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Abstract

In an observational learning environment, rational agents with incomplete information
may mimic the actions of their predecessors even when their own signal suggests the
opposite. This herding behavior may lead society to an inefficient outcomeif the signals
of the early movers happen to be incorrect.

This paper analyzes the effect of signa accuracy on the probability of an
inefficient informational cascade. The literature so far has suggested that anincreasein
signal accuracy leadsto adeclinein the probability of inefficient herding, because the
first movers are more likely to make the correct choice. Indeed, the results in
Bikhchandani, Hirshleifer and Welch (1992) support this proposition. Herewe show that
thisis not the case in general. We present simulations which demonstrate that even a
small departurefrom symmetryinsigna accuracy may lead to non-monotonicresults. An
increasein signal accuracy may result in a higher likelihood of an inefficient cascade.
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I. Introduction

Seminal papers by Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992) and
Welch (1992) show that it may be optimd for a rational agent with incomplete
information to follow the actions of his predecessors even when his own private signal
suggests the opposite. In an observational learning environment this herding behavior
may lead society to common actions, possibly resulting in sudden booms and crashes. If
the early movers' signals happen to be incorrect the followers will be mislead, yielding
an inefficient outcome. This paper analyzes the effect of signal accuracy on the
probability of an inefficient informational cascade.

Herding may have dramatic consequences depending on the market we study?.
Herding in the labor market may result in a prolonged period of unemployment of an
individual if heinitially turnsout to be unlucky in afew job interviews. Herding among
portfoliomanagers may result inaninefficient all ocation of pension fund assets. Herding
in R&D projects may result in delays in finding the cure for afatal disease. In financial
markets asudden crash can have severe macroeconomic Consequences.

Theanalysisof thefactorsthat affect thelikelihood of aninefficient cascadesmay

be of interest in helping to reduce the probability of such events. For instance, the

'In an informational cascade every subsequent agent makes the same choice
independent of his private signal. Therefore private information is no longer conveyed
to the market and social learning ceases.

While Banarjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) have a
predetermined sequence of moves in agents decisions, Chamley and Gale (1994)
endogenize the timing of moves and show that herding will eventudly arise with
probability one, resulting in either alboom or a collapse.

*Thereare awide variety of marketswhereherding may arise. Among others, see
Avery and Zemsky (1998), Chamley (2003), Chari and Kehoe (2003), Devenow and
Welch (1996), Nelson (2002) and Scharfstein and Stein(1990) for analysis of herd
behavior in financial markets, Neeman and Orosel (1999) for analysis in auctions,
Morton and Williams (1999) for herding in a political economy framework and Choi,
Dassiou and Gettings (2000), Kennedy (2002) and De Vany and Lee (2001) for herding
among firms.
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Securities Act of 1933 and the Securities Exchange Act of 1934 were enacted in hopes
of preventing catastrophic crasheslike Black Thursday in 1929. Among other regulations
theseactsrequireperiodicreporting of financial i nformati on concerning publical ly traded
securities in order to improve signa accuracy. Depending on the market under
consideration, signal accuracy may be affected by a variety of factors, such as changes
In accounting standards, technological advancement in information dissemination and
informative advertising. In this paper we would like to study the effects of an
improvement in signal accuracy on the probability of an inefficient cascade.

The literature so far has suggested that an increase in signal accuracy leadsto a
declinein the probability of inefficient herding becausethe first moversare morelikely
to make the correct choice. Indeed, Bikhchandani, Hirshleifer and Welch (1992)
(henceforth BHW) clearly support this proposition. We show this not to be the casein
general.

In BHW the agent receives a signal about the true value of the project, either
good or bad. The signal is correct with probability p. Agents take the decision to invest
or not. Inthe BHW framework anincreasein signal accuracy dwaysleadsto adecrease
inthe probability of inefficient herding. In this paper, we consider the casewheresgnals
do not have symmetric accurecy.

In general, the good signal and the bad signal do not necessarily need to be of the
same accuracy. For instance, agood job candidate may come to ajob interview on time
with a95 % probability and abad candidate may be on time with an 85% probability. As
long as the probabilities are different, promptness may be a useful signal of candidate
qudlity. If the candidate isgood, he will be prompt and send the good signal with a 95%
chance. The accuracy of the good signal is 95%. If the candidate is bad, he will be late
and send a bad signal with a 15% chance. The accuracy of the bad signal is 15%. In this

examplethe signals do not have symmetric accuracy. Inthe symmetric case, one forces



the probability of the bad candidate sending the correct signal (hence being late ) to be
95%, whichisquiterestrictive. We show that even small departures from symmetry may
lead to non-monotonic results. In some cases an increase in signal accuracy may result

in ahigher likelihood of an inefficient cascade.

I1. Symmetric Signal Accuracy

In BHW the value of the project is either high or low with even prior probabilities. The
gainto adopting iseither 1intheHigh (H) state or O inthe Low (L) state and the cost of
adoptingis¥z. Eachrisk-neutral agent receivesaprivate conditionally independent signal
about the value of the investment project. An individual’s signal is either / or (. The
signal iscorrect with probability p. For presentation purposesit will be convenient to add
Y to each of these payoffs, converting the BHW problem into an equivalent payoff
matrix. The agent faces two investment projects:® Therisky project yieldseither 1inthe
High stateor O inthe Low state. The safe project yields a safe return of ¥2in either state.

The payoff matrix is then given by:

Table 1
Risky Safe
Project | Project
High State 1 V2
Low State 0 V2

ex ante Prob(High)=0.5
If the risky project isrejected, the safe project is adopted. There is a predetermined

sequence moves and agents observe the actions of those ahead of them®. Agents follow

3Vives (1996) shows that a framework to help explain the observation of
incorrect herdsin asocial learning setting needsto have two ingredients: Indivisibilities
in terms of the discrete action space and signals of bounded precision.

“See Pastine (2005) for the effects of signal accuracy in an endogenous-timing
framework. See Smith and Sgrensen (1999) for amodel which generates herdingwithout
the perfect observability assumption.
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Bayes Rule in their learning process. Following BHW, when an agent is indifferent
between the two projects heis assumed to randomize, choosing each project with 50%
probability.

The above described scenario is equivalent to the following: Therearetwourns,
H and L. Each urn has some balls marked / and some balls marked (. Urn L hasahigher
percentage of ballsmarked ¢ thanurnH. In the BHW framework the percentile of correct
ballsin each urn, the signal accuracy p, is symmetric. That is, the percentage of / balls
inthe H urnisequal to the percentage of ¢ ballsin the L urn. Nature draws one urn with
equal probabilities. Then all agents privately draw one ball each with replacement from
the same urn.

The agent’s problem is to determine which urn the ball comes from. The early
movers actions will reflect their private information, allowing followers to infer their
private signal. At some point this public information will overwhelm the informational
content of asingle private agent. After that point dl following agents will take the same
actionregardlessof their privatesignals. Theprobabilistic nature of theindividual signals
impliesthat incorrect cascade may form. If most of the early agents happened to receive
an ( signal, all newcomers may choose Urn L even when the correct Urnis H. In other
words, the society may settle on the safe project even though the true value of the risky
project is high. The probahility of an L cascade when the true sateisH isreferred to as
the probability of an inefficient negative cascade. Likewise, the society may settlein the
risky project even though thetrue value of therisky project islow. The probability of an
H cascade when the true state is L is referred to as the probability of an inefficient

positive cascade. The inefficient cascade probability is ssmply given by the inefficient

°Inlaboratory experiments Anderson and Holt (1997) find that in situationswhere
the subject is theoretically indifferent he typically goes with his own signal rather than
randomizing. We have aso run all the ssmulations under this assumption and the results
we discuss are qualitatively unchanged.
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positive cascade probability and theinefficient negative cascade probability weighted by
the ex ante probabilities of statesH and L.

Figure 1 summarizes our replication of BHW'’s results on signal accuracy.® An
increase in signal accuracy always leads to a decrease in the probability of inefficient

herding since the early movers are more likely to take the correct action.

®InBHW thereisaclosed-form solution for the probability of i nefficient cascades
dueto therecursive nature of the symmetric signal accuracy framework. When we depart
from symmetry the recursive nature breaks down. All simulationsin the paper are done
with 10 million runs per datapoint. Inall casesthe 99% confidenceintervasarelessthan
the width of the symbols used to represent data points. We have created a Windows
program which can be used to easily smulate a wide variety of BHW-based herding
models. The software is self contained, requiring no additional programs, and can be
downloaded from:

http://www.ucd.ie/economic/staff/i pastine/herding.htm
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Figure 1

We am to show that this monotonicity result is not general. Even a small
departure away from symmetry may lead to the violation of this result. The BHW
framework is symmetric because: i) The signal has the same accuracy in both states.
There are exactly the same percentile of correct balls in each urn. ii) The ex ante
probabilities of high and low project values are even.

It will be useful to notice that here the probability of an inefficient cascade is
equal to the probability of an inefficient positive cascade. It is also equa to the
probability of an inefficient negative cascade. This is due to the symmetry of the

framework.



III. Asymmetric Signal Accuracy

In the urn setting, asymmetric signal accuracy translates into asymmetric percentile of
correct ballsin each urn.” p, refersto the percentile of 4 ballsin Urn H. It isequal to the
probability of receiving signal ~ conditional on H, Prob(A|H). p, refers to the percentile
of ¢ ballsin Umn L. It is equal to the probability of receiving signal ¢ conditional on L,
Prob(¢|L). For the signals to be informative it must be the case that p, #1-p,. By
appropriately labeling the signals p,+p,>1 without | oss of generdity.

3.1. Even State Probabilities

Figure 2 reports the simulation results for signal accuracy of / fixed at 70% and
varying the accuracy of signd (. Fixing the accuracy of the # signal a different levels
does not change the spirit of theresults. The payoff matrix and the ex ante probabilities

of statesH and L areasin Table 1.

"To the best of our knowledge, the firs examination of asymmetric signd
accuracies in a herding context was the laboratory experiments of Anderson and Holt
(1997).
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Figure 2

Figure 2 reportssimulation results right around the point of symmetry. Thethree
plotsinthegraph arethe probability of ainefficient positive cascade (“Prob. H when L"),
the probability of a inefficient negative cascade (“Prob. L when H”) and the ex ante
probability of an inefficient cascade (“ Prob. Inefficient”) which isthe average of thetwo
former weighted by the ex ante probabilities of the states.

In this example, the probability of an inefficient cascade is monotonic in signa
accuracy. However, the probability of an inefficient positive cascade is not monotonic.
The probability of an H cascade when the true stateis L decreases with an improvement
in signal accuracy until the point of symmetry. But then it jumps up from 0.12 to 0.38.

It then continues to decrease with an increase in accuracy. The probability of an L



cascade when the true state is H also shows jumpy behavior. At the point of symmetry
it drops down from 0.38 to 0.12.

To understand what lies behind the jumpsin the positive and negative inefficient
cascade probabilities around the point of symmetry first notice the following: When p,
and p, are symmetric the second agent will either go withhisown signal or hewill bejust
indifferent between the two actions. The first mover will follow his own signal, so the
second agent will be ableto infer hissigna from hisaction. If thefirst and second signals
are different, the second signal simply cancels out the first since they have equal
accuracy. When there is asymmetry, however slight, signal /# and signal ¢ do not cancel
each other out because they have different weights in the updating process. Therefore
herding can start earlier when signal accuracies are not symmetric.

When p, is just below p,, the second agent always herds when the first agent
chooses L.% Hence the probability of an inefficient L cascade is high. When p, is just
above p,, the second agent always herds when the first agent chooses H. Hence the
probability of an inefficient H cascade is high. Right at the point of symmetry the
negative and positive cascade probabilities are equal. Hence, we observe the inefficient
positive cascade probability jumping up and theinefficient negative cascade probability
jumping down.

Numerically, examine the case where the signd accuracy of ¢ isjust below the
signal accuracy of 4, p,=0.7 and p,=0.699. If thefirst mover choosestherisky investment,
indicating that he hasreceived signa /, the second agent will follow hisown signal. He

will choosetherisky project if he receivessignal 4 and he will choose the safe project if

¥Theless accurate signal hasahigher weight in the updating process. Staring out
with even ex ante probabilities, when an agent receives signal 4, he updates his belief
that the project valueishighfrom 0.5 to Prob(H|z)=p,/(1 +p,-p,).-When the agent receives
signal (, heupdates hisbelief that the project valueislow from 0.5to Prob(L|0)=p /(I +p,-
p,)- Aslongasp,<p,, Prob(L|e)> Prob(H|#).
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hereceivessignd (. Thisisbecause the probability that the true value of the risky project

islow conditional on an / signal and then an ¢ signal is greater than 0.5, it isgiven by:

Prob( L|head £) = p, Prob(l| 7 %0 50047430 5
PPrt(L | ) + (1 - p, (1 ~Prob(L 1)
where
1251 - p,
Prot( L] ) = —— TP g ane

(L2 -p)+ 178 p

However if thefirst agent picksL, thesecond agent will already herd. Hewill choosethe
safe project even if hereceivessignal 4. The probability that the true value of the risky
project is high conditional on an ¢ signal and then an / signal islessthan 0.5. Itisgiven
by:

p Prob(H | £

Probi H | £amd I =
rob(H | £a j] p, Prob(H| £ +(1 - p.)1 - Prob( H | )

= 04995 < 0.5

where

Qi -p o

Prob(H|£) = Al - pa+01Dp,

=0.3003

When the accuracy of ¢ falls below the accuracy of 4, the second agent mimics the first
mover if thefirst mover picksL. He does not go against hisown signal if the first mover
picks H. Therefore the probability of an incorrect L cascadeis high.

When the signal accuracy of ( isjust above the signal accuracy of 4, p, =0.7 and
p,=7.001, we have the opposite situation. If thefirst mover choosesthe safe investment,
the second agent will follow his own signal. However if the first agent picks H, the
second agent will choose the risky project even if he receives signal (. The probability
that the true value of the risky project is high conditional on an /# and then an ¢ signal is
0.5004778. A positive information cascade starts right away with the second agent if the

first agent receives signal 4. Therefore the probability of an incorrect H cascade is high.
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At the point of symmetry, the probability of an incorrect H cascade is equa to the
probability of an incorrect L cascade. Thisiswhy we observe the jumpsin Figure 2.
While our primary purpose here is to analyze the ex ante probability of an
inefficient cascade, it is worth noting that in many markets the interest is in the
probability of either inefficient positive or negative cascades. In many situationsanalyzed
using herding model sthereareimportant externalitiesfrom the market to society at large.
Bank panics, capital flight and stock market crashes have external conseguences which
may induce a social planner to place a greater weight on inefficient negative cascades
rather than on inefficient positive cascades. In other markets the party designing the
structure of the market may not have an incentive to weigh all market participants
equally. Inthe IPO market, for example, the features of the market are not controlled by
a central planner, but rather by the firms offering companies for public sale. These

companies may try to increase the probability of an H outcome, whether efficient or not.

3.2. Inefficient Cascade Probability

We have now established the main building blocks for understanding why an increasein
signal accuracy canlead to anincrease in the probability of inefficient herding. Sincethe
inefficient cascade probability isgiven by theinefficient positive cascade probability and
the inefficient negative cascade probability weighted by theex ante probabilities of state
H and state L, theinefficient cascade probability itself may be non-monotonic in signal

accuracy when we have uneven ex ante probabilities. Hereis a new payoff matrix:

Table 2
Risky Safe
Project | Project
High State 2 1/2
Low State 0 1/2

ex ante Prob(High)= 0.25

The expected value from the risky project is still equal to the expected value from the
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safe project. But now therisky project isriskier than before. If we constrain the accuracy
of signal % to be equa to the accuracy of signal ¢, we still get the same monotonicity
result asin BHW with equal negative and positive incorrect cascade probabilities. Now
let usfix the signal accuracy of /4, but vary thesignal accuracy of (. Figure 3 summarizes
the simulation resultsfor p,=0.7. Once again, fixing the accuracy of the signal at other

levels does not change the qualitative results.
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Figure 3

The probability of an inefficient cascade is clearly non-monotonic in signal
accuracy. It jumps up at three levels of signal accuracy: At the 0.505 level, at 0.7 (the
point of symmetry), and at the 0.9275 level . Beforeexplaining the particul aritiesof these

levelsof accuracy, let us gain some intuition into the jaggedness of the plots. The non-
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monotonicity of the probabilities presentsitself as plotswith sudden jumps up and down
rather than as differentiable graphs. Thisis due to the binary nature of the problem the
agent faces. The agent decides whether to follow hisown signal or to go against hisown
signal. Asthe signal accuracy improvesin acontinuous scal e the expected value of each
of these options changes continuoudy, but the agent’ s decision switchesfrom oneto the
other in adiscrete jump.

At the point of symmetry we have the same incentives as in the previous case.
However, sincethe ex ante probability of L isnow 0.75, the positive cascade probability
has a higher weight in the ex ante inefficient cascade probability. At the point of
symmetry the probability of an inefficient cascade jumps up from 0.18 to 0.30.

Let’s now examine the jump a 0.505. Set signal p, at 0.5 — just below 0.505.
Imaginefour agentsin thefollowing sequenceof actions: H,L,H,H. At thislevel of signal
accuracy none of these agents herd. Their actions do reflect their private signals. Having
observed this sequence, it is optimd for the fifth agent not to herd. He will follow his
own signal. But when we set the accuracy at 0.51 — just above 0.505 — having observed
the same sequence (and once again at thislevel of accuracy the actions of the four agents
doreflect their privatesignals) itisoptimal for thefifthagent to herd to H. Therefore, just
past the 0.505 level, the probability of an inefficient H cascade jumps up. And the
probability of aninefficient L cascadejumpsdown. Theweighted average, the probability
of an inefficient cascade, jumps up from 0.32 to 0.335. There are of course many
alternative sequencesof signalsone can observe beforeherding starts. Thediscontinuities
in the probabilities arise at points where small changes in parameters switch agentsin

some sequence from one action to the other. Thesize of the discontinuity isthen related
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to the likelihood of that sequence.’

The third jump up in the probability of an inefficient cascade is at the accuracy
level 0.927. Imagine the first two agents take the sequence of actions: L,L (with these
parameters one couldinfer thar private signas from ther actions). The third agent will
go with hisown signal if the signal accuracy of ¢ isjust above 0.927. But he will herd to
L if theaccuracy isjust below 0.927. Hence asthe signal accuracy improvesfrom 0.927,
the probability of an incorrect L cascade jumps down. At the same time the probability
of anincorrect H cascades jJumps up. The net effect on the probability of an inefficient

cascade is ajump up.

3.3. Changing Both Signal Accuracies

One can also analyze the effect of increasing the accuracy of the signal in both the good
and the bad states at the same time. This would be in the same Sirit as the analysis
performed in BHW where there is a single parameter which represents both signal
accuracies, and hence they both changed together. As always, in the symmetric casethe
effect of an increase in signal accuracy on the probability of an inefficient cascade is
negative. However, for an asymmetric modd thisis not always the case. Figure 4 gives
the simulation results for payoff Table 2, where initialy there are asymmetric signal

accuracies of p,=0.5 and p, = 0.8 and then both accuracies are changed together.

°This suggests that the results would be stronger in models where there are
relatively few pre-herding sequences that arise in practice. This feature is typical of
models with exogenous timing. Typicaly in models with endogenous timing, such as
Chamley and Gale (1994), large numbers of agentsinvest before herding commences so
thelikelihood of any particular sequence of decisionswill besmall. Neverthel ess, Pastine
(2005) showsthat similar non-monotonicty results can arisein these frameworksaswell.
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The probability of aninefficient cascade jumpsup from 0.23to 0.28 asthe signal
accuracy of both signals increase past p,=0.504 and p, = 0.804. The possbility of an
increasein the probability of an inefficient cascade due to an increase in signal accuracy
isnot an artifact of increasing the accuracy of only onesigna. With asymmetry, whenthe
accuracy of both signalsareincreased asin BHW, the monotonicity of the probability of
an inefficient cascade may break down.

3.4. An Example and Intuition

Let us give an example from the labor market. There is a job vacancy. The safe

alternative isto hire an adjunct professor with a payoff of ¥2. The risky alternaive isto
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hire atenure-track professor with either a2 or a0 payoff (asin Table 2). The candidate
for the tenure-track position presents himself in private office meetings to each of the
hiring committee members (each committee member draws one signd from the same
urn). Committee members then vote sequentially with their hiring decisions.*

A good job candidate has a high probability of successfully presenting himsdf in
an office meeting. A bad candidate has a lower probability of successfully presenting
himself. Now imaginethat graduate school sstop training bad candidatesfor presentation
skills. Thisnew policy leadsto adeclinein the probability of bad candidates successfully
presenting themselves (the accuracy of the bad signal goes up). Nevertheless, this might
lead to an increase in the probability of the bad candidate getting the job due to an
inefficient positive cascade within the hiring committee. See Figure 3 for p, fixed and p,
varying. An increase in p, can lead to an increase in the probability of an inefficent
positive cascade (hiring a bad candidate).

There are two forces at work. When schools stop training bad candidates for
presentation skills, the informational value of a good presentation goes up. Of course
observing a good presentation by a bad candidate is now less likely. But if the first
committee member to speak happensto have seen agood presentation, herding may start
early sinceall following voterswould put moreinformational weight onthat good report.
Thisleads to the increase in the probability of hiring a bad candidate. The second effect

may overwhelm the first depending on theinitial levels of signal accuracy.

IV. Conclusion
In a social learning environment, herding may lead society to settle in an inefficient
aternative. A social planner would like to reduce the probability of an inefficient

outcome, such asthe collapse of financial markets, misallocation of pensionfunds, or the

19See Hung and Plott (2001) for information cascades in sequentia voting.
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widespread adoption of dubious medical practices. In some cases the designer of the
system might be on one side of the market. In an IPO market the seler would be
interested in reducing the probability of a negative cascade. A firm introducing a new
technology would like to induce a positive cascade, even if the technology is not a
superior alternative. It is therefore useful to understand how social policy or privae
agents may to be able to manipulate herds. This paper isan effort toward learning more

about how to influence the probabili stic outcome of social |earning.
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