

Given any tree T, the leaf set or taxon set of such a tree, denoted by L(T), is
the ensemble of terminal nodes. However, in the case where T is a set of trees, L(T)
represents the union of the leaf sets of the trees in T. A node ain a rooted tree is a
descendant of a node b if we have to go through node b to get to the root from node
a. In this situation, node b is considered an ancestor of node a. The nodes that are
both adjacent to and descendant of node a are considered the children of a. The

adjacent node that is also an ancestor of node g, is known as the parent of node a.

1.1.2 Tree resolution

The resolution of a tree is the amount of structure (or information) it contains. A
tree is bifurcating or fully resolved if all of its internal nodes (except the root) have a
degree of three (see figure 1.1c). A polytomous tree is a tree with one or more
internal nodes of degree greater than three. A tree containing a single polytomous

internal node (a tree with no internal branches) is known as a bush (see figure 1.1a).



Polytomies in phylogenetic trees can be interpreted in two different ways
(Maddison, 1989). They can be either hard, indicating that more than two lineages
diverged from the same speciation event (i.e. simultaneously), or soft, indicating
ignorance of the true cause. Polytomies throughout this thesis will be treated as soft.
This means that resolved trees are considered to be maximally informative while

bushes are considered to be totally uninformative.

A A A
B B —
| C —C p—C
D D D

(a) (b) (c)
Figure 1.1: Rooted phylogenetic trees with different levels of resolution.

(a) A rooted bush, (b) A rooted partially resolved tree and (c) A rooted bifurcating

tree.



1.1.3 Subtrees
Given any tree T, and a set of leaves F where F C L(T), the subtree of T induced by F,
denoted T|f, is the minimal subgraph of T when only the node labels from F are
connected, with all nodes with a degree of two suppressed (see figure 1.2)
(Buneman, 1974).

l1is an internal node in a rooted tree t; by removing the branch between /;
and its parent node we are left with two connected subgraphs. Rooting the

subgraph containing /; at the node /; leaves us with the subtree of t rooted at /;.

(a) (b)

Figure 1.2: A tree and its subtree. A tree (a) and (b) a subtree of the tree in (a)
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1.1.4 Splits

The set of the splits of a tree T is the set of all bipartitions corresponding to edges in
T (see figure 1.3). If we assume b to be an edge in tree T, then by removing b we
partition the leaves of T into two subsets each corresponding to one of the parts
composing the bipartition defined by b. One of the parts of this bipartition will
represent a monophyletic group (i.e. a group of leaves with a common ancestor).
The other could be either mono or paraphyletic. The first element of the bipartition
can be defined a clade or a component. The remaining partition is a clade or a
component only if it is monophyletic. If it is paraphyletic, then it does not represent
a clade or a component.

A trivial split is the split corresponding to an external branch of T. This split is
characterised by one of the partitioned subsets having a cardinality of one (the
cardinality of a set being the number of elements, in this case taxa, it contains).
Trivial splits are phylogenetically uninformative as they are always true (irrespective
of the data analysed).

Non-trivial splits correspond to splits on the internal branches of Tand are
regarded as representing cladistics information. In a rooted tree the splits are
denoted the inner set and the outer set respectively to convey the direction of

evolution specified in tree T (Gusfield, 1991; Bryant, 1997)

1.1.5 Triplets
Atree Tis a triplet if its leaf set L(T) has cardinality |L(T)|= 3. For every three leaves
there is only one unrooted tree and three possible rooted trees. The unrooted three-

taxon tree is cladistically uninformative. A rooted triplet is considered to be
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equivalent to the smallest possible non-trivial rooted split (see figures 1.2b, 1.3)

(Thorley, 2000).

1.1.6 Nestings

If a and b are two nodes in a rooted tree, a is an ancestor of b if we have to go
through a to get to the root of the tree from b. Node a is the last common ancestor
to all nodes that are descendant of a. The common ancestor of a set of leaves,
which is also a descendant of the set of common ancestors for that leaf set, is said to
be the most recent common ancestor for that leaf set. Two groups are said to nest
together if the last common ancestor of group 1 is an also an ancestor of the most
recent common ancestor of group 2 (Adams, 1986) (figure 1.3). This implies that

while a clade is always a nesting a nesting is not necessarily a clade.
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A —— .
(a) Nestings Triplets Clades b Nestings Triplets Clades
(AD)B  AD|B AD|BC (b) (AC)B  AC|B AC|DB
(AD)BC  AD|C (AC)BD AC|D
(AD)C  AB|C (AB)D  AB|D
(AB)C  DB|C (AC)D  cB|D
ACB)D
D (ADB)C C (ACB)
B B
C D
A
(c)
B
C
D

Figure 1.3: Two rooted phylogenetic trees and their Adams consensus tree.

(a) and (b) The two rooted input trees with a list of all their respective nestings,
clades and triplets. (c) The strict nesting consensus tree (Adams consensus tree) of

the trees in (a) and (b).

1.1.7 Quartets

A tree constructed on four leaves is known as a quartet (figure 1.3c is an example of
a quartet). The cladistics information presented in a tree summarizes the inferred
evolutionary histories of the taxa on the tree based on their phylogenetic
relationships. There are three possible resolved unrooted trees that can be inferred
on a quartet of leaves and each of these is regarded as having cladistic information.

There are fifteen possible resolved rooted trees that can be inferred from a quartet

13



of leaves. Any tree T is made up of, and can be reconstructed from, its set of rooted

triplets or quartets (Bandelt and Dress, 1986).

1.2 Building a Phylogeny

Phylogenies (aka evolutionary trees) are the basic tools that we employ to
understand the evolutionary history of a group of objects (e.g. a group of species)
and to analyse their relationships statistically (Felsenstein, 2004). So far phylogenies
have been built for organisms using whole genomes (Snel et al., 1999), ribosomal
RNA (Woese, 1977), microbacterial strains (Werren et al., 1995), metabolic pathways
(Forst and Schulten, 2001), human languages (Pagel, 2009) to name but a few.
Phylogenies can be built from morphological or genomic (DNA or protein sequences)
data.

DNA is the four-letter genetic code responsible for the development and
functioning of all organisms. It is in this form that genetic information is passed from
one generation to the next through evolutionary time. DNA corresponding to
protein coding genes is transcribed into RNA and translated into amino acid (AA)
sequences. Phylogenetic analyses can be carried out at the DNA, or AA level, and
analyses performed using sequences representing DNAs or proteins generally have
different aims. This is because DNA and AA sequences evolve differently, in the
sense that DNA tends to accumulate mutations faster than AA sequences. This is
because of the degeneracy of the genetic code and the existence of
silent/synonymous mutations (i.e. mutations in the DNA sequence that do not cause

the AA sequence to change) (Rota-Stabelli et al., 2013). As a consequence DNA data
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are not ideal to identify divergent homologs and for deep-time phylogenies while AA
data sets are inadequate to resolve shallow level relationships (e.g. at the species
level) (Rota-Stabelli et al., 2013).

Proteins (amino acid) sequences have been used extensively in the
reconstruction of phylogenies ((Hashimoto et al., 1994; Adachi and Hasegawa, 1995;
Baldauf et al., 2000; Harper et al., 2005) and there is an abundance of methods
available (Kishino et al., 1990; Adachi and Hasegawa, 1992; Hasegawa and Fujiwara,
1993; Posada and Crandall, 1998; Castresana, 2000). All analyses performed in this

thesis will use AA sequences.

1.2.1 Getting the data

The first step in building a phylogeny is getting the data (molecular or morphological
characters). The major challenge in using morphological data for the reconstruction
of a phylogenetic tree is deciding on the phenotypic characteristics to use as
characters among the organisms in question (Swiderski et al., 1998).

The continuous improvements in the field of Next Generation Sequencing
methods (NGS) hides the fact that although the structure of the DNA was established
in 1953 (Watson and Crick, 1953), the first DNA sequence was not acquired till more
than 20 years later using techniques based on two dimensional chromatography
(Summers et al., 1973). However, the field of sequencing has never looked back,
with the first full gene being obtained only a few years after (Fiers et al., 1976). The
road to genomics was paved by important discoveries such as the Maxam-Gilbert
sequencing method (Maxam and Gilbert, 1977), the chain termination method of

Sanger et al. (1977) and the whole-genome shotgun sequencing techniques of Smith
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et al. (1995). The development of high throughput NGS techniques (such as the 454
pyrosequencing of Margulies et al. (2005), the illumina sequencing of Metzker (2009)
and the ABI solid system of McKernan et al. (2009)), which adapted the sequencing
process for running on a parallel process, means that DNA sequencing has become
easier, faster, more reliable and most importantly cheaper.

However it is the development of revolutionary sequencing machines such as
lon Torrent’s Personal Genome Machine (PGM) (Rothberg et al., 2011), Pac Bio’s
Single Molecule Real Time sequencing (SMRTs) (Eid et al., 2009) and illumina miSeq
(Bentley et al., 2008) that are really bringing sequencing into more labs than ever

was thought possible.

1.2.2 BLAST and Homology
Introduced by Richard Owen (1843), the concept of homology is fundamental in
modern biology (Fitch, 2000). Homology from the Greek word Homologia (meaning
agreement) was defined at the time of its birth as “the same organ under all
varieties of form and function”. Homology, defined in an evolutionary context as the
same structure in two species that has been inherited from a common ancestor, has
become the foundation of any comparative analysis. After obtaining the data
(nucleotide or AA) for the phylogenetic analyses the next step is the identification of
homologous sequences.

Homology identification is complicated by homoplasy (independently derived
similarity). Homologous sequences in this thesis were identified using the Basic
Local Alignment Search Tool (BLAST - (Altschul et al., 1990)). The BLAST approach

uses sequence similarity to identify homologous sequences. Given a seed sequence

16



(a query sequence) and a database of potentially homologous sequences BLAST uses
a significance score (also known as the Expectation-value (E-value)) to represent how
likely it is that the compared sequences have the observed level of similarity (given
the dimension of the analysed data set) by chance alone. The smaller the E-value of
two compared sequences the higher their likelihood of being homologous. As a rule
of thumb, sequences with E-values < 10E-50 are considered to be close homologs
while an E-value of 10E-20 < E-value < 10E-8 would indicate distant to very distant
homologs and may represent false positives (i.e. sequence similarity as a result of
analogy and/or homoplasy). Any sequences with an E-value above 10E-5 are
considered not to represent homologous relationships.

Homology among sequences can be divided into three types that cannot be
distinguished by BLAST. The three types of molecular homology are as follows:
paralogy (homology as a result of gene duplication), orthology (homology as a result
of a speciation event) and xenology (homology as a product of the lateral transfer of
genetic material) (Fitch, 2000). In this thesis, only orthologous sequences are

combined to build species trees from gene trees.

1.2.3 Multiple sequence alignment (MSA)

The next step in the reconstruction of phylogenies using molecular data is to build a
multiple sequence alignment. A MSA arranges three or more sequences
(nucleotides or amino acids) into a rectangular array to refine further the hypothesis
of homology among them by identifying homologous sites. To construct a MSA for a
given number of sequences one should generate an n-dimensional matrix expanding

the dynamic programming technique introduced originally by Needleman and
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Wunsch (1970). However, such a strategy has been shown to represent a NP-
complete problem (Elias, 2006).

The progressive alignment method was introduced to circumvent the
unsolvable complexity of this NP-complete problem. Progressive alignment uses
sequential addition and a phylogenetic tree (the decision tree) to produce the final
MSA, which is a heuristic approximation of the true optimal alignment. The key step
in progressive alignment is the use of a phylogenetic tree reconstruction method to
define a decision tree. Essentially, a low quality tree (from a set of all the pairwise
distances estimated after the generation of all independent pairwise alignments
between the considered sequences) is generated. This tree is then used as a guide
tree to decide the order in which the sequences will be added to the alignment,
starting from the two most similar and finishing by adding the most dissimilar ones.
At each step insertions and deletions are dealt with by introducing gaps that are kept
fixed in the growing alignment. To deal with point mutations, MSA methods use a
weighting scheme. MSA is not only useful for phylogenetic inference but also for
protein structure prediction and many other tasks in sequence analysis (Edgar and
Batzoglou, 2006).

Several computational algorithms and software for producing an MSA have
been developed over the years. An example of a series of MSA tools based on the
progressive alignment method is the Clustal programs family (Higgins and Sharp,
1988), e.g. ClustalW. T-Coffee (Notredame et al., 2000) is another example of MSA
software that is based on progressive alignment. T-Coffee offers an improvement in
accuracy (especially for distantly related sequences) over Clustal but at the expense

of speed. Muscle (Edgar, 2004), another common progressive alignment software,
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is an example of an MSA tool that uses an iterative approach. Muscle improves over
Clustal and T-Coffee by updating the distance measures among sequences between
iterations and by using a distance method that is more accurate to assess the
relatedness of two sequences when building the guide tree.

Choosing a MSA tool is not straightforward and choice is often problem
dependant. In this thesis we have generally used the PRANK alignment software
(Léytynoja and Goldman, 2008). PRANK is a phylogeny-aware MSA method (uses the
evolutionary distance between sequences in the alignment process) and although it
is slow in comparison to some other MSA methods it produces alignments that are

likely to be more accurate than those generated by other methods.

1.2.4 Phylogenetic methods

There are several algorithms available today for phylogenetic inference. Tree
reconstruction methods are evaluated based on their speed, accuracy, efficient use
of data and other factors. The available tree computation methods can be divided

into three categories.

1.2.4.1 Distance based methods:

Distance methods require a distance measure between pairs of sequences in a
dataset to be calculated. This means that distance-based methods create a
phylogeny that represents a certain distribution of distances on the set of
sequences. Distances between sequences can be defined as the number of differing
alignment positions, weighted differences, edit distances, Poisson corrected

distances etc. See (Felsenstein, 1984).
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The neighbour-joining method (Saitou and Nei, 1987) is an example of a distance-
based phylogenetic method. It generates unrooted trees and assumes that distances
are additive. Distance-based methods are very fast. However, they are not very
accurate, and are unable to use efficiently the information in MSAs (Felsenstein,
2004), as they convert all mutations into a single value representing the distance

between two sequences.

1.2.4.2 Character-based methods

Unlike distance-based methods Character state-based methods require a matrix of
discrete characters as input. They use information more efficiently than distance-
based methods because information is not lost during the transformation of the
alignment into a distance matrix. Character-based methods include maximum

parsimony (MP), maximum likelihood (ML) and Bayesian methods.

1.2.4.2.1 Maximum Parsimony (MP)

MP is a character-based method. It selects the tree that explains the observed data
using the minimum number of evolutionary events (character substitutions along the
branches). The task of identifying the most parsimonious tree is a NP-hard problem,
and becomes more and more difficult as the number of taxa increases. This is
because the tree space grows exponentially with the number of taxa in the dataset
(Felsenstein, 2004). As a consequence, several heuristic methods have been
developed to search the tree space and find the MP tree or trees (the MP tree is not
necessarily unique). Although faster than maximum likelihood, maximum parsimony
is easily swayed by systematic biases that can affect the data (such as long branch

attraction). This is because this method is “naive” in the sense that it does not
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assume a model of DNA or amino acid substitution, and it considers each character-
state change as representing an evolutionary event. Hence, parsimony is misled,
when multiple substitutions and parallel substitutions happened in at

heterogeneous rate in distantly related lineages.

1.2.4.2.2 Maximum Likelihood (ML)

Edwards and Cavalli-Sforza introduced the likelihood estimation method of Fisher
(1922) into phylogenetics in 1964. Currently it is one of the most widely used
methods for phylogenetic inference. Similarly to parsimony, the ML method uses
character data rather than distances. However, instead of a parsimony criterion
being used to select a tree, the tree selected by the ML method is the tree
maximising the likelihood of having generated the observed alignment (i.e., the
analysed data).

Essentially the likelihood of a hypothesis is the probability of the data given
the model. The data here is what we have observed and does not change. For a
phylogeneticist, this is usually a multiple DNA or amino acid (AA) sequence
alignment, or a morphological data set.

What the model represents, however, is more ambiguous. In phylogenetics,
this is composed of a tree with branch lengths (representing sequence relatedness)
and the mechanism of molecular change (Felsenstein, 2004). The mechanism of
molecular change (loosely referred to as the model) itself is how we think molecular
sequences change over time. Phylogenetic models for molecular data are generally
composed of two parts, the nucleotide or AA composition frequencies and the

substitution rates (Foster, 2001).
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This means that we evaluate the likelihood of the tree under the composition
and substitution rates. The composition is the frequency of the four nucleotides or
20 AAs while the substitution rate is usually a matrix showing the probability of one
nucleotide changing to another nucleotide or one AA changing to another AA.
Substitution models exist for both DNA and proteins. However, their level of
complexity varies with the Jukes and Cantor (1969) model being the simplest and the
General Time Reversible (GTR- (Tavaré, 1986)) model the most complex among the
site-homogenous models. The Jukes and Cantor model assumes one substitution
rate only for all possible character state substitutions and equal frequencies for all
character states. The GTR model assumes that each individual character state
substitution can have its own rate and that the frequencies at which the characters
appear in the data are character specific. Generally, amino acid substitution models
are empirical GTR models (i.e. they represent a GTR matrix frozen in time) (see
(Jones et al., 1992; Jones et al., 1994a; Jones et al., 1994b; Koshi and Goldstein,
1995; Koshi and Goldstein, 1997; Koshi and Goldstein, 1998)). However it is now
possible to also derive mechanistic (i.e. directly inferred from the data) GTR models
also for amino acid data sets. Site heterogeneous models that are even more
complex than the GTR model (e.g. the CAT based models of Lartillot and Philippe
(2004)) also exist but are neither used nor discussed in this thesis.

The probability of any result (the data) can be estimated given a model under
which we expect the result to be generated e.g. if in a coin tossing experiment 5
heads are obtained in 10 trials, we can calculate the probability of this result if we
know that the coin is fair. The likelihood of a hypothesis is proportional to the

probability of observing the data under that hypothesis (the constant of
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proportionality being arbitrary — (Edwards, 1984)), and the likelihood ratio test
(Equation 1) is a test that can be used to evaluate between two alternative

hypotheses and decide which one fits the data better.

Equation 1: Likelihood ratio theorem

(Hl) _ kx Prob (D|H1)
H2/) k= Prob (D|H2)

Equation (1) states that to calculate the likelihood ratio of the two hypotheses, their
likelihoods have to be divided. As mentioned above, the likelihood of a hypothesis is
proportional the probability of the data (given the hypothesis — with the constant of
proportionality being arbitrary). Hence, from a practical perspective, it is generally
assumed that the arbitrary constants of proportionality cancel out, and the
likelihood ratio test is simply calculated as the probability of observing the data
under the first hypothesis divided by the probability of observing the data under the

second hypothesis (Equation 2).
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Equation 2: Probability theorem

(Hl) _ Prob (D|H1)
H2)  Prob (D|H2)

The likelihood ratio test can be used to compare only two hypotheses at a
time. However, given an alignment (the observed data - D) and a set of possible
hypotheses (Hj, Hy, ... Hy), the likelihood ratio test can be used to obtain a global
ranking of the hypotheses. The ranking will be relative, as one of the hypotheses has
to be taken as a reference, and is used as the fixed denominator in all likelihood ratio
tests that need to be performed (one for each alternative —i.e. non-reference
hypothesis). To make the ranking global, it is sufficient to select as the reference
hypothesis the one under which the probability of observing the data is the maximal
possible (i.e. P=1). Note that this hypothesis does not need to be known or exist (in
the case of phylogenetics, the hypothesis with the probability of P=1 is the true tree
that generated that generated the data). Accordingly, the global ranking of all
available hypotheses (against the best —unknown— possible one), is simply obtained
by dividing the probability of the data (under each hypothesis) by 1. That is, by
calculating the probability of observing the data under each hypothesis and ranking

the hypotheses according to these probabilities (see Equation 3).
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Equation 3: Hypothesis ranking theorem

(%) _ ProbiDIHi)

Therefore, from a practical point of view, the likelihood of a phylogenetic tree equals

the probability of observing the data under that tree.

1.2.4.2.3 Bayesian inference

Introduced to phylogenetic inference after a long stint in statistics, Bayesian
inference is a relative of the ML inference method (Mau et al., 1999). Bayesian
inference of phylogeny is based on the estimation of the posterior probability of a
hypothesis (a tree) given the alignment (the observed data) and a prior distribution
over all possible hypotheses (Yang and Rannala, 1997). The major difference
between the Bayesian and the ML approach is that the Bayesian approach uses (or
should use) an informative prior distribution over all possible hypotheses
(Felsenstein, 2004). The prior probability of a phylogeny, representing our beliefs on
how likely particular parameter values are before the data have been observed, is
combined with the probability of the data given the tree (i.e. its likelihood —
Equation 3). The posterior probability of a tree, the probability that a tree is “true”
(given a prior probability distribution), is calculated using the Bayes’s theorem
(Equation 4), which is used to estimate the relationship between prior and posterior

probabilities.
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Equation 4: Bayes theorem

P(D|H)P(H)
In P(D|H)

P(H|D) =

The Bayes theorem (Equation 4) states that the posterior probability of the
hypothesis (P(H| D)) is calculated as the likelihood of the hypothesis (given the
observed data - P(D|H)) multiplied by the prior probability of the hypothesis (P(H))
and dividing this value by the likelihood of all the hypotheses (trees). Regardless of
the general validity of the Bayes theorem, many statisticians disagree with the
application of Bayesian methods to situations where there are an infinite number of
alternative hypotheses, because in such cases proper prior distributions for the
hypotheses cannot be defined. However, because the number of hypotheses in
phylogenetics is always finite (i.e. the number of trees on n. taxa), it is always
possible to use proper distributions for sets of trees. For example, one could simply
use an uninformative prior that assigns a probability equal to 1/Bn (where Bn is
equal to the number of binary trees on n. taxa) to each of the possible trees. Note
that this is exactly what software like MrBayes (Ronquist et al., 2012b) and
Phylobayes (Lartillot et al., 2009) do. Consequently the use of Bayesian statistics in
phylogenetics is uncontroversial and Bayesian statistics has became a powerful tool
for addressing many long-standing phylogenetic questions (Huelsenbeck and

Ronquist, 2001).
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An interesting aspect of modern Bayesian phylogenetics is that it is not
strictly speaking based on the application of Equation 4. This is because analytically
calculating the denominator of this equation is all but impossible for data sets with
more than ~10 taxa (Yang and Rannala, 1997). However, the use of Markov chain
Monte Carlo (MCMC) techniques coupled with the introduction of the Metropolis-
Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) , algorithms that enable
sampling from the posterior distribution, has revolutionized Bayesian inference by
allowing the calculation of the denominator of Equation (4) to be avoided.
Accordingly, all modern Bayesian phylogenetic approaches are based on the MCMC
approach, and they have allowed the use of complex models on large data sets well

above the limits of previous studies (Mau et al., 1999).

1.3 Test of two trees
The test of two trees also known as paired site test allows two trees to be tested to
access which 1 of the two fits the data better. Tests of two trees are based on the
premises that a statistical test can be performed on the mean of the differences in
the likelihood support of two trees at each of the sites of the alignment from which
they have been derived, if we assume that evolution at each site in an alignment is
independent. Alan Templeton (1983), developed the first test of two trees but this
test proved too complex. However, a simplified version (a Winning site test) was
developed by Allan Wilson (Prager and Wilson, 1988).

The Winning site test (also used in (Felsenstein, 1985b)) uses a binomial

distribution to test if the fraction of the number of sites for which tree A fits better
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than tree B (represented by a +) versus the number of sites for which tree B fits
better than tree A (represented by a -) is significantly different from 50% of the sites
at which the two trees have different fit. Several methods of calculating the test of
two trees have been proposed such as the z test (Felsenstein and Kishino, 1993), the
t test (Swofford et al., 1996), the RELL test (Kishino et al., 1990) etc. The above tests
are influenced by the level of positive or negative signals provided by a small sample
of the sites unlike the Winning sites test, which gives equal voting to every sites in
the trees (Felsenstein, 2004).

The Kishino Hesegawa (KH) test (Kishino and Hasegawa, 1989) is a test of two
trees that can be used to test the statistical significance of tree topologies. It was
introduced as an appropriate test for maximum likelihood trees but it was noted by
Goldman et al. (2000) that the KH test should only be applied to a priori selected
trees that are inferred independently of the observed data. When used to create a
confidence set from a set of trees that include the maximum likelihood tree, the KH
test was noted to show a selection bias (Goldman et al., 2000). This selection bias in
the KH test led to the introduction of the Shimodaira and Hesegawa (SH) test
(Shimodaira and Hasegawa, 1999). The SH test is based on multiple comparisons and
it should automatically account for the selection bias in the KH test. However, the SH
test was noted to suffer from a conservative bias that resulted in less trees being
rejected as the number of trees to compare increased (Strimmer and Rambaut,
2002).

The approximately unbiased (AU) test (Shimodaira, 2002) is a test of two
trees that is less conservative than the SH test and robust against the selection bias

seen in the KH test. The AU test requires generating a number of bootstrap
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replicates of different sample sizes to the original data and calculating the number of
times the topology of the tree being tested is supported by the replicates. This

provides bootstrap values that can be used to rank the trees being compared.

1.4 Tree merging and summarisation

Phylogenetic trees can be merged in one of two ways.

1.4.1 Consensus of trees
The aim of this thesis is the development of supertree methods. We can therefore
not proceed without a short introduction to the concept of consensus.

A consensus phylogeny shows the agreement among a set of phylogenies on
the same taxon set (Wilkinson, 1994). Techniques that have been developed to build
consensus phylogenies are called consensus methods. There are several types of
consensus methods from the Adams consensus method of Adams (Adams, 1972) to
the strict consensus method of Sokal and Rohlf (Sokal and Rohlf, 1981). The inclusion
of methods like the majority rule consensus method of Margush and McMorris
(1981), in the group of consensus methods has courted some controversy in the
literature. Nixon and Carpenter (1996), stated that the goal of a consensus method is
to summarize the agreement in the phylogenetic relationships displayed by a set of
phylogenies, hence only the phylogenies inferred by the strict consensus methods
fulfils this goal. They suggested all other methods such as the majority rule
consensus method be labelled compromise consensus methods.

Wilkinson and Thorley (2001), rightfully challenged the position taken by

Nixon and Carpenter (1996), by calling such a restriction unreasonable and unhelpful
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as one could make a case for the usefulness of being able to represent not just the
clades but other cladistic relationships on a set of trees and their varying levels of
agreement (see also (Kitching et al., 1998)). Consensus methods are used in several
contexts and the usefulness of any method is context dependant (Akanni et al., In

Prep. ; Omland et al., 1999; Pisani et al., 2007)).

1.4.1.1 Strict consensus methods
The strict consensus methods depict all the relationships that are unambiguously
supported by a set of input trees. In other words, if all the trees in the set support a
specific relationship, then that relationship is represented in the consensus tree.
Relationships for which the input trees disagree are represented as unresolved
polytomies. As a result, strict consensus methods tend to return less resolved trees
and are more insensitive to topological differences among the input trees in
comparison to more lenient consensus methods. However, there is no ambiguity in
the interpretation of the relationships that they display (Swofford, 1991; Wilkinson,
1994; Adams, 1986).

The strict component consensus method (SCC) is the most widely
implemented strict consensus method (figure 1.4, see also Swofford (2003). The SCC

tree is normally used to represent sets of equally optimal phylogenies.
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Figure 1.4: Two input trees and their strict component consensus tree.

(a) and (b) Two input trees. (c) The strict component consensus tree of (a) and (b).

Adams (1972) described the first consensus method but did not characterise
it until 1986 (Adams, 1986). The Adams consensus method, as it is now known,
should technically have been named the “Strict Nestings Consensus” method (SNC),
due to the fact that it represents all the nestings that are common to a set of trees.
Due to the fact that nestings and components represent different types of
relationships on the tree, the SNC and the SCC method can often return very
different results (figure 1.3).

The Adams consensus always contains all the internal branches present in the

strict component consensus method, and it can be more resolved than the strict
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component consensus. However, the Adams consensus tree is ambiguous (from a
cladistics point of view - because nestings are not always clades) and must be
interpreted differently from the strict component consensus tree (Adams, 1986).
Unlike the strict component consensus trees, Adams consensus trees are more
topologically sensitive to shared structure in input trees. The Adams consensus
methods has been accused of producing trees that may include clades not present in
any of the input trees (Sokal and Rohlf, 1981). However, this is inaccurate because
nodes in an Adams consensus tree do not represent clades but nestings, hence
authors claiming the Adams consensus method generates clades not present in the
input set of trees (e.g. Sokal and Rohlf (1981)), are simply misinterpreting the
method of Adams. Finally, it is important to recall that the Adams tree exists only for

rooted trees.

1.4.1.2 Majority-rule consensus method

The Majority-rule (MJ-rule) consensus method, like the strict consensus techniques,
can be used to summarize the agreement of relationship patterns in a set of trees.
The most used version of this method focuses on the full splits (clades or
components) in the set of trees that we want to summarize.

The MJ-rule component consensus (MJCC) tree includes all and only those
clades found in the majority (typically above 50%) of the input set of trees. Other
clades that induce conflict among the set of input trees are presented as unresolved
polytomies. The MJCC method is often used to summarize trees in a bootstrapping
framework ((Felsenstein, 1985a); (Wilkinson, 1996)), jackknifing (Farris et al., 1996),

with quartet puzzling (Strimmer and Von Haeseler, 1996) and when calculating
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posterior probabilities in Bayesian phylogenetics (Huelsenbeck and Ronquist, 2001).
In comparison to the strict component consensus tree and the Adams consensus
tree the MJCC tree tends to be more resolved. However, extra resolution in the
context of equally optimal trees means that the consensus tree includes
relationships that are not supported by all the best interpretations of the data. For
this reason, the MJ-rule consensus methods can be considered ambiguous.
However, when used to summarise proportions and represent support for clades
that are present in the trees, it is an excellent method. It should also be noted that
the MJ-rule consensus method could be applied with a variety of thresholds (e.g.
50%, 60%, and 90%). Seen in this way, the strict consensus can be thought of as a
special case of an MJ-rule tree (it is the 100% MJ-rule consensus method).
Consequentially, this means that the MJ-rule tree and the strict consensus tree for

two input trees are the same.

1.4.2 Supertrees

According to Wilkinson et al. (2004), a supertree can be defined as a phylogenetic
tree that synthesizes, amalgamates or represents the evolutionary relationships
displayed by a set of input trees on partially overlapping taxon sets. This definition is
not different in essence from that of Semple and Steel (2000) that a supertree is any
method of analysis that can amalgamate partially overlapping input trees.
Consensus methods represent special cases applicable to the condition that all input
trees are on fully overlapping taxa. Hence, supertree methods are a generalisation

of the standard consensus methods. The supertree approach to phylogenetic
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reconstruction involves the separate analyses of datasets (e.g. generation of gene
trees/dataset specific trees) and their subsequent integration into a supertree (Steel,
1992; Sanderson et al., 1998; Steel and Bocker, 2000; Pisani and Wilkinson, 2002;
Ren et al., 2009). This means that supertree methods are able to combine the
phylogenetic information in a set of trees that have been inferred from all types of
data (morphological data included) and using different phylogenetic methods, to
reconstruct larger and more inclusive species phylogenies. The supertree approach

will be discussed in more detail in chapter 2.
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Chapter 2: Implementation of a Maximum Likelihood and

Bayesian (MCMC) supertree method

2.1 Overview

This chapter outlays the steps towards the implementation of the Maximum
Likelihood (ML) supertree method and the Bayesian (MCMC) method. As stated in
section 1.2, phylogenetic trees can be constructed from either morphological data or
genomic data, using an abundance of phylogenetic methods (Huelsenbeck et al.,
1996). The supertree approach involves building phylogenetic trees from collection
of other (generally smaller and partially overlapping) trees. These can be trees that
have been collected from the literature (Ruta, 2003; Ruta et al., 2007; Nyakatura and
Bininda-Emonds, 2012), or trees that have been derived from a series of
independent data sets (e.g. a collection of alignments from a set of gene families
(Creevey et al., 2004; Pisani et al., 2007). Both supertree methods that will be
discussed in this chapter are “liberal supertrees”. As mentioned in section 1.4.2 a
liberal supertree method is a supertree method capable of resolving conflicts among
the input trees. In the next section, | will briefly discuss some of the desired
properties that a liberal supertree method should have in relation to three of the

more familiar supertree methods currently available.
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2.1.1 Supertree methods and their properties

In the 27 years since their introduction to classification studies (Gordon, 1986),
supertrees have undergone substantial developments in terms of methods and
applications (i.e. (Purvis, 1995b; Sanderson et al., 1998; Jones et al., 2003; Ranwez et
al., 2007)). The literature on new supertree methods and their variants is growing at
a pace of more than 10 publications per year, and | will not achieve much by going
through every supertree method available (for a more in-depth review see
(Wilkinson et al., 2005a; Wilkinson et al., 2007)). In this section and in the rest of the
thesis, | shall focus on three of the most commonly used supertree methods. These
methods will be used as the standards against which to compare the new
implementations for ML and Bayesian supertrees.

The first of these standard methods is the matrix representation with
parsimony (MRP) supertree method. MRP was independently developed by Baum
(1992) and Ragan (1992). The Standard MRP method uses additive binary coding to
represent the internal nodes in input trees as pseudo-characters or elements in a
matrix. The separate matrix representations (one for each tree) can then be
combined to create a “supermatrix” that is then analysed using Fitch (reversible)
parsimony. MRP is the supertree method of choice among researchers, and has
been used to reconstruct some of the biggest, most challenging and well resolved
phylogenies in the literature (Purvis, 1995b; Pisani et al., 2007; Holton and Pisani,
2010; Flynn et al., 2005; Daubin et al., 2001). This apparent preference of MRP has
courted much controversy in the literature, largely due to the fact that MRP fails to
explain what the most parsimonious interpretation of the pseudo-character change

mean. Whereas some investigators such as Sanderson et al. (1998) and Bininda-
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Emonds and Bryant (1998) have claimed that the popularity of MRP is due to its
potential to infer well-resolved and inclusive trees efficiently, | maintain that it is due
to its ease of implementation and the familiarity of researchers with parsimony,
coupled with the availability of excellent (i.e. fast) parsimony software such as PAUP
(Swofford, 2003) and TNT (Goloboff et al., 2008).

The second supertree method considered is the most similar supertree
method (MSS) (Creevey and Mclnerney, 2005). The MSS supertree method
compares the number of nodes separating each pair of taxa on each input tree
against the number of nodes separating the same pair of taxa in the proposed
supertree after it has been pruned to have the same taxon set as the considered
input trees. This means that MSS uses a measure that is more reflective of the
topological differences (irrespective of branch lengths) between the input tree and
the pruned super tree. The MSS supertree is the tree minimizing the topological
differences among the input trees

The third considered method is the Robinson-Foulds supertree method (RF)
(Bansal et al., 2010). Similar to the MSS supertree method, the method also prunes
the proposed supertree to have the same taxon set as each of the input trees in the
source data set, but the selected supertree is the one that minimizes the sum of the
Robinson-Foulds distances (calculated as the sum of splits in tree A that are not in
tree B and vice versa) between the proposed supertree and the input trees. Itis
important to note here that as | have just defined it, the RF supertree method is
equivalent to Cotton and Wilkinson’s Majority Rule (-) Supertree method (Cotton
and Wilkinson, 2007), which returns trees with the property of being median trees to

the input tree set. Indeed, this is true even though Bansal et al. (2010) did not
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pinpoint the link between their method and the Majority Rule (-) supertree method.
However, it needs to be stressed that the RF method is not necessarily finding the
same solution of the Majority Rule (-) method, because it implements a heuristic
strategy that is not guaranteed to find the optimal RF tree(s), which would be the
Majority Rule (-) trees. In this thesis the RF supertree method has been used as an
approximation of the Majority Rule (-) method, because when | started my
investigation no implementation of the Majority Rule (-) method was available.
Recently, such a software has been released (Kupczok, 2011b), but as most of my
analyses had already been completed using the RF method, | decided to include the
results obtained using RF in my thesis.

With all of these supertree methods and more readily available (including the
majority rule (-) supertree method now implemented by Kupczok (2011b)), do we
really need to develop more methods and software? To answer this question we
first need to have a look at some of the desired properties that a liberal supertree
method is expected to have. Wilkinson et al. (2004) proposed that the choice of a
supertree method should be supported by a comparison of its accuracy in relation to
other available methods. Since the ability of different liberal supertree methods to
infer accurate phylogenies critically depends on their properties (i.e. how they
resolve conflicts) and on the properties of data (i.e. how conflicts in the data relates
to the properties of the methods) alternative supertree methods cannot be readily
judged based on the results of simulations that can be easily swayed. As a
consequence, Wilkinson et al. (2004) went on to discuss a number of properties that
they think should directly bare on the accuracy of any liberal supertree method.

Three key properties are: sizelessness, shapelessness and independence. A
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supertree method that violates the sizeless property will tend to favour relationships
in bigger trees over relationships in smaller ones when dealing with a conflict; for
example, MRP has been shown to be biased towards relationships in bigger trees
(Purvis, 1995a). Further to that, a liberal supertree method should not be biased
towards relationships in asymmetric input trees over relationships in symmetric
input trees and vice versa (i.e. it should be shapeless). Wilkinson et al. (2005a),
investigated the shapeless property of 14 supertree methods, including MRP. Their
dataset is reanalysed in chapter 3. Finally, independence (see also (Bryant, 1997)) is
the property whereby extra topological information from leaves that have been
pruned from the input dataset should have no bearing on the topology inferred for
the remaining leaves. The properties listed above and the other (perhaps less
important) properties listed by Wilkinson et al. (2004), are not well understood for
many of the currently available supertree methods, and only recently have some
studies addressed them (Wilkinson et al., 2005a; Wilkinson et al., 2005b). Lack of
knowledge of the specific properties of liberal supertree methods, coupled with the
ad hoc nature of most liberal supertree methods, means that any attempt to
interpret the relationships that they infer can be inherently misleading and this is a
major reason for the development and implementation of the ML and Bayesian
supertree methods. This thesis maintains that supertree methods should have the
properties highlighted in Wilkinson et al. (2004) . This is currently not the case with
MRP which, unlike the Adams consensus method (see section 1.4.1.1) and as a
consequence of its inability to meet the criteria pinpointed above, can generate truly

unsupported groups (Wilkinson et al., 2005b).
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2.1.2 Estimating support for supertree clades

To date, the task of estimating clade support in a supertree has largely been a
tedious and unsuccessful one. Creevey et al. (2004), suggested bootstrapping input
trees (see also (Moore et al., 2006)), as the bootstrap would be a natural and
obvious way to measure support in supertrees. However, for the bootstrap to be
applicable, the input trees must have a high level of species overlap. If a taxon is
represented in, say, one out of one hundred trees, it is likely that the input tree
bootstrapping procedure will produce a non-plenary (i.e. missing a taxon) pseudo-
replicate (bootstrapped) dataset. In such a case, the bootstrap procedure has to be
interrupted for two equally important reasons. (1) To summarise non-plenary
supertrees (that are partially overlapping), one should use the majority rule
supertree method. However, the majority rule supertree method (Cotton and
Wilkinson, 2007), being based on tree-to-tree distances, can represent the
topological relationships in the set of summarised trees but not the proportion of
times that each clade appear. Hence, it is currently impossible to display support
values for a set of non-plenary bootstrap trees — see Wilkinson et al. (2005b), for a
treatment of the problem of the support that non-plenary trees can provide to the
clades in a supertree. Alternatively (2) one could select only the plenary pseudo-
replicates (i.e. subsample from the bootstrap generated data sets). In so doing, one
would generate only plenary trees that could be summarised using the standard
majority rule consensus method. Unfortunately, as the subsampling will not be
random (as the selected data sets will be identified based on a specific property —i.e.
they are plenary), this second approach will violate the key assumption of any

bootstrap analysis (that the resampled data set are independent). As a
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consequence, input tree bootstrapping has been a viable choice only for genomic
applications of supertree analyses (e.g. (Creevey et al., 2004; Pisani et al., 2007;
Holton and Pisani, 2010)), where the number of input trees is generally very high (in
the thousands) and species overlap is correspondingly high.

To circumvent problems of bootstrap inapplicability, Bininda-Emonds (2003)
introduced the “Quality” support (Qs) index. This index should link the frequency
with which a clade in a supertree agree or disagree with the clades in the input trees.
However, Wilkinson et al. (2005b) showed Bininda-Emonds’ Qs index to be flawed
and introduced an alternative called the “V” index, which unlike the Qs index is a
valid approximation of supertree clade support. Price et al. (2005) introduced a
modification of Bininda-Emonds’ Qs index, but it is unclear whether Price et al.
(2005) correction is valid (see (Baker et al., 2009)), leaving Wilkinson et al.’s “V” as
the only viable (of confirmed validity) alternative to supertree bootstrapping.
However, “V” is a supertree-specific measure, it is difficult to interpret with
reference to standard support measures like the bootstrap, and this reduces its
utility. The general inability to measure support for clades in a supertree was the
major drive underlying my interest in developing a Bayesian supertree method, as
this would enable the user to estimate posterior probabilities for the clades

irrespective of taxonomic overlap.
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2.2 Maximum Llkelihood (ML) supertree method

It is surprising that it has taken this long for supertrees to be brought into the
maximum likelihood framework. This is particularly so because since 1922, ML has
grown to be one of the most employed statistical inference methods, and in the last
decades it has become the most commonly used method for phylogenetic inference.
The principle of ML works by estimating the value (for a given model’s parameter)
that makes the observed data most probable. It was recently proposed by Steel and
Rodrigo (2008) that a ML supertree can be estimated, given a data set of partially
overlapping trees, if the Robinson-Foulds metric is used to calculate the distances
between the proposed supertrees and the input trees, and an exponential
distribution is used to model the topological discordance between the input trees.
That is, it is assumed that the partially overlapping input trees differ from each other
because of errors, and a supertree is sought that summarises the input trees while at
the same time explaining their differences as the consequence of errors in tree
reconstruction. Hence, the quantity to be minimized in order to maximise likelihood
is therefore the errors in the source trees.

The results of Steel and Rodrigo (2008) are summarised by Equation 5, and
are based on an idealisation of the input trees being considered a sample of
reconstructed subtrees extracted from an unknown true supertree. However, the
reconstructed subtrees differ from the supertree pruned subtrees due to a number
of reasons such as sampling errors, incomplete lineage sorting, sequencing errors,

model violations e.t.c.
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Equation 5: Input Tree Likelihood theorem

PT.Y[T'| = aexp|—Bd(T',T|Y)].

As a consequence, the ML supertree is the tree that maximises the likelihood across

all the input trees by minimising the number of induced errors in the input trees.

Equation 6: Supertree Likelihood theorem

k
Z Bi d(Ti, T|XD.

i=1

If we take T to represent an hypothesized supertree and T’ to represent an
input source tree, Equation 5 (based on the assumption that 7'’ has been pruned out
of T°) says that the probability that 7'’ was obtained from T can be estimated by
pruning T so as to have the same taxon set as 7'/, which is denoted Y. Hence the
probability of observing 7'’ after pruning T of all other taxa, taking into
consideration topological errors, is equal to a (a normalising constant that ensures
that the sum of the likelihoods of all the supertrees is equal to 1) multiplied by the

exponent of negative B (a parameter that is free to vary in relation to both the
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guantity and the quality of the data) multiplied by the Robinson-Foulds distance
between T’ and (the pruned) 7" (denoted, 7'|Y). Equation 6 simply states that the
supertree minimizing the sum of Equation 5 values across the input trees is the ML
supertree. Calculating o depends on the shape and size of 7'. Although this
calculation is possible in polynomial time, it is extremely computationally expensive
because it has to be calculated for every proposed supertree. Bryant and Steel
(2009) suggested that we can ignore calculating o if we use a sufficiently low or high
[ value as in such cases the ranking of the supertrees will not be affected. Hence, in
my implementation of Steel and Rodrigo’s (2008) ML supertree method, the value of
a is kept constant and the [ values are kept out of the ranges that are proposed to
be problematic by Bryant and Steel (2009). This means that our ML supertree
method is, in truth, a heuristic estimator. The ML implementation is available to the

public as part of my L.U.St package discussed in detail in section 2.2.3.

2.2.1 Tree representation
In order to implement the ML supertree method and embed it in a stand-alone
program, the first hurdle to be jumped was to represent and store phylogenetic
trees in memory. | decided to use the Python programming language for this project
due to its growing popularity among researchers and programmers (Python is now
used to power YouTube, Reddit, banking systems, Google, DropBox etc.). Python’s
surge in popularity is due to its robustness (solid, powerful, easy to debug and
maintain), flexibility, availability of supporting software and the fact that it is free.
Python is an object oriented programming language. An object in

programming terms is an instance of a class (Hall and Stacey, 2009), and a class can
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be viewed as a template that we can use to create our own data types. Data types
here can refer to real world constructs such as a person, book, or a car. Classes
enable us to give objects attributes that can be used as distinguishing factors, and
develop methods (associated to the objects) that we can use to perform desired
operations on the objects and their attributes.

The investigation of available python libraries (such as DendroPy, Django,
Scapy, Biopython) showed that no freely available code existed that could be re-used
in my software to store trees in memory. Accordingly, to represent a tree properly in
memory | wrote my own node and tree classes. The node class is responsible for
storing all the relevant details pertaining to a particular node. These details include
the descendants of said node, its ancestors, branch length information, nodes
support information and other parameters. The root node is also stored as an
instance of the node class. The root is defined using an added parameter to simply
indicate that a given node is also the root. | also included in the node class certain
operations (methods) that can be performed on a node such as those that allow tree
traversal from any particular node and re-rooting of the tree to any particular node.

The tree class creates and stores tree objects. It takes as input Newick
formatted trees and generates a node object for each node along with its attributes.
These are the nodes that make up a tree and they are stored and linked in the right
order using Python’s native “dictionary data structure” (i.e. hash tables). In the
process of making the ML program stand alone | created many scripts that will
enable a host of desired operations on a tree to be possible and these will be
discussed in section 2.4. | also developed a heuristic search strategy to search the

tree space for the ML supertree and this is discussed in the next section.
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2.2.2 Searching the tree space for the elusive ML supertree

Finding the ML supertree for a data set of input trees requires searching the entire
tree space on the union of their taxon set. The tree space for n taxa is the space of
all possible trees on that number of taxa (for more detail see Billera et al. (2001)).
Searching every single tree in a tree space is computationally expensive and
inefficient; in fact, when n becomes sufficiently large this task quickly becomes
intractable. To circumvent this problem, many algorithms have been designed
(Felsenstein, 2004). In L.U.St | implemented four alternative heuristic search
strategies based on the Subtree Pruning and Regrafting (SPR) algorithm (Swofford,
2003) (figure 2.1a and 2.1b).

An SPR move starts off with a pruning step, which involves breaking up a tree
into two subtrees (T; and T,) by cutting a random edge. The pruning step is followed
by a regrafting step, which involves choosing another edge from (say) T; and
reinserting T, at that position. | devised four heuristic search strategies using the
above basic swapping algorithm for exploring tree space. The alternative search
strategies differ in the level of thoroughness with which they navigate the tree
space. Hence they have different speed and accuracy (with accuracy decreasing as
speed increases).

Search option 1

This is the most exhaustive of the search strategies implemented in L.U.St and
ultimately the slowest to run.

Step 1. A new starting supertree is proposed (usually a randomly generated
supertree on the union of the taxon sets of all input trees). This tree is re-rooted at

every possible re-rooting point and these rooted trees are stored in a list.
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Step 2. One of the newly re-rooted supertrees is chosen (without replacement) at

random from the list of rooted trees and its likelihood is estimated using equations 5

and 6 above. This tree is now stored as the current tree and its likelihood, is stored as

the current tree likelihood.

Step 3. A list of all the supertrees that can be generated by one round of SPR from

current tree is generated and stored.

Step 4. One of the SPR generated supertrees is extracted (without replacement) at

random and its likelihood is estimated and compared to the likelihood of the current

tree.

Step 4i: If the likelihood of the new tree is better than the likelihood of the
current tree, then the new tree is stored as the new current tree and its
likelihood as the new current tree likelihood (old values are expunged from
memory). If this were the first iteration of a search, then the new current
tree would now also be stored as the overall best tree found. If this were not
the first iteration of the search, then the current tree likelihood would be
compared to the likelihood of the overall best tree, i.e. to the overall best
likelihood so far. If the likelihood of the new current tree is better than that of
the current overall best tree, then the new current tree is stored as the new
overall best tree found so far (and the previous overall best tree is expunged
from memory). If the likelihoods of the overall best tree and of the new
current tree are the same, then the new current tree is added to the list of
overall best trees found so far. If the likelihood of the new current tree is
lower than the overall best likelihood, then we return to step 1 with the new

current tree as the new starting supertree.
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Step 4ii: If the likelihood of the new tree is the same as the likelihood of the
current tree, then the new tree is stored in a list of trees of equal likelihood
that will be visited in later steps and the search goes back to step 4.
Step diii: If the likelihood of the new tree is lower than the likelihood of the
current tree, then the new tree is discarded and we return to step 4.
Step 5. If we go through the entire SPR generated tree list without finding a tree of
better likelihood than the current tree, then we go back to step 2.
Step 6. Once we have gone through the entire set of remaining re-rooted trees the
program evaluates if the list of trees of equal likelihood is empty.
Step 6i: If this list is not empty, then a tree is randomly extracted (without
replacement) and the program goes back to step 1, where the extracted tree
is treated as a new starting supertree.
Step 6ii: If the list of trees of equal likelihood is empty, then this iteration is
ended.
Depending on the number of iterations requested by the user, either another
iteration is started (and a new random tree generated) or the trees stored in the list
of overall best trees found so far is returned to the user as the ML supertree(s).

Search option 2

Search option 2 is the same as search option 1 except that it skips step 2. That is: a
list of supertrees re-rooted at every possible re-rooting point is not generated. In this
search option the list of trees of equal likelihood is also re-initialised (emptied —as in

Search option 2) every time a new tree with a better likelihood is found.

Search option 3

48



This search options is the same as search option 1 except that it only considers trees
of better likelihood. Hence, a list of trees of equal likelihood is not generated.

Search option 4

This is the most heuristic of all of the search option available. This option does not
involve generating a list of supertrees re-rooted at every possible re-rooting point
and only trees of better likelihood are considered. Hence, there is no list of trees of
equal likelihood. Basically, Search Option 4 combines the speed up strategies of

Search Option 2 and Search Option 3.

Starting tree option

A way to improve speed when searching tree space is avoiding starting from a
random tree. L.U.St has two alternative starting tree options. The default approach
is for L.U.St to start tree searches from random trees. Alternatively L.U.St allows the
user to provide a starting tree (e.g. a supertree generated with a different method —
maybe an MRP tree).

The search strategies implemented were tested for accuracy and efficiency
using the Drosophila dataset of Cotton and Wilkinson (2007) (fig. 3.3a-e). For this
data set, Cotton and Wilkinson (2007) used their Majority Rule (-) supertree method
and showed that there are 79 equally likely median supertrees. Steel and Rodrigo
(2008) stated that the ML and the Majority rule (-) should return the same trees we
decided to use this dataset, for which the correct result is known, as the gold
standard. The data set was analysed using each of the search options implemented
for 1, 2,10, 100, 500, 1000 iterations. Once a particular search option was able to

find the 79 equally likely trees, the analysis was stopped and the number of the
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iteration at which the 79 trees were recovered was registered. The result of this

experiment can be seen in Table 2.1. From the table we can conclude that option 1 is

the best in terms of accuracy and speed.

ML 1 iteration 10 100 500 1000
search (t/h) iterations iterations iterations iterations
strategy (t/h) (t/h) (t/h) (t/h)
1 78 /2.5 79/3 v v v
2 1/0.1 7/0.13 29/0.33 40/25 53/3
3 1/0.1 10/0.33 48 /3 78 /12 79/ 24
4 1/0.1 3/0.15 21/0.35 42 /1 48 /2

Table 2.1: Efficiency of L.U.St’s ML search strategies. This table illustrates the

performance of the 4 alternative SPR based heuristic search strategies, implemented

in L.U.St, when used to analyse the Drosophila dataset of Cotton and Wilkinson

(2007). Each row represents the results of the corresponding search strategy as they

are numbered in the software. Ml — maximum likelihood; t/h — the total number of

trees out of the 79 total median trees found during the run / the length of time in

hour(s) the search strategy took to finish the analysis. Ticks represent analyses that

were not done due to the search strategy having found the complete set of median

trees.
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Store as X.

Initialize
TAB3 and
TAB2
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Figure 2.1a: L.U.St Maximum Likelihood supertree search strategy

Note: for a full understanding of this figure represent - see Figure 2.1b.

51



TAB1: Alist of n randomly generated starting trees (user defines n)
F1: The file containing list of Starting supertree(s)

TABO: Variable to store list of best trees found

Like_TABQO: Variable to store the likelihood of the trees in TABO
TAB2: An array for the trees that we have already seen

TAB3: A dictionary to hold trees that are left to swap

RO: An array of all re-rooted trees created from all possible rooting points in a tree
TO: The re-rooted tree from RO that we are currently working on
TO_like: The log likelihood value of TO

T1: The new tree created by one step of SPR on TO

T1_like: The log likelihood value of T1

SO0: An array containing all the subtrees in a tree

S1: A variable to hold a random subtree from SO

S2: Avariable to hold a random subtree from SO

C1: A counter veriable

C2: A counter variable

Store New in Tab 0.

A: Do you have a starting tree?

B: Is this search option 3 or 4?

C: Is this search option 2 or 4

D: Is the intersection of S1 and S2 empty?

E: Is C2 equal to the cardinality of SO

F: Is C1 equal to the cardinality of SO

G: Is Like_TABO = undef? ***OPTIONAL

H: Is T1_like better than TO_like?

I: Is T1_like equal to TO_like?

J: Is TO_like better than T1_like?

K: Is TO_like equal to Like_TABO?

L: Is RO empty?

M: Is this search option 3?

N: Is this search option 47?

O: Is TAB3 empty?

P: Is TAB1 empty?

Q: Is this search option 1?

R: Is T1_like better than Like_TABQ?

S: Is T1_like equal to Like_TABO?

Figure 2.1b: L.U.St Maximum Likelihood supertree search strategy figure legend2.1b
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2.2.3 Extending test of two trees to supertrees

The ability to estimate the likelihood of a supertree has opened up the field of
supertree reconstruction to statistical hypothesis testing. Within the L.U.St package,
I have included the possibility of calculating (the first time ever) tests of two trees in
the supertree context. In contrast to the case of standard tests of two trees (that
use site-wise likelihood values), in the case of supertrees we use input-tree specific
likelihood values (that are analogous to site-wise likelihood values). Once input-tree
specific likelihood values are calculated, one can use a variety of tests to compare a
set of alternative supertrees for their fit to the data. L.U.St implements a winning
site test (Felsenstein, 2004). In addition, it produces a CONSEL (Shimodaira and
Hasegawa, 2001) compatible output file of input-tree wise likelihood values that can
be fed to CONSEL to calculate the Approximately Unbiased test (Shimodaira, 2002)
and other tests of two trees (i.e. Kishino Hasegawa (KH) test (Kishino and Hasegawa,
1989) and Shimodaira Hasegawa (SH) test (Shimodaira and Hasegawa, 1999)).

For L.U.St to be able to calculate tests of two trees (or output the input-tree
wise likelihoods), a predefined set of supertrees (and a set of input trees that does
not need to be the set of trees originally used to infer the tested alternatives) need
to be provided. L.U.St will then calculate the input-tree specific likelihood score for
each input tree (against every compared supertree). These values are then either
directly used by L.U.St to calculate a wining site test (Felsenstein, 2004), or they are
written to an output file that can be used as the input file for CONSEL. For more

detail on how to run this statistical test see the provided L.U.St-manual.
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2.2.4 Likelihood Utility for Supertrees (L.U.St) Package

During my PhD | wrote many scripts to perform several different tasks from
extracting taxa from a dataset of trees to calculating the Approximately Unbiased
(AU) test combining L.U.St and CONSEL. | believe that the availability of these scripts
will be of great help to other researchers. The L.U.St package developed from this
experience, it contains a variety of scripts that can be of general utility to

researchers working in this area. These scripts are listed below:

Calculate supertrees _likelihoods.py

This script allows the user to calculate the likelihood of any supertree (e.g. a
supertree obtained from the literature) given a set of input trees (the input trees do
not necessarily need to be the trees from which the tested tree was originally built).
The input to this script can either be one supertree or a list of supertrees and the
output is a file with the likelihood and RF distance values for each given supertree

(see the provided L.U.St manual for details).

ExtractTaxon _file.py

This script allows the user to extract, to a user-defined file, the union of the taxon
sets of a given set of input trees. For more on how to use this script, see the included

L.U.St manual.

Resolve phylogenies.py

This script enables the user to resolve the polytomous clades in a set of trees using a
resolved supertree (i.e. an MRP inferred supertree). This script uses some of the

capabilities of the Dendropy Python package (Sukumaran and Holder, 2010).
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Polytomies are especially common when input trees have been sampled from the
literature. The presented ML supertree implementation does not handle polytomies
in the gene trees, so two options are provided: 1) the polytomies can be broken at
random (see below), or 2) they can be resolved according to a different supertree
(e.g. MRP supertree). The latter is not ideal but might be useful in some conditions.
For details on how to use this script see the L.U.St manual included at the end of this

thesis.

resolve _polytomies.py

Similar to the script described above, this script also gives the user the ability to
resolve polytomies in phylogenies. This script, however, offers the capability to
randomly resolve the polytomies in a tree. For details on how to use this script see

the L.U.St manual.

deroot.py

This script uses the capability of the Dendropy Python package (Sukumaran and
Holder, 2010) to allow the user to de-root rooted phylogenies. For details on how to

use this script see the L.U.St manual.

Winning_site test.py

This script allows the user to calculate the winning site test for choosing between
two alternative supertree topologies given a set of input trees. For more details see

section 2.2.3 above.
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Statistical test.sh and Statistical test.py

These are two scripts that combine the capabilities of shell scripting with that of
python and the CONSEL package of (Shimodaira and Hasegawa, 2001) to perform

tests of trees implemented in CONSEL. For more details see section 2.2.3 above.

Note: that L.U.St and its manual are available for download from the bitBucket page

- https://afro-juju@bitbucket.org/afro-juju/l.u.st.git. The manual can also be seen as

Appendix A.

2.3 A Bayesian supertree method

The ability to estimate the likelihood of a supertree has another advantage.
Bayesian statistical inference of phylogenies, as describe above in section 1.2.4.2.3,
allows prior knowledge to be combined with the information in the data for
phylogenetic reconstruction. Bayesian MCMC has already been used extensively in
phylogenetics due the availability of exceptional software such as MrBayes (Ronquist
et al., 2012b), BEAST (Drummond and Rambaut, 2007) and P4 (Foster, 2004). The
ability to estimate the likelihood of a supertree permits the introduction of
supertrees to the Bayesian (MCMC) framework. This has two advantages. First,
Bayesian MCMC analysis is generally faster than ML analysis. Second, Bayesian
analysis allows estimation of posterior probability for clades, finally allowing for a
universal measure of support for supertrees. The implementation of Steel and
Rodrigo’s (2008) ML supertree method was coded by Dr. Peter Foster into the

already available MCMC software in P4 (Foster, 2004). The Bayesian (MCMC)
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supertree method has been tested for several desired properties, including the
ability to deal with large datasets (see chapters 3, 4 and 5). Differently from the
L.U.St package and the ML supertree method, which | have developed in full, the
Bayesian supertree method has been implemented by Dr Peter Foster (as part of a
collaboration) in the package P4, and here | will only be testing his software (to

complete the collaboration).
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Chapter 3: Testing on Case Studies

3.1 Introduction

MRP and most other liberal supertree methods are known to suffer from either a
size-related bias (Purvis, 1995a), a shape-related bias (Wilkinson et al., 2005a), or
both (Thorley et al., 1998). A supertree method that is affected by a size bias, when
faced with conflicting relationships in the input trees, will favour those in the largest
of the conflicting clade(s) (Bininda-Emonds and Bryant, 1998). A supertree thats
suffering from a shape bias will, in case of conflict, favour relationships in either the
asymmetric or the symmetric trees (Wilkinson et al., 2005a). In the case of MRP
analyses, performed using the standard Baum and Ragan (Baum and Ragan, 1993)
coding strategy, it is well known that the results are biased towards relationships in
asymmetrical trees. However, it has been suggested that the effect might be
irrelevant if large collections of informative input trees are used for the analysis (see
(Kupczok, 2011a)). In the case of Purvis’ coding MRP (Purvis, 1995a), which, unlike
MRP, uses “?” to code for all taxa not in the clades or its sister taxon, relationships in
symmetrical trees are favoured. Finally, as shown by Thorley et al. (1998), these two
biases can add up in real examples (at the least when the inference is based on few
input trees) to produce composite biases concomitantly driven by both effects. |
maintain that the size and shape of an input tree should be irrelevant to its
evidential significance in the supertree framework and consider the existence of

these biases highly undesirable (see also (Creevey et al., 2004)). Although their real

58



effect might be negligible (Kupczok, 2011a), the fact remains that they introduce
possible doubts about the nature of actualized supertrees.

The L.U.St package includes my implementation of the ML supertree method.
This is a liberal supertree method. This means that the ML supertree method will
attempt to resolve any conflict among the input trees based on the available
evidence. This also means that | must ensure that L.U.St’s ML resolution of conflict is
based solely on phylogenetic signals in the data and not on other factors (e.g.
biases). Because of its applicability (see above), the MRP supertree method, despite
suffering from both shape and size related biases (Bryant and Steel, 2009; Purvis,
1995a; Lapointe and Levasseur, 2004), has been widely accepted by the scientific
community as the ‘go to’ method for the construction of supertrees from sets of less
inclusive input trees. In this chapter, | shall test L.U.St’s ML implementation and
investigate its sensitivity to shape and size related biases. Indeed, given that the ML
method should return the same result of the Majority Rule supertree (-) method
(Cotton and Wilkinson, 2007), this method is not expected to be biased, yet | wanted
to be sure that this was the case with respect to my specific implementation. In
addition, | shall test the potential effect of these biases on the Bayesian
implementation in Dr. Peter Foster’s P4.

Steel and Rodrigo (2008) pointed out that when distances between trees are
calculated using the symmetric difference (Robinson-Foulds distances), the ML
supertrees found (given a set of input trees) correspond to the equivalent set of
majority-rule consensus supertrees sensu (Cotton and Wilkinson, 2007; Barthélemy
and McMorris, 1986). This is potentially a very interesting characteristic of the ML

method because majority rule supertrees have the interesting statistical properties
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of being median trees for the input set of trees, hence, we are measuring the central
tendency in the data. This allows a non ad-hoc characterisation of the ML supertree
method. In this chapter, apart from testing for biases in the ML and Bayesian
(MCMC) method, | will compare alternative supertree methods, with the ML and the
Bayesian one to evaluate how well they approximate the result of the Majority Rule
(-) supertree method. To this end, exactly as | did when testing the performance of
alternative search strategies in the previous chapter, | will be using the Drosophila
dataset of Cotton and Wilkinson (2007). The result of the application of the Majority
Rule (-) on this data set is presented in Cotton and Wilkinson (2007). The Drosophila
dataset is composed of five phylogenetic trees overlapping on nine taxa. Using a
small data set for these analyses is key because it allows me to ensure that the
various methods of analyses that are being compared do not fail to return the
“correct trees” simply because the problem is too complex for the search strategy
they implement. As pointed out above five methods will be compared: MRP, MSS,

RF, the L.U.St” ML implementation and the P4 Bayesian implementation.

3.2 Methods

3.2.1 Bias testing

The L.U.St’s ML supertree implementation was tested for input tree shape effects
(ITSE) using the same empirical example of Wilkinson et al. (2005a). To test L.U.S.T’s
ML supertree method for biases due to input tree shape, this data set was analysed
by running it using the default heuristic search option (this is set to search option 1)

for 10 iterations. The Bayesian (MCMC) supertree method was run for the same
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dataset for 1,000 iterations with a 3 value of 1. | also reanalysed Wilkinson et al.’s
(2005a) dataset with MRP, RF and the MSS supertree methods using their respective
default settings in an attempt to be able to provide a fair comparison between
L.U.St’s ML implementation and the Bayesian supertree implementation on the one
hand and their alternatives, on the other.

To test for biases due to input tree size, | used the example dataset from
Purvis (1995a), over which most liberal supertree methods have been shown to fail.
The ML analysis was run using the default heuristic search option for 10 iterations.
While the Bayesian MCMC supertree method was run for 1000 iterations with a 3
value of 1. As above, the L.U.St’s ML supertree implementation and the Bayesian
(MCMOC) supertree method were compared against MRP, RF and the MSS supertree

method.

3.2.2 Analysis of the Drosophila data set

For the Bayesian analysis, | ran 2 parallel MCMC chains setting B to one for 1,000
iterations. In the ML and Bayesian supertree reconstruction, the B parameter is used
to represent the quality of the trees in the data set. This is a way of differentially
weighting the input trees. We can imagine that a tree constructed from high fidelity
and long AA sequences has a higher B value compared to a tree constructed from a
short, noisy and badly aligned AA sequences. For the ML supertree analysis, the
heuristic search option 1 strategy was run, for 10 iterations. Further to that, the
Drosophila data set was analysed using RF, MRP and MSS. Results obtained from
each one of the supertree methods used for this analysis were compared. In

addition, the ML and MRP scores of each one of the possible supertrees that could
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be generated for the Drosophila data set were generated using PAUP4b10
(Swofford, 2003). The likelihood of each of these trees was calculated in L.U.St, and
its parsimony score was estimated in PAUP4b10. Likelihood and parsimony scores
for all these trees were plotted to evaluate the similarity and differences in scores

(under the two methods) for each possible supertree.

3.3 Results

3.3.1 Testing for biases

When used to analyse the two trees (figure 3.1a and b) used by Wilkinson et al.
(2005a) to test for input tree shape effects, the ML supertree method returned 10
supertrees. As expected if this method were not subject to tree-shape related
biases, the strict consensus of these trees is fully unresolved (figure 3.1c). The mean
of the Colless index (a tree balance index based on tree topology which uses an
index of 1 to indicate a maximally balanced tree and an index value of O to indicate a
maximally unbalanced tree) (Colless, 1982) for the 10 trees returned by the ML SM is
0.582, while the standard deviation is 0.026, proving that the shape of the strict
consensus tree is indicative of the shape within each of the ML estimates and not
due to the shape between the ML estimates. Similarly, as expected in the case of a
lack of bias, the Bayesian (MCMC) supertree analysis was not able to converge: that
is it was not able to decide between these two trees using the available evidence.
Results of the re-analysis of the two input trees in figure 3.1a and b with MRP and
MSS are presented in figure 3.1c and d, respectively, while the result obtained using
RF is presented in figure 3.1e. As we shall see in the case of the Drosophila data set,

the expectation that the RF supertree method should do as well or almost as well as
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the Bayesian (MCMC) and the ML methods (given that it is an approximation of the
Majority Rule (-) method) does not appear to be forthcoming. This has led me to
believe that the heuristic strategy used in this approach is not effective, which | will
be able to confirm after analysing the supertrees inferred by the RF method for the
Drosophila dataset. Also in this case, the Bayesian and ML approaches seem to be
the only ones (together with the Majority Rule (-) supertree method) capable of
returning results consistent with the logical expectation for this example, namely
that there is no shape bias in these methods.

With reference to the size bias initially highlighted by Purvis (1995a), when
the ML supertree method is used to analyse the two trees in figure 3.2a and b, six
supertrees of equal likelihood are found. The strict consensus of these trees is fully
unresolved (figure 3.2c), as expected if this method did not suffer from a size bias.
For this very simple example, the RF supertree method found the same result as the
ML method, suggesting that the differences that are often observed (more on this
point below) between the RF method and the L.U.St ML implementation (e.g. figure
3.3) most likely relates to the fact that the RF methods performs poorly in exploring
the tree space. As in the case of the shape-bias example above, the Bayesian
method failed to converge on a solution, as expected if also this method did not
suffer from a size bias. In contrast, when the data is analysed using standard-MRP
and MSS supertree methods as shown in figure 3.2d the topology of the largest tree
is recovered. Here | have shown the susceptibility to both input tree size and shape
biases for only three methods, but these are well known common ailments of all

known ad hoc supertree methods. For an in-depth look at how other available
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supertree methods deal with these biases see Wilkinson et al. (2005a) and Purvis

(1995a).
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Figure 3.1: Analyses of input tree shape bias.

(a) and (b) Input trees from (Wilkinson et al., 2005a) that are used as the source
trees to test the shapelessness of the following supertree methods: (c) The strict
consensus of the trees obtained from the ML analyses, (d) The strict consensus of
the trees obtained from MRP analysis, (e) the tree obtained from the MSS analysis,

and (f) the tree obtained the RF analysis.
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Figure 3.2: Analyses of input tree size bias.

(a) and (b) Input trees (modified from (Purvis, 1995a)) used as source trees to test
the sizelessness of the following supertree methods. (c) Strict consensus of the trees
obtained for the ML and RF analyses (both returned the same topology). (d) Strict
consensus of the trees obtained from the MRP and MSS analyses (both returned the

same topology).
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3.3.2 The Drosophila data set

With reference to the Drosophila data set, the ML supertree method recovered the
complete set of 79 median supertrees that were recovered by Cotton and Wilkinson
using the Majority-Rule (-) method. These trees were used to construct the strict
consensus tree presented in figure 3.3f. Using the Bayesian (MCMC) analysis, a tree
that is topologically identical to the strict consensus tree in figure 3.3f was
recovered. However, the 79 median trees identified using both ML and the Majority-
Rule (-) supertrees method were obviously not recovered. This should not be viewed
as a problem of the Bayesian (MCMC) supertree method, but as a result that is
expected and a consequence of this method being based on an MCMC approach.
The MRP analysis of the same dataset returned 77 equally parsimonious trees. As
pointed out by Cotton and Wilkinson (2007), these trees represent a subset of the
known (complete) set of 79 median trees identified using the ML supertree method
and their Majority Rule (-) supertree method. The MSS and the RF supertree
methods found 42 and 26 median supertrees respectively out of the expected total
of 79.

The ML supertree and the Majority Rule (-) supertree methods were the only
methods that were able to identify correctly the 79 median trees that exist for this
input collection of tree topologies. Interestingly, the MRP supertree method fared
quite well, when compared to the other tested approaches, as it only failed to
recover 2 known median supertrees. However, MSS missed 37 and RF missed 53 of
the 79 known median supertrees. The RF supertree method performed very poorly,
particularly if one considers that this approach is a heuristic approximation of the

Majority Rule (-) method and should be expected to approximate the result of the
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latter. Instead, RF could only recover a minority (~ 32%) of the known median
supertrees. It is interesting to note that none of the methods considered recovered
trees that did not belong to the collection of 79 median trees; they simply failed to
recover the entire set. This is an encouraging result as it suggests that, at least for
the methods considered here (and for this admittedly simple example), alternative
supertrees, rather then differing in their accuracy (finding the best tree), seem to
differ only in their level of precision (finding all the best trees).

Given that MRP performed particularly well, | decided to estimate, plot, and
compare, for each possible tree on the same leaf set of the Drosophila data set
(135,135 supertrees in total), its likelihood score and its parsimony score. Results
(figure 3.4) show that there is generally a good correspondence between the
likelihood and the parsimony fit to the trees, but that this is not a universal finding

and mismatches do exist.
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Figure 3.3: ML supertree analysis of Drosophila empirical dataset.

(a-e) Input trees from (Cotton and Wilkinson, 2007). (f) The strict consensus of the
79 trees retrieved by the ML supertree method. This is the same topology for the
strict consensus of the 77 MRP supertrees, the strict consensus of the 42 MSS

supertrees, and the strict consensus of the 26 RF supertrees.
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Figure 3.4: A line graph of MRP parsimony scores and likelihood scores.

This is for each of the 135,135 possible supertrees on the union of taxa of the
Drosophila input tree from figure 1la-e. Note that the values have been scaled to
allow for a better comparison. Scaling was performed by subtracting 15 from the
parsimony values (blue) and while the log likelihood values (red) were left as they

were.

3.4 Discussion

In the performed tests the Bayesian (MCMC) and the ML supertree approaches fared
well, overall illustrating that these methods might perform better than any of the
available ad hoc methods with real data sets. The maximum likelihood (ML) method
returns results that are comparable to those of the Majority rule (-) consensus
supertree method, and from this point of view the ML method would appear to be
effectively redundant. However, its ability to transform RF distances into
probabilities allows for two important and otherwise impossible advancements in
supertree reconstruction: the development of Bayesian methods and the integration
of the standard statistical test of two trees to the supertree context (see chapter 2

and 4). So in essence the ML supertree method appears to have taken over and
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fulfilled the promise that was shown by the Majority rule (-) supertree method. Both
of these advantages will be demonstrated and further explained in chapter 4, where
| shall use the Bayesian (MCMC) supertree method and the L.U.St package to

reanalyse a set of real world supertree data sets.

3.5 Conclusions

The results presented in this chapter show that the ML and the Bayesian (MCMC)
supertree approaches are viable alternatives to MRP and to other supertree
methods. With the introduction of both of these new parametric approaches, it is
finally possible to have confidence in the supertrees that are being inferred.

MRP and the other ad hoc methods tested in this chapter have been proven again to
suffer from either input tree shape bias or input tree size bias or both. Regardless of
whether or not the effect of these biases is strong enough to affect results of
analyses based on large data sets, its detection in any supertree method should

warn against using such methods.
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Chapter 4: Reanalysis of Real world Data sets

4.1 Introduction

The literature on supertree reconstruction is growing by the day and many promising
approaches have been proposed and developed to solve the supertree problem,
generating larger and more inclusive phylogenies from set smaller phylogenies on
overlapping taxa. Many of these approaches are ad hoc. However, as we have seen
(in the case of MRP in particular) some of these methods infer trees that could be
considered good approximations of the median supertrees of a given set of trees. In
addition the relationships observed in these trees are often biologically plausible,
which would confirm that the trees inferred using these methods are not of an
unfeasibly poor quality. However, the properties of these methods are not well
understood and this implies that, in cases of conflict among the input trees, it can be
difficult to evaluate whether the result of a supertree analysis is due to bias or signal
in the data (Wilkinson et al., 2005a). Further to that, with standard methods,
calculating support for clades is difficult and developing robust statistical tests of
trees are difficult or virtually impossible.

The properties of the supertree methods implemented and applied in this
thesis are well formulated and understood (Steel and Rodrigo, 2008). In addition,
they seem to be immune to both input tree shape and input tree size effects. In this
chapter both of the supertree methods implemented will continue to be pitted
against the most commonly used alternatives. In particular the aim of this chapter is
to illustrate how the L.U.St package’s ML and the P4 implemented Bayesian (MCMC)

supertree methods can be used in real data analyses, and how they would compare
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in such situations against other supertree methods (MRP, RF and MSS). The current
implementation of L.U.St’s ML supertree method is inadequate for extremely large
analyses (as tree searches would become too slow), even if it can handle tens of taxa
and hundreds of trees (when using the fastest heuristic strategies). However, such
search strategies might be inaccurate. Hence, the Bayesian supertree method will
be used for tree search and the L.U.St package will be used to perform tests of trees
and other statistical analyses. | suggest that this is the best way to combine these

tools to analyse real world data sets.

4.1.1 The Metazoan dataset
The first dataset | reanalysed was the metazoan data set of Holton and Pisani (2010).
This data set included 42 taxa and 2,216 trees.

The relationships among the animals with bilateral symmetry are notoriously
difficult to resolve, and a multitude of conflicting hypotheses have been proposed
(Jenner and Schram, 1999). Two of these alternative hypotheses have dominated
the debate on metazoan phylogeny. These are Hyman’s Coelomata hypothesis
(Hyman, 1940) and the Ecdysozoa hypothesis (Aguinaldo et al., 1997). The former
hypothesis has been the dominant view in the scientific community for a long time.
It proposes that the bilateral animals fall into three groups: the Acoelomata (which
include the Platyhelminthes and the Nemertea), the Pseudocoelomata (which
include the Nematoda, the Nematomorpha, the Rotifera, the Gastrotricha, the
Kinorhyncha, and the Priapulida), and the Coelomata (containing the remaining
bilaterian phyla, e.g. Arthropoda, Mollusca, Annelida, and Vertebrata) (Philippe et

al., 2005b; Telford et al., 2008; Holton and Pisani, 2010). The latter hypothesis
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proposes a separation of the bilateral animals into two groups: Protostomia and
Deuterostomia. The Ecdysozoa hypothesis further suggests that the Protostomia
should be divided into two groups Lophotrochozoa and the Ecdysozoa. The
Coelomata hypothesis has long been backed by evidence from both morphological
and deep genomic data analyses (Hyman, 1940; Blair et al., 2002; Wolf et al., 2004)
while most of the evidence for the Ecdysozoa hypothesis was from 18S rRNA
datasets and a handful of genomic datasets, mostly expressed sequence tags (ESTs)
(the product of cloned cDNA sequencing) datasets (Philippe et al., 2005a; Dunn et
al., 2008). Holton and Pisani (2010) employed the MRP supertree method to analyse
a genomic data set composed of 42 taxa overlapping on 2216 gene trees, and
recovered a tree displaying the Ecdysozoa hypothesis (differently from most other
deep genomic-scale analyses) (figure 4.1). Their results were used to conclude that
the Hyman’s hypothesis was a by-product of long branch attraction (LBA) (Holton
and Pisani, 2010). Given the importance of this supertree-derived result, it is
interesting to investigate whether it holds to the application of presumably better
performing supertree methods such as the parametric Bayesian MCMC supertree

method.

4.1.2 The carnivore data set

The metazoan dataset of Holton and Pisani (2001), being a genomic data set,
contained highly overlapping trees. Hence, for the second real world dataset to test
both the ML and Bayesian methods on, it was decided that a more challenging data
set, the carnivore data set of Nyakatura and Bininda-Emonds (2012), should be used.

This data set represents a more traditional example of an application of supertree
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methods, where the data are not gene trees. Instead, the input trees have been
sourced from the literature. The trees in this dataset, as one might expect, contain a
considerably lower level of taxon overlap in comparison to the metazoan dataset.

Carnivores include a large number of both terrestrial and aquatic mammal
species, and represent one of the largest mammalian orders. Nyakatura and Bininda-
Emonds used this data set to update an original carnivore phylogeny from 1999
(Bininda-Emonds et al., 1999). This update was necessary for several reasons,
including taxonomic changes, the increase in available sequenced data, additional
information from other types of data and the methodological improvements in the
original analyses from which trees were derived (Nyakatura and Bininda-Emonds,
2012). For example, Nandinia (African palm civet) now forms a sister taxon to the
rest of the feliform carnivores (Flynn et al., 2005), and the Mephitidae have been
removed from Mustelidae (Dragoo and Honeycutt, 1997).

The new dataset of Nyakatura and Bininda-Emonds (2012) is composed of
286 taxa and 558 trees. This included a “taxonomy tree”, which is a tree (derived
from a taxonomic list) that these authors used to shoehorn misbehaving taxa into a
supertree phylogeny. In addition to that, Nyakatura and Bininda-Emonds (2012)
used a differentially weighted MRP supertree method to infer a well-resolved
carnivore phylogeny that conveys the current accepted biological views of the

carnivore order.

74



4.2 Methods

4.2.1 Supertree analysis of the Metazoa

The metazoan dataset is composed of 42 taxa overlapping on 2216 gene trees. For
the analysis of this dataset two MCMC chains for 10,000 iterations were run, while
sampling once every 100th iteration. | tested for convergence by comparing the log
likelihoods of the trees sampled by the two chains. Different analyses were
performed in which the B values were changed. Beta values tested were: 0.001,
0.01, 0.1, 0.5 and 1. Holton and Pisani (2010) previously analysed this data set using
MRP and estimated support for the nodes in the tree they recovered using input tree
bootstrapping. Accordingly, the Bayesian analyses performed here, can be
compared against the MRP results of Holton and Pisani (2010) to clarify how similar
the recovered supertrees are and how closely the Bayesian Posterior probabilities
estimated using our MCMC approach compare with the bootstrap probabilities
obtained for the MRP tree. In addition, in order to compare the Bayesian supertree
method against other supertree methods, the data set of Holton and Pisani (2010)
was reanalysed using the MSS and the RF supertree methods. MSS is implemented
in the phylogenetic software CLANN (Creevey and Mclnerney, 2005) and was run
using the default options. The RF supertree method (Bansal et al., 2010) was
downloaded and installed on a local server and again was run using the default

parameters.
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4.2.2 Supertree analysis of the Carnivores

To evaluate how the Bayesian (MCMC) supertree method fares using more
traditional supertree datasets (i.e. collection of trees derived from the literature,
rather then based on genomic data sets), | further tested the Bayesian (MCMC)
supertree method using the carnivore dataset of Nyakatura and Bininda-Emonds
(2012). The original dataset was kindly provided by Olaf Bininda-Emonds and was
composed of 286 taxa and 558 input trees. This dataset included polytomous trees
along with their various resolutions and the taxonomy tree. In order to analyse this
dataset using the Bayesian (MCMC) supertree method, | randomly resolved the
polytomous input trees, using the Resolve_polytomies.py script in the L.U.St package
section 2.2.4. This was necessary because the Bayesian supertree can currently only
deal with resolved trees. The first step in trying to resolve the polytomies was to
separate polytomous trees from non-polytomous ones. This was achieved by writing
a python script that utilised the python package ete2al (Huerta-Cepas et al., 2010).
The second step involved writing another python script to run the
Resolve_polytomies.py script, which utilizes tools in the Dendropy library
(Sukumaran and Holder, 2010). Each polytomous input tree was randomly resolved
10 times. | thus generated 10 datasets composed of 274, fully resolved, input trees
on 271 taxa (see Appendix B for a list of the taxa). As my interest was not in
obtaining a well-resolved carnivore tree but in comparing alternative supertree
methods, | excluded from all Bayesian (MCMC) analyses the taxonomy tree used in
the original study. Each of the 10 datasets generated was analysed using the
Bayesian (MCMC) supertree method. For each analysis, two MCMC chains of

Smillion iterations were run, sampling once every 1000 iterations. As with the
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analysis of the metazoan dataset, | ran two chains for each Bayesian analysis to
check for convergence. The B value was set to one for all runs. The trees sampled
after convergence from all ten runs (a total of 30,020) were then merged and a
majority rule consensus tree was constructed in PAUP4b10 (Swofford, 2003). The
majority rule consensus tree constructed from the 30,020 Bayesian (MCMC) sampled
supertrees was compared with the MRP tree of Nyakatura and Bininda-Emonds
(2012). However, the latter included the taxonomy input tree, which was not
included in my analysis. In addition, Nyakatura and Bininda-Emonds (2012) also used
a differential weighting scheme in their analyses, whereas equal weighting was
imposed in the Bayesian (MCMC) supertree analyses performed here. This was done
for simplicity, even though the Bayesian (MCMC) supertree method has the
capabilities to differentially weight the input trees — see chapter 2. Accordingly, in
order to carry out a fair comparison of the MRP and the Bayesian (MCMC) supertree
approaches, | reanalysed the 10 modified (unpolytomised) versions of the dataset of
Nyakatura and Bininda-Emonds (2012) using equally weighted MRP. The
phylogenetic package CLANN was used to generate the MRP matrix and PAUP4b10
was used to analyse the matrix. Parsimony analyses in PAUP used the following
parameters. (1) 100 random additions with the multree option turned off. (2) Trees
that were saved from the initial set of 100 random additions were used to run the
MRP analysis with the multree option turned on. This is the same strategy used, for
example, by Lloyd et al. (2008). This returned 585,166 equally parsimonious
supertrees that were summarised in a majority-rule consensus tree. Finally, a MSS
and RF supertree of the Carnivora were also derived, using their respective default

settings, to compare the Bayesian approach with other supertree methods.
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4.2.2.1 Carnivore dataset leaf stability test

From each of the 10 data sets analysed using the Bayesian approach a set of 100
supertrees were sub-sampled (after convergence). These trees were used as input to
a subsequent analysis devised to investigate the presence of rogue taxa, taxa that
are unstable in their positions in the set of trees (sensu (Wilkinson, 1994)). This was
done using the LeafStability.py script in P4 (Foster, 2004). The leaf stability test
identified 26 highly unstable taxa. The fact that these taxa do not appear unstable in
Nyakatura and Bininda-Emonds (2012) MRP tree is a consequence of the fact that
these authors used a taxonomy tree to shoehorn unstable taxa. These 26 taxa were
deleted from the set of 30,020 Bayesian supertrees and from the 585,166 most
parsimonious trees (MPTs) obtained from my new, equally weighted MRP analysis
(keeping trees that become identical after pruning). New majority rule trees for the
Bayesian (MCMC) analysis and the equally weighted MRP analysis were derived.
Finally, to allow for a full comparison across all the considered trees, these 26 taxa
were also pruned from the Nyakatura and Bininda-Emonds (2012) weighted MRP

supertree.

4.2.3 Statistical test of metazoan and carnivore supertrees

The Approximately Unbiased (AU) test was used to compare the alternative
supertrees (Bayesian (MCMC), equally weighted MRP and differentially weighted
MRP) for the carnivores, and also for the alternative supertrees obtained for the
metazoans. In addition, a sample of 100 random (super)trees was generated with

the same taxon set as in the carnivore dataset and a set of 1000 random (super)trees
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were generated on the taxon set of the metazoan dataset (using PAUP4b10
(Swofford, 2003)). The likelihood values of these random supertrees were estimated
(using the Calculate_supertrees_likelihoods.py script from the L.U.St package),
plotted, and compared against the re-estimated likelihood values for all the set of
MRP, RF, MSS and Bayesian (MCMC) supertrees that | recovered for both the
metazoan and the carnivore datasets. This was done to understand better whether

these methods did better than random, and how much better.

4.3 Results

4.3.1 Bayesian (MCMC) metazoan phylogeny

There were only minimal differences in the posterior probabilities of the clades in
the Bayesian supertrees obtained when alternative B values (0.001, 0.01, 0.1, 0.5
and 1) were used. Therefore, from now on | shall focus on results obtained from the
Bayesian (MCMC) analysis with B set to 1. Figure 4.1 shows the Majority rule
consensus of the 150 trees sampled after convergence. It illustrates the set of
relationships uncovered and their support (represented as nodal posterior
probabilities). Supertrees inferred using the MSS and the RF supertreee methods
are reported in figure 4.2a and 4.2b respectively. The RF analysis returned 15
supertrees; figure 4.2a shows the majority rule consensus of these. The Bayesian
(MCMC) tree in figure 4.1 is topologically identical to the MRP tree of (Holton and
Pisani, 2010). Posterior probabilities for the nodes in this tree are also entirely
comparable with the bootstrap support values of the MRP tree (see (Holton and
Pisani, 2010) fig.3). Importantly, the Bayesian supertree in figure 4.1 (exactly as the

MRP supertree presented in Figure 3 of Holton and Pisani (2010)) recovered a set of
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relationships among the considered taxa that are in full agreement with current
knowledge of animal relationships (including confirmation of the Ecdysozoa
hypothesis). When this phylogeny is compared with those obtained using the MSS
and the RF supertree method, figure 4.2a and 4.2b respectively, it is clear that the
trees obtained from these analyses do not agree with the current knowledge of
animal relationships. The MSS supertree incorrectly resolves the relationships
among the mammal species, while the RF supertree display a greater number of
obviously incorrectly resolved nodes. Overall, taking results of the previous chapter
into consideration, the RF supertree seems to be the worst performing supertree
methods.

The likelihood scores for the metazoan topologies inferred by the Bayesian
MCMC, MRP, RF and MSS supertree methods were compared to the likelihood
scores for 1000 randomly generated metazoan supertrees. This analysis is presented
in figure 4.3.

Finally, Table 4.1 illustrates the results of the test of two trees, including the
AU test, which was performed to compare the topologies inferred by the
MRP/Bayesian (since they returned the same topology), RF, and MSS supertrees
methods. Table 4.1 shows that only the topology inferred by the Bayesian (MCMC)
and by MRP cannot be rejected by the AU test. Taken together, the results of figure
4.2 and Table 4.1 show that the MRP and Bayesian (MCMC) supertree methods
accommodate the metazoan data significantly better than the MSS and RF
supertrees. However, they also show that the set of supertree methods considered
found trees that are significantly better than randomly generated topologies. It is

particularly surprising that RF found trees were significantly worse than MRP, as this
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method would have been expected to return trees similar to those generated by the
Majority Rule (-) method (Cotton and Wilkinson, 2007). This further confirms that
the RF algorithm does not provide a particularly accurate approximation of the
Majority Rule (-) method, while further confirming that MRP, despite its known

problems, performs reasonably well with real-world datasets.

4.3.2 Bayesian (MCMC) carnivore phylogeny

The Bayesian (MCMC) supertree, (figure 4.4) obtained from the analysis of the
carnivore dataset was quite different from the MRP tree presented in Nyakatura and
Bininda-Emonds (2012), and it appears that the placement of a variety of taxa might
have been erroneous in the Bayesian (MCMC) tree. However, an inspection of
support levels (posterior probabilities) suggested that there could have been several
rogue taxa in the dataset. These rogue taxa were not a problem in the study of
Nyakatura and Bininda-Emonds (2012) because these authors used a taxonomy tree
and a differential weighting scheme to shoehorn them. As pointed out in the
method section of this chapter, | chose not to use a taxonomy tree or a differential
weighting scheme in my investigations, as | did not want to have to evaluate factors
other than the supertree method itself in investigating the performance of the
Bayesian (MCMC) and ML supertree methods.

To assess the influence of rogue taxa, | performed a leaf stability analysis (see
section 4.2.2.1). Twenty-six highly unstable taxa were identified by the leaf stability
test (see full ranked list in Appendix B) and pruned from the sampled Bayesian
supertrees, and a new majority rule consensus tree was derived (figure 4.5). The

new (pruned) Bayesian supertree has generally high levels of support and is in good
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agreement with the tree of Nyakatura and Bininda-Emonds at the ordinal level (see
figure 4.5 and 4.6). Indeed, at this level, the only nodes where the two trees
disagree can be shown to have low support in the Bayesian tree, i.e. a non-
monophyletic Viverridae which has a posterior probability of 44%, suggesting that
there is not much signal in the data to infer a monophyletic Viverridae clade and that
the placement of these taxa cannot be considered reliable.

Figure 4.6a shows the majority rule consensus tree for the MRP analysis of
the carnivore dataset, that was performed using the same dataset used for the
Bayesian (MCMC) analysis and equal weighting. This result makes it possible to
compare objectively the ability of the Bayesian (MCMC) supertree method to infer a
biologically plausible topology for a challenging dataset, such as the carnivore
dataset, with that of the MRP supertree method.

A comparison of the Bayesian (MCMC) majority rule consensus tree (figure
4.5) with the equally-weighted MRP majority rule consensus tree (figure 4.6a) and
with Nyakatura and Bininda-Emonds differentially weighted MRP tree (figure 4.6b),
after the removal of the 26 unstable taxa from each of them, illustrates clearly that
the equally weighted Bayesian (MCMC) majority rule consensus tree represents
more biologically plausible relationships and a more resolved phylogeny than the
equally weighted MRP majority rule consensus tree. Indeed, when the taxonomy
and differential weighting are not considered, MRP analysis of this data set returns a
tree that is both biological highly implausible and extremely different from both the
equally weighted Bayesian (MCMC) majority rule consensus tree and the
differentially weighted MRP tree from Nyakatura and Bininda-Emonds (2012).

Supertrees built with the MSS and the RF supertree methods both differed to some
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extent from the supertrees inferred using the Bayesian and MRP methods; hence
these results are not presented due to their poor performance with this data set.

The result of the test of two trees showed that the Bayesian MCMC majority
rule consensus tree fits the data better than the trees inferred by both types of MRP
analyses (see Table 4.2). Indeed, the topologies inferred by both the differentially
and equally weighted MRP analyses are rejected the AU test (see Table 4.2).

Figure 4.7 shows, as in the case of the metazoan dataset, that in the case of
the carnivore dataset all supertree inference methods considered here returned

supertrees that are significantly better than random.

83



I MAMMALIA
[l ACTINOPTERYGII

[JASCIDIACEA 94
]l ECDYSOZOA

[] LOPHOTROCHOZOA _I_E

Gallus gallus
Xenopus tropicalis

r— Ciona savignyl
k= (iona intestinalis

97

Capitella sp

He obdella robusta
Lottia gigantea
Trichoplax adhaerens

—

Nematostella vectensis
Figure 4.1: Bayesian (MCMC) phylogeny of the Metazoans.

This is the majority rule consensus tree of the 150 supertrees sampled from Bayesian
(MCMC) analysis, and also represents the topology recovered by Holton and Pisani
(2010) using MRP, for the analysis of the Metazoa. This data set is composed of 2216
gene trees overlapping on 42 taxa. The red coloured branch represents the branch
leading to the Ecdysozoa group. Clade support is shown as posterior probability
scores. Clades with no support value shown have maximum posterior probability

scores.
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Figure 4.2: Phylogenomic supertrees of the Metazoan.

(a) The phylogeny recovered using MSS. (b) The majority rule consensus of the 15
phylogenies inferred using the RF supertree method. This data set is composed of
2216 gene trees overlapping on 42 taxa. The red coloured branch represents the

branch leading to the Ecdysozoa group.
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Figure 4.3: Distribution of Metazoan supertrees likelihood scores.

This graph illustrates the comparison in the distribution of the likelihood scores for
1,000 random supertrees on the same taxon set of the metazoan data set and the
likelihood scores for the metazoan phylogenies inferred by the (1) Matrix
representation with parsimony and Bayesian (MCMC), (2) Most similar supetree, and
(3) Robinson foulds supertree method. The x-axis represent the log likelihood score

while the y-axis represents the number of trees.

Supertree methods AU test SH test KH test
Bayesian supertree/MRP 1 1 1
RF 2E-35 0 0
MSS 3E-12 0 0

Table 4.1: Summary of the statistical tests of the Metazoan supertrees. This table
illustrates the probability values of the test of two or more trees for supertrees
(implemented in L.U.St) for the phylogenies inferred for the metazoans. Legend: AU
— Approximately Unbiased, SH — Shimodaira-Hasegawa, KH — Kishino-Hasegawa

tests.
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Supertree methods AU test SH test KH test

Bayesian supertree 0.702 0.951 0.695
Equally weighted MRP 0.003 0.303 2.00E-04
Differentially weighted MRP 1.00E-49 0.005 0

Table 4.2: Summary of statistical tests of the Carnivore supertrees. This table
illustrates the probability values of three of the test of two or more trees for
supertrees (implemented in L.U.St) for the phylogenies inferred for the carnivores.
Legend: AU — Approximately Unbiased, SH — Shimodaira-Hasegawa; KH — Kishino-

Hasegawa.
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Figure 4.4: Bayesian (MCMC) phylogeny of the Carnivores.

This is the majority consensus tree of the combined 30,020 supertrees sampled by
the 10 MCMC analyses after convergence and discarding of the burn-in. Clade
support is shown as posterior probability scores. Clades with no support value

shown have maximum posterior probability scores.
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Figure 4.5: Bayesian (MCMC) Carnivore phylogeny excluding rogue taxa.

This is the majority rule consensus tree of the combined 30,020 supertrees sampled
by the 10 MCMC analyses after convergence, discarding of the burn-in and pruning
of the top 26 ranked unstable taxa. Clade support is shown as posterior probability
scores. Clades with no support value shown have maximum posterior probability

scores.
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Figure 4.6: Phylogenomic supertrees of the Carnivora with rogue taxa pruned.

The top 26 ranked unstable taxa identified by the leaf stability test have been
pruned from each of these phylogenies (a) Majority rule consensus tree of the
585,166 most parsimonious trees inferred by the equally weighted MRP analysis of
the modified carnivore dataset, (b) Differentially weighted MRP phylogeny

(presented by Nyakatura and Bininda-Emonds (2012)).
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Figure 4.7: Distribution of Carnivore topologies likelihood scores.

This Graph represents the comparison of the distribution of the likelihood scores for
100 random supertrees on the same taxon set of the carnivore dataset, the dataset
used for the Bayesian (MCMC) analysis, and the likelihood scores for the carnivore
phylogenies inferred by (1) Bayesian (MCMC), and MRP ((2) differentially weighted)
and (3) equally weighted) supertree methods. The x-axis represent the log likelihood

score while the y-axis represents the number of trees

4.4 Discussion

The aim of this chapter was to see how well the Bayesian (MCMC) supertree method
performs in comparison with commonly used supertree methods, in particular MRP.
The results of the analysis of the metazoan dataset initially proved, even before
comparing the Bayesian (MCMC) metazoan phylogeny with the MRP inferred
phylogeny (Holton and Pisani, 2010), that the Bayesian (MCMC) supertree method
returns phylogenies that are biologically plausible in a very efficient time. Itis

noticeable that, while the Bayesian (MCMC) supertree method performed as well as
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the MRP supertree method in the case of the metazoan dataset (where taxon
overlap is high among the input trees), this method clearly outperformed the MRP
approach in the case of the Carnivore dataset, which represented a much more
challenging example (due to the lower levels of overlap between the input trees).
Indeed, the equally weighted Bayesian (MCMC) supertree method (once the 26
unstable taxa were removed) found a solution that is essentially consistent with that
obtained using the MRP method (but only when this methods was used on a data set
that included a taxonomy tree to effectively cover for the lack of phylogenetic signal,
and differential weighting). Indeed, when the same data set is analysed using an
“equally weighted and taxonomy tree-less” MRP approach, the result obtained is
biologically implausible (see figure 4.4a). Thus, an equally weighted Bayesian
(MCMOC) supertree analysis performed as well as a differentially weighted MRP
supertree analysis and significantly better than an equally weighted MRP supertree
analysis. In addition, it is clear that the Bayesian (MCMC) supertree approach, by
providing posterior probabilities for the nodes in the supertree allow for a simple
interpretation of the support for the nodes in the carnivore phylogeny.

| also noticed how much more biologically plausible the phylogenies inferred
by the Bayesian (MCMC) supertree method, in relation to both the metazoan and
the carnivore data sets, is in comparison to the phylogenies inferred by the MSS and

the RF supertree methods.
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4.5 Conclusion

In conclusion, based on the result of this chapter, we can confidently say that the
Bayesian (MCMC) supertreee method returns phylogenies that accomodate the data
from which they have been inferred very well. The Bayesian approach performs as
well as MRP for datasets with high overlap and seems to perform better for more
challenging datasets. Although the ML supertree method implemented in L.U.St is
currently too slow to handle large datasets, the performance of the Bayesian
(MCMC) supertree method in the analysis of both the metazoan and the carnivore
datasets suggests that this method can handle the most challenging of datasets and
that it should be the preferred method for supertree reconstruction. On the basis of
this conclusion, in the last chapter of this thesis | will exploit the potential of the new
methods to address the analysis of a very large and challenging data set (a genomic
data set scoring hundreds of taxa across the three domains of life). | seek to test
hypotheses about the origin of cellular life, but also to evaluate how the Bayesian

supertree method fares when dealing with extremely challenging data sets.
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Chapter 5: Tree of Life

5.1 Introduction

Representing the evolutionary history of all extant organisms on earth as a single
Tree of Life is like a mirage in the desert, the closer we think we are to it the more
we realise it does not exist, at least not in the form of a standard, simple bifurcating
diagram. The aim of this chapter is infer a well-resolved and inclusive prokaryotic
tree of life using the new methods characterized above. From Lamarck’s (Lamarck,
1809) tree diagram to Darwin’s Origin famous tree figure (Darwin, 1859), from the
discovery of the double helix to the discovery of the four-nucleotide bases, from the
sequencing of the first gene to the sequencing of the first genome it appears that
every time we think we have a new tool to understand the evolution of life on the
planet (prokaryotic life in particular), we get frustrated as this long held hypothesis,
even after much modifications to make it reflect current knowledge, simply does not
fit the data that we observe (Bapteste et al., 2009; Doolittle, 1999b; Martin, 1999).
This has led to a divide within evolutionary biology community. On one side of the
argument are those researchers who have proposed that we throw away the tree of
life hypothesis (Gupta, 1998; Lake and Rivera, 1994; Bapteste et al., 2009; Mclnerney
etal., 2011).

The argument against the tree of life hypothesis is mostly based on the
emergence of the role played by lateral gene transfer (LGT) in the evolution of
prokaryotes (Doolittle, 1999a; Lerat et al., 2003; Bapteste and Boucher, 2008). Many
authors argue that the tree of life hypothesis is inadequate as it can only decently

represent eukaryotic evolution, i.e. evolution based on mechanisms that follow a
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bifurcating pattern (Bapteste et al., 2009), and that even within eukaryotes, its
validity might be limited to animals. Hence, the problem with the tree hypothesis
starts when used to represent prokaryotic evolution, and perhaps the evolution of
the unicellular eukaryotes. Indeed, it has been suggested that the eukaryotic and
the prokaryotic mechanisms of evolution are different (Mclnerney et al., 2008;
Puigbo, 2009). As a consequence of the above stated reasons, it has been suggested
that the tree of life hypothesis is not a suitable model to represent prokaryotic
evolution and hence a new and better fitting model should be employed instead.
This has led to an increase in the literature advocating alternative models such as the
public goods hypothesis (Mclnerney et al., 2011) (see also (Dagan and Martin, 2006;
Dagan and Martin, 2009; Halary et al., 2010).

On the opposite side of the argument are the researchers who are convinced
that a tree of all organisms is still a valid metaphor of life. These advocates of the
tree of life hypothesis suggest that there exists a set of core genes that are immune
to LGT and that these genes can be used to correctly infer a tree of life of all
organism, prokaryotes included (Ciccarelli et al., 2006; Puigho, 2009; Puigho et al.,
2010). However, according to Mclnerney and Pisani (2007), these genes do not exit.
The advocates for the tree of life hypothesis such as Kurland et al. (2003) have
responded to this by citing the lack of confidence in the accuracy of the methods
used for measuring the rate of LGT i.e. gene tree incongruence (Brochier et al., 2002;
Lerat et al., 2003; Bapteste et al., 2004). Indeed, some have argued that, although
the level of LGT seen in prokaryotes exceeds anything we see in eukaryotes, the tree
hypothesis still offers insights into the vertical inheritance of genes in prokaryotes

(we just have to find a way to separate the vertical signal of inheritance from the

95



horizontal signal of inheritance) or at the very least the tree of prokaryotes can be
interpreted as the tree of cell division (Daubin et al., 2003; Creevey et al., 2004;
Ciccarelli et al., 2006).

The question remains: are the mechanisms underlying natural variation (such
as point mutations, gene acquisition, chromosomal replication, conjugation,
transformation etc.), across the prokaryote-eukaryote divide so different that
different models must be employed to represent them or is there still a niche for the
tree hypothesis in the representation of the genealogical relationships of prokaryotic
life? An example is the case of the nitrogen fixing bacteria, Frankia, whose strains
genomes can differ by as many as 3500 genes despite having an rRNA sequence
similarity of up to 97%, this is almost 77% of some of the smaller Frankia strains
gene repertoire (Bapteste et al., 2009). Hence, we must ask ourselves whether the
belief in the existence of a universal tree of life stronger than the data, the
phylogenetic signal recovered from their genomes, which supports it?

Several research papers dating back to the first rRNA inferred phylogenetic
tree (Woese and Fox, 1977) have attempted to shed more light on this fundamental
question. Here, | present a new analysis based on the use of the Bayesian supertree
method tested in the previous chapters and the use of the L.U.St package. These
softwares will be used to analyse 4 new datasets. These include a data set
composed of bacterial genomes only (392 species), a data set composed of archaeal
genomes only (51 species), a data set composed of both bacterial and archaeal
genomes (443 species), and a data set composed of both prokaryotic and eukaryotic

genomes (449 species).
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5.2 Methods

5.2.1 Data acquisition

All prokaryotic genomes available from the NCBI database were downloaded. The
fully sequenced genomes of 6 eukaryotes were also downloaded. The sequenced
genomes of the Bigelowiella natans, the Arabidopsis lyrata, the Saccharomyces
cerevisiae, the Trypanosoma congolense and the Dictyostelum purpuren were
downloaded from the joint genome institute (JGI) website. The Cyanidioschyzon
merole’s sequenced genome was downloaded from the ensembl database (see

Appendix C — for a list of all taxa used).

5.2.2 Cluster of orthologous proteins
Initially two databases were assembled. The first, called the Prok dataset, was
composed of bacterial and archaeal genomes only. The second, the Prok_Euk
dataset, was composed of the prokaryotic genomes and the genomes of the
eukaryotes mentioned above. For each database, an all-versus-all blast search (this
involves blasting each sequence against every other sequence in the database) was
set up (e-value = 10e-8) using BLAST 2.2.19. Homologous protein families were then
identified using the Markov cluster algorithm (MCL) (van Dongen, 2000). MCL is an
effective way to identify protein families based on random flow simulations.

The MCL analysis for the Prok data set returned 386,576 gene families of
which 82,844 were composed of 4 or more genes. These 82,844 gene families were
composed of 47,725 single gene families (potential orthologs) and 35,119 multi gene

families (including both orthologs and paralogs).
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Examination of the families led to the conclusion that the MCL granularity
parameter (which was set to 1.4) had not been able to cut the sequences into a
sufficiently large number of single gene families (with a lot of massive multi-gene
families — including many paralogous groups remaining). As a consequence, there
was not sufficient taxon overlap to allow for supertree reconstruction. My solution
to this problem was to concatenate the multi-gene families in a new database and
blast them again using the random blast approach (Creevey et al., 2004). The
random blast approach works by choosing a random sequence from the database
and blasting it against all other sequences in the database. After that, all the
sequences are removed from the database before another sequence is picked and
blasted. This allows increasing the granularity and breaking multigene families into
groups of orthologs. For the random blast analysis the e-value was set to 10e-16 to
ensure that the large multi-gene families would be separated into constituent
orthologs. The 35,119-multi gene families from the Prok data set were concatenated
and analysed using random blast to give 69,070 new gene families of which 30,103
had four or more genes, and out of this we retrieved 4,734 single gene families (the
remaining families were still multigene ones). These 4,734 single gene families
where added to the 47,725 single gene families from the MCL analysis to obtain a
total of 52,459 single gene families.

For the Prok_Euk dataset, the MCL analysis returned 432,250 gene families of
which 88,038 had 4 or more genes. These were further separated into single gene
(38,779 potential orthologs) and multi-gene (49,259 potential paralogs and
orthologs) families. As in the case of the Prok data set, the multigene families were

further split using random blast. The Random blast analysis resulted in 92,432
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families, 41,353 of which had four or more genes. Of these 41,353 families, 4,732
were single gene families and were used for further analyses. The combination of
the MCL derived and of the Random blast derived single gene families resulted in a

total of 43,511 families that could be used for supertree reconstruction.

5.2.3 Building gene trees

To infer gene trees for the supertree analyses, the set of single gene families for the
Prok and Pro_Euk datasets were aligned with the multiple sequence alignment
software, PRANK (Léytynoja and Goldman, 2008). The multiple sequence alignments
were then screened with Gblocks (Castresana, 2000). This software cleans up the
multiple sequence alignments by removing poorly aligned positions. All multiple
sequence alignments with fewer than 100 amino acids were discarded (too short to
allow the generation of reliable phylogenetic trees) and the remaining multiple
sequence alignments were checked for the level of phylogenetic signal they convey
using the permutation tail probability (ptp) test (Archie, 1989; Faith and Cranston,
1991). Analyses were run at the generic level, this means that | was now focussed
on relationships among the different genera rather than the species. The set of
multiple sequence alignments that passed the ptp test were used to infer maximum
likelihood trees using the RAxMI software (Stamatakis, 2006). In the RAxMI analysis, |
used the GTR + Gamma model for alignments longer than 200 amino acids and an
empirical LG + Gamma model for alignments shorter than 200 amino acids. When
all filtering was completed, | was left with 16,463 gene trees for the Prok dataset and

17,747 gene trees for the Prok_Euk dataset. The Prok data set was then split into
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two, to create two more data sets: Bac (composed solely of bacterial-specific genes —
for a total 14,558 trees) and Arc (composed solely of archaeal-specific genes — for a

total of 1,776 trees).

5.2.4 Supertree analysis

The trees from the Prok, Bac, Arc, and Prok_Euk data sets were used as input trees
to Bayesian supertree analyses performed using the Bayesian (MCMC) supertree
method discussed in chapter 2. For the Bac and the Prok data sets, the Bayesian
supertree was run as follow: 2 parallel chains for 4 million iterations, sampling every
5000th iterations. The B value was set to 1. For the Arc data set, two parallel chains
for 2.2 millions iteration were run while sampling every 5 thousand iterations, with
the B value set to 1. For the Prok_Euk dataset, two parallel chains of 5 millions

iterations were run sampling at every 5000th iterations, with the B value set to 1.

5.2.5 Testing previously proposed positions of the Eukaryotes

Four main hypotheses have been put forward to represent the tree of life. Trees
representing these hypotheses were constructed using the Mesquite software
(Maddison and Maddison, 2001). These hypotheses differ in their placement of the
eukaryotes in the tree of life. The first hypothesis places the eukaryotes as sister
group to the Creanarchaeaotes representing the hypothesis that the Crenarchaea
are the closest relative of the eukaryotes (the eocyte hypothesis (Lake, 1988; Rivera
and Lake, 1992; Cox et al., 2008). The second hypothesis places the eukaryotes as a
sister group to the Archaebacteria clade as inferred in the rRNA tree of life (widely

known as the 3-domains of life hypothesis; (Woese et al., 1990)). The third

100



hypothesis places the eukaryotes as a sister group to the Cyanobacteria (this
accounts for eukaryotic genes of Cyanobacteria origin due to endosymbiotic gene
transfer from the plastid to the plant nucleus (Gray, 1989; Martin et al., 2002; Rivera
and Lake, 2004)). The fourth hypothesis places the eukaryotes as the sister group of
the Alpha-proteobacteria (this accounts for eukaryotic genes of alpha-
proteobacteria origin due to endosymbiotic gene transfer from the mitochondria to
the eukaryote nucleus (Martin and Miiller, 1998; Andersson et al., 1998). These
hypotheses were analysed using the test of two trees (described in chapter 2) to see

whether our data could reject some of them.

5.2.6 Identification of rogue taxa

The Concatabomination method (Siu-Ting et al., Submitted) was used to identify
unstable taxa. This method is a heuristic extension to the safe taxonomic reduction
(STR) method of Wilkinson (1995), which uses the character information and
distribution of missing data in a Baum-Ragan encoded matrix to classify taxa into
taxonomic equivalents. The Concatabomination method uses a compatibility
approach to test whether, if two taxa are artificially hybridised (i.e.
concatabominated), the homoplasy in the matrix increases. If it does not, then the
taxa are equivalent and one of them can be eliminated from the analyses. The
method returns a ranked list of rogue taxa, which can be visualised as a network

using Cytoscape (Shannon et al., 2003).
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5.3 Results

5.3.1 The Prokaryote Supertree

The two parallel chains that were set up for the Bayesian (MCMC) supertree analysis
of the Prok data set converged after 2.5 million iterations. After removing the burn-
in a total of 482 were left from both chains. These supertrees were read into the
PAUP4b10 software package (Swofford, 2003) to construct a majority rule consensus
tree (figure 5.1). The resolution of this tree is very poor, and clades with a posterior
probability that is less than 0.5 are indicated by dotted lines. Of the 30 prokaryotic
phyla represented in this tree by more than one genus only Deferribacteres,
Deinococcus/Thermus, Epsilon-Proteobactera, Chlorobi, Fusobacteria,
Plantomycetes, Thaumarchaeota and Thermotogae appear monophyletic.

The tree in figure 5.1 shows high resolution toward the tips, some with low
posterior probability, however the deeper we move along the tree the poorer the
resolution become. This result is not dissimilar from that found by Creevey et al.
(2004) and Pisani et al. (2007). Because lack of resolution could be caused by the
presence of rogue taxa, a concatabomination analysis was performed, and rogue
taxa were identified and removed (see figure 5.2). The concatabomination analysis
identified 16 rogue taxa. To investigate their effect on supertree topology, the 16
rogue taxa were pruned from the 482 recovered supertrees, and a new majority rule
tree was calculated (to evaluate whether removing taxa affected the support for the
clades in the supertree), (see figure 5.3). The removal of the 16 rogue taxa did little
to resolve the tree, especially with reference to the deep branches. Although this
tree showed a slight improvement in the posterior probabilities of many nodes and

would have recovered an extra monophyletic phylum: the Beta-Proteobacteria, had

102



the Beta-Proteobacteria taxon (Neisseria) not been inferred within the Gamma-
Proteobacteria. The fact is that this new tree does not represent a great
improvement toward recovering a resolved prokaryotic tree of life. This observation
made me question if the MCMC method was unable to recover a tree for these taxa,
proving that the method is not powerful enough to deal with a dataset as
challenging as this, or whether a resolved prokaryotic tree is not recovered because
it does not really exist.

In an attempt to vindicate the Bayesian tree inference method, 100
supertrees were randomly generated on the same taxa as the Prok dataset using
PAUP4b10 (Swofford, 2003). The mesquite software (Maddison and Maddison,
2001) was used to manipulate the Bayesian (MCMC) topology to mirror the topology
presented by Ciccarelli et al. (2006), which we use as the standard “accepted” tree of
life. Log likelihood values were calculated for the 100 random supertrees, for the
Bayesian (MCMC) supertree and for the Ciccarelli topology using the L.U.St package.
The software Tracer (Rambaut and Drummond, 2007) was used to show the
distribution of the calculated likelihood values and the result is presented in figure
5.4. This figure shows that both the Bayesian (MCMC) and Ciccarelli topology are
significantly better than random. In addition, when compared using the AU test the
Bayesian topology appears to have a fit to the data that is significantly higher than
that of the Ciccarelli tree. With this as evidence | can confidently rule out
methodological errors or inefficiency as a cause of the lack of resolution observed in
the supertrees inferred for the Prok data set. In truth, the apparently nonsensical
Bayesian tree fits the data much better than a standard tree of life. Hence this data

set could not have inferred a tree similar to the Ciccarelli one and we have to
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conclude that the Prok data set, very simply, does not support the existence of a tree
of life.

It is evident from figure 5.1 and figure 5.3 that a key topological feature of
the Prok tree(s) is that the Archaebacteria appear to be substantially fragmented.
For example, the Crenarchaeota and the Thaumarchaeota nest with the Alpha-
Proteobacteria, while the Haloarchaea are nested within the Gamma-
Proteobacteria. Finally, the methanogenic Euryarchaeaota are shown to branch
within a group composed of Beta-Proteobacteria and Gamma-Proteobacteria.
Importantly, all of these relationships have a low posterior probability (less than 0.5).
Certainly, such values are not strong enough to suggest that an alternative to the
Ciccarelli tree should be proposed. Rather, it seems that these results might be

speaking against the existence of a prokaryotic tree of life.
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Figure 5.1: Bayesian (MCMC) phylogeny of the prokaryotes.

The majority rule consensus tree constructed from the 483 supertrees sampled from
the MCMC chains (2 runs). Dotted lines represent clades with less than 0.5 posterior
probabilities. Note: This phylogeny should be interpreted as unrooted. It is

presented as a circular cladogram only to fit the page.
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Figure 5.2: Network visualisation of taxonomic equivalents in the Prok dataset.

The green dots represent taxa that are not taxonomically equivalent to any other
taxa in the dataset while the networks represent taxa that share the same
information (taxonomically equivalent taxa). The highly unstable taxa are coloured in
red. a) The full network-indicating Aster as the most unstable taxa. b) The network
after Aster has been deleted. It also shows Blattabacterium, Orientia, Neorickettsia,
Wolbachia, Anaplasma, Baumannia, Cyanobacterium and Buchnera as unstable taxa.
c) The network following the deletion of the highly unstable taxa identified in b). At
this point  Methylovorus, Chlamydophila, = Chlamydia, Ehrlichia, Xylella,
Nanoarchaeum and Polynucleobacter are identified as the next group of highly
unstable taxa. d) The reanalysed network following the deletion of the highly
unstable taxa identified in c).
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Figure 5.3: Bayesian (MCMC) phylogeny of the prokaryotes after pruning the rogue
taxa. This is the majority rule tree constructed from the 483 trees sampled from the
2 runs after the 16 rogue taxa identified by the concatabomination analysis were
eliminated. Dotted lines represent clades with less than 0.5 posterior probabilities.
Note: This phylogeny should be interpreted as unrooted. It is presented as a circular

cladogram only so that it could fit the page.
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5.3.2 The Archaeabacterial Supertree

In light of the results from the analyses of the Prok data set, one wonders whether
the Archaebacteria truly are monophyletic. A variety of recent studies have
addressed the phylogenetic relationships within this domain, and an exceptional
level of resolution has indeed been obtained (Brochier-Armanet et al., 2008;
Brochier-Armanet et al., 2011). How can these results compare with those
presented here (Prok analyses)? To elucidate this problem | analysed the Arc
dataset to evaluate whether the signal for the relationships found by previous
studies of the Archaebacteria is present also in Prok (despite the odd relationships
obtained from when the Eubacteria are also included). Figure 5.4 shows the
Bayesian (MCMC) supertree recovered for the Arc data set (the supertree was
obtained summarising 800 trees found from the two runs after convergence). The
input trees used to recover this supertree were generated from those in Prok, simply
deleting all eubacterial genera. Surprisingly, the Arc supertree almost perfectly
reflect current understanding of Archaea evolution (Wolf et al., 2002; Ciccarelli et al.,
2006; Brochier-Armanet et al., 2008; Brochier-Armanet et al., 2011). It shows that
the Haloarchaea branches from with the methanogens, and Crenarchaeota can be
seen as the sister group of the Thaumarchaeota. In addition to having a topology
comparable with that of other (previous) archaebacterial phylogenies, the Arc
supertree is also extremely well supported (compare with the phylogenies of
(Gribaldo and Brochier, 2009; Kelly et al., 2011; Brochier-Armanet et al., 2011), see
figure 5.4). The dissimilarity between the Prok and the Arc tree is astonishing and
implies that the Prok data set conveys the information generally represented in

standard archaebacterial phylogenies. The question, therefore, is why isn’t this
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information appearing in the Prok tree? We shall address this question in the

discussion.

g——\|itrosopumilus
e cnarchaeum

Nanoarchaeota
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Figure 5.4: Rooted Bayesian (MCMC) phylogeny of the Archaeabacteria.

This is the majority rule tree constructed from the 800 supertrees sampled from two

MCMC chains in the Bayesian supertree analysis.
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5.3.3 The Eubacteria Supertree

The Bac supertree was generated by combining the 700 trees sampled (after
convergence and discarding burn-in) from the two MCMC chains (figure 5.5). This
tree is the obvious counterpart of the Arc tree (derived from Prok by deleting all
archaebacterial lineages). This topology is an improvement on the topology
recovered (for the Eubacteria clades) in the analyses of Prok (figure 5.1 and 5.3),
where the Eubacteria and Archaebacteria were concomitantly included. Ultimately,
also the tree of figure 5.5 failed to recover many eubacteria phyla. However, this
tree is clearly much better than that derived from the Prok dataset.
Concatabomination analysis identified 5 excludable rogue taxa in Bac (see figure

5.6). Exclusion of these taxa did not improve the resolution of the Bac tree figure 5.7.
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Figure 5.5: Bayesian (MCMC) phylogeny of the Eubacteria.

This is the majority rule consensus tree constructed from the 700 supertrees
sampled from 2 independent Bayesian analyses after convergence. Dotted lines
represent clades with less than 0.5 posterior probability. Note: This phylogeny
should be interpreted as unrooted. It is presented as a circular cladogram only to fit

the page
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Figure 6.6: Network visualisation of taxonomic equivalents in the Bac dataset.

The green dots represent taxa that are not taxonomically equivalent to any other
taxa in the dataset while the networks represent taxa are share the same
information (taxonomically equivalent taxa). The highly unstable taxa are coloured in
red. a) The full network indicating Onion as the most unstable taxa. b) The
reanalysed network following the deletion of the Onion node. The Wolbachia node is
now shown as the next highly unstable taxa in the dataset. c) The reanalysed
network following the deletion of the Wolbachia node. Aster, Ureaplasma, and
Neorickettsia are now shown as the next highly unstable taxa in the dataset. d) The
reanalysed network following the deletion of the nodes identified as highly unstable
in c). The network when all the unstable taxa in the tree have been removed.
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Figure 5.7: Bayesian (MCMC) phylogeny of the Eubacteria with the rogue taxa
pruned. This is the majority rule consensus tree constructed from the 700
supertrees sampled from 2 independent Bayesian analyses after convergence and
after the 16 rogue taxa identified by the concatabomination analysis were pruned
away. Dotted lines represent clades with less than 0.5 posterior probability. Note:
This phylogeny should be interpreted as unrooted. It is presented as a circular

cladogram only to fit the page.
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5.3.4 The position of the Eukaryotes

The Statistical test of two trees for the four “hypotheses of life” is presented in Table
5.1. The result shows that the hypothesis placing the eukaryotes in a sister group
relationship with the Alpha-Proteobacteria is the only hypothesis that can be
confidently rejected out of the four hypotheses. This was to be expected and is in
accordance with what was showed by Pisani et al. (2007) who showed that the
strongest signal for the outgroup of the eukaryotes is with the plant (this is
unsurprising as the plastid acquisition was the latest of the symbiotic events
characterising the origin of the eukaryotes and many genes of plastid origin in the

plant genomes show a strong link with the Cyanobacteria).

Supertree methods AU test SH test KH test

Table 5.1: Summary of the statistical test of the Eukaryotic relationships. This table
illustrates the probability values of the test of two or more trees for supertrees
(implemented in L.U.St) for the phylogenies inferred for the carnivores. The row
coloured red is rejected by the AU test. Legend: AU — Approximately Unbiased, SH —

Shimodaira-Hasegawa, KH — Kishino-Hasegawa.
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5.4 Discussion

The idea of using trees to model evolutionary relationships, made popular by the
work of Haeckel (1866), is currently facing its biggest challenge in the 21st century.
This is due to new evidence showing that lateral gene transfer might be at the heart
of the mechanism governing prokaryotic evolution.

The collective topologies inferred for the Prok, Bac, Arc and Prok_Euk datasets
presented here provide no support for the existence of a tree of life, in particular a
prokaryotic tree of life. AU tests could not distinguish between alternative
hypotheses of eukaryotic relationships, while more importantly; the Prok analysis
statistically rejected the standard tree of life (i.e. the Ciccarelli tree) favouring
instead a topology with little biological sense (if read by assuming that the tree of life
must exist). In particular this topology showed no support for the monophyly of the
Archaebacteria that are distributed across the Eubacteria. This is surprising and
quite shocking, if one analysed the Archaebacteria only (to the exclusion of the
Eubacteria) and is able to find the traditional Archaebacteria tree. This suggests that
Archaebacterial genomes are significantly enriched in eubacterial genes, and that
different archaebacterial lineages have acquired genes from alternative eubacterial
lineages. At the same time it seems that there is probably not much LGT going on
within Archaebacteria (or that these LGT are totally randomised in direction so that
the phylogenomic tree here derived is in agreement with the results of the standard
rRNA tree). Overall these results are surprising and provide a very interesting insight
into prokaryotic evolution. More broadly the results of the BAC data set illustrate
that apart from sharing with the Archaebacteria, the Eubacteria are also much more

promiscuous among themselves, to the point that a clear eubacterial phylogeny is
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not recoverable from the data. Overall, we can only conclude that there is no clear
evidence in genomic data for the existence of a prokaryotic tree of life.

Apart from further elucidating patterns of prokaryotic evolution, the results
presented in this chapter illustrate the potential of the methods presented in this

thesis.

5.5 Conclusion
While several authors have called for completely new models to be used to
represent prokaryotic evolution, and some other authors have dogmatically insisted
on the continuation of using the tree hypothesis as it is (Daubin et al., 2003;
Ciccarelli et al., 2006), others have proposed using a modification of the tree
hypothesis i.e. a tree showing vertical evolution with the LGT events mapped on top
of it or a different interpretation of the tree of life as a tree of cell division (TOCD).
In the introduction | asked the question: is there still a place for a tree in
prokaryotic evolution? The answer based on the result of this study is an
overwhelming no. This is because; although there is some vertical signal visible in
the prokaryotic tree this is mostly toward the tip of the tree. Deep evolutionary
events are simply unresolvable based on entire genomes, not because of signal
erosion, but because of the rampant role of LGT in prokaryotic evolution. Simply
stated, a tree is not a good metaphor to represent the evolution of these organisms.
In particular it seems that the eubacteria are particularly promiscuous among each
other, while it seems that Archaebacteria are enriched in Eubacterial genes. Our

results seem to suggest that while there might be patterns of transfer from
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eubacteria to Archaebacteria (consistent with what was showed by Nelson-Sathi et
al. (2012)), LGT within Archaebacteria might be quite randomly distributed (or rare).
To the point that there is no strong signal (if one considers Archaebacteria only) that
cancels the signal consistent with the classic Archaebacterial tree. That is, it is
possible that in Archaebactera interdomain transfers were more important than
intradomain ones. Given that Archaebacteria clearly engage in LGT, it seems more
likely that these tend to be random and do not have a strong directional effect that
could cancel out the vertical signal representing the pattern of cell division within
this lineage.

These results might seem depressing (we have all learned about the tree of
life and we might not necessarily have expected to see it falling apart). However, we
should not be worried because even if the tree of life might ultimately be falling,
evolution is real, and a new model will ultimately be described that fits the data
better than a tree. From my personal point of view | can say that | am not
depressed. The results obtained in this last chapter convinced me that the tools |
have been developing (either in isolation or in collaboration with Peter Foster) can
be extremely useful in evolutionary biology and can be used to gain new insight in

the study of evolution. What better way to conclude my PhD?
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Chapter 6: General Discussion & Conclusions

“In science it often happens that scientists say, 'You know that's a
really good argument; my position is mistaken,' and then they would
actually change their minds and you never hear that old view from
them again. They really do it. It doesn't happen as often as it should,
because scientists are human and change is sometimes painful. But it
happens every day. | cannot recall the last time something like that
happened in politics or religion.” — Carl Sagan

This thesis addresses a topic, tracing the evolutionary history of extant species from
a single common ancestor, both of its constituent points of view (theoretical and
applied). The search for common ancestors and relationships of relatedness has
captivated researchers in the field of evolutionary biology, conservation,
epidermiology etc. since the 19" century, and for some aspects this field has not
changed much since then. This is evident in the fact that we are still relying on
Darwin’s idea that a tree of all organisms can be derived.

However, this monotony of the tree hypothesis for the representation of the
evolution of life on the planet might be coming to an end. As mentioned in chapter
5 of this thesis the applicability of the tree hypothesis to the representation of
evolution in prokaryotes in particular has began to be questioned (Bapteste et al.,
2009; Mclnerney et al., 2011). This thesis first developed and tested tools to
investigate relationships of common ancestry and then addressed this question
using these new tools and genomic scale data sets. Based on the results obtained
(Chapter 5) my work confirms that the hour of change is finally before us and new
and better fitting models of evolution must now be developed, characterized and
applied to represent evolution in the prokaryotes. However, while the tree

hypothesis is no longer applicable to prokaryotic evolution (and life), there is no
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doubt that trees are still of great utility (for example in the study of animal
evolution). Hence the various tools developed and characterised in this thesis will
continue to be of great utility in any field in which the trees represent suitable
hypotheses.

From humble beginnings in the field of computer science the popularity of
supertrees have soared among researchers due to their meta-analytical and
combinatorial properties. Accordingly, they found application in many diverse
research fields i.e. Phylogenomics, comparative biology, Taxonomy, evolutionary
developments, etc. However this apparent meteoric rise in the success of supertrees
does not undermine the various shortcomings of current methods.

A justified criticism of the majority for available supertree methods was that
they were guilty of not treating input tree as estimates from data, treating them
rather as factual statements, and hence not accounting for the uncertainties in these
estimates (Cotton and Wilkinson, 2009). In the methods implemented in this thesis
this problem is formally addressed by modelling error explicitly. To completely
eliminate the problem pinpointed by Cotton and Wilkinson, however, one should
probably combine the methods in this thesis with the use of bootstrap trees (for
different data sets) as inputs instead than optimal trees. However, this is difficult
because by using bootstrap input trees the calculation of supertrees become
computationally much more expensive.

Secondly many researchers have questioned the black box nature of
currently available supertree methods (Pisani and Wilkinson, 2002; Wilkinson et al.,
2005a; Wilkinson et al., 2007; Ren et al., 2009). This is a critic mostly levelled at the

Matrix Representation with Parsimony method, mainly due to it being the most used
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supertree method. Although MRP’s suitability for the reconstruction of phylogenies
has been discussed from the time of its inception (Steel, 1992; Baum and Ragan,
1993; Rodrigo, 1996), as mentioned in chapter 2 it is only recently that the
mechanics of this and other supertree methods have been investigated (Eulenstein
et al., 2004; Wilkinson et al., 2004; Cotton et al., 2006; Wilkinson et al., 2007). Based
on the literature (Purvis, 1995a; Wilkinson et al., 2005a; Steel and Rodrigo, 2008)
and the result of chapter 3, currently available supertree methods are found wanting
for some desired properties. This thesis has addressed this problem of lack of clarity
regarding the properties underlying the set of available supertree methods by
providing two probabilistic supertree methods with well-formulated theories that
are consistent under general statistical conditions, see - (Steel and Rodrigo, 2008;
Bryant and Steel, 2009).

Another major criticism of current supertree methods was that it was difficult
to estimate support for nodes in these trees. This thesis provides a solution to this
problem through the use of the parametric alternative, the posterior probabilities.
The Bayesian (MCMC) supertree method characterised in this thesis enables the use
of posterior probabilities to provide easy to interpret support values for the
relationships (clades) represented in the supertrees.

Lastly some researchers have campaigned for the use of the supermatrix
approach over the supertree approach as it is expected that supermatrix approaches
used more of the information in the character data than supertrees (Kluge, 1989;
Gatesy et al., 2004; de Queiroz and Gatesy, 2007). The supermatrix approach focuses
on combining data at the ground level by concatenating gene alignments to generate

super alignments that can then be analysed using different phylogenetic methods
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(i.e. parsimony or likelihood methods). Researchers that favour the supermatrix
approach have pointed towards the fact that the supermatrix approach deals with
the character data directly as evidence of it superiority, labelling it a total evidence
approach and pointing out that it is able to use the hidden support in the character
data (de Queiroz and Gatesy, 2007; Gatesy et al., 1999). However, the supermatrix
approach often implicitly assumes that all characters have undergone the same
evolutionary process (at the least for some of the parameters in the substitution
models used). In addition, its ability to find support for clades in the presence of
missing data is unclear, and its efficiency in terms of speed is not great (Degnan and
Rosenberg, 2006; Ren et al., 2009; Von Haeseler, 2012). Although new methods
claim to address some of these deficiencies of the supermatrix approach (Simmons
and Freudenstein, 2002; Nylander et al., 2004), these methods are yet to be properly
characterized. The ability to use statistical analysis in the supermatrix framework and
its absence in the supertree framework has been used by the proponent of the
supermatrix approach as another major reason why the supermatrix approach is
superior to the supertree approach (Kupczok et al., 2010). However this is now a
mute point as the ability to estimate the likelihood of supertrees has paved the path
for the use of statistical methods such as the KH test (Kishino and Hasegawa, 1989),
the SH test (Shimodaira and Hasegawa, 1999), the AU test (Shimodaira, 2002), etc.
(see section 2.2.3).

Though supertrees have their limitations (Steel and Bécker, 2000), the same
can be said for supermatrix approaches, hence, | join Von Haeseler (2012) in
proposing that the best approach is to use both approaches and compare the results

as they offer different strengths. As a last a word I'd like to say the field of
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supertrees has progressed and improved very rapidly, the methods developed in this
thesis are further testament to efforts to continue this improvement and based on
the result of this thesis supertrees can now be applied to an even wider range of

research topics.
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Chapter 7: Future prospective

The development of accurate methods to reconstruct the evolutionary relationships
of organisms continues to be a topic of interest among researchers and the
availability of genomic data has given birth to the field of phylogenomics. Although
methods presented in this thesis represent an improvement over previous supertree
methods, there are still rooms for further improvements. The Robinson Foulds (RF)
metric used in this thesis to calculate the distance between trees represents a quick,
easy to implement and well-understood distance metric, however other distance
metrics that are finer grained exist. An interesting alternative is the quartet
distance metric (Estabrook et al., 1985). This is characterised by the number of
topological differences in the quartet sets (set of subtrees of four leaves) of two
trees. This metric could offer a number of attractive advantages over the RF
distances, most importantly that it can estimate with greater precision tree to tree
distances (Steel and Penny, 1993). | would like to implement the ML supertree
method in the future using quartet distances to measure the difference between
trees.

Another possible future endeavour would be to investigate the use of
alternatives to the exponential distribution, to model incongruence in the observed
data.

Finally I would like to continue to improve the efficiency of the ML program
(by improving tree search strategies and recoding it in C) and apply it to other

biological questions of relevance.
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Introduction

Recent advances in supertree theory should now allow the
implementation of Maximum Likelihood (ML) method, based
on the use of an exponential distribution to model topological
errors in phylogenies. Such approaches are expected to have
distinct advantages over ad hoc approaches like the widely
used Matrix representation with parsimony (MRP).

L.U.St includes the first parametric supertree method
developed. The scripts that make up L.U.St are written in
python and the ML method uses the subtree pruning and
regrafting method to search the tree space.

Implementation

L.U.St comes in a folder containing all the various classes that
are needed for the running of the software. L.U.St does not
require any installation but as this is a python package, it

requires an up to date and working version of python installed
on your computer or server.

Citing L.U.St

Wasiu A. Akanni, Christopher ]. Creevey and Davide Pisani: L.U.St: A tool
for maximum likelihood supertree reconstruction. Oxford Bioinformatics
Journal, (SUBMITTED).

Getting started

For a short description of the options available use the
following command:

Python MLSupertree.py -h

Usage: python MLSupertree.py [options]
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4.1. Options:
-h --help show this help message and exit

-1 genetreeFILE, --input_treefile=genetreeFILE
The name of the file containing the fully resolved
input gene trees in newick format (required)

-t STARTIN_OPTION, --start_tree_option=STARTIN_OPTION
'ves': if you have a starting tree. ‘no’ : if you want a
random starting tree to be constructed by random
stepwise addition Default = 'no’ (required)

-s START_TREE_FILE, --start_treefile=START_TREE_FILE
The name of the file containing the fully resolved
tarting supertree(s) in newick format (required ONLY
IF YOU PICK YES ABOVE)

-n RANDOM_ITERATIONS, --number_of_iterations=
RANDOM_ITERATIONS
The number of random starting trees/iterations
Default=1

-0 OUTFILE, --output_file=OUTFILE
The name of the file where you want the output of the
analysis to be stored. Default=
Mlsupertree_analysis_output

-c SPR_CHOICE, --heuristic=SPR_CHOICE
Please type 1: for a full exhaustive spr search
2: for a version that does not go thru every rooting
point
3: a version that only considereds better trees
4: a version that does not include going through all the
root and only considers trees with better likelihood.
Default=1
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o Gives the best result in tests carried out using
empirical datasets

- Option 2: Faster than options 1. This search does not
re-root each tree at every possible rooting point

- Option 3: Faster than option 1 and 2. The speed here
is achieved by only considering the better trees (tree
of equal likelihood although kept are not analysed
further).

- Option 4: The fastest of them all. Only trees of better
likelihood are analysed further and does not re-root
the trees at every possible rooting point.

* Option 1 is recommended in terms of speed and
accuracy.

Output

-0 --output_file

The output of No-name is a file containing the Maximum
Likelihood supertree(s), the likelihood value and the length of
time the software took to reach completion.

FAQs

Q: can ] used input trees containing polytomies?
A: No. At the moment the tree class can’t handle polytomies.

Q: can | used starting supertrees containing polytomies?
A: No. At the moment the tree class can’t handle polytomies.

Q: can I used input trees in nexus format?

A: No. At the moment the parsing scripts can only handle trees
in newick format.
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4.2. Examples:

python MLSupertree -i Example/Drosophila_inputtrees -t yes -0
Drosophila_Mlstree_results —c 1

5. Input data set

-1 —-input_treefile

The No-name software takes as input a file containing a list of
newick formatted phylogenetic trees overlapping on some set
of taxa (an example is included in the No-name directory in the
file called Drosophila_empiricalTrees.txt).

6. Starting Tree

-t --start_tree_option

You can choose to provide your own starting tree(s) by giving
the name of the file containing your newick formatted starting
tree(s) to the No-name or choose for No-name to generate
random starting trees.

Random starting tree(s) will be generated on the combined
taxon set of the input trees using a stepwise addition
technique.

Note: your starting tree must contain all the taxa in your input
tree data set.

7. Heuristic Option

-c --heuristic
Five heuristic search strategies based on subtree pruning and
regrafting (spr) have been implanted in No-name.

- Option 1: This is the most exhaustive search strategy
implemented. It involves:
o Afull round of spr on every tree being analysed
o Re-rooting every tree being analysed at every
possible rooting point.
o Keeping every tree found to be of equal
likelihood to the current tree for future analyses
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10. Extra Goodies!!!

Calculate_supertrees_likelihoods.py
- This script was written to allow the user the ability to
calculate the likelihoods of a list of supertrees inferred
from an input tree dataset.

Resolve_phylogenies.py

- This script was written to deal with polytomous gene
trees in the maximum likelihood analysis. We came up
with the idea that we can used a resolved supertree
such as an MRP tree to resolve the polytomous clades
in the gene trees before a maximum likelihood
analysis. This should be more effective than simply
randomly resolving the clades.

Winning_site_test.py
- This script calculates the winning site test between
two supertrees that have been inferred from the same
input tree dataset but probably using different
supertree methods.

ExtractTaxon_file.py
- This script can used to create a list of all the taxon set
of an overlapping input tree data set.

Statistical_test.sh and Statiscal_test.py

- This two script work together with the CONSEL
software to calculate the SH,KH, and AU test and rank
supertrees inferred on the same input tree dataset but
using different supetree methods (competing
hypothesis).

- Both the Supertree file and the input tree dataset file
should be in newick format.
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- There is an example script called run_stat_test.sh. this
script can be modified by changing the name of the
input and output files to that of your own files.

Deroot.py
- This script offers the capability to deroot rooted trees.
This script requires the DENDROPY package to be
installed

generate_bootstrap_replicate_files.py

- This script enables the user to create replicate
bootstrap datasets for the input tree dataset which
can be used to generate bootstrap support values for
the clades in the estimated ML supertree.
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Appendix B

Taxa Family
Vulpes ferrilata Canidae
Dusicyon australis Canidae

Galerella flavescens
Galerella ochracea
Mustela lutreolina
Herpestes smithii
Nasuella olivacea
Procyon pygmaeus

Vulpes pallida
Bassaricyon pauli
Herpestes semitorquatus
Conepatus chinga
Mustela nudipes
Mustela africana
Mustela felipei

Mustela strigidorsa
Vulpes bengalensis

Ictonyx libyca

Zalophus japonicus

Melogale personata
Lyncodon patagonicus

Herpestes vitticollis

Mellivora capensis
Galictis cuja

Bassaricyon beddardi

Prionodon linsang
Ailuropoda melanoleuca

Helarctos malayanus

Ursus americanus
Melursus ursinus
Ursus thibetanus

Tremarctos ornatus

Ursus maritimus
Ursus arctos

Prionodon pardicolor
Leopardus pajeros
Atelocynus microtis
Lycalopex sechurae

Cerdocyon thous
Lycalopex griseus
Lycalopex gymnocercus

Lycalopex culpaeus

Lycalopex vetulus

Herpestidae
Herpestidae
Mustelidae
Herpestidae
Procyonidae
Procyonidae
Canidae
Procyonidae
Herpestidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Canidae
Mustelidae
Otariidae
Mustelidae
Mustelidae
Herpestidae
Mustelidae
Mustelidae
Procyonidae
Prionodontidae
Ursidae
Ursidae
Ursidae
Ursidae
Ursidae
Ursidae
Ursidae
Ursidae
Prionodontidae
Felidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
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Lycalopex fulvipes
Arctogalidia trivirgata
Speothos venaticus
Chrysocyon brachyurus

Macrogalidia musschenbroekii

Paradoxurus jerdoni
Paradoxurus zeylonensis
Nandinia binotata
Urocyon cinereoargenteus
Urocyon littoralis
Otocyon megalotis
Vulpes chama
Nyctereutes procyonoides
Vulpes cana
Vulpes zerda
Vulpes corsac
Vulpes rueppellii
Vulpes vulpes
Vulpes lagopus
Vulpes velox
Vulpes macrotis
Canis adustus
Canis mesomelas
Canis simensis
Lycaon pictus
Cuon alpinus
Canis aureus
Canis lupus
Canis latrans
Arctocephalus gazella
Arctocephalus tropicalis
Otaria flavescens
Odobenus rosmarus
Zalophus wollebaeki
Arctocephalus pusillus
Callorhinus ursinus
Eumetopias jubatus
Zalophus californianus
Neophoca cinerea
Phocarctos hookeri
Arctocephalus galapagoensis
Arctocephalus philippii
Arctocephalus townsendi
Arctocephalus forsteri
Arctocephalus australis
Erignathus barbatus

Canidae
Viverridae
Canidae
Canidae
Viverridae
Viverridae
Viverridae
Viverridae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Canidae
Otariidae
Otariidae
Otariidae
Odobenidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Otariidae
Phocidae




Cystophora cristata Phocidae

Monachus monachus Phocidae
Monachus tropicalis Phocidae
Monachus schauinslandi Phocidae
Lobodon carcinophaga Phocidae
Ommatophoca rossii Phocidae
Prionailurus iriomotensis Felidae
Mirounga angustirostris Phocidae
Mirounga leonina Phocidae
Hydrurga leptonyx Phocidae
Leptonychotes weddellii Phocidae
Pagophilus groenlandicus Phocidae
Histriophoca fasciata Phocidae
Phoca vitulina Phocidae
Phoca largha Phocidae
Halichoerus grypus Phocidae
Pusa caspica Phocidae
Pusa sibirica Phocidae
Pusa hispida Phocidae
Conepatus semistriatus Mephitidae
Leopardus wiedii Felidae
Leopardus pardalis Felidae
Leopardus colocolo Felidae
Leopardus jacobitus Felidae
Leopardus geoffroyi Felidae
Leopardus guigna Felidae
Leopardus tigrinus Felidae
Neofelis nebulosa Felidae
Panthera tigris Felidae
Uncia uncia Felidae
Panthera onca Felidae
Panthera pardus Felidae
Panthera leo Felidae
Lynx canadensis Felidae
Lynx lynx Felidae
Lynx pardinus Felidae
Lynx rufus Felidae
Leptailurus serval Felidae
Profelis aurata Felidae
Caracal caracal Felidae
Puma concolor Felidae
Puma yagouaroundi Felidae
Pardofelis marmorata Felidae
Catopuma badia Felidae
Catopuma temminckii Felidae
Acinonyx jubatus Felidae
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Prionailurus viverrinus
Prionailurus planiceps
Prionailurus bengalensis
Prionailurus rubiginosus
Felis nigripes
Felis chaus
Felis manul
Felis margarita
Felis bieti
Felis catus
Felis silvestris
Spilogale pygmaea
Liberiictis kuhni
Helogale hirtula
Mungos gambianus
Crossarchus alexandri
Mungos mungo
Herpestes naso
Paracynictis selousi
Bdeogale crassicauda
Rhynchogale melleri
Atilax paludinosus
Ichneumia albicauda
Crossarchus obscurus
Herpestes brachyurus
Herpestes urva
Herpestes edwardsi
Herpestes fuscus
Herpestes javanicus
Galerella pulverulenta
Galerella sanguinea
Herpestes ichneumon
Bdeogale nigripes
Suricata suricatta
Helogale parvula
Cynictis penicillata
Cryptoprocta ferox
Eupleres goudotii
Fossa fossana
Arctictis binturong
Paguma larvata

Paradoxurus hermaphroditus

Cynogale bennettii
Chrotogale owstoni
Diplogale hosei
Hemigalus derbyanus

Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Mephitidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Herpestidae
Eupleridae
Eupleridae
Eupleridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae




Galidictis fasciata
Galidia elegans
Mungotictis decemlineata
Salanoia concolor
Genetta johnstoni
Proteles cristata
Crocuta crocuta
Hyaena hyaena
Hyaena brunnea
Genetta piscivora
Viverricula indica
Viverra tangalunga
Viverra zibetha
Civettictis civetta
Viverra civettina
Viverra megaspila
Genetta thierryi
Genetta abyssinica
Genetta bourloni
Poiana richardsonii
Genetta angolensis
Genetta tigrina
Genetta genetta
Genetta maculata
Genetta cristata
Genetta pardina
Genetta poensis
Genetta victoriae
Genetta servalina
Ailurus fulgens
Conepatus humboldtii
Mydaus javanensis
Mydaus marchei
Conepatus leuconotus
Spilogale gracilis
Spilogale putorius
Mephitis macroura
Mephitis mephitis
Potos flavus
Procyon cancrivorus
Procyon lotor
Bassariscus sumichrasti
Bassariscus astutus
Bassaricyon alleni
Bassaricyon gabbii
Nasua nasua

Eupleridae
Eupleridae
Eupleridae
Eupleridae
Viverridae
Hyaenidae
Hyaenidae
Hyaenidae
Hyaenidae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Viverridae
Ailuridae
Mephitidae
Mephitidae
Mephitidae
Mephitidae
Mephitidae
Mephitidae
Mephitidae
Mephitidae
Procyonidae
Procyonidae
Procyonidae
Procyonidae
Procyonidae
Procyonidae
Procyonidae
Procyonidae
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Nasua narica

Procyonidae

Galictis vittata Mustelidae
Poecilogale albinucha Mustelidae
Taxidea taxus Mustelidae
Vormela peregusna Mustelidae
Ictonyx striatus Mustelidae
Melogale moschata Mustelidae
Martes pennanti Mustelidae
Gulo gulo Mustelidae

Eira barbara Mustelidae
Martes foina Mustelidae
Martes melampus Mustelidae
Martes flavigula Mustelidae
Martes americana Mustelidae
Martes zibellina Mustelidae
Martes martes Mustelidae
Enhydra lutris Mustelidae
Pteronura brasiliensis Mustelidae
Mustela kathiah Mustelidae
Mustela frenata Mustelidae
Neovison vison Mustelidae
Lutrogale perspicillata Mustelidae
Hydrictis maculicollis Mustelidae
Mustela erminea Mustelidae
Aonyx cinerea Mustelidae
Aonyx capensis Mustelidae
Mustela itatsi Mustelidae
Lutra lutra Mustelidae
Lutra sumatrana Mustelidae
Mustela lutreola Mustelidae
Mustela sibirica Mustelidae
Mustela altaica Mustelidae
Mustela nivalis Mustelidae
Lontra canadensis Mustelidae
Lontra felina Mustelidae
Lontra longicaudis Mustelidae
Lontra provocax Mustelidae
Mustela putorius Mustelidae
Mustela nigripes Mustelidae
Mustela eversmanii Mustelidae
Arctonyx collaris Mustelidae
Meles meles Mustelidae
Meles anakuma Mustelidae

Appendix B. The list of species used for the carnivore analysis in order as they are
ranked by the leaf stability test. The top 26 ranked unstable taxa are ticked in
column A.
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Appendix C

TAXA

PHYLA

Origin

A

Acidobacterium
Fibrobacter
Rubrobacter
Conexibacter
Rothia
Kocuria
Micrococcus
Renibacterium
Arthrobacter
Slackia
Eggerthella
Cryptobacterium
Olsenella
Atopobium
Leifsonia
Clavibacter
Microbacterium
Amycolatopsis
Saccharomonospora
Actinosynnema
Saccharopolyspora
Kribbella
Nocardioides
Stackebrandtia
Salinispora
Verrucosispora
Micromonospora
Catenulispora
Frankia
Acidothermus
Nocardiopsis
Geodermatophilus
Kytococcus
Intrasporangium
Propionibacterium
Brachybacterium
Nocardia
Rhodococcus
Acidimicrobium
Arcanobacterium
Beutenbergia
Bifidobacterium
Cellulomonas

ACIDOBACTERIA
ACIDOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA

NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
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Coriobacterium
Corynebacterium
Gardnerella
Gordonia
Jonesia
Kineococcus
Mobiluncus
Mycobacterium
Nakamurella
Pseudonocardia
Sanguibacter
Segniliparus
Tropheryma
Tsukamurella
Xylanimonas
Hyphomonas
Hirschia
Maricaulis
Brevundimonas
Asticcacaulis
Phenylobacterium
Caulobacter
Mesorhizobium
Ochrobactrum
Brucella
Bartonella
Sinorhizobium
Agrobacterium
Rhizobium
Polymorphum

Methylobacterium

Beijerinckia
Methylocella

Rhodopseudomonas

Bradyrhizobium
Nitrobacter
Oligotropha

Starkeya
Xanthobacter
Azorhizobium

Hyphomicrobium
Rhodomicrobium
Ruegeria
Roseobacter
Jannaschia
Dinoroseobacter

ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ACTINOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA

NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
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Ketogulonicigenium
Rhodobacter
Paracoccus
Magnetospirillum
Azospirillum
Rhodospirillum
Sphingobium
Novosphingobium
Erythrobacter
Sphingopyxis
Sphingomonas
Zymomonas
Gluconobacter
Gluconacetobacter
Acetobacter
Acidiphilium
Anaplasma
Ehrlichia
Granulibacter
Magnetococcus
Neorickettsia
Orientia
Parvibaculum
Parvularcula
Rickettsia
Wolbachia
Aquifex
Desulfurobacterium
Hydrogenobacter
Hydrogenobaculum
Persephonella
Exiguobacterium
Paenibacillus
Brevibacillus
Geobacillus
Lysinibacillus
Oceanobacillus
Anoxybacillus
Leuconostoc
Oenococcus
Pediococcus
Macrococcus
Staphylococcus
Eubacterium
Butyrivibrio
Clostridium

ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
ALPHA-PROTEOBACTERIA
AQUIFICAE
AQUIFICAE
AQUIFICAE
AQUIFICAE
AQUIFICAE
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI

NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
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Mahella
Caldicellulosiruptor
Alkaliphilus
Anaerococcus
Finegoldia
Halanaerobium
Halothermothrix
Acetohalobium
Desulfitobacterium
Heliobacterium
Desulfotomaculum
Pelotomaculum
Aerococcus
Bacillus
Carnobacterium
Enterococcus
Lactobacillus
Lactococcus
Listeria
Melissococcus
Streptococcus
Spirosoma
Dyadobacter
Leadbetterella
Marivirga
Cytophaga
Haliscomenobacter
Chitinophaga
Sphingobacterium
Pedobacter
Flavobacteriaceae
Riemerella
Weeksella
Capnocytophaga
Robiginitalea
Maribacter
Cellulophaga
Gramella
Zunongwangia
Croceibacter
Krokinobacter
Flavobacterium
Parabacteroides
Porphyromonas
Prevotella
Bacteroides

BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACILLI
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE

NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
NCBI
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Paludibacter
Odoribacter
Blattabacterium
Fluviicola
Rhodothermus
Salinibacter
Aromatoleum
Azoarcus
Nitrosospira
Nitrosomonas
Leptothrix
Methylibium
Verminephrobacter
Delftia
Comamonas
Acidovorax
Alicycliphilus
Rhodoferax
Polaromonas
Variovorax
Ralstonia
Cupriavidus
Burkholderia
Polynucleobacter
Pusillimonas
Achromobacter
Bordetella
Herminiimonas
Janthinobacterium
Laribacter
Chromobacterium
Sideroxydans
Gallionella
Dechloromonas
Herbaspirillum
Methylobacillus
Methylotenera
Methylovorus
Neisseria
Waddlia
Chlamydia
Chlamydophila
Opitutus
Coraliomargarita
Akkermansia
Methylacidiphilum

BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BACTEROIDETE
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
BETA-PROTEOBACTERIA
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Appendix c. The list of species used for the Tree of Life analyses and the
excludable rogue taxa identified by the concatabominations analyses for

the Prok_Euk (A), Prok (B), and Bac (C) data sets.

174



Publications

175



L.U.St: A tool for approximated maximum likelihood supertree reconstruction

Corresponding Author:

Davide Pisani:

School of Biological Sciences and School of Earth Sciences,
The University of Bristol.

Woodland Road, BS8 1UG

Bristol, UK.

E-mail: davide.pisani@bristol.ac.uk



Abstract

Background: Supertrees combine disparate, partially overlapping trees to generate a
synthesis that provides a high level perspective that cannot be attained from the
inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools
that can be used to make inferences based on results of previous scientific studies.
Their meta-analytical application has increased in popularity since it was realised that
the power of statistical tests for the study of evolutionary trends critically depends on
the use of taxon-dense phylogenies. Further to that, supertrees have found
applications in phylogenomics where they are used to combine gene trees and recover
species phylogenies based on genome-scale data sets.

Results: Here, we present the L.U.St package, a python tool for approximate
maximum likelihood supertree inference and illustrate its application using a genomic
data set for the placental mammals. L.U.St allows the calculation of the approximate
likelihood of a supertree, given a set of input trees, performs heuristic searches to look
for the supertree of highest likelihood, and performs statistical tests of two or more
supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a
collection of a-priori selected hypotheses, given as a collection of input supertree
topologies. It also outputs a file of input-tree-wise likelihood scores that can be used
as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-
Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests).

Conclusion: This is the first fully parametric implementation of a supertree method, it
has clearly understood properties, and provides several advantages over currently
available supertree approaches. It is easy to implement and works on any platform
that has python installed.

Keywords; Supertrees, Maximum Likelihood, Phylogenomics, tests of two trees.



Availability: bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git

Contact: Davide.Pisani@bristol.ac.uk

Background
Supertree methods are generalisation of consensus methods to the case of partially
overlapping input trees, and any method that can be used to amalgamate a collection
of such trees is a supertree method [1]. Supertrees were formally introduced to the
realm of the classification sciences by Gordon [2], who described a Strict Consensus
Supertree method. However, the first supertree algorithm was introduced by Aho and
colleagues [3] as an application to merge partially overlapping databases. Since these
early works, there has been a lot of interest in supertree reconstruction particularly in
evolutionary biology where supertrees have found an application as meta-analytical
tools used to combine, and derive inferences from, published phylogenetic trees.
Purvis [4] presented the first application of a supertree in this context merging primate
phylogenies obtained from the literature to generate a supertree, and using it to test
evolutionary hypotheses. Since then, the application of supertrees and more
specifically their use for reconstructing large phylogenies in evolutionary biology has
continued to be on the rise, paralleled by a substantial interest in the development of
supertree methods. More recently, supertrees have also found important applications
in genomics where they have been used to combine gene trees and derive species
phylogenies [5-9].

A large number of supertree methods have been developed since the time of
the Aho algorithm. However, most actual supertrees have been derived using the
Matrix Representation with Parsimony (MRP) method of Baum [10] and Ragan [11].

This is due to the availability of excellent parsimony software and the general good



understanding of the theory underlying parsimony. Yet theoretical justifications for
the application of parsimony to the supertree setting are weak, and MRP is mostly
implemented due to the fact that it is easily applicable in practice and tends to return
well-resolved trees [12]. More generally, most available supertree methods are ad
hoc, their properties being often poorly known, and the rationale for their application
unclear [13-15]. The only exceptions seem to be those based on generalisations of
well-known consensus methods [16], and the maximum likelihood (ML) method of
Steel and Rodrigo [17].

We present a Python implementation of the ML supertree method of Steel and
Rodrigo [17]. The method has been shown to be consistent on general statistical
conditions unlike other approaches like MRP [17], and it is closely related to the
majority rule (-) supertree method [16], with which it has been suggested to share
important properties, in particular the fact that the supertrees it generates have been
suggested to be, like those derived using majority rule (-), median trees for the input
set [17].

The method is “approximate” in the sense that, likelihood vales are not
normalised for tree size. However, it has been pointed out that at the least in the
context of Maximum Likelihood analyses, under specific set of parameters, this
should not be a major problem [18].

The ML supertree method is available as part of the Likelihood Utility for
Supertrees (L.U.St) package. L.U.St is licensed under the GNU General Public
License. Once downloaded, L.U.St can be run on any platform on which python is

installed.



Implementation

L.U.St’s estimation of the ML supertree operates by taking as input a file
containing a set of newick-formatted trees (i.e. the input trees). L.U.St’s ML
supertree method navigates the tree space using four alternative heuristic search
strategies, varying in their speed and heuristic nature. These are all based on Subtree
Pruning Regrafting (SPR) algorithm. The user can either provide a starting supertree
for the search or L.U.St can generate a random starting supertree using a stepwise
addition technique. It should here be noted that as in standard ML phylogenetic
analyses, providing a non-random starting tree (in the case of supertree reconstruction
this could be a MRP supertree) would speed up the analysis. The likelihood score of
the proposed supertree is calculated by first estimating the likelihood of each input
tree, given the current supertree. After that, all input-tree wise likelihood values are
summed to get the likelihood of the proposed supertree. Input tree wise likelihood
values are calculated assuming that each input tree can be considered a subsample of
the proposed supertree generated by pruning taxa and reconstructed with or without
some topological distortion or incongruence. To calculate an input tree-wise
likelihood value the proposed supertree is pruned to have the same taxon set of the
considered input tree. After that the symmetric difference on full splits (i.e. the
Robinson-Fould's distance) [19], designated as d, between the pruned supertree and
the input tree is calculated, in order to evaluate how dissimilar the input tree and the
supertree are. The symmetric difference (&) is then used to calculate the input-tree

likelihood using Steel and Rodrigo’s formula:
Pr,v[T'] = a exp|-Ba(T",T[Y)]

Where a is a normalising constant and [ is a value representing the quantity and

quality of the data used to infer the input tree. An exponential distribution is used to



model phylogenetic error. This implies that the probability that a given input tree is a
sample of the proposed supertree decrease exponentially as & increases. The
likelihood of each proposed superteee is then calculated summing across all tree-wise
likelihood scores.

The method is “approximate” in the sense that, likelihood vales are not
normalised for tree size. This means that the likelihood we calculate is a “weighted”
sum of the input tree likelihoods, where the weights correspond to the tree-specific
normalising constant (o). Albeit calculating these normalising factors is in theory
possible [18], it is computationally very time consuming. However, Bryant and Steel
[18] pointed out that if one uses small 3 values, the normalising constants simplify to
o=1 irrespective of the input-tree sizes. For pragmatic reason (to maximise speed of
execution), we currently do not allow the user to select , which has been fixed to a
low value (f=1) to allow a = 1. It has been pointed out that at the least in the context
of Maximum Likelihood analyses this should not cause problems [18]. But we
acknowledge that the ranking of trees will be based on approximate, rather than

correct, likelihood values.

L.U.St includes methods that allows for a variety of extra functions, including
statistical tests for choosing between alternative hypotheses (tests of two trees —
Winning site test, Kishino Hasegawa (KH) test [20], Shimidoara Hasegawa (SH) test
[21] and the Approximately unbiased (AU) test [22]). Whilst the winning site test can
be run natively in L.U.St, the calculation of KH, SH, AU and other tests requires the
use of CONSEL [23].To our knowledge there is no other software package that
allows the extension of standard tests of two trees to the supertree framework.

However, tests of two trees can have great utility in supertree research, as they can be



used, for example, to investigate the extent to which current evidence (i.e. currently
published trees) support alternative phylogenetic hypotheses (i.e. a set of proposed
supertrees). Further to that, tests of two trees can be used in the phylogenomic
context to evaluate the extent to which a set of gene-trees can reject a set of
alternative phylogenetic hypotheses (i.e. a set of supertrees). Below an example of
the use of test of two super(trees) in the phylogenomic context is provided.

L.U.St offers the user other useful functions to randomly resolve polytomies,
deroot trees, reroot trees, resolve polytomies in a set of trees according to a user-
provided input tree, create bootstrap replicates of input tree datasets, prune
phyologenies, convert nexus formatted trees to the newick format and vice versa, and

extract the taxon set of sets of trees.

Example: Using supertree to investigate deep placental phylogeny.

Several hypotheses have been proposed for the position of the root of the placental
mammals (Fig.1). Those that received the greatest support in recent studies are: (i) the
“Xenarthra root” [24], which places the xenarthrans (i.e. armadillos, the anteaters, the
tree sloths etc.) as the sister group to all the remaining placentals, (ii) the “Afrotheria
root” [25, 26], which places the Afrotheria (i.e. sea cows, manatees, aardvarks etc.) as
the sister group to all the remaining placentals, (iii) the “Atlantogenata root” [27-29]
suggesting that the sister group to the all the remaining placentals is is a clade
comprising Afrotherian and the Xenarthrans. Further hypotheses that have
historically been suggested include, for example (iv) the “hedgehog-1 root” placing
the hedgehog (a Laurasiatherian) as the sister group of all the other placentals [30],
(v) “hedgehog-2 root”, placing the hedgehog as the sister group of all the placentals

followed by the rodents [31], and (vi) the “murids root” placing the mouse and the rat



as the sister group of all the other placentals, and often finding the other rodents as a
paraphyletic assemblage (e.g. [32], Fig.1A-F). Signals for the topologies in Fig. 1A-
B, and to a lesser extent Fig. 1C, have been identified in many mammalian genes [26].
The fact that many different genes support different sets of relationships has resulted
in a strong (still unresolved) debate about the correct placement of the root of the
placental tree (contrast [24, 26, 29]). On the contrary, signal for the trees in Fig. 1D-F
is scant and these topologies most likely represent tree reconstruction artefacts (e.g.
model misspecification [33], signal saturation [34], and long branch attraction [34,
35)).

We decided to present an exemplar phylogenomic study of the mammalian
relationships to illustrate our supertree software because, based on current knowledge,
we can make predictions about what results to expect from our analyses and
investigate whether the actualised outcomes from our software deviate from our
expectations. More precisely, based on the results of [26] we expect that: (1) either
the Afrotheria (fig. 1A) or the Atlantogenata (Fig. 1B) hypotheses will emerge in our
optimal ML supertree (most genes in mammalian genomes support one of these two
topologies). (2) Similarly, a bootstrap majority rule consensus tree will most likely
display one of the two above-mentioned hypotheses (Fig. 1A or B). However, (3) as
many genes are known to support both the topologies in Figs 1A-B (and to a lesser
extent the tree in Fig. 1C), bootstrap support for the basal placental split in the optimal
ML supertree (and in the bootstrap consensus tree) are expected to be low. (4) Tests
of two trees are not expected to be able to differentiate significantly between the
topologies in Fig 1a-b. Indeed, given the results of [26] we can confidently predict
that the trees in Fig. 1A and 1B should be the first and second best fitting hypotheses,

even though we cannot predict what their relative order will be (i.e. whether the tree



in Fig. 1A or in Fig. 1B will be the best fitting one). Similarly, (5) whilst we cannot
predict whether the Xenarthra hypothesis of Fig. 1C will be significantly rejected by
the Approximately Unbiased (or by another) test (e.g. Kishino-Hasegawa test), we
can predict that this hypothesis should emerge as the third best one (see [26]).

Finally, although we cannot make predictions about how the trees in Fig 1D-F will be
ranked, given what is known of the distribution of the signal in mammal gene trees
[26], we would expect all these hypotheses to be significantly rejected by the data and
to emerge as the three hypotheses that worst fit our data.

To reconstruct our ML supertree of the placental mammals the gene-trees
dataset of [9] was employed. This gene-trees data set was pruned to exclude irrelevant
taxa using Clann [36]. Only 6 placentals (human, mouse, cat, hedgehog, elephant and
armadillo) and one marsupial (the opossum) were retained. This meant that the dataset
was reduced from 42 taxa overlapping on 2216 gene trees to 7 taxa overlapping on
389 gene trees (with the gene trees being partially overlapping and containing

between 4 and 7 taxa).

Result and Discussion

L.U.St was used to estimate a placental ML supertree. The ML analysis was run for
ten iterations with the heuristic search option set to 4 (i.e. using the fastest, least
exhaustive, of the search strategies currently available in L.U.St). The pruned MRP
supertree from [9] was used as starting tree. The resulting optimal ML supertree
supports Afrotheria (Fig.2A). Twenty bootstrapped sets of trees were generated and
ML supertree analyses were carried out for each to evaluate support for the inferred
relationship of the placental mammals. A majority rule consensus was used to

summarise the set of optimal supertrees from the bootstrap analyses and derive



support values for the nodes in the optimal ML tree reported in Fig. 2A. In addition
to that we also report the Majority Rule consensus tree (Fig. 2B), which differently
from the optimal ML supertree, supports Atlantogenata. As expected (see above) the
data provides almost equal support to Afrotheria and Atlantogenata (with the ML
supertree supporting Afrotheria even though in the bootstrap replicates Atlantogenata
was more frequently recovered). As expected trees representing other alternative
hypothesis Xenarthra root (Fig. 1C), murids root (Fig. 1D), and the two hypotheses
with a hedgehog root (Figs 1E and F) obtained lower (~6% bootstrap support for the
Xenarthra and murid roots hypotheses) or no support (the hypotheses where the
hedgehog was the sister group of all the other taxa). L.U.St was then used to
estimate, for each one of the 389 input gene-trees, its tree-wise likelihood under each
of the six alternative supertree topologies in Fig. 1 A-F. The input-tree-wise likelihood
scores were then inputted into CONSEL to perform tests of two trees. The results
from this analysis (Table 1) show that, as expected, the Approximately Unbiased test
was not able to reject any of the three mainstream hypotheses (Afrotheria,
Atlantogenata, and Xenarthra-root). Afrotheria emerged as the hypothesis that best
fits the data (as expected given that it was represented in our optimal ML supertree),
and as expected Xenarthra-root emerged as the third best-fitting hypothesis. Finally,
also in this case in agreement with our expectations, all remaining hypotheses
(Fig.1D-F) were significantly rejected by the data. Note that the more conservative
Shimidoara-Hasegawa test was not able to reject the rodent basal hypothesis of Fig.
1D. However, this test is well known to be over-conservative [22], hence also this
result is essentially in line with our expectations.

All results generated were in agreement with our expectations (see above) and

apart from confirming that the phylogenetic relationships of the mammals are still far



from being resolved, they illustrate that L.U.St behave as expected and return results
that reflect well current understanding of mammal evolution. Overall this illustrates
that L.U.St will represent a useful tool in phylogenomics and supertree reconstruction

more broadly.

Conclusions

L.U.St represent the first implementation of a maximum likelihood supertree method.
This method calculates approximate ML values and has the advantage of finding a
tree that has been suggested might be representative of the median of the set of input
trees when the symmetric difference metric is used to calculate the tree-to-tree
distance. An added advantage of having an approximate ML supertree
implementation is that it allows performing statistical test on trees to choose between
alternative hypotheses. The results obtained with our toy example reflect current
knowledge of mammalian evolution and confirm that the L.U.St package behaves as
expected when used to attempt resolving a phylogenetic problem that is well known
to be difficult. Being a freely available package for the Python programming
environment, L.U.St is both flexible and platform-independent while also being user

friendly and easy to implement.



Table 1: Results of the test of two trees. Hypotheses tested are those from Fig. 1.

Approximate
Hypotheses Ranks AU test SHtest KH test
Likelihoods
Afrotheria root -487.092 1 0.628 0.886 0.579
Atlantogenata root -487.960 2 0.496 0.874 0.421
Xenarthra root -493.172 3 0.128 0.614 0.146
Muridae root -523.573 4 0.001 0.017 0.003
Erinaceous root 1 -568.739 5 9E-08 0 0
Erinaceous root 2 -586.111 6 1E-07 0 0

Figure Captions:
Figure 1 The six compared mammal phylogenies. (A) Afrotheria root; (B)
Atlantogenata root; (C) Xenarthra root; (D) Rodentia root; (E) Hedgehog root

hypothesis of [31]; (F) Hedgehog root hypothesis of [30].

Figure 2 Results of supertree analyses. (A) Maximum likelihood supertree of the

placental mammals. (B) Bootstrap Majority Rule Consensus Supertree.
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3 An overview of arthropod genomics, mitogenomic, and the evolutionary

origins of the Arthropod proteome.

Davide Pisani, Wasiu A. Akanni, Robert Carton, Lahcen I. Campbell, Eoin

Mulville and Rota Stabelli Omar



3.1 Introduction

Arthropods represent the largest majority of animal biodiversity and include
organisms of economic interest and key model species. It is thus unsurprising that
the genome of an arthropod, the fruit fly Drosophila melanogaster, was among the
very first ones to be sequenced (Adams et al. 2000) and that to date, about 21
Drosophila genomes, as well as a variety of other arthropod genomes have been
sequenced. Despite this promising start, current sampling is biased toward
economically relevant species, and a suitable close outgroup to the arthropodes,
which is necessary to polarise genomic studies, is still missing. Among the suitable
outgorups to the Arthropoda, the Nematoda represent the largest majority of the
extant animal biomass, and their economic importance is comparable to that of the
more biodiverse arthropods. As with the Arthropoda, the importance of the
nematodes is reflected in the fact that the very first animal genome to be sequenced
was that of the nematode Caenorhabditis elegans (C. elegans sequencing consortium
1998). Despite the nematodes are phylogenetically close to the arthropods (Holton
and Pisani 2010), this group is composed of highly derived species, both genetically
and morphologically. Accordingly, their genomes are unlikely to be of great utility
to understand arthropod genome evolution. Some genomic data (mostly in the form
of transcriptomes) is now becoming available for other minor ecdysozoan phyla,
and some genomes (Priapulida and Tradigradea) are on the horizon. Nonetheless,
enough genomic information is now available for the Arthropoda (Table 3.1) that
justifies an investigation of the evolution of their genome. Such an analysis,

however, is intimately dependent the availability of a robust phylogenetic



background, and to a lower extent, robust divergence times for the nodes in the

background phylogeny.

In this chapter we present an overview of arthropods mitochondrial
genomics (section 3.2) and nuclear genomics (section 3.3). We then exploit the
available genomic information to investigate the evolutionary origin of novel
proteins (orphan gene families) in the arthropod proteome (section 3.4). We
notably present the first genomic-scale data set for the Onychophora and include it
in our analyses to be able to consider the closest sister group of the Arthropoda (see
Campbell et al. 2011) when identifying orphan gene families. Inclusion of new data
for the Onychophora is key to this study as it allows the correct identification of the

orphan protein families that arose in the stem arthropod lineage.

3.2 Arthropod mitogenomes: useful, but hazardous small genomes

Each cell contains up to hundreds of mitochondria, and each mitochondrion possess
many copies of their own small, typically circular, genome (usually named
mitogenome or mtDNA). Therefore, mitochondrial genes largely outnumber the
nuclear ones in terms of their copy number by several orders of magnitude, making
mitochondrial genes easy to extract and to amplify. This is one of the conceptual
advantages at the base of the success of mtDNA in phylogenetics both in Arthropoda
and across Bilateria. Other reasons behind the fortune of mtDNA are: a conserved
gene set, the unambiguous orthology of genes, the presence of rare genetic changes,

and the availability of universal primers for many lineages. Other characteristic of



the mitogenome, however, makes it a doubled edged sword. These are: accelerated
mutation rate due to uniparental inheritance, and severe biases in the composition
of nucleotides that are often responsible for the dilution of the phylogenetic signal in

mtDNA (Bernt et al. 2012). In this section we review some of these aspects.

3.2.1 Mitogenomic studies

Mitogenomic studies have helped throughout the 90's and 00's to elucidate some of
the arthropod affinities. For example, the first robust evidences in support of the
Pancrustacea came from mtDNA gene order comparisons (Boore et al. 1998) and
mtDNA sequence phylogeny (Hwang et al. 2001). However, in some cases,
mitogenomic studies have pointed toward likely incorrect topologies, for example
suggesting a Myriapoda plus Chelicerata grouping (Hwang et al. 2001; Negrisolo et
al. 2004; Pisani et al. 2004), which has been shown in recent studies to represent a
long branch attraction artefact (Campbell et al. 2011; Pisani 2004; Rota-Stabelli et
al. 2011; Rota-Stabelli et al. 2010; Rota-Stabelli and Telford 2008). This is a
systematic error that was probably exacerbated by the use of distant outgroups and
compositionally biased taxa (Rota-Stabelli and Telford 2008). Such features of the
mitochondrial genomes may seriously affect phylogenetic reconstruction unless

they are taken into account when inferring phylogenies (Rota-Stabelli et al. 2010).

Utility of the mitochondrial genomes is not restricted to phylogeny. The most
widely used arthropod barcode is a region of approximately 650 nucleotides of the

subunit 1 of the Cytochrome Oxidase complex (COX1) - a mitochondrial gene. Other



mitochondrial genes (NADH4 for example) are occasionally added to COX1 to
improve resolution. This is because every mtDNA gene evolves at a different rate
depending on structural constrains, while COX1 is the slower evolving of the
mitochondrial genes. A possible risk with mtDNA-based barcoding is the
amplification of pesudogenes numts (nuclear copies of mitochondrial genes), which

may disrupt barcoding studies.

To date, more than 300 complete arthropod mitochondrial genomes and
millions of partial sequences have been deposited in data banks. The taxonomic
sampling is however extremely biased toward economically relevant species: 47
chelicerates (mostly acari), 53 crustaceans (mostly malacostracans), 198 insects
(mosly coleopterans, dipterans and hemipterans), and only 9 myriapods. Still, most
major orders and classes are now represented, thus providing an invaluable starting

point for comparative analyses.

3.2.2 The structure of the arthropod mitochondrial genome

Arthropod’ s mtDNA varies in size from less than 14000 bp in the spider
Ornithoctonus huwena to more than 19000 bp in Drosophila melanogaster. This
difference is almost entirely due to non-coding inter-genic regions, particularly the
Major non-coding region commonly called "control region". Due to its low
structural constrain and high tendency to accumulate A and T nucleotides, this
region is also called the "AT-rich region". The AT-rich region is involved in both the

replicative and transcriptional processes, and typically contains structural elements



like hairpin-loops and timidine stretches (Zhang and Hewitt 1997), elements that do

not seem to be conserved throughout the arthropods.

The gene content of the arthropod mtDNA is the same as in most other
bilaterian; it typically consists of 13 coding genes, 2 ribosomal RNA subunits, and 20
t-RNAs (Boore 1999). This gene set is highly conserved throughout the phylum,
although few exceptions can be found. Examples include a tRNA-Ser duplication in
Thrips imaginis (Shao and Barker 2003), a tRNA-His duplication in Speleonectes
tulumensis (Lavrov et al. 2004) and a tRNA-Cys triplication in Pollicipes polymerus
(Lavrov et al. 2004). Many arthropod mitochondrial coding genes lack a stop codon
(TAA or TAG), and possess a single T or TA at the 3-terminal end. The correct stop
codon is then assembled by the poly-adenilation of an excised, presumedly
policistronic, transcript. Although most arthropod mitogenomes use the
invertebrate genetic code, it has been shown that some lineages use a slightly
different code (Abascal et al. 2006). Remarkably, this new genetic code is scattered

throughout the arthropod tree.

Although the gene content is conserved throughout the arthropods, the gene
order may vary significantly (Lavrov et al. 2004). Comparative studies have
determined an arthropod ancestral gene order, which is represented (retained) by
Limulus polyphemus, while the pancrustaceans gene order differs from that of all the
other arthropods by the position of one of the two leucine t-RNAs. T-RNAs in
general are mostly responsible for variation in gene order as they are hotspots of

recombination. Less often, coding genes change their position or swap strand,



allowing for variation in gene specific strand asymmetry, as detailed in the next

paragraphs.

3.2.3 Arthropod mitogenomes: a composition nightmare

The main source of compositional heterogeneity in mtDNA is mutational pressure,
which is correlated with a deficiency in the mtDNA repair system and with a
consequent inefficiency at replacing erroneous insertions of A nucleotides (Reyes et
al. 1998). Compared to other metazoans, arthropod lineages are typically enriched
in A and T. In the absence of strong purifying selection, this mutational pressure
affects also encoded proteins, which are enriched in amino acids encoded by A+T
rich codons (Foster and Hickey 1999; Foster et al. 1997; Rota-Stabelli et al. 2010).
The effect of this mutational pressure depends on structural constraints acting on
the genes: more conserved genes such as Cox1 accumulate less A+T mutations than
poorly constrained genes such as Atp8. In addition, not all positions of a gene are
affected in a similar way: while the 1st and 2n4 codon positions are more constrained
by the genetic code, the 3rd codon positions are more prone to accumulate A+T
mutations and experience saturation of replacement events (Figure 3.1a).
Interestingly, 15t codon positions show a different A+T replacement pattern than the
2nd, This advocates the employment of different model of evolution for the 1stand
2nd codon positions and the exclusion of the 34 codon positions when performing

phylogenetic reconstruction from nucleotide sequences. This would, at least



partially, obviate for possible artifactual attraction in the case that unrelated species

have a similarly increased A+T content.

The A+T content is not homogenously distributed along the arthropod
phylogeny: some groups such as Pycnogonida, the Acari, and some insects are more
A+T rich than other lineages (Figure 3.1b). This uneven distribution of nucleotide
content may have been responsible for the artifactual attraction of for example Acari
and Pycnogonida (Podsiadlowski and Braband 2006). In some species such as bees
and the green-bug (grey dots in figure 3.1b) the A+T content reaches extremely high

values, the highest ever reported for eukaryotic coding genes.

Strand asymmetry is another type of compositional heterogeneity affecting
mtDNA. This bias is related with the origin and direction of mtDNA replication
(Reyes et al. 1998), and leads one strand to become enriched in G (and to a lesser
extent in T) while the other strand become enriched in C (and less in A). Strand
asymmetry is generally expressed in terms of GC-skew. Although all genes in a
mitochondrial genome usually have a similar A+T content, homologous genes from
different organisms may have extremely different, sometimes opposite, GC (and AT)
skew: this depends on the strand on which the gene is located, and on its position
relative to the origin of replication (Lavrov et al. 2000). Therefore there is a link

between strand asymmetry and gene order.

In arthropods most mtDNA coding genes are charcaterised by a negative GC-
skew (they have more C than G), while four genes that lies on the opposite strand

are characterised by a positive GC-Skew. This situation is characteristic, in



particular, of species characterised by the arthropod ancestral gene order (as in
Figure 3.2a). In some species, the GC-skew is opposite for all the genes, although the
gene order is substantially identical to that of the ancestral arthropods (Figure
3.2b). In such cases, it is the origin of replication (the control region) that
underwent a modification, for example a duplication or an inversion of strand. In
other cases all genes may have been translocated on the same strand, so that all the

genes posses either a positive or a negative GC-skew (Figure 3.2c).

3.2.4 The hazard of using arthropod mitochondrial genomes for phylogenetics

It has been shown that both sources of compositional heterogeneity (A+T
mutational pressure, and strand asymmetry) may play strong roles in generating
artefactual mitogenomic phylogenies (Hassanin et al. 2005; Rota-Stabelli et al.
2010). Compositional problems are worsened by the accelerated rate of evolution
of mitogenomic sequences, which is related to the uniparental inheritance
characterizing the mitochondria. An effective approach to deal with these problems
is to improve models of mitochondrial sequence evolution both at the nucleotide
(Hassanin et al. 2005) and protein level (Abascal et al. 2007; Rota-Stabelli et al.
2009), as well as to exclude more affected genes or codon positions. Sophisticated
evolutionary models which account for among site and among branches
heterogeneity (Blanquart and Lartillot 2008; Foster 2004) are useful to lessen the
effects of these mitochondrial compositional biases. Another obvious approach is to

enlarge or modify taxonomic sampling. More taxa may break problematic branches



and reduce the number of homoplasies responsible for long branch (or
compositional) attractions. Exclusion of problematic taxa may results in the same
beneficial effect. It is therefore advisable to conduct an explorative compositional
analysis of the properties of the considered mitochondrial genomes prior to
phylogenetic inference. This is particularly true for the arthropods, which include
some highly derived lineages, parasites for example, whose particular life style is
responsible for bottle-neck events and therefore extreme acceleration of

substitution rates or divergent nucleotide compositions.

Compositional biases (and related phylogenetic artifacts) have been
primarily studied using mitogenomics datasets (Foster et al. 1997). The advent of
the phylogenomic-type (nuclear) datasets has been initially seen as a relief in terms
of compositionally related biases. This may however not be the case: the community
is just noticing that even large genomic datasets are not free from compositional
problems that can cause serious phylogenetic artefacts (Nabholz et al. 2012; Stabelli
et al. 2012). Still, the origins of such biases in nuclear genomic data are largely not

known.

3.3 Arthropod comparative genomics

The study of arthropod genomics started with the sequencing of the genome
of the Fruit fly Drosophila melanogaster (Adams et al. 2000). Currently, genomic
data are available for a relatively large number of arthropods allowing the first

attempts at performing comparative genomic analyses of the Arthropoda (Vieira



and Rozas 2011). However, the majority of the currently available arthropod
genomes are from closely related species (mostly insects), and a coherent set of
conclusions about the arthropod nuclear genomes (as presented for the

mitochondrial genomes above) are still lacking.

3.3.1 Uneven taxonomic sampling

The biased taxonomic distribution of the available arthropod genomes is a
persisting problem. This is because it does not allow detailed investigations of key
questions in arthropod evolution, like the origin of the arthropod subphyla.
Initiatives exist that aim at increasing the amount of available genomic information
for the Arthropoda. Paramount among these projects are the 1KITE project - 1000

Insects Transcriptome Evolution project (http://1Kkite.org/), and the i5K

(http://www.arthropodgenomes.org/wiki/i5K) project which plans to sequence the

complete genomes of 5000 insects and related arthropod species. Unfortunately, as
commendable as these projects are, they fall short of adequately capturing the
breadth of the evolutionary diversity within the Arthropoda. The 1KITE project will
not even attempt to generate data for non-hexapod species, whilst about 87% of the
species currently nominated for sequencing as part of the i5K project are hexapods.
Only 0.7% belongs to Myriapoda and only 2.8% belong to the Crustacea. This is an
important issue with the current initiatives, as the heterogeneous species sampling

discussed above might bias future comparative analyses in unexpected ways.



An important aspect to which current large-scale genome sequencing
projects are not given sufficient attention is that of the arthropod outgroups. To
increase the power of comparative analyses, adequate outgroups should also be
sequenced, but large-scale sapling initiatives are not considering the outgroups of
the Arthropoda. Indeed, to date, the only arthropod outgroups available with at the
least one fully sequenced genome are the nematodes. Yet species belonging to this
phylum are too distantly related and too divergent from the Arthropoda (see also
above) to be of significant utility in arthropod comparative genomics. Other more
closely related genomes (those of the Onychophora and of the Tardigrada) should
be sequenced and used instead. Indeed, as part of this chapter, to obviate the lack of
genomic-scale data sets for the arthropod outgroups, we shall present a genome-

wide trascriptomic data set obtained using next generation sequencing.

The 1KITE and i5K projects have not produced data yet. However, a relative
abundance of arthropod genomes has been accumulating in recent years, albeit with
a biased taxonomic distribution. The genomes of 21 Drosophila species have been
sequenced and are publicly available. Trascriptomic, Proteomic and Genomic data,
as well as abundant functional annotations, for 12 of these species can be found in

the specialised database Flybase (http://flybase.org/). Other key insects for which

genomic information is available include the mosquitoes Aedes aegypti (Nene et al.
2007) and Anopheles gambiae (Holt et al. 2002), the honeybee Apis Mellifera (The

honeybee sequencing consortium 2006), the beetle Tribolium castaneum (Richards et



al. 2008), the body louse Pediculus humanus (Kirkness et al. 2010), the pea aphid
Acyrthosiphon pisum (The pea aphid sequencing consortium 2010), and the butterfly
Bombyx mori (The silkworm sequencing consortium 2008). A variety of other
insects, e.g. ants and other butterflies have also been sequenced (The butterfly
sequencing consortium 2012; Suen et al. 2011), and for many of these species taxon-

specific databases exist (e.g. Butterflybase - http://butterflybase.ice.mpg.de/).

However, differently from Flybase, which is a mature database providing, for
example, a genome browser, and allowing complex searches (using Gene Ontology -
GO terms and developmental stages), most of these species-specific databases are
still quite immature. In any case, they represent an important resource and their

utility is bound to increase with time.

While hexapod genomes are relatively abundant, the situation changes
drastically when moving to other arthropod subphyla. Only one complete
crustacean genome (that of the water flea Daphnia pulex - Colbourne et al. 2011),
and one complete chelicerate genomes, that of the two spotted spider mite
Tetranychus urticae (Grbic et al. 2011) have been released. Finally, the complete
genome of one myriapod, the centipede Strigamia maritima (Genbank access id:
GCA 000239455.1), and that of a second chelicerate Ixodes scapularis (Genbank

access id: GCA_000208615.1) are now publicly available, although not yet released.

Apart from standard genomic studies, a variety of large-scale transcriptome-
wide sequencing studies have been performed, and EST data are thus available for

many taxa. Even though these studies do not provide information about



untranslated genomic regions, a large amount of useful data has been provided
using these approaches. One of the earliest studies that employed EST generated
next generation sequencing (454 sequencing) to gain a first snapshot of an
arthropod genome was the transcriptome sequencing of the emperor scorpion
Pandinus imperator (Roeding et al. 2009). More recently similar approaches have
started to allow interesting insights into chelicerate venomes (Rendon-Anaya et al.

2012), and allowed the development of the new science of Venomics.

3.3.2 Heterogeneity of genome sizes and shortage of miRNA

Important aspects of the key, publicly available, arthropod genomes are
reported in Table 3.1. From this table it is clear that the arthropod genomes are
fairly variable. Their lengths in MB vary substantially with one of the chelicerate
genomes being the smallest while the other is the biggest overall. Similarly, GC
content is quite variable with Ixodes having the highest GC content and the pea
aphid the lowest. Also the number of predicted genes varies substantially between
genomes, with Daphnia having more than 30,000 protein-coding genes and Ixodes
only 5,867 protein coding genes. An obvious observation emerging from an analysis
of Table 3.1 is that the sequenced chelicerate taxa cannot be particularly good
resources for evolutionary biologists. Ixodes and Tetranychus are highly specialized
species unlikely to reflect what the analysis of more standard chelicerate genomes will

uncover.



Next generation sequencing approaches have also allowed our
understanding of regulatory (non-coding) microRNA to increase substantially.
Genome wide screening performed for taxa belonging to all the arthropod subphyla
and to the arthropod outgroups (Campbell et al. 2011; Rota-Stabelli et al. 2011)
allowed identification of several arthropod specific microRNA (miR275 and iab-4),
mandibulata specific ones (miR-965 and miR-282) and chelicerate specific ones
(miR-3931). These studies also showed that arthropods, differently from other
lineages (like the mammals or the annelids) have significantly less lineage specific
microRNAs, suggesting that arthropod genomes, from this point of view, evolve

quite differently from those of other animal lineages.

Overall, current genomic scale information available across the Arthropoda is
still too fragmentary to allow the development of a coherent view of arthropod
genome evolution. However, in the last section of this chapter, we shall attempt to
start obviating to this problem, by presenting an evolutionary analysis of the
arthropod proteomes that exploits the transcriptomic data we generated for the

Onychophora.

3.4. A genomic phylostratigraphic analysis of the arthropod proteomes.

An interesting aspect of the arthropod genome evolution that availability of current
metazoan and arthropod genomes allow us to address (given also the data we
generated for the Onychophora) is that of the origin of the Arthropod specific

protein coding genes (i.e. genes found only within Arthropoda). Studies of this type



have been named “genomic phylostratigraphic analyses” by Domazet-Loso et al.
(2007). To complete such studies (in addition to genomic information) one needs
information about phylogeny and divergence times. The relationships among the

arthropods and divergence times used are summarised below.

3.4.1 A robust phylogenetic framework for genomic studies

Comparative genomics must be anchored on a phylogenetic tree. Significant
progresses in our understanding of the ecdysozoan relationships have been made
(Campbell et al. 2011). Similarly, some agreement on the phylogenetic relationships
within the Arthropoda has recently emerged (Regier et al. 2010; Rota-Stabelli et al.
2011) but see Rota-Stabelli et al. (2012). With reference to the current study we
shall consider the Lobopodia to be the sister group of the Tardigrada within a
monophyletic Panarthropoda. We shall further assume Nematoida (Nematoda plus
Nematomorpha) to be the sister group of Panarthropoda, with the Scalidophora
(here Priapulida and Kinorincha) representing the sister group of Nematoida plus
Panarthropda. That is, we shall assume the phylogenetic relationships of the
Ecdysozoa inferred by Campbell et al. (2011) to represent our working hypothesis.
Campbell et al. (2011) only performed a Bayesian analysis of their data set and did
not present bootstrap support for their results. Given that they did not find
particularly strong support (low posterior probabilities) for some key ecdysozoan
nodes (Nematoida + Panarthropoda and Mandibulata), and given that there still are

few studies (e.g. Meusemann et al. 2010) whose results contradict those of Campbell



etal. (2011), we present here a novel statistical analysis - a non parametric
bootstrapping - of the dataset used in Campbell et al, (2011), or which a detailed

explanation is given in the Appendix to this chapter.

Results of the bootstrap analysis that consider all the taxa in Campbell et al.
(2011) is in agreement with the Bayesian analyses of Campbell et al. (2011). This
analysis shows a lack of support for many important nodes, including Nematoida
(which was not recovered), Nematoda plus Arthropoda (BP = 41), Panarthropoda
(BP =66), Lobopodia (BP = 61), and Mandibulata (BP = 64), see Fig. 3.3. We
performed a leaf stability analysis (results not shown - but see appendix)
illustrating that Nematomorpha is the most unstable taxon in the data set. The
nematomorph in Campbell et al. (2011) emerged as the sister group of the
Nematoda in agreement with most previous studies. Yet, in Fig. 3.3 Nematomorpha
is not the sister group of the Nematoda. Instead, it emerges as the sister of a
Nematoda + Arthropoda clade. This is an artefact caused by high number of missing
data in the Nematomorpha (which is the most incomplete taxon in Campbell et al.
2011), and that is unstable in bootstrapped data sets. Upon removal of the unstable
Nematomorpha, the bootstrap support for all the other nodes increases
significantly. Arthropoda plus Nematoda reach 100%, Panarthropoda increase to
76%, and Lobopodia to 70%. In conclusion, when accounting for unstable taxa,
Arthropoda has a bootstrap support of 100% and Mandibulata of 76%. This
confirms that there is a good level of support for the clades in Fig.3.3 and those in

Campbell et al. (2011).



3.4.2 Expanding our understanding of the arthropod comparative genomics

Given our poor understanding of the processes through which the arthropod
(nuclear) genomes evolved, we shall here present a genomic Phylostratigraphic
analysis (Domazet-Loso et al. 2007) of their genome. The aim of this analysis is
gaining some information on the evolutionary processes responsible for the origin
and evolution of the Arthropoda. Domazet-Loso et al. (2007) performed a similar
analysis, but various new genomes have been published since their study, allowing
for a much greater precision in the identification of orphan genes along the
Ecdysozoan and Arthropod phylogeny. To better identify proteins that are
arthropod specific, we extended our analyses to include a variety of ecdysozoans
and non-ecdysozoan genomes. Particularly we included representatives of the
Lophotrochozoa, of the Deuterostomia and two non-bilaterian metazoans (a sponge
- Amphimedon queenslandica, and a cnidarian - Hydra magnipapillata) - see Fig. 3.4.
In addition, and most importantly, here we added data for an onychophoran
transcriptome, which allowed pinpointing protein families that are specific to the
Arthropoda (i.e. that originated after the Onychophora-Arthropoda split). Finally,
more reliable molecular clock divergence times (Erwin et al, 2011) are now
available and they have been used here to define rates of orphan gene acquisitions
through time allowing for a better estimation of rates of new protein family

acquisitions in Ecdysozoa and Arthropoda.



3.4.3 The evolution of orphan gene families in arthropoda

We used the MCL algorithm (Enright et al, 2002) to identify protein families
in the set of considered genomes, and identified, for each internal node in Fig. 3.4, all
the proteins universally distributed in the taxa descending from each given node.
These are orphan families that evolved in the branch underlying the considered
node. The average number of new families acquired across all the internodes of the
considered phylogeny is 1025. When this value is normalised (dividing by the total
number of proteins in the considered set of genomes (79,052 protein coding
genes), the 1025 protein families that are gained as novel orphan genes correspond

to ~ 1.2%.

Within Arthropoda, and more broadly Panarthropoda, only the origin of the
Diptera (with 2.05% of new protein families being aquired), show a statistically
significant rate of novel gene families acquisition (Fig. 3.4 and 3.5). Genomic data
were not available for the Myriapoda when we assembled our data set, but it is
clear, given the low level of proteins that originated in the branch separating
Arthropoda and Pancrustacea (1.49%), that also the origin of Mandibulata cannot be

marked by a spike in the origin of new protein families (Fig. 3.4 and 3.5).

The most surprising result emerging from this analysis is that the deepest
nodes in the Ecdysozoan phylogeny: (origin of Nematoida plus Arthropoda, origin of
Lobopodia, and origin of Arthropoda) are not characterised by above than average
acquisitions of new genes families (Fig. 3.5). When the number of orphan families

(N-orph) acquired along a branch is divided by the length (in millions of years) of



the branch along which the N-orph accumulated, the pattern in Fig. 3.5a change
quite significantly: even the mild, but somewhat continuous, increment in the rate of
N-orph acquisition disappears (Fig. 3.5b). All internodes within Ecdysozoa (on the
path leading to Arthropoda and within Arthropoda) roughly exhibit the same rate of
new protein acquisition per million of year. Constancy of the rate of protein family
acquisition through time (from the Precambrian to the Jurassic - see Fig. 3.5b)
suggests that this rate (identified with a red line in Fig. 3.5b) might represent the
neutral background rate of new protein family origination in Ecdysozoa. The only
internode where this neutral rate is modified is represented by the stem dipteran
lineage. Along this lineage (Fig. 3.5b) the rate is significantly increased suggesting
that orphan gene family acquisition was an important phenomenon in the evolution

of this group.

A functional analysis of the orphan proteins that originated along the stem
dipterian lineage (see Appendix for methodological details) provide a view of what
kind of gene families are acquired along this branch (Fig. 3.6). When comparing the
average trend estimated across all the considered stem lineages but the dipteran,
with the trend observed in the dipteran, two conclusions can be reached. The first is
that the trends observed are comparable in shape (i.e. there is a proportionality in
the number of new genes acquired on average across the Arthropoda and
specifically in Diptera). The second is that when the numbers of genes in each GO
category is analysed, it is clear that for two GO terms (Metabolic processes and
Cellular Processes) the increase observed in Diptera is significantly higher (greater

than the limiting values of a 99% confidence interval calculated across all the other



internodes - Fig. 3.6). A further significantly increased category (exceeding the 95%
confidence interval calculated across all the other — non-dipteran internodes) is the
Localization proteins category. Finally other GO categories for which new proteins
are accumulated in Diptera to levels that are above average (but not significantly so)
are: Biological Regulation, Response to stimulus, multicellular organismal processes,

signalling, developmental processes, and cellular component organisation.

3.4.4 conserved rate of gene gain with some surprises

[t is fairly obvious from the above results that, at the least within Ecdysozoa, the
origin of new protein families (orphan genes accumulation) did not play a
particularly significant role in the evolution of what we recognise as high level,
taxonomic groups (Phyla and assemblages of phyla). In particular, we have shown
here that the origin of the arthropod body plan was not characterised by an unusual
rate of new protein families acquisition. One can thus argue that other processes,
like the re-wiring of developmental networks (and more generally protein-protein
interaction networks), might have been much more important (see also Erwin et al.
(2011). Yet, these hypotheses needs to be tested, and will be tested in the future

when more data will be available.

On the other hand the origin of the Diptera is markedly signed by a
substantial increase in the origin of orphan families. This is interesting because it
suggests that (1) if increases in rate existed somewhere else in the ecdysozoan tree

we should have been able to identify them (i.e. our results do not seem to represent



a methodological artifact), and (2) orphan gene acquisition is not always an
unimportant process in animal evolution: hence the need to investigate it. With
reference to the Diptera, it is clear that the strong acceleration in rate of new
families acquisition observed implies that, new functionalities emerged in this part
of the ecdysozoan tree, and it is clear that these protein families played a role in the
origin of this group. Our current GO analyses did not allow us to obtain a detailed
description of what the newly acquired dipteran functions are. However, as more
data will become available, more precise results will be possible to be derived. One
can only conjecture, given also the unimpressive amount of orphan families being
fixed on the Holometabola-stem lineage, that the origin of key innovations affecting
the emergence of novel life cycles or substantially modified morphological features
is generally fuelled by re-wiring of the developmental networks and by differential
expressions of genes, whilst origin of novel protein families probably has a greater

impact on adaptations to novel environmental challenges.

3.5. Conclusions

Here we have tried to summarise available mitogenomic and nuclear genomic
information currently available for the Arthropoda. There are a large number of
mitochondrial genomes available to date but it is unclear if something that will be of
any utility will be gained from the analyses of these genomes. They might have

some limited utility in phylogenetics compositional bias studies, and barcoding, but



probably not much utility to understand large-scale evolutionary patterns in

Arthropoda.

Arthropod genomics, on the other end is still in its infancy, very few genomes
are available at this stage but within five years we will probably have thousands of
genes available (particularly thanks to large scale efforts like the i5k). One wonders
what will be gained from having so many genomes. Perhaps a lot, but their biased
taxonomic distribution might prove to be a limit of these data sets. Data analysis
will be prohibitively complex and serious bioinformatic recourses will be necessary
for these data to be of any utility. In any case, the initial analysis we present in this
chapter suggests that, if adequate bioinformatic resources will be available,
availability of a multitude of arthropod genomes will allow gaining detailed
information on the origin and evolution of this important phylum. Yet, sequencing
projects should not forget that arthropod outgroups are necessary and important to

increase the power of comparative analyses.

No matter what the future will reserve, it is clear that Arthropod comparative
genomics is still in its infancy. We are just at the dawn of what will be a laborious
and complex research task which will involve the continuous effort of many

research groups, from all around the world for, probably, several research cycles.

FIGURE CAPTIONS:



Figure 3.1: Compositional heterogeneity in arthropods miotgenome. (A) A+T%
content of the three codon positions plotted against that calculated on the whole
mtDNA. 2nd codon position is the most constrained, while 3rd codon position
changes so dramatically that reaches plateau in some species. (B) A+T % calculated
on the whole mtDNA in different arthropod lineages. Nucleotide content varies

between and within classes.

Figure 3.2: strand asymmetry in arthropod mitogenome. Each gene in the
mtDNA is characterised by a different propencity of accumulating mutations toward
G or C. This is because different genes lies on different strands and each strand has
his own mutational pressure, described here by the GC-Skew statistics. (A) in most
arthropods the majority of genes are on the same strand and possess a negative GC
skew; the ORF of Nadh4, Nadh5 Nadh4l and Nadh1 are on the opposite strand, and
as a consequences these genes accumulate more G and have a positive GC-skew. (B)
Some phylogentically unrelated arthropods experienced an inversion of the
replicative system, which leads to a complete inversion of GC-skew for each of the
genes. (C) Some taxa underwent genomic rearrangement so that all genes are on the

same strand.

Figure 3.3: The phylogeny of the Ecdysozoa. The tree represent a Bayesian-
bootstrap analysis performed under CAT+G of the data set of Campbell et al. (2011).
Values at the nodes represent bootstrap proportions. * = 100% support. The
leftmost value represents the bootstrap proportion obtained for a data set including

all the sequences in Campbell et al. (2011). The rightmost value represents the



bootstrap proportion obtained when the most unstable taxon in the data set (the

nematomorph Spinochordodes) was excluded.

Figure 3.4. Orphan protein gains in Arthropoda. The number below each node
quantifies the orphan families that evolved along the branch subtending the
considered node. The number in black above each node represents the numbers of
protein coding genes inferred to have existed (using squared parsimony) in the
common ancestor represented by the considered node. The red value above the
node represents the rate of orphan gene acquisition along the branch subtending
the considered node. These values are normalised (they have been calculated as the
number of orphans divided by the total number of proteins in the collection of
considered proteomes). The numbers reported for each terminal taxa are: the
number of orphan families that originated along the terminal branch, and the
number of genes in the genome of the corresponding organism (in bold). Note that
the numbers of orphans for the terminal taxa are misleading and should not be
considered to represent the number of new genes that emerged in the species at the
tip of the tree. Instead they represent the number of orphan in the group the
species represent. For example, the number of orphans in Hydra represents the
orphans that where acquired by the Coelenterata (to which Hydra belong and that

Hydra represents) rather then by Hydra itself.

Figure 3.5. Protein gains through time. This figure represents (A) the normalised

rates of orphan acquisition (red values in Fig.3.4). This panel illustrates that the



normalised rates are quite variable across all the considered nodes. Note that the
values were ordered from oldest to youngest to make the Figure more readable. (B)
rates of orphan acquisition per millions of years. This chart was derived dividing
the values in Fig. 3.5A by the length (in million years) of the branch along which the
considered orphans originated. This figure clearly illustrates how the row rates and
the rates per million year are substantially different, and that normalising for the
time of duration of the considered internodes is key to obtain values that are
biologically meaningful. The red line represents the average rate across the
considered lineages (but excluding the Diptera). This was done to estimate the

average rate orphan protein acquisition (i.e. the neutral rate).

Figure 3.6. The function of the newly acquired families. This graph displays the
average number of orphans (across all the internodes but the Diptera) for each GO
(Gene Ontology)-category. We also reported the values representing, respectively,
the limits of the 95% and 99% confidence intervals. Values observed for the
dipteran stem lineage are reported. This figure shows that for two GO categories
the number of orphan acquired in Diptera is higher than the value bounding the
99% confidence interval over all the other internodes, and that a variety of other GO
categories are overrepresented with reference to the other, considered, internal

branches.

Appendix: methods for the analyses presented in chapter 3

A. Generation of the Onychophoran transcriptome.



Total RNA was extracted from three single individual of Peripatoides
novaezealandiae using TriZol©. A cDNA library was constructed and sequenced by
the Trinity College Dublin Next Generation Sequencing Facility to an estimated
coverage of <100 using 100 paired end reads on two IlluminaHiseqll lanes. Row
data was inspected for its quality and the resulting paired-ends reads were
assembled using Abyss (Simpson et al. 2009) with k-mer of 45. This resulted in
~27,000 assembled transcripts (with lengths variable between ~ 70 to 1750 base
pairs). Approximately 17,000 of these transcripts had a significant blast hit against

an annotated gene.

B. Mitogneomic compositional analyses

We downloaded a set of 90 arthropods mitochondrial genomes in order to
represent as homogenously as possible the whole phylum. Coding genes were
extracted and processed with DAMBE (Xia and Xie 2001) to obtain composition for

each codon position.

C. Phylogenetic Analyses

We investigated whether the low posterior probabilities observed for some nodes
by Campbell et al. (2011) were caused by the presence of unstable taxa. We
estimated leaf stability indices (Thorley and Wilkinson 1999) using P4 (Foster

2004), and performed Bayesian bootstrap analysis (under CAT + G - the same model



used by Campbell et al. (2011), using the entire data set of Campbell et al. (2011).
To perform the Bayesian bootstrap analyses, 100 bootstrapped data sets were
generated starting from the alignment of Campbell et al. (2011). For each
bootstrapped data set a Bayesian analysis (2 independent runs) was performed
under CAT +G (using Phylobayes - Lartillot et al. 2009). Results from each Bayesian
analysis were summarised to generate a Bayesian majority rule consensus tree, and
the resulting 100 trees were then summarised to generate a bootstrap majority rule

consensus (results in Fig. 3.3).

Identification of novel gene families

We downloaded the entire proteomes for the taxa in Fig. 3.4, and used MCL
(Enright et al, 2002) to define protein families. A Perl script written by LC was used
to partition these gene families with reference to their taxon coverage. This allowed
identifying protein families that are exclusive and universally distributed within
each one of the clades in Fig. 3.4. These protein families must have been present in
the clade last common ancestor (LCA), and must have been gained along the stem
lineage of the considered clade. Because different genomes have different numbers
of protein coding genes, the absolute numbers of newly acquired protein coding
families for each internode can be misleading. We thus normalised numbers of
orphan families by dividing these numbers by the total number of protein coding
genes in the set of considered genomes (sum of the values in bold at the tips of

Fig.3.4). The normalised orphans counts (N-orph) can be interpreted as the fraction



of some, abstract, pan-metazoan genome that was acquired at each internode of Fig.
3.4. Finally, we calculated rates of new orphan acquisition per million of years,
dividing the N-orph values by the length of the internode along which the N-orph
was acquired. As above, this allows the amount of orphan families gained each
million year, along each internode in Fig. 3.4, to be expressed as proportions of a
reference (abstract) “pan-metazoan” genome. The estimates of divergence times of
Erwin et al. (2011) were used to calculate branch durations in million of years. For
each internal node in our phylogeny we also estimated (using squared parsimony -

as implemented in Mesquite - http://mesquiteproject.org) the expected size of the

genome of the corresponding LCA. This was done to allow evaluating what
proportion of each LCA genome was gained via new orphan family acquisition, along
the corresponding stem lineage. Because Squared Parsimony is unlikely to be a
particularly robust estimator or ancestral size we suggest these numbers should be
considered with caution, and only to represent a rough approximation of the true

LCA-genomes dimensions.

Once the orphan gene families were identified for every internode of Fig.3.4,

BLAST2Go (www.blast2go.com) was used to obtain functional information for each
of these families. For each protein family, the BLAST2Go analysis was performed for
one protein family member only, and we assumed, by homology-implication, that all

the other proteins in the same orphan family had the same (or similar) function.
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Table 3.1. The most important among the available arthropod genomes

Classification  Species Genome GC Chromosomes Genes Proteins
Size (%)
(Mb)
Chelicerata Tetranychus 89.6 32.3 N/A N/A 18,414
(Acari — urticae
Acariformes)
Chelicerata Ixodes 1,896.32 45.5 15 7,112 5,867
(Acari — scapularis
Parasitiformes)
Myriapoda Strigamia 173.61 35.7 N/A N/A N/A
(Chilopoda) maritime
Crustacea Daphnia pulex  158.62  40.8 N/A 30,613 30,611
(Branchiopoda)
Hexapoda Pediculus 108.37 27.5 N/A 10,993 10,775
(Anoplura) humanus
Hexapoda Tribolium 210.27 384 10 10,132 9,833
(Coleoptera) castaneum
Hexapoda Acyrthosiphon 464 29.6 4 N/A 11,089
(Hemiptera) pisum
Hexapoda Apis mellifera 250.29 16 N/A N/A
(Hymenoptera)
Hexapoda Bombyx mori 431.75 37.7 28 N/A N/A
(Lepidoptera)
Hexapoda Heliconius 269 21 12669 N/A
(Lepidoptera)  melpomene
Hexapoda Drosophila 139.73 422 6 15,431 24,113
(Diptera) melanogaster
Hexapoda Aedes aegypti  1,310.11 38.3 3 16,684 16,785
(Diptera)
Hexapoda Anopheles 265.03 44.5 5 13,24 14,099
(Diptera) gambiae

Table legend: N/A not available. All the values in the table were obtained either

from the NCBI website or from the original genome paper.
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