
DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS 1Gradient Calculations for Dynamic RecurrentNeural Networks: A SurveyBarak A. PearlmutterAbstract| We survey learning algorithms for recurrentneural networks with hidden units, and put the various tech-niques into a common framework. We discuss �xedpointlearning algorithms, namely recurrent backpropagation anddeterministic Boltzmann Machines, and non-�xedpoint al-gorithms, namely backpropagation through time, Elman'shistory cuto�, and Jordan's output feedback architecture.Forward propagation, an online technique that uses adjointequations, and variations thereof, are also discussed. Inmany cases, the uni�ed presentation leads to generaliza-tions of various sorts. We discuss advantages and disadvan-tages of temporally continuous neural networks in contrastto clocked ones, continue with some \tricks of the trade"for training, using, and simulating continuous time and re-current neural networks. We present some simulations, andat the end, address issues of computational complexity andlearning speed.Keywords| Recurrent neural networks, backpropagationthrough time, real time recurrent learning, trajectory learn-ing. I. IntroductionA. Why Recurrent NetworksThe motivation for exploring recurrent architectures istheir potential for dealing with two sorts of temporal be-havior. First, recurrent networks are capable of settling toa solution that satis�es many constraints [1], as in a vi-sion system which relaxes to an interpretation of an imagewhich maximally satis�es a complex set of con
icting con-straints [2], [3], [4], [5], [6], a system which relaxes to �nd aposture for a robot satisfying many criteria [7], and modelsof language parsing [8]. Although algorithms suitable forbuilding systems of this type are reviewed to some extentbelow, such as the algorithm used in [9], the bulk of thispaper is concerned with the problem of causing networksto exhibit particular desired detailed temporal behavior,which has found application in signal processing [10], [11],speech and language processing [12], [13], [14], and neuro-science [15], [16], [17].It should be noted by engineers that many real-worldproblems which one might think would require recurrentarchitectures for their solution turn out to be solvable withfeedforward architectures, sometimes augmented with pre-processed inputs such as tapped delay lines, and variousother architectural embellishments [18], [19], [20], [21], [22],[23], [24], [25], [26], [27], [28], [29], [30], [31], [10], [32], [33],[34], [35]. For this reason, if one is interested in solving aparticular problem, it would be only prudent to try a va-riety of non-recurrent architectures before resorting to themore powerful and general recurrent networks.B. Pearlmutter is with the Learning Systems Department atSiemens Corporate Research, 755 College Road East, Princeton,NJ 08540. E-mail: bap@learning.siemens.com

This paper is concerned with learning algorithms for re-current networks themselves, and not with recurrent net-works as elements of larger systems, such as specializedarchitectures for control [36], [37], [38], [39]. Also, sincewe are concerned with learning, we will not discuss thecomputational power of recurrent networks considered asabstract machines [40], [41], [42]. Although we considertechniques for trajectory learning, we will not review prac-tical applications thereof. In particular, grammar learning,although intriguing and progressing rapidly [43], [44], [45],[46], [47], [48], [49], typically involves recurrent neural net-works as components of more complex systems, and also atpresent is inferior in practice to discrete algorithmic tech-niques [50], [51]. Grammar learning is therefore beyond ourscope here. Similarly, learning of multiscale phenomena,which again typically consists of larger systems containingrecurrent networks as components [52], [53], [54], [55], willnot be discussed.B. Why Hidden UnitsWe will restrict our attention to training procedures fornetworks which may include hidden units, units which haveno particular desired behavior and are not directly involvedin the input or output of the network. For the biologicallyinclined, they can be thought of as interneurons.With the practical successes of backpropagation, it seemsgratuitous to expound the virtues of hidden units and in-ternal representations. Hidden units make it possible fornetworks to discover and exploit regularities of the task athand, such as symmetries or replicated structure [56], [57],and training procedures capable of exploiting hidden units,such as the Boltzmann machine learning procedure [58]and backpropagation [59], [60], [61], [62], are behind muchof the current excitement in the neural network �eld [63].Also, training algorithms that do not operate with hiddenunits, such as the Widrow-Ho� LMS procedure [64], canbe used to train recurrent networks without hidden units,so recurrent networks without hidden units reduce to non-recurrent networks without hidden units, and therefore donot need special learning algorithms.Consider a neural network governed by the equationsdydt = f(y(t); w; I(t)) (1)where y is the time-varying state vector, w the parametersto be modi�ed by the learning, and I a time-varying vec-tor of external input. Given some error metric E0(y; t), ourtask is to modify w to reduce E = R E0(y; t)dt. Our strat-egy will be gradient descent, so the main portion of our

2 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKSwork will be �nding algorithms to calculate the gradientrwE, the vector whose elements are @E=@wi.The above formulation is for a continuous time system.The alternative to this is a clocked system, which obeys anequation of the form y(t +�t) = f(y(t); w; I(t)): Withoutloss of generality, for clocked systems we will use �t = 1,giving y(t + 1) = f(y(t); w; I(t)); (2)with t an integer.Certainly, barring high-frequency components in I, thebehavior of (1) can be precisely duplicated by (2) withsuitable choice of f in the latter. For this reason, in order todetermine the practical tradeo�s of one against the other,we must consider particular functional forms for f:We willconsider the most common neural network formulation,dyidt = �yi + �(xi) + Ii (3)where yi is the state or activation level of unit i,xi =Xj wjiyj (4)is the total input to unit i, wij is the strength of the connec-tion from unit i to unit j, and � is a di�erentiable function.1The initial conditions yi(t0) and driving functions Ii(t) arethe inputs to the system.This de�nes a rather general dynamic system. Even as-suming that the external input terms Ii(t) are held con-stant, it is possible for the system to exhibit a wide rangeof asymptotic behaviors. The simplest is that the systemreaches a stable �xedpoint; in the next section, we will dis-cuss two di�erent techniques for modifying the �xedpointsof networks that exhibit them.More complicated possible asymptotic behaviors includelimit cycles and even chaos. Later, we will describe a num-ber of gradient based training procedures that can be ap-plied to training networks to exhibit desired limit cycles, orparticular detailed temporal behavior. We will not discussspecialized non-gradient methods for learning limit cycleattractors, such as [66], [67]. Although it has been the-orized that chaotic dynamics play a signi�cant computa-tional role in the brain [68], [69], there are no specializedtraining procedures for chaotic attractors in networks withhidden units. However, Crutch�eld et al. [70] and Lapedesand Farber [71] have had success with the identi�cationof chaotic systems using models without hidden state, andthere is no reason to believe that learning the dynamics ofchaotic systems is more di�cult than learning the dynam-ics of non-chaotic ones.Special learning algorithms are available for various re-stricted cases. There are �xedpoint learning algorithms(for details see [72], [73], [74], [75], or for a survey see [76])1Typically �(�) = (1+e��)�1, in which case �0(�) = �(�)(1��(�)),or the scaled �(�) = tanh(�), in which case �0(�) = (1 + �(�))(1��(�)) = 1 � �2(�). The latter symmetric squashing function is usu-ally preferable, as it leads to a better conditioned Hessian, whichspeeds gradient descent [65]. However, the former was used in all thesimulations presented in this paper.

that take advantage of the special relationships holding ata �xedpoint to reduce the storage requirements to O(m),the number of weights, and the time requirements to thetime required for the network to settle down. There arecontinuous-time feed-forward learning algorithms that areas e�cient in both time and space as algorithms for purefeedforward networks, but are applicable only when w isupper-triangular but not necessarily zero-diagonal, in otherwords, when the network is feedforward except for recur-rent self-connections [77], [78], [79], [80], [25] or for a survey,[81].Later, we will describe a number of training proceduresthat, for a price in space or time, do not rely on such re-strictions and can be applied to training networks to ex-hibit desired limit cycles, or particular detailed temporalbehavior.C. Continuous vs. Discrete TimeWe will be concerned predominantly with continuoustime networks, as in (3). However, all of the learning proce-dures we will discuss can be equally well applied to discretetime systems, which obey equations like (2). Continuoustime has advantages for expository purposes, in that thederivative of the state of a unit with respect to time is wellde�ned, allowing calculus to be used instead of tedious ex-plicit temporal indexing, making for simpler derivationsand exposition.When a continuous time system is simulated on a digitalcomputer, it is usually converted into a set of simple �rstorder di�erence equations, which is formally identical toa discrete time network. However, regarding the discretetime network running on the computer as a simulation ofa continuous time network has a number of advantages.First, more sophisticated and faster simulation techniquesthan simple �rst order di�erence equations can be used[82]. Second, even if simple �rst order equations are used,the size of the time step can be varied to suit changing cir-cumstances; for instance, if the network is being used for asignal processing application and faster sensors and com-puters become available, the size of the time step couldbe decreased without retraining the network. Third, be-cause continuous time units are sti� in time, they tend toretain information better through time. Another way ofputting this is that their bias in the learning theory senseis towards temporally continuous tasks, which is certainlyadvantageous if the task being performed is in fact tempo-rally continuous.Another advantage of continuous time networks is some-what more subtle. Even for tasks which themselves have notemporal content, such as constraint satisfaction, the nat-ural way for a recurrent network to perform the requiredcomputation is for each unit to represent nearly the samething at nearby points in time. Using continuous time unitsmakes this the default behavior; in the absence other forces,units will tend to retain their state through time. In con-trast, in discrete time networks, there is no a priori reasonfor a unit's state at one point in time to have any specialrelationship to its state at the next point in time.

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 3A pleasant added bene�t of units tending to maintaintheir states through time is that it helps make informationabout the past decay more slowly, speeding up learningabout the relationship between temporally distant events.II. Learning in Networks with FixedpointsThe �xedpoint learning algorithms we will discuss as-sume that the networks involved converge to stable�xedpoints.2 Networks that converge to �xedpoints areinteresting because of the class of things they can com-pute, in particular constraint satisfaction and associativememory tasks. In such tasks, the problem is usually givento the network either by the initial conditions or by a con-stant external input, and the answer is given by the state ofthe network once it has reached its �xedpoint. This is pre-cisely analogous to the relaxation algorithms used to solvesuch things as steady state heat equations, except that theconstraints need not have spatial structure or uniformity.A. Will a Fixedpoint Exist?One problem with �xedpoints is that recurrent networksdo not always converge to them. However, there are anumber of special cases that guarantee convergence to a�xedpoint.� Some simple linear conditions on the weights, such aszero-diagonal symmetry (wij = wji, wii = 0) guaran-tee that the Lyopunov functionL = �Xi;j wijyiyj +Xi (yi log yi + (1� yi) log(1� yi))(5)decreases until a �xedpoint is reached [83]. Thisweight symmetry condition arises naturally if weightsare considered to be Bayesian constraints, as in Boltz-mann Machines [84].� A unique �xedpoint is reached regardless of initial con-ditions if Pij w2ij < max(�0) where max(�0) is themaximal value of �0(x) for any x [85], but in practicemuch weaker bounds on the weights seem to su�ce,as indicated by empirical studies of the dynamics ofnetworks with random weights [86].� Other empirical studies indicate that applying �xed-point learning algorithms stabilizes networks, causingthem to exhibit asymptotic �xedpoint behavior [87],[88]. There is as yet no theoretical explanation forthis phenomenon, and it has not been replicated withlarger networks.One algorithmthat is capable of learning �xedpoints, butdoes not require the network being trained to settle to a�xedpoint in order to operate, is backpropagation throughtime [59]. This has been used by Nowlan to train a con-straint satisfaction network for the eight queens problem,where shaping was used to gradually train a discrete time2Technically, these algorithms only require that a �xedpoint bereached, not that it be stable. However, it is unlikely (with prob-ability zero) that a network will converge to an unstable �xedpoint,and in practice the posibility of convergence to unstable �xedpointscan be safely ignored.

network without hidden units to exhibit the desired at-tractors [89]. However, the other �xedpoint algorithms wewill consider take advantage of the special properties of a�xedpoint to simplify the learning algorithm.B. Problems with FixedpointsEven when it can be guaranteed that a network settlesto a �xedpoint, �xedpoint learning algorithms can still runinto trouble. The learning procedures discussed here allcompute the derivative of some error measure with respectto the internal parameters of the network. This gradientis then used by an optimization procedure, typically somevariant of gradient descent, to minimize the error. Such op-timization procedures assume that the mapping from thenetwork's internal parameters to the consequent error iscontinuous, and can fail spectacularly when this assump-tion is violated.Consider mapping the initial conditions ~y(t0) to the re-sultant �xedpoints, ~y(t1) = F(~y(t0)). Although the dy-namics of the network are all continuous, F need not be.For purposes of visualization, consider a symmetric net-work, whose dynamics thus cause the state of the networkto descend the energy function of equation (5). As shownschematically in �gure 1, even an in�nitesimal change tothe initial conditions, or to the location of a ridge, or tothe slope of an intermediate point along the trajectory,can change which �xedpoint the system ends up in. Inother words, F is not continuous. This means that asa learning algorithm changes the locations of the �xed-points by changing the weights, it is possible for it to crosssuch a discontinuity, making the error jump suddenly; andthis remains true no matter how gradually the weights arechanged.C. Recurrent BackpropagationIt was shown independently by Pineda [72] and Alemeida[73] that the error backpropagation algorithm [61], [59], [60]is a special case of a more general error gradient computa-tion procedure. The backpropagation equations arexi = Xj wjiyjyi = �(xi) + Ii (6)zi = �0(xi)Xj wijzj + ei (7)@E@wij = yizj (8)where zi is the ordered partial derivative of E with respectto yi as de�ned in [60], E is an error measure over y(t1),and ei = @E=@yi(t1) is the simple derivative of E with re-spect to the �nal state of a unit. In the original derivationsof backpropagation, the weight matrix is assumed to be tri-angular with zero diagonal elements, which is another wayof saying that the connections are acyclic. This ensuresthat a �xedpoint is reached, and allows it to be computedvery e�ciently in a single pass through the units. But the

4 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS
1

a b

c

2

y

LFig. 1. This energy landscape, represented by the curved surface, and the balls, representing states of the network, illustrate some potentialproblems with �xedpoints. The initial conditions a and b can di�er in�nitesimally but map to di�erent �xedpoints, so the mappingof initial conditions to �xedpoints is not continuous. Likewise, an in�nitesimal change to the weights can change which �xedpoint thesystem evolves to from a given starting point by moving the boundary between the basins of attraction of two attractors. Similarly, pointc can be changed from a �xedpoint to a non-�xedpoint by an in�nitesimal change to the weights.backpropagation equations remain valid even with recur-rent connections, assuming a �xedpoint is found.If we assume that equation (3) reaches a �xedpoint,which we will denote y(t1), then equation (6) must besatis�ed. And if (6) is satis�ed, and assuming we can �ndzi that satisfy (7), then (8) will give us the derivatives weseek, even in the presence of recurrent connections. (Fora simple task, [90] reports that reaching the precise �xed-point is not crucial to learning.)One way to compute a �xedpoint for (6) is to relax to asolution. By subtracting yi from each side, we get0 = �yi + �(xi) + Ii:At a �xedpoint, dyi=dt = 0, so the equationkdyidt = �yi + �(xi) + Iihas the appropriate �xedpoints. Now we note that when�yi + �(xi) + Ii is greater than zero, we can reduce itsvalue by increasing yi, so under these circumstances dyi=dtshould be positive, so k should be greater than zero. Wecan choose k = 1, giving (3) as a technique for relaxing toa �xedpoint of (6).Equation (7) is linear once y is determined (y appears inthe equation through the intermediate variable x, and alsothrough the error terms ei), so (7) has a unique solution.Any technique for solving a set of linear equations could beused. Since we are computing a �xedpoint of (6) using theassociated di�erential equation (3), it is tempting to do thesame for (7) usingdzidt = �zi + �0(xi)Xj wijzj + ei: (9)

These equations admit to direct analog implementation.In a real analog implementation, di�erent time constantswould probably be used for (3) and (9), and under the as-sumption that the time y and z spend settling is negligiblecompared to the time they spend at their �xedpoints andthat the rate of weight change � is slow compared to thespeed of presentation of new training samples, the weightswould likely be updated continuously by an equation likedwijdt = �� dEdwij = ��yizj (10)or, if a momentum term 0 < � < 1 is desired,d2wijdt2 + (1� �)dwijdt + �yizj = 0: (11)C.1 Simulation of an Associative NetworkIn this section we will simulate a recurrent backpropaga-tion network learning a higher order associative task, thatof associating three pieces of information: two four bit shiftregisters, A and B, and a direction bit, D. If D is o�, thenB is equal to A. If D is on, then B is equal to A rotated onebit to the right, with wraparound. The task is to recon-struct one of these three pieces of information, given theother two.The architecture of the network is shown in �gure 2.Three groups of visible units hold A, B, and D. An undif-ferentiated group of ten hidden units is fully and bidirec-tionally connected to all the visible units. There are noconnections between visible units. An extra unit, called abias unit, is used to implement thresholds. This unit hasno incoming connections, and is forced to always have avalue of 1 by a constant external input of 0.5. Connections

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 5
Register A

Register B

Rotate?

Bias +0.5

Hidden
 Units

Fig. 2. The architecture of a network to solve an associative versionof the four bit rotation problem. Fig. 3. A Hinton diagram of weights learned by the network of�gure 2.go from it to each other unit, allowing units to have biases,which are equivalent to the negative of the threshold, with-out complicating the mathematics. Inputs are representedby an external input of +0:5 for an on bit, �0:5 for an o�bit, and 0 for a bit to be completed by the network.The network was trained by giving it external inputsthat put randomly chosen consistent patterns on two ofthe three visible groups, and training the third group toattain the correct value. The error metric was the squareddeviation of each I/O unit from its desired state, exceptthat units were not penalized for being \too correct."3 All96 patterns were successfully learned, except for the oneswhich were ambiguous, as shown in the state diagrams of�gure 4. The weights after this training, which took about300 epochs, are shown in �gure 3. By inspection, manyweights are large and decidedly asymmetric; but duringtraining, no instabilities were observed. The network con-sistently settled to a �xedpoint within twenty simulatedtime units. When the network was tested on untrainedcompletion problems, such as reconstructing D as well ashalf of A and B from partially, but unambiguously, speci-�ed A and B, performance was poor. However, redoing thetraining with weight symmetry enforced, however, causedthe network to learn not only the training data but also todo well on these untrained completions.[9] successfully applied the [72], [73] recurrent backprop-3A unit with external input could be pushed outside the [0,1]bounds of the range of the �(�) used.

agation learning procedure to learning weights for a relax-ation procedure for dense stereo disparity problems withtransparent surfaces. By training on examples, they wereable to learn appropriate weights instead of deriving themfrom a simpli�ed and unrealistic analytical model of thedistribution of surfaces to be encountered, as is usual.D. Deterministic Boltzmann MachinesThe Mean Field form of the stochastic Boltzmann Ma-chine learning rule, or MFT BoltzmannMachines, [91] havebeen shown to descend an error functional [74]. StochasticBoltzmann Machines themselves [58] are beyond our scopehere; instead, we give only the probabilistic interpretationof MFT Boltzmann Machines, without derivation.In a a deterministic Boltzmann Machine, the transferfunction of (3) is �(�) = (1 + e��=T)�1, where T is thetemperature, which starts at a high value and is graduallylowered to a target temperature each time the network ispresented with a new input; without loss of generality, weassume this target temperature to be T = 1. The weightsare assumed to be symmetric and zero-diagonal. Input ishandled in a di�erent way than in the other procedures wediscuss: the external inputs Ii are set to zero, and a subsetof the units, rather than obeying (3), have their values setexternally. Such units are said to be clamped.In learning, a set of input units (states over which wewill index with �) are clamped to some values, the outputunits are similarly clamped to their correct corresponding

6 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 4. Network state for all the cases in the four bit rotation problem. This display shows the states of the units, arranged as in �gure 2.Each row of six shows one value for register A. There are 24 = 16 such rows. Within each row, the three diagrams on the left show thenetwork's state when competing the direction bit, register B, and register A, unshifted. The right three are the same, except with a shift.Note that all completions are correct except in the two cases where the rotation bit can not be determined from the two shift registers,namely a pattern of 0000 or 1111.values, the network is allowed to settle, and the quantitiesp+ij = hyiyji =X�;� P (�)y(�;�)i y(�;�)j : (12)are accumulated, where h�i denotes an average over the en-vironmental distribution, the + superscript denote clamp-ing of both input and output, and � is used to index theinput units and � indexes the output units. The same pro-cedure is then repeated, but with the output units (statesof which we will index by �) not clamped, yieldingp�ij = hyiyji =X� P (�)y(�)i y(�)j (13)
where the � superscript denotes clamping of only the in-puts and not the outputs. At this point, it is the case that@G@wij = p+ij � p�ij (14)where G =X�;� P (�) log P (�j�)P�(�j�) (15)is a measure of the information theoretic di�erence betweenthe clamped and unclamped distribution of the outputunits given the clamped input units. P�(�j�) measureshow probable the network says � is given �, and its def-inition is beyond the scope of this paper, while P (�j�) is

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 7the probability of � being the correct output when � is theinput, as given by the target distribution to be learned.This learning rule (14) is a version of Hebb's rule inwhich the sign of synaptic modi�cation is alternated, pos-itive during the \waking" phase and negative during the\hallucinating" phase.Even before the learning rule was rigorously justi�ed, de-terministic Boltzmann Machines were applied to a numberof tasks [92], [91]. Although weight symmetry is assumedin the de�nition of energy which is used in the de�nition ofprobability, and is thus fundamental to these mathematics,it seems that in practice weight asymmetry can be toleratedin large networks [88]. This makes MFT Boltzmann Ma-chines the most biologically plausible of the various learn-ing procedures we discuss, but it is di�cult to see how itwould be possible to extend them to learning more com-plex phenomena, like limit cycles or paths through statespace. And thus, although they are probably the best cur-rent technique in their domain of application, we now turnour attention to procedures suitable for learning more dy-namic sorts of behaviors.III. Computing the Gradient Without Assuminga FixedpointNow we get to the heart of the matter|the computationof rwE, the gradient of the error E with respect to the vec-tor of free parameters w, where the error is not de�ned at a�xedpoint but rather is a function of the network's detailedtemporal behavior. The techniques we will discuss here,like those of section II, are quite general purpose: they canaccommodate hidden units as well as various architecturalembellishments, such as second-order connections [93], [34],[94], [44], weight sharing [23], [35], and in general any ofthe architectureal modi�cationsmade to neural networks tocustomize them for their problem domain. We will considertwo major gradient calculation techniques, and then a fewmore derived from them. The �rst is the obvious extensionof backpropagation through time (BPTT) to continuoustime [95], [96], [62].A. Backpropagation Through TimeThe �xedpoint learning procedures discussed above areunable to learn non-�xedpoint attractors, or to produce de-sired temporal behavior over a bounded interval, or evento learn to reach their �xedpoints quickly. Here, we turnto a learning procedure suitable for such non-�xedpointsituations. This learning procedure essentially converts anetwork evolving through time into a network whose acti-vation is
owing through a number of layers, translatingtime into space, as shown in �gure 5. Backpropagationthen becomes applicable. The technique is therefore calledBackpropagation Through Time, or BPTT.Consider minimizing E(y), some functional of the tra-jectory taken by y between t0 and t1. For instance,E = R t1t0 (y0(t) � d(t))2dt measures the deviation of y0(t)from the function d(t), and minimizing this E would teachthe network to have y0(t) imitate d(t). Below, we derivea technique for computing @E(y)=@wij e�ciently, thus al-

lowing us to do gradient descent in the weights so as tominimize E. Backpropagation through time has been usedto train discrete time networks to perform a variety of tasks[59], [89]. Here, we will derive the continuous time versionof backpropagation through time, as in [96], and use it intwo toy domains.In this derivation, we take the conceptually simple ap-proach of unfolding the continuous time network into adiscrete time network with a step of �t, applying back-propagation to this discrete time network, and taking thelimit as �t approaches zero to get a continuous time learn-ing rule. The derivative in (3) can be approximated withdyidt (t) � yi(t+�t) � yi(t)�t ; (16)which yields a �rst order di�erence approximation to (3),~yi(t+�t) = (1��t)~yi(t) + �t�(~xi(t)) + �tIi(t): (17)Tildes are used throughout for temporally discretized ver-sions of continuous functions.Let us de�ne ei to be the �rst variation of E with respectto the function yi(t), ei(t) = �E�yi(t) : (18)In the usual case E is of the formE = Z t1t0 f(y(t); t) dt (19)so ei(t) = @f(y(t); t)=@yi(t). Intuitively, ei(t) measureshow much a small change to yi at time t a�ects E if every-thing else is left unchanged.As usual in backpropagation, let us de�ne~zi(t) = @+E@~yi(t) (20)where the @+ denotes the ordered derivative of [97], withvariables ordered here by time and not unit index. Intu-itively, ~zi(t) measures how much a small change to ~yi attime t a�ects E when this change is propagated forwardthrough time and in
uences the remainder of the trajec-tory, as in �gure 7. Of course, zi is the limit of ~zi as�t ! 0. This z is the � of the standard backpropagation\generalized � rule."We can use the chain rule for ordered derivatives to calcu-late ~zi(t) in terms of the ~zj(t+�t). According to the chainrule, we add all the separate in
uences that varying ~yi(t)has on E. It has a direct contribution of �tei(t), whichcomprises the �rst term of our equation for ~zi(t). Varying~yi(t) by d~yi(t) has an e�ect on ~yi(t+�t) of d~yi(t) (1��t),giving us a second term, namely (1��t)~z(t+�t).Each weight wij makes ~yi(t) in
uence ~yj(t + �t), i 6=j. Let us compute this in
uence in stages. Varying~yi(t) by d~yi(t) varies ~xj(t) by d~yi(t) wij, which varies�(~xj(t)) by d~yi(t) wij �0(~xj(t)), which varies ~yj(t + �t)

8 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS
Fig. 5. A recurrent network is shown on the left, and a representation of that network unfolded in time through four time steps is shown onthe right.

y

y

1

2

tFig. 6. The in�nitesimal changes to y considered ine1(t). y

y

1

2

tFig. 7. The in�nitesimal changes to y considered inz1(t).by d~yi(t) wij �0(~xj(t)) �t. This gives us our third and �nalterm, Pj wij �0(~xj(t)) �t ~zj(t+�t). Combining these,~zi(t) = �t ei(t)+(1��t)~zi(t+�t)+Xj wij�0(~xj(t))�t~zj(t+�t):(21)If we put this in the form of (16) and take the limit as�t! 0 we obtain the di�erential equationdzdt = df(y; w; I)dy z + �E�y (22)dEdw = Z t1t0 ydf(y; w; I)dw zdt: (23)with boundary condition z(t1) = 0. Thus we have derivedappropriate adjoint equations to (1). They are similar tothe analogous discrete-time backwards error equations,z(t� 1) = df(y; w; I)dy z + @E@y(t) (24)dEdw = Xt ydf(y; w; I)dw z: (25)where the error to be minimized is E. If this error is of theusual form of an integral E = R E0(y(t); t)dt then we getthe simple form �E=�y = dE0=dy.

For the particular form of (3), this comes todzidt = zi � ei �Xj wij�0(xj)zj : (26)For boundary conditions note that by (18) and (20)~zi(t1) = �tei(t1), so in the limit as �t ! 0 we havezi(t1) = 0.Consider making an in�nitesimal change dwij to wij fora period �t starting at t. This will cause a correspond-ing in�nitesimal change in E of yi(t)�0(xj(t))�tzj(t)dwij.Since we wish to know the e�ect of making this in�nitesi-mal change to wij throughout time, we integrate over theentire interval, yielding@E@wij = Z t1t0 yi�0(xj)zjdt: (27)One can also derive (26), (27) and (37) using the calcu-lus of variations and Lagrange multipliers, as in optimalcontrol theory [98], [99]. In fact, the idea of using gradi-ent descent to optimize complex systems was explored bycontrol theorists in the late 1950s. Although their mathe-matical techniques and algorithms are identical to those re-viewed here, and thus handled hidden units, they refrainedfrom exploring systems with so many degrees of freedom,perhaps in fear of local minima.It is also interesting to note that the recurrent backprop-agation learning rule (section II-C) can be derived from

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 9these. Let Ii be held constant, assume that the networksettles to a �xedpoint, and let E be integrated for one timeunit before t1. As t1 ! 1, (26) and (27) reduce to therecurrent backpropagation equations (9) and (8), so in thissense backpropagation through time is a generalization ofrecurrent backpropagation.There are two ways to go about �nding such derivations.One is direct, using the calculus of variations [98]. Theother is to take the continuous time equations, approxi-mate them by di�erence equations, precisely calculate theadjoint equations for this discrete time system, and thenapproximate back to get the continuous time adjoint equa-tions, as in [76]. An advantage of the latter approach isthat, when simulating on a digital computer, one actuallysimulates the di�erence equations. The derivation ensuresthat the simulated adjoint di�erence equations are the pre-cise adjoints to the simulated forward di�erence equations,so the computed derivatives contain no approximation er-rors.B. Real Time Recurrent LearningAn online, exact, and stable, but computationally expen-sive, procedure for determining the derivatives of functionsof the states of a dynamic system with respect to that sys-tem's internal parameters has been discovered and appliedto recurrent neural networks a number of times [100], [101],[102], [103]; for reviews see also [81], [76], [104]. It is calledby various researchers forward propagation, forward pertur-bation, or real time recurrent learning, RTRL. Like BPTT,the technique was known and applied to other sorts of sys-tems since the 1950s; for a hook into this literature see[105], [106] or the closely related Extended Kalman Filter[107]. In the general case of (1), RTRL isdEdw = Z t1t0
 �E�y dt (28)where
(t0) = 0 andd
dt = df(y; w; I)dw + df(y; w; I)dy
: (29)The
 matrix is the sensitivity of the states y(t) to a changeof the weights w.Under the assumption that the weights are changingslowly, RTRL can be made an online algorithm by updat-ing the weights continuously instead of actually integrating(28), dwdt = ��
 �E�y ; (30)where � is the learning rate, or, if a momentum term 0 <� < 1 is also desired,�d2wdt2 + (1 � �)dwdt + �
 �E�y = 0: (31)For the special case of a fully connected recurrent neuralnetwork, as described by (3), applying the general RTRL

formulas above yieldsd
ijkdt = @fk@yk
ijk + ([j = k]yj +Xl wlk
ijl) @fk@netk (32)dwijdt (t) = ��Xk @g@yk (t)
ijk(t): (33)Regretably, the computation of
 is very expensive, andalso non-local. The
 array has nm elements, where n isthe number of states andm the number of weights, which istypically on the order of n2. Updating
 requires O(n3m)operations in the general case, but the particular struc-ture of a neural network causes some of the matrices to besparse, which reduces the burden to O(n2m). This remaintoo high to make the technique practical for large networks.Nevertheless, because of its ease of implementation, RTRLis used by many researchers working with small networks.C. Less Computationally Burdensome Online TechniquesOne way to reduce the complexity of the RTRL algo-rithm is to simply leave out elements of
 that one hasreason to believe will remain approximately zero. This ap-proach, in particular ignoring the coupling terms which re-late the states of units in one module to weights in another,has been explored by Zipser [108].Another is to use BPTT with a history cuto� of k unitsof time, termed BPTT(k) by Williams and Peng [109], andmake a small weight change each timestep. This obviatesthe need for epochs, resulting in a purely online technique,and is probably the best technique for most practical prob-lems.A third is to take blocks of s timesteps using BPTT,but use RTRL to encapsulate the history before the startof each block. This requires O(s�1n2m + nm) time perstep, on average, and O(nm + sm) space. Choosing s = nmakes this O(nm) time andO(nm) space, which dominatesRTRL. This technique has been discovered independentlya number of times [110], [111].Finally, one can note that, although the forward equa-tions for y are nonlinear, and therefore require numericintegration, the backwards equations for z in BPTT arelinear. Since the dE=dw terms are linear integrations ofthe z, this means that they are linear functions of the ex-ternal inputs, namely the ei terms. As shown by Sun et al.[112], this allows one, during the forward pass, to computea matrix relating the external error signal to the elementsof rw, allowing a fully online algorithm with O(nm) timeand space complexity.D. Time ConstantsA major advantage of temporally continuous networksis that one can add additional parameters that control thetemporal bahavior in ways known to relate to natural tasks.An example of this is time constants, which were learnedin the context of neural networks in [79], [53], [52]. If weadd a time constant Ti to each unit i, modifying (3) toTi dyidt = �yi + �(xi) + Ii; (34)

10 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKSand carry these terms through the derivation of section III-A, equations (26) and (27) becomedzidt = 1Ti zi � ei �Xj 1Tjwij�0(xj)zj : (35)and @E@wij = 1Tj Z t1t0 yi�0(xj)zjdt: (36)In order to learn these time constants rather than justset them by hand, we need to compute @E(y)=@Ti. If wesubstitute �i = T �1i into (34), �nd @E=@�i with a deriva-tion similar to that of (27), and substitute Ti back in weget @E@Ti = � 1Ti Z t1t0 zi dyidt dt: (37)E. Time DelaysConsider a network in which signals take �nite time totravel over each link, so that (4) is modi�ed toxi(t) =Xj wjiyj(t� �ji); (38)�ji being the time delay along the connection from unit jto unit i. Let us include the variable time constants of sec-tion III-D as well. Such time delays merely add analogoustime delays to (35) and (36),dzidt (t) = 1Ti zi(t)�ei(t)�Xj wij�0(xj(t+�ij)) 1Tj zj(t+�ij);(39)@E@wij = 1Tj Z t1t0 yi(t)�0(xj(t+ �ij))zj(t + �ij)dt; (40)while (37) remains unchanged. If we set �ij = �t, thesemodi�ed equations alleviate concern over time skew whensimulating networks of this sort, obviating any need foraccurate numerical simulations of the di�erential equationsand allowing simple di�erence equations to be used withoutfear of inaccurate error derivatives.Instead of regarding the time delays as a �xed part of thearchitecture, we can imagine modi�able time delays. Givenmodi�able time delays, we would like to be able to learnappropriate values for them, which can be accomplishedusing gradient descent by@E@�ij = Z t1t0 zj(t)�0(xj(t))wij dyidt (t� �ij)dt: (41)[12] applied recurrent networks with immutable time de-lays in the domain of speech. Feedforward networks withimmutable time delays (TDNNs) have been applied withgreat success in the same domain by Lang et al. [22]. Avariant of TDNNs which learn the time delays was exploredby Bodenhausen et al. [113]. The synapses in their net-works, rather than having point taps, have gaussian en-velopes whose widths and centers were both learned. Sim-ilar synaptic architectures using alpha function envelopes

(which obviate the need for a history bu�er) whose pa-rameters were learned were proposed and used in systemswithout hidden units [114], [29]. A continuous time feed-forward network with learned time delays was successfullyapplied to a di�cult time-series prediction task by Day andDavenport [25].In the sections on time constants and delays, we havecarried out the derivative derivations for BPTT. All theother techniques also remain applicable to this case, withstraightforward derivations. The analogous derivations forRTRL are carried out in [76]. However, we will not heresimulate networks with modi�able time delays.An interesting class of architectures would have the stateof one unit modulate the time delay along some arbitrarylink in the network or the time constant of some otherunit. Such a \higher order time delay" architecture seemsappropriate for tasks in which time warping is an issue,such as speech recognition. The gradients with respectto higher order time delay can be readily calculated byappropriate augmentation of either BPTT or RTRL.In the presence of time delays, it is reasonable to havemore than one connection between a single pair of units,with di�erent time delays along the di�erent connections.Such \time delay neural networks" have proven useful inthe domain of speech recognition [20], [22], [21], [115]. Hav-ing more than one connection from one unit to another re-quires us to modify our notation somewhat; weights andtime delays are modi�ed to take a single index, and we in-troduce some external apparatus to specify the source anddestination of each connection. Thus wi is the weight on aconnection between unit L(i) and unit R(i), and �i is thetime delay along that connection. Using this notation wewrite (38) as xi(t) = Xj jL(j)=iwjyR(j)(t � �j): (42)Our equations would be more general if written in thisnotation, but readability would su�er, and the translationis quite mechanical.F. Extending RTRL to Time Constants and Time DelaysWe have seen that BPTT can be easily applied to thesenew sorts of free parameters we have been adding to ournetworks, namely time constants and time delays. Othergradient calculation procedures also can be naturally ap-plied to these new sorts of free parameters. In this section,we apply RTRL, �rst to incorporate time constants andthen time delays.If we begin with (34), �rst we must generalize (32) and(33) to correctly modify the weights in the presence of timeconstants. If we substitute k for i in (34), take the partialwith respect to wij, and substitute in
 where possible, wehave a the di�erential equation for
Tk
kijdt = �
kij + �0(xk)Xl wlk
lij; (43)nearly the same as (32) except for a time constant.

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 11We can derive analogous equations for the time constantsthemselves; de�ne qij(t) = @yi(t)@Tj ; (44)take the partial of (3) with respect to Tj , and substitute inq. This yieldsTi dqijdt = �qij � dyidt + �0(xi)Xk wkiqkj (45)which can be used to update the time constants using thecontinuous update ruled Tidt = ��Xj ejq ji : (46)Similarly, let us derive equations for modifying the timedelays of section III-E. De�nerkij(t) = @yk(t)@�ij (47)and take the partial of (3) with respect to �ij , arriving ata di�erential equations for r,Tk drkijdt = �rkij+�0(xk)(wij dyidt (t � �ij)| {z }included if j = k�Xl wlkrlij(t��lk)):(48)The time delays can be updated online using the continuousupdate equation d�ijdt = ��Xk ekrkij: (49)IV. Some SimulationsIn the following simulations, we used networks withouttime delays, but with mutable time constants. As in theassociative network of section II-C.1, an extra input unitwhose value was always held at 1 by a constant externalinput of 0.5, and which had outgoing connections to allother units, was used to implement biases.Using �rst order �nite di�erence approximations, weintegrated the system y forward from t0 to t1, set theboundary conditions zi(t1) = 0, and integrated the sys-tem z backwards from t1 to t0 while numerically integrat-ing zj �0(xj) yi and zi dyi=dt, thus computing @E=@wij and@E=@Ti. Since computing dzi=dt requires �0(xi), we storedit and replayed it backwards as well. We also stored andreplayed yi as it is used in expressions being numericallyintegrated.We used the error functionalE = 12Xi Z t1t0 si(yi � di)2dt (50)where di(t) is the desired state of unit i at time t and si(t) isthe importance of unit i achieving that state at that time,

in this case 0 except when i was an output unit and aftersome time (5 units) had elapsed for the network to settledown. Throughout, we used �(�) = (1 + e��)�1. Timeconstants were initialized to 1, weights were initialized touniformly distributed random values between 1 and �1,and the initial values yi(t0) were set to Ii(t0) + �(0). Thesimulator used �rst order di�erence equations (17) and (21)with �t = 0:1.A. A Rotated Figure EightIn this simulation a network was trained to generate a�gure eight shaped trajectory in two of its units, desig-nated output units. The �gure eight was to be rotatedabout its center by an angle � which was input to thenetwork through two input units which held the coordi-nates of a unit vector in the appropriate direction. Thiswas intended to model a controlled modulation of a centralpattern generator from tonic modulatory input, as in thelobster stomatagastric gangleon [116]. The target vectorfor the two output units was generated bytarget = 0:4� cos � � sin �sin � cos � �� sin�t=16cos �t=16 �+� 0:50:5 �(51)while the input to the network was simply the angle �,represented to avoid blemishes as the direction vector� sin �cos � �Eight di�erent values of �, equally spaced about the cir-cle, were used to generate the training data. In experimentswith 20 hidden units, the network was unable to learn thetask. Increasing the number of hidden units to 30 allowedthe network to learn the task, as shown on the left in �g-ure 8. But as shown on the right in �gure 8, generalizationis poor when the network is run with the eight input anglesfurthest from the training angles, i.e. 22.5 degrees o�.The task would be simple to solve using second orderconnections, as they would allow the problem to be decou-pled. A few units could be devoted to each of the orthog-onal oscillations, and the connections could form a rota-tion matrix. The poor generalization of the network showsthat it is not solving the problem in such a straightforwardfashion, and suggests that for tasks of this sort it might bebetter to use slightly higher order units.V. Stability and Perturbation ExperimentsWe can analytically determine the stability of the net-work by measuring the eigenvalues of Df where f is thefunction that maps the state of the network at one pointin time to its state at a later time. For instance, for anetwork exhibiting a limit cycle one would typically usethe function that maps the network's state at some timein the cycle to its state at the corresponding time in thenext cycle. Unfortunately, this gives only a local stabilitymeasure, and also does not factor out the e�ect of hiddenunits.

12 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS
Fig. 8. The output of the rotated �gure eight network at all the trained angles (left) and some untrained angles (right).In our attempt to judge the stability of the limit cy-cles exhibited above, rather than calculating Df , wheref(y(t)) = y(t + 16), we simply modi�ed the simulator tointroduce random perturbations and observed the e�ects ofthese perturbations upon the evolution of the system.4 Thetwo output units in the unrotated �gure eight task appearto be phase locked, as their phase relationship remains in-variant even in the face of major perturbations. This phaselocking is unlike the solution that a human would createby analytically determining weights through decoupling thetwo output units and using linearized subnets to generatethe desired oscillatory behavior, as suggested by MerrickFurst.The networks to which we introduced these perturba-tions had been trained to produce simple limit cycles, onein a circular shape, and the other in a �gure eight shape.Neither of the networks had any input units; they producedonly a single limit cycle.The unperturbed limit cycle of the �gure eight networkis symmetric, but when perturbations are introduced, as inthe right of �gure 9, symmetry is broken. The portion ofthe limit cycle moving from the upper left hand corner to-wards the lower right hand corner has diverging lines, butwe do not believe that they indicate high eigenvalues andinstability. The lines converge rapidly in the upward strokeon the right hand side of the �gure, and analogous unstablebehavior is not present in the symmetric downward strokefrom the upper right hand corner towards the lower left.Analysis shows that the instability is caused by the initial-ization circuitry being inappropriately activated. Since the4Actually, we wouldn't care about the eigenvalues of Df per se, be-cause we wouldn't care about perturbations in the direction of travel,as these e�ect only the phase, or perturbations that e�ect only thehidden units. For this reason, we would want to project these outof the matrix Df before computing the eigenvalues. This e�ect isachieved automatically in our display in �gure 9.

initialization circuitry is adapted for controlling just theinitial behavior of the network, when the net must delay at(0:5; 0:5) for a time before beginning the cycle by movingtowards the lower left corner, this circuitry is explicitly notsymmetric. The diverging lines seem to be caused by thiscircuitry being activated and exerting a strong in
uence onthe output units while the circuitry itself deactivates.In fact, [117] developed a technique for learning the lo-cal maximumeigenvalue of the transfer function, optionallyprojecting out directions whose eigenvalues are not of in-terest. This technique, which explicitly modulates the be-havior we only measured above, has not yet been appliedin a control domain.VI. Other Non-fixedpoint TechniquesA. \Elman Nets"[118] considers a version of backpropagation throughtime in discrete time in which the temporal history is cuto�. Typically, only one or two timesteps are preserved, atthe discretion of the architect. This cuto� makes backprop-agation through time an online algorithm, as the backprop-agation to be done to account for the error at each pointin time is done immediately. However, it makes the com-putational expense per time step scale linearly with thenumber of timesteps of history being maintained. This ac-curacy of the computed derivative is smoothly traded o�against storage and computation.The real question with Elman networks is whether thecontribution to the error from the history that has beencut o� is signi�cant. This question can only be answeredrelative to a particular task. For instance, [119] �nds someproblems amenable to the history cuto�, but resorts to full
edged backpropagation through time for other tasks. [43]describe a regular language token prediction task whichis di�cult for Elman nets when the transition probabili-

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 13
Fig. 9. The output states y1 and y2 plotted against each other for a 1000 time unit run, with all the units in the network perturbed by arandom amount about every 40 units of time. The perturbations in the circle network (left) were uniform in �0:1, and in the �gure eightnetwork (right) in �0:05.ties are equal, but �nd that breaking this symmetry allowsthese nets to learn the task.B. The Moving Targets Method[120], [121], [122] propose a moving targets learning algo-rithm. Such an algorithmmaintains a target value for eachhidden unit at each point in time. These target values aretypically initialized either randomly, or to the units' ini-tial untrained behavior. In learning, two phases alternate.In one phase, the hidden units' targets are improved, suchthat if the targets are attained better performance would beachieved. In the other phase, the weights are modi�ed suchthat each unit comes closer to attaining its target values.The error can be regarded as having two terms, one termwhich penalizes the units being too far from their targets,and another which penalizes the targets for being too farfrom the values actually attained. This technique has theappeal of decoupling temporally distant actions during thelearning of weights, and the disadvantage of requiring thetargets to be stored and updated. In the limit, as learningrates are decreased, the moving targets method becomesequivalent to backpropagation though time.In continuous time, the moving targets method wouldentail decoupling the units during learning, and storing atarget trajectory for each unit, including the hidden units.The weights would then be modi�ed to make the trajecto-ries consistent with each other, while the trajectories of thehidden units would be similarly modi�ed. Unfortunately,as with teacher forcing, even if the error is driven to verylow levels by such a procedure, there would be no guaran-tee that the resulting network, if allowed to run free, wouldhave dynamics close to that of the forced dynamics.The primary disadvantage of the technique is that each

pattern to be learned must have associated with it the tar-gets for the hidden units, and these targets must be learnedjust as the weights are. This makes the technique inappli-cable for online learning, in which each pattern is seen onlyonce.C. Feedforward Networks with StateIt is noteworthy that that the same basic mathematicaltechnique of forward propagation can be applied to net-works with a restricted architecture, feedforward networkswhose units have state [77], [78], [80]. This is the sameas requiring the wij matrix to be triangular, but allow-ing non-zero diagonal terms. If we let the
 quantities beordered derivatives, as in standard backpropagation, thenthis simpli�ed architecture reduces the computational bur-den substantially. The elimination of almost all tempo-ral interaction makes
ijk = 0 unless i = k, leaving onlyO(n2) auxiliary equations, each of which can be updatedwithO(1) computation, for a total update burden ofO(n2),which is the same as conventional backpropagation. Thisfavorable computational complexity makes it of practicalsigni�cance even for large feedforward recurrent networks.But these feedforward networks are outside the scope ofthis paper.D. Teacher Forcing In Continuous Time[123] coin the term teacher forcing,, which consists ofjamming the desired output values into output units as thenetwork runs. Thus, the teacher forces the output unitsto have the correct states, even as the network runs, andhence the name. This technique is applied to discrete timeclocked networks, as only then does the concept of changingthe state of an output unit each time step make sense.

14 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKSThe error is as usual, with the caveat that errors are to bemeasured before output units are forced, not after. [123] re-port that their teacher forcing technique radically reducedtraining time for their recurrent networks, although [76]reports di�culties when teacher forcing was used networkswith a larger number of hidden units.Williams and Zipser's application of teacher forcing totheir networks is dependent on discrete time steps, so ap-plying teacher forcing to temporally continuous networksrequires a di�erent approach. The approach we shall takeis to add some controls that one imagines being used tocontrol the states of the output units, and use them tokeep the output units locked at their desired states. Theerror function to be minimized will measure the amountof control that it was necessary to exert, with zero errorcoming only when the no external forces at all need to beexerted.Let Fi = 1Ti (�yi + �(xi) + Ii) (52)so that (3) is just dyi=dt = Fi, and let us add a new forcingterm fi(t) to (3), dyidt = Fi + fi: (53)Using � to denote the set of units to be forced, we will letdi be the trajectory that we will force yi to follow, for eachi 2 �: So we set fi = ddidt � Fi (54)and yi(t0) = di(t0) for i 2 � and fi = 0 for i 62 �, withthe consequence that yi = di for i 2 �. Now let the errorfunctional be of the formE = Z t1t0 L(f(t); t)dt; (55)where typically L =Pi2� f2i .We can modify the derivation in section III-A for thisteacher forced system. For i 2 � a change to ~yi will becanceled immediately, so taking the limit as �t! 0 yieldszi = 0. Because of this, it doesn't matter what ei is fori 2 �.We can apply (18) to calculate ei for i 62 �. The chainrule is used to calculate how a change in yi e�ects Ethrough the fi, yieldingei =Xj2� �E�fj @fj@yior ei =Xj2� @L@fj � 1Tj �0(xj)wij (56)For i 62 � (26) and (37) are unchanged, and for j 62 � andany i (27) also remains unchanged. The only equations stillrequired are @E=@wij for j 2 � and @E=@Ti for i 2 �. Toderive the �rst, consider the instantaneous e�ect of a smallchange to wij, giving@E@wij = 1Tj Z t1t0 yi�0(xj) @L@fi dt: (57)

Analogously, for i 2 �@E@Ti = � 1Ti Z t1t0 @L@fi dyidt dt: (58)We are left with a system with a number of special casesdepending on whether units are in � or not. Interestingly,an equivalent system results if we leave (26), (27), and (37)unchanged except for setting zi = @L=@fi for i 2 � andsetting all the ei = 0. It is an open question as to whetherthere is some other way of de�ning zi and ei that resultsin this simpli�cation.However, by taking the limit as the step size goes to zero,it is possible to show that the continuous time analogue ofteacher forcing is to force the output states to followdesiredtrajectories, with the error being the di�erence between thederivative that the network attempts to apply to these unitsand the derivative of the desired trajectory. This casts lighton teacher forcing in the descrete time case, which can beseen as nearly the same thing.Regretably it also shows that teacher forcing can resultin a network with a systematic bias, or a network which,although when being forced has little error, when runningfree rapidly drifts far from the desired trajectory, in a qual-itative sense, as reported by Williams and Zipser for somecases where oscillations trained with teacher forcing ex-hibited radically and systematically lower frequency andamplitude when running free [123].E. Jordan Nets[124] used a backpropagation network with the outputsclocked back to the inputs to generate temporal sequences.Although these networks were used long before teacherforcing, from our perspective Jordan nets are simply a re-stricted class of teacher forced recurrent networks, in par-ticular, discrete time networks in which the only recurrentconnections emanate from output units. By teacher forc-ing these output units, no real recurrent paths remain, sosimple backpropagation through a single time step su�cesfor training.The main disadvantage of such an architecture is thatstate to be retained by the network across time must bemanifest in the desired outputs of the network, so newpersistent internal representations of temporal structurescannot be created. For instance, it would be impossible totrain such networks to perform the �gure eight task of justa single one of the patterns shown in �gure 8. In the usualcontrol theory way, this di�culty can be partially allevi-ated by cycling back to the inputs not just the previoustimestep's outputs, but also those from a small number ofprevious timesteps. The tradeo�s between using hiddenunits to encapsulate temporally hidden structure and us-ing a temporal window of values which must contain thedesired information is problem dependent, and depends inessence on how long a hidden variable can remain hiddenwithout being manifested in the observable state variables.It is easy to construct a continuous time Jordan network,in which the units' values are continuous in time, the out-put units constantly have corrected values jammed into

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 15them from external sources, and the only recurrent con-nections are from the outputs back to the inputs. Abovewe explored teacher forcing in the general setting of fullyrecurrent networks, but when applied to a Jordan network,the result is a system that is no longer truly recurrent, atleast as far as learning is concerned. This is because thenetwork maps the current visible state to the next visiblestate, with no other information retained in the network.For this reason, a continuous time Jordan network is pre-cisely equivalent to training a layered network whose inputis the current measured value of the signal we wish the Jor-dan network to learn, and whose target output is the �rstderivative of this signal to be learned.F. Teacher Forcing, RTRL, and the Kalman Filter[125], [126] have pointed out that RTRL is related to aversion of the [127] �lter, in the extension that allows it toapply to nonlinear systems, namely the extended Kalman�lter (EKF) [128], [107], [129]. The EKF has time andspace complexity of the same order as those of RTRL. Oneadvantage of using the EKF (instead of RTRL) for learningthe weights of a recurrent neural network, is that the EKFrationalizes teacher forcing: it modi�es both the weightsand the states on an equal basis. This solves the dilema ofteacher forcing: that if the \true output" units are extraadded units whose values are directly copied from thoseof the old output units, teacher forcing fails to maintainsynchronization between the network and its teacher. TheEKF does not have this problem, in that it would adjustthe new extra and the old output units on an equal basis.Another way of attempting to rationalize teacher forc-ing is to note that gradient descent itself generates dE=dyin addition to dE=dw terms. One might think this wouldmake it natural to use �y = ��dE=dy, thus treating thestates on an equal basis with the weights. The problemwith this, as pointed out by Ron Williams (personal com-munication) is that it is di�cult to determine exactly whatthis means. Should the derivative be taken just with re-spect to the current states, or to their histories too? Oneway alleviate this dilema is to note that, when we changethe weights, we wish we had changed them earlier. To thisend, it would be natural to change the states to what theywould have been had we changed the weights earlier. Thisgives �y = dydw�w: (59)The involved matrix, dy=dw, is already available as
 inRTRL.VII. Learning with Scale ParametersThe parameters usually modi�ed by neural networklearning algorithms are the weights. There are no a priorirestrictions on these values; they can be positive, negative,or zero, and the behavior of a network is continuous withrespect to changes in its weights. These factors, along withthe tractable shape of the error surface, make simple gra-dient descent algorithms, �w = ��dE=dw, surprisinglye�ective.

The error term E being used generally contains one termwhich has to do with how well the network's outputs meetsome criterion. Frequently another term is added as anexpression of some a priori known probability distribtionof the weights. For instance, addingPiw2i is equivalent toassuming that the weights are Gaussian distributed. Notadding such a term is equivalent to assuming that the apriori distribution on what the weights will turn out to beis
at|not a totally unreasonable prior [28], [130].However, we have added some new sorts of parameters,namely time constants and time delays, here representedgenerically by the vector T . These are scale parameters,which di�er from positional parameters in a number ofways. The most telling property of a scale parameter is thatthe dynamics of the system are a�ected about as much bymultiplying a scale parameter by some constant, irrespec-tive of the scale parameter's value. For instance, changinga time constant from 2 seconds to 2.2 seconds can be ex-pected to have about the same qualitative e�ect as chang-ing it from 200 to 220. Other properties of scale param-eters is that they must not become negative, and that asthey approach zero, the dynamics of the associated systembecomes more and more sensitive to small changes. Thismeans that in practive one must add machinery to enforcethe constraint of positiveness, and that gradient descentwill become increasingly unstable as a scale parameter ap-proaches zero, due to the system's growing sensitivity toits value. Also, the
at prior is no longer the appropriatezero-knowledge prior.All these problems can be solved in a single stroke bynoting that the correct zero-knowledge hypothesis for scaleparameters is not
at in their values, but rather
at intheir log values [131]. In practice, This corresponds to do-ing gradient descent in LT = logT rather than in T it-self; in other words, to not manipulating T directly butrather using �LT = ��dE=dLT . Such a policy also solvesthe practical problems with scale parameters noted above,as it makes the gradient descent process sti�er as T ap-proaches zero, compensating for the system's increased sen-sitivity in that region, and it naturally enforces T > 0 sinceT = expLT > 0, which enforces this constraint withoutany additional mechanism. This last property led to theindependent invention and use of this technique by [132].In addition, weight decay of scale parameters becomessimpler, as decaying LT towards zero corresponds to decay-ing T towards one, which is a reasonable target. Of course,a constant factor can be inserted to make the decay towardssome other a priori most likely value. Note, however, thatthe force exerted by the decay term will scale with the logparameter, which is more appropriate, since the additionalforce exerted should correspond to the change's e�ect onthe dynamics of the system, in order to pass dimensionalanalysis. VIII. Summary and ConclusionA. Complexity ComparisonConsider a network with n units and m weights which isrun for s time steps (variable grid methods [133] would re-

16 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKSduce s by dynamically varying �t) where s = (t1� t0)=�t.Additionally, assume that the computation of each ei(t) isO(1) and that the network is not partitioned.Under these conditions, simulating the y system takesO(m+n) = O(m) time for each time step, as does simulat-ing the z system. This means that using the technique de-scribed in section IV, the entire simulation takes O(m) timeper time step, the best that could be hoped for. Storingthe activations and weights takes O(n+m) = O(m) space,and storing y during the forward simulation to replay whilesimulating z backwards takes O(sn) space, so if we use thistechnique the entire computation takes O(sn+m) space. Ifwe simulate y backwards during the backwards simulationof z, the simulation requires O(n+m) space, again the bestthat could be hoped for. This later technique, however, issusceptible to numeric stability problems.The online technique of RTRL described in section III-Brequires O(n2m) time each time step, and O(nm) space.The other techniques discussed in that section require lesstime and space, and retain all of the advantages of beingonline (with the possible exception of simplicity of imple-mentation), so it would appear that these new online meth-ods dominate RTRL. These time complexity results are forsequential machines, and are summarized in table I.Note that in this section we are concerning ourselves withhow much computation it takes to obtain the gradient in-formation. This is generally just the inner loop of a morecomplex algorithm to adjust the weights, which uses thegradient information, such as a stochatic gradient descentalgorithm.B. Speeding the OptimizationExperience has shown that learning in these networkstends to be \sti�" in the sense that the Hessian of theerror with respect to the weights (the matrix of secondderivatives) tends to have a wide eigenvalue spread. Onetechnique that has proven useful in this particular situationis that of [134] which was applied by Fang and Sejnowskito the single �gure eight problem perturbed in �gure 9with great success by [135]. For a modern variant of thistechnique which is suitable to online pattern presentation,see [136], [137], [138].Since the acceleration of convergence in these gradientsystems is such an important issue, it can be helpful toknow some of the techniques used to analyze the limita-tions of convergence under various conditions in systemsof this sort, and of some other techniques for acceleratingtheir convergence; see [139, page 304] and [140], [141], [142],[143], [144], [145], [146], [147], [148].C. Prospects and Future WorkControl domains are the most natural application forcontinous time recurrent networks, but signal processingand speech generation (and recognition using generativetechniques) are also domains to which this type of networkmight be naturally applied. Such domains may lead us tocomplex architectures like those discussed in section III-E.For control domains, it seems important to have ways to

force the learning towards solutions that are stable in thecontrol sense of the term.On the other hand, we can turn the logic of section Varound. Consider a di�cult constraint satisfaction task ofthe sort that neural networks are sometimes applied to,such as the traveling salesman problem [149]. Two com-peting techniques for such problems are simulated anneal-ing [150], [58] and mean �eld theory [92]. By providing anetwork with a noise source which can be modulated (bysecond order connections, say) we could see if the learn-ing algorithm constructs a network that makes use of thenoise to generate networks that do simulated annealing, orif pure gradient descent techniques are evolved. If a hy-brid network evolves, its structure may give us insight intothe relative advantages of these two di�erent optimizationtechniques, and into the best ways to structure annealingschedules.D. ConclusionsRecurrent networks are often avoided because of a fear ofinordinate learning times and incomprehensible algorithmsand mathematics. It should be clear from the above thatsuch fears are unjusti�ed. Certainly there is no reason touse a recurrent network when a feedforward layered ar-chitecture su�ces; but on the other hand, if recurrence isneeded, there are a plethora of learning algorithms avail-able across the spectrum of quiescence vs. dynamics andacross the spectrum of accuracy vs. complexity and acrossthe spectrum of space vs. time. These new learning al-gorithms, and experience with recurrent and temporallycontinuous networks, has made them much more tractableand practical than they seemed only a few years ago.AcknowledgmentsFor provocative and enlightening discussions, I would liketo thank Lee Giles, Geo� Hinton, Gary Kuhn, FernandoPineda, Richard Szeliski, David Touretzky, Ron Williams,and members of the old Boltzmann group at CMU. I wouldalso like to thank a number of anonymous reviewers. Thisresearch was sponsered in part by NSF EET-8716324, byONR N00014-86-K-0678, and by a Fannie and John HertzFoundation Fellowship.References[1] J. L. McClelland, D. E. Rumelhart, and G. E. Hinton, \Theappeal of parallel distributed processing", In Rumelhart et al.[151].[2] D. Marr and T. Poggio, \Cooperative computation of stereodisparity", Science, vol. 194, pp. 283{287, 1976.[3] G. Marr, D. Palm and T. Poggio, \Analysis of a cooperativestereo algorithm", Biological Cybernetics, vol. 28, pp. 223{229,1978.[4] Geo�rey E. Hinton, Relaxation and its role in vision, PhDthesis, University of Edinburgh, 1977, Described in [152, pages408{430].[5] L. S. Davis and A. Rosenfeld, \Cooperating processes for low-level vision: A survey", Arti�cial Intelligence, vol. 3, pp. 245{264, 1981.[6] Richard Szeliski, \Cooperative algorithms for solving random-dot stereograms", Tech. Rep. CMU-CS-86-133, Carnegie Mel-lon University, 1986.

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 17technique time=�t space online stable local exactBPTT, storing y O(m) O(sn +m) no yes yes yesRTRL O(n2m) O(nm) yes yes no yesBPTT, only h steps O(hm) O(hn+m) yes yes yes noWilliams-Peng, h steps O(m) O(hn+m) yes yes yes nohybrid BPTT/RTRL O(nm) O(nm) yes yes no yesSun-Chen-Lee O(nm) O(n2 +m) yes yes no yesBPTT, recalc. y O(m) O(m) no no yes yesTABLE IA summary of the complexity of some learning procedures for recurrent networks. In the \storing y" technique westore y as time is run forwards and replay it as we run time backwards computing z. In \y backwards" we do not storey, instead recomputing it as time is run backwards. \Forward propagation" 1 and 2 are the online techniques describedin section III-B. The times given are for computing the gradient with respect to one pattern.[7] Geo�rey E. Hinton, \Using relaxation to �nd a puppet", inProceedings of the A.I.S.B. Summer Conference, University ofEdinburgh, July 1976.[8] D. L. Waltz and J. B. Pollack, \Massively parallel parsing: Astrongly interactive model of natural language interpretation",Cognitive Science, vol. 9, pp. 51{74, 1985.[9] Ning Qian and Terrence J. Sejnowski, \Learning to solverandom-dot stereograms of dense and transparent surfaces withrecurrent backpropagation", in Proceedings of the 1988 Con-nectionist Models Summer School, David S. Touretzky, Geof-frey E. Hinton, and Terrence J. Sejnowski, Eds. 1989, pp. 435{443, Morgan Kaufmann.[10] O. Nerrand, P. Roussel-Ragot, G. Dreyfus L. Personnaz, andS. Marcos, \Neural networks and non-linear adaptive �ltering:Unifying concepts and new algorithms", Neural Computation,vol. 5, no. 2, pp. 165{197, 1993.[11] T. W. Karjala, D. M. Himmelblau, and R. Miikkulainen, \Datarecti�cation using recurrent (Elman) neural networks", InIJCNN92'Baltimore [153], pp. 901{905.[12] Raymond L. Watrous, Bruce Laedendorf, and Gary M. Kuhn,\Complete gradient optimizationof a recurrentnetwork appliedto BDG descrimination", Journal of the Acoustical Society ofAmerica, vol. 87, no. 3, pp. 1301{1309, Mar. 1990.[13] P. Poddar and K.P. Unnikrishnan, \Nonlinear prediction ofspeech signals using memory neuron networks", In Juang et al.[31], pp. 395{404.[14] Dario Albesano adn Roberto Gemello and Franco Mana,\Word recognition with recurrent network automata", InIJCNN92'Baltimore [153], pp. 308{313.[15] Shawn R. Lockery, Yan Fang, and Terrence J. Sejnowski, \Adynamic neural networkmodel of sensorimotor transformationsin the leech", Neural Computation, vol. 2, no. 3, pp. 274{282,1990.[16] Kenji Doya, M. E. T. Boyle, and A. I. Selverston, \Mappingbetween neural and physical activities of the lobster gastric millsystem", In Hanson et al. [154], pp. 913{920.[17] Kenji Doya, A. I. Selverston, and P. F. Rowat, \A hodgkin-huxley type neuron model that learns slow non-spike oscilla-tion", In Cowan et al. [155].[18] Yves Chauvinand David E. Rumelhart, Eds., Back-propagation: Theory,Architectures and Applications, Lawrence ErlbaumAssociates,1995.[19] Paul R. Gorman and Terrence J. Sejnowski, \Analysis of hiddenunits in a layered network trained to classify sonar targets",Neural Networks, vol. 1, no. 1, pp. 75{89, 1988.[20] Kevin Lang and Geo�rey Hinton, \The development of thetime-delay neural network architecture for speech recognition",Tech. Rep. CMU-CS-88-152, Department of Computer Science,Carnegie Mellon University, Nov. 1988.[21] Alex Waibel, T. Hanazawa, G. Hinton, K. Shikano, andK. Lang, \Phoneme recognition using time-delay networks",IEEE Transactions on Acoustics, Speech, and Signal Process-ing, vol. 37, no. 3, pp. 328{339, 1989.

[22] Kevin J. Lang, Geo�rey E. Hinton, and Alex Waibel, \A time-delay neural network architecture for isolated word recogni-tion", Neural Networks, vol. 3, no. 1, pp. 23{43, 1990.[23] Kevin J. Lang and Geo�rey E. Hinton, \Dimensionality reduc-tion and prior knowledge in e-set recognition", In Touretzky[156], pp. 178{185.[24] D. W. Tank and J. J. Hop�eld, \Concentrating informationin time: Analog neural networks with applications to speechrecognition problems", In Caudill and Butler [157], pp. 455{468.[25] Shawn P. Day and Michael R. Davenport, \Continuous-time temporal backpropagation with adaptable time de-lays", IEEE Transactions on Neural Networks, , no.2, pp. 348{354, 1993, Ftp archive.cis.ohio-state.edu:/pub/neuroprose/day.temporal.ps.Z.[26] M. I. Jordan, \Generic constraints on underspeci�ed targettrajectories", In IJCNN89 [158].[27] Applications of Arti�cial Neural Networks, number 1294 inAPIE Proceedings Series, Orlando, Florida, Apr. 18{20 1990.[28] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, \Gen-eralization by weight-elimination with application to forecast-ing", In Lippmann et al. [159], pp. 875{882.[29] Bert de Vries and Jose C. Principe, \A theory for neural net-works with time delays", In Lippmann et al. [159], pp. 162{168.[30] A.D. Back and A.C. Tsoi, \FIR and IIR synapses, a new neuralnetwork architecture for time series modelling", Neural Com-putation, vol. 3, no. 3, pp. 337{350, 1991.[31] B.H. Juang, S.Y. Kung, and C A. Camm, Eds., Neural Net-works for Signal Processing: Proceedings of the 1991 IEEEWorkshop. IEEE Press, 1991.[32] D. Hush and B. Horne, \Progress in supervised neural net-works", IEEE Signal Processing Magazine, vol. 10, no. 1, pp.8{39, 1993.[33] B. de Vries and J. Principe, \The gammamodel|a new neuralnetwork for temporal processing", Neural Networks, vol. 5, no.4, pp. 565{576, 1992.[34] T. Maxwell, C. L. Giles, Y. C. Lee, and H. H. Chen, \Nonlineardynamics of arti�cial neural systems", In Denker [160], pp.299{304.[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D. Jackel, \Backpropagation applied tohandwritten zip code recognition", Neural Computation, vol.1, no. 4, pp. 541{551, 1989.[36] M. Kawato, T. Setoyama, and R. Suzuki, \Feedback errorlearning of movement by multi-layer neural networks", in Pro-ceedings of the International Neural Networks Society FirstAnnual Meeting, 1988, p. 342.[37] M. I. Jordan and R. A. Jacobs, \Learning to control an unstablesystem with forward modeling", In Touretzky [156].[38] K.S. Narendra and K. Parthasarathy, \Identi�cation and con-trol of dynamical systems using neural networks", IEEE Trans-actions on Neural Networks, vol. 1, pp. 4{27, Mar. 1990.[39] W. Thomas Miller, III, Richard S. Sutton, and Paul J. Werbos,Eds., Neural Networks for Control, MIT Press, 1990.

18 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKS[40] H. T. Siegelmann and E. D. Sontag, \Turing computabilitywith neural networks", Applied Mathematics Letters, vol. 4,no. 6, pp. 77{80, 1991.[41] J. Kilian and H. T. Siegelmann, \Computability with the clas-sical sigmoid", in Sixth Annual ACM Workshop on Computa-tional Learning Theory, Santa Cruz, CA, July 1993, pp. 137{143.[42] H. T. Siegelmann and E. D. Sontag, \Analog computation vianeural networks", in The Second Israel Symposium on Theoryof Computing and Systems, Natanya, Israel, June 1993, Toappear in Theoretical Computer Science.[43] Axel Cleeremans, David Servan-Schreiber, and James McClel-land, \Finite state automata and simple recurrent networks",Neural Computation, vol. 1, no. 3, pp. 372{381, 1989.[44] Raymond L. Watrous and G. M. Kuhn, \Induction of �nite-state automata using second-order recurrent networks", InMoody et al. [161], pp. 309{316.[45] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, andY. C. Lee, \Extracting and learning an unknown grammarwithrecurrent neural networks", In Moody et al. [161], pp. 317{324.[46] Michael C. Mozer and Sreerupa Das, \A connectionist symbolmanipulator that discovers the structure of context-free lan-guages", In Hanson et al. [154], pp. 863{870.[47] Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun, \Using priorknowledge in a NNPDA to learn context-free languages", InHanson et al. [154], pp. 65{72.[48] John F. Kolen, \Fool's gold: Extracting �nite state machinesfrom recurrent network dynamics", In NIPS*93 [155], Ftparchive.cis.ohio-state.edu:/pub/neuroprose/kolen.foolsgold.ps.Z.[49] Sreerupa Das and Michael C. Mozer, \A uni�ed gradient-descent/clustering architecture for �nite state machine induc-tion", In Cowan et al. [155].[50] Dana Angluin, \Learning regular sets from queries and coun-terexamples", Information and Computation, vol. 75, pp. 87{106, 1987.[51] Kevin J. Lang, \Random dfa's can be approximately learnedfrom sparse uniform examples", in Fifth Annual ACM Work-shop on Computational Learning Theory, Pittsburgh, PA, July1992, pp. 45{52.[52] Josef Hochreiter, \Untersuchungen zu dynamischen neuronalennetzen", 1991, Diplomarbeit, Institut f�ur Informatik, LehrstuhlProf. Brauer, Technische Universit�at M�unchen.[53] Michael C. Mozer, \Induction of multiscale temporal struc-ture", In Moody et al. [161], pp. 275{282.[54] J�urgen H. Schmidhuber, \Learning complex, extended se-quences using the principle of history compression", NeuralComputation, vol. 4, no. 2, pp. 234{242, 1992.[55] J�urgen H. Schmidhuber, \Learning unambiguous reduced se-quence descriptions", In Moody et al. [161], pp. 291{298.[56] Geo�rey E. Hinton, \Learning distributed representations ofconcepts", in Proceedings of the Eighth Annual Cognitive Sci-ence Conference. 1986, Lawrence Erlbaum Associates.[57] T.J. Sejnowski, P.K. Kienker, and G. Hinton, \Learning sym-metry groups with hidden units: Beyond the perceptron",Physica D, vol. 22, pp. 260{275, 1986.[58] David H. Ackley, Geo�rey E. Hinton, and Terrence J. Se-jnowski, \A learning algorithm for BoltzmannMachines", Cog-nitive Science, vol. 9, pp. 147{169, 1985.[59] David E. Rumelhart, Geo�rey E. Hinton, and R. J. Williams,\Learning internal representations by error propagation", InRumelhart et al. [151].[60] Paul J. Werbos, Beyond Regression: New Tools for Predictionand Analysis in the Behavioral Sciences, PhD thesis, HarvardUniversity, 1974.[61] David B. Parker, \Learning-logic", Tech. Rep. TR-47, MITCenter for Research in Computational Economics and Man-agement Science, 1985.[62] R. Howard, Dynamic Programming and Karkhov Processes,MIT Press, 1960.[63] D.S. Touretzky and D.A. Pomerleau, \What's hidden in thehidden layers?", BYTE, pp. 227{233, Aug. 1989.[64] B. Widrow and M. Ho�, \Adaptive switching circuits", inWestern Electronic Show and Convention, Convention Record.1960, vol. 4, pp. 96{104, Institute of Radio Engineers (nowIEEE).

[65] Yann LeCun, Ido Kanter, and Sara A. Solla, \Second orderproperties of error surfaces: Learning time and generalization",In Lippmann et al. [159], pp. 918{924.[66] B. Baird, \A learning rule for CAM storage of continuous pe-riodic sequences", In IJCNN90 II [162], pp. 493{498.[67] Bill Baird and Frank Eeckman, \CAM storage of analog pat-terns and continuous sequences with 3n2 weights", In Lipp-mann et al. [159], pp. 91{97.[68] C. A. Skarda and W. J. Freeman, \How brains make chaosin order to make sense of the world", Brain and BehavioralScience, vol. 10, Nov. 1987.[69] W. J. Freeman, \Simulationof chaotic EEG patternswith a dy-namic model of the olfactory system", Biological Cybernetics,vol. 56, pp. 139, 1987.[70] J. P. Crutch�eld and B. S. McNamara, \Equations of motionfrom a data series", Complex Systems, vol. 1, pp. 417{452,1987.[71] Alan Lapedes and Robert Farber, \Nonlinear signal process-ing using neural networks: Prediction and system modelling",Tech. Rep. LA-UR-87-2662, Theoretical Division, Los AlamosNational Laboratory, Los Alamos, NM, 1987.[72] Fernando Pineda, \Generalization of back-propagation to re-current neural networks", Physical Review Letters, vol. 19, no.59, pp. 2229{2232, 1987.[73] L. B. Almeida, \A learning rule for asynchronous perceptronswith feedback in a combinatorial environment", In Caudill andButler [157], pp. 609{618.[74] Geo�rey E. Hinton, \Deterministic Boltzmann learning per-forms steepest descent in weight-space", Neural Computation,vol. 1, no. 1, pp. 143{150, 1989.[75] Pierre Baldi and Fernando Pineda, \Contrastive learning andneural oscillations", Neural Computation, vol. 3, no. 4, pp.526{545, 1991.[76] Barak A. Pearlmutter, \Dynamic recurrent neural networks",Tech. Rep. CMU-CS-90-196, CarnegieMellonUniversity Schoolof Computer Science, Pittsburgh, PA, Dec. 1990.[77] Marco Gori, Yoshua Bengio, and Renato de Mori, \BPS: Alearning algorithmfor capturing the dynamic nature of speech",In IJCNN89 [158], pp. 417{423.[78] Gary Kuhn, \A �rst look at phonetic discrimination usingconnectionist models with recurrent links", SCIMP workingpaper 82018, Institute for Defense Analysis, Princeton, NewJersey, Apr. 1987.[79] Michael C. Mozer, \A focused backpropagation algorithm fortemporal pattern recognition", Complex Systems, vol. 3, no. 4,pp. 349{381, Aug. 1989.[80] Tadasu Uchiyama, Katsunori Shimohara, and Yukio Tokunaga,\A modi�ed leaky integrator network for temporal patternrecognition", In IJCNN89 [158], pp. 469{475.[81] Barak A. Pearlmutter, \Two new learning procedures for re-current networks", Neural Network Review, vol. 3, no. 3, pp.99{101, 1990.[82] William H. Press, Brian P. Flannery, Saul A. Teukolsky, andWilliam T. Verrerling, Numerical Recipes in C, CambridgeUniversity Press, 1988.[83] M. A. Cohen and Steven Grossberg, \Stability of global patternformation and parallel memory storage by competitive neuralnetworks", IEEE Transactions on Systems, Man and Cyber-netics, vol. 13, pp. 815{826, 1983.[84] Geo�rey E. Hinton and Terrence J. Sejnowski, \Optimal per-ceptual inference", in Proceedings of the IEEE conference onComputer Vision and Pattern Recognition, Washington DC,June 1983, IEEE Computer Society, pp. 448{453.[85] Amir F. Atiya, \Learning on a general network", In Anderson[163], pp. 22{30.[86] Steve Renals and Richard Rohwer, \A study of network dy-namics", Journal of Statistical Physics, vol. 58, pp. 825{848,June 1990.[87] Robert B. Allen and Joshua Alspector, \Learning of stablestates in stochastic asymmetric networks", Tech. Rep. TM-ARH-015240, Bell Communications Research, Morristown, NJ,Nov. 1989.[88] Conrad C. Galland and Geo�rey E. Hinton, \DeterministicBoltzmann learning in networks with asymmetric connectiv-ity", Tech. Rep. CRG-TR-89-6, University of Toronto Depart-ment of Computer Science, 1989.

PEARLMUTTER: GRADIENT CALCULATIONS FOR DYNAMIC RECURRENT NEURAL NETWORKS: A SURVEY 19[89] Steven J. Nowlan, \Gain variation in recurrent error propaga-tion networks", Complex Systems, vol. 2, no. 3, pp. 305{320,June 1988.[90] Mary B. Ottaway, Patrice Y. Simard, and Dana H. Ballard,\Fixed point analysis for recurrent neural networks", in Ad-vances in Neural Information Processing Systems I, David S.Touretzky, Ed. 1989, Morgan Kaufmann.[91] C. Peterson and J. R. Anderson, \A mean �eld theory learningalgorithm for neural nets", Complex Systems, vol. 1, 1987.[92] C. Peterson and James R. Anderson, \A mean �eld theorylearning algorithm for neural networks", Tech. Rep. EI-259-87,MCC, Aug. 1987.[93] Geo�rey E. Hinton and Kevin J. Lang, \Shape recognitionand illusory conjunctions", in the Ninth International JointConference on Arti�cial Intelligence, Los Angeles, Aug. 1985,vol. 1, pp. 252{259, Morgan Kaufmann.[94] T. J. Sejnowski, \Higher-order Boltzmann machines", InDenker [160], pp. 398{403.[95] Paul J. Werbos, \Backpropagation through time: what it doesand how to do it", Proceedings of the IEEE, vol. 78, pp. 1550{1560, 1990.[96] Barak Pearlmutter, \Learning state space trajectories in recur-rent neural networks", Neural Computation, vol. 1, no. 2, pp.263{269, 1989.[97] Paul J. Werbos, \Generalization of backpropagation with ap-plication to a recurrent gas market model", Neural Networks,vol. 1, pp. 339{356, 1988.[98] Arthur E. Bryson, Jr., \A steepest ascent method for solvingoptimumprogrammingproblems", Journal of Applied Mechan-ics, vol. 29, no. 2, pp. 247, 1962.[99] Stuart E. Dreyfus, Dynamic Programming and the Calculus ofVariations, vol. 21 of Mathematics in science and engineering,Academic Press, 1965.[100] Paul J. Werbos, \Applicationsof advances in nonlinear sensitiv-ity analysis", in System Modeling and Optimization: Proceed-ings of the 10th IFIP Conference, R. F. Drenick and F. Kozin,Eds., (New York, Aug 31{Sep 4, 1981), 1982, number 38 inLecture Notes in Control and Information Sciences, Springer-Verlag.[101] A. J. Robinson and F. Fallside, \Static and dynamic errorpropagation networks with application to speech coding", InAnderson [163], pp. 632{641.[102] Michael Gherrity, \A learning algorithm for analog, fully re-current neural networks", In IJCNN89 [158], pp. 643{644.[103] Ronald J. Williams and David Zipser, \A learning algorithmfor continually running fully recurrentneural networks", NeuralComputation, vol. 1, no. 2, pp. 270{280, 1989.[104] K. S. Narendra and K. Parthasarathy, \Gradient methods forthe optimization of dynamical systems containing neural net-works", IEEE Transactions on Neural Networks, vol. 2, no. 2,pp. 252{262, Mar. 1991.[105] D. H. Jacobson, \New second order and �rst order algorithmfor determining optimal control: A di�erential dynamic pro-gramming approach", Journal of Optimization Theory andApplications, vol. 2, 1968.[106] R. E. Bellman, Methods of Nonlinear Analysis: Volume II,Academic Press, 1973.[107] A. Gelb et al., Eds., Applied Optimal Estimation, MIT Press,1974.[108] David Zipser, \Subgrouping reduces complexity and speeds uplearning in recurrent networks", In Touretzky [156], pp. 638{641.[109] Ronald J. Williams and Jing Peng, \An e�cient gradient-basedalgorithm for on-line training of recurrent network trajecto-ries", Neural Computation, vol. 2, no. 4, pp. 490{501, 1990.[110] R. J. Williams and D. Zipser, \Gradient-based learning al-gorithms for recurrent networks and their computational com-plexity", In Chauvin and Rumelhart [18], Also published as[164].[111] J�urgen H. Schmidhuber, \A �xed size storageO(n3) time com-plexity learning algorithm for fully recurrent continually run-ning networks", Neural Computation, vol. 4, no. 2, pp. 243{248,1992.[112] Guo-Zheng Sun, Hsing-Hen Chen, and Yee-Chun Lee, \Green'sfunctionmethod for fast on-line learning algorithmof recurrentneural networks", In Moody et al. [161], pp. 333{340.

[113] U. Bodenhausen, \Learning internal representations of patternsequences in a neural network with adaptive time-delays", InIJCNN90 II [162].[114] D. W. Tank and J. J. Hop�eld, \Neural computation by timecompression", Proceedings of the National Academy of Sci-ences, vol. 84, pp. 1896{1900, 1987.[115] R. L. Watrous, Speech Recognition Using Connectionist Net-works, PhD thesis, University of Pennsylvania, Oct. 1988.[116] B. J. Norris, M. J. Coleman, and M. P. Nusbaum, \Distinct re-sponses of electrically-coupled pacemaker neurons to activationof a modulatory projection neuron", Society for NeuroscienceAbstracts, vol. 20, no. 18.6, pp. 23, 1994.[117] Patrice Y. Simard, Jean Pierre Rayzs, and Bernard Victorri,\Shaping the state space landscape in recurrent networks", InLippmann et al. [159], pp. 105{112.[118] J.L. Elman, \Finding structure in time", Cognitive Science,vol. 14, pp. 179{211, 1990.[119] Je�rey L. Elman, \Finding structure in time", Tech. Rep. CRL-8801, Center for Research in Language, UCSD, Apr. 1988.[120] Yann LeCun, \Une proc�edure d'apprentissage pour r�eseau�a seuil assym�etrique", in Cognitiva 85: A la Fronti�ere del'Intelligence Arti�cielle des Sciences de la Connaissance desNeurosciences, Paris 1985, 1985, pp. 599{604, CESTA, Paris.[121] T. Grossman, R. Meir, and E. Domany, \Learning by choiceof internal representations", Complex Systems, vol. 2, pp. 555{575, 1989.[122] Richard Rohwer, \The \moving targets" training algorithm",In Touretzky [156], pp. 558{565.[123] Ronald J. Williams and David Zipser, \A learning algorithmfor continually running fully recurrent neural networks", Tech.Rep. ICS Report 8805, UCSD, La Jolla, CA 92093, Nov. 1988.[124] Michael I. Jordan, \Attractor dynamics and parallelism in aconnectionist sequentialmachine", in Proceedings of Ninth An-nual Conference of the Cognitive Science Society. 1986, pp.531{546, Lawrence Erlbaum Associates.[125] M. B. Matthews, \Neural network nonlinear adaptive �lteringusing the extended Kalman �lter algorithm", in Proceedings ofthe International Neural Networks Conference, Paris, France,July 1990, vol. 1, pp. 115{119.[126] Ronald J. Williams, \Training recurrent networks using theextendedKalman �lter", In IJCNN92'Baltimore [153], pp. 241{250.[127] R. E. Kalman, \A new approach to linear �ltering and predic-tion problems", Trans. ASME Journal of Basic Engineering,vol. 82, no. 1, pp. 35{45, Mar. 1960.[128] R. K. Mahra, \On the identi�cation of variances and adaptiveKalman �ltering", IEEE Transactions on Automatic Control,vol. AC-15, no. 2, pp. 175{184, Apr. 1970.[129] B. D. O. Anderson and J. B. Moore, Optimal Filtering,Prentice-Hall, 1979.[130] S. J. Nowlan and G. E. Hinton, \Adaptive soft weight tyingusing gaussian mixtures", In Moody et al. [161], pp. 993{1000.[131] John Skilling, Ed., Maximum Entropy and Bayesian Methods.Kluwer Academic Publishers, 1989.[132] P. F. Rowat and A. I. Selverston, \Learning algorithms for os-cillatory networks with gap junctions and membrane currents",Network: Computation in Neural Systems, vol. 2, no. 1, pp.17{42, Feb. 1991.[133] J. G. Blom, J. M. Sanz-Serna, and Jan G. Verwer, On SimpleMoving Grid Methods for One-Dimensional Evolutionary Par-tial Di�erential Equations, Stichting Mathematisch Centrum,Amsterdam, The Netherlands, 1986.[134] Robert A. Jacobs, \Increased rates of convergence throughlearning rate adaptation", Neural Networks, vol. 1, no. 4, pp.295{307, 1988.[135] Yan Fang and Terrence J. Sejnowski, \Faster learning for dy-namic recurrent backpropagation", Neural Computation, vol.2, no. 3, pp. 270{273, 1990.[136] Richard S. Sutton, \Gain adaptation beats least squares?",in Seventh Yale Workshop on Adaptive and Learning Systems,1992, pp. 161{166.[137] Richard S. Sutton, \Adapting bias by gradient descent: Anincremental version of delta-bar-delta", in Proceedings of theNational Conference on Arti�cial Intelligence AAAI-92, 1992.[138] Mark A. Gluck, Paul T. Glauthier, and Richard S. Sutton,\Adaptation of cue-speci�c learning rates in network modelsof human category learning", in Proceedings of the Fourteenth

20 DRAFT OF July 20, 1995FOR IEEE TRANSACTIONS ON NEURAL NETWORKSAnnual Meeting of the Cognitive Science Society, Bloomington,IN, 1992.[139] Douglass J. Wilde and Charles S. Beightler, Foundations ofOptimization, Prentice-Hall, 1967.[140] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson,Jr., \Stationary and nonstationary learning characteristics ofthe LMS adaptive �lter", Proceedings of the IEEE, vol. 64, pp.1151{1162, 1976.[141] Bernard Widrow and Samuel D. Stearns, Adaptive Signal Pro-cessing, Prentice-Hall signal processing series. Prentice-Hall,1985.[142] S. Thomas Alexander, Adaptive Signal Processing, Springer-Verlag, 1986.[143] David B. Parker, \Optimal algorithms for adaptive networks:Second order back propagation, second order direct propaga-tion, and second order Hebbian learning", In Caudill and But-ler [157], pp. 593{600.[144] RaymondWatrous, \Learning algorithms for connectionist net-works: Applied gradient methods of nonlinear optimization",In Caudill and Butler [157], pp. 619{627.[145] J. J. Shynk and S. Roy, \The LMS algorithm with momentumupdating", in Proceedings of the IEEE International Sympo-sium on Circuits and Systems, June 6{9 1988, pp. 2651{2654.[146] Gerald Tesauro, Yu He, and Subutai Ahmad, \Asymptoticconvergence of backpropagation", Neural Computation, vol. 1,no. 3, pp. 382{391, 1989.[147] Mehmet Ali Tu�gay and Yal�cin Tanik, \Properties of the mo-mentum LMS algorithm", Signal Processing, vol. 18, no. 2, pp.117{127, Oct. 1989.[148] Barak A. Pearlmutter, \Gradient descent: Second-order mo-mentum and saturating error", In Moody et al. [161], pp. 887{894.[149] J. J. Hop�eld and D. W. Tank, \`Neural' computation of de-cisions in optimization problems", Biological Cybernetics, vol.52, pp. 141{152, 1985.[150] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, \Optimiza-tion by simulated annealing", Science, vol. 220, pp. 671{680,1983.[151] D. E. Rumelhart, J. L. McClelland, and the PDP researchgroup., Eds., Parallel distributed processing: Explorations inthe microstructure of cognition, Volume 1: Foundations, MITPress, 1986.[152] D. H. Ballard and C. M. Brown, Computer Vision, Printice-Hall, 1982.[153] International Joint Conference on Neural Networks, Balti-more, MD, Apr. 1992. IEEE Press.[154] Stephen Jos�e Hanson, Jack D. Cowan, and C. Lee Giles, Eds.,Advances in Neural Information Processing Systems 5. MorganKaufmann, 1993.[155] Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, Eds.,Advances in Neural Information Processing Systems 6. MorganKaufmann, 1994.[156] David S. Touretzky, Ed., Advances in Neural Information Pro-cessing Systems 2. Morgan Kaufmann, 1990.[157] Maureen Caudill and Charles Butler, Eds., IEEE First In-ternational Conference on Neural Networks, San Diego, CA,June 21{24 1987.[158] International Joint Conference on Neural Networks, Washing-ton DC, June 18{22 1989. IEEE Press.[159] Richard P. Lippmann, John E. Moody, and David S. Touretzky,Eds., Advances in Neural Information Processing Systems 3.Morgan Kaufmann, 1991.[160] John S. Denker, Ed., Snowbird Conference on Neural Net-works for Computing, number 151 in AIP conference proceed-ings. American Institute of Physics, 1986.[161] John E. Moody, Steven J. Hanson, and Richard P. Lippmann,Eds., Advances in Neural Information Processing Systems 4.Morgan Kaufmann, 1992.[162] International Joint Conference on Neural Networks, SanDiego, CA, June 1990. IEEE Press.[163] Dana Z. Anderson, Ed., Neural Information Processing Sys-tems, New York, New York, 1988. American Institute ofPhysics.[164] R. J. Williams and D. Zipser, \Gradient-based learning algo-rithms for recurrent connectionist networks", Tech. Rep. NU-CCS-90-9, College of Computer Science, Northeastern Univer-sity, Boston, MA, 1990, Also published as [110].

Barak A. Pearlmutter has been a connec-tionist for over a decade, and will receive hisPhD in Computer Science from Carnegie Mel-lon University really really soon (really mom,I promise.) When paging through IEEE trans-actions, he reads the bio's �rst. He can slicea hippocampus, train an arti�cial neural net-work, implement Scheme, and get a giga-ohmseal on a cultured frog neuron with a singlesuck.

