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Abstract

This thesis describes various analysis techniques used in the optical char-

acterisation of millimetre wave radiation. The results presented relate to

both computational simulation and exerimental measurements carried out

at NUI Maynooth. The majority of the analysis is centred around a fre-

quency of 100 GHz, or a corresponding wavelength of 3 mm. Experimental

measurements were performed on di�ractive optical elements known as axi-

cons, and the results were presented and compared with simulations. An

introduction to KID devices was given, along with their potential uses and a

potential analysis method using CST was outlined. These techniques using

plane wave illumination in CST were compared and veri�ed with Gaussian

Beam Mode Analysis. A method of analysing the form of standing waves

present in a system involving metallic rings was described. A method previ-

ously used for the analysis of standing waves between feedhorns was adapted

to examine the form of the modes present in the resonant Fabry-Perot cavity.

Detailed analysis was performed using CST, a full electromagnetic modelling

package on resonant metallic cavities related to describing a waveguide cou-

pled bolometer for the SAFARI instrument on the proposed SPICA space

telescope mission. A cavity geometry was optimsed manually for optimum

cavity size and absorber size and location by performing a large number of

simulations. SCATTER, an in-house mode matching software was used to

verify the results from CST in a simple case. Various other cavity geometries

were also investigated brie�y. A simpli�ed cavity model which could po-

tentially be manufactured to perform measurements at NUI maynooth was

outlined, as well as a potential detector method known as a patch antenna.

Patch antennas were designed for use at 100 GHz and brie�y examined in

operation within a cavity using CST.
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Chapter 1

Introduction

1.1 Introduction to Millimetre Wave Optics

Millimetre-wave optics describes the branch of optics concerned with the re-

gion of the electromagnetic spectrum where the wavelength, λ, is of the order

of 1 mm. In fact, we often extend the phrase "millimetre-wave" to shorter

wavelengths and into the "terahertz" region, where the wavelength can be

much shorter than 1 mm. Therefore, when terahertz radiation is spoken of,

or indeed sub-mm astronomy, we are dealing with the same approximate re-

gion of the spectrum, where similar techniques are applicable. The region

of interest for our purposes is variously described in the literature as "mm-

wave", "sub-mm", "terahertz" and "far-infrared". For example, when we

are at the far end of the terahertz regime at frequencies of around 10 THz,

the wavelength is around 3× 10−5 m or .03 mm. Clearly, by de�nition, this

is not millimetre-wavelength radiation. However, we can largely apply very

similar techniques and approaches as would be used at wavelengths of 1 mm,

although we will generally not discuss radiation of such high frequencies. In

fact, for the work carried out and discussed in this thesis, we deal primarily

with radiation having a wavelength of 3 mm, or a frequency of 100 GHz. In

this thesis, for example, SAFARI, a proposed spectrometer mission to map

astronomical sources operates from 1-10 THz, which is truly in the terahertz

frequency range. The majority of the experimental and simulation work pre-

sented in this thesis is centred at aound 100 GHz or a wavelength, λ, of 3 mm

which could be de�ned as millimetre wave but the boundary between both

regimes is not well de�ned.
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1.1. Introduction to Millimetre Wave Optics

In �gure 1.1 we see a very detailed illustration of the electromagnetic spec-

Figure 1.1: Detailed diagram showing electromagnetic spectrum and applications. Source:

[1].

trum. We note that this diagram de�nes the terahertz band as beginning at

wavelengths of very slightly more than 1 mm, hence our previous discussion

of varying de�nitions of the regions of the spectrum. We see, then, that the

terahertz region is not merely con�ned to frequencies of 1-10 THz, as one

might imagine. One intuitive, and perhaps the most instructive de�nition of

our region of interest is that of the region "between electronics and optics",

i.e. it is the region between where electronics are useful, in the form of radio

wavelength electronic circuits, and that where traditional optics is useful, e.g.

classical lenses and mirrors. As we note from �gure 1.1, the terahertz region

is sandwiched between the microwave, where electronic circuits are useful,

and infrared and visible optics, where classical optics is used. The region is

also sometimes referred to as the "terahertz gap", partly perhaps because

it exists in the gap between these two methods of analysis, and also be-

cause there has been relatively little technological advancement in this area,

in comparison to many other regions of the electromagnetic spectrum. In

section 1.2, we shall describe applications relevant to various di�erent areas

of the broadly de�ned region of the terahertz region of the electromagnetic

spectrum. An important characteristic which increases the scope of potential

uses of terahertz radiation is the fact that it is non-ionising, and therefore is

not harmful to biological tissue. This is in contrast to many common testing

and scanning techniques which utilise higher energy X-ray photons.

2



1.2. Millimetre Wave Optics and its Applications

1.2 Millimetre Wave Optics and its Applica-

tions

1.2.1 Commercial Applications

Millimetre-wave and terahertz technology has been employed and is widely

being developed for a wide range of commercial applications, including secu-

rity, food production and art. Figure 1.2 details the use of frequency mod-

ulated continuous wave (FMCW) scanning at 600 GHz for use in battle�led

security checkpoints and aiport security screenings. This research was per-

formed at the Jet Propulsion Laboratory, California [2]. The image shows a

person carrying an item with the characteristics of a pipe bomb, strapped to

the chest and concealed with clothing. The bottom right panel of the �gure

then overlays the resulting image produced by the 1 second scan onto the

image of the person. It is then clear that the person is carrying a concealed

weapon.

Figure 1.2: Security scanner image detailing the real-time detection of concealed weaponry.

Source [2].

Another application with similar potential uses is that of narcotic detection

[3]. In �gure 1.3, three spectral pro�les are shown across the 1-2 THz range.

These represent samples of two illegal drugs; MDMA and methamphetamine,

along with a sample of aspirin. The drugs were contained in polyethylene

bags placed inside a paper envelope. This indicates the potential use of such

technology in screening mail containing illegal drugs, as the spectral pro�les

of each drug can easily be distinguished. Also, the use may be extended to

screening for explosives, as each explosive will also contain its own spectral

�ngerprint. The non-ionising nature of terahertz radiation also lends itself

to applications in non-destructive testing of samples. These may include

3



1.2. Millimetre Wave Optics and its Applications

Figure 1.3: Security scanner image detailing the real-time detection of narcotics using

spectral �ngerprints. Source: [3].

Figure 1.4: Visible image and time-domain integration THz re�ection image from a plas-

ter/graphite/plaster interface. Source: [4].

food samples in a quality assurance environment or in the non-destructive

testing of works of art, as shown in �gure 1.4 [4]. In this experiment, a

graphite image was produced on a layer of plaster. This was then covered by

another plaster layer, and subsequently painted over, using four di�erent pig-

mentations. The reconstructed image produced from the experiment shows

an ability to clearly distinguish the image of the butter�y without the need

to damage the piece. It was also found that the three di�erent colours of

paint used produced spectral pro�les which were readily di�erentiable. This

experiment was performed over the range from approximately 0.1-1 THz.

Numerous commercial applications exist for this technology. For example,

antique paintings will often have been restored with newer paint, and will

contain numerous layers of paint. It would be possible with this technology

to di�erentiate these layers and to view the underlying images, without the

requirement of destructively removing the topmost layers.

4



1.2. Millimetre Wave Optics and its Applications

1.2.2 Medicine

Applications of terahertz and millimetre-wave radiation are becoming more

widespread, with many technologies being tested for viability in biological

aplications [5, 6]. Terahertz technology has been shown to be potentially

very useful for the diagnosis of cancer in humans. In [7], terahertz pulse

imaging was used to study basal cell carcinoma ex vivo, in a noninvasive

manner, and some results of this are shown in �gure 1.5. The diseased tissue

(on the left of each image) is bounded by a solid black line, while the normal

tissue is bounded by a dashed black line.

Figure 1.5: Visible (left) and terahertz (right) images of diseased samples. Source: [7].

The diseased areas of tissue showed increased absorption levels, and indeed

�ne structural details. This increased absorption may be due to an increase

in the interstitial water within the diseased tissue, or a change in the vibra-

tional modes of water molecules with other functional groups [7].

An in-line measurement technique for determining the coating thickness of

individual pharmaceutical tablets during �lm coating in a pan coating unit

using pulsed terahertz technology has been described [8]. Using this method,

it is possible to measure �lm coating thicknesses of between 40 µm-1 mm

with sub-micron resolution, with an ability to assess the thickness of a single

tablet in less than 9 ms during the process, without interfering with the

coating process.
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1.2. Millimetre Wave Optics and its Applications

Figure 1.6: Tablet coating system in moving drum showing �tted in-line THz sensor.

Source: [8].

1.2.3 Astronomy

Sub-mm and far infrared astronomy has been largely publicised in recent

years. This is due to the large number of projects launched and those

currently in development. The Herschel and Planck space telescopes were

launched together in 2009, and NUIM had a large involvement in the devel-

opment of components for both telescopes. There is also heavy involvement

in SAFARI, an instrument on the proposed JAXA-ESA mission SPICA,

and QUBIC, a ground-based experiment which will measure polarisation

anisotropies in the Cosmic Microwave Background. Another ground based

experiment which had involvement from Maynooth is ALMA; a large inter-

ferometric array of radio telescopes, which can be moved to create numerous

diferent baselines (�gure 1.7).

Figure 1.7: Image showing ALMA in the Atacama desert in Northern Chile.

6



1.2. Millimetre Wave Optics and its Applications

Figure 1.8: Distribution of molecular gas across the plane of the Milky Way. Source: [9].

Figure 1.8 is a plot produced as a result of observations with the HIFI instru-

ment on the Herschel Space Observatory, the optics for which were partly

designed at NUI Maynooth. The plot shows the distribution of molecular

gas across the plane of the Milky Way as a function of distance from the

Galactic Centre. The graph shows the density of molecular gas as probed

via two di�erent indirect tracers: carbon monoxide (CO) shown in grey, and

ionised carbon (C+) shown in red. The cumulative distribution, taking into

account both components, is shown in black. The use of C+ as a tracer,

instead of just CO suggest that almost one third of all molecular gas in the

Milky Way had remained undetected until now [9].

Figure 1.9: CMB anisotropies, observed by Planck. Source: [10].

Figure 1.9 shows the Planck all-sky map, released in March 2013. The im-

age is based on the initial 15.5 months of data from Planck, and constitutes

the most detailed map of the cosmic microwave background; the leftover ra-

diation from the Big Bang. This map shows tiny temperature �uctuations

that correspond to regions of slightly di�erent densities. One of the most

surprising �ndings is that the �uctuations in the CMB temperatures at large

angular scales do not match those predicted by the standard model- their sig-

7



1.3. Outline of Thesis

nals are not as strong as expected from the smaller scale structure revealed

by Planck [10].

Figure 1.10 shows a basic illustration of the QUBIC telescope setup, which is

still in the design phase. Radiation from the sky, which passes though a feed-

horn array, is transformed by telescope optics and focused onto a bolometer

array. The aim of QUBIC is to detect so-called "E" (even parity) and "B"

(odd parity) modes. It is the "B" modes which are of particular interest, as

these would imply an in�ationary universe [11].

Figure 1.10: Ilustration of QUBIC focal plane. Source: [11].

The analysis techniques presented in this thesis are used to design, analyse

and verify the receivers for such projects, and indeed some of this analysis

will be speci�cally presented in relation to the SAFARI project, in chapter

6.

1.3 Outline of Thesis

� Chapter 2

Chapter 2 introduces the background theory appropriate to describe the

propagation of mm-wave radiation. The Gaussian beam mode theory

will be introduced and developed, and speci�c mathematical techniques

will be described. The principles behind an electromagnetic simulation

8



1.4. Author's Speci�c Contribution to Thesis

package will be discussed, as well as a description of measurement tech-

niques in the mm-wave regime, and speci�c concepts which will be used

in subsequent chapters.

� Chapter 3

Chapter 3 brie�y describes the principles behind Kinetic Inductance

Detectors, and outlines useful contributions that may be made in the

optical design of the system. A method of plane wave illummination

is also described, which would be of use in modelling such a system in

astronomy related applications.

� Chapter 4

Chapter 4 introduces pseudo- Bessel beams at millimetre wavelengths

and uses Gaussian Beam Mode Analysis to analyse axicons, quasiop-

tical components which can be used in the production of such beams.

Experimental measurements are performed on such components, and

the results analysed.

� Chapter 5

Chapter 5 describes multiple re�ections between two metallic rings or

discs. Simulations are performed on a model system, and results pre-

sented for a variety of setups. The form of the modes present inside a

resonant Fabry-Perot cavity is analysed.

� Chapter 6

Chapter 6 introduces the background to the SAFARI space telescope

instrument, and analysis is performed on a resonant metallic cavity

of various geometries, in most cases containing absorber material. A

simpli�cation of the system is outlined, which could potentially be man-

ufactured and analysed.

� Chapter 7

Chapter 7 provides conclusions on the work cariried out in this thesis.

1.4 Author's Speci�c Contribution to Thesis

Chapter 3

Gaussian Beam mode analysis (GBMA) of an axicon element of varying

9



1.4. Author's Speci�c Contribution to Thesis

geometries has been performed. A relatively simple process for creating a

collimated beam has been outlined, without the need for o�-axis optics as

are often used, which dramatically add to the size of the optical system. One

axicon has been designed and manufactured, and measurements and analysis

were performed on both this and an existing axicon. Measurements have also

been performed with a corrugated horn.

Chapter 4

A potential contribution from Maynooth in the development of imaging tech-

nology employing Kinetic Inductance Detectors is detailed. A comparison of

plane wave analysis techniques in CST was undertaken.

Chapter 5

A simple resonant system involving metallic rings or discs has been modelled

using GBMA. A matrix analysis technique used for the analysis of feedhorn

propagation modes has been adapted to the analysis of resonant modes inside

a Fabry-Perot cavity.

Chapter 6

A simple cavity geometry including absorber material was optimised through

simulations performed using the commercial software package CST. This cav-

ity analysis was extrapolated to cavities of alternative geometies. Computa-

tional analysis was also performed on a possible detector method in a simple

physical model of such a cavity.

10



Chapter 2

Theory

2.1 Quasioptics

Geometrical optics is the technique used to describe the propagation of elec-

tromagnetic radiation in the visible region, where the assumption that λ ≈ 0,

where λ is the wavelength, is a valid approximation, i.e. where the value of

λ is of the order of ≈ 500 nm. The assumption made by the geometrical

optics theory is that, because the wavelength of the radiation is so small

with respect to the size of the optical components used, it can be treated as

tending towards zero.

When the dimensions of the components of the system are of the order of λ

however, e�ects such as di�raction become important and can in fact domi-

nate the propagation of radiation through optical trains.

In the mm-wave region of the spectrum, we are closer to the second case, as

the system dimensions are moderately large compared with λ. In this case,

due to the limited accuracy of geometrical optics we would bene�t from a

full electromagnetic treatment of the problem, where Maxwell's equations are

computed fully. However, this is computationally intensive, and we �nd that

other less intensive methods are accurate and computationally less exhaustive

than solving di�erential equations continuously, but are still highly useful for

many purposes. This allows for the use of the elegant theory of Gaussian

Beam Mode Analysis (GBMA), where the e�ects of di�raction are included

within reasonable limits and a scalar aproximation is used. An important

point of note regarding GBMA is that a large number of antenna types used

11



2.2. Gaussian Beam Mode (GBM) Theory

at mm-wavelengths have a high Gaussicity, and so are naturally represented

using this convention.

2.2 Gaussian Beam Mode (GBM) Theory

Gaussian Beam Mode theory was �rst widely used in the area of laser beam

propagation [12], where light beams are usually very well collimated. They

are also of great interest for our purposes of quasioptical propagation and

analysis in millimetre systems. Later we will analyse the form of Laser cavity

modes using this elegant technique.

2.2.1 Derivation of Freespace Gaussian BeamModes

The propagation of electromagnetic �elds in free space is governed by the

scalar wave equation [13]

[52 + k2]Ẽ(x, y, z) = 0, (2.1)

where Ẽ(x, y, z) is the complex amplitude of a sinusoidally varying �eld in

three-dimensional space and k is the wavenumber, de�ned as equal to 2π/λ,

where λ is the wavelength of the radiation. We mainly concern ourselves

with beams propagating primarily in the z -direction by convention, so that

the primary spatial dependence of Ẽ(x, y, z) will be of the form exp(−jkz).

We can write the distribution for any component of the electric �eld then

(where we have suppressed the time dependence) as

E(x, y, z) = u(x, y, z)exp(−jkz), (2.2)

where u is a complex scalar function that de�nes the non-plane wave part

of the beam, and the exponential term represents the spatial variation of

a plane wave. Substituting this into equation 2.1 yields the reduced wave

equation [14]

δ2E

δx2
+
δ2E

δy2
+
δ2E

δz2
+ k2E = 0. (2.3a)

or, using the quasi-plane wave solution:

12



2.2. Gaussian Beam Mode (GBM) Theory

δ2E

δx2
+
δ2E

δy2
+
δ2E

δz2
− 2jk

δu

δz
= 0. (2.3b)

The assumption we will now make using the paraxial approximation is that

the variation of the amplitude, u, along the direction of propagation will be

small over distances of the order of a wavelength, and that the axial variation

will be small compared to the variation perpendicular to this direction [15].

Due to the paraxial approximation then, and as each of the second partial

derivative terms in equation 2.3b are much smaller than the fourth term,

the second partial derivative involving z in particular may be dropped. This

leaves what is termed the paraxial wave equation

δ2E

δx2
+
δ2E

δy2
− 2jk

δu

δz
= 0. (2.4)

2.2.2 Gaussian Modes

The solutions to the paraxial wave equation are the so-called Gaussian Beam

Modes, the use of which is extremely widespread in quasioptical design and

analysis [16, 17, 18]. A complex scalar �eld, (E ), may be described using a

linear superposition of modes (Ψ), weighted by the appropriate mode coe�-

cients (A):

E =
n∑
0

AnΨn. (2.5)

Ψn is an independently propagating free-space mode of order n and An is a

mode coe�cient which determines how much power is contained in the mode's

transverse amplitude distribution. These coe�cients may be determined by

performing an appropriate overlap integral between the �eld and the mode

set at a plane where the scalar electric �eld is known. The overlap integral

in question takes the form [19]:

An =

∫
Ψ∗ndA (2.6)

To describe the �eld at an alternative plane simply involves propagating

the modes and re-summing to construct the new �eld. The methods of

calculating the speci�c parameters required to reconstruct the beam at an

alternative plane will be outlined in section 2.4.
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2.3. Gaussian Spherical Waves

2.3 Gaussian Spherical Waves

We wish to have an analytical form for the solutions to the paraxial wave

equation as follows. If we consider a uniform spherical wave diverging from

a point source at x0, y0, z0 incident on a point on a plane x, y, z, then if the

axial distance z − z0 is large in comparison to the transverse components

x0, y0 and x, y then the �eld distribution at x, y, z can be written using the

paraxial approximation as [12]

ũ(x, y, z) =
1

z − z0
exp

[
−jk (x− x0)2 + (y − y0)2

2(z − z0)

]
=

1

R(z)
exp

[
−jk (x− x0)2 + (y − y0)2

2R(z)

]
,

(2.7)

where R(z) is the radius of curvature of the wave as a function of z.Thus,

the phase variation of this wave will have a form given by

φ(x, y, z) = k
(x− x0)2 + (y − y0)2

2R(z)
. (2.8)

The radius of curvature at a plane z can be written as

R(z) = R0 + z − z0 (2.9)

where R0 is the radius of curvature at the source plane. If the radius of

curvature R > 0, we say that the wave is diverging, whereas if R < 0, the

wave is said to be converging. The phase variation given by equation 2.8 is

only valid in the paraxial limit. We can assume that x0 and y0 are zero for

simplicity and introduce the concept of a complex point source by including

a complex quantity q0, where q(z) = q0 + (z − z0). We call q(z) the complex

beam parameter or complex radius of curvature, and we shall use it to replace

the radius of curvature, R(z). Equation 2.7 now becomes

ũ(x, y, z) =
1

q(z)
exp

[
−jkx

2 + y2

2(q(z))

]
(2.10)

If q(z) is complex, the real and imaginary parts may be separated to give the

complex form a+ ib
1

q(z)
=

1

qr(z)
− j 1

qim(z)
. (2.11)

Then equation 2.10 can be written as

ũ(x, y, z) =
1

q(z)
exp

[
−jk x

2 + y2

2(qre(z))

]
− k x2 + y2

2(qim(z))
(2.12)
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2.3. Gaussian Spherical Waves

This has an imaginary phase variation corresponding to a spherical wave with

a real radius of curvature and also a purely real quadratic phase variation,

giving a Gaussian amplitude pro�le with a transverse fall o� described by

the imaginary part of 1/q(z).

We assume that the �eld has a distribution of the exponential form as in

equation 2.10 and allow equation 2.11 to take the form of a fundamental

Gaussican distribution. Then the real part of 1/q(z) is equal to the phase

radius of curvature and the imaginary part represents the Gaussian variation

in o�-axis amplitude we �nd that

1

q(z)
=

1

R(z)
− j

(
λ

πw(z)2

)
, (2.13)

where w(z) is the beam width. q(z) then varies with distance as

q(z) = q(0) + (z − z0) (2.14)

We can also use a di�erential approach by assuming a trial solution to the

paraxial wave equation of the form [14]

u(x, y, z) = A(z)exp

[
−jkx

2 + y2

2q(z)

]
, (2.15)

where A(z) and q(z) are unknown but complex. Substituting into the parax-

ial wave equation we obtain(
k

2

)2(
dq(z)

dz
− 1

)(
x2 + y2

)
−
(

2jk

q(z)

)(
q(z)

A(z)

dA(z)

dz
+ 1

)
(2.16)

This equation can only be satis�ed for all x and y if

dq(z)

dz
= 1 (2.17a)

and
dA(z)

dz
= −A(z)

q(z)
. (2.17b)

The solutions to these are given by [12]

q(z) = q(0) + (z − z0) (2.18a)

and
A(z)

A0

=
q0
q(z)

, (2.18b)

which is the same solution as found in equation 2.14, showing the validiity

of this approach.
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2.4. Gaussian Beam Mode solution in Cylindrical Coordinates

2.4 Gaussian Beam Mode solution in Cylindri-

cal Coordinates

We now wish to derive the GBM solution applicable to systems having cylin-

drical symmetry, e.g. a cylindrical aperture. We will use r to represent the

radial distance from the axis of propagation (z- axis) and ϕ for the azimuthal

angle. Rewriting equation 2.15 in terms of polar coordinates, but assuming

an axially symmetric solution, i.e. independent of ϕ we have:

u(r, z) = A(z)exp

[
−jkr2

2q(z)

]
. (2.19)

Substituting into the paraxial wave equation we �nd the same result as in

equations 2.18a, 2.18b. Again, substituting the real and imaginary parts

of 1/q(z) into equation 2.19, we �nd that the exponential term becomes

[14]

exp

[(
−jkr2

2

)(
1

qr(z)

)
−
(
kr2

2

)(
1

qim(z)

)]
. (2.20)

Figure 2.1: Phase variation of a spherical wave relative to a plane wave front.

The imaginary phase term has a spherical radius of curvature, R, and we

now replace the real part of q(z) with R, and de�ne Φ(r) to be the phase

variation relative to a plane wave at a plane z0 as a function of r, as shown

in �gure 2.1.
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2.4. Gaussian Beam Mode solution in Cylindrical Coordinates

The phase variation in the limit r << R is described by [14]:

Φ(r) =
πr2

λR
=
kr2

2R
. (2.21)

From 2.20 we can make the important equality of the real part of 1/q with

the radius of curvaure of the beam(
1

qr

)
=

1

R
(2.22)

As q is a function of z, clearly the radius of curvature of the beam will depend

on the position along the propagation axis.

The second part of the exponential expression in 2.20 is real and has a Gaus-

sian variation as a function of distance from the axis of propagation. Taking

the standard form for a Gaussian distribution

f(r) = f(0)exp

[
−
(
r

r0

)2
]
, (2.23)

we may note that r0 represents the distance to the 1/e point relative to the

on-axis �eld value. To give this form to the second part of 2.20 we take(
1

q

)
im

=
2

kw2(z)
=

λ

πw2
, (2.24)

de�ning the beam radius, w, which is the value of the radius at which the

�eld falls to 1/e relative to its on-axis value. The beam radius as well as the

radius of curvature will depend on the position along the axis of propagation.

We thus see that the complete function q is given by

1

q(z)
=

1

R(z)
− j

(
λ

πw(z)2

)
, (2.25)

with R and w functions of z. Equation 2.25 is the same as equation 2.13, and

emerges in this case from the di�erential approach used here. When z = 0

and w(0) = [λq(0)/jπ], we get that 2.19 becomes

u(r, 0) = u(0, 0)exp

(
− r

2

w2
0

)
, (2.26)

where w0 is the beam width at z = 0, which is called the beam waist radius.

From this de�nition, and from equation 2.18a we obtain:

q =
jπw2

0

λ
+ z. (2.27)
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2.4. Gaussian Beam Mode solution in Cylindrical Coordinates

From equations 2.25 and 2.27 we can �nd both the radius of curvature and

the beam radius as a function of position along the axis of propagation:

R = z +
1

z

(
πw2

0

λ

)2

(2.28a)

w = w0

[
1 +

(
λz

πw2
0

)2
]0.5

(2.28b)

Figure 2.2: Amplitude variation of a Gaussian beam upon propagation. Source: [20]

Figure 2.3: Variation of radius of curvature of a Gaussian beam upon propagation.Source:

[20]

The beam waist radius is the minimum value of the beam radius and occurs at

the beam waist, where the radius of curvature is in�nite. Here, we e�ectively

have a plane wave front. Figure 2.2 shows the variation of the amplitude of a

Gaussian beam as it propagates. Figure 2.3 shows the variation of the radius

of curvature of a Gaussian beam as it propagates. The quantity πw2
0/λ is

known as the confocal distance. This will be described again later in section

2.7.2.

To complete the analysis of the Gaussian Beam equation, rewriting equations

2.17a and 2.17b, we have that dA/A = −dz/q and dz = q. We infer that
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2.5. Normalization

A(z)/A(0) = q(0)/q(z) and examining equation 2.27, we �nd that

A(z)

A(0)
=

1 +
jλz

πw2
0

1 +

(
λz

πw2
0

)2 . (2.29)

We can express this in terms of a phasor, and de�ning

tanφ0 =
λz

πw2
0

, (2.30)

we see that
A(z)

A(0)
=
w0

w
exp(jφ0). (2.31)

Taking the amplitude on-axis to be unity, we have the complete expression

for the fundamental Gaussian beam mode

u(r, z) =
w0

w
exp

(
−r2

w2
− jπr2

λR
+ jφ0

)
(2.32)

The description for the electric �eld then can be obtained from equation 2.2,

and simply involves including a plane wave phase factor, yielding

E(r, z) =
(w0

w

)
exp

(
−r2

w2
− jkz − jπr2

λR
+ jφ0

)
. (2.33)

2.5 Normalization

To relate the exression above for the electric �eld to the total power in a

Gaussian beam, we assume that the electric and magnetic �eld components

are related to each other as in a plane wave. The total power, then, is

proportional to the square of the electric �eld integrated over the area of

the beam. For convenience, we normalize by setting
∫
|E|2 · 2πr = 1. Using

equation 2.33 for E, evaluating at z = 0, we obtain equation 2.34

E(r, z) =

(
2

πw2
0

)0.5

exp

(
−r2

w2
− jkz − jπr2

λR
+ jφ0

)
, (2.34)

which, along with the previously de�ned equations 2.28a, 2.28b and 2.30 fully

describe the fundamental mode Gaussian Beam.
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2.6. Higher order solutions

2.6 Higher order solutions

The fundamental Gaussian beam solution is very important in quasiopti-

cal analysis, but we also often require higher order modes to increase the

accuracy of our analysis. Such solutions have certain polynomials superim-

posed on the fundamental mode �eld distribution. The higher order beam

modes have the property of having a beam radius and a beam radius of cur-

vature that have the same value as the fundamental mode, but their phase

shifts are di�erent. In cylindrical coordinates, higher order beam modes are

used to better describe radiating systems that have axial symmetry but do

not have perfectly Gaussian radiation patterns, e.g. corrugated feedhorns.

Higher order beam modes in rectangular coordinates can also be useful where

Cartesian symmetry exists.

It turns out that in cylindrical coordinates it is the Laguerre polynomials

which will be important, whereas in rectangular coordinates it is the Her-

mite polynomials which are used. A solution to the paraxial wave equation

in cylindrical coordinates is given by

Epm(r, ϕ, z) =

[
2p!

π(p+m)!

]0.5
1

w(z)

[√
2r

w(z)

]m
Lpm

(
2r2

w2(z)

)
·exp

[
−r2

w2(z)
− jkz − jπr2

λR(z)
− j(2p+m+ 1)φ0(z)

]
· exp(jmϕ),

(2.35)

where p is the radial index, m is the angular index, and Lpm is the gener-

alized Laguerre polynomial. A signi�cant point to note about the higher

order mode �eld distribution is that the contribution to the overall phase

shift is greater than that for the fundamental mode by an amount propor-

tional to the mode parameters. These higher order Gaussian beam mode

solutions are normalized so that each represents unit power �ow, and obey

the orthogonality relationship
x

r drdϕEpm(r, ϕ, z) = δpqδmn. (2.36)

If we wish to consider axially symmtric modes(i.e. those that are independent

of ϕ), we consides the modes described by equation 2.36 which have m = 0.

These may be used to describe systems which are axially symmetric but

which are not exactly described by the fundamental Gaussian Beam mode.

These particular modes may be given by

Ep0(r, z) =

[
2

πw2

]0.5
Lp0

(
2r2

w2

)
exp

[
− r

2

w2
− jkz − jπr2

λR
+ j(2p+ 1)φ0

]
.

(2.37)
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2.7. Propagation of Gaussian Beams

An example where we would not be able to make this simpli�cation is that of

a cylindrical smooth-walled horn. In this case the electric �eld is not radially

symmetric, and would require Laguerre modes of order m = 0 and m = 2 to

have an accurate description of the aperture �eld.

2.7 Propagation of Gaussian Beams

2.7.1 Edge Taper

The fundamental Gaussian beam mode has a Gaussian distribution of the

electric �eld perpendicular to the propagation axis, and everywhere along

this axis:
|E(r, z)|
|E(0, z)|

= exp

[
− r
w

2
]
, (2.38)

[14] where r is the distance from the axis of propagation. The power density

distribution is just proportional to this quantity squared:

P (r)

P (0)
= exp

[
−2

(
r

w

2
)]

, (2.39)

and this also has a Gaussian pro�le. This can become confusing as we use

the width of the �eld distribution to characterize the beam, although it is

more often the power distribution which is measured directly. However, we

use w to mean the distance from the axis of propagation at which the �eld

has fallen to 1/e of its value on-axis. We de�ne the Edge Taper, Te to be the

relative power density at a radius re, and it is given by

Te(re) = exp

(
−2r2e
w2

)
. (2.40)

Usually, the edge taper is quoted in decibels to accommodate a large dynamic

range, and thus we have

Te(dB) = −10log10(Te). (2.41)

As an example,for a truncating aperture for a fundamental mode Gaussian

beam, the edge taper at a radius from the centre of the beam equal to w is -8.7

dB. Alternatively, this means that 86.47 % of the power in the fundamental

mode beam is contained within a diameter of 2w. For the fundamental mode

Gaussian in cylindrical coordinates, the fraction of total power contained
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2.7. Propagation of Gaussian Beams

within a circle of radius re centred on the beam axis is found to be

Fe =

r=re∫
r=0

|E(r)|2 · 2πrdr = 1− Te(re). (2.42)

The particular formulation of equation 2.42 will be useful later (section 3.2)

when we discuss axicons, and the method of illumination of this optical

component.

2.7.2 Confocal Distance

The parameter known as the confocal distance, or sometimes the Rayleigh

range is of particular importance. It is de�ned as [12, 14, 21]

zc =
πw2

0

λ
. (2.43)

Using this de�nition for the confocal distance, the Gaussian beam parameters

may be rewritten as

R = z +
z2c
z
, (2.44a)

w = w0

[
1 +

(
z

zc

)2
]0.5

, (2.44b)

φ0 = tan−1
(
z

zc

)
. (2.44c)

We can see from this that R, w, and φ0 all change signi�cantly between the

beam waist at z = 0 and the confocal distance at z = zc. We generally de�ne

the confocal distance as being the transition region between the "near �eld"

(z << zc) and the "far �eld"(z >> zc) of the propagating beam.

At the beam waist, the beam radius w reaches its minimum value w0. The

electric �eld and power distributions have their maximum on-axis values

there, and the radius of curvature is in�nite (as the phase front is planar).

Recall that the phase shift is the on-axis phase of a Gaussian beam relative

to a plane wave. Thus, it is zero at the beam waist. Another feature of the

near �eld is that the beam radius changes only slowly relative to waist value,

and the beam is said to remain essentially collimated within the confocal

distance.
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2.8. Gaussian Beam Transformation

2.8 Gaussian Beam Transformation

We previously noted that a Gaussian beam will spread or diverge signi�-

cantly upon propagation of a distance of the order of the confocal distance.

When designing a quasioptical system therefore, it is important to con�ne

the beam. The methods used are similar in principle to those used in stan-

dard geometrical optics, e.g. lenses or mirrors may be used to force a beam

to converge rather than diverge for a certain distance.

By the nature of the radiation, we cannot usually achieve a "focus" in the

sense of concentrating to a point. In reality what is done is to transform

one beam waist to another waist, as in �gure 2.4. We will now introduce a

useful method for tracking the evolution of a Gaussian beam through simple

quasioptical systems. This will be applied later in section 3.2 where we will

use the method to track the evolution of beams through systems involving

axicons. This method may also be used in other situations where we use

GBMA, as it is a useful and simple method. If it is used, it will explicitly be

stated that "ABCD matrices" are used.

Figure 2.4: Variation of radius of curvature of a Gaussian beam upon propagation.

2.8.1 Ray Transfer Matrices

In the classical "ABCD" method, the location and slope of a ray at the

output plane of a paraxial system are linear functions of the parameters of

the input ray. This relationship is [14]:

rout = A · rin +B · r′in
r
′

out = C · rin +D · r′in,
(2.45)

where r is the position and r′ is the slope. This can be described using

matrix notation if the ray position and slope are treated as a column matrix,

23



2.8. Gaussian Beam Transformation

using [
rout

r
′
out

]
=

[
A B

C D

]
·

[
rin

r
′
in.

]
(2.46)

A system with any number of elements can be handled by multiplying the

individual 2 x 2 matrices. The radius of curvature is de�ned as R = r/r
′
,

thus

Rout =
A ·Rin +B

C ·Rin +D
(2.47)

Extending to Gaussian beams, we have an analagous relation, where the four

parameters describing an element of the optical system operate instead on

the complex radius of curvature:

qout =
A · qin +B

C · qin +D
. (2.48)

The 2 x 2 matrix consisting of the elements A, B, C and D is known as the

ray transfer matrix of the system. When combining elements using multiple

ABCD matrices, we use the convention that the matrices are cascaded in

reverse order to that in which they are encountered by the beam, so that the

�rst element encountered by the beam will be represented by the rightmost

element in the cascade as it is written. Using the equation for the complex

beam parameter, 2.25 , we can determine the beam radius, and the radius of

curvature, using

wout =

[
λ

πIm(−1/qout)

]0.5
=

√√√√√√√
 −λ

πIm

(
C +D/Rin − jDλ/πw2

in

A+B/Rin − jBλ/πw2
in

)

(2.49)

and

Rout = Re

(
1

q

)−1
= Re

(
C +D/Rin − jDλ/πw2

in)

A+B/Rin − jBλ/πw2
in

)−1
. (2.50)

The most basic ray transfer matrix is that for propagation of length L

in a medium of uniform refractive index. As shown in 2.5, the o�set of

the incoming ray is changed by an amount depending on r
′
in, but the slope

remains the same, in this case. The ray transfer matrix, or ABCD Matrix for

the propagation of a ray through a uniform medium, then, is given by

Mfreesp. =

[
1 L

0 1

]
. (2.51)

Other ABCD matrices may be constructed for increasingly complex elements,

such as transitions between media of varying refractive indices, thin lenses,
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2.9. CST® overview and technique

Figure 2.5: Propagation of a ray in free space.

etc., and these can be cascaded to �nd the system matrix.

As an example, we will take the case of a spherical mirror, of focal length

500 mm. For a beam with initial radius of 4 mm and radius of curvature of

80 mm at a wavelength of 3 mm (100 GHz). We can construct a 2f system

using ABCD matrices, such that the �nal cascaded system matrix is given

by:

Msys. =

[
1 500

0 1

]
·

[
1 0

−2/1000 1

]
·

[
1 500

0 1

]
=

[
1 500

−1/500 0

]
. (2.52)

This results in an output radius of curvature Rout = −74367 mm and a beam

radius wout = 122 mm, as expected.

2.9 CST® overview and technique

We will now describe a commercial simulation package used for electromag-

netic modelling. Extensive use will be made of this package throughout this

thesis, most notably in the analysis of waveguide cavities for SAFARI (chap-

ter reference to be inserted here). Computer Simulation Technology (CST)

Studio Suite® [22] is a commercial general purpose electromagnetic simula-

tion package based on the Finite Integration Technique (FIT). Unlike most

numerical methods, FIT discretises the integral form of Maxwell's equations

rather than the di�erential form [23].

∮
∂A

~E. ~ds = −
∫
A

∂ ~B

∂t
.d ~A, (2.53a)
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2.9. CST® overview and technique

∮
∂A

~H. ~ds = −
∫
A

(
∂ ~B

∂t
+ ~J

)
.d ~A, (2.53b)

∮
∂V

~D. ~dA = −
∫
V

ρ ∂V, (2.53c)

∮
∂V

~B. ~dA = 0. (2.53d)

To solve these equations numerically, we must �rst de�ne a �nite calcula-

Figure 2.6: Illustration of meshing in CST - source: CST Studio Suite help [23].

tion domain to enclose the considered problem. A mesh is created which

divides the domain ino many small grid cells. The primary mesh can then

be visualised in CST using the mesh view. Internally, a second dual mesh is

created which is orthogonal to the �rst one. Then, the spatial discretisation

of Maxwell's equations is performed on these two orthogonal grid systems.

To illustrate the FIT technique, consider Fig.2.6. Maxwell's equations are

formulated for each of the cell facets separately. Now consider equation 2.53a.

For a mesh cell, Faraday's law allows the closed integral ~E. ~dS to be written

as the sum of four grid voltages (ei + ej − ek − el).The time derivative of the

magnetice �ux on the enclosed cell facet (bn) represents
s
d ~A. Then, we

have

(ei + ej − ek − el) = − ∂

∂t
bn. (2.54)

Repeating this for all the cell facets we obtain the matrix formulation of

equation 2.55, which can be expressed using operator notation (equation
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2.9. CST® overview and technique

2.56).


. . .

1 . 1 . −1 . −1

. . .


︸ ︷︷ ︸

C



ei

.

ej

.

ek

.

el


︸ ︷︷ ︸

e

= − ∂

∂t


.

bn

.


︸ ︷︷ ︸

b

(2.55)

Ce = − ∂

∂t
b (2.56)

Applying this scheme to Ampere's law on the dual grid requires de�ning a

corresponding dual discrete curl operator C̃. Similarly, discretising the re-

maining divergence equations results in the complete discrete set ofMaxwell's

Grid Equations (MGEs):

Ce = − d

dt
b, (2.57a)

C̃h =
d

dt
d + j, (2.57b)

S̃d = q, (2.57c)

Sb = 0. (2.57d)

In the FIT technique, the properties of the continuous gradient, curl and

divergence operators are maintained in grid space. In addition to orthogonal

hexahedral grids as described here, FIT can also be applied to more general

mesh types, such as topologically irregular and tetrahedral grids (Figure2.7).

Figure 2.7: CST tetrahedral mesh cell, showing the allocation of the electric voltages and

magnetic �uxes. Source: [23].

2.9.1 Solvers within CST

CST Studio Suite has a number of available solvers, however, only three of

which are available speci�cally within the Microwave Studio (MWS) envi-
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2.9. CST® overview and technique

ronment. These are:

1. Transient Solver

2. Frequency Domain Solver

3. Eigenmode Solver

The transient solver, also called the time domain solver in some newer ver-

sions of CST, allows the simulation of a structure's behaviour in a wide

frequency range in a single computation run. Therefore, it is an e�cient

solver for many problems, particularly for structures having large dimen-

sions relative to the wavelengths in question. It is only available to use with

the hexaedral mesh type and it is based on the discretised MGEs. Central

di�erences are substituted for the time derivatives:

en+1/2 = en−1/2 + ∆tM−1
ε

(
C̃M−1

µ bn + jns

)
, (2.58a)

bn+1 = bn −∆tCen+1/2. (2.58b)

Calculation variables are then given by electric voltages and magnetic �uxes.

Both types of unknowns are located alternately in time, and the leap-frog

updating scheme as shown in Fig.(2) is implemented.

Figure 2.8: Leapfrog scheme as implemented in the transient solver of CST. Scource: [23].

The frequency domain solver can be used with the hexahedral or tetrahedral

meshing schemes. It is also equipped with a special fast S-parameter calcu-

lation module for resonant, non-lossy structures, where �eld calculations are

not required. The solver is based again on MGEs, here in the time harmonic

case (∂/∂t→ iω).

(
∆× µ−1∆×

(
−ω2ε

))
E = −iωJ

⇒
(

(C̃Mµ−1C)− ω2Mε

)
e = −iωJ

(2.59)
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2.10. Experimental arrangement Overview

The eigenmode solver allows computation of the structures eigenmodes and

corresponding eigenvalues. It is based on the eigenvalue equation for non-

driven and loss-free time harmonic problems.

The work to be described in this thesis primarily concerned the use of both

the frequency domain solvers. The transient solver is advantageous for the

analysis of time varying problems and broadband signals. The frequency

domain solver is generally considered only for narrow band problems, as

each frequency sample requires a new simulation run. The frequency domain

solver is useful for strongly resonant structures (more than the transient

solver) due to the long settling times of the time domain signals. CST con-

tains several types of excitation sources, primarily waveguide ports and plane

wave sources. The type which we will primarily concern ourselves with is the

waveguide port. This kind of port simulates an in�nitely long waveguide

connected to the structure which the waveguid port is in contact with.

2.10 Experimental arrangement Overview

As the thesis title suggests, a number of experimental results are to be pre-

sented. There are a number of scanning systems in use within the depart-

ment for performing measurements at mm wavelengths, speci�cally at around

100 GHz, at a wavelength, λ = 3mm. When measurement techniques are

described, a useful distinction can be made between two general types of

measurements:

1. Total Power (Intensity) Measurements

2. Amplitude and Phase Measurements

1. Total power measurements are meaurements made with a detector where

only the intensity of the detected signal is measured i.e. the square of the

�eld amplitude rather than just the amplitude itself. This can be achieved by

simply measuring the detected voltage. Two examples of such detectors are

Schottky diodes and Golay cells. Both these detectors are used in alternate

setups in the scanning system shown in Fig.2.9, an XYZ scanning system used

within the department to perform measurements in mm-wave holography,

among other uses.
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2.10. Experimental arrangement Overview

Figure 2.9: Total power XYZ scanning system within the Experimental Physics Depart-

ment at NUI Maynooth.

2. Amplitude and phase measurements measure the amplitude of the �eld

itself rather than the square of the amplitude. These are known as vector

measurements, and an example of such a system is a Vector Network Anal-

yser (VNA). A VNA with an XYZ scanning system also exists within the

department, and it is useful for very accurate �eld scans of quasioptical com-

ponents, particularly those where the phase front of the �eld at the scanning

plane is of interest.

The technical speci�cations of the amplitude and phase scanning system will

now be discussed here. The test system is built around a Rhode and Schwarz

ZVA-24 Vector Network Analyser (VNA). The system is based around a Ro-

hde & Schwarz (R&S) ZVA-24 Vector Network Analyzer which has a base

unit frequency range of 10 MHz to 24 GHz. Two ZVA-Z110 converter heads

allow stepping up of the operating frequency to the W-Band (75-110 GHz)

[24]. The VNA Test Facility is capable of accurate near-�eld beam pattern

measurements for the frequency range 75 GHz to 110 GHz using a 2D planar

scanning system with high spatial resolution (order 20 µ m) [25]. The fre-

quency converter heads have WR-10 waveguide ports for direct interfacing

with standard W-band components. Each is capable of coherent measure-

ment of transmitted and received signals at its port, allowing full characteri-

sation of a two port device in terms of its scattering matrix. The full dynamic

range of measurements depends on the measurement point bandwidth that

is used and with careful calibration it is in the 70-90 dB range.
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2.11. Scattering Parameters

For normal beam pattern measurements one VNA converter unit operates

as a transmitter and feeds the Device Under Test (DUT), while the second

converter unit (used as a receiver) is mounted on the scanner positioned in

front of the DUT. A measurement probe (essentially a truncated WR-10

waveguide) is normally used on the scanning head for high spatial resolution.

The achievable dynamic range of the S21 measurement with respect to the

beam centre is up to 90 dB.

The transmitting VNA head is also placed on an accurate z translation stage

to allow di�erent measurement planes to be scanned after a single alignment

procedure.

Transmitting

V NA head Scanning receiver

Translation stage

Base V NA unit

Figure 2.10: Schematic diagram showing VNA test facility.

It is also necessary to precisely calibrate the VNA before a series of mea-

surements. Calibration is performed for each frequency in the 75-110 GHz

range in steps of 100 MHz. The calibration is performed using a Rhode &

Schwarz calibration kit. The calibration is a standard two-port Through O�-

set Short Match (TOSM) calibration. The calibration kit used is shown in

�gure 2.11.

2.11 Scattering Parameters

Further to our discussion of measurement techniques above, it will be in-

structive to describe in some detail the operation of scattering parameters or
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2.11. Scattering Parameters

Figure 2.11: Rhode & Schwarz calibration kit for calibration of VNA.

S-parameters in multiple port networks. These will become important later

as they will be the measured quantity in measurements performed with the

VNA, as well as being the quantity of interest in many CST simulations, and

simulations involving multiple re�ection systems. We will re�ne our discus-

sions to two port networks, as this will describe the underlying theory which

is extendable to networks of more than two ports, and also as two ports will

su�cient for our purposes.

S-parameters are di�erent from some traditional methods of network analy-

sis, such as H-parameters, Y-parameters and Z-parameters, which variously

relate total currents and total voltages at each port. S-parameters are in-

stead calculated in terms of waves which are transmitted or re�ected when

a network is inserted into a transmission line of characteristic impedance,

ZL. S-parameters are relevant in microwave design because they are easier

to measure at high frequencies than other two port network parameters. It

must be kept in mind that S-parameters represent the linear behaviour of

the two port network.

Consider a two port system as in Fig. 2.12. In a scattering matrix formu-

lation, we may consider the device under test, i.e. the system which stands

between our input and output ports, to be described by a simple 2 x 2 scat-

tering matrix. Then, we have the matrix equation 2.60[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
, (2.60)

where each of S11, S12, S21 and S22 is itself a scattering matrix. The s-

parameters themselves are ratios of incident and scattered wave parameters.

With reference to Fig.2.12, we may see that S11 is then the ratio b1/a1, where

a2 = 0. S11 is just the input re�ection coe�cient, or the fraction of the input
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2.12. Truncation by Quasioptical Elements

Figure 2.12: Illustration of S-Parameters in a twoport network.

signal which is received again at the output port. Similarly, S22 is the output

re�ection coe�cient, it is what is re�ected back at the output port from it-

self. S21 is the forward transmission coe�cient, as it is the ratio of the signal

which passes through the network from the input port (port 1) to the output

port (port 2). Similarly again, S12 is the reverse transmission coe�cient, as

it measures the ratio which is measured at port 1 which originated at port 2.

In all cases, one may remember which is the relevant S-parameter by the or-

der of the subscript. The �rst element is the port at which the measurement

is made, the second element is the port at which that signal originated. For

example, S21 is what is measured at port 2, having originated at port 1.

As previously mentioned, s-parameters will be used extensively throughout

this thesis, both in terms of where measurements are taken using the VNA,

where the port measurements are converted internally to the s-parameters,

and also where simulations are made using the correct scattering matrix for-

mulations to obtain output s-parameters. When we characterise the perfor-

mance of an optical cavity for example we will quote the S11 as the measure

of the returned power from the incident waveguide.

2.12 Truncation by Quasioptical Elements

We have previously described (equation 2.5) the electric �eld using a linear

sum of Gaussian modes in the form

E =
n∑
0

AnΨn, (2.61)

where Ψn is an independently propagating free-space mode of order n and An

is a mode coe�cient. In modelling quasioptical systems, we will often include

truncating quasioptical elements, i.e. elements which change the form of the

�eld due to their �nite size and real edges. These elements will only have
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2.12. Truncation by Quasioptical Elements

a �nite radius. If we consider the element to be axially symmetric in the

simplest case, then we can characterise the output electric �eld, Eo in terms

of the input �eld, Ei in the form

E0 = Ei(r), r ≤ a

E0 = 0, r ≥ a,
(2.62)

where a is the radius of the aperture or stop, and r is the distance o�-axis.

This is illustrated in �gure 2.13, illustrating that radiation striking the areas

outside the stop is e�ectively lost (truncated) from the system. The incident

and output �elds shall be described as

Ei =
n∑
0

AnΨn(r)

Eo =
m∑
0

BmΨm(r),

(2.63)

where Bm are the set of output mode coe�cents. In a similar way to how

the input mode coe�cients are calculated, the output coe�cients are given

by [26]

Bm =

a∫
0

Ψm(r)Eo(r)2πrdr. (2.64)

Within the aperture the output �eld is the same as the incident �eld so we

Incident beam

Lost radiation

Lost radiation Circular stop

Exiting Beam

Figure 2.13: Illustration of the truncation in a quasioptical system due to circularly sym-

metric stops. Source [27].

may write

Bm =

a∫
0

Ψm(r)Ei2πrdr

=
n∑
0

An

a∫
0

Ψ∗m(r)Ψn(r)2πrdr.

(2.65)
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2.12. Truncation by Quasioptical Elements

We de�ne

Smn =

a∫
0

Ψ∗m(r)Ψn(r)2πrdr, (2.66)

and call Smn a scattering matrix. This matrix relates the output coe�cients

to the input coe�cients through

Bm =
n∑
0

SmnAn. (2.67)

Thus, in our optical modelling including truncating stops, we must calculate

the initial mode coe�cients An as usual, and also calculate the scattering

matrix to �nd the output mode coe�cients Bm. If the truncating stop is not

axially symmetric, the computations become more complex, but we shall not

require consideration of such cases here.

We wish to describe here also the operation of a corrugated horn (horn de-

sign with inner corrugations to create a symmetric beam). This horn is often

represented by a HE11 (hybrid mode) which represents the shape of the

beam well. A truncated Bessel beam of order zero is a good representation

of the horn aperture shape. Truncated means the beam tapers to zero at

the apaerture edge. In our experimental measurements at 100 GHz we will

generally use a corrugated horn on the source antenna to produce a �eld that

is approximately 98% Gaussian (e.g. we will use this to illuminate optical

devices such as an axicon described in chapter 3). The feedhorn produces a

beam which is analytically described by a Bessel function which is truncated

by the width of the horn aperture, so that it is a very close approximation

to a Gaussian shaped �eld. We shall take this opportunity to show the �elds

produced by the horn calculated using GBMA (theory described above).

Figure 2.14(a) shows the linear beam produced at the mouth of the cor-

rugated horn with the appropriate overlap integral between a Laguerre-

Gaussian mode set abd an electric �eld with the shape of a truncated Bessel.

It does indeed have a Gaussian-like pro�le. As we have stated, it is described

by a Bessel function, but it is truncated at the horn aperture radius (7.14

mm). Figure 2.14(b) shows the far �eld amplitude of the corrugated horn.

Note the di�erence in the scales of both graphs. The beam has spread signif-

icantly when it has proagated to the far �eld, and we also note the presence

of small sidelobes outside of the main beam due to the truncation of the horn
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Figure 2.14: Ampltiude pro�les due to corrugated horn, at horn mouth and in horn far

�eld.
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Figure 2.15: Comparison of corrugated horn far �eld patterns using CST and GBMA.

Figure 2.15 shows the far �eld pattern of the corrugated horn, produced us-

ing CST, and also using GBMA, plotted as a function of angle o�-axis. The

pro�les agree extremely well in the main beam, and even outside of here there

is only slight disagreement in the sidelobe structure. The reason for this is

that the scalar approximation made in GBMA is only accurate to around

30◦ o�-axis.

We will now illustrate the e�ects of truncation using a simple optical arrange-
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2.12. Truncation by Quasioptical Elements

ment. We wish to illustrate the e�ects of truncation by a circular stop by

considering propagation of a �eld from a corrugated horn. Figure 2.16 shows

the setup. Radiation is propagated from a corrugated horn a distance z1 to a

circular stop of radius a. Any radiation outside this radius is truncated, and

only the radiation inside the aperture passes through to be recorded at an

output plane. The propagation continues a distance z2 where the amplitude

pro�le is plotted. We will perform this simulation both with the truncating

circular stop and without (i.e. propagation in free space) to compare the

beam shape.

corrugated horn

z1 z2

a

circular stop, radius a

Figure 2.16: Propagation from a corrugated horn, illustrating truncation by a circular

stop.

Figure 2.17(a) shows the output power upon propagation of z1= 80 mm

to a truncating stop of radius 25 mm and propagating another distance

z2= 20 mm. Note that the total beam radius is actually about 31 mm,

as the beam has propagated a distance in free space after the stop. Figure

2.17(b) shows a logarithmic pro�le due to the truncating stop compared with

no truncating stop, illustrating truncation by the circular stop outside its ra-

dius. The edge taper (see section 2.7.1, equation 2.41) due to this truncating

stop at a radius of 25 mm from the centre of the beam is -12.05 dB. On a

linear scale the ede taper is so low that it is not evident.
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stop (2.17(b)).
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Chapter 3

Axicon and Bessel Beam

Analysis

We now wish to discuss the analysis and use of quasioptical components

known as axicons to produce approximate Bessel Beams. Numerous other

phase manipulating elements have been investigated. These include Ronchi

phase gratings, Fresnel zone plates, and spiral phase plates [28, 29, 30].

Ronchi gratings are often used as beam splitters in interferometry. Fresnel

zone plates are di�ractive focusing lements composed of radially symmetric

rings, alternating between opaque and transparent due to their height. Light

di�racts around the opaque zones and constructively interferes at the desired

focus. A spiral phase plate has a thickness (in the direction of propagation)

which varies around the circumference of the plate. This causes a phase

change to an incident mode passing through the plate which introduces a

spiral element into its phase front. While these elements are all interesting,

the axicon is very interesting and also very simple geometrically, meaning

that these can be fabricated relatively quickly without the need for a very

sophisticated process.

3.1 Background Theory

An unfortunate property of millimetre-wave radiation is that it su�ers from

signi�cant di�raction upon propagation. This reduces the on-axis intensity of

a beam, as the beam propagates. So-called "Bessel-beams" are cylindrically-

symmetric solutions to the scalar wave equation which have the interesting

39



3.1. Background Theory

property of e�ectively not di�racting as they propagate. For such an ideal

beam, the on-axis intensity would remain constant with propagation without

any deviation in form. In real experimental situations, an in�nite lateral ex-

tent of the optical element would be required to produce such a beam. Clearly

then, this is an idealisation, however in reality "di�raction-limited" solutions

are possible, which have a Bessel-like feature. This was �rst suggested by

Durnin in 1987 [31].

The described solution to the wave equation described above is written

as

E(r, z, t) = J0(krr)exp(i(kzz − wt)), (3.1)

where J0 is the zero-order Bessel function of the �rst kind, and kr and kz

are the axial and radial wavenumbers respectively. It is much more di�cult

to produce "limited-di�raction" beams at submillimetre wavelengths than

at optical wavelengths. The reason for this is that at optical wavelengths,

optical components may be thousands of wavelengths in diameter due to the

relatively short wavelengths, and as such the problem of the �nite lateral

extent is not as problematic. Durnin et al [32] used a lens with an annular

aperture to produce a Bessel Beam. Methods using an axicon have been

shown to be more e�cient [27].

An axicon is a cyclindrically symmetric lens which has one conical surface.

It can be used to transform an incident Gaussian type beam into a Bessel

beam. This is of particular importance as most designed horn antennas have

a Gaussian type radiation pattern.

∆f

α
β

a

Figure 3.1: Schematic diagram showing axicon and its parameters.

Figure 3.1 shows the simple geometry of an axicon. The prism angle of

the axicon is α, and its radius is a. The angle of deviation of the axicon

is denoted by β. Due to its particular geometry, incoming radiation from

di�erent directions experiences refraction towards the propagation axis, and

here the beam e�ectively interferes or overlaps. This occurs over the shaded

region ∆f .
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3.2. GBMA application to Axicon

The region over which the output �eld is still useful and contains limited

di�raction is called the limited-di�raction depth of focus, ∆f , and is given

by the relation

∆f = a/tanβ, (3.2)

where sin(β + α) = nrsinα. The central peak of a Bessel beam may be ap-

proximated by a simple Gaussian beam of radius w. However, the depth of

focus of a Bessel beam is much larger than the usual confocal distance which

would apply for a simple Gaussian. The essential di�erence between the two

beams is that the Bessel beam contains low-level di�raction rings. This non-

di�ractive property of the output beam is potentially interesting as the beam

remains collimated much longer than normal radiation patterns. This could

be an interesting alternative to traditional optics at millimetre wavelengths

in the focusing of beams for particular applications (e.g. mirrors or lenses).

An axicon of �nite diameter can produce an on-axis peak with very little

di�raction over a range ∆f . Illuminating the axicon with plane wave illumi-

nation can cause signi�cant di�raction e�ects, however [33]. The beam needs

to be apodised, and using Gaussian illumination is a way of achieving this

in practice. The highly tapered beams produced by a metallic waveguide or

scalar horn in fact have the form of the lowest order Bessel function |J0(krr)|2

[14] and are therefore compatible for the illumination of such di�ractive ele-

ments. The �elds produced by a corrugated horn and the far �eld of such a

horn are described in section 2.12. Below we shall discuss an optical analysis

of such devices and compare predictions from simulations to experimentally

measured output beams measured at 100 GHz.

3.2 GBMA application to Axicon

Gaussian BeamMode Analysis (GBMA) can be used to e�ciently analyse the

di�raction e�ects associated with the beam. Due to the cylindrical symmetry

involved, the Laguerre- Gaussian modes are the most appropriate to use here.

Higher order Laguerre- Gaussian modes have amplitude pro�les similar to

those of Bessel beams, and also remain collimated over longer distances than

the confocal distance indicated for a simple Gaussian. We require a number

of high order LG modes which accurately describe the behaviour of Bessel

beams produced with axicon elements. The use of the correct mode set when

analysing such beams is of critical importance. For high order LG modes,
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3.2. GBMA application to Axicon

the central peak contains only a small fraction of the total power, and one

must consider the e�ective radius, as well as the di�raction rings produced

with an axicon. Figure 3.2 shows such a Bessel form, with its narrow central

peak and multiple di�raction rings extending o�-axis.

GBMA is an e�cient way to model these beams, as considerable insight can

be found into the performance of axicons of �nite diameter. The axicon will

be considered to be a thin phase-transforming screen of �nite diameter. A

suitable phase term to be added to account for the phase transformation

contribution of this thin lens is described below.

Figure 3.2: 3D plot showing the form of Bessel function, with narrow central peak and

di�raction rings. The amplitude is normalised, and the x- and y- coordinates are given in

mm o�-axis.

Using the Fresnel di�raction approach, and assuming that the axicon intro-

duces a conical phase transformation of the form δ(r) ∝ r, the amplitude

E(X, Y, Z) at a point (X, Y, Z) on a plane z = Z is given by the Fresnel

di�raction integral

E(X, Y, Z) ∝
2π∫
0

a∫
0

exp(−jk0ρ)

ρ
rdrdφ, (3.3)

where ρ =
√

(X − rcosφ)2 + (Y − rsinφ)2 + Z2 and (r, φ) are the polar co-

ordinates on the axicon plane. The conical shape of the axicon introduces a

variation in the optical path length across the incident beam with a linear

variation from the centre. The cone thickness at a radius r is given by

t(r) = (a − r)tanα, giving the phase transformation at that distance from

the centre as

δ(r) = δ0 + k0(nr − 1)(a− r)tanα, (3.4)
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3.2. GBMA application to Axicon

where δ0 is the phase slipage through the centre of the axicon and nr is the

refractive index of the material. High Density Polyethylene (HDPE) is a

suitable material for submillimetre axicons, having nr = 1.52. To achieve

su�cient detail about the evolution of this beam would require evaluation of

this di�raction integral for a large number of points and this is computation-

ally intensive, as well as becoming unstable as z → 0. The modal approach

does not have such shortcomings and is relatively unintensive computation-

ally when compared to the Fresnel di�raction integral method.

We require only the symmetric Laguerre-Gaussian modes of degree zero and,

using the mode set described in chapter 2 (equation 2.37), we have the beam

mode Ψn(r, z) described as

Ψn(r, z) =
1

w(z)

√
2

π
Ln

(
2r2

w(z)2

)
exp(− r2

w(z)2
)exp

(
−jk

(
r2

2R(z)

))
×exp(−jkz)exp(j(2n+ 1))∆φ00(z),

(3.5)

where the terms are as described in detail in chapter 2. The mode coe�cients

are calculated, if the �eld scalar E is known, using the overlap integral

An =
x

Ψn∗(r, z0, w(z0), R(z0))E(r, z0)rdrdφ. (3.6)

Ideally, we require a single high-order Laguerre-Gaussian mode Ψn(r, z, w,R)

that is a reasonable approximation to the axicon beam. When an axicon is

placed in a proagating beam, the output beam is related to the input beam

through Eout(r, φ) = Ein(r, φ)exp(jδ(r)), with δ(r) as described above. In

this approach the axicon is treated as a thin lens, and di�raction e�ects within

the thickness of the axicon are ignored. The mode coe�cients including the

phase contribution due to the axicon are then calculated using

An =

r=a∫
0

φ=2π∫
0

Ψ∗n{Ein(r, φ)exp(j(krr − δ
′

0)}rdrdφ, (3.7)

where kr = (nr − 1)tanα and δ0 = k0(nr − 1)atanα. We can �rstly assume

that the input �eld is a simple Gaussian as corrugated horns produce Gaus-

sian beams with ≈ 98% e�ciency. The �eld at a plane beyond the axicon

can be calculated once the mode coe�cients are known, using the standard

summation
∑
AmΨm(r, z, w(z), R(z)). The beam e�ectively di�racts as the

relative phase shifts accumulate between di�erent modes, where we have also

described the extra phase transformation in�icted by the axicon element.
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3.2. GBMA application to Axicon

We shall now follow a similar approach to that taken in [27] in choosing a

suitable value of w0, the beam width parameter, which will produce a mode

set which most e�ciently describes a propagating Bessel beam. The choice

of the best mode set ensures that the axicon is described most accurately and

e�ciently with the minimum amount of computation required. We begin by

computing the normalised power contained in each mode, for various values

of w0 (note: w0 in mm). We are considering an axicon with a prism angle,

α = 20◦, radius, a, of 30 mm and refractive index, n, of 1.52. Figure 3.3

shows the result of calculating the power contained in each of the �rst 20

modes, for various values of w0.
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Figure 3.3: Power content of each of �rst 20 modes for di�erent values of w0.

We have stated that we wish the Bessel beam modal decomposition to be

composed of a small number of Laguerre-Gaussian modes to achieve the

most natural decomposition and ensure e�cient computation. From �gure

3.3 then, we see that the case where w0=12 mm is most likely our best choice.

This has a small number of modes from around n = 2 to n = 5 which clearly

give a reasonable representation of the beam by themselves. Figure 3.4 shows

how close to the total �eld we get by using just the modes from n = 2 − 5

in the modal summation. In this case we come very close to approximating

the equivalent Bessel �eld.

It could also be argued that w0=9 mm is �t for our purpose, as it contains a

few neighbouring modes with high power content. However, a larger number

of modes would be required to accurately reresent the beam in this case. For
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3.2. GBMA application to Axicon
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Figure 3.4: Comparison of modal summation of modes 2− 5 with equivalent total Bessel

�eld.

Table 3.1: Higher order mode coe�cients of a Bessel beam for w0=12 mm and α = 20◦.

Mode number Abs. value Power Content in each mode

|Am| |Am|2

0 0.0764 0.0058
1 0.1470 0.0216
2 0.2956 0.0874
3 0.5905 0.3487
4 0.4839 0.2341
5 0.3879 0.1505
6 0.2063 0.0426
7 0.1716 0.0294
8 0.0883 0.0078
9 0.1188 0.0141
10 0.1010 0.0101
11 0.0572 0.0033
12 0.0714 0.0051
13 0.0539 0.0029
14 0.0281 0.0008
15 0.0539 0.0029
16 0.0552 0.0031
17 0.0312 0.0010
18 0.0291 0.0008
19 0.0416 0.0017

example, taking the case where w0=12 mm, then the modes of order 2,3,4 &

5 together account for around 83% of the total power in the beam, whereas

the same 4 modes in the w0=9 mm case give us around 75% of the total

beam power. Table 3.1 shows the coe�cents and power content of each of

the �rst 20 modes for w0=12 mm. The most e�cient mode set for describing

the beam should also have a confocal distance approximately equal to the
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3.2. GBMA application to Axicon

limited di�raction depth of focus calculated for the Bessel beam, i.e.

πw2
0

λ
≈ a

tanβ

or w0 ≈

√
λa

πtanβ
.

(3.8)

For the case in question, this gives us w0 ≈ 11.97 mm, i.e. in using a mode

set where w0=12 mm, we should obtain the most e�cient Bessel beam.
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Figure 3.5: 1D cut through the Bessel output �eld created by summing the �rst 20 modes

for three interesting values of w0.

Figure 3.5 shows the �eld produced using the standard modal summations

for three separate values of w0; the two previously discussed (9 mm, 12 mm)

and also 15 mm, as it also showed signi�cant power in its modes in �gure 3.3.

We see that the beam shape for our chosen case of w0=12 mm has a slightly

wider beam than that for w0=9 mm. For w0=12 mm, mode numbers 3, 4, 5

contain signi�cant power. These modes are most physically similar to the

Bessel beam. However, we also have a more Bessel-like pro�le, as desired,

and the beam is narrower than that for w0=15 mm.

We now wish to show plots of the axicon amplitude and phase for some

representative propagation distances, to illustrate how collimated it remains

compared to a normal horn antenna radiation pattern (using a Gaussian

beam approximation). An application of equation 3.2, along with the re-

lation sin(β + α) = nrsinα, allows calculation of a value for the depth of

focus for this axicon of ≈ 150 mm. Firstly, we will examine the variation of
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3.2. GBMA application to Axicon

on-axis intensity of the formed beam as a function of propagation distance,

z, after having been phase-transformed by the axicon described above where

a=30 mm, nr = 1.52 (HDPE), and we examine radiation at a frequency of

100 GHz. Figure 3.6 shows this simulated variation over a propagation dis-

tance of 350 mm. To calculate this graph the modes and mode coe�cients

are summed at each z value and the on-axis intensity is recorded at each out-

put distance from the axicon. The total power in the beam is normalised to

unity, therefore the on-axis values quoted here are much less than unity. We

notice that the beam reaches its maximum on axis value at a propagation dis-

tance of around 100 mm, and it contains signi�cant power in the region from

aproximately 75-125 mm. We had previously calculated the depth of focus of

this axicon to be about 150 mm. The depth of focus is the region over which

the �eld contains limited di�raction, and from the �gure we can see that by

the 150 mm point the power decreases signi�cantly. Indeed, by 150 mm, it

has decreased signi�cantly, and therefore 150 mm can be reasonably thought

of as the edge of the depth of focus.
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Figure 3.6: Variation of on-axis intensity of beam as a function of propagation distance

(0− 350mm) after transformation by the axicon

With reference to �gure 3.6 then, we may sensibly choose representative

distances at which to plot the �eld and phase pro�les of the beam. We

choose 0 mm, where the beam has had the phase transformation due to

the axicon, but has not propagated any distance, 75 mm, where the beam

should be taking a Bessel characteristic shape, 100 mm, where the beam

should contain aproximately its maximum power, and 200 mm, where the
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3.2. GBMA application to Axicon

beam should have dissipated, have a more spread out pro�le and contain

little power on-axis, as it is beyond the expected collimation distance of the

described axicon.

-100 -50 0 50 100
0

1

2

3

Off-axis Distance /mm

N
or

m
al

is
ed

Po
w

er
(×

1
0
−

4
) On-axis intensity for beam at axicon

(a) Intensity pro�le of beam at axicon.
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(b) Intensity pro�le of beam after

propagating 75 mm from axicon.
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(c) Intensity pro�le of beam after

propagating 100 mm from axicon.
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propagating 200 mm from axicon.

Figure 3.7: Intensity pro�les of beam after varying propagation distances for an axicon of

radius 30 mm and prism angle 20◦.

Figures 3.7 and 3.8 show the intensity and phase pro�les, respectively, for

each of these cases. We see that, before the beam has propagated, the inten-

sity pro�le is very broad, and in fact resembles a top-hat pro�le of a circular

aperture. The beam has e�ectively been truncated by a circular aperture

with the same radius as the axicon (30 mm), and so it is not surprising to

observe this form of pro�le. Here we assume that the axicon is illuminated

with a large incident Gaussian beam, fully �lling its aperture. We also notice

that the phase pro�le rapidly oscillates from −π to π, showing the presence

of the phase transformation introduced by the axicon, at the locations of

the nulls in the intensity. We observe that when the beam has reached a

distance of 75 mm, the beam has become very focused, and contains some

low order di�raction rings. Also, the corresponding phase pro�le has be-
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(a) Phase pro�le of beam at axicon.
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(b) Phase pro�le of beam after prop-

agating 75 mm from axicon.
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(c) Phase pro�le of beam after prop-

agating 100 mm from axicon.
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propagating 200 mm from axicon.

Figure 3.8: Phase pro�les of beam after varying propagation distances for an axicon of

radius 30 mm and prism angle 20◦.

come more spread out, with the 2π discontinuities becoming less frequent.

Upon propagation to a distance of 100 mm, the intensity pro�le is similar to

that for 75 mm, with a higher level of power contained in the main beam.

After propagating a distance of 200 mm, the power in the main beam has

decreased signi�cantly, as expected, and a relatively higher amount of power

has spread into the di�raction rings. The interesting aspect here is that over

a large distance of 150 mm we can have a collimated beam. Figure 3.9 illus-

trates this by comparing the intensity and phase pro�les for a beam which

has been transformed by an axicon and propagated 75 mm, and an equivalent

Gaussian modal summation beam having propagated the same distance in

free space. We notice that the non-axicon beam is much wider, and has its

power spread out over a much wider area, and therefore is extremely small

in height when plotted along with the equivalent beam transformed by the

axicon. Also, in the phase pro�les we notice the di�erence particularly in the

main beam, where for the axicon beam the main beam is sharply de�ned, for
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(a) Intensity pro�le of beam after propagation

of 75 mm.
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(b) Phase pro�le of beam after propagation of

75 mm.

Figure 3.9: Intensity and phase pro�les for axicon beam and equivalent Gaussian beam

summation after propagation of 75 mm.

the Gaussian beam this is not the case.

Figure 3.10 shows the on-axis intensity pro�les for propagation over a range

of 350 mm for a variety of axicon prism pro�le angles (10◦ − 50◦). We have

already examined the 20◦ case (�gure 3.6). We notice a signi�cant di�erence

in the on-axis intensity pro�le for the axicon with prism angle 10◦ (�gure

3.10(a)) and that with angle 20◦ (�gure 3.6). In the 10◦ case, there is a

much lower overall power than in the 20◦ case, and it reaches it maximum

intensity after a longer propagation distance. However, it does contain a

larger overlap region, - the region over which it produces a limited di�raction

beam- although its maximum intensity is lower than that for the 20◦ axicon.

As was discussed previously when it was shown in �gure 3.6, the 20◦ axicon
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(a) On-axis Intensity for axicon with

prism angle 10◦.
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(b) On-axis Intensity for axicon with

prism angle 30◦.
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(c) On-axis Intensity for axicon with

prism angle 40◦.
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Figure 3.10: On-axis Intensity pro�les of beam after propagation from 0 to 350mm for an

axicon of radius 30mm and prism angle varying from 10◦ to 50◦.

creates a beam with a relatively high on-axis intensity in its overlap region,

and this occurs over a relatively short overlap region. This is due to the

ro�le of the parent axicon and illustrates that di�erent axicon designs could

be used for di�erent potential applications. For a prism angle of 30◦, the

maximum intensity value is higher than for the 20◦ case, and the overlap

region occurs after a shorter propagation distance. For a prism angle of

40◦, a similar situation occurs as for 30◦, although the overlap rehion occurs

and has completely ended after a propagation distance of less than 100 mm.

Finally, for an axicon with prism angle of 50◦, the on-axis intensity decreases

signi�cantly, in accordance with equation 3.2.

Of the axicons shown in �gure 3.10 then, the 10◦ axicon would be of the most

use if wishing to increase the on-axis intensity of a beam propagating around

150-200 mm. If a higher intensity beam is required over a much shorter

distance, 40◦ or even 30◦ axicxon may be of use, whereas a middle ground is

achieved with an axicon having a prism angle of 20◦, where a relatively high

power is achieved over an intermediate distance. In summary then, there is
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3.3. Analysis of Existing Axicon

a trade o� when designing an axicon. If limited di�raction is required over

a relatively large distance, the trade o� will be diminished intensity in the

main beam. Higher intensity levels may be achieved, but these will be over

a shorter distance. The particular problem in question will generally dictate

which parameter is of most importance, when used in a particular optical

arragement.

3.3 Analysis of Existing Axicon

We now wish to proceed by analysing an existing axicon within the depart-

ment which had been made for past measurements. We will perform GBM

simulations as we have previously done for a 20◦ axicon. Experimental mea-

surements will also be performed, using the departmental VNA facility, which

allows phase and amplitude measurements.

The existing axicon has a radius, a, of 30 mm, refractive index, n, of 1.52,

i.e. it is made from High-density polyethylene (HDPE). The only di�erence

between this axicon and the one previously analysed in section 3.2 is that

the axicon we analysed in section 3.2 had a prism angle of 20◦, whereas this

axicon has a prism angle of 10◦. Clearly, the e�ects that these two axicons

would have on an incoming beam would be signi�cantly di�erent. We shall

now perform GBM analysis on the 10◦ axicon (�gure 3.11).

Figure 3.11: 10◦ axicon.

In section 3.2, we determined the best choice of beam width parameter

for producing a Bessel-like beam with an axicon, using a small number of

Laguerre-Gaussian modes. In an experimental setup, however, we will be
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3.3. Analysis of Existing Axicon

using the VNA and probe scanner system. The input signal from the VNA

head will be launched in free space to the axicon from a corrugated cyclin-

drical feedhorn. The analytical expression to describe the width of a beam

from a corrugated horn is given by [14]:

w = 0.644a, (3.9)

where a is the radius of the horn aperture. For a corrugated cyclindrical

horn having an aperture radius of 7.14 mm, then, the input beam width

parameter will be 4.60 mm. We shall then use the form of the corrugated

horn �eld in our simulations. This approach is e�ectively the same as the

approach in section 3.2, except that the input beam modes are transformed

by the appropriate Bessel form for the corrugated horn (|J0(krr)|2).

We now wish to describe the measurement process using the VNA/scanner

system for the axicon. Figure 3.13 shows the measurement setup. Head 1 of

the VNA acts as the detector. It has an X-Y scanning axis and is �xed in

the Z-plane. Head 2 in this case acts as the source. It is often �xed during

a scan but it may be mounted on a translation stage which allows motion

during a scan in one plane, and in this way it is possible to perform an X-Y-Z

scan (�gure 2.10). The scan is performed over the selected X- and Y- planes.

Then, the translation stage moves and the X-Y scan is performed again, this

time with a new output position. We shall wish to perform a series of X-Y

�eld scans at various z-values, i.e. various propagation distances after the

axicon. We have designed a mounting bracket which attaches to a special

axicon holder containing the axicon (�gure 3.12). The bracket attaches to

the movable translation stage. In this way, the axicon can be kept a �xed

distance from the source, but the distance after the axicon to the detector

probe can be varied, to characterise the output beam of the axicon. The lens

holder is metallic but is shielded with microwave absorbing material to avoid

unwanted standing wave re�ections due to this additional metallic surface.

A corrugated conical horn is used on the source head, and a scanning probe

is used on the detector head. The distance from the corrugated horn opening

to the axicon is denoted as z2, and the distance from the point of the axicon

to the scanning probe tip is denoted z1.

A series of measurements were performed on the 10◦ axicon. All measure-

ments were carried out in the w-band (75− 110 GHz). The axicon was held

in the specially designed lens holder which moves in the z-direction as the
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Figure 3.12: Axicon mounting bracket.
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x z
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Figure 3.13: Schematic of axicon measurement setup showing axicon holder

source head moves, so that the distance between the source and axicon re-

mains constant as the distance between axicon and detector is varied. With

reference to �gure 3.13, the distance from the horn to the axicon (z2) is set as

16 mm, and the distance from the axicon tip to the detector (z1) is 23 mm.

These values were mainly chosen due to the constraints of the system, and

the desire to have at least a small propagation distance (z1), even for the

initial scan. The scan was performed for 5 unique z-values; the initial setup,

and also for increased z-distances in steps of 30 mm up to 150 mm. Note

that, including the original z1 value, the second scan will represent a z1 value

not of 30 mm but of 30 + 23= 53 mm. Scans were also performed for each of

these distances without the axicon in place for comparison, i.e. the �eld pro-

duced by the horn alone without the axicon is observed. Figure 3.14 shows

the result of the �rst of these scans, that where z1=23 mm and z2=16 mm.

All results have been normalised for the purposes of comparison. We �nd

that we achieve quite good agreement between the measured pro�le for the

axicon �eld and the simulated shape. The two �elds do vary slightly outside
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3.3. Analysis of Existing Axicon

of the main beam. The di�erence between the axicon �eld and the �eld due

to the horn is signi�cant, illustrating the extremely collimated axcion pro�le

within the overlap region of the axicon.
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Figure 3.14: Comparison of �eld amplitudes in one dimensional cut for axicon (measured

and simulated) and corrugated horn alone, for initial propagation distance of 23 mm after

the axicon, performed at 100 GHz.

Figure 3.16 shows the equivalent results for di�erent propagation distances

after the axicon (at 100 GHz). Note that in each case, the total distance

travelled by the beam is 16 mm from the horn to the axicon, then it must

travel through the axicon, which has a depth of 13 mm, and subsequently the

stated propagation distance. Therefore, for the measurements with a corru-

gated horn alone, the beam has travelled 29 mm in free space plus the stated

propagation distance. We �nd that the measured and simulated �eld pro�les

for the axicon generally agree relatively well, particularly in the main beam.

There is generally slight disagreement between the two when we examine

slightly outside the main beam. We also notice that the measured axicon

beam is slightly asymmetric and tends to show slightly better agreement in

the positive x-direction. The fact that there is an asymmetry may suggest

non-perfect alignment of the measurement arrangement. We also �nd that

the corrugated horn pro�le is much wider than the pro�les produced by the

axicon, as expected, illustrating its collimating e�ect. Figure 3.15 shows the

phase pro�les for both the measured axicon and corrugated horn, for the ini-

tial propagation distance of 23 mm after the axicon. We have only included

these two, as it is so di�cult to see the pro�les in the plot with three plots
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3.4. Design and Manufacture of Axicon for particular Application

together. We see that the phase pro�les do not agree. This shows that the

axicon does indeed introduce a phase transformation. We notice this partic-

ularly on-axis and within a short distance o�-axis, where the two beams are

signi�cantly out of phase. This should not be surprising; the axicon has a ra-

dius of 30 mm, and within this distance the beam is signi�cantly transformed

due to the axicon.
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Figure 3.15: Comparison of phase pro�les in one dimensional cut for axicon (measured)

and corrugated horn alone, for initial propagation distance of 23 mm after the axicon.

3.4 Design and Manufacture of Axicon for par-

ticular Application

We shall now discuss the design and manufacture of an axicon for a particu-

lar application, and the considerations that need to be made, as well as the

parameters that may be varied. An axicon could be designed for a number

of potential applications where a focused beam is required and di�raction is

highly undesirable. This could have potential applications in projects involv-

ing space telescopes, for example. The Experimental Physics department has

involvement in many such projects, including the proposed SAFARI project,

which will be discussed in much more detail in chapter 6. Although axicons

are not planned to be used in that project, they may have potential future

applications in other projects not yet envisaged.
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(a) Propagation distance of 53 mm after

axicon.
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(b) Propagation distance of 83 mm after

axicon.
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(c) Propagation distance of 113 mm after

axicon.
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(d) Propagation distance of 143 mm after

axicon.

Figure 3.16: Comparison of �eld amplitudes for axicon (measured and simulated) and

corrugated horn alone, for initial propagation distances of 53 mm, 83 mm, 113 mm and

143 mm after the axicon.

We have previously examined di�erent axicon geometries (altering the prism

angle), and noted the e�ect that this parameter has on the on-axis intensity

of the resultant beam over a large propagation distance. This is a useful

exercise in designing an axicon for particular applications. For example, one

may require an axicon which produces a beam that peaks in intensity very

rapidly but falls o� very rapidly, if collimation is only required over a short

distance. Alternatively, an axicon which produces a relatively steady but

lower intensity �eld output over a longer distance may be necessary if the

free space collimation distance is relatively large, and it is required that a

beam does not spread out over this distance. We have already peformed mea-

surements on an axicon having prism angle 10◦, and also radius a=30 mm,

and index of refraction n = 1.52 (HDPE). We wish to design and produce

another axicon, and perform simulations and measurements on it also. With

reference to �gures 3.6 and 3.10, we see that an axicon having prism angle of

either 20◦ or 30◦ produces a beam that peaks in intensity at around 100 mm

of propagation after passing through the axicon. This would be interesting
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3.4. Design and Manufacture of Axicon for particular Application

for direct comparison with the 10◦ axicon. We shall again use an axicon of

radius 30 mm and a refractive index of 1.52, so that we are only varying one

parameter. Also, a radius of 30 mm should certainly be su�cient for our

purposes, as it will always be placed very close to a corrugated horn having

a radius of 7.14 mm, and therefore the beam is much smaller than the axicon.

An axicon having the following parameters was produced within the depart-

mental workshop: a=30 mm, α = 20◦, n = 1.52. A measurement campaign

Figure 3.17: 20◦ axicon.

was performed for this axicon, in a similar manner to those described in

3.3. In this case, the measurement is set up in much the same way as the

previous measurements for the 10◦ axicon. The distance from the input cor-

rugated horn to the axicon is 16 mm, and the distance from the axicon to the

waveguide probe detector is initially 52 mm. The z distance is then varied

in steps of 30 mm, up to an axicon-probe distance of 142 mm. Figure 3.18

shows the results of one of these measurement scans, the initial separation

of 52 mm from axicon-detector probe. We observe from the results similar

levels of agreement as those found for the 10◦ axicon and shown in 3.14 and

�gure 3.16. We do still observe a similar asymmetry in the measured axicon

amplitude pro�le. We also notice that the horn amplitude pro�le is again

much wider than those for the axicon.

Figure 3.19 shows the results of the other three measurement scans involving

the 20◦ axicon.

Figure 3.20 shows a comparison for the 10◦ and 20◦ axicons where propa-

gation has occured over a distance of the initial setup plus 60 mm, i.e. the

beam for both axicons has propagated over the same distance as in 3.19(b).
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Figure 3.18: Comparison of amplitude pro�les in one dimensional cut for axicon (measured

& simulated) and corrugated horn alone, for initial propagation distance of 52 mm after

the axicon.
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(a) Propagation distance of 82 mm after

axicon.
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(b) Propagation distance of 112 mm after

axicon.
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(c) Propagation distance of 142 mm after

axicon.

Figure 3.19: Comparison of �eld amplitudes for axicon (measured and simulated) and

corrugated horn alone, for initial propagation distances of 82 mm, 112 mm, and 142 mm

after the axicon.
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Figure 3.20: Comparison of amplitude pro�les in one dimensional cut for both axicons

after a propagation distance of 60 mm after the axicon.

We have shown measurement results performed at 100 GHz, as our axicon

has been designed for use at 100 GHz. As an exercise, we wish to show

results from other frequencies. The VNA van perform measurements in the

band from 75-110 GHz, and so we will show a result from 75 GHz and 110

GHz and plot alongside our 100 GHz result from above. The example we will

choose is the �eld due the 20◦ axicon at a propagation distance of 52 mm

after the axicon, i.e. the same distance as in �gure 3.18.

Figure 3.21 shows these 3 pro�les plotted together. We have not normalised

the beams as had been done previously, so that the comparison is clearer.

We �nd that the pro�le with the highest power on-axis is at 100 GHz. This

is to be expected, as the axicon was designed with the intention of it being

used mainly at 100 GHz. This is also the narrowest beam, although it is very

close to the pro�le at 110 GHz in shape and in on-axis power content, with

the 75 GHz pro�le containing less power on-axis as well as being mre spread

out. Neither is it surprising that there are closer resemblances between the

two pro�les at 100 GHz and 110 GHz than at 75 GHz and 100 GHz, as they

are much closer in frequency to one another.
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Figure 3.21: Comparison of amplitude pro�les in one dimensional cut for 20◦ axicon after

a propagation distance of 52 mm after the axicon, at frequencies of 75 GHz, 100 GHz and

110 GHz.

3.5 Gaussian Beam Coupling

An important quantity to consider when dealing with the propagation of

millimetre-wave radiation, especially in a measurement system is the cou-

pling e�ciency, i.e. for perfect coupling, this would have a value of 1. This

describes how well the radiation propagating from a source couples to re-

ceiver, and it is expressed as a fraction. It is obtained by multiplying the

input �eld by the �eld which would be present at the detector, and dividing

by an appropriate normalisation factor [14]. For example, assume we have a

�eld produced by an axicon and propagated a certain distance, and this �eld

is described by Eaxi, and we wish to measure this �eld at a corrugated horn

attached to a detector, and the �eld produced by the horn is Ehorn. Then,

the coupling e�ciency, c, is given by

c =
Eaxi · E∗horn√

Abs(Eaxi)2 ·
√
Abs(Ehorn)2

, (3.10)

where the product is performed over every individual value of the two �elds.

As an example, for a beam which has propagated 50 mm from an 10◦ axicon,

we obtain a coupling fraction of only 0.29, or 29%, to a corrugated horn. This

is clearly very low, and we would like to improve this. This is compared with

a horn to horn propagation of the same distance without an axicon present,
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3.5. Gaussian Beam Coupling

where we obtain a coupling of 0.56, or 56%. The axicon introduces a very

speci�c phase pro�le to the beam, with many zero crossings associated with

the annular rings, and it is likely this fact which causes the beam to be unable

to couple well back to a corrugated horn. Naively, one might expect to be

able to undo this e�ect to an extent, by introducing a phase directly opposite

to that due to the axicon. This can be simply done in the GBMA, by simply

adding a negative sign in the phase. It is not clear however how this may be

done in an experimental arrangement. An identical axicon simply facing in

the opposite direction may be too much of a simpli�cation. In any case, we

attempt this using GBMA.

In an ideal model with no propagation between source and detector we can

manipulate the phase front analytically to simulate its e�ect on coupling.

When we model an axicon using GBMA, we insert the appropriate phase term

describing the axicon (equation 3.4). By simply applying this phase term,

and not propagating the beam any distance, the beam (which originates at

the horn) now has a coupling e�ciency of only 88%. Remember that the

beam has not propagated any distance and so should couple to itself with

100% e�ciency, but due to this phase term being introduced, it no longer

couples as well to a corrugated horn. As the beam would propagate, it

diverges to some extent, and couple even less e�ciently, as we saw in our

example above (29% coupling), as is always the case with the propagation

of millimetre-wave radiation. The interesting point to note here, howerver,

is that this reduction in coupling e�ciency is due to the axicon alone. If

we now introduce the opposite phase term to our beam at the corrugated

horn which has not propagated but has been transformed by the �rst axicon,

we �nd that it now has a coupling e�ciency of 99.8%. We see that what

is required then is a phase term opposite to the axicon to reverse the phase

transformation and achieve higher coupling back to a horn.

Again, it is not clear whether the opposing phase term in reality corresponds

to an axicon turned 180◦ around, or if it involves a more complicated pro�le.

We were not able to further investigate this due to time constraints.
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Chapter 4

Kinetic Inductance Detectors

4.1 Introduction

We shall introduce here a class of superconducting detector known as Kinetic

Inductance Detectors (KIDs). These devices operate at cryogenic tempera-

tures, typically below 1K. They are being developed for high-sensitivity as-

tronomical detection for frequencies ranging from the far-infrared to X-rays.

At NUI Maynooth we are interested in the optical e�cency of these detectors

and seeking techniques to analyse their optical quality in terms of absorb-

ing incident radiation. In KID devices an absorber (usually a cryogenically

cooled, thin metallic superconducting layer) is coupled to the device.

At Maynooth then the challenge of modelling these devices optically was ini-

tially investigated. Illumination of these devices can be considered as plane

wave illumination as a �rst order approximation. Then, once a structure

is illuminated with plane wave illumination at a certain frequency we can

analyse what fraction of this radiation is absorbed (e�ectively detected) and

therefore characterise its optical behaviour. As a �rst attempt to model KID

devices the commercial package CST (section 2.9) would be used.

The challenge presented then is how to launch plane wave radiation in CST

and have the ability to measure the fraction of the incident power that is

absorbed. Within the research group a waveguide port was normally applied

to analyse waveguide structures. The KID device is not a waveguide and so
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the standard techniques could not be used.

The author has investigated the possibility of using plane wave illumina-

tion within the CST environment and used the classical optics example of

di�raction at a circular aperture to verify the illumination technique in CST.

Various techniques may be used in CST to produce plane wave illumination,

including standard plane wave source, empty waveguide port using 2 modes,

and these will be described in section 4.4.

Unfortunately the full analysis of the optical characterisation was not carried

out but the analysis presented here is the initial validation of CST and the

use of plane wave sources.

4.2 Background/History

A KID consists of a high-quality superconducting resonant circuit electro-

magnetically coupled to a transmission line. The conduction electrons in a

superconductor are condensed into charge-carrying Cooper pairs, when the

temperature, T, is much less than the critical temperature, TC . Photons in-

cident on a strip of superconducting material break Cooper pairs and create

excess quasiparticles. The kinetic inductance of the superconducting strip is

inversely proportional to the density of Cooper pairs, and thus the kinetic

inductance increases upon photon absorption. This inductance is combined

with a capacitor to form a microwave resonator whose resonant frequency

changes with the absorption of photons.

The KID was �rst described in [34], which will be described below.

4.2.1 Initial Proposal by Day et al

The detector concept is based on microwave measurement of the complex

impedance of a thin superconducting �lm. The results presented include

single X-ray photon detection with a high signal-to-noise ratio, and mea-

surement of the detector noise. A superconductor has zero resistance to d.c.

electrical current. This supercurrent is carried by pairs of electrons (Cooper

pairs). The Cooper pairs are bound together by the electron-phonon in-

teraction with binding energy 2 ∆ ≈ 3.5kBTC , where TC is the supercon-
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4.3. KID device analysis

ducting transition temperature. However, superconductors have a non-zero

impedance for a.c. currents. An electric �eld applied near the surface of the

superconductor causes the Cooper pairs to accelerate, allowing the storage of

energy as kinetic energy. This energy may be extracted by reversing the elec-

tric �eld, as the supercurrent is non-dissipative. Energy may also be stored

in the magnetic �eld inside the superconductor, which penetrates only over

a short distance, λ ≈ 50nm, from the surface. Overall, the e�ect is such that

the superconductor has a surface inductance LS = µ0, due to the reactive

energy �ow between the superconductor and the electromagnetic �eld. The

total surface impedance is given by ZS = RS + iωLS. RS is the surface

resistance, which describes a.c. losses at angular frequency ω caused by the

small amount of electrons that are not in Cooper pairs, called quasiparticles.

For temperatures much lower than TC , RS � ωLS , and it is the inductive

factor that plays the most important part.

4.3 KID device analysis

Photons having su�cient energy, i.e. hν > 2∆ can break apart one or more

Cooper pairs (see �gure 4.1(a)). The absorption of a high-energy photon

creates Nqp ≈ ηhν/∆ quasiparticles. The excess quasiparticles subsequently

recombine into Cooper pairs on timescales τ ≈ 10−3 − 10−6 s . During this

time, the quasiparticles can di�use over a distance l =
√
Dτqp, where D is the

di�usion constant of the material. The detectors make use of the dependence

of the surface impedance Zs on quasiparticle density. Very sensitive measure-

ments may be made using a resonant circuit (�gure 4.1(b)). This schematic

illustration shows the resonant circuit as a parallel LC circuit which is ca-

pacitively coupled to a through line. Changes in Rs and Ls a�ect both the

frequency at which the resonance occurs, and its width (�gure 4.2(a) and

4.2(b) ). The fractional surface impedance change should be proportional to

the fraction of Cooper pairs that are broken.

The device discussed in [34] is a a quarter-wavelength transmission line res-

onator, which is the transmission line equivalent of the lumped element res-

onator of �gure 4.1(b). A Coplanar Waveguide (CPW) through line is used

e�ectively to couple the incoming signal ad to detect the resonance frequency

shift. This also makes use of s quarter-wavelength resonator section, as is

visible at B in �gure 4.3.
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4.3. KID device analysis

(a) Photons with su�cient energy break-

ing Cooper pairs in a superconducting

�lm.

(b) Resonant circuit. The increase

in quasiparticle density increases the

(mainly inductive) surface impedance.

Therefore, the total inductance is in-

creased, while the e�ect of the surface re-

sistance is to add a series resistance, mak-

ing the inductor slightly lossy.

Figure 4.1: Power and phase pro�les for equivalent circuit.

One of the more interesting applications of KIDs for our purposes here is

their potential use in sub-mm astronomy. It is readily possible to multiplex

a large number of these devices to create a focal plane array [35]. This is

demonstrated in �gure 4.4, where an image of Jupiter was recorded.

In many proposed cases, it has been suggested that lens antennas would

be appropriate for e�ectively coupling incoming radiation to the detector

plane, to improve the quality and focus of the incoming beam [36, 37]. Lens

antennas exist within the department, and as well as their simplicity of man-

ufacture, much use has been made of lens antennas previously within the

department [38].

We wish to use some of the tools at our disposal in attempting to model these

types of devices. As incoming radiation from an astronomical source will have

a plane wave-like phase front, it is this type of radiation that we will need

to model as incident on the detectors. While we may not be able to model

the complex circuits themselves and replicate superconducting behaviour, we

can begin by examining plane wave illumination in CST. A subsequent step

may be to add optics to enhance the signal from the �eld from the sky, before

it reaches the main detector optics. We shall begin then by examining plane

wave illumination in CST.
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4.3. KID device analysis

(a) Transmission dip as the LC circuit

loads the through line.

(b) Phase of signal transmitted through

the circuit.

Figure 4.2: Power and phase pro�les for equivalent circuit.

Figure 4.3: Microscope image of device used, also showing the equivalent circuit.

Figure 4.4: 15-minute raster scan of Jupiter obtained at 240 GHz using KID camera at

Caltech Submillimeter Observatory. Source: [35]
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4.4. CST Analysis of Plane Wave Source

4.4 CST Analysis of Plane Wave Source

The principles of operation and theory behind the solvers of CST Microwave

Studio have previously been described in section 2.9. Now, we will illustrate

the use of CST using some simple examples of how an electromagnetic beam

is launched, having certain de�ned characteristics.

It is often useful to perform simulations involving plane wave illumination.

Radiation incident on an astronomical instrument, for instance, is likely to

be of plane wave form, as it has travelled a large distance from its source to

the measurement plane. Thus we may often wish to use this as a starting

point in our models, and it will be useful here to understand plane wave

illumination in CST. We will use the well known example of di�raction from

a circular aperture to verify this function in CST.

Figure 4.5 shows a sheet of Perfect Electric Conductor (PEC) material. PEC

materials are those that exhibit ini�nite electric conductivity, and therefore

are not lossy. PEC materials are useful in modelling conducting materials,

as they can be simulated much faster than real, lossy materials having �-

nite conductivity. We may compare the results for the far �eld pattern of

Figure 4.5: PEC sheet with circular aperture shown in the CST design environment.

a circular aperture in a metallic sheet using various methods in CST, and

compare these to well known results such as the Fresnel di�raction integrals.

The radius of the aperture is 9 mm and the wavelength is 3 mm.

The �rst method that we will use is the standard plane wave illumination

in CST. This de�nes a plane wave having electric �eld vector as de�ned by
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4.4. CST Analysis of Plane Wave Source

the user in each of the X, Y and Z planes, as well as the propagation normal

de�ned by the user as desired. Figure 4.8 shows the far �eld result from CST

with plane wave illumination, compared with an equivalent model created

using GBMA. We �nd that there is very close agreement in the main beam
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Figure 4.6: Comparison of CST plane wave source with GBMA results for far �eld due to

a circular aperture.

and the two beams agree relatively well out to almost 40◦ from the axis.

We also observe close agreement in the �rst sidelobes. We have previously

discussed the validity of the scalar approximation after a large angle o�-axis

(section 2.12).

The second method we use for comparison in CST is using waveguide ports.

These simulate the input from a metallic waveguide for a selcted number of

modes (�gure 4.7).

Selecting the �rst two modes produces two identical modes, but with di�ering

linear polarisations (horizontal and vertical), representing a plane wave with

a certain polarisation orientation.

Indeed, from �gure 4.8, which includes the far �eld result due to using the

waveguide port, the result agrees very well with the CST plane wave results.

As a �nal comparison, we use the classic Fresnel di�raction integral result

for di�raction at a circular aperture and compare this with out CST results,

i.e. an Airy di�raction pattern at the far�eld of a circular aperture.
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4.4. CST Analysis of Plane Wave Source

Figure 4.7: PEC sheet with circular aperture shown in the CST design environment,

illuminated by a waveguide port.
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Figure 4.8: Comparison of CST plane wave source and waveguide ports with GBMA

results for far �eld due to a circular aperture.

Figure 4.9 shows this comparison. We see that perfect agreement is found

between the di�raction integral and the waveguide port result. The plane

wave result and di�raction integral agree well in the main beam.

We have investigated and veri�ed two di�erent methods of modelling plane

wave illumination in CST, in order to better understand the process in or-

der to perform more detailed calculations into the optical e�ciencies of KID

devices. While these will not be performed here, the continuation of this

work would involve modelling a more detailed system, with some optics, for

example using a lens antenna illuminated with plane wave illumination in
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Figure 4.9: Comparison of CST plane wave source and waveguide ports with di�raction

integral results for far �eld due to a circular aperture.

CST and optimising the output beam/ far �eld pattern. This could then be

applied to systems involving KIDs with a layer of absorption material.

The interaction of the absorbing layer of a KID device with incoming radi-

ation is complicated. Initially an ideal model using a resistive sheet as an

equivalent absorbing layer will be used. The use of a matching layer over

the absorber material could also be analysed and the use of a hemispherical

could be included to investigate its in�uence on optical coupling.

It has been illustrated here that CST can be used using an extended waveg-

uide port to launch a plane wave in a predictable way and this waveguide port

function in CST allows the user to utilise all the S-parameter functionality

of CST and track the propagation of power in all directions. The plane wave

source inherent in CST does not o�er this functionality and so is less attrac-

tive for the optical e�ciency calculations required for KID detectors.
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Chapter 5

Analysis of Multiple

Re�ections

5.1 Introduction

In this chapter we extend the standard GBM analysis techniques to allow the

investigation of multiple re�ections in quasioptcial systems. In the laboratory

many quasioptcial measurements are a�ected by standing waves or multiple

re�ections from metallic holders or structures and the measured beams are

modulated with periodic extra beam structure due to interference of re�ected

beams. There are standing waves present in most experimental setups but

this can be minimised with absorptive material. In some cases, however, on-

axis re�ections are di�cult to nullify. Here the ability to analyse standing

waves is very important and we discuss an analytical technique and describe

the application of the analysis in simple arrangements which best illustrate

the e�ects of multiple re�ections. In millimetre astronomy receivers the issue

of standing waves is particularly troublesome if the instrument detects over

a spectral range as the standing wave is a frequency dependent phenomena

and appears as a ripple in the instrument response.

For example we may wish to simulate a quasioptical system consisting of a

series of linearly spaced metallic rings, with electromagnetic radiation inci-

dent upon them. This is a nice example of the necessity to include multiple

re�ections to fully and accurately describe the output beam pro�le. This

simple arrangement is illustrated in �gure 5.1. The radius of the rings may

be varied to examine the result, and indeed the ring can be made into a disc
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5.1. Introduction

by reducing the internal radius of the disc/torus to zero. It is also possible

to vary the transmission/re�ection ratios of the rings to emulate speci�c ma-

terials, rather than just a perfectly re�ecting metallic ring, and in this way it

is possible to create a classic Fabry-Perot type system in the millimetre-wave

range. The simulations on the system described will be performed using

GBMA primarily, in an extension of the theory described in chapter 2, and

some use will be made of CST in an attempt to validate results. Figure 5.1

shows the general setup to be considered, where we have 2 metallic rings, 1

and 2, and these are separated by a distance, Dis. The internal radius of a

ring is given by a, and the external radius by b, so that the internal radius

of the �rst ring is a1 and the external radius is b1, and similarly for ring 2.

Then, we are interested in the measured amplitude at ring 1, which will be

the re�ected amplitude or S11, and the measured amplitude at ring 2, which

will be the transmitted power or S21, thereby including all possible re�ec-

tions between ring 1 and ring 2. Figure 5.2 a side view of the system, and

schematically illustrates the multiple re�ections which can occur between the

rings.

a1

b1

b2

a2

Dis

ring 1

ring 2

Figure 5.1: Multiple Re�ections Setup. An alternative perspective is shown in �gure 5.2.

Note, if we refer to re�ection or transmission scattering parameter amplitude

we mean the value of the S-parameter (described in section 2.11, whereas

when we refer to re�ection or transmission scattering parameter power or

intensity, we are referring to the square of the S-parameter, or the power

contained within it.
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corrugated horn

a1

b1

Dis

a2

b2

S11 S21

Figure 5.2: Section through multiple re�ection ring setup showing corrugated horn and

illustrating multiple re�ections between the rings.

5.2 Description of GBMA of multiple re�ec-

tions in free space

It is possible to analyse multiple re�ections in this system using Gaussian

Beam Mode Analysis utilising scattering matrices. The scattering matrix

approach will be very similar to that used in SCATTER [39]. SCATTER is

an in-house computational solution used for the design and analysis of feed-

horns based on the propagation of waveguide TE and TM modes. Scatter

uses a mode-matching technique to propagate power between neighbouring

sections of the feedhorn. This is especially useful for corrugated feedhorns

where the radius of the horn changes between each consecutive corrugation,

but it is also used for smooth-walled horns where the radius �ares linearly.

While SCATTER uses waveguide modes with a TE and TM basis set, in

our case freespace Gaussian modes will be required. SCATTER is complex

and allows for a high number of corrugations/transitions to be considered

to realise a complete waveguide structure. For our purposes with two rings,

the scattering will be more elementary, where we consider power propagating

from right to left and left to right. We will still require that the freespace

modes are scattered in both the forward and backward direction, however, if

we are to measure the S11 and S21 components.

We may think of the general procedure involved as follows:

1. Initialise beam parameters. This involves de�ning the usual beam char-

acteristics at an input plane such as wavelength, input beam ra-

dius, radius of curvature, number of modes, and setting up the

74



5.2. Description of GBMA of multiple re�ections in free space

ABCD propagation equations described in section 2.8.1 for beam ra-

dius, phase shift, etc. as a function of propagation distance.

2. Introduce the �rst ring/disc using a scattering matrix for both the for-

ward and backward direction. The �rst ring is e�ectively represented by

two scattering matrices (see section 2.12), and these must be computed.

The matrices will be square, and the size determined by the number of

modes invoked in the simulation. Each scattering matrix is calculated

by integrating the Laguerre- Gaussian mode set of the input and out-

put beams over a radial region described by the disc/ring in question.

The scattering matrix for the re�ected component is then calculated,

and the matrix for transmission can be found by subtracting this from

an identity matrix of equal dimension (i.e. T=1-R).

3. Propagate the beam from the �rst ring through the distance speci�ed,i.e.

if the distance between the two rings is e.g. 5 mm, the beam must now

be propagated this distance, using ABCD matrices to �nd the beam

parameters after such a distance to account for the beam di�raction,

which will be required for the next step in the simulation.

4. Introduce the second ring using an additional scattering formulation.

Note: speci�c rules exist for cascading of multiple matrices and these

must be followed [40]. The process for computing the scattering ma-

trices for the second ring is exactly the same as for the �rst ring. The

matrix cascading processes may now be completed. We must cascade

the matrix describing the re�ection/transmission at ring 1 with the ma-

trix describing propagation between the two rings. The speci�c rules

for cascading two scattering matrices may be described as follows. Say

we have two scattering matrices, Sa and Sb, such that

Sa =

[
Sa11 Sa12

Sa21 Sa22

]
(5.1a)

and

Sb =

[
Sb11 Sb12

Sb21 Sb22

]
. (5.1b)

Then, the resulting matrix, Sc, given by cascading the two matrices, is
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found using the following formulation [41]:

Sc =

[
Sa12[I − Sb11Sa22]−1Sb11Sa21 + Sa11 Sa12[I − Sb11Sa22]−1Sb12

Sb21[I − Sa22Sb11]−1Sa21 Sb21[I − Sa22Sb11]−1Sa22Sb12 + Sb22

]
(5.2)

This cascading is performed, as mentioned above, for the �rst transmis-

sion/re�ection matrix and propagation matrix. The matrix obtained

from this cascading then gets cascaded with the transmission/re�ection

matrix describing the second ring, to give a �nal matrix, the terms in

which give us our desired results. If this matrix is called Sc1, such that

Sc1 =

[
Sc111 Sc112

Sc121 Sc122

]
, . (5.3)

then this will de�ne our system completely in a steady state solution.

5. Analyse the parameters of interest from the output. As stated above,

we are now interested in the terms from Equation 5.3. For instance,

the term Sc111 is the total S11 component, i.e. the re�ected component

at the �rst measurement plane, or that which is measured at plane

1 which also originated at plane 1. Also, the term Sc121 will be the

transmitted component, or that which is measured at plane 2 which

originated at plane 1 and includes all forward re�ections of the system.

Both these terms are themselves also described using matrices. We

will then wish to analyse these ratios of received and transmitted �eld

magnitude, as a function of distance between the rings, and size of the

rings, etc. We may �nd it instructive also to simply square these terms

to obtain the beam intensity. This approach of using S-parameters and

a cascading approach is a steady state solution and includes re�ection

and transmission for all internal planes when the total Sc matrix is

calculated correctly.

5.3 Simulations performed using GBMA

We will now look at some results of simulations performed using Gaussian

Beam Mode Analysis in the manner described above. As a very �rst example,

we look at the situation where we have made both a1 and a2 zero, so that we

are considering two �at re�ecting discs. We make these large enough so that

all of the input beam should be completely re�ected, without any radiation
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5.3. Simulations performed using GBMA

passing through to the detector plane at 2. The discs have a total radius

of 10 mm. The incident radiation has a wavelength, λ = 3 mm (frequency

of 100 GHz). The majority of these simulations will be performed at this

wavelength, and if it is not explicitly stated, it can be assumed that this is

the case. Considering that the input radius of the beam from the horn is

≈ 4.6 mm, this is more than enough to prevent any radiation from being

detected at plane 2. Figure 5.3 shows the results of the GBM simulation

for this setup. We see that the magnitude of the S21 component is zero,

as expected. This remains constant regardless of the distance between the

two discs, as it must, since no radiation can be transmitted through the �rst

disc. Also, we �nd that the S11 component has a constant value regardless

of the separation between the discs, with a value of ≈ 0.96. It seems obvious

that the distance between the discs is irrelevant in this case, but this may

not be the expected outcome for cases where radiation is being transmitted

through the rings, as we shall see later. We note that the magnitude of the

S11 component is ≈ 0.96, as previously stated. We may expect a value of 1,

as all input radiation should be re�ected backwards. However, the reason for

this is the use in the simulation of a corrugated horn �eld. The input radius

of curvature of the �eld from a corrugted horn is described by the slant length

of the horn, in our case 80 mm. Now, the �eld has not propagated in space

before being re�ected from the metallic boundary, and when it is re�ected it

will have a radius of curvature which is negative. This beam will then not

couple completely with our detector plane, as it is not a plane wave with a

�at phase front.

Next, we look at the situation shown in Fig. 5.4, where both internal radii

are equal to 3 mm, and both external radii are equal to 5 mm. i.e. we have

rings with apertures of 3 mm and a re�ective (metallic) surface from 3 mm

to 5 mm.

When this setup is run using GBMA, we get the result shown in Fig. 5.5. We

note that the S21 decreases as the distance between the two rings increases.

This may be explained by the divergence or spreading out radially of the

beam as it propagates. When the beam has not travelled any distance, its

radius is around 4.5 mm. Therefore, a large proportion of the amplitude of

the entire beam (1) actually makes it through the �rst and second rings. As

the distance between both rings increases, however, the beam spreads out

and so more power is re�ected o� the ring. Travelling even farther than the
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Figure 5.3: S-parameters for two rings (discs) having a1, a2=0 mm, b1, b2=10 mm, for

ring separations from 0-12 mm.
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Figure 5.4: Multiple Re�ections Setup with both internal and external radii equal, at

3 mm and 5 mm respectively.

12 mm we have simulated here should result in an increase again in the S21

�gure, as we also measure the radiation which has spread to farther than

the external radius of the ring. Now looking at the S11 for this problem,

or the re�ected component, we note that it is on average increasing, as our

propagation distance increases. Also of note is that we obtain a series of

maxima and minima in the re�ection pro�le. Closer inspection shows the

separation between successive maxima and minima to be of the order of λ/2,

in this case 1.5 mm.

We now perform a similar simulation, with one parameter changed. We keep
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Figure 5.5: S-parameters for two rings having a1, a2=3 mm, b1, b2=5 mm, for ring

separations from 0-12 mm.

a1= 3mm , but make a2= 0 mm, while �xing both b1 and b2 at 5 mm. Thus,

we are keeping the �rst ring the same, but making the second ring a re�ecting

disc.
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Figure 5.6: S-parameters for two rings having a1=3 a2=0 mm, b1=5 mm b2=5 mm, for

ring separations from 0-12 mm.

Figure 5.6 shows the result of this simulation. We obtain a much lower value

for the S21 parameter in this case, explained by the fact that we have a

re�ecting disc of radius 5 mm where most of the radiation would likely be
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incident, and this radiation is re�ected back to the �rst ring, where it is either

measured at plane 1, or re�ects again, perhaps multiple times, between the

two metallic rings. Also, the S11 has correspondingly high values, which are

relativley consistent on average, with propagation distance. As in �gure 5.5,

we again observe the half-wavelength characteristic of maxima and minima.

For our next simulation, we shall again vary one parameter, and simply make

the disc at plane 2 bigger, so that in fact more radiation should in fact be

re�ected from it. We will set it as being a disc of radius 25 mm, so that our

parameters are a1 = 3 mm, a2= 0 mm, b1= 5 mm b2= 25 mm.
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Figure 5.7: S-parameters for two rings having a1=3 a2=0 mm, b1=5 mm b2=25 mm, for

ring separations from 0-12 mm.

Figure 5.7 shows the results of this simulation. We �nd that the signi�cant

increase in the radius of ring 2 indeed prevents any signal from being recorded

at that plane. The measured S11 appears to be approximately the same as in

the previous case, with a very small on average increase, and the period of the

maxima and minima in the S11 pattern equal to λ/2, as in the previous cases.

As another example, we wish to examine a case where we expect a high value

in the S21, at least when the separation is very small. We will set both rings

as the same size, and set the aperture to be approximately the same size

as the input beam. Then, the S21 should have a maximum value when the

separation between both rings is at its smallest and most of the radiation will

pass directly through to plane 2 and will be included in the S21 parameter.

We thus set our parameters as follows: We will set it as being a disc of radius
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25 mm, so that our parameters are a1= 4.6 mm, a2= 4.6 mm, b1= 6 mm

b2= 6 mm. Figure 5.8 shows the resultant beams in this case. We observe
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Figure 5.8: S-parameters for two rings having a1= 4.6 mm a2= 4.6 mm, b1= 6 mm,

b2= 6 mm, for ring separations from 0-12 mm.

that indeed the S21 has its maximum value when the separation betwen the

rings is zero, and only decreases marginally as the separation increases. As

the beam diverges upon propagation, some of the beam will be re�ected from

the ring and may be measured at plane 1 as the S11 or may re�ect back again,

etc. However, the metallic ring is very narrow, and therefore this accounts

for only a small portion of the beam, especially as the beam diverges signi�-

cantly, and that radiation is then measured again at plane 2. For this reason,

the S11 is much lower than in any of our previous examples, although it does

increase on average as the distance between the rings increases.

Now, we wish to investigate the e�ect of varying the transmission ratio of the

rings. Figure 5.9 shows the result for two discs of radius 10 mm. The �rst

disc has been modi�ed so that it has both a re�ection and transmission ratio

of 0.5. We compare this to �gure 5.3, for discs of the same size, but with

100% re�ection as in all previous cases. Rather than having a constant value

of zero for the S21, we now obtain a constant value of ≈ 0.25. the value is

constant with propagation distance up to 12 mm as the beam is still narrow

enough to be contained entirely within the radius of disc 2, and so 50% of

the radiation that makes it through the �rst ring (itself 50%) is measured

at plane 2. The S11 shows similar characteristics as previously, with a lower
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Figure 5.9: S-parameters for two rings having a1= 0 a2=0 mm, b1= 10 mm, b2= 10 mm,

for 50 % transmission, 50 % re�ection in disc 1, for ring separations from 0-12 mm.

average value (as some of the radiation is now not re�ected).

5.4 Cavity Standing Wave Investigation

Using the cascading matrix approach with freespace GBMA modes we have

investigated the form of multiple re�ections themselves between two metallic

rings/discs, of varying size and transmission, etc. We have continuously

found standing wave e�ects present in such systems and we can analyse its

form. These would appear as a function of the distance between our two

metallic objects, periodically at values of λ/2. We would like to investigate

the mechanism behind this e�ect. We may look at a true Fabry-Perot type

system, as decribed in �gure 5.10. Here, we have set the wavelength to

0.6 mm.

A method of identifying the modes present inside the cavity involves examin-

ing a speci�c component of the cascaded system matrix described in section

5.2. The component in question is [Sa22][S
b
11]. After some investigation it can

be shown that this component describes the round trip component in the

system [42], and it is this component that we wish to analyse the form of the

standing wave. A method for isolating the cavity modes that propagate be-

tween the discs in the cavity is described in [42]. This technique will involve

the use of eigenmodes and eigenvectors, components of a square matrix. The
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(a) S11 as a function of distance between discs for

Fabry-Perot cavity.
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(b) S21 as a function of distance (in mm) between

discs for Fabry-Perot cavity.

Figure 5.10: S11 & S21 patterns as a function of distance (in mm) between discs for

Fabry-Perot cavity at a wavelength λ = 0.6 mm.

eigenmode of a matrix is a solution to the equation

S · a = λ · a, (5.4)

where S is a scattering matrix, here representing the round trip through

the system, a is a vector, and λ is the eigenvalue, where a is known as the

eigenvectors. λ can be a real or complex number. The eigenmodes of an

optical system can be determined numerically, and the spatial form of these

modes, σforward, are described by

σforward = ΨoutP, (5.5)

where Ψout are the basis set evaluated at the output plane and the P are

columns of eigenvectors from the matrix. The round trip component is then

decomposed into its eigenvalues and eigenvectors through the equation

S = PDP−1, (5.6)

83



5.4. Cavity Standing Wave Investigation

where P is a matrix composed of the eigenvectors of S and D is a diagonal

matrix of the corresponding eigenvalues λ1, λ2, . . . , λn.

Then, we track the eigenvalues and eigenvectors of the round trip component

as the distance between the discs is changed and the standing wave pro�le

changes. The reason that we track these parameters is that we wish to

�nd out if there is a characteristic change in any of these parameters as

a resonance point is reached in integral values of λ/2 as with all multiple

re�ections, and a sudden peak is observed in the transmission pro�le. We

examine a resonant peak in transmission in terms of its eigenvalues, and the

results are presented in table 5.1 and we want to investigate what is di�erent

in the SVD decomposition at this special resonant case.

Table 5.1: First 10 eigenvalues of the cavity round trip matrix at a distance betwen the

discs of 0.3 mm corresponding to a resonant peak in the transmitted power.

Eigenvalue /# Abs. value Argument /Rad

1 0.9498 0.0003
2 0.9416 0.1495
3 0.8829 0.6153
4 0.7068 1.6850
5 0.4020 -2.6090
6 0.2238 -0.0330
7 0.0008 -1.7686
8 0.0000 -2.4311
9 0.0000 -2.8590
10 0.0000 0.2681

In [42] it was found that certain eigenmode arguments are zero at reso-

nant points. Analytically setting this eigenmode to zero and performing the

analysis again should con�rm or deny this, as, if that eigenmode is mainly

responsible for the resonance, then its removal should cause the resomance

to diminish.

From table 5.1, the argument of the �rst eigenvalue is closest to zero. We

attempt setting this eigenvalue to zero and observing the results. The matrix

of eigenvalues in the SVD analysis is a diagonal matrix so we can set any

eigenmode to zero analytically by multiplying this eigenvalue by zero.

Figure 5.11 shows the S21 pro�le for the case where the 1st eigenvalue has been

analytically set to zero. Virtually no power remains in the S21, showing that
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Figure 5.11: S21 pro�le as a function of distance (in mm) when 1st eigenvalue has been

analytically set to zero.

removing this mode from the simulation completely removes the S21 power.

This indicates that this eigenmode actually contains all round trip power and

is responsible for the resonant peaks in the S21 pro�le. We con�rm this by

removing another randomly chosen mode, giving the result shown in �gure

5.12. We have instead removed the 4th mode in this case, and we observe

that all of the resonances are inded still present, indicating that it is the 1st

eigenmode which contributes to the resonances in the transmission pro�le.

We are considering a very simple system, and perhaps it is not surprising
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Figure 5.12: S21 pro�le as a function of distance (in mm) when 4th eigenvalue has been

analytically set to zero.

that only one mode is responsible for the resonances inside the cavity.

We shall now examine the form of this mode and compare it with a Laguerre-

Gaussian mode of the same order. (the expected cavity mode for such a

geometry). By isolating the �rst mode from the cavity �eld and performing

the standard modal summation, we plot the form of this mode and compare

with the Laguerre-Gaussian mode of order zero. The result, as shown in

�gure 5.13(a) and �gure 5.13(b), is complete agreement between the two
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modes, showing that our dominant cavity mode which is responsible for the

resonances is indeed the fundamental Laguerre-Gaussian mode.

We also wish to examine the form of some of the other eigenmodes. We plot

these along with the equivalent order Laguerre-Gaussian modes to show their

equivalences. Figure 5.14 shows the second and third cavity eigenmodes plot-
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(a) Comparison (overlay) of 1st cavity eigen-

mode and equivalent Laguerre-Gaussian mode

(2D).

(b) Comparison (overlay) of 1st

cavity eigenmode and equivalent

Laguerre-Gaussian mode (3D).

Figure 5.13: Comparison of 1st cavity eigenmode and equivalent Laguerre-Gaussian mode.

ted with the corresponding Laguerre-Gaussian mode of the same order. We

see that in both cases, we obtain perfect agreement, as in �gure 5.13. Note

that we have just plotted these modes to con�rm that the modes present in

the cavity are the Laguerre-Gaussian modes, and they are normalised to give

unity power on-axis. They are not dominant in the cavity, as we have proven

that the fundamental eigenmode is responsible for the resonances.

We have investigated the form of cavity modes in a Fabry-Perot type cav-

ity with circular geometry, and we were able to isolate the mode which was

resposible for the resonant conditions and illustrate that the form of the cav-

ity modes present were of the expected Laguerre-Gaussian pro�le. This was

done using decomposition of the matrix into its eigenvalues and eigenvectors,

and from this we were able to show the form of the mode and relate it to

standard Laguerre-Gaussian shape.
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(a) Comparison of 2nd cavity eigenmode and equiv-

alent Laguerre-Gaussian mode .
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(b) Comparison of 3rd cavity eigenmode and equiv-

alent Laguerre-Gaussian mode .

Figure 5.14: Comparison of 2nd and 3rd cavity eigenmodes and equivalent Laguerre-

Gaussian modes.
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Chapter 6

SAFARI Cavity Analysis

6.1 Introduction/Background

The SPace Infrared Telescope for Cosmology and Astrophysics (SPICA) is

a proposed Japanese-led joint JAXA-ESA mission, and an artist's impression

is shown in �gure 6.1. SPICA is provisionally scheduled for launch to Earth's

second Lagrangian point (L2) in 2022. At the present time (autumn 2013), a

�nal decision is to be made to commit resources and make the mission o�cial.

Europe, through the European Space Agency (ESA), will contribute signif-

icantly to the mission with technical expertise gained from the successful

Herschel mission. SPICA's speci�c focus will be planetary system forma-

tion and galactic evolution [43]. The telescope itself will have a diameter of

3.5 m and will be cryogenically cooled to < 6K. At such a temperature, the

telescope's thermal emission will be lower than the sky background over the

far-infrared range down to 1.4 THz. This will enable the use of instruments

having sensitivities much higher than on Herschel (section 1.2.3). SPICA

will consist of three main instruments:

� a mid-infrared (MIR) coronagraph ( ∼3.5 to ∼27 µm) with photometric

and spectral capabilities (R ∼200)

� a MIR wide-�eld camera and high resolution spectrometer (R ∼30,000)

� a far-infrared (FIR ∼34 to ∼210 µm) imaging spectrometer

(SAFARI)

88



6.1. Introduction/Background

SAFARI is the instrument to be delivered by the European Space Agency

(ESA) and we shall give a brief description of it here. ESA will also develop

the 3.5 m telescope itself.

Figure 6.1: Artist's impression of the SPICA spacecraft. Source:[44]

Two important areas where SAFARI will make improvements are in the ar-

eas of photometry and spectroscopy. In terms of photometry, SPICA's cold

telescope will enable deeper and faster mapping of large areas of sky than

Herschel's PACS instrument [44]. SAFARI will have the ability to make maps

of 10's of square degrees af sky area, resolving structures at a maximum of

around 1◦. In spectroscopy, SAFARI will make even bigger breakthroughs.

SPICA's high sensitivity will enable spectoscopic mapping of large areas of

sky and large numbers of soucre samples over the far-infrared spectrum,

rather than observations of small numbers of relatively bright sources and

individual spectral line mapping.

SAFARI's ∼34 to ∼210 µm range is to be divided into sub-bands, the short

wavelength limit being de�ned by the overlap with the MIR instrument, while

the long wavelength limit is to be de�ned by the [NII] �ne structure line. An

array of detectors are used in each band. The three bands which will be

included are the L- 35 − 70µm, M- 70 − 110µm and S-bands 110 − 210µm

referring to the long, medium and short wavelength bands, respectively. The

proposed detector arrays are of the following sizes

� L-band: 64× 64 (4096 pixels)

� M-band: 38× 38 (1444 pixels)
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� S-band: 20× 20 (400 pixels)

giving a total across all three bands of 5940 pixels [45].

Figure 6.2: SAFARI Front End Optics (FRE). Source:[46]

Figure 6.3: Photograph of L-Band 388 pyramidal horn array (front). Source: [44]

The proposed optical setup is shown in �gure 6.2, and a brief glossary of

relevant terms is as follows: FTS- Fourier Transform Spectrometer, FPA- Fo-

cal Plane Array, LW- Long Wavelength, MW- Mid-Wavelength, SW- Short

Wavelength. The input optics re-image the pupil for stray light control, and

expands and partially collimates the beam entering the spectrometer. The
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beam combiner produces interference beams in the two output arms [43].

The beams are then focused onto the FPAs. The Focal Plane Arrays con-

sist of an array of horns feeding into detector cavities. The chosen detectors

are Transistion Edge Sensor (TES) bolometers. Their use is complicated by

the fact that they must be operated at very low temperatures (<1K), their

spectral response in the wavelength band around 40 µ m is much better than

photoconductors, another considered technology. TES bolometers are ther-

mal sensors that measure temperature changes by the increase in resistance

of a superconducting �lm biased within the superconducting-to-normal tran-

sition. Figure 6.4 illustrates the TES principle in a molybdenum-copper thin

Figure 6.4: Illustration of the superconducting transition in a Mo/Cu �lm near 96 mK.

Source:[47]

�lm. The sharpness of the phase transition illustrates its use as a sensitive

thermometer [47]. The properties of the TES can be adjusted, i.e. changing

the relative thickness in the �lm of the normal metal (copper here) and the

superconducting metal (molybdenum here) changes the transition tempera-

ture. The physics of the operation of TES detectors and the readout elec-

tronics are not described in detail here. NUI Maynooth are commissioned to

characterise the optical behaviour and performance of these detectors which

are to be housed in waveguide structures. This analysis is complicated by

the fact that the detectors are housed in waveguide structures, requiring a

waveguide modal analysis and are also multimoded (partially coherent rather

than the traditional coherent radio astronomy detector).

As SAFARI is targeting the THz region of the EM spectrum, this is truly

far-infrared (FIR) astronomy. Radio and submillimetre astronomy would

typically use single moded devices as detectors and this could be described
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completely as coherent radiation. To make a horn antenna feed a single

moded detector, the waveguide cross sectional area (usually either a circular

or rectangular waveguide) is reduced in diameter to ensure only one mode

can propagate. The presence of only one mode means that the radiation is

fully coherent. In FIR astronomy multimoded (the waveguide cross section

is increased to allow n modes to propagate and what is detected is a sum of

partially coherent modes) detectors are used to help increase the sensitivity

to potentially detect fainter astronomical signals. As more than one mode is

detected and modes all propagate independently the signal detected is e�ec-

tively incoherent and is more complex to analyse compared with traditional

radio astronomy detectors.

The challenge for the optical analysis of the SAFARI detectors is to build

a complete optical model of the waveguide structure (horn antenna and de-

tector cavity) so that we may model its interaction with the optical train in

front of the detector array in the focal plane of SAFARI. In this chapter a

number of waveguide structures will be investigated to analyse their ability

to successfully absorb incident radiation.

Practically, by illluminating a waveguide structure and monitoring the re-

turned (undetected) power referred to as the S11 component we can measure

how e�cient the waveguide structure (with detector modelled) is at operating

at a certain wavelength.

Optical power coupling to the detector system is of great importance. Each

horn in the horn array feeds into a cavity containing an absorber and TES

detector.

Figure 6.5(a) shows a schematic of a proposed design for a SAFARI detec-

tor pixel in the optical testbed, illustrating e�ectively one single pixel of the

detector array. Incoming radiation from the horn is fed into the cavity con-

taing the TES absorber. The absorber is attached to the TES detector which

sensitively monitors the absorbed power through the relationship shown in

�gure 6.4. Note the air gap which is required as the horn array has to be

mechanically attached to the detector array, and each is physically maufac-

tured seperately. The spherical backshort then creates a cavity e�ect, and

the function of this is that power not absorbed by the detector on its ini-

tial pass should be re�ected in the cavity and absorbed. The "500" in the

�gure refers to the diameter of the cyclindrical backshort, which is 500µm.
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horn antenna

absorbing layer

cavity backshort to enhance coupling

air gap

(a) Illustration of proposed detector sys-

tem optical testbed.

(b) Photograph of an S-band pixel

mounted in front of a gold plated copper

machined hemispherical cavity.

Figure 6.5: SAFARI pixel schematic and TES photgraph. Source: [45].

Figure 6.5(b) contains a photograph of a TES absorber mounted in front of

a cavity. The SAFARI consortium have initiated a development programme

for the TES detector focal plane array and NUI Maynooth are involved in

investigating di�erent geometries and waveguide structures to house the TES

detectors in order to maximise optical coupling of the incident beam.

In modelling the optical coupling to a TES detector the behaviour of the

bolometer in relation to the incident radiation must be modelled. The oper-

ation of the bolometer is dependent on an absorbing layer of material that is

exposed to EM radiation and responds with very subtle temperature changes

which a�ects the resistance of the material. This involves the solid state in-

teraction of the absorbing material and the FIR photons. This is a complex

physical interaction to model so in the optical models described here we use a

resistive sheet model of the absorbing layer. In fact, some software packages

such as CST include an ideal in�nitely thin resistive sheet element. Normally

the sheet resistance is a function of the bulk resistivity of a metallic �lm and

its thickness. Sheet resistance Rsh is given in units of Ohms per square,

where squares are the unitless dimension of the length divided by the width.

In SAFARI the absorbing layer will be a thin metallic layer of Tantalum

deposited on silicon nitride and will be given a sheet resistance (through

manufacturing) to match the impedance of the incident radiation (having a

value close to 377 Ω). In our optical models an equivalent ideal absorber

will be used and we will monitor the optical e�ciency (returned power back

93



6.2. Investigating the Optical Behaviour of a Simple Detector Cavity

out of the waveguide (S11)). A resistive sheet model has also been used

in SCATTER (in-house mode matching code). Use will be made of this

in section 6.3, where a resistive sheet is placed insde a waveguide and the

absrorbed power is measured. This will allow for a comparison of the resistive

sheet models in both SCATTER and CST for a simple case to verify their

operation.

6.2 Investigating the Optical Behaviour of a

Simple Detector Cavity

As part of designing the SAFARI detector system, analysis has been carried

out at NUI Maynooth in modelling the cavity and horn setup with absorber

material, in CST and SCATTER, the inhouse software developed at NUI

Maynooth. Much of the cavity modelling is presented in the thesis of Dr.

Stephen Doherty, as well as analysis of pyramidal horns using a custom ver-

sion of SCATTER, and more information on this can be found in his PhD

thesis [43]. Experimental measurements were also performed on cavities at

Maynooth, with di�erent cavity geometries in order to validate simulation

results. The facilities do not allow for exact experimental measurements with

an equivalent SAFARI type TES detector arrangement, as cryogenic cooling

facilities are not available. However, performing simple cavity measurements

at room temperature on various di�erent cavity geometries should still enable

us to understand the physics involved and allow optimization of the cavity

geometry for the optimum optical e�ciency for these simpler optical setups.

To this end, a cavity housing which may be adjusted in size has been con-

ceived. Figure 6.6(a) shows a narrow opening into a hollow cavity. The back

wall of the cavity may be moved using a plunger mechanism, so that the cav-

ity size may be easily adjusted. Also, the plunger may be removed completely

so that an item such as an abosrber may be placed into the cavity and mea-

surements performed. Figure 6.6(b) then shows the same system containing

a number of detectors, with electronics to read out the signal. Figure 6.6(c)

then shows a face view of the plunger mechanism/ back of the cavity, as seen

through the entrance slit or waveguide, assuming it were cyclindrical. By

rotating the plunger in a controlled manner, it may be possible to map the
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�eld at every point inside the cavity.

It is intended that such a device may be produced for experimental mea-

surements at the Tyndall National Institute in Cork. A potential method of

realising the detector(s) inside the cavity is to use patch antennas, which will

be discussed later in section 6.5.

(a) (b)

(c)

Figure 6.6: Cavity with rotatable plunger mechanism.

Simulations will be performed using CST on simple cavity geometries, which

are small enough to be meshed and modelled using CST on a standard PC.

These structures may be smaller and simpler than the SAFARI cavities, but

they will allow us to further undersand and verify the optical performance of

cavities containing absorbing material. We will require the use of absorbing

material to approximate the absorbing TES material in SAFARI itself. An

empty closed cavity will always re�ect 100% of the incident input power as

it contains no loss mechanism. We plan to use thin metallic �lms to simulate

the superconducting TES layer of SAFARI.

6.3 CST Comparison with SCATTER

As we are planning to make extensive use of CST in this chapter for the anal-

ysis of cavities containing absorber material and patch antennas, it is impor-
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tant that we undertake to verify the methods used and results found using

CST. To this end, we will make a comparison with SCATTER, the previously

mentioned in-house software package designed for analysing waveguides and

feedhorns using waveguide modes and mode matching.

We will �rst take a very simple example of a circular waveguide containing a

circular absorbing ohmic sheet which completely �lls the width of the waveg-

uide. The waveguide is set to 20 mm long and has a radius of 1.5 mm, i.e.

λ/2 at 100 GHz (λ= 3 mm). The absorber then is modelled as an in�nitely

thin disc of diameter 3 mm, which is equal to λ at 100 GHz. The waveguide

size is chosen so that it will be single-moded, that is to say it will only sup-

port the propagation of the fundamental TE11 mode. We will perform the

simulations at 100 GHz and vary the surface impedance of an in�nitely thin

sheet from (close to) 0 Ω to 2z0, where z0=377 Ω is the impedance of free

space, in steps of 0.25 z0. The second, closely related example will be using

a circular wavguide of the same dimensions, except that this waveguide will

be closed at one end to simulate the simplest possible cavity, i.e. a resonant

single moded cavity. The absorber will then be placed λ/4 (0.75 mm) from

the closed end. We expect to �nd resonance with the absorber at or near this

point for a single-moded waveguide, and achieve maximum absorption with

the ohmic sheet. Figure 6.7 shows both of these cases setup in CST.

These simulations are in fact very straightforward for SCATTER, as they do

not contain a large number of waveguide sections to scatter across. By con-

trast, the simulations take considerably longer in CST, as they are generally

performed across a bandwidth, whereas we desire only a spot frequency of

100 GHz for our comparison with SCATTER. This is the reason that we have

only performed the CST simulation at a small number of surface impedances,

as each unique impedance value requires a unique simulation. For example,

each CST simulation with a unique impedance value takes of the order of

1 hour on a high-end PC within the department which contains 64 GB of

RAM. In contrast, the simple SCATTER simulation for a large number of

impedance values at a spot frequency takes of the order of 1 minute.

Figure 6.8 shows the result of the simulations performed using both SCAT-

TER and CST for the open waveguide. As previously stated, the CST sim-

ulations were performed in increments of the absorber surface impedance of

0.25×z0, for a total of 9 simulations, whereas the SCATTER simulation was

performed over using a very �ne step. The result shows excellent agreement
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Ohmic sheet

absorber

φ = 3mm

λ = 3mm

Waveguide port

20mm

10mm

(a) Circular waveguide open at both ends containing absorber midway along its length.

20mm

Waveguide port
Ohmic sheet

absorber

λ/4

(b) Circular waveguide closed at one end containing absorber at λ/4 from the closed end.

Figure 6.7: Circular waveguide of length 20 mm and radius 1.5 mm containing an ohmic

sheet absorber shown both with both end open and with one end closed.
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Figure 6.8: Total absorbed power for cylindrical open waveguide containing absorber

halfway along its length as absorber impedance is varied.
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between SCATTER and CST. In the �gure, we plot the power absorbed by

the ohmic sheet absorber. This is calculated by noting that the total power

measured at both ports is given by:

Powmeas = Abs(S11)
2 + Abs(S21)

2. (6.1)

Now, if the total power in the system is normalised to 1, then the power

absorbed by the absorber will simply be given by:

Powabs = 1− (Abs(S11)
2 + Abs(S21)

2). (6.2)

We note that the power absorbed by the ohmic sheet in this con�guration

reaches a maximum of about 0.5 at 0.75×z0 or 282.75Ω, i.e. half of the power

is absorbed by the ohmic sheet at this point. Figure 6.9 shows the results of
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Figure 6.9: Total absorbed power for cylindrical closed waveguide containing absorber at

λ/4 from the closed end as absorber impedance is varied.

the simulation for the closed waveguide with absorber placed at λ/4 from the

closed end (�gure 6.7(b)), and the absorber impedance is varied. We see that

the λ/4 position does indeed seem to be a type of resonance, as the absorbed

power reaches almost 100% at an absorber impedance of 1 − 1.25 × z0. We

again notice the excellent agreement, although we do also notice that the

agreement becomes slightly less exact as the absorber impedance increases.

However, even at the point of largest disagreement, the di�erence between the

two values is of the order of 0.02, and the trend of the two "curves" still agree.

As we have veri�ed the CST simulations for the waveguide with absorber
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using SCATTER, we may now extensively carry out cavity simulations using

CST, and trust that the analysis present is consistent with the equivalent

mode matching analysis, which is always limited to simpler structures.

6.4 Cavity Analysis

We will perform simulations on a number of di�erent geometries of cavity;

namely circular and rectangular cavities. For both the circular and rectan-

gular cavities, however, we will vary the type of input waveguide, using both

a circular and rectangular waveguide, to investigate their e�ects on optical

performance. We generally wish to use single-moded input waveguides. We

shall also investigate the position of the absorber and its in�uence on the

cavity power, realising a situation similar to SAFARI, where the cavity will

contain a superconducting layer of tantalum metal. We assume throughout

that the resistive sheet model of CST will accurately account for the physics

of the absorbing tantalum layer. We will �rst look at the behaviour of an

empty cavity fed by a waveguide. We will use just one type of cavity in

this case as an introduction; a cylindrical cavity fed by a cylindrical waveg-

uide, as a �rst example to introduce the correct analytical technique in CST.

Figure 6.10 shows a schematic of the cavity setup being described. This is

λ

2λ

λ/2

Figure 6.10: Cross section of empty cylindrical cavity, fed by a cylindrical waveguide.

a section through the cavity with waveguide. The cavity has a depth in the

propagation direction of λ, the freespace wavelength, and has a radius of λ.

The radius of the waveguide is λ/2 and it has a length of λ/2. The actual

SAFARI cavity is larger in volume but due to the computational intensity of

the calculation in CST we will limit the cavity size to keep the calculation
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time reduced. Once the cavity is large enough to support multiple modes we

should have a good insight into the nature of multi modes cavities. Also, if

the problem is symmetric we can introduce symmetries in the computation

to reduce the meshing volume to one quarter. Note the schematic drawing is

not to scale. Figure 6.11(a) shows the result of the time domain simulation in

CST of the empty cavity described with a circular waveguide. The S11 result

oscillates around the 0 dB return value. Considering we are examining an

empty cavity composed of PEC walls and containing no optically absorptive

material, all of the power which enters the cavity should be re�ected back

out, when a steady state has been reached. The fact that the S11 osciallates

around 0 dB suggests that a steady state solution has not been reached, with

power at some frequencies still trapped within the system. This e�ect was

discussed very brie�y in section 2.9.1, i.e. that the time domain solver often

exhibits these e�ects for highly resonant structures, due to the long settling

time in reaching a steady state solution. Therefore, for this type of solution

such as in an empty cavity where we expect a constant 0 dB return, we may

expect that these oscillations may generally be ignored.
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(a) S11 for empty cylindrical cavity using

time domain solver.
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(b) S11 for empty cylindrical cavity using

frequency domain solver.

Figure 6.11: S11 for empty rectangular cavity using both time and frequency domain

solvers over the range 95-105 GHz.

We can con�rm this by examining �gure 6.11(b), where we have performed

the same simulation as 6.11(a), except in this case we have used the frequency

domain solver, in its resonant mode, which gives us the S-parameters. The

resonant S-parameter option of the frequency domain solver takes much less

time to run than the general frequency domain solver, however this is still

signi�cantly longer than the standard time domain solver. We may generally

then ignore the oscillatory nature of the S11 result about 0 dB in the time
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domain solver, as we know the reasons for these oscillations.

We have examined the form of the returned power from an empty waveguide-

fed resonant cavity. The comparison of both the time domain and transient

solvers outlined in �gure 6.11 shows that the frequency domain solver gives a

more reliable representation of the S11 values for such a highly resonant prob-

lem. However, we wish to model the cavity containing absorbing material.

In this type of situation there usually is no issue with using the time domain

solver, as the problems reaching a steady state tend to be more noticable

with highly resonant problems.

We will perform cavity simulations using an absorber where several param-

eters are adjusted, including:

1. Size of absorber

2. Shape of absorber, e.g. circular or square absorber

3. Position of absorber in the cavity.

These simulations will be carried out in varying cavity geometries, primar-

ily:

1. Cylindrical cavity with cylindrical waveguide

2. Rectangular cavity with rectangular waveguide

3. Combination of cylindrical/rectangular geometries

To make a comparison of the frequency domain and time domain solvers for

problems involving absorbers, we show an example here with the rectangular

cavity with circular waveguide, and an absorber sheet �lling the cavity at

the halfway point in the propagation direction (�gure 6.12). Note that the

absorber sheet is realised by creating a material in CST of the type "ohmic

sheet", with a surface impedance of 377 Ω.

Figure 6.12(b) shows the S11 results for both solvers. We note the almost

identical values, with an apparent shift upwards in frequency of the e�ects

when using the time domain solver. These di�ering results had been obtained

previously, and steps were taken in an attempt to resolve the di�erences

between the solvers. It was thought that the disparity between the results

from both solvers was due to the time domain solver again having more

trouble settling on a steady state solution and so the number of mesh cells
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were increased and the adaptive meshing turned on. However, 6.12(b) is

the results after these steps had been taken, and yet we still have a slight

di�erence between the two results. The frequency domain solver is technically

better and more accurate than the time domain solver, as it does not su�er

from the same problems in reaching a steady state solution for highly resonant

problems. However, when we are dealing with such a problem and it is

advantageous in terms of time and computational e�cency to use the time

domin solver instead, we must be careful to realise that the �uctuations

around 0 dB in the returned power are not physical, and merely a product of

the simulation method. In any case, we will not often deal with such highly

resonant problems that this is a signi�cant issue. For the same physical

problem, the di�erence in computational power required between the two

solvers is very signi�cant. An empty cavity problem performed using the

frequency domain solver using the high end computer in the department will

take of the order of 1 day to complete. The same problem using the time

domain solver will usually take less than 1 hour to complete. Despite the

shortcomings of the time domain solver in some cases then, it is our solver

of choice for most problems, and if not explicitly stated, it is assumed that

this is the solver that is being used.

(a) CST CADmodel of

the cavity with the ab-

sorber sheet.
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(b) S11 for square cavity with absorber us-

ing time and frequency domain solvers.

Figure 6.12: S11 for rectangular cavity with ohmic sheet absorber using both time and

frequency domain solvers over the range 95-105 GHz.

We will now examine the optical behaviour of various cavity geometries with

including absorbing material when illuminated through a single mode input

waveguide, in terms of its S11 parameters.
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6.4.1 Cylindrical Cavity with Cylindrical Waveguide

The �rst cavity type which we will examine in detail is that of a cylindrical

cavity fed by a cylindrical single moded waveguide. The reason for this is

that it is most similar to the waveguide examples considered in section 6.3 in

verifying CST. We shall use a cylindrical cavity of radius λ, with a waveguide

of radius λ/2 and length λ/2. This radius is chosen so that the waveguide

will be single-moded at 100 GHz. The radius of the cavity as λ is relatively

arbitrary, as it is indeed smaller in terms of wavelengths than the proposed

SAFARI cavity, but we wish to use a smaller cavity for speed and e�ciency

of modelling. Also, the depth of the cavity will initially be λ. We will �rstly

vary the position of the absorber relative to the backwall or backshort of

the cavity. Refer to �gure 6.13. For example, if, in a simulation, if we wish

the absorber to be placed at a distance λ/10 from the backshort, then if

our initial total cavity depth is λ, our depth parameters for the cavity will

have values of z1 = 9λ/10 and z2 = λ/10. We will initially vary the value

of z2 and perform a simulation for each value, in order to �nd the optimum

position of the absorber relative to the backshort, i.e. the position at which

the absorber absorbs most power. However, as we are varying z2 we shall

wish z1 to remain constant, to avoid adjusting two variables simultaneously.

Therefore, as z2 increases while z1 remains constant, the total depth of the

cavity will clearly increase.

z2

z1

Figure 6.13: Illustration of the variable depth parameters, z1 and z2, applicable to all

cavity geometries.

We begin then, using a cylindrical cavity with cylindrical waveguide in CST,

and set z1 to 9λ/10. Then, we vary z2 from λ/10 to λ in steps of λ/10, for a

total of 10 simulations.

Figure 6.14 shows the S11 results for these 10 simulations. The S11 value
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Figure 6.14: Plot of S11 for z1 = 9λ/10, z2 varying from λ/10 to λ/ for circular absorber

in cylindrical cavity with cylindrical waveguide.

corresponds to the returned power (not absorbed), and so the best cavity for

our purposes is the cavity with the lowest S11 over the bandwidth of interest.

We will take the average value of the S11 over the band from 95− 105 GHz

when searching for the optimum position. The reason for this is that it gives

an indication of the performance of the absorber over what is still a nar-

row bandwidth, and is more representative of a physical situation. Table

Table 6.1: Average S11 values and absorbed power for varied z2 position for z1 = 9λ/10

over the frequency band 95− 105 GHz.

z2 position Avg. S11 Fractional Absorbed

/dB Power

λ/10 -8.5426 0.8601
2λ/10 -15.975 0.975
3λ/10 -22.749 0.995
4λ/10 -24.255 0.996
5λ/10 -9.9201 0.8981
6λ/10 -6.3788 0.7698
7λ/10 -11.921 0.936
8λ/10 -9.9597 0.8991
9λ/10 -8.8948 0.8710
λ -8.4920 0.8584

6.1 shows the average S11 values and the corresponding fraction of power

absorbed by the ohmic sheet in the cavity (1 − Abs(S11)
2). We �nd that

the position of the absober that gives the highest absorption is the absorber
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located 4λ/10 or 1.2 mm away from the backshort. For the single mode case

outlined in �gure 6.7 the value of λ/4 from the backshort gave the optimum

absorption. Here of course the cavity can support more than one mode so

the optimum distance is now di�erent and we must �nd the best average

position for all modes present.

Now that we have found the optimum value for z2, we shall attempt to �nd

an optimum value for z1 also. Note: we must keep in mind that 4λ/10

was found to be the optimum position of the absorber from the backshort

while z1 was also set to 9λ/10. As we vary z1, it may no longer be the case

that z2 = 4λ/10 is the optimum value. This is the complexity of simultane-

ously optimising for two mutually dependent parameters. However, we shall

still attempt varying z1 while �xing z2 = 4λ/10 and observing the results.
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Figure 6.15: Plot of S11 for z2 = 4λ/10, z1 varying from λ/10 to λ for circular absorber

in cylindrical cavity with cylindrical waveguide.

Figure 6.15 shows the results of varying z1 while keeping z2 �xed at 4λ/10.

On quick inspection, it would appear that the values of z1 from λ/10 to 6λ/10

give broadly similar results, while the values from 7λ/10 to λ would appear

to produce much lower S11 values, and hence higher absorbed power values.

However, we shall again look at the average S11 values across the 95-105 GHz

band, and the average absorbed power values. Table 6.2 shows these results.

From the table, we �nd that the optimum position in terms of absorbed

power is (marginally) z1 = 7λ/10, and this is in fact the most prominent

trace in the plot, with an apparent resonant dip at around 102.4 GHz. Our
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Table 6.2: Average S11 values and absorbed power for varied z1 position for z2 = λ/4 over

the frequency band 95-105 GHz.

z1 position Avg. S11 Fractional Absorbed

/dB Power

λ/10 -9.7329 0.8937
2λ/10 -11.955 0.936
3λ/10 -11.691 0.932
4λ/10 -10.470 0.910
5λ/10 -9.6703 0.8921
6λ/10 -12.110 0.938
7λ/10 -28.770 0.999
8λ/10 -27.069 0.998
9λ/10 -24.255 0.996
λ -16.701 0.979

method of optimising both parameters individually then, appears to have

yielded satisfactory results.

We now wish to examine the results of varying the absorber size. For the

present time we will continue to use a circular absorber. For the previous

simulations, we used an absorbing sheet having a radius which completely

�lled the cavity interior, i.e. having a radius of λ. Now, we shall adjust

the size of the absorber by decreasing it from λ in steps of λ/10. We wish

to investigate how large the absorber needs to be, i.e. what is the smallest

radius at which it is still absorbing a signi�cant amount of the power from

the cavity, at these particular values of z1 and z2. Note that if the absorber

was placed closer to the cavity entrance, we would expect to be able to make

the absorber smaller without reducing the absorbing power as much as in

this case. This is because most of the incoming radiation would be directly

absorbed by the sheet without having been re�ected around the cavity. The

size of the absorber is limited in reality due to the dependency of the speed

of the TES detector on the absorber size. A larger absorber is better for ab-

sorption but the heat capacitance increases and so the speed of the detector

is reduced, which is not ideal.

Figure 6.16 shows the result of this simulation performed for an absorber

having radius of λ, down to a radius of λ/10. We see that, as we decrease

the absorber radius, the S11 value increases (i.e. absorbed power decreases)

dramatically. We realise the e�ect the cavity plays, as when the power is

free to re�ect multiple times inside the cavity, such as when the absorber

does not �ll the majority of the cavity radius, the absorbed power decreases
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Figure 6.16: Plot of S11 for z2 = 4λ/10, z1 = 7λ/10 varying absorber radius from λ/10 to

λ for circular absorber in cylindrical cavity with cylindrical waveguide.

dramatically. We note that the absorber is currently placed at a depth of λ/7

inside the cavity, and indeed the waveguide has a radius of λ/2. Therefore,

even for an absorber having the same size as the input waveguide, after having

travelled such a distance much of the incoming radiation will be missed by

the absorber, as alluded to above. We wish then, to move the absorber closer

to the input waveguide, to increase the absorbed power for an absorber whose

radius is less than the total cavity radius. We already know that an absorber

having radius of λ, i.e. completely �lling the cavity, will absorb a very high

level of power. As we wish to �nd an absorber size which is smaller than

this and capable of absorbing high levels of power, we shall choose here an

absorber of radius 7λ/10, and move this absorber closer until we signi�cantly

increase the absorbed power. Then, we may wish to decrease the radius

further, while still retaining high absorbed power, if possible. Figure 6.17

shows the results of these simulations. We notice that the absorbed power

does not infact increase steadily and reach a maximum when the absorber is

directly covering the cavity entrance, but instead �uctuates as the absorber

is moved, reaching a maximum power absorbed at a position of 4λ/10 inside

the cavity entrance when the absorber radius = 7λ/10.

The next step is to �x the absorber at this position of 4λ/10 inside the

cavity and adjust the radius of the absorber, to examine the variability of

the absorbed power as the radius is increased beyond this value of 7λ/10, and

indeed decreased to values which are smaller even than the input waveguide
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Figure 6.17: Plot of S11 for cavity depth of 11λ/10 varying absorber position from the

cavity entrance to 7λ/10 inside the cavity for circular absorber in cylindrical cavity with

cylindrical waveguide.

(5λ/10).
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Figure 6.18: Plot of S11 for cavity depth of 11λ/10 varying absorber radius at a position of

4λ/10 from the cavity entrance for circular absorber in cylindrical cavity with cylindrical

waveguide.

Figure 6.18 shows the results of this simulation for absorber radii ranging

from λ down to λ/5. Table 6.3 shows the S11 averaged over the 95-105 GHz

band, along with the correspinding average absorbed power values. We �nd

that an absorber radius of either 6λ/10 or 7λ/10 gives broadly similar results.
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Increasing beyond this provides no advantage, and indeed the absorbed power

decreases. An absorber radius equal to that of the waveguide (λ/2) results

in almost 90 % of the power being absorbed. As previously mentioned, when

the radius is then increased to either 6λ/10 or 7λ/10 the absorbed power

increases, presumably as the absorber needs to be larger than the waveguide

when it is located a signi�cant distance away from the waveguide to absorb

maximum power, i.e. we need to fully illuminate the absorber. If the absorber

is then larger than the incident beam initially perhaps the edges are shadowed

and the e�ect of increasing size is not realised.

Table 6.3: Average S11 values and absorbed power for cavity depth of 11λ/10 varying

absorber radius at a position of 4λ/10 from the cavity entrance over the frequency band

95-105 GHz.

Absorber Avg. S11 Fractional Absorbed

radius /dB Power

λ -12.182 0.940
9λ/10 -12.346 0.942
8λ/10 -13.016 0.950
7λ/10 -14.405 0.964
6λ/10 -13.752 0.958
5λ/10 -9.721 0.893
4λ/10 -6.857 0.794
3λ/10 -4.671 0.659
2λ/10 -2.703 0.463

It would seem clear then that an absorber having a radius of 6λ/10 or 7λ/10

inside such a cavity with a waveguide of radius 5λ/10 is the optimum size.

Now that we have performed a range of simulations and optimised some

parameters using an entirely circular geometry (i.e. cylindrical cavity, cylin-

drical waveguide, circular absorber), we wish to attempt to �nd similar levels

of absorber e�ciency for an equivalent entirely square geometry (i.e. rectan-

gular cavity, rectangular waveguide, rectangular absorber).

What is evident from this analysis is that for a particular absorber size the

cavity needs to be designed around it to maximise optical performance. Due

to the size of the absorber setting the speed of the device this variable is

usually set �rst and the cavity design is free to be optimised. The rule for

the single moded case, which indicates that optimum absorption should be

achieved when the absorber is λ/4 from the backshort no longer hold, and so
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care must be taken in the optimisation of the geometry of these multi moded

cavities.

6.4.2 Rectangular Cavity with Rectangular Waveguide

We now wish to take our results from 6.4.1 and attempt to recreate the op-

tical performance using similar dimensions, but using an entirely di�erent

shaped geometry, i.e. we are moving from circular to Cartesian geometry.

Naively we expect that a similar absorber area in a similar volume cavity

should perform in a similar way, especially from a geometrical ray tracing

point of view. We will now perform our simulations on a rectangular cav-

ity with a rectangular input (single moded) waveguide. For simplicity, we

wish our cavity to be symmetric, and so we shall use a cavity with a square

cross-section. We shall also use a square waveguide, and hence we will use

a square absorbing sheet. The cavity cross-section will be 2λ2, i.e. each

side will have a length of 2λ. This is of comparable size to the cylindrical

cavity previously examined, and is also within the limits of relatively man-

ageable computational time with CST. We wish to use a waveguide which

will be single-moded, that is it will only support the fundamental mode, for

simplicity. We could use the standard WR-10 waveguide, with dimensions

of 2.54 mm × 1.27 mm. However, for symmetry and simplicity purposes

we would prefer to use a square waveguide pro�le. From analysing the port

modes in CST for various sizes of waveguide, we have found that a waveg-

uide having dimensions of 1.8 mm × 1.8 mm is e�ectively single moded at

100 GHz for rectangular waveguides. CST provides a method for examining

which modes are present in a simulation, illustrated for this case in �gure

6.19. It has two degenerate modes which are activated, or "cut on" at 83.2

GHz, and so these e�ectively equate to the same mode, but with a di�erent

polarisation in orthogonal directions. Also, making the length of the waveg-

uide 3 mm or λ, as we have, ensures that some of the higher order modes

which would activate at frequencies of around 166 GHz and above would not

in fact be present in the cavity as they would have died o� before reaching

the inside of the cavity (become evanescent). There are also two other modes

which would be activated at 117.7 GHz. As we are speci�cally chosing our

simulation band as 95-105 GHz, these modes will not a�ect us. In any case,

these modes would not a�ect our simulations as we have speci�cally chosen

to only use one mode in our waveguide port in CST, as is the case through-
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out all the simulations performed in CST. However, it is more appropriate

for the general case to specifcally design the waveguide to only support one

mode. We shall make a �rst attempt at an absorber simulation using a very

Figure 6.19: Illustration of port mode calculation facility in CST, in this case for a square

waveguide of dimensions 1.5 mm × 1.5 mm excited with the �rst 5 modes.

Figure 6.20: CAD model created in CST showing a rectangular cavity of cross-sectional

area 2λ2 and depth 11λ/10, with square absorber of side length 2λ/10.

small square absober located 4λ/10 from the cavity entrance.

Figure 6.20 shows the general setup here. A small absorber (side length 2λ/10

is pictured.) We �rst attempt this simulation and the S11 result is shown

in �gure 6.21. We achieve fairly low levels of absorption (S11 of −.675dB

averaged across the band), as expected, as we have a very small absorber

relative to the area of the waveguide and cavity.
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Figure 6.21: CST S11 result for rectangular cavity with rectangular waveguide containing

square absorber of sidelength 2λ/10.

Now, we wish to reproduce to some extent the results for the cylindrical

cavity fed by a cylindrical waveguide, namely the result for the absorber of

radius 7λ/10 from �gure 6.18, where the cavity has a depth of 11λ/10 and

the absorber is located at the position of 4λ/10 from the cavity entrance.

This was our optimum result for that cavity geometry, and it incurred quite

a number of simulations and opimisation to achieve that result. We wish to

perform the analogous simulation in a rectangular cavity of the same depth

and with the absorber at the same location. The di�erence in this case will

be that we are considering a rectangular asorber, rather than a circular one.

The waveguide in this case has a much smaller cross-sectional area, but, as

any size of empty perfectly resonant cavity should return 0 dB power, we

assume that it is the size of the absorber relative to the size of the waveguide

that is the key factor, rather than the absolute size of the absorber. We cal-

culate that the optimum value of absorber radius (7λ/10) for the cylindrical

cavity, corresponds to an absorber to waveguide cross-sectional area ratio of

1.96. Hence, for a square waveguide with cross-sectional area 1.8×1.8 mm2,

we require a square absorber of area 6.347 mm2. This corresponds to an

absorber sidelength of 2.52 mm. The result of the CST simulation of this

setup is shown in �gure 6.22, along with the result for the equivalent size

circular absorber in the cylindrical cavity.

Clearly, the results are signi�cantly di�erent, with an average across the band

in the rectangular case of -6.12 dB, compared with -14.41 dB in the cylin-

drical case. Also, in the rectangular case, the S11 approaches 0 dB brie�y,

indicating little or no power absorber around 103 GHz. It must be borne in
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Figure 6.22: CST S11 result for rectangular cavity with rectangular waveguide containing

square absorber of sidelength 2.52 mm.

mind, however, that the cylindrical cavity has being heavily optimised, and

this has e�ectively been copied for the rectangular case, without the rigor-

ous optimisation. It is clearly an oversimpli�cation then, to asssume that

the optimum result for the cylindrical case should translate directly to the

rectangular cavity case. As a last example here we compare the case of the

all-cylindrical geometry and the all-rectangular geometry, where the absorber

�lls the cavity and is located 4λ/10 from the cavity entrance. This result is

shown in �gure 6.23. We �rst note that the result for the rectangular cavity

is less consistent across the band. Also, it again almost reaches 0 dB at a

frequency of around 103 GHz. When we calculate the average S11 values, it

is found that, in the rectangular case, the average S11 is -9.17 dB, whereas

in the cylindrical case the average is -12.17 dB. Again, clearly the cylindrical

cavity has ben heavily optimised, whereas the rectangular cavity has not.

This initial analysis indicates that simple geometrical design rules for such an

optical cavity will not work well and a full modal or electromagnetic analysis

is required to optimise such structures at millimetre wavelengths.
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Figure 6.23: CST S11 result for comparing both rectangular and cylindrical cavities with

an absorber �lling the cavity at a location 4λ/10 from the cavity entrance.

6.4.3 Cavity Variations

We have considered both a cylindrical and rectangular cavity. In each case

these were fed by a waveguide of the corresponding geometry, i.e. the cylin-

drical cavity was fed by a cylindrical waveguide, and the rectangular cavity

was fed by a rectangular waveguide. As an exercise, we will now brie�y ex-

amine the e�ect of using the other two variation, i.e. rectangular cavity with

cylindrical waveguide, and cylindrical cavity with rectangular waveguide.

Whereas we have previously rigorously optimised the cavity and absorber po-

sition and obsorber size, by performing up to around 40 unique simulations,

at an excessive time cost, for these two case, we shall keep the analysis sim-

ple. We shall begin with our initial cavity of depth λ, and vary the position

of the aborber inside this cavity, while keeping the cavity the same depth,

and performing the simulation for three di�erent absorber depths. This will

give some small insight into these cavity geometries, and, as stated, these

variations are in addition to the main analyses peformed in sections 6.4.1

and 6.4.2.
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Rectangular Cavity with Cylindrical Waveguide

We shall �rst consider a rectangular cavity with a circular waveguide and

containing an absorber sheet, as in �gure 6.12(a). The cylindrical waveguide

is chosen so as to be single moded at 100 GHz, with a radius of 1.5 mm.

We will vary the geometry and the position of the absorber sheet within the

cavity. Figure 6.24 shows the e�ect of varying the position of the absorber

sheet in the cavity, for both a square absorber which is the size of the cavity

(2λ2), and the size of the waveguide radius (λ2). Note, the convention is set

so that the back wall of the cavity is the origin, so for example the position

given as λ/4 is λ/4 from the back wall or backshort of the cavity, rather than

from the entrance to the cavity.

Figure 6.24 shows the result of the time domain calculation using both a

square absorber which completely �lls the cavity (�gure 6.24(a)), and which

is the size of the input waveguide (�gure 6.24(b)). Note: this is a square

absorber and we have a circular waveguide, so when we say the absorber is

the size of the waveguide, we mean it is a square of sidelength equal to the

cylinder diameter, so that it is slightly larger in cross-sectional area than the

waveguide.
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Figure 6.24: S11 for rectangular cavity with circular waveguide and square ohmic sheet

absorber using time domain solver over the range 95-105 GHz.

Again, the results are not entirely geometrically predictable from the �gure,

we must average the S11 across the entire band. With reference to �gure

6.24(a), the averaged S11 values for the various absorber positions are as

follows: λ/4: -18.257 dB, λ/2: -1.480 dB, 3λ/4: -12.291 dB. The absorber

115



6.4. Cavity Analysis

position with the lowest S11 value, λ/4 from the backshort, corresponds to

an absorption fraction of 98.5%. This is interesting, as we have not opti-

mised the cavity size as rigorously as we had in secion 6.4.1, and yet we can

obtain high levels of absorption. Were we to rigorously optimise this cavity

geometry, or even to perform the simulation over a much larger number of

absorber postitions, we would likely �nd a more optimum position for the

absorber in relation to the backshort and increase the fraction of power ab-

sorbed. Again, this analysis suggests the resonant behaviour of the cavity

is not predicatable and di�erent geometries behave di�erently than expected.

Moving to an absorber of the size of the waveguide, we wish to examine the

S11 results. With reference to �gure 6.24(b), the averaged S11 values for the

various absorber positions are as follows: λ/4: -15.455 dB, λ/2: -1.182 dB,

3λ/4: -18.622 dB. In this case, the position (out of the 3 chosen positions)

where we obtain the highest fraction of power absorbed is at 3λ/4 (λ/4 from

the entrance), with 98.6% of input power absorbed.

Cylindrical Cavity with Rectangular Waveguide

The second variation on a cavity with an alternate geometry of waveguide

is a cylindrical cavity fed by a rectangular waveguide. This is again the

same single moded waveguide as was used in section 6.4.2, having a square

cross-section of 1.8× 1.8 mm.

Figure 6.25 shows the results of the simulation for both an absorber com-

pletely �lling the cavity (�gure 6.25(a)), and an absorber of the same cross-

sectional area as the waveguide (6.25(b)). Again, we �rst examine the case

where the absorber completely �lls the cavity. With reference to �gure

6.25(a), the averaged S11 across the band values for the various absorber

positions are as follows: λ/4: -14.955 dB, λ/2:-2.3486 dB, 3λ/4:-13.767 dB.

The position leading to highest absorption in this case is λ/4, with 97% of

input power being absorbed. It is important to note from the �gure that the

position of lowest absortption is in around 102 GHz, and this is true of each

absorber position, although we have chosen to examine the results across the

band as a whole.

The �nal variation we shall examine here is for an absorber having the same

cross-sectional area as the input waveguide, for the same three positions

116



6.5. Patch Antennas

95 100 105
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency /GHz

S
ca

tte
rin

g
P

ar
am

et
er

/d
B

S11 parameter for cylindrical cavity with circular absorber

λ/4
λ/2
3λ/4

(a) S11 with varying position of circular

absorber of full cavity radius.

95 100 105
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency /GHz

S
ca

tte
rin

g
P

ar
am

et
er

/d
B

S11 parameter for cylindrical cavity with circular absorber

λ/4
λ/2
3λ/4

(b) S11 with varying position of circular

absorber of waveguide radius.

Figure 6.25: CST Time Domain Solver S11 pro�les for circular cavity with rectangular

waveguide for various absorber and dimensions over the range 95-105 GHz.

within the cavity. With reference to �gure 6.25(b), the averaged S11 values for

the various absorber positions are as follows: λ/4: -3.123 dB, λ/2:-1.946 dB,

3λ/4: -13.769 dB. The absorber posiion leading to the lowest average S11

value is 3λ/4 from the backshort, with (96%)of total input power absorbed.

We note that in both the case where the absorber �lls the cavity and where

the absorber is the size of the waveguide, we achieve e�ectively exactly the

same S11 result, indicating that as the absorber is located so close to the

cavity entrance, the absorber is e�ectively obstructing the path for all of the

input radiation.

In this brief examination of the two types of cavity which were not optimised

in as much detail as the previous two cases, we have found that by performing

a very low resolution variation of the absorber position throughout the cavity

depth, we can gain some insight into the irregular behaviour of the cavity

and perhaps by chance have found an appropriate position of the absorber

within the cavity to obtain high levels of power absorption. Geometrical

analysis of such cavities can clearly not be used to analyse their behaviour

in this wavelength band.

6.5 Patch Antennas

Patch antennas, or microstrip antennas, are a class of antenna which have a

low spatial pro�le, and for this reason they are also sometimes referred to as
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planar antennas. To avoid confusion, we will generally always use the term

"patch antenna". A patch antenna, then, consists of a thin metallic strip

separated by a distance, h, from a metallic groundplane. The two metallic

surfaces are separated by a dielectric substrate of thickness h, and h << λ0,

where λ0 is the freespace wavelength of the radiation under consideration

[48]. Figure 6.26 shows the operation of such an antenna. This example

uses a microstrip line feed. Other methods exist, and another which will be

considered in this chapter is coaxial probe feeding. The radiation is fed along

the feedline to the patch, which has length L and width W . The patch is

designed to radiate primarily in the direction normal to the patch, in this

case the positive x−direction.

Figure 6.26: Schematic showing a patch antenna. Source: [48]

Patch antennas are generally simple and inexpensive to manufacture and can

usually be created using printed circuit board technology. This, along with

their low pro�le, is why they are commonly used in electronic devices such

as mobile phones, along with having aerospace and military applications. It

is also relatively simple to produce arrays of patch antennas. Some disad-

vantaqes of patch antennas include them having low e�cency and a narrow

bandwidth. For our purposes, we do not wish to operate the patch antenna

as an actual radiating antenna, but as a receiver. More than this, we wish

to potentially measure the �eld inside the cavity, without adversely a�ecting

the cavity resonances, i.e. we do not wish to completely change the nature

of the �eld inside the cavity by measuring it with the patch antenna.

The most common type of patch antenna is the rectangular patch, and so we

shall choose to describe it in more detail here. We will use the transmission-

line model.

Because the dimensions of the patch are �nite, the �elds at each edge of

118



6.6. Patch Design

the patch undergo fringing, i.e. the �eld exists outside the dielectric, and

the e�ective dielectric constant is changed. The fringing is a function of the

dimensions of the patch and the height of the substrate. The fringing e�ects

may be seen in �gure 6.26 at the edges of the patch. The e�ective dielectric

constant, then, is given by:

εreff =
εr + 1

2
+
εr − 1

2

[
1 + 12

h

W

]−1/2
, (6.3)

where εr is the dielectric constant of the substrate and W is the width of the

patch. The extra length added to each edge of the patch due to the fringing

e�ects, ∆L, may be found using expression 6.4 [48]

∆L

h
= 0.412

(εreff + 0.3)

(
W

h
+ 0.264

)
(εreff − 0.258)

(
W

h
+ 0.8

) . (6.4)

For microstrip antennas, the ratio of the length, L, of the patch to the height,

h, of the substrate is generally much greater than 1, and so fringing e�ects

are reduced. To design a rectangular patch, we �rst specify the following

parameters: εr, fr, h/λ0, where fr is the resonant frequency and λ0 is the

freespace wavelength. The following set of equations may then be used to

choose values for the dimensions of a rectangular patch:

W =
c

2fr

√
2

εr + 1
(6.5a)

and

L =
c

2fr
√
εreff

− 2∆L. (6.5b)

6.6 Patch Design

We will �rst design a rectangular patch antenna for operation at 100 GHz,

using the formulae in 6.5 to calculate the parameters, and using CST to model

the antenna. We wish to design a patch antenna which will be resonant at 100

GHz, and investigate its properties in free space before examining it inside a

cavity. Using these formulae, and using a substrate of relative permittivity

εr = 2 and substrate thickness h=0.1 mm, we obtain a value for the width,

W=1.225 mm, and the length, L=0.908 mm of the patch.
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Figure 6.27: Rectangular patch designed for 100 GHz shown in the CST Microwave Studio

enviroment.
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Figure 6.28: S11 in dB from 80-120 GHz for rectangular patch designed using equations

6.3-6.5.
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Figure 6.27 shows the patch as it looks in the CST environment. The �gure

also shows the waveguide port which is feeding the patch. Figure 6.28 shows

a plot of the resulting S11 calculation performed across a large band (80-

120 GHz) for illustrative purposes. We note that, having designed this patch

to operate at 100 GHz, the largest dip in the re�ection parameter (S11) in fact

occurs at around 105 GHz. The dip in the S11 indicates low return loss for

launched power and therefore e�cient radiation at this frequency as designed.

This re�ection dip is in fact quite wide and is much lower at 100 GHz than

it is at say, 85 GHz, but nevertheless, this is not its resonant point. We

must look more closely at the choosing of the parameters to optimize this

antenna for 100 GHz, or at least closer to it than 105 GHz. If we now try

ignoring the fringing e�ects in the calculations, we obtainW= 1.225 mm and

L= 1.06 mm. When we simulate this using CST, we get the result as in

�gure 6.29. The resonant frequency is now lower, but it is much lower than

100 GHz, at around 93 GHz. We see then that the fringing in�uences the

resonant frequency of the patch signi�cantly, and ignoring the fringing is not

feasible. As the formulae were not e�ective in designing for us a rectangular
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Figure 6.29: S11 in dB for rectangular patch designed ignoring fringing e�ects

patch with the desired resonant frequency, we will look at adjusting the patch

size in an attempt to obtain resonance at 100 GHz.

By varying the parameters such that W= 1.225 mm and L= 0.966 mm, we

now obtain the result as shown in �gure 6.30. We now have a rectangular

patch which has a re�ection dip at around 100 GHz, as desired. We will also
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6.6. Patch Design

examine the far �eld pattern of this antenna.
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Figure 6.30: S11 in dB for rectangular patch designed by adjusting the length to obtain

resonance at 100 GHz.

(a) 3-dimensional far �eld plot for the

100 GHz rectangular patch.
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(b) 2-dimensional far �eld plot for the

100 GHz rectangular patch.

Figure 6.31: Far �eld patterns for 100 GHz rectangular patch.

Figure 6.31 shows the far �eld radiation pattern from the antenna. The

important point to note here, and can be seen most clearly in the 3D plot

of �gure 6.31(a) is that the far �eld radiation pattern is strongest in the

z-direction (the patch lying in the x-y plane). This shows that it is indeed

operating as a patch antenna and radiating in this direction, despite being

fed with radiation e�ectively along the y-direction. Figure 6.31(b) simply

plots the same far �eld information using a 2D plot. Note that the far�eld

directivity scale is dBi, which is simply a comparison relative to an isotropic

antenna, radiating uniformly in all directions.
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6.6. Patch Design

Now that we have an antenna which works as desired at 100 GHz, this will

be used later to perform further simulations. However, we would also like to

examine and design another type of patch antenna to operate at 100 GHz.

To this end, we shall now examine a circular patch antenna. From [48], we

have an expression for the radius, a, is given by

a =
F√

1 +
2h

πεrF

[
ln

(
πF

2h

)
+ 1.7726

] (6.6a)

where

F =
8.791× 109

fr
√
εr

. (6.6b)

Note: in equation 6.6a, the substrate height, h is given in cm. As well as

a di�erent geometry for the patch, an alternative feed method will be used;

a coaxial feed. The CST help topics installed with the CST installation [23]

provide a number of useful tutorials containg worked examples. Among these

is an antenna tutorial which provides a step-by-step guide to constructing a

coaxially fed circular patch antenna for operation at 2.4 GHz (see �gure

6.32), and for performing simulations on same. Figure 6.33(a) shows the

CAD model of the circular patch created in CST using the tutorial steps.

The view is from the underside of the patch antenna, where the groundplane

is hidden from view temporarily so that the outline of the patch can be seen,

along with the cylinder housing the coax feed(seen slightly above the centre

of the �gure). This is then fed by a waveguide which is the size of the coax

feed. Figure 6.33(b) shows the S11 parameter for the patch described. We

Figure 6.32: Screenshot from CST antenna tutorial showing coaxially fed patch

antenna.[23]

note that it has a sharp dip in its re�ection pro�le at around 2.4 GHz, as it

was designed for. We now wish to create the same type of patch with a dip
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6.6. Patch Design

(a) CST CAD model of 2.4 GHz coaxi-

ally fed circular patch.
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(b) S11 for circular coax fed patch at 2.4

GHz.

Figure 6.33: CAD model and S11 2.4 GHz rectangular patch.

in re�ection at 100 GHz, by simply scaling its dimensions by the scale factor

appropriate for the di�erence in wavelength. This factor is

λ2.4GHz
λ100GHz

=
0.125

0.003
= 41.67. (6.7)

The radius of the circular patch given in the tutorial [23] is 23 mm. From ap-

plication of equations 6.6 using the other stated parameters from the tutorial

such as substrate height and permittivity, we obtain a radius of 23.46 mm.

It would appear that the formula does not take into account fringing e�ects

which adjust the resonant frequency.

The scaling factor mentioned in equation 6.7 in fact is based on the assump-

tion that both patches use substrates of indentical relative permittivities.

In fact this may not be as we would wish, for a strict comparison of the

two alternative patch antenna geometries. As we have used a value of 2

for the rectangular antenna, we should do this also for the circular antenna.

Then, we will scale the substrate height, etc. down to the correct size for

the wavelength (i.e. scale by dividing by the factor of 41.67) and then �nd

the appropriate radius using the formulae. Scaling the substrate and patch

heights down to values appropriate for the shorter wavelength, and making

the calculation for the radius using equations 6.6, we obtain a value for the

radius of a = 0.61mm. Performing a simulation using this radius, we obtain

the result in 6.34. We note that, in a similar way as for the rectangular patch,

using the formulae has resulted in a patch with a resonant point which is not

precisely at our desired frequency of 100 GHz.

Much as before then, we shall maually adjust the radius of the patch (along
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6.7. Patch Antenna in Cavity

80 90 100 110 120
-12

-10

-8

-6

-4

-2

0

2

Frequency /GHz

S
ca

tte
rin

g
P

ar
am

et
er

/d
B

S11 parameter for circular patch from 80-120 GHz

Figure 6.34: S11 for circular coax fed patch designed using equations 6.6.

with the radius of the coax feed). We �nd that decreasing the radius of the

patch and feed increases the frequecy of the resonant dip in the re�ection

pro�le. We �nd that a radius of 0.596mm gives the desired result, i.e. we get

a dip in the re�ection pro�le at 100 GHz, as in �gure 6.35(a). Figure 6.35(b)

shows the far �eld pattern of the antenna. We note that in comparison

to the 100 Ghz rectangular patch antenna (�gure 6.31(b)), the antenna is

radiating strongly in the z-direction, and the gain levels on-axis are broadly

similar. However, the far �eld pattern for the circular antenna appears to be

much more symmetric. The circular antenna is indeed more geometrically

symmetric, in the sense that its radiating face is simply circular, and fed

directly from behind this. Compare this to the rectangular feed option,

where we have a strip of metal in the same plane as the radiating antenna,

being fed in the plane perpendicular to the direction of radiation. We may

not be surprised then, that the radiation pattern of such an antenna is not

uniform, as some radiation may be actually radiated at points along the

feedline. Also, the shape of the patch itself is not uniform in the x- and y-

directions, whereas the shape of the circular patch is symmetric.

6.7 Patch Antenna in Cavity

Having examined both patch antenna designs in free space and resonant cav-

ities containing absorber material, we must now turn our attentions to patch
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6.7. Patch Antenna in Cavity
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(a) S11 for circular coax fed patch at 100

GHz.
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(b) Far �eld pattern for circular coax fed

patch at 100 GHz.

Figure 6.35: S11 & far �eld pattern for circular patch at 100 GHz.

antennas situated inside the cavities themselves, as a means of measuring the

�eld inside the cavity, as was our initial objective.

The use of a patch antenna within a cavity is an extremely novel technique

to potentially analyse or get an insight into how the cavity behaves optically.

The patch should actually act as a poor reception antenna, so as not to a�ect

the cavity re�ections and modes too much. This is the inherent problem of

trying to "see" or measure the re�ections within the cavity, as this cannot

be done without a�ecting the result. We hope to have minimum disruption

from the patch antenna.

The patch mounted in the back face of the cavity could detect the power

incident at that point. If we can then mechanically rotate the back face of

he cavity, we can potentially map out the �eld structure there and possibly

gain some insights into the cavity multiple re�ection structure.

6.7.1 Rectangular Patch Antenna

We begin initially with an empty resonant cavity fed by a waveguide port

(port 1), and add the rectangular patch antenna designed for operation at

100 GHz from section 6.6, with its own waveguide port (port 2) to monitor

the power received (Figure 6.36(a)), near the back face of the cavity. Figure

6.36 shows the result of the time domain simulation.

We are attempting now for the �rst time to use the patch antenna (speci�cally

the waveguide port attached to its feed), as a detector, to monitor power
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6.7. Patch Antenna in Cavity

(a) CST CAD model

showing rectangular

100 GHz patch inside a

rectangular cavity fed by

a circular waveguide.
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(b) S11 and S21 for the rectangular patch in-

side the rectangular cavity.

Figure 6.36: CST CADmodel and Time Domain Solver S11 and S21 pro�les for rectangular

patch antenna inside over the range 95-105 GHz.

incident on the antenna and successfully coupled. We note that what we

measure as the S21 does correspond to the S11 in that the frequencies at

which we see maxima in the S11 are the same frequencies where we see minima

in the S21, and vice versa. Also, the presence of the patch antenna with its

dielectric material reduces the S11 parameter of the cavity signi�cantly, which

was 0 dB return for an empty cavity of the same dimensions, suggesting that

the patch has a level of in�uence that is quite signi�cant.

Clearly, the S-parameters vary signi�cantly across the band, and so it will

be more illustrative to �nd the average value of each parameter between

95 − 105 GHz. Performing this calculation, we �nd that the average S11

value is -1.522 dB, and the average S21 is -8.001 dB. By simply adding the

patch into the cavity, the average returned power (S2
11) decreases from 100%

to 70.4%. Accounting for the contribution to this decrease due to the S21,

we �nd that the patch antenna itself (including dielectric material) seems to

cause a decrease in overall measured power of 13.7%.

We also wish to investigate the e�ect of moving the location of the patch

inside the cavity. Figure 6.37 shows the results of this. Again, it is more

instructive to quote the average values. Also, it is the average S11 that is

most instructive in quantifying the e�ect of the presence of the patch antenna

in the cavity, as we already know that without anything present in the cavity

127



6.7. Patch Antenna in Cavity
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(a) S11 and S21 for rectangular patch in rect-

angular cavity moved to left side of cavity.
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(b) S11 and S21 for rectangular patch in

rectangular cavity moved to right side of

cavity.
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(c) S11 and S21 for rectangular patch in

rectangular cavity moved to top of cavity.
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(d) S11 and S21 for rectangular patch in

rectangular cavity moved to bottom of cav-

ity.

Figure 6.37: CST Time Domain Solver S11 and S21 pro�les for rectangular patch in

rectangular cavity with the patch moved in each direction from the centre of the cavity

over the range 95-105 GHz.

we have an average S11 value of 0 dB across the band. Table 6.4 shows these

average values for the patch located at various positions inside the cavity,

including the values discussed above (middle), and the corresponding values

for the cases shown in �gure 6.37. The presence of di�erent S11 and S21

parameters suggests that there may be variation in the cavity �eld structure,

but more rigorous analysis would be required to verify this.

We have examined placing the designed rectangular patch inside the cavity

and monitoring the results. A circular patch has also been designed in section

6.6. This patch has not been integrated into the cavity, and this remains to

be implemented in the future.
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6.7. Patch Antenna in Cavity

Table 6.4: Average S-parameter values and corresponding power values for cavity depth

of 11λ/10 containing a rectangular patch antenna at various locations in the cavity over

the frequency band 95− 105 GHz.

Patch antenna Avg. S11 Fractional Measured Avg. S21 Fractional Measured

location in cavity /dB S11 Power /dB S21 Power

middle -1.5217 0.704 -8.0012 0.1584
left -3.5848 0.4380 -10.2117 0.0952
right -1.6943 0.6770 -13.9795 0.0400
top -3.5848 0.4380 -10.2117 0.0952

bottom -1.3838 0.7271 -14.8707 0.0326
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Chapter 7

Conclusion

This thesis has been concerned broadly with the investigation and analysis of

the principles and techniques which can be applied to millimetre-wave or ter-

ahertz optical systems. Speci�cally, the investigation of speci�c components

applicable to these wavelengths was presented. A theoretical and experi-

mental veri�cation of non-d�racting axicons was presented and an outline

of optical analysis for future detector devices was described, including an

initial investigation of KID devices and waveguide coupled TES devices. An

extension to Gaussian Beam Mode Analysis used to investigate cavities was

also presented.

The background science of this speci�c region of the EM spectrum was de-

scribed in context in Chapter 1, including a discussion of the current ap-

plications of the technology, especially for the application of astronomical

receivers. The related background optical analysis theory was presented and

developed in Chapter 2, and most tools and techniques that would be applied

throughout the thesis were presented. An overview and description of the

analytical techniques used in the commercial software CST Studio Suite®,

a software package which would prove important in our analyses, was pre-

sented. Also, an overview of measurement techniques in millimetre-wave

optics was given, speci�cally for the laboratory facilities at NUIM.

In Chapter 3 the principles of phase transforming elements were discussed,

in particular axicons; quasioptical components capable of producing a highly

collimated beam when incident Gaussian form radiation is incident upon

them. Analysis of this particular element was performed using Gaussian
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Beam Mode Analysis, an extremely useful analysis technique in the mm-

wave region. This analysis described and built upon previous work described

in [27]. Whereas in that work an o�-axis elliptical mirror was used for initial

beam collimation, our analysis employed a simpler system where the axi-

con was illuminated directly, suggesting possible use in much more compact

systems where beam collimation is required or bene�cial. Experimental mea-

surements were performed to verify the analysis on such an axicon having a

prism angle of 10◦, and these were found to agree well with GBM simulations.

Another axicon, with a prism angle of 20◦, was designed and manufactured,

and similar measurements performed on it. These measurements also veri�ed

simulations. It was found in each case that the measured beam had slight

asymmetry on one side, indicating a possible alignment error in measurement

setup, although this error has not been accounted for. Measurements were

also performed using the same system without an axicon present, and in all

cases it was found that the beam from the axicon was signi�cantly more

collimated and the potential use of axicons to collimate quasioptcical beams

was illustrated.

In Chapter 4 the priciples behind a class of superconducting photon detector

known as Kinetic Inductance Detectors (KIDs) were outlined and their use

in astromomical applications was discussed, as well as the role that could

be played by NUI Maynooth in developing front end optics for such devices.

Investigations were made using plane wave analysis in CST, and this was

outlined as a useful starting point in the optical analysis of such a system.

In future work the optical analysis of KID devices will be undertaken using

the plane wave analysis technique outlined here.

Chapter 5 discussed the extension of the standard GBM analysis to investi-

gate multiple re�ections in millimetre wave systems. The model simulated a

corugated horn illuminating a system containing two metallic discs, the sizes

of which were adjusted, and the re�ection and transmision components were

calculated as a function of distance between the rings. In this way stand-

ing waves produced between the rings were examined and found to occur at

separation distances which were integral multiples of λ/2, where λ = 3 mm.

Also, a method used for the analysis of standing waves between feedhorns

[42] was adapted to investigate the form of the modes in the resonant Fabry-
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Perot cavity. It was found that the cavity eigenmodes took the form of the

Laguerre-Gaussian modes as expected, and the form of the re�ected power

component could be illustrated using this SVD technique brie�y described.

Chapter 6 outlined the proposed SPICA mission and in particular SAFARI,

an instrument onboard SPICA. A simpli�ed cavity model which could po-

tentially be manufactured for measurements to be performed in Maynooth

was outlined. Signi�cant use was made of the commercial software package

CST, and this was initially compared with the inhouse mode matching solu-

tion SCATTER for veri�cation purposes on a simple test case. A cylindrical

cavity was manually optimised with an absorber sheet in order to obtain the

optimum cavity size, and the optimum location and size of an absorber sheet

within the cavity to maximise optical absorption was outlined. This was

extrapolated for use within a cavity having a rectangular geometry, making

assumptions based on a simple ray tracing approach, i.e. that the optimum

cylindrical geometry may translate to a rectangular geometry without the

need for independent optimisation. This was discovered to be an oversim-

pli�cation, and in fact the optimum result for the cylindrical cavity did not

translate directly to the rectangular geometry. This analysis indicates that

the optical behaviour of these multimoded cavities cannot be described ac-

curately using geometrical techniques and the use of full EM simulations

such as CST or a modal analysis is required to accurately predict the optical

e�ciency of such waveguide coupled detectors. Brief analyses were also per-

formed using alternating combinations of cavity and waveguide geometries,

i.e. cylindrical waveguide with rectangular cavity, and rectangular waveguide

with cylindrical cavity. A type of antenna known as a patch antenna was

described. Such an antenna was highlighted as a potential detector to be

used within our simpli�ed physical model, and two di�erent types of patch

antenna were designed for use at 100 GHz. The rectangular patch antenna

was investigated inside the cavity. It was found in this investigation that

the location of the patch inside the cavity had an e�ect on the measured

S-parameters, suggesting a possible variation in the cavity �eld structure in-

cident on the patch. A more rigorous analysis is required here in the future,

and also an ivestigation of the circular patch antenna within the cavity is

required. The goal of this use of a patch antenna is to try to probe the cavity

modes that exist in such waveguide structures. The patch antenna should be

a poor antenna so as to not e�ect the cavity but yet return enough power to
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potentially map out the cavity �eld by rotating the patch within the cavity.

In the future it is hoped to investigate this experimentally by building on the

analysis presented here.
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